A Study on Improvement of Automated Test Input
Generation with Machine Learning Techniques in Software
Testing

(V7 b0z 7T ACHETBEMFBRMNZEBVCEE T XA CANERDONE (CAT BR)

Dissertation submitted in partial fulfillment for the
degree of Ph.D. of Advanced Science and Engineering

Xiujing Guo

B FE

Under the supervision of
Professor Hiroyuki Okamura

Dependable Systems Laboratory,
Graduate School of Advanced Science and Engineering,
Hiroshima University, Higashi-Hiroshima, Japan

March 2024

iii
Abstract

With the rapid increase of software scale and complexity, the cost of traditional
software testing methods will increase faster than the scale of software. In order
to improve test efficiency, it is particularly important to automatically generate
high-quality test inputs. This article dissertation three approaches focusing
on generating test inputs to achieve high test coverage (e.g. branch coverage)
and generating test inputs based on boundary value analysis (BVA). We will
introduce them successively.

In Chapter 2, we develop a framework for automatic test input generation
based on the generative adversarial network (GAN). GAN is employed to train
a generative model over execution path information to learn the behavior of the
software. Then we can use the trained generative model to produce new test
input, and select the test input that can improve the branch coverage accord-
ing to our proposed selection strategy. Compared to prior work, our proposed
method is able to handle programs under test with large-scale branches without
analyzing branch expressions. In the experiment, we exhibit the performance
of our method by using two modules in GNU Scientific Library. In particular,
we consider the application of our method in two testing scenarios; unit testing
and integration testing, and conduct a series of experiments to compare the
performance of three types of GAN models. Results indicate that the WGAN-
GP shows the best performance in our framework. Compared with the random
testing method, the WGAN-GP based framework improves the test coverage of
five functions out of the seven in the unit testing.

In Chapter 3, we focus on boundary value analysis (BVA). In software test-
ing, a protective measure to prevent faults in the code is to ensure that the be-
havior on the boundary between the sub-domains of the input space is correct.
Therefore, designing test inputs with boundary value analysis (BVA) can de-
tect more errors and improve test efficiency. This dissertation presents an MLP
(Multilayer Perceptron) based approach to automatically generate boundary
test inputs. Our approach is twofold. First, we train an MLP-based discrimina-
tor that determines whether a boundary exists between two test inputs. Second,
using the outputs of the discriminator, we create test inputs based on Markov

Chain Monte Carlo. We conduct experiments to compare the fault detection

iv

capabilities of the MLP-based approach with concolic testing and manually-
performed boundary analysis. Results indicate that the MLP-based method
outperforms the manually-performed boundary analysis in four of the seven
programs tested and concolic testing in three of the seven programs tested.

In Chapter 4, we discuss a boundary coverage metric for BVA. BVA is a
common technique in software testing that uses input values that lie at the
boundaries where significant changes in behavior are expected. This approach
is widely recognized and used as a natural and effective strategy for testing
software. Test coverage is one of the criteria to measure how much the software
execution paths are covered by the set of test inputs. In this dissertation, we
focus on evaluating test coverage with respect to BVA by defining a metric called
Boundary Coverage Distance (BCD). The BCD metric measures the extent
to which a test set covers the boundaries. In addition, based on BCD, we
consider the optimal test input generation to minimize BCD under the random
testing scheme. We propose three algorithms, each representing a different test
input generation strategy, and evaluate their fault detection capabilities through
experimental validation. The results indicate that the BCD-based approach
has the potential to generate boundary values and improve the effectiveness of
software testing.

Finally, we summary the contributions of this thesis are; (i) application of the
GAN model to automatically generate test inputs, aiming to achieve full branch
coverage.(ii) introduce an MLP based approach to automatically generate test
inputs with BVA. (iii) propose a novel approach to evaluating test coverage in
software testing, focusing on the utilization of Boundary Value Analysis (BVA)

and introducing a new metric called Boundary Coverage Distance (BCD).

Acknowledgements

First and foremost, I would like to extend my sincere gratitude to Professor
Hiroyuki Okamura, the supervisor of my study, for his valuable guidance, kind
advice in every stage of the writing of this thesis. Without his continuous
encouragement and impressive patience, I could not have completed my thesis.

Also, many thanks go to Professor Tadashi Dohi, Professor Hirashima Tsukasa,
Professor Shaoying Liu and Professor Xiao Xiao for their invaluable comments,
useful suggestions and warm encouragement.

Finally, it is my special pleasure to acknowledge the hospitality and encour-
agement of the past and present members of the Dependable Systems Labora-
tory, Graduate School of Advanced Science and Engineering, Hiroshima Uni-
versity. I also feel gratitude for my family’s support and encouragement for my

Ph.D. graduation.

Contents

Abstract iii
Acknowledgements v
1 Introduction 1

2 Test Input Generation with Generative Adversarial Networks 7

2.1 Imtroduction 7
2.2 GAN: Generative Adversarial Network 8
2.3 Software Testing with GAN 11
24 Experiment Lo 13
2.4.1 Experimentalsetup. 13
242 Results 16

3 Test Input Generation with MLP-Based Boundary Value Anal-

ysis 27
3.1 Imtroduction 27
3.2 Generation of Boundary Values 27
3.2.1 Markov Chain Monte Carlo MCMC) 27
3.2.2 MCMC for Boundary Values 28
3.3 Exploitation of MLP Model 31
3.3.1 Model Architecture.o 31
3.3.2 Training Data 32
3.4 Experiment 33
3.4.1 Fault detection ability 33
342 RTand ART 34
3.4.3 Experiment with a Simple C Program 34

vii

viii CONTENTS

3.4.4 Experiment with Real Programs

4 Optimal Test Input Generation for Boundary Value Analysis
4.1 Introduction
4.2 Boundary Value Analysis
4.3 Boundary coverage distance

4.3.1 Definition oo
4.3.2 Computationof BCD
4.4 Test Input Generation,
4.5 Experiment L
4.5.1 Programs under Testing
4.5.2 Design Parameters L

4.5.3 Result
5 Conclusion

Publication List of the Author

63

71

Chapter 1

Introduction

Software testing is the execution of software systems for the purpose of revealing
faults and is one of the most important activities in building a reliable software
system. In general, software testing can be majorly classified into two categories;
black-box testing and white-box testing. Black box testing is a testing technique
where testers focus on the software’s inputs and outputs without knowledge of
its internal workings. Testers design test cases based on specifications and check
whether the system’s outputs meet expected outcomes. White box testing is a
testing technique where testers have knowledge of the internal structure, design,
and code of the software. Test cases are designed based on an understanding of
the code logic to ensure all code branches are executed and produce expected
results.

A common procedure of software testing is (i) to make test cases (The test
case consists of test inputs and their expected outcomes by the test oracle.) (ii)
to execute the software under test (SUT) with the inputs of test cases, and (iii)
to compare the test outcomes with the expected ones. If the test outcome is
different from the expected one, the SUT involves bugs. In dynamic testing,
several topics need to be studied to improve testing efficiency, and they are

roughly divided into three categories:

1. Test input generation: Test input generation focuses on creating diverse
and effective test inputs to assess different aspects of a software system.
In white box testing, the test inputs are generally designed to achieve a
test coverage that attains a predefined level. In black box testing, test

inputs are usually designed to cover different functional paths and bound-

CHAPTER 1. INTRODUCTION

ary conditions, such as boundary value analysis.In the process of testing,
the software reliability may grow as the number of test inputs increases.
However, a large number of test inputs cause a large amount of cost for
software testing. Generating a test oracle for a large number of test inputs
is a costly process, and executing extensive test input validation programs
is also resource-intensive. Thus it is a challenge to consider how to reduce
the number of test cases keeping a certain level of software reliability. The
artificial intelligence (Al) is one of the key technologies to address this is-
sue, and the Al-based software testing is expected to be a killer application

for highly-reliable software development.

. Test oracle generation: The test oracle is a mechanism to check whether
the test result is correct or not. In the real situation, this is done by
the expected test outcomes. However, since the expected test outcomes
should be manually generated, it is the most costly process in software
testing. There are several types of research results for the generation
of the expected output with the artificial neural network (ANN) [1-4].
Valueian et al. [1] proposed a classifier-based method using ANNs that can
build automated oracles for embedded software that has low observability
and /or produces unstructured or semi-structured outputs. In the proposed
approach, the oracles need input data tagged with two labels of ” pass” and

”fail” rather than outputs and any execution trace.

. Test Metrics: Test metrics in software testing involve the measurement
and analysis of various aspects of the testing process and the quality of
the software under test. Metrics provide quantitative data that can help
assess the progress, effectiveness, and reliability of the testing efforts. Test
coverage is a crucial metric in software testing that gauges the extent to
which a software application has been tested. It usually measures the per-
centage of code, branches, paths, requirements, or functionalities exercised
by a set of test cases. In black box testing, boundary value analysis is a
methodical approach to testing the boundaries of input domains, allow-
ing testers to identify potential vulnerabilities and errors without detailed
knowledge of the internal system logic. Boundary coverage is a critical

aspect of test coverage that focuses on testing the software application

at or near its input boundaries. This is particularly important because
boundary conditions are often sources of defects or unexpected behavior
in software. However, identifying and testing all possible boundary condi-

tions can be complex, especially in systems with intricate input domains.

In this dissertation, we first focus on generating test inputs to achieve full branch
coverage. The test coverage is defined as a fraction of executed test path in
testing over the entire execution paths of SUT [5]. In general, since it is difficult
to measure the entire execution paths, statement and branch coverage are used
instead of path coverage in practice. The search-based software testing (SBST)
is a method to generate test inputs with search techniques, e.g., meta-heuristic
optimization methods, so that it can achieve high coverage [6]. Fraser and Arcuri
[7] presented an extension of SBST that is able to exercise automated oracles
and to produce high coverage test suites at the same time. Zhan and Clark [§]
applied search techniques to test input generation for Simulink models. In this
approach, they proposed a full test-set generation framework, which successfully
combines random testing with the search-based targeted test-input generation
techniques to enable us to generate effective test sets. In general, to achieve
the branch coverage [9], the SBST uses symbolic execution to extract branch
conditions and uses an optimization algorithm to find the test input that satisfies
the branch condition. However, with the increasing scale and complexity of
the software system, it is complicated and time-consuming to carry out large-
scale branch coverage. Therefore, we propose a software testing framework
with Generative Adversarial Networks (GANSs) to automatically generate high-
coverage test inputs.

Secondly, we focus on automatically generate test inputs with BVA based on
Multilayer Perceptron (MLP). Boundary value analysis (BVA) is one of the most
popular methods to create the high-quality test cases effectively. The boundary
value is defined as an input of software that changes the behavior of software
with even a little change, and BVA extracts test inputs from the boundary val-
ues. In the context of black-box testing, BVA extracts the test inputs from
the boundaries of equivalence partitions. In the BVA with white-box testing,
the test inputs can be determined from branch and loop conditions on source

codes. It is empirically known that many programming errors often occur on

4 CHAPTER 1. INTRODUCTION

the boundary of the input domain. One protective measure to prevent vulnera-
bilities and failures in the code is to ensure correct behavior on the boundaries
between the input space sub-domains [10]. Therefore, compared with other
methods, by designing test cases with BVA, more boundary errors could be de-
tected and the test efficiency is higher. On the other hand, since BVA requires
the analysis of specifications or source codes, the effort of BVA is not small. In
the case of black-box testing, testers identify the equivalence partitions or sub-
domains by analyzing the specification using partition analysis (PA), and create
test inputs from the boundary between sub-domains [11]. This process generally
relies on manual analysis. Since the complexity of the software system increases,
software has large input spaces, heavily or non-linearly dependent inputs, and
complex and highly structured inputs. Thus it is not feasible to manually an-
alyze the input domain and the boundary values [10]. In recent years, there
are several researches on the automation of BVA. Jeng and Forgacs [12] pro-
posed a semi-automatic method that mixed the dynamic search method and
the algebraic manipulations of the boundary conditions to generate test input
for boundary value testing (BVT) more efficiently. Zhao et al. [13] considered
string inputs and proposed a novel approach for automatically generating test
points to better find problems at borders in code with string predicates. Ali S
et al. [14] extended their search-based test input generation method in model-
based testing, using a solver to automatically generate boundary values based
on a set of heuristics. Feldt and Dobslaw [15] applied the idea of derivative
in mathematical parlance to detect the maximum “change” area by combining
the input and output distances, that is, the detection boundary. This method
uses the program derivatives as a fitness function in search-based software test-
ing for automated BVA. In order to generate boundary test cases through the
above techniques, it is necessary to have the specification that clearly states the
boundary formally. In this work, we consider the BVA in white-box testing.
The BVA in white-box testing focuses on a pair of input and its execution path,
and the boundary is defined as the input that changes the execution path in
some sense!. Compared to the BVA in black-box testing, one of the difficulties
of BVA in white-box testing is to identify feasible test inputs. On BVA in black-

1The definition is formally given in Chapter 3.

box testing, we implicitly suppose that the input variables on specifications are
independent, and then the boundary can be obtained from combinations of the
boundary values for each input variables. On the other hand, input variables

are dependent; for example, the program includes a condition
x +y <=10

for two input variables x and y. Then the boundary of this condition cannot be
determined only by either of x and y. That is, even if the boundary is detected
from source codes, we need to solve the problem of finding feasible input values.
For this problem, Zhang et al. [16] used the SMT (satisfiability modulo theories)
solver. However, SMT has weaknesses in scalability. In other words, it is difficult
to apply the SMT-based approach to the large-sized programs. Therefore, we
propose another approach for the BVA in white-box testing, i.e., MLP based
approach.

Thirdly, we propose a boundary coverage metric for BVA. BVA is a system-
atic testing technique used in software testing to design test cases that focus on
the boundaries of input domains. The primary goal of BVA is to identify poten-
tial defects or errors that may occur at or near the edges or limits of the input
space. To make BVA more effective, proposing a boundary coverage metric is
important. By defining boundary coverage metrics, we can measure how thor-
oughly we test these critical areas and evaluate the quality of the test suite and
ensure we don’t miss critical test scenarios. Moreover, BVA is particularly useful
for uncovering off-by-one errors, boundary-related exceptions, and other issues
that often escape less focused testing. A boundary coverage metric allows to
quantify the coverage of these high-risk areas, reducing the chances of releasing
software with critical defects. At the same time, testing can be time-consuming
and resource-intensive. By establishing boundary coverage metrics, we can pri-
oritize testing efforts. Focusing on achieving full coverage of the boundary
during testing while conducting less exhaustive testing in non-boundary areas
helps optimize resource allocation and testing efficiency. In summary, proposing
a boundary coverage metric for boundary value analysis in software testing is
essential for enhancing the precision, efficiency, and effectiveness of the testing
process. In this work, we attempt to define boundary coverage measures, called

boundary coverage distance (BCD).

6 CHAPTER 1. INTRODUCTION

The organization of this dissertation is as follows. The automated software
test input generation framework with GAN model is shown in Chapter 2. Chap-
ter 3 introduces the details of test suite generation with MLP-based boundary
value analysis. Chapter 4 describes the content and application of boundary

coverage distance. Chapter 5 gives the conclusions and the future work.

Chapter 2

Test Input Generation with
Generative Adversarial
Networks

2.1 Introduction

In this chapter, we propose a software testing framework with generative ad-
versarial networks (GANs). Concretely, we consider a GAN model to generate
test input for the SUT, and a test strategy to increase the test coverage with
the GAN. The GAN is a NN model for the input generation from given train-
ing data. A GAN consists of a generator and a discriminator, and the most
important feature of GAN is to reinforce the ability of data generation for the
generator by competing to the discriminator to detect fake data [17]. The main

contributions of this chapter are summarized as follows:

1. We propose a GAN model to generate test inputs and their associated
execution paths simultaneously. That is, in our model, the discriminator
learns program execution paths for SUT and the generator generates test

cases including test inputs and expected paths.
2. We discuss a test input selection strategy to increase the test coverage.

3. We investigate the applicability of our framework for two software testing
scenarios; unit testing and integration testing. The experimental compar-

ison proves that our method is better than the common random test.

7

8 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

2.2 GAN: Generative Adversarial Network

In this section, we first introduce the GAN model and then present the input

and output of GAN in our framework.

- Discriminator Network - Predicted Labels

Real data

D-dimensional I

noise vector

I - Discriminator Network - Fake data
z

Figure 2.1: The architecture of GAN.

GANSs are algorithmic architectures that use two neural networks, pitting
one against the other (thus the “adversarial”) in order to learn the underlying
distribution of the training data so that it can generate new data instances that
resemble the training data [18]. Fig. 2.1 is the architecture of GAN. It consists
of a generator and a discriminator. The generator takes random noise z and
generates fake data. The discriminator determines if the generated data are
real or fake. GAN estimates generative models via an adversarial process. In
the adversarial process, the generator aims to maximize the failure rate of the
discriminator while the discriminator aims to minimize it. The GAN model
converges when the Nash equilibrium is reached [17].

One of the most challenging problems when Al technologies are applied to
unstructured data such as computer program and software testing is to deter-
mine what data are used as inputs of the Al system. Our main idea is to use
not only the test inputs but also the corresponding execution paths as inputs
of GAN. A pair of test inputs and program execution paths includes rich infor-
mation on the program itself. Also, it is not difficult to observe and collect the
execution path for an input in the dynamic testing and it is more reasonable in
terms of cost than symbolic execution used in the SBST.

In this chapter, we focus on branch coverage. Therefore, the execution path

2.2. GAN: GENERATIVE ADVERSARIAL NETWORK 9

int English(int Lis_score, int Rea_score)

{
int p;
int sum;
if(Lis_score>=0 && Lis_score<=100 &&
Rea_score>=0 && Rea_score<=100){
if(Lis_score>=50 && Rea_score>=50){
sum = Lis_score+Rea_score;
if(sum>=120)
p=1;
else
p=0;
}
else{
p=0;
}
}
else{
printf("domain wrong");
p=-1;
}
return p;
}

Figure 2.2: The source code of En_testing.c.

in our work is extracted by Gcov tool [19] and is defined as the combination
of the execution of each branch in the program under a specific input. Geov is
a source code coverage analysis and statement-by-statement profiling tool that
can generate exact counts of the number of times each statement in a program
is executed, and that annotates source code to add instrumentation. Gcov is
released with GCC and cooperates with GCC to realize statement coverage
and branch coverage testing of C/C++ files. When executing a program, we
use Gceov to write branch frequencies to the output file, and then extract the
branch information in the file as a path. For example, Figure 2.2 is a simple C
program for judging whether the English examination passed. We assume that

the English examination consists of two parts; listening and reading. The full

10 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

1: 5:int English(int Lis_score, int Rea_score)
- 6:{
- 7:
- 8: int p;
-: 9: int sum;
2: 10: if(Lis_score>=0 && Lis_score<=100 &&
branch 0 taken 1
branch 1 taken 0
branch 2 taken 1
branch 3 taken 0
branch 4 taken 1
branch 5 taken 0
1: 11: Rea_score>=0 && Rea_score<=100){
branch @ taken 1
branch 1 taken 0
1: 12: if(Lis_score>=50 && Rea_score>=50){
branch @ taken 1
branch 1 taken @
branch 2 taken 0
branch 3 taken 1
et 13: sum = Lis_score+Rea_score;
A 14: if(sum>=120)

branch @ never executed
branch 1 never executed

HAHE 15: p=1;
=2 16: else
HHHHH 17: p=0;

#H###: 18: }
- 19: else{
1: 20: p=0;
EH 21: }
1: 22: }
-1 23: else{
#HERED 24 printf("domain wrong");
HHHH 25: p=-1;
-1 26: }
- 27:
1: 28: return p;
-1 29:}

Figure 2.3: The result of Gcov for En_testing.c.gcov.

score of each part is 100 points. To pass the English examination, the following

two conditions must be satisfied:

(1) Both the listening score a and the reading score b are greater than or equal

to 50 points.

(2) The sum of listening score a and reading score b is greater than or equal to

120 points.

Figure 2.3 shows the result of Gcov on running the En_testing.c.gcov pro-
gram with the input ¢ = 45 and b = 65. We convert the “taken a (a>0)”
to “1” to represent that the branch is taken at least once, convert the “taken
0” to “0” to represent that the branch is not taken, and convert the “never

executed” to “~1” to represent that the branch is not executed, and the execu-

2.3. SOFTWARE TESTING WITH GAN 11

input of the
program Executed path
A .
o [b bt [b2 [63 b4 [b5 |6 |b7 b8
p Input T Predict labels
L 0 L S S S S R |:> Discriminator Network |:>
2ot Jo [t o o o [r o Cortect/wrong path

Noise vector

° new input Expected path

. . [. 1
Input Output [4 b bt [b2 [b3 [b4 b5 |66 |b7 |68

P

® Generator Network l_> Rl L KU O S o e K

[] 720 [T {1t [o Jo [t [0 |1

{]

[J

(]

V4

Figure 2.4: The input and output of GAN in our framework ("b1=0" represents
that branch1 is not taken; "b2=1" represents that branch?2 is taken at least once;
”b3=-1” represents that branch3 is not executed).

tion path of the program En_testing.c with the input a = 45 and b = 65 is the
combination of all branch executions; 1,0,1,0,1,0,1,0,0,1,-1,-1,-1,-1.
Fig. 2.4 illustrates the input and output of GAN in our framework. The
input of GAN is a noise vector and a set of inputs of the program with their
corresponding executed paths extracted by Gcov. The output of GAN is a set
of new inputs of the program with their corresponding expected paths gener-
ated by generator. In the successfully trained GAN model, the generator can
generate the correct path for a specific generated input, and the discriminator
can accurately determine whether the path corresponding to the specific input
is correct. Therefore, the generator can be used to generate test inputs and im-
prove test coverage based on generated path information, and the discriminator

can be used as an evaluator.

2.3 Software Testing with GAN

We propose a framework for automated test data generation and aim to achieve
the full branch coverage in software testing. In our framework, we use GAN
to iteratively generate test inputs for software testing. Fig. 2.5 illustrates the

structure of the framework. It contains the following four steps:
Step 1: Select m test inputs and their corresponding paths as training data.

Step 2: Train GAN with training data to generate n test inputs.

12 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

Step 3: According to the path information of the generated test inputs, se-
lect w(w < n) test inputs from n test inputs sets that may cover not-

executed branches in the training data.

Step 4: Add the selected w test inputs and their corresponding executed paths
to the training data. Go to Step 2.

train2
(m+w)
—
initial data GAN
trainl
(m) (m)
Selected data
W)
generate
select
Generated data
()

Figure 2.5: A framework for the test input generation indenting to increase test
coverage.

New training data (20)

a b b1 b2 b3 b4 a b b1 b2 b3 b4
r 2 4 1 0 8 [) 5 3 1 o 1 o
5 8 6 0 1 0
1 5 1 0 7 0 5 8 1 0 1 0
3 2 1 0 0 0 ; 2 ! g g g
i 7 14 5 0 4 0 i
Training data & I] o 1 ® 5 14 1 0 0 0
(10) 8 2 4 0 0 0 6 1 1 0 1 0
7 3 1 0 6 0 8 2 1 0 0 0
’ 16 8 9 0 1 0 7 3 1 0 0 0
N - g z 1 g : g 16 8 1 0 1 0
GAN s e o e 9 v] 9 d 9
7 4 7 1 1 2 12 3 0 1 1)
l 2 9 1 0 1 0
dd 4 14 6 1 5 1 0
generated data 3 3 ° g 2 8 1 0 1 0
(100) o w1 s - ! ! C
7 14 1 0 1 0
0 8 1 5
a b1 b2 b3
12 3 12 3 0 1 1 0
. 2 © Execute for 2 © 1 g L
selected input » —
2 8 extract real path 2 8 1 o 1 o
(10) 2 6
2 6 0 1 1 0

Figure 2.6: An example of proposed framework.

Fig. 2.6 illustrate an example of our framework. In the training data, branch
2 and branch 4 are not taken. Therefore, we select the inputs "a=12, b=3; ... ;

a=2, b=9; a=2, b=8; a=2, b=6" where generated path information shows that

2.4. EXPERIMENT 13

branch 2 and branch 4 are taken. Then execute the program with selected inputs
to extract real path, add them into the training data. With a high-precision

GAN model, our framework has the ability to improve test coverage.

2.4 Experiment

In this section, we conduct a series of experiments to evaluate the effectiveness
of the proposed framework. First, we applied our framework to unit testing
and integration testing, and next selected three GAN models: WGAN-GP [20],
BiGAN [21], and standard GAN [17] in our experiments. Our experiments aim
to evaluate which type of GAN is more suitable for the framework, and which

test level is suitable for our framework.

2.4.1 Experimental setup

In the past few years, different variants of GAN have been proposed. In our
experiments, we choose three GAN models to apply to our framework: WGAN-
GP, BiGAN, and the standard GAN. WGAN-GP is an improvement of WGAN
[22] with a gradient norm penalty. The main difference from the standard GAN
is only the cost function. WGAN-GP is based on the Wasserstein distance
that has a smoother gradient everywhere. Therefore it has the higher training
stability than the standard GAN [20]. BiGAN is a type of GAN where the
generator not only maps latent samples to generated data, but also has an
inverse mapping from data to the latent representation [21]. We compared the
test coverage of the test input generated by the three GAN models and the
accuracy of the generated path.

We apply our proposed framework to two software testing levels: unit testing
and integration testing, conduct two sets of experiments on WGAN-GP, BiGAN,
and the standard GAN. Unit testing is a type of software testing in which
individual units or components of the software are tested. The purpose is to
verify that each unit of the software code executes as expected. A unit can be
a single function, method, procedure, module, or object. Integration testing is
a level of software testing in which individual units/components are combined
and tested as a whole. The purpose of this test is to expose errors in the

interaction between integration units. Integration testing can be performed

14 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

by the following strategies: incremental approach and big bang approach. In
the incremental test method, the test is performed by integrating two or more
logically related modules, and then the function of the application is tested.
Then, other related modules are integrated incrementally, and this process is
repeated until all logic-related modules are successfully integrated and tested.
Big bang integration test is an integration test strategy that combines all the
units at once to form a complete system, and then tests the unity of different
units as one entity. In our unit test experiment, the GAN model generates
paths in function units. In the integration test experiment, we adopt the big

bang strategy and use GAN to generate paths for all functions at once.

In both experiments, the parameters of the framework are set to m = 100,
n = 100, w = 10, and are iterated 10 times to generate 100 test inputs. In the
integration testing, the 100 initial data are randomly generated. In the unit
testing, we do not directly consider the input parameters of a single function,
but consider the input of the main function. Therefore, the initial data of each
function in unit testing is the selected test inputs that can pass the objective
function. Regarding the network structure of the generator and discriminator
in the GAN model, we applied a simple fully connected neural network (dense
layers) and a convolutional neural network for comparison. The GAN model
trains 5000 epochs per iteration in the unit testing, and 10000 epochs per iter-
ation in the integration testing (one epoch is the cycle when an entire dataset
is passed forward and backward through the neural network only once.) In the
BiGAN models, the encoder model is an inverse mapping from data to the la-
tent representation. Since the authors of the paper [20] recommend to use layer
normalization as a drop-in replacement for batch normalization in WGAN-GP
to help stabilize training. The same authors also use the RMSProp optimizer in
their experiment. Therefore, we also use the RMSProp optimizer and layer nor-
malization in WGAN-GP, and use the Adam optimizer and batch normalization
in other GAN models. During the training process, it’s important to monitor
the changes in the gradient and loss of the network and balance the training of
the Generator and Discriminator. Ideally, the generator should receive a large
gradient early in training, as it needs to learn how to generate realistic data.

On the other hand, the Discriminator should not always receive a large gradient

2.4. EXPERIMENT 15

Table 2.1: The functions names.

Functionl gsl_sf_gamma_inc_Q_e

gamma-inc.c Function2 gsl_sf gamma_inc_P_e

Function3 gsl sf gamma_inc_e

Functionl hyperg_1F1_1_small_a_bgt0

Function2 hyperg_1F1_ab_posint

hyperg_1Fl.c Function3 hyperg_1F1_ab_pos

Function4 hyperg_1F1_ab_neg

Function5 gsl_sf_hyperg_1F1_inc_e

early in training because it can easily distinguish between real data and gen-
erated data. Once the Generator is sufficiently trained, the Discriminator will
have difficulty distinguishing between real and generated data. This causes the

Discriminator to constantly make errors and obtain large gradients.

We have considered two modules in the GNU Scientific Library (a numerical
library for C and C++ programmers) [23]: the gamma_inc.c module and the
hyperg_1F1.c module. The gamma_inc.c module is used to compute the in-
complete Gamma function. It contains 13 functions including branches, where
the total number of branches is 138. The hyperg_1F1.c module is used to cal-
culate the confluent hypergeometric function. It contains 21 functions including
branches, where the total number of branches is 592. In the integration testing,
the GAN model generates path information including all branches. In the unit
testing, we focus on several functions in these modules. Concretely, 3 functions
in gamma_inc.c module and 5 functions in hyperg_1F1.c module are picked up

to make their test coverage increase (see Table 4.6).

We compared the test coverage of the test inputs generated by the experi-
ment and compared the accuracy of the generated path, to verify whether the
framework can generate test inputs that can improve the test coverage, and to
investigate which version of GAN model is more suitable for our framework. We
also conducted a random test to generate 200 test inputs to compare the test

coverage with the GAN method.

16 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

2.4.2 Results

Tables 3.3 to 3.4 show the results of integration testing and unit testing under
three models and the random test’s test coverage. The initial coverage represents
the percent of branches executed by 100 initial training data. The trained cov-
erage represents the percentage of branches executed by 200 input data, where
200 input data contains 100 initial training data and 100 GAN generated input
data. The accuracy is calculated by Eq. (1). In order to facilitate comparison,
we divide the data generated in the integration testing into function units to
compare with the unit testing results. Figs. 2.7 to 2.10 present the analysis of
results. As can be seen in Fig. 2.7 that in addition to Function 1 in the hy-
perg_1F1.c module, the test coverage of input data generated by GAN (dense) in
unit tests is higher than that of input data generated in integration tests. Also,
the test coverage of input data generated by GAN (conv) in unit tests is higher
than that of input data generated in integration tests except for Function 2 and
Function 4 in the hyperg_1F1.c module. Despite of this result, only a few of the
input data generated by the GAN model have a coverage rate that exceeds the
random testing. Furthermore, BIGAN does not show good performance in our
framework, because the coverage of the input data generated by BiGAN is also
mostly not better than random testing (see Fig. 2.8). However, in the unit test-
ing, the coverage of test inputs generated by WGAN-GP (dense) is higher than
that of randomly generated test inputs except for Function 1 and Function 5
in the hyperg-1F1.c module. Further, the WGAN-GP (conv) improves the test
coverage of Function 3 in hyperg_1F1.c module and Function 2 in gamma_inc.c
module. Fig. 2.10 graphically shows the path prediction accuracy of three sets
of models. On the whole, the WGAN-GP (dense), the GAN (dense), and the
GAN (conv) have higher path prediction accuracy than the others in unit test-
ing. To this end, we conclude that our framework is more appropriate for unit
testing. This is because taking the function as a unit can reduce the complexity
of the program and improve the model’s path prediction accuracy.
The number of correct branchs

A = 100 2.1
couracy The number of total branchs x % (2.1)

We also analyze the distribution of input data generated by three types of
GAN models. Fig. 2.11- Fig. 2.16 illustrate the input data distribution of 5

2.4. EXPERIMENT 17

Table 2.2: GAN: Comparison of the coverage achievement and the accuracy of
path.

No. of methods GAN(dense) GAN(conv) RAND
branches Initial Trained Initial Trained | Random
coverage | coverage | coverage | coverage | coverage

All 594 Integration 34.84% 42.93% 34.84%% 51.34% 45.12%

Functionl 38 Integration | 47.36% 60.52% 47.36% 52.63% 63.15%
Unit 36.84% 55.26% 36.84% 57.89%

Function2 70 Integration | 41.42% 52.85% 41.42% 72.85% 72.85%
Unit 41.43% 65.71% 41.43% 64.28%

hyperg_1F1.c Function3 06 Integration | 35.41% 41.66% 35.41% 65.62% 76.04%
Unit 71.87% 77.08% 71.87% 79.16%

Functiond 8 Integration | 44.82% 67.24% 44.82% 79.31% 77.58%
Unit 56.89% 70.68% 56.89% 74.13%

Functions 42 Integration | 63.15% 78.94% 63.15% 78.57% 84.91%
Unit 59.52% 80.95% 59.52% 80.95%

All 138 Integration 49.27% 51.45% 49.27% 52.17% 50.00%

Function 24 Integration | 45.83% 45.83% 45.83% 54.16% 66.66%
Unit 54.16% 70.83% 54.16% 58.33%

gamma_inc.c Function2 20 Integration | 55.00% 70.00% 55.00% 65.00% 75.00%
Unit 75.00% 75.00% 75.00% 75.00%

Functions 16 Integration | 33.33% 33.33% 33.33% 33.33% 27%

Unit 68.75% 68.75% 68.75% 75.00%

Table 2.3: BiGAN: Comparison of the coverage achievement and the accuracy
of path.

No. of thod BiGAN(dense) BiGAN(conv) RAND
methods
branches Initial Trained Initial Trained | Random
coverage | coverage | coverage | coverage | coverage
All 594 Integration 34.84% 34.65% 34.84% 46.80% 45.12%
Function 38 Integration | 47.36% 47.36% 47.36% 52.63% 63.15%
nction 3.15%
Unit 36.84% 52.63% 36.84% 52.63%
. Integration | 41.42% 41.42% 41.42% 67.14% N
Function2 70 72.85%
Unit 41.43% 41.43% 41.43% 65.71%
hyperg_1F1.c Functions 06 Integration 35.41% 43.75% 35.41% 55.20% 76.04%
nemon Unit 71.87% 72.91% 71.87% 76.04% -
Functiond 58 Integration | 44.82% 40.74% 44.82% 65.51% 77.58%
nemon Unit 56.89% 60.34% 56.89% 62.06% o
Functions 12 Integration | 63.15% 73.68% 63.15% 78.57% 84.21%
nction 21%
Unit 59.52% 71.42% 59.52% 76.19%
All 138 Integration 49.27% 56.52% 49.27% 52.89% 50.00%
Functionl 24 Integration | 45.83% 66.66% 45.83% 54.16% 66.66%
nction .66%
Unit 54.16% 75.00% 54.16% 58.33%
gamma_inc.c Function2 20 Integration 55.00% 80.00% 55.00% 70.00% 75.00%
nerion Unit 75.00% 85.00% 75.00% 75.00% o
Functions 16 Integration 33.33% 33.33% 33.33% 33.33% 27%
nction Jo
Unit 68.75% 68.75% 68.75% 75.00%

18 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

Table 2.4: WGAN-GP: Comparison of the coverage achievement and the accu-
racy of path.

No. of WGAN-GP(dense) | WGAN-GP(conv) RAND
methods

branches Initial Trained Initial Trained | Random

coverage | coverage | coverage | coverage | coverage

All 594 Integration 34.84% 51.42% 34.84% 51.34% 45.12%
Integration | 47.36% 57.89% 47.36% 60.52%

Functionl 38 63.15%
Unit 36.84% 63.15% 36.84% 55.26%
Integration | 41.42% 62.85% 41.42% 74.28%

Function2 70 72.85%
Unit 41.43% 84.28% 41.43% 75.71%
hyperg_1F1.c Integration | 35.41% 75.00% 35.41% 64.58%

Function3 | 96 s i ’ ’ * | 76.04%
Unit 71.87% 83.33% 71.87% 90.62%
Integration | 44.82% 74.13% 44.82% 72.41%

Function4 58 77.58%
Unit 56.89% 84.48% 56.89% 70.68%
Integration | 63.15% 76.31% 63.15% 76.19%

Function5 42 84.21%
Unit 59.52% 80.95% 59.52% 76.19%

All 138 Integration | 49.27% 52.17% 49.27% 52.89% 50.00%
Integration | 45.83% 54.16% 45.83% 54.16%

Functionl 24 66.66%
Unit 54.16% 75.00% 54.16% 66.66%
gamma-inc.c Integration | 55.00% 65.00% 55.00% 70.00%

Function2 20 75.00%
Unit 75.00% 80.00% 75.00% 90.00%
Integration | 33.33% 33.33% 33.33% 45.45%

Function3 16 27%

Unit 68.75% 80.00% 68.75% 75.00%

GAN trained coverage

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%
10.00%

0.00%
HyF1 HyF2 HyF3 HyF4 HyF5 GaFl GaF2 GaF3

~>=GAN(dense) Integration =¢==GAN(conv) Integration GAN(dense) Unit GAN(conv) Unit =g@=Random

Figure 2.7: Coverage of GAN generated input data.

2.4. EXPERIMENT 19

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

BiGAN trained coverage

HyF1 HyF2 HyF3 HyFa HyF5 GaF1l GaF2 GaF3

—4-BiGAN(dense) Integration —#—BiGAN(conv) Integration BiGAN(dense) Unit BiGAN(conv) Unit e@eRandom

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Figure 2.8: Coverage of BiIGAN generated input data.

WGAN-GP trained coverage

Se—

HyF1 HyF2 HyF3 HyFa HyFs GaF1 GaF2 GaF3

—«WGAN-GP(dense) Integration—#—WGAN-GP(conv) Integration —&—WGAN_GP(dense) Unit
WGAN-GP(conv) Unit «=@=Random

Figure 2.9: Coverage of WGAN-GP generated input data.

20 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

Path prediction accuracy

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

HyF1 HyF2 HyF3 HyF4 HyF5 GaFl GaF2 GaF3
——GAN(dense) Integration —s—GAN(conv) Integration =#=GAN(dense) Unit
=»=GAN(conv) Unit —e—BiGAN(dense) Integration ——BiGAN(conv) Integration
——BiGAN(dense) Unit ——BiGAN(conv) Unit —e—WGAN-GP(dense) Integration
—+—WGAN-GP(conv) Integration «#=WGAN-GP(dense) Unit ——WGAN-GP(conv) Unit

Figure 2.10: Path prediction accuracy.

functions in hyperg_1F1.c module generated by the standard GAN, biGAN, and
WGAN-GP, respectively. As can be seen from these figure, both fully connected
BiGAN and convolutional BiGAN have problems with mode collapse, that is,
the generator collapses and produces a limited variety of samples. Meanwhile,
the input data generated by the GAN model using the fully connected neural
network is also easy to move to the edge. Only convolutional GAN and WGAN-
GP can generate diverse input data for our strategy. In summary, compared with
standard GAN and BiGAN, WGAN-GP can avoid the mode collapse problem
and create new input data instances that resemble our training data, so that it

showed the better performance in our framework.

2.4. EXPERIMENT 21

GAN(dense) Function1 GAN(dense) Function2

® "0 ® o o* <o
-150 - ® 509 0 L 50 * 100 150 -150 150
2?(x o % b ° X
% . :] . . :?(‘x x
)l‘%(X xOxeiBo ox M mxONME -100
-150 -150
@traindata X GAN data @ traindata X GAN data
GAN(dense) Function3 GAN(dense) Function4
150 150
100
X
x
50
«x e2ee O e
-150 150 -150 '1é'. B X ®, #00 150
ox:o - 1 s°
B
Lo % E o=
-150 -150
@ traindata X GAN data @ traindata X GAN data
GAN(dense) Function5
150
0
g\!)‘oxfo R o "‘&x
.‘.‘050. e o2
L Ted e o o
-150 -100 -50 " 0 ; AN XO'.X 190 150
X 4 * e
* WM,
{ X—% *100 x# s ...xx. XX

-150

@ train data X GAN data

Figure 2.11: Data distribution is generated by the standard GAN with fully
connected network.

22 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

GAN(conv) Function2

GAN(conv) Function1

150 150
o oo® 10 P .
':': 3‘! ;":‘ o
e o, 5 X .
| 4 ..':‘ oo:*m...'o ’* e
-150 150 -150 -100 -50 0 50 100 150
-50
-100
-150 -150
@ traindata X GAN data ®traindata X GAN data
GAN(conv) Function3 GAN(conv) Function4
150 150
% e 00 o i 100
o..'.~ °S o o :'
o * o seg“:,y& M 7T W e
. oo *; o5 Y
o’ “ x5 Foo ° &
X% Y] oo x 0 xXeau 48
-150 -100 -5? .D L] 50 . 100 150 -150 -100’ .%‘ X .% .5& 0 150
2 5 . oo B s % 3 4
ry '} LRI '?:c ° L) c’.’. 3
o ® . L © %, % Th %o ® .
-150 -150
@ traindata X GAN data @ traindata X GAN data
GAN(conv) Function5
150
a.‘." 13".'%%.)()«.
N0y % *x 80 .
% L] Xé X e
% Trex Bye o "' ot e
150 -100 - 50 0 ° .aﬂ. X... 100 150
50 X o A
x M °
* %o 2 ... &«
-150
@ train data X GAN data

Figure 2.12: Input data distribution is generated by the standard GAN with
convolutional network.

2.4. EXPERIMENT

BiGAN(dense) Function1

150

BiGAN (dense) Function2

150

-150

150 -150 150
x -100
-150 -150
@ train data X GAN data @ train data X GAN data
BiGAN(dense) Function3 BiGAN (dense) Function4
150 150
X 100
-150 150 -150

150

-150

-150
@ traindata X GAN data

@ traindata X GAN data

BiGAN(dense) Function5

150

T e % Tt o o ® ¥
NVcesoy %o °
% ® e o e
R 2 LY M
-150 -100 -50 0 ® o 8% 0 150

-150

@ traindata X GAN data

Figure 2.13: Input data distribution is generated by BiGAN with fully connected
network.

24 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

BiGAN(conv) Function1 BiGAN (conv) Function2

150

1000 e o, %0 & %

-’. °s . [° %% o
W, * e

.
e ® o o° o0
150

-150 509 0 . 50 100 150 -150 -100
e te ° ‘
° Ps o .
x o ® odo -100
-150 -150
@ traindata X GAN data ® traindata X GAN data
BiGAN(conv) Function3 BiGAN (conv) Function4
150 150
100
50
-150 150 -150 - 5 Y og s’"’;(,‘ &0 150
87000, 00 o8t
e R o1 See 4 ®
-150 -150
@ traindata X GAN data @ traindata X GAN data

BiGAN(conv) Function5

150

.
-150 100 -50 0 o Moo 150
50 .
% $e e 4
e ",
100 L praant

-150

@ traindata X GAN data

Figure 2.14: Input data distribution is generated by BiGAN with convolutional
network.

2.4. EXPERIMENT 25

WGAN-GP(dense) Function1 WGAN-GP(dense) Function2

150 150

-150 150

o ® ol 100
-150 150
@ traindata X GAN data @ traindata X GAN data
WGAN-GP(dense) Function3 WGAN-GP(dense) Function4
150 150
- 1@ e o0 o s 100

-150 -100 * -50 K 150 -150 100;- %('.. . 150
E ° >&< S o0
° o x A . ‘q(" .
. ® 900
-150 -150
@traindata X GAN data @ traindata X GAN data

WGAN-GP(dense) Function5

150
.
0 o % LY .
s » "o X », ®x
LI MO %f.:gx;x.‘x.
-150 100 5 50 X %X ® 150
X -
@ traindata X GAN data

Figure 2.15: Input data distribution is generated by WGAN-GP with fully
connected network.

26 CHAPTER 2. GENERATIVE ADVERSARIAL NETWORKS

WGAN-GP(conv) Function1 WGAN-GP(conv) Function2
150 150
1000 o @, ®o £ ° ‘..mo‘ LSS)
e fae "&Q;‘é‘ ;:%3: 5.0 o,
‘(&" e (N} .'. P '3%‘0 % '.o 'l.'.“u i
-150 S0e 100 150 150 -100 -50 0 50 100 150
. ° -50
-100
-150 150
@ traindata X GAN data ®traindata X GAN data
WGAN-GP(conv) Function3 WGAN-GP(conv) Function4
150 150
100
50
0
-150 150 -150 -100.0" .3 R .x 0 \..".5& 150
) $x & 0698
o L) %‘ .
@, %oy %o 0% %ee
-150 -150
@ traindata X GAN data ® traindata X GAN data

WGAN-GP(conv) Function5

150

" .\.’ 'su: LN S °
L ° x)‘“a ﬁ"zﬁ‘ e
150 100 i ><:g5 x ’2(;%);%’.8)@’ %, 100 150
P i 3K VRO
L]

@ traindata X GAN data

Figure 2.16: Input data distribution is generated by WGAN-GP with convolu-
tional network.

Chapter 3

Test Input GGeneration with
MLP-Based Boundary
Value Analysis

3.1 Introduction

In this chapter, we propose an MLP (Multilayer Perceptron) based approach for
the BVA in white-box testing. The idea behind our approach is twofold. First
we train an MLP-based discriminator that answers whether two test inputs
have the same execution path or not. Second we generate test inputs based on
Markov Chain Monte Carlo (MCMC) with the outputs of discriminator. Zhou
et al. [24] first utilized MCMC methods for software random testing. MCMC-
RT (MCMC Random Testing) uses the prior knowledge of software testing and
is based on the statistical background of the probability of failure described
by Bayesian inference. Our idea is an extension of MCMC-RT by introducing
the MLP-based discriminator. Our method needs the information on execution

paths only, and does not require any program information identifying conditions.

3.2 Generation of Boundary Values

3.2.1 Markov Chain Monte Carlo (MCMC)

MCMC is a general technique for efficiently generating samples drawn from a
probability distribution with high-dimensional space. The idea of the MCMC is
to simulate an ergodic Markov chain whose stationary distribution is consistent

with a target distribution. The more steps of Markov chain simulation, the more

27

28 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

closely the distribution of the sample matches the actual desired distribution.

It is significant to construct an appropriate Markov chain when using the
MCMC method to generate samples. Different transfer construction methods
will produce different MCMC methods. At present, the commonly used MCMC
methods mainly include two Gibbs sampling [25] and Metropolis-Hastings (M-
H) algorithm [26]. Since Gibbs sampling is a special case of the M—H algorithm.
Here we only summarize the M-H algorithm.

The M-H algorithm produces a Markov chain whose limiting distribution is
the target density 7(z). Let 2’ be a candidate of the next state of Markov chain
that is generated from a proposal distribution @Q(z'|z) where z is the current
state of Markov chain. This candidate becomes the next state of the Markov

chain with the following acceptance probability:

o (TR
P = ((D0 D) ,1> (3.1)

In practice, we generate a uniform random number U, if U is less than or equal
to the acceptance probability U < P, the candidate is accepted, otherwise, the
candidate is rejected. After repeating this process for several steps, the sample

x can be regarded as a sample drawn from 7(z).

3.2.2 MCMC for Boundary Values

Consider the MCMC for generating boundary values. As mentioned before,
MCMC is essentially a method to generate samples from the target density
w(z). Our idea is to estimate the density function m(x) on the input domain,
which represents the likelihood that whether x is a boundary value or not. When
7(x) is used as the target density of MCMC, the samples generated by MCMC
are expected to be boundary values.

The key issue is how to estimate such a density function for boundary value.
As an example, we consider a program that has only one input value x. If the
program has one boundary, the density function for boundary value is expressed
as a function with rapidly climbing and falling like in Fig. 3.1a. In the sense of
mathematics, it is a delta function, and it is not easy to estimate such a function
directly. On the other hand, Fig. 3.1b shows the cumulative distribution of Fig.
3.1a. Although it is a step function in the mathematical sense, it is possible to

approximate such a function by a continuous function like a logistic function. If

3.2. GENERATION OF BOUNDARY VALUES 29

(x) A
0 » X
boundary
(a)
F(x) A
1
0 "A-—Aﬂb X
boundary

(b)

Figure 3.1: The probability density and the cumulative distribution of boundary
value.

30 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

we obtain the cumulative distribution for boundary value F'(z), then the target

density is approximated as

r(w) = F(x—i—hf)L—F(x), (3.2)

where h is an arbitrary and sufficiently small value. Also, since F'(x) jumps at
around the boundary, the value F(z + h) — F(z) takes 1 when the test inputs
x 4+ h and x belong to different equivalence partitions. Otherwise, if x + h and
x are in the same equivalence partition, F(x + h) — F(z) becomes 0.

This idea is expanded to the case where high-dimensional test input space.
Let N(z,y) be the function meaning that N(z,y) = 1 if inputs « and y are
in the different equivalence partitions. Otherwise, if inputs x and y are in the
same equivalence partition, N(z,y) = 0. Then the target density is given by
1
m

") =) M (3.3)

where h; is a small vector to put a perturbation. Figure 3.2 illustrates our
approach in two-dimensional space. In the figure, there are two inputs a and
b and one boundary. The circles represent the radius R of perturbation. Since
X'’ is closer to the boundary than X, the likelihood that X’ and X’ + h; belong
to the different equivalence partitions is higher than X. That is, 7(X’) may be
greater than w(X).

Based on the density function for boundary value 7 (z), the acceptance prob-

ability in the M-H algorithm becomes

b (S ARG
= min m N(z+h;,z) ’ !
Dim1 b Qa'|x)

One of the purposes of generating boundary values is to generate test inputs

(3.4)

for software testing. In this sense, it is better that the generated boundary
values cover the input domain of the software. In the M-H algorithm, the
proposal distribution Q(z’|x) is frequently designed by searching inputs close to
the original (current) input z, i.e., the local search. However, the local search
cannot ensure the coverage of test domain, and thus the paper considers the
independent proposal distribution that does not depend on the original (current)
input Q(z’). The typical example of such proposal distribution is the uniform

distribution on input domain. When we use the uniform distribution on input

3.3. EXPLOITATION OF MLP MODEL 31

b a
/’“\\
/
| e R
\Q(+hi /
Py RN
/ x’R \
| /0—;
X'+hi\\ //
S
boundary
d

Figure 3.2: An example in two-dimensional space.

domain, the acceptance probability simply becomes

i=1 h;

m N(xz+h;,x ’1

i=1

Zm N(z'+h;,z")
P = min ()

i

3.3 Exploitation of MLP Model
3.3.1 Model Architecture

To generate boundary values, we need the function N(z,y) that outputs whether
two inputs x and y belong to the different equivalence partitions. The simplest
and direct approach is to monitor concrete paths by executing software with two
inputs. However, since we need a number of executions of N(z,y) in the scheme
of MCMC, the direct approach is not appropriate in this case. The second
way is to create the function N(z,y) with the static analysis such as symbolic
execution beforehand. This method may be effective but the static analysis

has a limitation on scalability. In this chapter, we exploit a MLP model to

32 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

create the function N (z,y). The MLP-based approach is one of the data-driven
approaches. The MLP model is trained from the data, and the model mimics
the trained data and interpolates unknown two inputs predicatively. Although
the training of model requires much computational cost, the evaluation is done
with less computation cost. This property is appropriate for the function in
MCMC scheme.

In this chapter, we use a MLP to represent the function N(z,y). MLP are
multilayer perceptrons, including an input layer or multiple hidden layers and
an output layer. All these units are connected to each other through links with
synaptic weights. These weights are updated as part of the training process and
reflect the information learned during the training process. In our method, the
input of the MLP is a set of input pairs, such as the vector (z,z + h) and the
output of the MLP is a label as a binary value indicating whether = and y are

in the same partition or not.

3.3.2 Training Data

Before using MLP prediction, we first need to train the MLP with a set of train-
ing data. Since we focus on the white-box boundary value where equivalence
partitions are defined by execution paths of program for test inputs, it is neces-
sary to define the equivalence of execution path based on the execution log. In
addition, MLP requires a number of training data, and thus the training data
collection should be automatically executed. In this chapter, we provide the
approach based on Gcov tool.

In white-box boundary value testing, we want to cover the boundary val-
ues for comparison predicates. Fach atomic Boolean expression in the path
condition is referred to here as a predicate. Predicates could be Boolean vari-
ables, comparison predicates (>, >=, <, <=, =, #), etc., and should not contain
any Boolean operator (such as A,V,—, etc.) [16]. Each comparison predicate
contains two branches, and each branch has three states, marked as “1, 0,
-17. Suppose we have a comparison predicate (¢ > 0), contains two branches:
(a > 0) and (a <= 0). We use Gcov to extract the execution path when test-
ing the program, as described in Chapter 2.2. Then the label of input pairs is

obtained by calculating whether the execution paths corresponding to the two

3.4. EXPERIMENT 33

inputs are equal. If they are equal, the label is 0 (there is no boundary between
the two inputs), and if they are not equal, the label is 1 (there is a boundary
between the two inputs). In this chapter, we apply the MLP-based approach
to the c¢ language. For other languages, we can apply this method by simply

changing the way paths are extracted.

3.4 Experiment

In this section, we present experiments to investigate the effectiveness of MLP-
based approach. We conducted two sets of experiments. One is to generate test
inputs for a simple C program and compare the effects of various parameter

combinations. Another one is an experiment on several real programs.

3.4.1 Fault detection ability

We use mutation testing to study the fault detection rate of test sets. Mutation
testing is a type of software testing in which certain statements of the source
code are changed/mutated to check if the test inputs are able to find errors in
the source code. In the experiment, we injected (seeded) several faults into the
program. Each seeded fault yields a faulty version. For each test set generated
in the experiments, we run the whole test set on each faulty version and count

the number of killed mutations. The kill rate is calculated by Eq. (3.6).

. the number of killed mutations
kill_rate =

(3.6)

total number of mutations

We manually inject (seeded) 6 kinds of faults in the program under test.
Off-by-one bugs (OBOB) are a kind of faults when some computation process
uses some wrong value which is 1 more or 1 less than the correct value, and
most boundary faults are Off-by-one bugs [16]. The rest of faults contain five
common mutation operators [27]: constant replacement (CR), relational opera-
tor replacement (ROR), arithmetic operator replacement (AOR), scalar variable
replacement (SVR), and logical operator replacement (LOR). We use the exe-
cution path and the output to determine if a fault is killed, that is, when at
least one test input has an execution path different from the correct version,
or at least one test input has an output different from the correct version, the

mutation is killed.

34 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

3.4.2 RT and ART

In the RT approach, we randomly generate a test set consisting of n test inputs
and execute each mutated program with this test set to study the fault detection
ability.

ART is executed by the algorithm described in [28]. In traditional ART
algorithm, the executed set is incrementally updated with the selected element
from the candidate set until a failure is revealed. However, to make the experi-
mental results of ART and MLPBVA comparable, we changed the experimental
stopping condition of ART to generate n test inputs incrementally. For each
mutation, the test input generation process stops if the injected fault is detected
when generating the i-th (¢ < n) test input, and the generated test set kills the
mutation. If none of the generated n test inputs detect the fault, the generated

test set did not kill the mutation.

3.4.3 Experiment with a Simple C Program

— boundary
b 120

100 \
pass
50 \

0 50 100 120

Figure 3.3: Conceptual diagram of the boundaries.

3.4. EXPERIMENT 35

In this experiment, we use a program En_testing. c described in the Chapter
2.2. Figure 3.3 is a conceptual diagram of the boundaries. We injected (seeded)
25 faults into the program. Among them, 14 faulty versions contain off-by-one
bugs (where we add/subtract 1 to the right-hand side of comparison predicates),

and the rest of the faults contain five common mutation operators.

Design Parameters of MLP and MICMC: The MLP in our experiments
is a fully connected NN (dense layers) with one input layer, two hidden layers,
and one output layer. Each hidden layer has 64 units and the activation function
is ‘relu’. The input size of the input layer is 4. The output layer has an output
size of 1 and the activation function is ‘sigmoid’. In addition, the parameter
learning rate and the number of training epochs (one epoch is the cycle when
an entire dataset is passed forward and backward through the neural network
only once.) are set to 0.01 and 50, respectively. In our experiments, we use
three sets of initial training data, which are randomly generated from the input
domain. The size of the dataset is 20000, 10000, and 5000, respectively, which
are marked as Dataset20000, Dataset10000, and Dataset5000.

Let f(z) =Y i~ N(z + hi,z), When both f(z2') and f(x) are calculated as
0, we cannot judge which of the current sample z and the candidate sample z’
is closer to the boundary. So in the experiment, we directly use the probability

value output by the neural network as the value of f(x).

For MCMC, we use the uniform distribution as the proposal distribution.
We use MCMC model to generate n test inputs from input domain and examine
the cases n = 5, n = 10, n = 20, and n = 50. Selecting a point close to the
boundary as the initial value of MCMC is more conducive to generating the
boundary value. Therefore, we choose (49, 49) as the initial value of MCMC. In
our experiments, MCMC samples at each step and stops until n test inputs are

generated. And the MLP will be retrained for every 10 steps.

Results and Discussion: We use RT, ART, and MLP-based approach to
generate test inputs for a simple program under test. Figure 3.4 shows the input
data distribution generated by RT. Figure 3.5 shows the input data distributions
generated by MLP-based approach under parameters {n=>5, n=10, n=20, n=50}
with Dataset20000, Dataset10000, and Dataset5000, respectively. It can be

seen intuitively from the distribution graph that the MLP-based approach can

36 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

generate test inputs near the boundary. And to cover all boundaries, we need

more test inputs, such as n=>50.

RT_n=5 RT_n=10

130 13

120 120

110 110
100 100

90 L] 90 1]
80 L] ° 80 L] J
70 e 70 L1 L
60 60

50 50 .

0 |® 20 [*®

30 30

20 20 Lt

10 10

o o

0-40-30-20-10 0 10-20 30 40 5060 7080 901001101201301401 0 0-40-30-20-10 01020 3040 5060 7080 901001101201 301401f0
» n
0 a0
0 -
o test case o test case
RT_n=20 RT_n=50

0-40-30-20-19 0 1

o test case * test case

Figure 3.4: The input data distribution generated by RT.

Table 3.1: Kill rate of RT, ART and MLP-based boundary value analysis (MLP-
BVA).

method n=>5 | n=10 | n=20 | n=50
RT 0.28 0.36 0.36 0.4
ART 0.28 0.28 0.4 0.44

MLPBVA (Dataset20000) | 0.36 0.36 0.56 0.68
MLPBVA (Dataset10000) | 0.28 0.4 0.52 0.64
MLPBVA (Dataset5000) 0.4 0.4 0.48 0.64

We also record the number of faults detected by each test set. Table 3.1
shows the kill rates corresponding to the test sets generated by various methods.
The results show that the kill rate of most test sets generated by MLP-based
approach is better than that of RT and ART. Compared with RT and ART,
our proposed MLP-based approach can generate better quality test inputs and

detect more faults.

3.4. EXPERIMENT 37

Dataset20000_n=50 Dataset20000_n=20 Dataset20000_n=10 Dataset20000_n=5
120 a0 140
13 130 130
120 12 I
iéé;] o
o 0\ 2 \(\' o
5o L % %
0 60 50
S0 s0 s0
2 a
% \. %
20 o 20
10
o o
j04030 284 o 03040506070803010010 203040 0 ,"./kﬂu)ii:o1n7m:f.nsnc:‘,7nau=,mmld?:zum 0
i} % %
o S 0

Dataset10000_n=50 Dataset10000_n=20 Dataset10000_n=5
1% 12 10
13 13 130
12 1 1
BN M. 40 O %e RANAR.
Q %
O =T R I
70 4 70 70
508 60 50
. () so
i \;‘-] P \
30 30 30
2 o
op i o 1o 109
o % ¢ v L4 e v e
093024800 1020304006078 0993023800 102030405060708030 10 2030400 90302830 cata23ao oo 1 Q1020304140
S 3 3 5o
0 0 Lo ©
Dataset5000_n=50 Dataset5000_n=20 Dataset5000_n=10 Dataset5000_n=5
120 120 1%
130 130 130
1 12 120
: 110
BNe . BN 2 D =
99 0 \ 30
0 i 0 80
7 r o %
A o
“ J %
% %
2
10
2 LAPN . 1
o o03028%00 60708030100 10203041 §0 102030405060708090 00102030 43 §0 0403023800 102030405060708090102 10203040 0
5o S
I ©

Figure 3.5: The input data distribution generated by MLP-based approach with
Dataset.

3.4.4 Experiment with Real Programs

We select seven programs used in the existing literature to evaluate the effect
of our approach on real programs. Machine learning can handle both numerical
data and categorical data. During the data processing phase, machine learning
models convert structured data into numerical data because the input layer of
the neural network only accepts numerical input data. Therefore, in this exper-
iment, we select seven programs with inputs of only numeric types, containing
continuous data and discrete data. The descriptions of these subject programs
are shown in Table 4.6. And the details about all seven programs are shown in
Table 3.3, such as the dimensional number of program inputs, the range of in-

put domain, line of code (LOC), fault information, and the number of boundary

38 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

Table 3.2: Experimental programs

Prog Name Description

triType [29] The type of a triangle

nextDate [30] Calculate the following date of the given day
findMiddle [31] | Find the middle number among three numbers

bessj [32] Bessel function J of general integer order
expint [32] Exponential integral
plgndr [32] Legendre polynomials

teas [33] Aircraft collision avoidance system

Table 3.3: Details of 7 subject programs

Program | Dim Input Doméin Size(LOC) Fault types Total Faults | num_Bvalues
From To OBOB | CR | ROR | AOR | SVR | LOR
iType | 3 (0,0,0) (100, 100, 100) 1 2 7 2 [1|6 18 15
nextDate | 3 | (1800, -2, 2) (3000, 14, 33) %0 16 7 8 31 12
findMiddle | 3 | (-100, 100, -100) (100, 100, 100) 36 14 5 19 15
bessj 2 (2.—1[][][]) (300, lﬁl]llll) 133 10 1 11 1 4 27 21
expint 2 (-10, —ll]) (1500, lf)l]l]) 109 12 2 2 5 3 10 34 6
plgndr 3 (-5,-5:-5) (55,5) 65 6 6 2 3 2 19 12
T N v A NI N R R IR
values.

Concolic testing: Concolic testing is a hybrid software verification tech-
nique that performs symbolic execution along a concrete execution path. Sym-
bolic execution is a software testing technique that substitutes symbolic values
for normal inputs to a program during program execution. By symbolizing the
program inputs, the symbolic execution maintains a set of constraints for each
execution path. After the execution, constraint solvers will be used to solve
the constraint and determine what inputs cause the execution. Its purpose is
to maximize code coverage. KLEE is a dynamic symbolic execution tool built
on the LLVM compilation framework that automatically generates test inputs
and achieves high program coverage [34]. In this experiment, we use KLEE
to generate test inputs for seven programs and compare the kill rate with our
proposed MLP-based method.

Manually-Performed Boundary Value Analysis:

In this experiment, we asked a student to generate a set of boundary values
by manually analyzing the source code for comparing the fault detection ability
with the MLP-based approach.

In this work, the student uses an input that is on the edge of a given predicate
as a boundary value. Suppose there is a path condition (¢ > 0) V (b <= 0),

including two boundaries a = 0,b = 0, therefore, the input (a,b)=(0,0), input

3.4. EXPERIMENT 39

(a,b)=(0,1) and input (a,b)=(1,0) can be used as three boundary values. In our
experiment, the student selects the endpoints of all boundary lines in the input
domain and the intersection points between the boundary lines as boundary
values. We will compare the fault detection ability of boundary values obtained
by manually analyzing the source code with the fault detection ability of MLP-
based approach that do not manually analyze the source code. The number of

selected boundary values (num_Bvalues) for 7 programs are shown in Table 3.3.
Results and Discussion:

We examine the fault detection capabilities of RT, ART, Manually-performed
boundary value analysis approach, concolic testing and MLP-based approach,
respectively. Because our methods show better performance when the number
of initial datasets is n=>50 in the experiment with a simple program. In the real
program experiment, the MCMC generates n = 50 test inputs from the input

domain.

Table 3.4 shows the comparison of kill rate with RT, ART, Manually-performed
boundary value analysis approach (BVA), Concolic testing (KLEE), and MLP-
based approach (MLPBVA). KLEE generates n test inputs for each of the seven
programs. Without analyzing the source code, our proposed MLP-based ap-
proach outperforms the Manually-performed boundary value analysis approach
in four of the seven programs tested. And MLP-based approach has better fault
detection ability than RT and ART in program tests except for tcas program.
Meanwhile, compared with the concolic testing method, the kill rate of test in-

puts generated by the MLP-based method outperforms concolic testing among

Table 3.4: Comparison of kill rate with RT, ART, Manually-performed bound-
ary value analysis approach (BVA), Concolic testing (KLEE), and MLP-based
approach (MLPBVA)

Method Kill rate
B triType | nextDate | findMiddle | bessj | expint plgndr tcas
RT 0.61 0.58 0.36 0.52 0.47 0.63 0.29
ART 0.61 0.51 0.63 0.66 0.47 0.58 0.05
BVA 0.88 0.45 1 0.7 0.7 0.78 0.06
MLPLBVA - .
(Dataset20000) 0.72 0.65 1 0.81 0.68 0.95 0.05
MLPBVA
.72 . .TC 0.85 0.79 0.95 .05
(Dataset10000) 07 07 0-79 0.0
MLPBVA . .
(Dataset5000) 0.66 0.68 0.89 0.59 0.74 0.84 0.05
KLEE 1 0.9 1 0.37 0.38 0.84 1
(n=14) | (n=56) (n=13) | (n=2) | (n=4) | (n=14221) | (n=1290)

40 CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

Table 3.5: Prediction accuracy

MLP prediction accuracy

Initial_trainData

triType | nextDate | findMiddle | bessj | expint | plgndr | tcas
Dataset20000 0.53 0.54 0.84 0.75 | 048 0.84 | 0.64
Dataset 10000 0.54 0.65 0.78 0.61 0.44 0.81 | 0.69
Dataset5000 0.46 0.64 0.37 0.33 | 0.39 0.77 | 0.78

Table 3.6: Time cost

Time (sec)
method
triType | nextDate | findMiddle | bessj | expint plgndr tcas
RT 249 452 287 384 514 259 449
ART 248 572 193 320 190 523 825
MLPBVA 11605 11762 11950 11970 | 11828 11330 11679
(Dataset20000)
1
MLPBVA 6060 6292 6273 6221 6291 5871 6153
(Dataset10000)
MLPBVA 3319 3400 3242 3403 3464 3169 3392
(Dataset5000)
KLEE 69 470 68 21 43 76244 11650
(n=14) (n=56) (n=13) (n=2) | (n=4) | (n=14221) | (n=1290)

the three programs.

Whether the MLP-based approach can generate high-quality test inputs near
the boundary highly depends on the accuracy of the neural network’s prediction
of whether the sample is near the boundary. Table 4.5 shows the prediction accu-
racy of the neural network in the one-step sampling process of MCMC. Overall,
when the neural network has higher prediction accuracy, the fault detection
ability of the generated test inputs will be stronger. In order to use neural
networks to generate higher-quality test inputs, we need to consider improving
the performance of neural networks in the future, so that neural networks can
better learn the boundary information of programs.

Table 3.6 shows the time consumed by the experiment. The time cost of
each method includes test input generation time and mutation testing time.
Dataset10000 and Dataset20000 have similar kill rates but with less time cost
for Dataset10000. In the MLPBVA method, the test generation time includes
training data preparation time, neural network training time, and MCMC com-
putation time. The most time-consuming of these is the preparation time of the
training data. For example, to prepare 20,000 training data for the triType
program, 20, 000 executions of the program are needed to extract execution path
information to generate labels, with a time consumption of 11, 000 seconds. This

makes the MLPBVA method more time-consuming than other methods. There-

3.4. EXPERIMENT 41

fore in order to reduce the time cost and improve the prediction accuracy of the
neural network, we will consider using some structural coverage criteria in fu-
ture research to help cover more parts of the code and thus obtain higher-quality
training data instead of using random test input generation to generate training
data.

Besides, there are many equal-conditional expressions in the programs such
as tcas, and our currently proposed method is not good at generating exact data
because the probability of generating exact data is low. We will also consider

addressing this issue in future work.

42

CHAPTER 3. ML-BASED BOUNDARY VALUE ANALYSIS

Chapter 4

Optimal Test Input
Generation for Boundary
Value Analysis

4.1 Introduction

Evaluating the test coverage intending BVA is difficult since the boundaries are
defined as like continuous values. Li and Miao [35] propose a series of model-
based logic boundary coverage criteria, combining the boundary coverage crite-
ria and the logic coverage criteria. Kosmatov et al. [36] focus on the development
of boundary coverage criteria for test generation from formal models, formalize
the boundary coverage criteria, the rational for the (BZ-TT) method and tool
set. Utilizing the aforementioned techniques, it is necessary to have the spec-
ification that clearly states the boundary formally. However, many software
development projects lack formal specifications in their development process.
Identifying the exact boundaries within the input space of a software system
can be complex.

Software applications often operate within multidimensional input domains.
These domains might involve intricate data structures and interactions between
various inputs. The complexity of these structures and interactions complicates
the identification of boundaries, as they may not always align with conventional
notions of limits or edges. Software behavior isn’t always static. Dynamic
behavior can lead to shifting or evolving boundaries, making it challenging to

define and cover them adequately. The dynamic nature of software adds an extra

43

44 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

layer of complexity in identifying and testing boundaries effectively. Complex
data structures, interactions between inputs, and dynamic software behavior
can complicate boundary identification.

Additionally, creating a comprehensive set of test inputs to cover all bound-
aries can be resource-intensive. As the number of input variables or dimensions
increases, the number of potential boundary combinations can grow exponen-
tially. This results in a combinatorial explosion of test inputs, requiring sig-
nificant time and resources to create and execute. Achieving complete bound-
ary coverage might not always be the most efficient or cost-effective strategy.
Finding a balance between comprehensive testing and resource constraints is a
challenge.

In this chapter, we attempt to define alternative measures, called boundary
coverage distance (BCD). BCD introduces a metric that evaluates test inputs’
quality concerning boundary coverage in BVA. It focuses on distance measure-
ments, and considerations of lower and upper limits to gauge test inputs’ prox-
imity to the boundaries, ensuring comprehensive boundary coverage for more
reliable software testing. In addition, based on BCD, we consider the optimal
test input generation to minimize BCD under the random testing scheme. This
method addresses the resource-intensive nature of generating exhaustive bound-
ary tests by efficiently selecting critical test inputs that contribute the most to
the BCD metric. In summary, the contributions of this chapter include: i)
the definition of the boundary coverage distance to measure how much the test

inputs cover the boundary; ii) developing test generation algorithms based on

BCD.

4.2 Boundary Value Analysis

Boundary value analysis (BVA) is one of the most popular approaches to gen-
erating test inputs. It is empirically known that the probability of introducing
bugs is higher around the program path changes, i.e. the boundary. BVA finds
the boundary from specifications or programs and generates test inputs around
the boundary.

Consider the formal definition of boundary. Let f and I be a software under

test and an input domain of software, respectively. The output of software is

4.2. BOUNDARY VALUE ANALYSIS 45

defined as O := {y | y = f(z), x € I}. Suppose that the output of software
is divided into several categories. Let Oy, ..., O,, be m-categorized outputs of
software where O = U2,0; and O; N O; = ¢ for all i # j. The outputs in a
category is considered to be equal in a sense. Then the input domain can be

divided by the equivalent partitions, i.e.,
L:={zelly=f(x),y<O;} (4.1)

Intuitively, the boundary is the input of software that crosses two equivalent
partitions.

To define the boundary, we consider the functions that change the input of
software. Let g be the bijection function from the input domain to the input

domain; g : I — I. Let G be a set of the functions with the following properties:

1

e For any g € G, g~! € G where g~! is the inverse function of g.

e There exists at least one composite function of G from any = € I to any

yel.

A function in G is regarded as a minimal operation that changes inputs. The
first property corresponds to the existence of inverse operation. The second
one means that any input in I can be generated by a chain of the operations.

Therefore the boundary of equivalent partitions is given by
B; :={z € I; | There exists g € G such that y = f(g(z)), y € O;}. (4.2)

Consider the software for judging whether the English examination passed. The
English examination has two kinds of scores; listening and reading. Each of
listening and reading is scored out of 100. The conditions to get the credit are
(i) both listening and reading scores exceed 50, (ii) the total of listening and
reading scores exceeds 120. The input of software is a pair of the listening and
reading scores for a student, and the output is one of (1) ‘the input is invalid’,
(2) ‘the student gets the credit’ and (3) ‘the student does not get the credit’. For
such software, we consider four functions to represent four operations changing
inputs; (g1) increasing the listening score by one, (g2) decreasing the listening
score by one, (gs) increasing the reading score by one and (g4) decreasing the

reading score by one. In function set G = {g1,92,93,94}, (91)"! = go. The

46 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

boundary sets are

By :={(—1,0),...,(—1,100),

(101,0), ..., (101, 100),

(0,-1),...,(100, —1),

(0,101), ..., (100, 101)}, (4.3)
B, :={(100,50), .. ., (70, 50),

(50,100), . .., (50, 70),

(100,51), ..., (100, 100),

(51,100), . .., (99, 100),

(69,51), (68,52), ..., (52,68), (51,69)}, (4.4)

Bs :={(0,0),(0,1),...,(0,100),
100,0), ..., (100, 49),

(

(1,0),...,(100,0),
(0,100), . .., (49, 100),
(

(49,99), ..., (49,70),
(

)

99,49), ...,(70,49),
)
)

69,50), (68,51),.. ., (51,68), (50,69)}, (4.5)

where (z,y) means the scores for listening and reading, respectively. Fig. 4.1
shows the input domain and the boundaries of this software. The x-axis and
y-axis correspond to the listening and reading scores, respectively. There are
three equivalent partitions Iy, I> and I3, and the boundaries are located on the
edges of equivalent partitions. It should be noted that the input (—1,—1) is not
the boundary, because the input (—1,—1) cannot be the input belonging to I

or I3 even if we apply any operations.

Remark 1: Any operations can be used if it holds the two properties. For
example, we can add the operations: (v) increasing both the listening and read-
ing scores by one and (vi) decreasing both the listening and reading scores by
one. In this case, the input (—1,—1) becomes the boundary because (0,0) is
generated by the operation (v) from the input (—1,—1). In other words, the

boundaries depend on the definitions of operations in the formal definition.

4.3. BOUNDARY COVERAGE DISTANCE 47

Remark 2: The outputs of software can be defined arbitrarily. If we focus on
the execution paths on the program, the inputs (49,50) and (50, 49) can be the
different execution paths. In this example, we define the equivalent partitions
only from the result of the judgment for the English examination by ignoring
the execution paths, which is like a black-box approach. On the other hand,
if the output of software, the behavior of software, is defined by the execution
paths, as in a white-box approach, the equivalent partitions are changed. That

is, the boundaries are also changed.

Listening score

A
100
Iy
50
I3
50 1 >
0 00 Reading score

Figure 4.1: The input domain and the boundaries of the English software.

4.3 Boundary coverage distance

4.3.1 Definition

In this chapter, we propose a metric to evaluate the quality of test inputs from
the perspective of BVA, called Boundary Coverage Distance (BCD). First we

define the boundary coverage.

Definition (Boundary Coverage): Boundary coverage is the percentage of
boundary values that are executed by a test suite.
Ideally, the boundary coverage is also achieved by a test suite to ensure

highly reliable software. However, it is not easy to cover all the boundary

48 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

values, because there are a huge number of boundary values and sometimes the
number of boundary values becomes infinite. For example, even in the example
of English examination, although it is a simple program, there are 963 boundary
values.

Instead of the boundary coverage, we consider the distance from a given test
suite to the test suite that achieves the boundary coverage. Let d(z,y) be the
function that returns the distance from x to y. Based on the formal definition
of boundary, the distance is defined by the number of minimum operations from

T to y, i.e,

d(z,y) = min{n > 0 |y = g1(g2(- - gn(®))), 91,-- -, g0 € G} (4.6)

For example, in English program mentioned in Section 2, the number of mini-
mum operations from input z = (=1, —1) to input y = (0,0) is 2.

Suppose that T; is the test inputs (test suite) belonging to the equivalent
partition I;. The basic idea is the expansion of test inputs. The expansion means
that each test input covers the test inputs that are within a given distance. The
distance from T; to I; is defined as the minimum expansion distance for the test

inputs in T; until they cover all the boundary values B;.

d(T;, B;) = ind(z,y), 47
() max min (z,9) (4.7)

where d(T;, B;) = oo when T; is empty.
Finally, the distance from the suite S = U]”,T; to B = U2, B; is given by

d(T,B) = max d(T},B;). (4.8)

i=1,..., m

We call this distance the boundary coverage distance (BCD). If BCD is small,

the test inputs are placed close to the boundaries.

4.3.2 Computation of BCD

To compute BCD, we need to obtain all the boundary values. As mentioned
before, it is not easy to get all the boundary values. Here we consider the lower
and upper limits of BCD. Let B, be a set of test inputs which are placed on
B;, ie., B, C B. In this chapter, B, is called the boundary points on I;. From
Eq. (4.21), it is clear that

d(T;, B;) < d(T5, B;). (4.9)

4.3. BOUNDARY COVERAGE DISTANCE 49

— Boundary
Input b = Boundary point

e Testinput

Input a

Figure 4.2: An example for cover a boundary point(Compared with z; and 3,
the test input x2 can cover the boundary point y with the minimum distance

d(x2,y)).

Therefore we have the lower limit of BCD as follows.

BCD(T) = max_d(T}, B,). (4.10)

1=1,...,

Next we consider the upper limit of BCD. This chapter focuses on compo-
nents of the boundary, called the boundary components. For example, if the
boundary is represented by a line segment, the boundary components are line
segments that are shorter than the original boundary. If the boundary is a
plane, the boundary components are triangles that cover the plane. We assume
that each boundary component is defined by a set of points. A line segment is
represented by two start and end points. In the case of triangle, it is defined
by a set of three points. In general, B; := {P,..., Py} is a set of boundary
components P, ..., Py that cover the boundary B; where each boundary com-
ponent consists of a set of points P; := {x1,...,2,}. The distance from a point

z to a boundary component P; is given by
d(z,P;) = Hllath({II,l‘i). (4.11)
This gives us the distance from T} to B;:

d(T;, B;) = max min d(z, p). (4.12)
pEB; zeT;

Since Eq. (4.11) takes the maximum of points on the boundary, the distance of

50 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

— Boundary
=—a Boundary segment
e Testinput

»o

put b

Figure 4.3: An example for cover a boundary component (segment)(The test
input 4 can cover the boundary segment p with a distance of d(x2,y2).

the boundary components is greater than the exact distance, i.e.,
The upper limit of BCD becomes

BCD(T) = max d(T}, B;). (4.14)

1=1,....m

Since both B, and B; consist of the points that are the subset of B;, they can
be computed without extracting all the boundary values.

For instance, we select the following subsets of By, Bs and Bj in the example:

B, :={(—1,0),(—1,100), (101,0), (101, 100),
(0,—1), (100, —1), (0, 101), (100, 101)}, (4.15)
B, :={(100, 50), (70, 50), (50, 100), (50, 70), (100, 100)}, (4.16)

By :={(0,0), (0,100), (100,0), (49, 100), (100, 49), (49, 70), (70,49)}. (4.17)

By :={{(~1,0),(~1,100)}, {(101,0), (101, 100)},
{(0,—1), (100, —1)},{(0,101), (100, 101)}}, (4.18)
By :={{(100,50), (70, 50)}, { (50, 100), (50, 70) }, {(100, 50), (100, 100)},
{(50,100), (100, 100)}, {(70, 50), (50, 70)} }, (4.19)

ES ={{(0,0), (07 100)}7 {(0, 0)7 (100,0)},

4.4. TEST INPUT GENERATION 51

{(0,100), (49, 100)}, {(100, 0), (100, 49)},
{(49,100), (49, 70)}, {(100, 49), (70, 49)},
{(49,70), (70,49)}}. (4.20)

It should be noted that B, = U.ep,c Fig. 4.2 shows the boundary points and

Fig. 4.3 the boundary components (segments).

4.4 Test Input Generation

In this section, we consider the test input generation that minimizes BCD.
Suppose that the boundary points B; and the boundary components B, are
given. In this situation, we obtain additional n test inputs minimizing BCD.
Ideally, when the BCD is reduced to a minimum value, the n test inputs to
be optimized move to the boundary point or to the center of the boundary
component. Since a large number of test inputs cause a large amount of cost on
software testing. In this study, we first empirically analyze all possible boundary
values as boundary points. Then the boundary region to be tested is selected
by minimizing the value of the BCD of the n test inputs.

We propose three test input generation algorithms that are very similar to
MCMC (Markov Chain Monte Carlo) method [26].

The optimization process is shown in Algorithm 1, Algorithm 2 and Algo-
rithm 3, respectively.

Algorithm 1 first randomly generates n test inputs from the input domain

Algorithm 1 An algorithm to generate boundary test inputs by reducing BCD

1: Initial test_set <{randomly generate n test inputs from the input domain}
2: while j < Iter do
3: BCD + BCD(Initial_test_set)

4: t < randomly select a test input from Initial_test_set

50t Q(t';t)

6: Candidate_test_set < {Replace the t in the Initial_test_set with the can-
didate t’}

7. BCD' + BCD(candidate_test_set)

8 if BCD' < BCD then

9: Initial_test_set < candidate_test_set
10: end if

11: j+j5+1

12: end while

52

CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

Algorithm 2 An algorithm that considers each boundary point or each bound-
ary component

1: Initial test_set +—{randomly generate n test inputs from the input domain}
2: while j < Iter do

3:

@ T B

7
8:
9:
10:
11:

Calculate d(T;,y)
t < randomly select a test input from Initial _test_set
' Q(t';t)
Candidate_test_set < {Replace the t in the Initial_test_set with the can-
didate t’}
Calculate d' (T, y)
if b_decrease > 0 and b_increase = 0 then
Initial test_set <— candidate_test_set
end if
j—j+1

12: end while

Algorithm 3 Accept with probability

1: Initial test_set + {randomly generate n test inputs from the input domain}
2: while j < Iter do

3:

@ T B

7
8:
9:
10:
11:
12:

Calculate d(T;,y)
t < randomly select a test input from Initial_test_set
' Q(t';t)
Candidate_test_set < {Replace the t in the Initial_test_set with the can-
didate t’}
Calculate d' (T, y)
Generate a uniform random number U
if b-decrl;:zdseec-iile)(_liizecrease > U then
Initial test_set < candidate_test_set
end if

jJg+1

13: end while

4.4. TEST INPUT GENERATION 53

as an initial test set. Then the initial test set is optimized by reducing the
BCD value (lines 2-10). During the optimization process, the algorithm 1 first
calculates the BCD of the initial test set. Then it randomly selects a test input
t from the initial test set, and generates a new candidate ¢’ according to the
proposal distribution, provided that t is given ¢’ ~ Q(¢;t). If replacing ¢ with
the candidate ¢’ can reduce the value of BCD, the candidate ¢’ is accepted and
replaces ¢ in the initial test set, otherwise, the candidate t’ is rejected. After the
optimization process performs a fixed number of iterations, the initial test set
is moved to the boundary. In the algorithm 1, BCD can be computed as BCD
or BC'D mentioned in section 4.3.2, or even as the mean of BCD and BCD,
denoted as BC D_mean = mean(BCD + BCD).

— Boundary
Input b = Boundary point Input b
4 + Testinput 4
| ts'
'
*
*
t Input a t' Input a
> >

(a): num(=)>num(+)

Input b Input b

A A

—

t+ tj it 15+ Input a

(b): num(=) <= num@H#)

Figure 4.4: The ideal solutions generated by our algorithms when applying the
BCD(B;) criteria

Algorithm 1 only accepts candidates that can reduce the maximum distance

among the minimum distances between the boundary point (or boundary line

54 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

— Boundary
Input b s—a Boundary segment Input b
4 4 Testinput *
—> v
+ &
t3 2
*
t Input a [Inplit a
(a): num(=—=)>num{)
Input b Input b

A A

—

td’ t6+
t+ tj’ wt ng Input a

(b): num(=—=) <= num(4)

Figure 4.5: The ideal solutions generated by our algorithms when applying the

BCD(B;) criteria

segment) and the test input. This means that the optimization goal of each iter-
ation is only a boundary point or a boundary component, and the optimization
process is slow.

With this in mind, we judged whether to accept the candidate by directly
comparing the coverage distance d(7T3,y) for each boundary point or boundary

component.

d(T;,y) = mind(zs,y) for y € B (4.21)

Let b_decrease be the number of boundary points or boundary components
whose coverage distance is decreased by the candidate test set. Similarly,
b_increase denotes the number of boundary points or boundary components
whose coverage distance is increased by the candidate test set. We then get

two algorithms for generating boundary test inputs, shown in Algorithm 2 and

4.4. TEST INPUT GENERATION 55

Table 4.1: Combining the three algorithms with the three methods of BCD
calculation results in seven approaches.

Methods \ BCD

BCD(B;) | BCD(B;) | BCD-mean

Algorithms
Algorithm1 A1-BCD | A1-BCD | A1-BCD_mean
Algorithm2 A2-B; A2-B; ~
Algorithm3 A3-B; A3-B; ~

Algorithm 3 respectively. Algorithm 2 accepts a candidate when the candidate
can reduce the coverage distance of one or more boundary points (or one or more
boundary components) without increasing the coverage distance of any others.
However, in Algorithm 3, even if the candidate increases the coverage distance
of some boundary points (or some boundary components), it may be accepted
with a certain probability. In Algorithms 2 and 3, b_decrease and b_increase
can be calculated with B; or B;. Combining the three algorithms and the three

BCD calculation methods, 7 methods can be obtained, as shown in Table 4.1.

Fig. 4.4 and Fig. 4.5 demonstrate the ideal solutions generated by our
algorithms when applying the BCD(B;) and BCD(B;) criteria, respectively.
For the purpose of illustration, we assume a scenario where five boundary points
are evenly spaced along a linear boundary, with a unit distance between each pair
of adjacent points. The ideal solution varies based on the number of boundary
points and test inputs. Fig. 4 (a) represents a scenario where the number of test
inputs is fewer than the boundary points. Here, one test input is positioned at
the central boundary point, while the remaining test inputs are placed midway
between adjacent boundary points. This arrangement results in an optimal
BCD value of 0.5. Conversely, as shown in Fig. 4 (b), when the number of
test inputs exceeds the boundary points, each test input aligns with a boundary
point, achieving an optimal BCD value of 0. Fig. 4.5 illustrates the ideal
solutions under the BC'D criterion, which shows a different pattern compared
to the BCD criterion. If the number of boundary points is greater than the test
inputs, some test inputs are likely to align with the boundary points themselves.

However, when there are more test inputs than boundary points, all test inputs

56 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

tend to be the middle of the boundary segments. The average outcomes of the
BCD and BCD methods demonstrate these intermediate tendencies. These
scenarios represent ideal states in a highly simplified boundary context. It is
important to note that in practical applications with more complex boundaries,

the arrangement of test inputs is likely to be more intricate.

4.5 Experiment

This section presents experiments to investigate the fault detection capabilities
of the three algorithms of the BCD approach and compare them with RT, ART
and concolic testing. RT, ART and concolic testing are described in Chap-
ter 3.4.1 We conducted experiments to generate test inputs for the previously

mentioned English examination program and four real programs.

4.5.1 Programs under Testing

The method we have proposed is designed for generating boundary test inputs
in software testing by optimizing a set of test inputs to move towards bound-
ary points. This approach is suitable for programs where inputs can transition
from one state to another through measurable operations. The distance be-
tween two test inputs, in terms of the number of operational steps required for
transformation, determines the applicability of this method.

We select four programs used in the existing literature and English exami-
nation program to evaluate the effect of our approach. The descriptions of these
subject programs are shown in Table 4.2. And the details about all 5 programs
are shown in Tables 4.3 and 4.4, such as the dimensional number of program
inputs, the range of input domain, the number of patterns, line of code (LOC),

mutation faults information, and the number of boundary points (num_Bpoint).

Table 4.2: Experimental programs

Prog Name Description

triType [29] The type of a triangle

nextDate [30] Calculate the following date of the given day

findMiddle [31] | Find the middle number among three numbers
English Judge whether the English examination passed
miniSAT Minimalistic SAT solver

4.5. EXPERIMENT 57
Table 4.3: Details of subject programs
Program | Dim Input Domain Test patterns | Size(LOC)
From To

findMiddle 3 (-10, -10, -10) (10, 10, 10) 9.26 x 103 36
English | 2 (0,0) (100, 100) 1.02 x 10° 2
triType | 3 (0,0, 0) (50, 50, 50) 1.32 % 10° a1
nextDate | 3 (0, 0, 0) (2018, 12, 31) 8.39 x 10° 90

|4 |4 "R
MiniSAT 9 (1,1,1,1,1,1,1,1,1) (5,5,5,5,5,5,5,5,5) 1.0 x 10° 1069
(-1-1,-1-1-1-1-1-1-1) | (-5,-5,-5,-5,-5,-5,-5,-5,-5)

Table 4.4: Mutation faults information and the number of boundary points.

Program Fault types Total Faults | num_Bpoint
OBOB | ROR | AOR | SVR | LOR
triType 6 6 3 6 21 420
nextDate 16 7 8 31 685
findMiddle 15 14 5 34 1092
English 14 7 2 25 283
miniSAT 8 16 9 35 279

For programs other than miniSAT, we define the minimum operation as plus
one and its opposite operation as minus one. In miniSAT [37] experiment, we
tested the solver.cc module in miniSAT version 2.2. The problem(Test input)
is fixed as a 3-SAT problem with 5 variables and 3 clauses. This is represented
in the DIMACS CNF format as Fig. 4.6. There are a total of 10° possible test
patterns for this problem. In this problem we define two operations Change(x, y)
and Pos(x, y). The operation “Change(x, y)” allows for increasing the numbers
x and y (ranging from 1 to 5) in the clauses. The operation “Pos(x, y)” is
used to make the y-th number in the x-th clause a positive value. For example,
converting -1 to 1. There are a total of 18 types of operations, consisting of 9
“Change” operations and 9 “Pos” operations. Each operation corresponds to
how many times it is applied. For example, the vector representing the number
of operations needed to change from test input A to test input B might look

like this:

0,1,0,0,—1,0,0,0,0,0,0,0,0,0,0,0,0,0] (4.22)

In this vector, the “-1” signifies the inverse operation, which means either “de-
crease the variable number by one” or “make it negative.” The absolute value of

-1 corresponds to the number of times the operation is applied. In this context,

58 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

pcnf53

1120
-1230
3-450

Figure 4.6: DIMACS CNF format.

the “distance” between test inputs A and B is determined by the total number
of operations needed to transform one into the other. For example, if there are

two “-1” operations, the distance between test input A and test input B is 2.

In this chapter, boundary points are obtained by manual analysis of the
source code. First, the input domain is divided into m equivalent partitions
based on the output. Then, in each equivalent partition, boundary points are

generated based on the definition in Section 4.2.

4.5.2 Design Parameters

In the experiment, we investigate the fault detection capabilities of RT, ART,
BCD-Algorithm1 (A1), BCD-Algorithm2(A2), and BCD-Algorithm3(A3). First,
the input domains of programs triType, nextDate, findMiddle, English, and
miniSAT are divided into 5, 15, 3, 3, and 2 equivalent partitions, respectively.
Then, the RT randomly generates test inputs for each equivalent partition.
Specifically, 10 test inputs are generated for each partition of triType, 3 for
each partition of nextDate, 10 for each partition of findMiddle, 10 for each par-
tition of English, and 15 for each partition of miniSAT. In total, 50 test inputs
are generated for the program triType, 45 for nextDate, 30 for findMiddle, 30
for English, and 30 for miniSAT.

We then use Al, A2, and A3 to optimize the RT-generated test set. To
generate the candidate, we use the uniform distribution as the proposal dis-

tribution. And the number of iterations for the optimization process is set to

10000.

4.5. EXPERIMENT 59

Table 4.5: Kill rates for the test sets generated by different methods

Method Kill rate
triType nextDate | findMiddle | English | miniSAT
(n=>50) (n=45) (n=30) (n=30) (n=30)
RT 0.66 0.54 0.61 0.36 0.65
ART 0.61 0.51 0.63 0.44 0.64
A1BCD,,.. 0.8 0.7 0.61 0.44 0.65
ALBCD,,... 0.95 1 0.97 0.8 0.94
A1_BCD, a0 0.8 0.7 0.73 0.44 0.65
A1_BCDpean 0.9 0.93 0.88 0.68 0.68
A1_BCD_meanyqz 0.61 0.74 0.94 0.52 0.59
A1_BCD_-meanpean 0.71 0.96 0.94 0.71 0.65
A2_point 0.85 0.96 0.76 0.52 0.85
A2 seg 0.8 0.9 0.85 0.59 0.62
A3_point 0.76 0.93 0.55 0.44 0.62
A3 seg 0.76 0.83 0.94 0.4 0.59
KLEE 0.7 (n=14) | 0.9 (n=56) | 0.88(n=13) | 0.6(n=8) | 0O(n=1)

4.5.3 Result

Table 4.5 shows the kill rates for the test sets generated by different meth-
ods. KLEE generates n test inputs for each of the four programs, as shown
in the Table 4.5. In Algorithml, BCD can be computed as BCD, BCD and
BCD_mean. In the definition of the BCD calculation, we use the max operation
to calculate the boundary coverage distance. In this experiment, we also used
an alternative method to replace all max operations in the BCD calculation
process with mean operations, so that each boundary point affects the BCD
calculation results. Under the max operation or mean operation, we denote the
BCD calculation method of Algorithm1(Al) as A1.BCD,, .., A1.BCD
A1_BCD,az, A1_.BCD pean,A1_.BCD_meanmq, and A1_BCD_meanmean, re-

mean’?

spectively. In the Table 4.5, the A2_point method uses Algorithm 2 to optimize
the test set based on each boundary point, and the A2_seg method optimizes
the test set based on each boundary segment.

From the results, it can be seen that the most BCD-based methods have
better fault detection ability than RT and ART, and the kill rate of test inputs
generated by BCD-based methods is better than that of concolic testing, because
concolic testing is not good at detecting OBOB bugs. In the experiment of using

the KLEE tool to generate test inputs for the miniSAT program, we used KLEE

60 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

Table 4.6: Accept rate during optimization of each method.

Accept rate
Method
triType | nextDate | findMiddle | English | miniSAT
A1_BCD,, . 0.0026 0.0006 0 0.0003 0.0001
A1_.BCD,,.on 0.0123 0.0115 0.0075 0.0081 0.00075
A1 BCD,4z 0.0025 0.0009 0.0009 0.0021 0.0003
A1_BCDpean 0.0151 0.0101 0.0075 0.0083 0.0073
A1_BCD-meanq,, | 0.0035 0.0011 0.0024 0.004 0.0006
A1_BCD_meanmeqn | 0.0133 0.0098 0.007 0.0076 0
A2_point 0.0043 0.0039 0.0016 0.0022 0.0023
A2 seg 0.0053 0.0031 0.0012 0.0017 0.0035
A3_point 0.1807 0.2369 0.4172 0.3815 0.135
A3_seg 0.1655 0.195 0.4125 0.3875 0.0748

to provide a symbolic file, and KLEE only generated one test input. It can be
seen that it is difficult to test miniSAT using symbolic methods. Meanwhile, test

inputs generated by A1_BCD can kill more mutations than other methods.

mean
For the same number of iterations, Al with BC'D,,cqyn accepts more candidates
than Al with BCD,, 4., as shown in Table 4.6. Therefore, reducing the BCD
computed with the mean operation is more helpful for test set optimization
than the max operation. However, the acceptance rate of A2 and A3 is slightly
higher than that of A1_BCD,,eqn, but due to the large number of boundary

points, judging the coverage distance of each boundary point does not give a

good result.

Fig. 4.7 shows the distribution of the input data generated by RT and the

optimization results of A1_BC'D on the test set generated by RT in the

mean
English experiment. From the distribution graph, it can be seen intuitively that

most of the input data in the optimized test set moved to the boundary.

Tables 4.7 and 4.8 show the time cost of the experiment, including the time to
generate the test input (optimization time) and the mutation time. Since in the
ART method, the detection of injected faults (mutation testing) is performed
during the test input generation process, the time cost of the ART method is
not presented in table. the ART time costs of programs triType, nextDate,
findMiddle, English, and miniSAT are 248, 572, 193, 253, and 996 seconds,
respectively. Although the time cost of the BCD-based method is higher than

4.5. EXPERIMENT 61

Table 4.7: Time cost of test input generation.

Method Test input generation time (sec)
triType | nextDate | findMiddle | English | miniSAT

RT 0.002 0.002 0.002 0.001 0.002
A1.BCD,, .. 253 769 597 236 134
A1_.BCD,, .n 242 799 295 154 142
A1.BCD, 0z 432 1163 921 319 359
A1_BCDean 421 1194 1043 316 382
A1_BCD_mean,qqz 442 1559 966 338 410
A1_BCD_meanmean 442 1500 1004 336 404
A2_point 244 544 303 144 151
A2.seg 390 541 864 298 365
A3_point 241 510 270 158 146
A3_seg 389 534 830 309 387

KLEE 1 1 1 1 1

other methods, the BCD-based method can generate better quality test inputs

and detect more faults.

62 CHAPTER 4. BOUNDARY COVERAGE DISTANCE(BCD)

Table 4.8: Time cost of mutation testing.

Mutation time (sec)
Method
triType | nextDate | findMiddle | English | miniSAT
RT 291 388 256 196 1232
A1.BCD,,,, 282 440 242 195 1133
A1_.BCD,, .n 287 420 265 201 1324
A1_BCD s 295 392 269 196 1102
A1 BCD,nean 284 388 297 189 1309
A1_BCD_meanmaz 285 420 273 198 1190
A1_BCD_meanmean 296 405 291 198 1114
A2_point 287 457 259 198 1266
A2 seg 302 399 250 197 1308
A3_point 284 346 246 198 1146
A3.seg 284 359 243 212 1125
KLEE 68 469 67 56 43
RT__n=30 A1_BCDmean__n=30
x - <
e boundary point 4 test data e boundary point 4 test data

Figure 4.7: The input data distribution generated by RT and A1_.BCD,,,.,,, in
the English experiment.

Chapter 5

Conclusion

This dissertation contains four folds, around the generation of test inputs in
software testing, we discussed the automation of test coverage achievement and
boundary value analysis, respectively. From the perspective of branch coverage,
we propose a strategy to enhance branch coverage using a GAN model. In
addition, to improve the fault detection ability of test inputs, we consider the use
of machine learning techniques to automate Boundary Value Analysis (BVA) for
generating boundary test inputs. We also introduce a new metric for boundary

coverage.

In Chapter 2, we introduced an automatic test input generation framework
based on Generative Adversarial Network (GAN), aim at achieving full branch
coverage. In the framework, we used not only the test inputs but also the corre-
sponding execution path as inputs of GAN. The generator of GAN was used to
generate test input and the corresponding expected path. According to the path
information, we selected the test input that may cover the new branch. The
discriminator was used to reinforce the generation ability of the generator so
that the generator could generate inputs that conforms to the true distribution.
In this way, our coverage improvement strategy was meaningful. We conducted
the experiments to examine the effectiveness of our proposed framework. The
results show that GAN-based methods can automatically generate test inputs
for programs with large-scale branches to increase coverage. Compared with
the standard GAN and BiGAN, WGAN-GP provided the better performance
in the experiment, and compared with the integration testing application, our

framework was more effective in the unit test scheme. Besides, the convolu-

63

64 CHAPTER 5. CONCLUSIONS

tion neural network did not show better prediction performance than the fully
connected neural network. Using GAN to generate test inputs has a technical
problem that some branches are difficult to cover. It can be divided into the
following three categories. The first is "==" conditional branch. It is difficult
for GAN to generate a specific value, especially the type of program input is
float. The second is the branch with complex conditional expression. When the
gap between the target data and the training data is large, it is also difficult
to cover it with the GAN method. In order to achieve full branch coverage,
we need to do more work to tackle the above problem. In addition, since the
execution path depends on the control flow of the program, in future research
we will consider converting the control flow graph into the form of a graph neu-
ral network and incorporating it into the GAN model. Providing structured
path information of the program to the GAN, which would improve the ability
to learn path distributions. In practical applications, the GAN method can be
applied in any test scenario that focuses on branch coverage, as long as the path

information containing branch execution information can be extracted.

In Chapter 3, the MLP based approach to automatically generate test inputs
with Boundary Value Analysis was discussed. First, we train an MLP-based
discriminator that determines whether two test inputs have the same execution
path or not. Second, we create test inputs based on Markov Chain Monte Carlo
(MCMC) using the discriminator’s outputs. We conducted a set of experiments
on a simple program and seven real programs to exhibit the performance of
MLP-based approach. Our results showed that the MLP-based approach could
generate test inputs close to the boundary for testing and has better fault de-
tection ability than RT and ART. Besides, the MLP-based method outperforms
the manually-performed boundary analysis in four of the seven real programs
tested, and outperforms the concolic testing in three of the seven real programs
tested. The accuracy of neural network predictions largely affects the perfor-
mance of the MLP-based approach. In order to use neural networks to generate
higher-quality test inputs, we need to consider improving the performance of
neural networks in the future, such as employing the Large Language Model
(LLM) to predict program execution paths by learning relationships between

code blocks and understanding conditional statements and loops, so that neural

65

networks can better learn the boundary information of programs. At the same
time, high-quality training data will also improve the prediction accuracy of the
neural network, and can greatly reduce the time cost, so we will also improve the
training data generation strategy in future work. Besides, there are many equal-
conditional expressions in the programs, and our currently proposed method is
not good at generating exact data. To improve the fault detection ability of our
proposed method, this problem needs to be solved in our future work. We will
also consider applying our method to complex software systems with large input
spaces and complex and highly structured inputs. In the experiment, we only
tested the C language. In practical applications, for other languages, we can

apply this method by simply changing the way path extraction is performed.

In Chapter 4, we proposed a new boundary coverage metric called Bound-
ary Coverage Distance (BCD). Then a set of randomly generated test inputs
is optimized based on BCD to generate boundary values. We conducted the
experiments on four programs to exhibit the performance of the BCD-based
method. Our results showed that the BCD-based method can generate test
inputs close to the boundary and can increase the fault detection rate of a ran-
domly generated test set. The selection of the boundary points significantly
affects the performance of the BCD-based method. In this paper, we analyze
the boundaries of several programs to obtain boundary points. However, in the
case of large programs or complex numerical computation programs, the iden-
tification of the boundary becomes difficult and poses a significant problem. In
this study, we manually analyze and obtain the boundary points. To improve
the automation of our method, we will explore possibilities such as integrating
existing analysis tools or using deep learning techniques to predict boundary
points. To generate test input for software testing, it is important to consider
different types of input. If the program input is numerical data, such as con-
tinuous data, we can use Gaussian distribution or similar techniques to infer
neighboring points. Conversely, for discrete data, simple addition and subtrac-
tion operations can be used to determine adjacent points. However, when the
program input consists of non-numerical data, such as an array (e.g., in a sorting
problem) or a string of letters, the definition of boundaries and adjacent inputs

requires further consideration for future optimization. In practical applications,

66 CHAPTER 5. CONCLUSIONS

the BCD can be applied in any test scenario that focuses on branch coverage,
as long as the path information containing branch execution information can be
extracted. In practical applications, when we know the boundary information,
we can use BCD to measure whether a set of test inputs covers all boundaries.
Conversely, we can also use the BCD-based generation algorithm we proposed
to select which parts of the boundary we need to focus on testing.

The main contributions of this dissertation are proposing several methods
for generating high-quality test inputs. Initially, we explore the application of
the GAN model to automatically generate test inputs, aiming to achieve full
branch coverage. Subsequently, we introduce a MLP-based approach for the
automated implementation of Boundary Value Analysis (BVA). Expanding on
these topics, we delve into the discussion of a novel boundary coverage metric.
Through extensive experiments, the efficacy of these methods is demonstrated,

including improvements in branch coverage and fault detection capabilities.

Bibliography

1]

Meysam Valueian, Niousha Attar, Hassan Haghighi, and M Vahidi-Asl.
Constructing automated test oracle for low observable software. Scientia

Iranica, 27(3):1333-1351, 2020.

Abhishek Singhal, Abhay Bansal, et al. Generation of test oracles us-
ing neural network and decision tree model. In 2014 5th International
Conference-Confluence The Next Generation Information Technology Sum-

mit (Confluence), pages 313-318. IEEE, 2014.

Seyed Reza Shahamiri, Wan Mohd Nasir Wan Kadir, Suhaimi Ibrahim,
and Siti Zaiton Mohd Hashim. An automated framework for software test

oracle. Information and Software Technology, 53(7):774-788, 2011.

Seyed Reza Shahamiri, Wan MN Wan-Kadir, Suhaimi Ibrahim, and Siti
Zaiton Mohd Hashim. Artificial neural networks as multi-networks auto-

mated test oracle. Automated Software Engineering, 19:303-334, 2012.

Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage

and adequacy. Aem computing surveys (csur), 29(4):366-427, 1997.

Phil McMinn. Search-based software testing: Past, present and future. In
2011 IEEFE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops, pages 153-163. IEEE, 2011.

Gordon Fraser and Andrea Arcuri. 1600 faults in 100 projects: automati-
cally finding faults while achieving high coverage with evosuite. Empirical

software engineering, 20:611-639, 2015.

67

68

8]

[10]

[15]

BIBLIOGRAPHY

Yuan Zhan and John A Clark. A search-based framework for automatic
testing of matlab/simulink models. Journal of Systems and Software,

81(2):262-285, 2008.

Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open prob-
lems and challenges for search based software testing. In 2015 IEEE Sth
International Conference on Software Testing, Verification and Validation

(ICST), pages 1-12. IEEE, 2015.

Felix Dobslaw, Francisco Gomes de Oliveira Neto, and Robert Feldt.
Boundary value exploration for software analysis. In 2020 IEEE Interna-
tional Conference on Software Testing, Verification and Validation Work-

shops (ICSTW), pages 346-353. IEEE, 2020.

Stuart C Reid. An empirical analysis of equivalence partitioning, boundary
value analysis and random testing. In Proceedings Fourth International

Software Metrics Symposium, pages 64-73. IEEE, 1997.

Bingchiang Jeng and Istvan Forgics. An automatic approach of domain

test data generation. Journal of Systems and Software, 49(1):97-112, 1999.

Ruilian Zhao, Michael R Lyu, and Yinghua Min. Automatic string test
data generation for detecting domain errors. Software Testing, Verification

and Reliability, 20(3):209-236, 2010.

Shaukat Ali, Tao Yue, Xiang Qiu, and Hong Lu. Generating boundary val-
ues from ocl constraints using constraints rewriting and search algorithms.
In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 379—
386. IEEE, 2016.

Robert Feldt and Felix Dobslaw. Towards automated boundary value test-
ing with program derivatives and search. In Search-Based Software En-
gineering: 11th International Symposium, SSBSE 2019, Tallinn, Estonia,
August 31-September 1, 2019, Proceedings 11, pages 155—163. Springer,
2019.

Zhiqiang Zhang, Tianyong Wu, and Jian Zhang. Boundary value analysis
in automatic white-box test generation. In 2015 IEEFE 26th International

BIBLIOGRAPHY 69

[17]

[18]

[27]

Symposium on Software Reliability Engineering (ISSRE), pages 239-249.
IEEE, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. Advances in neural information processing systems, 27,

2014.

Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. How gen-
erative adversarial networks and their variants work: An overview. ACM

Computing Surveys (CSUR), 52(1):1-43, 2019.
Gceov: https://gcc.gnu.org/onlinedocs/gee/geov.html.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. Advances in

neural information processing systems, 30, 2017.

Jeff Donahue, Philipp Kriahenbiihl, and Trevor Darrell. Adversarial feature

learning. arXiv preprint arXiv:1605.09782, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein genera-
tive adversarial networks. In International conference on machine learning,

pages 214-223. PMLR, 2017.
Gsl: https://www.gnu.org/software/gsl/doc/html/intro.html.

Bo Zhou, Hiroyuki Okamura, and Tadashi Dohi. Enhancing performance of
random testing through markov chain monte carlo methods. IEFEE Trans-

actions on Computers, 62(1):186-192, 2011.

Stephen Brooks. Markov chain monte carlo method and its application.
Journal of the royal statistical society: series D (the Statistician), 47(1):69—
100, 1998.

Siddhartha Chib and Edward Greenberg. Understanding the metropolis-
hastings algorithm. The american statistician, 49(4):327-335, 1995.

Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEFE transactions on software engineering, 37(5):649—

678, 2010.

70

28]

[31]

32]

[33]

[34]

BIBLIOGRAPHY

Tsong Yueh Chen, Hing Leung, and Ieng Kei Mak. Adaptive random test-
ing. In Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making: 9th Asian Computing Science Conference. Dedicated to Jean-Louis
Lassez on the Occasion of His 5th Birthday. Chiang Mai, Thailand, Decem-
ber 8-10, 2004. Proceedings 9, pages 320-329. Springer, 2005.

Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger.
Pathcrawler: Automatic generation of path tests by combining static and
dynamic analysis. In European Dependable Computing Conference, pages

281-292. Springer, 2005.

Zeina Awedikian, Kamel Ayari, and Giuliano Antoniol. Mc/dc automatic
test input data generation. In Proceedings of the 11th Annual conference

on Genetic and evolutionary computation, pages 16571664, 2009.
Ghani K. Searching for test data. Ph. D Thesis, 2009.

Saul A Teukolsky, Brian P Flannery, WH Press, and WT Vetterling. Nu-
merical recipes in ¢. SMR, 693(1):59-70, 1992.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its

potential impact. Empirical Software Engineering, 10:405-435, 2005.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems pro-

grams. In OSDI, volume 8, pages 209-224, 2008.

Liping Li and Huaikou Miao. Model-based boundary coverage criteria for

logic expressions. Appl. Math, 6(1S):315-34S, 2012.

Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, and Mark Utting.
Boundary coverage criteria for test generation from formal models. In
15th International Symposium on Software Reliability Engineering, pages

139-150. IEEE, 2004.

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing, pages 502—

518. Springer, 2003.

Publication List of the
Author

Publications in this dissertation

[J-1] X. Guo, H. Okamura and T. Dohi, “Automated Software Test Data Gen-
eration With Generative Adversarial Networks,” IEEE Access 10 (2022):
20690-20700

[J-2] X. Guo, H. Okamura and T. Dohi, “Optimal Testcase Generation for

Boundary Value Analysis,” Software Quality Journal(accepted).

Referred Conferences

[C-1] X. Guo, H. Okamura and T. Dohi, “Towards Automated Software Testing
with Generative Adversarial Networks,” in Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
- Supplemental Volume (DSN-S), Taipei, Taiwan, 2021, pp. 21-22, doi:
10.1109/DSN-552858.2021.00021.

[C-2] X. Guo, H. Okamura and T. Dohi, “Improvement of MCMC Ran-
dom Testing with Neural Networks,” in Proceedings of the 5th Interna-
tional Conference on Mathematical Techniques in Engineering Applica-

tions(ICMTEA 2021), 2021, 10 pages.

[C-3] X. Guo, H. Okamura and T. Dohi, “A Note on Finding Boundary Values
of Programs with Neural Networks,” in Proceedings of the 10th Asia Pa-
cific International Symposium on Advanced Reliability and Maintenance

Modeling (APARM 2022), 2022, 5 pages.

71

72 PUBLICATION LIST OF THE AUTHOR

[C-4] X. Guo, H. Okamura and T. Dohi, “Towards High-Quality Test Suite Gen-
eration with ML-Based Boundary Value Analysis,” In 2023 10th Interna-
tional Conference on Dependable Systems and Their Applications (DSA),
IEEE, 2023, pp. 75-85.

