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Chapter 1

Introduction

Nowadays, graphene as a two-dimensional (2D) material is becoming a more attractive 

revolutionary research material in order to be used in devices for the industrial applications. 

Materials immersed in a uniform magnetic field exhibit many properties such as Landau 

diamagnetism, curie paramagnetism, Langevin diamagnetism, de Haas-van Alphen (dHvA) effect, 

Shubnikov-de Haas (SdH) effect, quantum Hall effect (QHE), and so on. The QHE is the most 

important property in 2D condensed matter physics to make a device. The 2D system at low 

temperature and strong magnetic field has more potential for the quantum phenomena after 

discovering the quantization of the quantum Hall effect [1]. The integer quantum Hall effect has 

been observed in a two-dimensional electron gas (2DEG) system in a semiconductor 

heterostructures system [1,2]. The energy spectrum in a 2DEG system immersed in a uniform 

strong magnetic field becomes quantized due to the quantization of the orbital motion according 

to Onsager`s area quantization rule. This system provides an ideal message for understanding the 

quantum transport phenomena in a 2D system. For this reason, researchers have tremendous 

interest in research on 2D materials specifically graphene about the electronic properties in 2D 

condensed matter systems. The 2D material belonging to honeycomb lattice structure with two 

atoms per unit cell specifically graphene demonstrates some peculiar properties for its unique 

electronic energy band structure due to the inequivalent two K points namely Dirac point ( and 

) in the first Brillouin zone (BZ). The conduction and valence band in graphene forms a conically 

shaped valley by touching each other at the Dirac point in the first BZ which leads to the 

extraordinary property in graphene. Graphene shows some extraordinarily peculiar properties due 

to the linear energy dispersion relation in the lower energy region which means near the Dirac 

point.  Therefore, graphene as a 2D material has become a potential material as a promising 

material in the electronics and spintronics fields for its some extra properties [3-10]. When a 

uniform magnetic field is applied perpendicular to the graphene sheet, it exhibits some distinctive 



properties such as strong orbital diamagnetism [11-24], reduced effective g-factor [25-27], 

unconventional oscillation of magnetization [28-30], half-integer quantum Hall effect (QHE) [31-

44], anomalous QHE in the honeycomb lattice [32-34,36], and quantized Hall conductivity 

[42,43,45]. The half-integer quantum Hall effect in graphene leads that graphene becoming a 

promising material for spintronics. In addition, at room temperature, the large energy gap 

generated by the magnetic field in graphene compared to a standard 2DEG system [43], graphene 

has been considered as a more practical useable material for the property of the QHE.  

It is noted that for the interesting results of graphene in theoretical predictions [31,32], and 

experimental discoveries [4,33,41-44], many researchers concentrate their minds on the research 

of the half-integer QHE as an excellent property in 2D materials. Specifically, the half-integer 

quantized Hall conductivity ( ) in graphene with filling factors (FFs) of 2, 6, 10, 14, etc. was 

experimentally observed in a low magnetic field of approximately 14 (T) [4] or below 10 (T) [33] 

due to the corresponding energy level splitting, which is well known as the half-integer QHE. 

There are many methods are discussed for the reason of the half-integer QHE, more clearly, the 

effect of the half-integer QHE in graphene was theoretically described based on the tight-binding 

(TB) approximation method and/or the effective mass Hamiltonian method [32,34-40]. The 

important notice about the interesting half-integer QHE in graphene is that the quantized 

with FFs of 0 and 4 which are the different sets of FFs compared with the above-mentioned set of 

FFs was also observed experimentally comparatively in the high magnetic field region of 

approximately 45 (T) [41].  The quantized in graphene with FFs of 0, 4, 8, 12, etc. has also 

been predicted theoretically, and this set of FFs for the quantized attributed to the energy 

splitting caused by the spin-Zeeman effect [39].       

The well-known magnetic field dependence energy spectrum namely the Hofstadter 

butterfly diagram [46] is obtained theoretically and can be explained clearly as the magnetic energy 

spectrum of energy levels of electrons in a magnetic field. The most important information about 

the QHEs is carried in the gap in the Hofstadter butterfly diagram [47-50]. According to the various 

conventional theoretical methods [32,34-40], the energy diagram for the magnetic energy spectrum 

is enumerated using magnetic hopping integrals (hopping integrals in the presence of a magnetic 

field). The magnetic hopping integrals are the product of the hopping integrals (hopping integrals 



in the absence of a magnetic field) and the Peierls phase.  The hopping integrals can be calculated

by the Slater-Koster table which leads the relativistic version of the Slater-Koster table. But the 

Peierls phase approximation corresponds to a lowest-order perturbation theory [51], the energy 

diagram is relatively erroneous in the high magnetic field region and lacks accuracy even in the 

low magnetic field region [51]. For the worst calculation, the Hofstadter butterfly diagram in the 

low magnetic field region may be affected by spin-orbit interactions [51]. The relativistic effect, 

magnetic effect, and the effect of the periodic potential should be considered in the calculation of 

the diagram of the magnetic energy spectrum for more accuracy.   For this aim, the nonperturbative 

effects of the magnetic field and the spin-orbit interaction should be taken for the appropriate 

magnetic energy spectrum to investigate the QHE in graphene.  

Recently, the magnetic-field-containing relativistic tight-binding approximation (MFRTB) 

[52] and the nonperturbative MFRTB methods [51] have been developed by Higuchi group for a 

better description of the properties of materials immersed in a uniform magnetic field. The above-

mentioned methods enable the calculation of the realistic magnetic energy band structure of 

materials immersed in a magnetic field by taking the effects of the magnetic field, the effect of the 

periodic potential, and the relativistic effect. Thus far, the MFRTB method can revisit the Haas-

van Alphen oscillations [53,54] and magnetic breakdown [54] and predict the additional oscillation 

peaks of the magnetization [55-57]. The nonperturbative MFRTB method reveals that 

nonperturbative effects appear both in high and low magnetic field regions [51] and successfully 

predicts the second-order phase transition of silicon from a band insulator to a metal [58]. The 

above-mentioned discussions are based on the magnetic energy band structure calculated using the 

MFRTB or nonperturbative MFRTB method.  

In this thesis, a novel description of the orbital motion of the magnetic Bloch electron is 

explained to describe the quantum Hall effect using the nonperturbative MFRTB method. The 

theoretical calculations are performed to investigate the QHE in graphene based on the magnetic 

energy band structure using the nonperturbative MFRTB method. Because the description of the 

quantum Hall effect based on the first principles calculations has not been made yet. The Fermi 

energy dependence of is investigated using the nonperturbative MFRTB method [45]. It is 

evident that the quantized with FFs of 2, 6, 10, 14 etc., and with 0, 4, 8, 12 etc., is revisited 



successfully using the nonperturbative MFRTB method [45]. The former set of FFs has wide 

plateaus (WPs) and the latter set of FFs has narrow plateaus (NPs) due to the corresponding energy 

splitting. It is noted that both plateaus are the Fermi energy and magnetic field dependence. The 

width of the WPs relatively decreases with increasing Fermi energy due to the negative curvature 

of the energy band at zero magnetic field. The spin-Zeeman effect and the spin-orbit interaction

are the reasons for the NPs in graphene.  The width of the NPs belongs to the Fermi energy and 

magnetic field dependence that are shown later. 

This thesis is decorated in the following fashion: 

In Chapter 2, the description of the relativistic tight binding (TB) approximation method 

in the absence of a magnetic field as a building block is decorated to describe the MFRTB 

approximation method. In this Chapter, the relativistic version of the Slater-Koster (SK) table is 

also presented for the calculation of the relativistic hopping integrals for the zero magnetic field

case. The nonperturbative MFRTB method is presented in Chapter 3 to express the magnetic 

hopping integrals approximately in terms of both the relativistic hopping integrals for zero 

magnetic field case and magnetic-field dependent phase factor (Peierls phase factor). In Chapter 

4, the derivation of the Streda formula is briefly discussed to calculate the magnetic field 

dependence Hall conductivity using the nonperturbative MFRTB method. The application of the 

non-perturbative MFRTB method to a two-dimensional honeycomb lattice, graphene is discussed 

in Chapter 5. In this Chapter, the magnetic hopping integrals are also presented in tabular form. 

The calculating results such as magnetic field dependence of energy spectrum, Fermi energy 

dependence of quantized Hall conductivity, Fermi energy dependence of the width of the WPs 

with comparing conventional theoretical model and magnetic field dependence of the width of the 

NPs with comparing spin Zeeman effect are presented in Chapter 6. Finally, in Chapter 7, the 

conclusion remarks of this thesis are presented.    



Chapter 2

Relativistic Tight Binding (TB) approximation method for 

zero magnetic field

In this Chapter, the Relativistic Tight Binding (TB) approximation method for zero magnetic field

is described in the following sequence:

2.1 Matrix elements of the Dirac Hamiltonian 

2.2 Relativistic hopping integrals,

2.2.1 In case of ,

2.2.2 In case of ,

2.3    TB parameters for the relativistic hopping integrals 

2.4 Expressions of the relativistic hopping integrals for the relativistic version of the 

Slater -Koster table

2.5    Relativistic version of Slater Koster table     



2.1 Matrix elements of the Dirac Hamiltonian 

In order to derive the expression of the matrix elements of the Dirac Hamiltonian, let us

consider an electron moves only in a periodic potential in the crystal in the absence of a magnetic 

field. The Hamiltonian of this system is given by [59]

In Eq. (2.1), , and are the energy-momentum of the electron, rest mass of the 

electron, and velocity of light respectively, the quantities, and stand for the 

usual matrices and also denote the Hermitian operators [59], is the scalar 

potential that is caused by the nucleus of an atom, ; where the atom, is located at the position 

where and are the lattice translation vector, and the vector specifying position of 

the an atom, in the crystal respectively.

The electron in the above-mentioned system obeys the Dirac equation. The Dirac equation for this 

electron in a periodic potential in the absence of a magnetic field is given by [59]

In Eq. (2.2), and are the four-component eigenfunction and eigenvalue respectively, 

the subscripts , and in and are the band index and crystal momentum, respectively.

In order to estimate the appropriate form of the relativistic atomic orbitals of an atom 

similar to the non-relativistic Tight-Binding (TB) approximation method, it is very important to

expand the four-component eigenfunction, by using the Bloch sum of the relativistic 

atomic orbitals as a basis function. The expanded four-component eigenfunction is given by 



In Eq. (2.3), and are the expansion coefficient, and the Bloch sum of the 

relativistic atomic orbitals of an atom. The Bloch sum for the normalized condition is given by 

In Eq. (2.4), is the relativistic atomic orbitals of an atom, . In Eqs. (2.3)

and (2.4), the letters  and are the principal, azimuthal, total angular momentum, and 

magnetic quantum numbers, respectively. It is noted that the number is related to the parity, 

which is conserved in the atomic system [59]. In Eq. (2.4), is the total number of unit cells in

the given system. Since the relativistic atomic orbital, of an atom, , obeys the Dirac 

equation in the given system, the Dirac equation for the relativistic atomic orbital, is 

given by 

In Eq. (2.5), is the atomic spectrum of an atom, for zero magnetic field case. The 

relativistic atomic orbital, is related to the four-component eigenfunction of .

The relativistic atomic orbital, is given by [59] 

In Eq. (2.6), and are the large and small components of the radial part of the

relativistic atomic orbitals, respectively, and is the spinors spherical 



harmonics of order and also the function of the total angular momentum [59]. Here, the parity is 

given by , where takes two values and and is a quantum number 

which is defined by for the states of parity and for the states of parity 

[59]. 

Using Eqs. (2.2) and (2.3), we have 

Using Eqs. (2.4) and (2.7), we have 

Multiplying by from left on both sides in Eq. (2.8) and integrating, then Eq. (2.8)

becomes    

The relativistic hopping integral between two atoms, and from Eq. (2.9) is given by 



If the relativistic atomic orbitals, are highly localized around , the

overlap integral from Eq. (2.9) is given by 

Using Eqs. (2.10) and (2.11), then Eq. (2.9), becomes 

After simplifying, Eq. (2.12) becomes 

The matrix element of the Dirac Hamiltonian from Eq. (2.13) is given by 

Using Eq. (2.14) into Eq. (2.13), then we have 

Since the matrix element in Eq. (2.14) is Hermite, it is possible to calculate the eigenvalues,

in a fixed band for each k point and the four-component eigenfunctions, for each 

point by solving Eq. (2.15). For this aim, firstly, it is urgent to calculate the relativistic hopping 

integrals, which are expressed in Eq. (2.10).



2.2 Relativistic hopping integrals for the cases: ,

           and ,

2.2.1 In case of and 

Using Eq. (2.1) into Eq. (2.10), the relativistic hopping integrals become

Using Eq. (2.5) into Eq. (2.16), the first term becomes 

Using Eq. (2.11) into Eq. (2.17), the first term becomes 

In Eq. (2.18), the second term is the energy of the crystal field. In Eq. (2.18), the scalar potential, 

is constant for the symmetrical behavior at position due to the relativistic 



atomic orbitals, ′ℓ′ ′ ′ and ℓ are sufficiently localized around . The 

integral part in Eq. (2.18) would be vanished for the orthogonality condition of relativistic atomic 

orbitals, ′ℓ′ ′ ′ and ℓ in the condition of ′ , ′ , ′ and ′

. For this reason, the energy of the crystal field can be approximated in the following form:

Using Eqs. (2.18) and (2.19), the relativistic hopping integrals become 

2.2.2 In case of and 

Using Eq. (2.1) into Eq. (2.10), the relativistic hopping integrals become



(2.21) 

For the simplicity Eq. (2.21) can be taken by parts in the following way:  

The 1st part of RHS in Eq. (2.21), we have   

(2.22) 

The 2nd part of RHS in Eq. (2.21), we have   

(2.23) 

From the 4th part of RHS in Eq. (2.21), it is noticeable that it has three central integral parts. Three 

central integral parts provide a very small numerical value compared to the other integral parts.  

For this reason, the numerical value of the 4th part can be neglected. From the discussion in Eqs.



(2.22), (2.23), and the 4th part, these three parts are zero. As a result, only the 3rd part remains for 

the two centrals integrals. Finally, the relativistic hopping integrals in Eq. (2.21) become   

(2.24)

For simplicity, let us consider a new variable  in Eq. (2.24), then      

(2.25) 

Using Eqs. (2.19) and (2.25) into Eq. (2.13) then we can get the Dirac Hamiltonian 

)

(2.26) 

2.3 TB parameters for the relativistic hopping integrals  

The relativistic hopping integrals, can be expressed in terms of 

several relativistic TB parameters that are the same of the non-relativistic hopping integrals [60].

By using relativistic hopping integrals in the case of non-relativistic [60,61], the relativistic TB 

parameter can be defined as the relativistic hopping integral between two sites that are placed on 

the z-axis. For this aim, the atom, is placed at the origin and the atom, is placed in a position 

where the position is away from the origin by the distance, More clearly, the 



distance, is the distance between the position of the atoms, and origin. Then the 

relativistic TB parameter can be defined as, where denotes the 

unit vector in the direction of the z-axis. The relativistic TB parameters can be defined using the 

condition and  .

                                  

(2.27)

In Eq. (2.27), the subscript, d in represents the dependence of the relativistic 

TB parameter on the distance, . Therefore, the distance,  is equal to 

the distance between the first nearest neighboring atoms, second nearest neighboring atoms, and 

so on, then d denotes the number of 1, 2... respectively. For the and orbitals of carbon atom in 

case of and , ten kinds of relativistic TB parameters are in the following:

If we consider the relativistic TB parameters, are independent of atoms and 

, then, the relativistic TB parameters can be defined by Therefore, we have 

seven kinds of relativistic TB parameters instead of ten kinds of relativistic TB parameters in the 

following:  



By using the large and small components of the relativistic atomic orbitals which are expressed in 

Eq. (2.6), then the relativistic TB parameters, can be perfectly approximated. 

In the following subsequent section, firstly, I would like to express the expressions of the 

relativistic hopping integrals for the four cases: 

(i) and  

(ii) and  

(iii) and  

(iv) and  

               

 2.4   Expressions of the relativistic hopping integral for the relativistic version 

of the Slater -Koster table    

The relativistic hopping integrals, in terms of several relativistic TB 

parameters,  by using Slater-Koster table for the non- relativistic hopping 
integrals [60] that are expressed in terms of the linear combination of some TB parameters. In
order to calculate the relativistic hopping integrals for the relativistic version of the Slater-Koster 
table in terms of several relativistic TB parameters, we consider the spinor spherical harmonics,

in the following 



(2.28)

In Eq. (2.28), the symbols, and are the spherical harmonics. Using Eqs. 

(2.6) and (2.28), we can write the four-component of relativistic eigenfunction in the following for 

in Eq. (2.29) and for in Eq. (2.30) respectively.  

and 

for 

for 



Using Eqs. (2.29) and (2.30) into Eq. (2.25), we can express the relativistic hopping integrals in 

term of several TB parameters for the four cases step by step. 

2.4.1     In case of and  

In this case, using Eqs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become  

(2.31)

2.4.2     In case of and  

In this case, using Eqs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become  



(2.32)

2.4.3        In case of   and         

In this case, using Eqs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become 



(2.33)

2.4.4 In case of   and  

In this case, using Eqs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become 

(2.34)

In Eqs. (2.31), (2.32), (2.33) and (2.34), the arguments stand for the polar 

coordinates of the vector, . The relativistic hopping integrals, 

can be calculated in terms of by using Eqs. (2.31), (2.32), (2.33) and 



(2.34) for the combinations of )  and atomic orbitals. Now I explain how to calculate 

the relativistic hopping integrals for the combination of atomic orbitals in the following two cases: 

(i) ( ) and ( )

(ii) ( ) and ( )

(i) Relativistic hopping integrals for the combination of ( ) and ( ) atomic 

orbitals:  

From Eq. (2.31), we can write the expression of for )  and 

atomic orbitals

(2.35)



The 1st term of RHS in Eq. (2.35), we have 

(2.36)

Using of ( ) and ( ) atomic orbitals, Eq. (2.36) becomes 

(2.37)

The 2nd term of RHS in Eq. (2.35), we have 

(2.38)

Using of ( ) and ( ) atomic orbitals, Eq. (2.38) becomes 



(2.39)

The 3rd term of RHS in Eq. (2.35), we have 

(2.40)

Using of ( ) and ( ) atomic orbitals, Eq. (2.40) becomes 



The 4th term of RHS in Eq. (2.35), we have 

(2.42)

Using of ( ) and ( ) atomic orbitals, Eq. (2.42) becomes 

Using Eqs. (2.37), (2.39), (2.41) and (2.43), then Eq. (2.35) becomes 



(2.44)

If the atoms, and are placed along z axis, using the relation in Eq. (2.27), the relativistic 

hopping integrals, is equal to the relativistic TB parameter, 

.  The above statement leads this condition,

. Then, Eq. (2.44) becomes 

(2.45)

Let, [Appendix A]



(2.46)

(

(2.47)

(

(2.48)

It is noted that in Eqs. (2.46), (2.47) and (2.48), the letters, L and S indicate the large and small 

components of the relativistic atomic orbitals respectively. The label by letters takes the 

value of for the atomic orbitals namely respectively and the label  is

expressed as in place of respectively. 

Using Eqs. (2.46), (2.47) and (2.48) into Eq. (2.45), then Eq. (2.45) becomes 

(2.49)

It is confirmed from Eq. (2.49), the relativistic TB parameters, is the 

resultant or the linear combination of the atomic orbitals for the large and small components of the 

relativistic atomic orbitals. We can write the relativistic hopping integrals, 

by using cubic harmonics or real harmonics [61] that are given in the following Eqs. (2.50), 

(2.51) and (2.52) [ Appendix B] instead of the spherical harmonics that are inserted in Eq. (2.44).    



(2.50)

(2.51)

(2.52)

The relativistic hopping integrals from Eq. (2,44) becomes 

(2.53)

In Eq. (2.53), the symbols, , , and are the cubic harmonics 

[Appendix B]. After simplifying, Eq. (2.53) becomes  



(2.54)

Using the non-relativistic Slater Koster table [60], then Eq. (2.54) becomes 

(2.55)



Using Eqs. (2.49) and (2.55). we have the relation between the relativistic hopping integrals and 

relativistic TB parameter in the following  

(2.56)

(ii) Relativistic hopping integrals for the combination of ( ) and ( ) atomic orbitals

Form Eq. (2.32), we can write the expression of the relativistic hopping integrals, 

for )  and atomic orbitals.

(2.57)



The 1st term of RHS in Eq. (2.57), we have 

Using of ( ) and ( ) atomic orbitals, Eq. (2.58) becomes  

(2.59)

The 2nd term of RHS in Eq. (2.57), we have 

(2.60)



Using of ( ) and ( ) atomic orbitals, Eq. (2.60) becomes 

(2.61)

The 3rd term of RHS in Eq. (2.57), we have 

(2.62)

Using of ( ) and ( ) atomic orbitals, Eq. (2.62) becomes 

(2.63)



The 4th term of RHS in Eq. (2.57), we have 

(2.64)

Using of ( ) and ( ) atomic orbitals, Eq. (2.64) becomes 

(2.65)

(2.66)



Similarly to (i), if the atoms, and are placed along the z axis, using the relation in Eq. (2.66),

the relativistic hopping integrals,  is equal to the relativistic TB 

parameter, and this statement leads the condition, 

. Then, Eq. (2.66) becomes  

                   (2.67) 

Let, 

                             (2.68)                        

(2.69)

If we consider the above Eqs. (2.68) and (2.69), then eq. (2.67) becomes 

(2.70)



Similarly to (i),  we can write the relativistic hopping integrals, by

using cubic harmonics [61] [ Appendix A] instead of the spherical harmonics that are inserted in 

Eq. (2.44).  The relativistic hopping integrals from Eq. (2.44) becomes 

(2.71)

Similarly (i), using the non-relativistic Slater-Koster table [60], Eq. (2.71) becomes  

(2.72)

Using Eqs. (2.70) and (2.72). we have the relation between the relativistic hopping integrals and 

relativistic TB parameter in the following   

                                                   (2.73)

Similarly to (i) and (ii), it is possible to calculate all relations between relativistic TB parameters,

and relativistic hopping integrals, of the eight atomic 

orbitals, , ( , ( and ( . After calculations of the all relations

that are tabulated in Table-1 in order to upgrade the Slater-Koster table. This table (Table -1) is

called the relativistic version of the Slater-Koster table.



2.5 Relativistic version of Slater Koster table

Table-1:  It is noted that , and are the direction cosines of the vector, .
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Chapter 3

Nonperturbative Magnetic Field Containing Relativistic 

Tight Binding (MFRTB) Approximation Method

In this Chapter, the nonperturbative MFRTB approximation method for a uniform 

magnetic field is described in the following sequence:  

3.1 Matrix elements of the Dirac Hamiltonian

                              3.1.1 In case of   and 

                              3.1.2 In case of    

3.2 Approximation of eigenvalues, and eigenfunctions,  

3.3 Approximation of magnetic hopping integrals,



3.1 Matrix elements of the Dirac Hamiltonian 

In this subsection, the description of the derivation of matrix elements of the Dirac 

Hamiltonian (H) in case of material immersed in a uniform magnetic field is explained. Now let 

us consider an electron moves both in a uniform magnetic field and periodic potential. If the 

electron moves in this system, the electron is affected by the vector potential and periodic potential 

in the system. The Dirac equation for this dynamic electron is given by [59] 

               

                                                                                                        

With    

                                           

In Eq. (3.1), and are the four-component eigenfunction and eigenvalue respectively, the 

subscript in and is the crystal momentum. In Eq. (3.2), , and are the rest mass of 

the electron, the elementary charge of the electron and velocity of light respectively, the quantities, 

and stand for the usual matrices [59]. In Eq. (3.2), the symbols,  

and  are the vector potential caused by the uniform magnetic field,  which is 

applied perpendicular to the electric field, and the scalar potential caused by the nucleus of an atom 

, where the atom is located at the position , where  is the lattice translation vector and  

 determine specific position of an atom respectively. 

If we consider, the uniform magnetic field  is applied along the z-axis, then   

where  is the unit vector along the z-axis. According to the Landau gauge transformation, the 

vector potential  becomes   

                                                     



It is noted that B is the magnitude of the applied magnetic field which is defined later in 

Eq. (5.1) in Chapter 5. In order to calculate the appropriate form of the relativistic atomic orbitals 

of an atom in the presence of a magnetic field similar to the relativistic atomic orbitals of an atom 

in the absence of a magnetic field, it is urgent to expand the four-component eigenfunction,

by using the Bloch sum of the relativistic atomic orbitals as a basis function for the development 

of the non-perturbative MFRTB method. 

The expanded four-component eigen function,  is given by 

                                                  (3.4) 

In Eq. (3.4),  and  are the expansion coefficient and relativistic atomic 

orbitals respectively. The subscript,  in  and superscript,  in  ) is the 

quantum number in the atomic system.  

The relativistic atomic orbital for an electron in an atom immersed in the uniform magnetic 

field also obeys the Dirac equation. The Dirac equation in the above system is given by  

     [  

                                                                                               (3.5) 

In Eq. (3.5), the eigenvalue,  is the atomic spectrum of an atom,   in the uniform 

magnetic field. Using Eqs. (3.4) and (3.1), the Dirac equation becomes   

         

                                                                                                                                         (3.6) 



Multiplying by  from left on both sides in Eq. (3.6) and after integrating, Eq. (3.6) 

becomes  

       

                                        (3.7) 

Similar to the relativistic TB approximation method (Chapter 2) and conventional MFRTB 

method [61], the following two equations can be defined from Eq. (3.7) for the matrix element and 

overlap integral respectively [51], 

                                             (3.8)    

                                              (3.9) 

Using Eqs. (3.8) and (3.9) into Eq. (3.7) then Eq. (3.7) becomes    

       

                                                                                                                                    (3.10) 

It is noted that the overlap integrals can be negligible for the different centered of atoms.  

The Dirac Hamiltonian in a uniform magnetic field can be defined using Eq. (3.2) as:   

          

                     

                   

                                         (3.11) 



 In Eq. (3.11), the 2nd term,  is the scalar potential which is caused by nucleus of 

 atom with respect to , the 3rd term,  is the scalar potential  which is 

caused by nucleus of a  atoms but not including  atom with respect to ,  the 4th term, 

is scalar potential which is caused by nucleus of a  atoms including 

 atom with respect to  but not including , the 6th term,  is the scalar 

potential which is caused by nucleus of  atom with respect to , the 7th term,       

 is the scalar potential which is caused by nucleus of a  atoms but not 

including  atom with respect to   and  the 8th term,  is the scalar 

potential caused by nucleus of a  atoms including  atom with respect to  but not including 

. 

Substituting Eq. (3.11) into Eq. (3.8) and then using Eq. (3.5), then the Dirac Hamiltonian becomes  

 ]  

                                            

                                           

                                           

                                                      

                                                                                                                             (3.12) 

The matrix elements of the Dirac Hamiltonian can be estimated by using Eq. (3.12), for the 

following two cases: 

(i)   and

(ii)     



3.1.1 In case of   

If we consider,  then  and  , then Eq. (3.12) becomes 

      

                                   

                                          (3.13) 

In Eq. (3.13) of RHS, the 2nd and 3rd terms are called the energy of the crystal field. If we consider, 

relativistic atomic orbitals, and are localized at but not 

localized at . Under this treatment the scalar potential, can be 

approximated by the . So, the 3rd term in Eq. (3.13) becomes 

(3.14) 

Using Eqs. (3.13) and (3.14), then the matrix elements approximated by 

(3.15) 



In Eq. (3.15), the diagonal elements of the matrix are non-zero and non-diagonal elements of the 

matrix are zero.  

3.1.2 In case of     

If we consider,  then  , and , then Eq. (3.12) 

becomes

(3.16)

In Eq. (3.16), it is noticeable that in 1st term, j and in 2nd term, are present, so three centers 

are involved. So, the numerical values of these two integrals are small comparing two centers or 

one center. So, we can neglect these two terms. But, in 3rd term j or are not present and 

k but . The 4th term or j is not present and k but 

. So, there are very possible to form both two centers and three centers. We can get 

matrix elements for the two centers in the following fashion. Therefore, Eq. (3.16) becomes 



(3.17) 

In Eq. (3.17) the 2nd, 3rd, 5th and 6th terms are three centers. Therefore, we can neglect these 

integrals. Then, Eq. (3.17) becomes   

(3.18) 

Finally, we can get the matrix elements from Eq. (3.12) by using Eqs. (3.14) and (3.18)   

(3.19) 



For the simplicity, let us consider that an electron moves in a uniform magnetic field and periodic 

potential which is caused by the nucleus of an atom, where the atom is located at origin. The Dirac 

equation for this electron is given by  

(3.20) 

In Eq. (3.20), the eigenfunction, and eigenvalue, are the relativistic atomic orbital 

and atomic spectra of an atom, in the presence of a magnetic field respectively. For our 

convenience, the vector, can be changed by the vector ( ). Then, Eq. (3.20) becomes 

[

(3.21) 

In Eq. (3.21), is the vector potential in uniform magnetic field. The vector 

potentials and are related by the following gauge transformation.

(3.22) 

Using Eqs. (3.3) and (3.22), we have 

(3.23) 

In Eq. (3.23),  and are the x component of the vector and respectively. By the choice 

of the gauge transformation, the eigenfunction and eigenvalue are related in the following 

equations 

(3.24) 



and 

(3.25) 

respectively.

Eq. (3.25) leads the following equation 

(3.26) 

Using Eqs. (3.24), (3.25) and (3.26), the matrix element becomes 

)                     (3.27) 

With 

)

(3.28) 

In Eq. (3.27), the hopping integrals, ) are known as the magnetic hopping 

integrals that is defined in Eq. (3.28). In order to calculate the matrix element, of the 



Dirac Hamiltonian, it is very urgent to calculate the magnetic hopping integrals and overlap 

integrals. Again, in order to calculate magnetic hopping integrals and overlap integrals, it is need 

to calculate eigenvalues, , and eigenfunction,  . Now, I will explain how to 

calculate these in the following sequence: 

3.2 Approximation of eigenvalues, and eigenfunctions,

  

In this subsection, the estimation of the eigenvalue and eigenfunction using non-

perturbative MFRTB method is explained. In order to calculate of , firstly, we need 

to estimate of and   by avoiding some difficulties by using the 

perturbation theory. Because the perturbation theory becomes invalid for the estimation of the 

correction terms in the eigenvalue and eigenfunction in high magnetic field case due to the power 

series of the ratio ( is defined Eq. (3.31) later in this Chapter) of the spin Zeeman splitting and 

spin-orbit splitting [51]. For this difficulty, the Hofstadter butterfly diagram becomes worse in the 

high magnetic field case [51]. For this reason, the non-perturbative MFRTB is applied in the high 

magnetic case in order to overcome these difficulties using in the perturbation theory [51]. For this 

purpose, we consider the Dirac equation for an isolated atom,  at origin in the uniform magnetic 

field. 

     [                            (3.29) 

In Eq. (3.29), the term  appears due to the magnetic field which is known as the 

perturbation term. In order to evaluate the value of and , we have 

to estimate the solution of Eq. (3.29). The solutions of Eq. (3.29) are obtained by the 

nonperturbative MFRTB method, specifically the variational method [51]. The eigenvalues and 

eigenfunctions are approximated by 



(3.30) 

With 

(3.31)  

and 

(3.32) 

With 



(3.33) 

respectively.

In Eq. (3.31), is the ratio of the spin Zeeman splitting energy ( and spin-orbit splitting 

energy ( ). In Eq. (3.34), is overlap integral between the radial parts of the atomic 

orbitals of  and .  From Eq. (3.31), in the low magnetic field case, 

because spin Zeeman splitting term is small compare to the spin-orbit splitting. In this case, spin-

orbit interaction is the dominant part that is called the anomalous Zeeman effect. In the high 

magnetic field case, because spin Zeeman splitting term is large compare to the spin-orbit 

splitting. In this case, spin Zeeman splitting term is the dominant part that is called the Paschen–

Back effect.

3.3 Approximation of magnetic hopping integrals,

          

In this subsection, the approximation of the magnetic hopping integrals is explained briefly. 

For this purpose, let us consider an electron moves in uniform magnetic field and in a periodic 

potential in the crystal. Let us consider the atoms, and are located at origin and (

) respectively. The Dirac equation for an atom, is given by     

(3.34) 

With 

(3.35) 

And the Dirac equation for an atom, is given by     



(3.36) 

With 

(3.37) 

Eqs. (3.35) and (3.37) have been written by using Eq. (3.24). It is noted that, in Eqs. (3.35) and 

(3.37), the transformation of the wave function is called Landau gauge transformation that can be 

obtained from the symmetric gauge transformation. By using the gauge transformation of a 

function from the symmetric gauge to the Landau gauge leads the following equation 

(3.38) 

Using Eq. (3.38), then, the Eqs. (3.35) and (3.37) become 

(3.39) 

(3.40)

Since the eigenfunction of atom, is localized around the origin, so the phase factor, is 

nearly equal to 1. So, the eigenfunction,  in Eq. (3.39) is approximated by  

(3.41) 



By using the gauge transformation of a function of Landau gauge, that leads the 

following equation   

(3.42) 

Using the symmetric gauge the eigenfunction, is related by the eigenfunction , 

. For this gauge transformation in Eq. (3.42), the wave function in Eq. 

(3.40) becomes   

(3.43) 

Using Eqs. (3.40) and (3.43), we have  

(3.44)

If we consider the wave function, in Eq. (3.44) is localized at 

, then the wave function approximated by  



(3.45) 

If the phase factor is approximated at 

and the components are approximated at and ,

using these components, the phase factor becomes  

(3.46) 

Using Eqs. (3.44) and (3.46), the wave function becomes 

(3.47) 

Using Eq. (3.47), the magnetic hopping integrals from Eq. (3.28) become 

)



= (3.48) 

With 

(3.49)    

In Eq. (3.49), is known as the relativistic hopping integral for zero 

magnetic fields. From Eq. (3.48), it is clear that the magnetic hopping integral is affected by the 

phase factor, due to the uniform magnetic field. The magnetic 

hopping integrals are the product of the hopping integrals in the absence of magnetic field and the 

phase factor (Peiperl’s phase factor). The hopping integrals, in the 

absence of magnetic field can be calculated easily which is called the relativistic version of the 

Slater-Koster table [52].   It is noted that Eq. (3.48) corresponds to the well-known approximation 

of using the Peierls phase factor [46,62]. Eq. (3.48) is widely used as the approximation of the 

magnetic hopping integral [62]. The resultant approximated forms of the resultant magnetic atomic 

orbital and atomic spectrum are given in Refs. [24, 51]. Since the resultant magnetic atomic orbital 

is expressed in the linear combination of the relativistic atomic orbital, can be 

expressed using the linear combination of relativistic hopping integrals and overlap integrals in the 

absence of a magnetic field. The resultant approximate forms for are given in 

Table II of Ref [51]. 



Chapter 4

Derivation of Streda formula for the Hall Conductivity   

In this Chapter, the magnetic field dependence Hall Conductivity via Streda formula is 
described. 



Magnetic field dependence Hall conductivity 

The quantum Hall effect can be analyzed by the Streda formula [50].The derivation of 

Streda formula [50] for the magnetic field dependence Hall conductivity, is discussed. It is 

noted that the Hall conductivity is quantized immersed in a uniform magnetic field according 

to experimental results [4,33,41-44], and theoretical predictions [31,32]. According to the Streda 

formula the Hall conductivity is the derivative of the number of electrons which means the number

of states with respect to the magnetic field at the Fermi energy. The numbers of states change with 

magnetic field at a fixed Fermi energy level. So, the is a function of a magnetic field. The 

2D electron system has integral values of the Hall conductivity in unit of if the Fermi energy 

lies in a gap between two successive Landau levels in a magnetic field.    

Let us consider, a uniform magnetic field is applied in a system along the z-direction, so 

the Hamiltonian of the system is given by  

(4.1) 

In Eq. (4.1), , , m, e and c are the vector potential due to the magnetic field, periodic 

potential that is caused by the nucleus of an atom, rest mass of the electron, charge of the electron 

and velocity of light respectively.  

If we consider the electric field is applied along the y-direction, additional Hamiltonian will be 

added with Hamiltonian in Eq. (4.1). The additional Hamiltonian is given by   

(4.2) 

We can write the following equation for the ket, 



(4.3) 

For the total Hamiltonian, we can write the following equation for the ket, 

(4.4) 

The Hall current 

(4.5) 

For the perturbation theory, we can write  

(4.6) 

Using Eq. (4.2), from eqn. (4.6), we have   

(4.7)     

And

(4.8) 

The charge current density operator is given by 

(4.9)

In Eq. (4.9), is the area of the system.   

Using Eqs. (4.7), (4.8) and (4.9) then, Eq. (4.5) becomes  



(4.10

The 1st term , vanishes, then Eq. (4.10) becomes    

(4.11) 

With 

(4.12) 

In Eq. (4.11),  is the Hall conductivity.    

The velocity operator along the y direction 

(4.13) 

Using Eq. (4.13), we can write 

(4.14) 

Using Eq. (4.3), then, Eq. (4.14) becomes  

(4.15)                

Eq. (4.15) implies that 



(4.16)            

Similarly, the velocity operator for the x direction 

(4.17) 

Using Eqs. (4.16) and (4.17), the Hall conductivity from Eq. (51.12) becomes 

(4.18) 

Eq. (4.18) is Hall conductivity which is known as the Kubo formula. This expression is also known 

as the linear response formula for the first-order perturbation because first-order perturbation is 

linear. A linear response of the current in the perpendicular direction to the applied electric field 

is Hall conductivity. So, Eqn. (4.18) represents the Hall conductivity. 

The total Hall conductivity can be written as:   

(4.19)  

In Eq. (4.19), is used.          

After simplification, the Hall conductivity in Eq. (4.19) becomes 

(4.20) 



For the better treatment in Eq. (4.20), we need to use the following equation namely Green`s

functions, :

(4.21) 

Using Eqs. (4.20) and (4.21), the Hall conductivity becomes 

(4.22)   

For the simplification, we can define the following term from Eq. (4.22) by as:   

(4.23)

The Hall conductivity from Eq. (4.22) becomes   

(4.24)

The Hall conductivity can be split into two parts for convenience and after simplification, Eq. 

(4.24) becomes 

(4.25)

We can define the 1st part from Eq. (4.25) by as:   



(4.26)

The Hall conductivity in Eq. (4.25) becomes  

(4.27)

For the better treatment in Eq. (4.27), we can use the following delta function in terms of Green 

function:   

(4.28) 

Eq. (4.28) implies that 

(4.29)

And

(4.30)

Using Eqs. (4.29) and (4.30), we have   

(4.31)

After simplification the 2nd part in Eq. (4.27) becomes   



(4.32) 

In the 3rd part in Eq. (4.27) using Eq. (4.23) we have 

(4.33)

Using Eq. (4.30), then, Eq. (4.33) becomes 

(4.34)   

Using Eq. (4.28), then, Eq. (4.33) becomes  

(4.35)

Using Eqs. (4.32), (4.34) and (4.35), after simplification Eq. (4.27) becomes 

(4.36)       

The velocity operator, 

(4.37) 

Eq. (4.37), implies that  



(4.38) 

Multiplying by from left on both sides in Eq. (4.38) and after simplification         

(4.39)

Multiplying by from right on both sides in Eq. (4.39) and after simplification     

(4.40)       

Similarly, for the velocity operator, 

(4.41)     

After simplification the 2nd part in Eq. (4.36), becomes  

(4.42)       

Using Eqs. (4.40) and (4.41) into (4.41) and after simplification Eq. (4.42) becomes   

(4.43)  

The Hall conductivity from Eq. (4.36) becomes 



(4.44)   

We know the following relation [Appendix C], 

(4.45) 

Using Eq. (4.45) into Eq. (4.44) and after simplification, the Hall conductivity from Eq. (4.44) 

becomes   

(4.46) 

We have 

(4.47) 

Using into Eq. (4.44)  

(4.48)

is the density of states.  

The total number of states below the Fermi energy level 



(4.49)

is the number of states below Fermi energy. 

Using Eq. (4.49) into Eq. (4.46), then the Hall conductivity from Eq. (4.42) becomes  

                                                                          (4.50)

In Eq. (4.50), is the Hall conductivity. It is noticeable that the second term is the magnetic 

field dependence Hall conductivity below the Fermi energy level. It is more clear that the Hall 

conductivity is the derivative of the number of states below Fermi energy level with respect to the 

magnetic field.   



Chapter 5

Application of the nonperturbative MFRTB method in 
graphene immersed in   the uniform magnetic field 

In this Chapter, the application procedure of the nonperturbative MFRTB method in 

graphene is described in the following sequence:  

5.1 Applied rational magnetic field    

5.2 Magnetic Brillouin zone  

5.3 Matrix Elements of the Dirac Hamiltonian

5.4 Approximated forms of Eigenvalues, 

5.5 Approximated forms of Eigenfunctions, 

5.6 Magnetic hopping integrals,

5.7 Simultaneous equation for graphene



5.1    Applied rational magnetic field      

A rational magnetic field [51] which is defined by the following Eq. (5.1) is described for 

the calculation of the Hall conductivity in graphene using the nonperturbative MFRTB method 

based on the obtained magnetic energy band structure. The magnetic field is applied perpendicular 

to the plane of graphene.   

(5.1) 

In Eq. (5.1), is the lattice constant of graphene, its value is , and and are relatively 

prime integers [51]. The values p/q determine the strength of the applied magnetic field. The 

magnitude of the magnetic field is proportional to the rational number p/q, for this reason, the 

magnetic field is called rational the magnetic field [46, 63,64]. In the present calculations, the 

magnetic hopping integrals between the outer shells (2s- and 2p-orbitals) of the nearest-neighbor 

carbon atoms were considered. Their values were calculated using a table of the nonperturbative 

magnetic hopping integrals (Table I of Ref. [51]) and the relativistic version of the Slater–Koster 

table [52]. In this work, it is adopted a set of relativistic tight-binding parameters for graphene that 

is given in the previous paper [51].

5.2 Magnetic Brillouin zone 

Figure 1 shows the magnetic Brillouin zone (MBZ) of graphene immersed in a uniform magnetic 

field. The area of the magnetic unit cell is q times larger than that of a conventional unit cell of 

graphene. The magnetic energy band structure of graphene is calculated for the wave vectors lying 

in the MBZ [52]. The MBZ of graphene immersed in the magnetic field of Eq. (5.1) is illustrated 



Figure. 1: Magnetic first Brillouin zone (MBZ) of graphene immersed in a magnetic field [45].

in Figure. 1. The total number of k points in the MBZ represents the degree of degeneracy for the 

magnetic energy spectrum. 

                   

5.3    Matrix Elements of the Dirac Hamiltonian

In this subsection, the nonperturbative MFRTB method [27] considering the magnetic 

hopping and overlap integrals is explained for the description of the electronic band structure of 

graphene immersed in a uniform magnetic field. Let us consider an electron of the carbon atom 

that moves in both a uniform magnetic field and the periodic potential of the graphene. In this case, 

the total Hamiltonian becomes [59], 

(5.2)   

The Dirac equation in this system is given by [59]   

(5.3) 



In Eq. (5.2), is the momentum of the moving Bloch electron in the system, and 

are the vector potential for an applied uniform magnetic field along the axis 

and scalar potential caused by the nucleus of an atom located at respectively. It is 

noted that the vector potential follows the gauge transformation. The vectors and  are 

the translational vector of the lattice and the vector determine the position of an atom 

respectively. The letters c, e, and m represent the velocity of light, a charge of the Bloch electron,

and rest mass of the Bloch electron respectively. The quantities , and denote the 

usual matrices, and also the Hermitian operators [59]. The eigenfunction is the four-

component eigenfunction that can be expanded by the following Eq. (5.4). The subscript, in the 

eigenfunction, is the wave vector and also denotes the crystal momentum that belongs to 

the magnetic first Brillouin zone [25].  

The expanded wave function is given by 

(5.4) 

In Eq. (5.4), is the expansion coefficient and the eigenfunction, is the 

relativistic atomic orbitals for an atom located at that is immersed in a uniform 

magnetic field. The generalized eigenvalue problem for the expansion coefficient, 

that can be solved by the following equation Eq. (5.5). The Eq. (5.5) can be obtained by the similar 

treatment which is used in Eq. (2.13) in Chapter 2 and Eq. (3.10) in Chapter 3.  

(5.5) 



In Eq. (5.5), and are the matrix elements of the Hamiltonian and 

overlap integral between the two relativistic atomic orbitals; and ,

respectively. 

The matrix elements of the Hamiltonian by using the similar treatment which is used in Eq. (3.27) 

in chapter 3 by neglecting both integrals involving three different centers.  

) (5.6) 

With 

(5.7)  

The overlap integrals between the two relativistic atomic orbitals; and

is given by 

(5.8) 

In Eq. (5.6), the eigenvalues, and , are the atomic spectrum, 

energy of the crystal field in the presence of a magnetic field, magnetic hopping integral [51]

respectively. This magnetic hopping integral is affected by a phase factor due to the uniform 

magnetic field (similar to the Eq. (3.48) in Chapter 3). This magnetic hopping integral is the 

product of the hopping integral in the absence of a magnetic field and a phase factor which is 

known as Peiperl’s phase factor. The hopping integral in the absence of a magnetic field can be 

calculated easily which is called the relativistic version of the Slater-Koster table [52].     

Using Eq. (5.6), it is very easy to calculate the matrix elements of the Dirac Hamiltonian. For this 

reason, firstly, we have to calculate the and in order to calculate 



, we have to calculate , and . For this purpose, let us 

consider an electron in an isolated atom that is immersed in a uniform magnetic field. 

The Dirac equation is given by  

(5.9) 

The solutions of the eigenfunctions, and eigenvalues, in Eq. (5.9) are 

approximately estimated by the nonperturbative MFRTB method specifically the variational 

method [51]. For these calculations, the matrix elements of the Hamiltonian are considered of Eq. 

(5.9) by using a finite number of the relativistic atomic orbitals as a basis functions 

[27,51], where is the relativistic atomic orbital for the atom in the zero magnetic field 

case. The subscripts in the , are the principal, azimuthal, total angular 

momentum, and magnetic quantum numbers, respectively.    

In order to calculate the matrix elements of the Hamiltonian under this approximation by 

taking only the outermost, ( atomic orbitals, by neglecting inner 

atomic orbitals. The atomic orbitals, have two components same as Eq. (2.6) in Chapter 

2. The small component is approximated by the relation where ,

and are the Pauli matrix, the large and small components of the radial part of 

the relativistic atomic orbital respectively [27]. By diagonalizing the resultant matrix, 

the approximated forms of the eigenvalues, and the eigen function, are given [27]. 

5.4 Approximated forms of Eigenvalues, 

In this subsection, similar to Eq. (3.30) in Chapter 3, the approximated forms of the 

eigenvalues, for the case of s-orbitals and p-orbitals is given by [24]: 



(5.10)

With

(5.11) 

In Eq. (5.10),  is the overlap integral between the radial parts of the atomic orbitals of  

and  and  is the ratio of the spin Zeeman splitting, and spin-orbit 

splitting, that is expressed in Eq. (5.11). It is noticeable from Eq. (5.11), in the low 

magnetic field case, because the spin Zeeman splitting term is small compared to the spin-

orbit splitting. In this case, spin-orbit interaction is the dominant part which is known as the 

anomalous Zeeman effect in graphene. In the high magnetic field case, because spin 

Zeeman splitting term is large compared to the spin-orbit splitting. In this case, the spin Zeeman 

splitting term is the dominant part which is known as the Paschen–Back effect graphene.

5.5            Approximated forms of Eigenfunctions, 

In this subsection, similar to Eq. (3.32) in Chapter 3, the approximated forms of the eigen 
function, for the case of s-orbitals and the case of p-orbitals is given by 
[24] 



(5.12) 

With 

(5.13)  

In Eq. (5.12), is overlap integral between the radial parts of the atomic orbitals of  

and .  

5.6    Magnetic hopping integrals,

In order to calculate the matrix element from Eq. (5.6), we need to calculate the magnetic 

hopping integral from Eq. (5.7). Similar to Eq. (3.49) in subsection 3.3 in Chapter 3, we can 

calculate the magnetic hopping integrals via Eq. (5.7) which are the product of relativistic hopping 

integral for zero magnetic field and the Peiperl’s phase factor. Using Eq. (5.12) into Eq. (5.7), we 

can get the resultant approximated magnetic hopping integrals, [51]. The 

resultant approximated magnetic hopping integrals, are reported in Table-

2.



Table 2: Magnetic hopping integrals for graphene. In this table, and defined by 

and   , respectively. ( indicate the 

1st nn B carbon atoms of A atom. 

( ) Magnetic hopping integrals,  

(

(

(

(

(

(

(

(



(

(

(



(

(

(

(

(

(



(

(

(

(

(

(



(

(

(

(

(

(

(

(

(



(

(

(

(

(

(



(

(

(

(

(

(



(

(

(

(



5.7     Simultaneous equation for graphene

In this subsection, the simultaneous equations with a finite number of coefficients in 

graphene are explained. The lattice vector of the honeycomb lattice is given by 

(5.14)

In Eq. (5.14), and are integers and the vectors and are the primitive vectors of the 

honeycomb lattice that are defined by Eqs. (5.15) and (5.16) respectively. 



(5.15)

(5.16) 

In Eqs. (5.15) and (5.16), is the lattice constant of graphene, and its value is . In order 

to define the magnetic first Brillouin zone, we should consider a special set of magnetic translation 

operators that commute to each other [24]. The magnetic translation operator,  can be 

defined as: 

                                                                             (5.17)

In Eq. (5.17), the operator, ℏ) is the usual translation operator. It is easily shown 
that the magnetic translation operator,  commutes with the Hamiltonian.   

                                                                                             (5.18)   

                                                                                                   

The multiplication of two magnetic translation operators,  and  leads [24]  

          

                                                                                    (5.19) 

The special set of the magnetic translation operators is given by     

                                                                               (5.20) 

With

 

                                                                                            (5.21) 



In Eq. (5.21),  ,  are the primitive lattice vectors and ,   are integers. The set in Eq. (5.20) 

forms an abelian group.  We have 

                                                                               (5.22)                        

The eigenfunctions of the Hamiltonian form basis functions of the irreducible representation (IRs) 

of the symmetry group of the Hamiltonian. Therefore, eigenfunctions  are the basis functions 

of IRs of the Abelian group Eq. (5.20). We have   

                                                                              (5.23) 

In Eq. (5.23),  is the IR of the Abelian group. A set of translation vectors,  which are the 

subsets of translation vectors   and also satisfy the following relations by using Eq (5.18).

                                                                                   (5.24)

Therefore,   and  commute with each other.

                                                                                        (5.25)

Using Eqs. (5.18) and (5.24), it is easily shown that  , , ….. are commutes 

with each other. This information leads that  , , ….. have the simultaneous 

eigen function. Let, the simultaneous eigen function, , then we have 

                                                                                              (5.26) 

                                                                                (5.27) 



Multiplying by  from left on both sides in Eq. (5.26), after simplifying  

                                                                      (5.28)

Using Eqs. (5.27) and Eq. (5.28), it is confirmed that the function,  is also eigen 

function of the Hamiltonian, H. These two eigen functions,  and  are related to 

each other by a gauge transformation.  

Since, normalization condition, ( , we can also write from Eq. (5.27)   

                                                             (5.29) 

The wave vector,   

                                                                              (5.30) 

In Eq. (5.30),  ,  are magnetic reciprocal lattice vectors.

Using Eqs. (5.21) and (5.30), we have 

                                                                         (5.31)

Using Eq. (5.29) and (5.31) we have 

                                                                               (5.32) 

The wave functions,  are related with each other by a gauge transformation. We 

can write from Eq. (5.32) in the following fashion by using a gauge transformation.



 

    

       

        

                                                                     (5.33)

 Eq. (5.33) is regarded as the extension of the Bloch theorem for electrons that are moving in the 

uniform magnetic field and a periodic potential of the crystal. Eq. (5.33) is known as the magnetic 

Bloch theorem.   

All lattice vectors  in the crystal can be expressed in terms of special lattice vectors  as: 

 

                                                                                    (5.34) 

In Eq. (5.34),  ……..  integers. 

Using Eqs. (5.4) and (5.34) we have 

                                (5.35) 

Similarly, 

                      (5.36)

Using Eqs. (5.33), (5.35) and (5.36) we have 



      

                                                                    (5.37)

In order to calculate the coefficients,  from Eq. (5.37), we need to find out 

the relationship between  and . The wave function, 

  obeys the Dirac equation.  

          

                                                                                                 (5.38) 

By changing the variable,  and , Eq. (5.38) becomes 

     

                                                                                           (5.39) 

By using,  this gauge transformation and changing the variable 

  and , then Eq. (5.39) becomes  

  

                                            (5.40) 

Now, considering the wave function    obeys the Dirac equation.  



       

                                                                                    (5.41) 

By comparing Eqs. (5.38) and (5.39),  and   are related with 

each other by a gauge transformation.   

                             (5.42) 

Substituting Eq. (5.42) into Eq. (5.3) we have    

     

                                                                  (5.43) 

Canceling this term  from both sides in Eq. (5.43), then we have

  

                                                                   (5.44) 

By changing the variable,   in Eq. (5.44), we have  

  

                                                                      (5.45)

Again, by changing the variable,   in Eq. (5.44), we have  



 

     

                                                                                                  

    

                                                                                                                                (5.46) 

Multiplying by  on the both side in Eq. (5.46) and integrating, we have   

                                         (5.47)

Now replacing by  in Eq. (5.47), then we have  

                                                         (5.48) 

If  in Eq. (5.48), then we have  

                                                 (5.49) 

Finally, by changing the variable,  in Eq. (5.45), then we get  

                                                              (5.50)

                                                                             (5.51) 

From Eq. (5.51), it is noticeable that all lattice vectors,  can be also expressed as:



                                                                    (5.52)

In Eq. (5.52), means that all coefficients  can be obtained by using Eq. (5.51), then 

we can get  coefficients . 

By replacing  with  (   

                                                          (5.53)

We know,  

 

                                  )

                                 =                   (5.54)

Using Eq. (5.53) and Eq. (5.54), we have 

   

                                           =               (5.55) 

Since the vector  is generally rewritten in the form of  , the coefficients, 

 of the LHS in Eq. (5.52) can be rewritten as   

                                                     (5.56) 

Eq. (5.55) is the simultaneous equations with a finite number of coefficients 

. 



Chapter   6

Results and Discussions 

In this Chapter, the results and discussions using the Nonperturbative MFRTB method are 

described in the following sequence:  

6.1 Magnetic energy band structure of graphene 

6.2 Magnetic-field dependence of energy levels

6.3 Quantized Hall conductivity using nonperturbative MFRTB method 

6.4 Fermi energy dependence of widths of WPs plateaus 

6.5 Magnetic field dependence of widths of NPs plateaus

6.6 Description of the quantized Hall conductivity based on the magnetic energy 

band structure 



6.1 Magnetic energy band structure of graphene

In this subsection, the magnetic Bloch band structure of graphene in the presence of a 

magnetic field that is calculated using the nonperturbative MFRTB method is discussed briefly.

Figures 2(a) and 2(b) show the magnetic Bloch energy band structure of 200.5 (T), where 

takes the value 1/787 and 200.9 (T), where takes the value 2/1571 respectively. The main 

reason for considering of these two close magnetic fields for the investigation of the degeneracy 

of a magnetic energy band structure of graphene immersed in the respective magnetic field (Eq. 

(5.1) in Chapter 5). In Figure 2, the horizontal axis represents the wave vector lying in the Magnetic 

Brillouin Zone (MBZ) shown in Figure.1, and the vertical axis represents the energy in electron 

volts (eV). From the numerical calculation using the nonperturbative MFRTB method, it is clear 

that the magnetic energy band structure of graphene immersed in the magnetic field is almost 

independent of and in the MBZ. 



Figures. 2: Magnetic Bloch flat energy bands for (a) B=200.5 (T) and (b) 200.9 (T) in the MBZ. The 
arrow indicates the position of level for the intrinsic graphene [45].

The discussion of the magnetic energy band structure of graphene immersed in a magnetic 

field which is presented in Figures 2 in order to investigate the quantized based on the 

magnetic energy band structure. The cluster of the nearly flat magnetic energy bands of graphene 

immersed in a magnetic field is discussed [56] that are corresponding to the Landau levels due to 

the energy level splitting in the magnetic field. These Landau levels are attributed due to Onsager’s 

area quantization rule of the orbit of an electron in a magnetic field. The calculation using the

nonperturbative MFRTB method is more realistic because the nonperturbative MFRTB method is 

based on the Dirac equation for the Dirac fermions or electrons (Dirac particles), where these Dirac 

particles are moving in both a uniform magnetic field and the periodic potential of the crystal. So, 

the spin-orbit interaction and spin Zeeman effect are inherently included in this calculation using 



the nonperturbative MFRTB method. For this reason, each almost flat magnetic energy band splits 

into two energy bands due to the spin-orbit interaction and the spin Zeeman effect.  

In this work, in order to explain the magnetic energy band structure, the degeneracy of the 

magnetic energy band is discussed briefly by two approximations in the following. 

Firstly, for the explanation of the magnetic energy band, a nearly flat band is a completely 

flat approximation is considered that are shown in Figures 2. It is noted that each eigenvalue 

corresponding eigenfunction at point is -fold degenerate in the magnetic energy band, where 

denotes the number of points in the MBZ of graphene. If the area of the usual unit cell in the 

absence of a magnetic field is denoted by and if the total number of unit cells contained in 

the system is denoted by N, then the total area of the system is given by Because the 

area of the magnetic unit cell is q-times larger than the area of the usual unit cell in the absence of 

a magnetic field [24, 51,52], then the total number of magnetic unit cells in the system is given by 

The total number of the -points in the MBZ, is equal to the total number of magnetic 

unit cells [52]. Consequently, under the completely flat approximation, each eigenvalue 

corresponding eigenfunction at point is -fold degenerate.       

Secondly, the magnetic energy band structure for the two close magnetic fields, and ,

are considered (Eq. (5.1) in Chapter 5) for the explanation of the magnetic energy band. Let us 

consider, that the two magnetic fields and are proportional to values of and ,

respectively, where is also a prime integer. The relationship of for the two close 

magnetic fields, this implies that is nearly equal to . According to this relationship, ,

the period in the real space for the case of is p times larger than that for the case of If the 

difference of the Hamiltonian for these two magnetic fields cases is treated as the perturbation 

potential, and if the Hamiltonian for the case of corresponds to the nonperturbative Hamiltonian, 

then the perturbation potential would be small owing to the relationship . This small 

perturbation potential for these two close magnetic fields makes the periodicity times longer than 

that for the nonperturbative system because of this relationship . For the change of the 

periodicity without considering the small shift in energy due to the small perturbation potential, 



the magnetic energy bands for the case of can be obtained by -times folding of the magnetic 

energy bands for the case of within the MBZ of the nonperturbative system. Therefore, these 

two close magnetic fields approximation leads only the change in periodicity without considering 

the small shift in energy caused by the small perturbation potential. Considering these two close 

magnetic fields approximation, this the flatness of the magnetic energy bands means the  -times 

folding in an energy band with -fold degeneracy. This -fold degeneracy was confirmed by actual 

calculations using the nonperturbative MFRTB method that are shown in Figures 2(a) and 2(b) for 

the case of respectively. From these Figures, it is confirmed that the degeneracy of the 

magnetic energy band for field where p/q takes value of 2/1571 is twice that of the magnetic 

energy band for field where 1/q takes value of 1/787. So, the eigenvalue around 0 (eV) at point 

is 4-fold degeneracy for which is shown in Figure. 2(a), and 8-fold degeneracy for 

which is shown in Figure. 2(b). According to the above discussion, it is confirmed 

that the degeneracy of the magnetic energy band is -fold degenerate.       

It is noted that another degeneracy was found except for the above-mentioned degeneracy 

from the calculated magnetic energy band using the nonperturbative MFRTB method. This 

degeneracy of the magnetic energy band is a multiple of four. In these calculations, this degeneracy 

appears due to the two reasons. First, each unit cell of graphene in a honeycomb structure consists 

of two carbon atoms. For this reason, the number, twice is utilized of bases to expand the magnetic 

Bloch function [24, 51,52]. This number leads to two-fold degeneracy in the magnetic energy 

band.  Second, Dirac points exist at two inequivalent points, namely the and points, in the 

BZ.  These inequivalent two points lead to another 2-fold degeneracy. Consequently, the 

degeneracy of the magnetic energy band of graphene becomes a multiple of four. Finally, the 

degeneracy of the magnetic energy band, , for graphene is given by 

(6.1) 

Since the area of the system is denoted by , then the number of unit cell in the system is 

given by . Therefore, we have the degeneracy of the magnetic energy band 



Figure. 3: Magnetic field vs energy of the magnetic energy spectrum of the Bloch electrons (Hofstadter 
butterfly diagram) at point in the MBZ calculated by using the nonperturbative MFRTB method [45].

(6.2)

Using Eq. (5.1) in chapter 5, Eq. (6.2) can be rewritten as follows: 

(6.3)

Eq. (6.3) corresponds to the conventional degeneracy of the Landau level given in the literature

[54]. From Eq. (6.3), the important point is that is proportional to the magnetic field. This 

relation provides the magnetic field dependence Bloch energy band structure in graphene.   

6.2 Magnetic-field dependence of energy levels 

Figure 3 shows the magnetic energy spectrum of electrons in graphene with a magnetic-field at 

the point using the nonperturbative MFRTB method. This magnetic field dependence energy 



Figure. 4: Magnified view of Fig. 3 for the magnetic energy spectrum of the Bloch electrons [45].

spectrum is well known as the Hofstadter butterfly diagram [46]. It is noted that the Figure 4 shows 

a magnified view of Figure. 3. In Figures. 3 and 4, the horizontal axis denotes the magnetic field 

(B) in Tesla (T) and the vertical axis denotes the energy in eV. It is well discussed in the literature 

that the magnetic energy spectrum of graphene is proportional to the square root of the magnitude 

of the magnetic field at low magnetic fields regions [11,12].

According to the Onsager’s area quantization rule, the behavior of the square root of the magnetic 

field was first predicted by McClure [11,12] The nonperturbative MFRTB method for the 

calculation of magnetic field dependence energy spectrum can revisit the square-root behavior [24] 

that is shown in Figure. 3. According to Figure. 4, each quantized energy level of graphene is 

immersed in a uniform magnetic field split into two energy levels due to the relativistic effects,

including the spin-Zeeman effect and spin-orbit interaction. For this reason, there are two types of 

energy level splitting in the magnetic-field-dependence energy spectrum in graphene. The first 

type splitting a relatively large gap in the energy spectrum which is related to the Onsager’s area 

quantization rule of the electron orbit that are indicated by (i), (ii), and (iii) in Figure. 4. The other 

type of splitting energy level relatively narrow gap in the energy spectrum which is related to the 



relativistic effects that mean the spin-Zeeman effect and spin-orbit interaction that are indicated 

by (iv), (v), and (vi) in Figure. 4. The first type energy level splitting gap decreases with the Fermi 

energy level for a constant magnetic field that are shown at (i) and (ii) and increases with the 

magnetic field that are shown at (i) and (iii) in Figure. 4.  The other type of energy level splitting 

gap decreases with the Fermi energy level for a constant magnetic field that are shown at (iv) and 

(vi) and increases with the magnetic field that are shown at (iv) and (v) in Figure. 4. These two 

types of energy level splitting are the origins of corresponding observed plateaus that means the 

wide and narrow plateaus attributed for the large energy gap and small energy gap respectively 

that lead the Fermi energy dependence of the quantized in graphene immersed in a uniform 

magnetic field.

6.3 Quantized Hall conductivity using nonperturbative MFRTB method  

Figures 5(a)–5(f) show the Fermi energy dependence of in graphene  for (a) 

, (b) , (c) , (d) , (e) , and 

(f) , respectively. The quantized in graphene immersed in a uniform 

magnetized field based on the magnetic energy band spectrum is calculated using the Streda 

formula that is discussed in Chapter 4 [50]. According to these Figures 5(a)–5(f), there are two 

types of plateaus are observed due to the respective energy splitting gap. It is noted that the widths 

of the attributed plateaus shown in Figures 5(a)–5(f) are consistent with the energy splitting that 

are shown in Figure. 4.  It is clearly shown in Figures 5(a)–5(f) that one set of these plateaus has a 

comparatively wide width, with FFs of 2 etc. due to the large energy splitting gap in the 

magnetic energy band structure. The other set of these plateaus is also shown in figures 5(a)–5(f) 

has a comparatively narrow width, with FFs of etc due to the small energy splitting gap. 

According to the Figures. 5(a)–5(f), the WPs that are corresponded to the energy splitting for the 

Onsager’s area-quantization rule and the NPs that are corresponded to the energy splitting caused 

by relativistic effects including Zeeman spin effect and spin-orbit interaction. For this reason, the 

magnetic energy band structure can effectively explain the quantized in graphene immersed 

in a uniform magnetic field. 







Figure. 5: Fermi energy dependence of the normalized Hall conductivity ( ) (a) for 10.00
(T), (b) for 20.02 (T), (c) for 48.50 (T) (d) for 101.50 (T), (e) for 239.50 (T) and (f) for 600.50 (T) [45].



6.4    Fermi energy dependence of widths of WPs plateaus

In this subsection, the Fermi energy dependence of the widths of the observed plateaus

using the nonperturbative MFRTB method is discussed. The WPs are attributed due to the energy 

level splitting that is related to the Onsager’s area quantization rule. Figure 6 shows the Fermi 

energy dependence of the width of WPs. In Figure. 6, the horizontal axis denotes the FFs which

means on the position Fermi energy level and the vertical axis denotes the widths of the WPs in 

eV. According to Figure. 6, the width of WPs decreases with increasing FFs that means with 

increasing Fermi energy. It is noted that in the conventional 2DEG system, the energy separation 

of two successive quantized energy levels caused by Onsager’s area quantization rule is the same 

for all energy levels (for the whole energy region) but in graphene, the energy separation of two 

successive quantized energy levels caused by Onsager’s area quantization rule is not the same for 

all energy levels (for the whole energy region).  For this aim, the energy separation of two

successive quantized energy levels using Onsager’s area quantization rule is calculated in order to 

justify the above two statements. According to the area quantization rule, the quantized energy 

level for a magnetic field is given by , where denotes the Landau level index, 

and is the Fermi velocity of graphene [11,12]. The energy difference 

between two successive energy levels is given by

(6.4) 

In Eq. (6.4), represents the width of WPs for the energy gap due to the two successive energy 

levels.  The width of WPs is calculated by using conventional model using Eq. (6.4) and the

nonperturbative MFRTB method that are shown in Figure. 6. According to the Figure. 6, the width 

of WPs which is calculated using Eq. (6.4), has a good agreement with the result of using the 

nonperturbative MFRTB method in the lower FF region which means the low-energy region. This 

implies that the conventional model (Eq. (6.4)) is a good approximation in the low-energy region.  

The conventional model (Eq. (6.4)) is established based on the Onsager’s area quantization rule; 

more clearly for the linear energy–dispersion relationship at zero magnetic field. The linear 



energy–dispersion relationship at zero magnetic field in graphene is valid only in the low energy 

region which means near the Dirac point. This good agreement suggests that these treatments are 

valid in the low-energy region, that is, in the lower-FF region. On the other hand, a discrepancy 

appears in the higher-FF region, that is, in the higher-energy region. The linear energy–dispersion 

relationship at zero magnetic field in graphene is not valid in the high energy region that means 

far away from the Dirac point. This discrepancy would be expected that the linear energy–

dispersion relationship becomes less appropriate as the energy level moves away from the Dirac 

point which means in the high energy region. Because in the energy band structure in the absence 

of a magnetic field, the curvature of the energy dispersion becomes negative as the energy level 

moves away from the Dirac point. For this reason, the density of the quantized energy levels is 

different compared with low and high-energy region. As a result, the density of the quantized 

energy levels that satisfy Onsager’s area quantization rule increases with increasing energy range 

or FFs. Therefore, the width of WPs decreases with increasing FF or energy range.

Figure. 6: Filling factor dependence width of WPs for 48.50 (T) [45].



6.5    Magnetic field dependence of widths of NPs plateaus

Figure 7 shows the magnetic-field dependence of the width of NPs for FF=4. In Figure. 7, 

the horizontal axis denotes the magnetic field in Tesla (T) and the vertical axis denotes the widths 

of the NPs in eV.  The well-known spin-Zeeman energy ( that represents the width of the 

NP is also indicated in this Figure by a line which is expected. It is noted that this expected width 

of the NPs is discussed in literature only due to the spin-Zeeman effect (conventional model).  On 

the other hand, it is confirmed that the width of the NPs using the nonperturbative MFRTB method 

is attributed due to the spin-Zeeman effect and spin-orbit interaction. The difference between the 

calculation of the conventional model and the nonperturbative MFRTB method is denoted by .

This difference, may be regarded by the effect of the spin-orbit interaction. If the spin-orbit 

interaction is neglected, the NPs are attributed only due to the spin Zeeman effect. So, the width 

of NPs coincides with the width expected from the spin-Zeeman effect. 

Figure. 7: Magnetic-field dependence width of the NP for the FF=4 [45]. 



Figure 8 shows the magnetic-field dependence of the difference . In Figure. 8, the horizontal 

axis denotes the magnetic field in Tesla (T) and the vertical axis denotes the difference, in meV.   

According to the Figures. 7 and 8, the width of the NP using the nonperturbative MFRTB method 

coincides with the width expected from a conventional model that is, the spin-Zeeman effect in 

both the low and high magnetic field regions. Figure. 8, in the high magnetic field region, the 

difference, is very small. In the high magnetic field region, according to Eq. (5.11) in Chapter 

5, the spin-Zeeman effect is more dominant compared to the spin-orbit interaction. For this reason, 

the calculated width of NPs using the nonperturbative MFRTB method is nearly the same as the 

calculated width of NPs by the spin-Zeeman effect. So, in this region, the effects of the spin-orbit 

interaction become negligible compared to the spin-Zeeman effect, which is known as the 

Paschen–Back effect. Figure. 8, in the low magnetic field region, the difference, is also very 

small.  In the low magnetic field region, according to Eq. (5.11) in Chapter 5, the spin-Zeeman 

effect is less dominant compared to the spin-orbit interaction. So, the spin-orbit interaction would 

be expected as a dominant part. The difference, should be large. However, the calculation using 

the nonperturbative MFRTB method coincides with the result of the conventional model for an FF

of four.  This agreement is explained in the following as, in this region for this FF of four (4), the 

agreement indicates that the energy splitting caused by the anomalous Zeeman effect is consistent 

with that of the spin-Zeeman effect for magnetic Bloch states. This agreement for a particular FF 

is possible (may be it is not true for all FFs), for example, when the magnetic quantum number of 

the total angular momentum is given by , the energy splitting caused by the anomalous 

Zeeman effect is consistent with that caused by the spin-Zeeman effect in a low magnetic field 

[51]. This agreement in the low magnetic field region implies that the magnetic Bloch states related 

to FF of four mainly comprise atomic orbitals with the magnetic quantum number of .



On the other hand, in the middle magnetic field region, the difference, is 

comparatively large. For this reason, the discrepancy is comparatively large in the middle magnetic 

field region (approximately 200 (T)) that is shown in Figures. 7 and 8. This result suggests that the 

width of NPs in a magnetic field of approximately 200 (T) can be affected due to the effect of the 

spin-orbit interaction in graphene. This effect provides very important information in research in 

graphene around this magnetic field. Although the width of NPs has not necessarily been estimated 

accurately in experiments [41], it is expected that the effect of the spin-orbit interaction and 

Paschen–Back effect will be observed in NPs by further experiments, especially in high magnetic 

fields greater than 100 (T) [65].  The description of the difference, in the middle magnetic field 

case can be realized for the nonperturbative calculation of the effects of the magnetic field and 

spin-orbit interaction using the nonperturbative MFRTB method. 

Figure. 8: Magnetic-field vs the difference ( ) between the width of the NP for the FF=4 and the 
width expected from the spin-Zeeman effect [45]. 



6.6 Description of the quantized Hall conductivity based on the 

magnetic energy band structure 

In this subsection, the reason is explained briefly, why the magnetic field dependence 

in graphene can be appeared based on the magnetic energy band structure calculated by using the 

nonperturbative MFRTB method. It is confirmed that all the magnetic energy bands approximately 

have a magnetic field dependence degeneracy of , which is proportional to the magnetic field.  

If the number of completely flat magnetic energy bands below the Fermi energy is , then the 

total number of states per unit area below the Fermi energy level is given by 

(6.5) 

According to the Streda formula (Eq. (4.50) in Chapter 4), is given by [50].

(6.6)  

The Hall conductivity, is proportional to the number of completely flat magnetic energy 

bands below the Fermi energy level.  Since the Fermi energy dependence number, is an 

integer, so the from Eq. (6.6) is quantized.    

The relationship between the magnetic energy band structure and is discussed in 

more detail in the following. The calculation using nonperturbative MFRTB provides 

eigenvalues for each -point in the MBZ in this system. Because the total number of magnetic unit 

cells is given by , states are obtained using the nonperturbative MFRTB method. In the 

honeycomb lattice structure of graphene, each magnetic unit cell consists number of carbon 



atoms. Therefore, the magnetic unit cell consists number of valence electrons. Therefore, the 

total number of valence electrons in the system is equal to . For intrinsic 

graphene, half of the states, that is, the states, are occupied. The completely flat band 

approximation is described in subsection 6.1, of magnetic energy bands are fully occupied. 

As mentioned in subsection 6.1, each cluster of magnetic energy bands consists of magnetic 

energy bands, which leads to an approximate p-fold degeneracy. Considering that the cluster 

corresponds to the so-called Landau level, the following numbering to the clusters can be assigned: 

the 0-th cluster can contains -th magnetic energy 

bands from the bottom. Similarly, the first cluster contains the -

th magnetic energy bands from the bottom. Herein, the energy level of the nth cluster is denoted 

by .

For the intrinsic graphene, the Fermi energy level lies between the 0-th and 1st cluster, that 

is, . Here, the total number of states below the Fermi energy is . Therefore, the 

total number of states per unit area is

(6.7)

where we used the relation . Therefore, is independent of when 

. This leads the following equation 

(6.8) 

Subsequently, in the case of Fermi energy is located between and , that is, 

. Here, the total number of states below the Fermi energy is given as 

. Therefore, the total number of states per unit area is 



(6.9) 

where we used Eq. (5.1) which is discussed in subsection 5.1 in Chapter 5. Therefore, we have

for  (6.10)

Similarly, in the case of Fermi energy lies between the (n-1)th and n-th clusters. That is, 

. Here, the total number of states below the Fermi energy level is 

. Therefore, the total number of states per unit area is

for  (6.11) 

Therefore, we have

for (6.12) 

Finally, the conductivity in graphene immersed in a uniform magnetic field which is 

quantized can be described based on the magnetic energy band structure calculated using the 

nonperturbative MFRTB method.   



Chapter    7

Conclusions

The quantized Hall conductivity, in graphene is investigated using the 

nonperturbative MFRTB method. In these present calculations, it was confirmed that WPs with a 

set of FFs of 2, 6, 10, 14, etc., and NPs with another set of FFs of 0, 4, 8, 12, etc. were revisited in 

the Fermi energy dependence of . It is noted that the first set of FFs is attributed due to the 

energy splitting in a magnetic field. This energy splitting corresponds to Onsager’s area-

quantization rule. The second set of FFs arises due to the energy splitting caused by the spin-

Zeeman effect and the spin-orbit interaction in a magnetic field.  

It is important to notice that the width of WPs and NPs is dependent on Fermi energy for a 

constant magnetic field or magnetic field for a fixed Fermi energy level. In this thesis, it is shown 

that the width of WPs decreases with Fermi energy for a constant magnetic field, which is the same 

with experimental results. In the lower-energy region, the dependence of the width of WPs is more 

consistent with the result of the conventional theoretical model [8-11]. This consistency appears 

in the lower energy region which means near the Dirac point due to the linear energy dispersion 

relationship approximation for the energy band structure in the absence of a magnetic field. On the 

other hand, in the higher-energy region, the result of the nonperturbative MFRTB method does not 

coincide with the conventional theoretical model. In this region, a discrepancy appears when 

comparing the conventional theoretical model and the nonperturbative MFRTB method. Because 

the conventional theoretical model is valid only for the linear energy dispersion relationship which 

appears near the Dirac point or low energy region.  On the other hand, the nonperturbative MFRTB 

method is valid both in the lower and high-energy regions.  The nonperturbative MFRTB method 

provides a practical magnetic energy band structure in both regions. For this reason, the 

discrepancy appears due to the lack of validity of the linear energy dispersion relationship in the 



higher-energy region. Thus, it is confirmed that the description in this thesis of the Fermi energy 

dependence of the width of WPs is more reliable in both the lower and higher energy regions.

It is possible to observe the effect of the spin-orbit interaction and Pachen–Back effect in 

graphene by investigating the Fermi energy dependence of the width of NPs at magnetic fields 

greater than 100 (T). In general, the Pachen–Back effect appears if the ratio of the spin Zeeman 

splitting to the spin-orbit splitting exceeds one (1) [51]. For graphene, the magnetic field that 

makes ratio 1 is approximately 144 (T) [51]. This magnetic field appears to be consistent with the 

results shown in Figures 7 and 8. Thus, the detection of the Paschen–Back effect in NPs is expected 

to be realized using the recent progress [65] in generating an extremely high magnetic field greater 

than 1000 (T) and in measuring physical quantities in the extremely high magnetic field [66-68].

In the present calculations, the relationship between the magnetic energy band structure 

and quantized was measured. It is noted that in every case the Fermi energy crosses a cluster 

of magnetic energy bands, and as a result changes by the quantity, . This statement 

coincides with the description of dHvA oscillations based on the magnetic energy band structure

[55-57].

The effect of the fine energy band structure of a cluster on  in graphene is very 

interesting. Because many properties are affected by the cluster of the band structure. For example, 

the fine energy band structure in a cluster generates additional oscillation peaks in the magnetic 

oscillation of the dHvA effect [56] under a high magnetic field. The conventional MFRTB and 

Hofstadter methods are based on perturbation theory [51]; thus, these methods are not sufficient 

for describing such phenomena due to some lacking. On the other hand, the nonperturbative 

MFRTB method is sufficient for describing these phenomena. For this reason, only the 

nonperturbative MFRTB method may be applied for an accurate result as a first-principles

calculation method in a high magnetic field region. The effect of the fine energy band structure 

due to the splitting of an energy band in the high magnetic field case will be investigated in future 

studies.



Appendix A

Relation between the large and small components of the relativistic atomic orbitals by using the 

label by letters takes the value of for the atomic orbitals namely 

respectively and the label  is expressed as in place of respectively. 

(1) (A1)                             

(2) (A2) 

(3) (A3)

(4) (A4)

(5) (A5)

(6) (A6)

(7) (A7)

(8) (A8)

(9) (A9)

(10) (A10)

(11) (A11)

(12) (A12)



(13) (A13)

(14) (A14)

(15) (A15)

(16) (A16)

(17) (A17)

(18) (A18)

(19) (A19)

(20) (A20)

(21) (A21)

(22) (A22)

(23) (A23)

(24) (A24)

(25) (A25) 



Appendix B

Definition of the Cubic Harmonics 

(1) (B1)

(2) (B2)

(3) (B3)

(4) (B4)

(5) (B5)

(6) (B6)

(7) (B7)

(8) (B8)

(9) (B9)

Definition of the spherical Harmonics  

(10) (B10)

(11) (B11)

(12) (B12)

(13) (B13)

(14) (B14)

(15) (B15)

(16) (B16)

(17) (B17)

(18) (B18)



Appendix: C

Show that 

We know the following expressions:       

(C1)   

and 

(C2)    

If we defend  , then Eq. (C2) becomes 

(C3)

Multiplying by on both sides in Eq. (C3)   

(C4)

Multiplying by on both sides in Eq. (C4)

(C5)  



Since is a number, Eq. (C5) becomes 

(C6)

Again, we know  

(C7)                        

By using the above property, we can write 

(C8)    

If is number and is a magnetic field dependent then Eq. (C8) becomes 

(C9)    

Since , Eq. (C9) becomes 



(C10)

Since  , Eq. (C10) becomes 

(C11)        

Since , Eq. (C11) becomes 

(C12)    



We know the expression for the Hamiltonian, , the derivative of the

Hamiltonian, with respect to magnetic field, B 



(C13)       

Using Eq. (C12) and (C13), we have 

(C14)  
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