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Chapter 1

Introduction

Nowadays, graphene as a two-dimensional (2D) material is becoming a more attractive
revolutionary research material in order to be used in devices for the industrial applications.
Materials immersed in a uniform magnetic field exhibit many properties such as Landau
diamagnetism, curie paramagnetism, Langevin diamagnetism, de Haas-van Alphen (dHvA) effect,
Shubnikov-de Haas (SdH) effect, quantum Hall effect (QHE), and so on. The QHE is the most
important property in 2D condensed matter physics to make a device. The 2D system at low
temperature and strong magnetic field has more potential for the quantum phenomena after
discovering the quantization of the quantum Hall effect [1]. The integer quantum Hall effect has
been observed in a two-dimensional electron gas (2DEG) system in a semiconductor
heterostructures system [1,2]. The energy spectrum in a 2DEG system immersed in a uniform
strong magnetic field becomes quantized due to the quantization of the orbital motion according
to Onsager's area quantization rule. This system provides an ideal message for understanding the
quantum transport phenomena in a 2D system. For this reason, researchers have tremendous
interest in research on 2D materials specifically graphene about the electronic properties in 2D
condensed matter systems. The 2D material belonging to honeycomb lattice structure with two
atoms per unit cell specifically graphene demonstrates some peculiar properties for its unique
electronic energy band structure due to the inequivalent two K points namely Dirac point (K and
K ) in the first Brillouin zone (BZ). The conduction and valence band in graphene forms a conically
shaped valley by touching each other at the Dirac point in the first BZ which leads to the
extraordinary property in graphene. Graphene shows some extraordinarily peculiar properties due
to the linear energy dispersion relation in the lower energy region which means near the Dirac
point. Therefore, graphene as a 2D material has become a potential material as a promising
material in the electronics and spintronics fields for its some extra properties [3-10]. When a

uniform magnetic field is applied perpendicular to the graphene sheet, it exhibits some distinctive



properties such as strong orbital diamagnetism [11-24], reduced effective g-factor [25-27],
unconventional oscillation of magnetization [28-30], half-integer quantum Hall effect (QHE) [31-
441, anomalous QHE in the honeycomb lattice [32-34,36], and quantized Hall conductivity
[42,43,45]. The half-integer quantum Hall effect in graphene leads that graphene becoming a
promising material for spintronics. In addition, at room temperature, the large energy gap
generated by the magnetic field in graphene compared to a standard 2DEG system [43], graphene

has been considered as a more practical useable material for the property of the QHE.

It is noted that for the interesting results of graphene in theoretical predictions [31,32], and
experimental discoveries [4,33,41-44], many researchers concentrate their minds on the research
of the half-integer QHE as an excellent property in 2D materials. Specifically, the half-integer
quantized Hall conductivity (oy4;;) in graphene with filling factors (FFs) of 2, 6, 10, 14, etc. was
experimentally observed in a low magnetic field of approximately 14 (T) [4] or below 10 (T) [33]
due to the corresponding energy level splitting, which is well known as the half-integer QHE.
There are many methods are discussed for the reason of the half-integer QHE, more clearly, the
effect of the half-integer QHE in graphene was theoretically described based on the tight-binding
(TB) approximation method and/or the effective mass Hamiltonian method [32,34-40]. The
important notice about the interesting half-integer QHE in graphene is that the quantized oy,
with FFs of 0 and 4 which are the different sets of FFs compared with the above-mentioned set of
FFs was also observed experimentally comparatively in the high magnetic field region of
approximately 45 (T) [41]. The quantized oy,;; in graphene with FFs of 0, 4, 8, 12, etc. has also
been predicted theoretically, and this set of FFs for the quantized ogy,;; attributed to the energy

splitting caused by the spin-Zeeman effect [39].

The well-known magnetic field dependence energy spectrum namely the Hofstadter
butterfly diagram [46] is obtained theoretically and can be explained clearly as the magnetic energy
spectrum of energy levels of electrons in a magnetic field. The most important information about
the QHEs is carried in the gap in the Hofstadter butterfly diagram [47-50]. According to the various
conventional theoretical methods [32,34-40], the energy diagram for the magnetic energy spectrum
is enumerated using magnetic hopping integrals (hopping integrals in the presence of a magnetic

field). The magnetic hopping integrals are the product of the hopping integrals (hopping integrals



in the absence of a magnetic field) and the Peierls phase. The hopping integrals can be calculated
by the Slater-Koster table which leads the relativistic version of the Slater-Koster table. But the
Peierls phase approximation corresponds to a lowest-order perturbation theory [51], the energy
diagram is relatively erroneous in the high magnetic field region and lacks accuracy even in the
low magnetic field region [51]. For the worst calculation, the Hofstadter butterfly diagram in the
low magnetic field region may be affected by spin-orbit interactions [51]. The relativistic effect,
magnetic effect, and the effect of the periodic potential should be considered in the calculation of
the diagram of the magnetic energy spectrum for more accuracy. For this aim, the nonperturbative
effects of the magnetic field and the spin-orbit interaction should be taken for the appropriate

magnetic energy spectrum to investigate the QHE in graphene.

Recently, the magnetic-field-containing relativistic tight-binding approximation (MFRTB)
[52] and the nonperturbative MFRTB methods [51] have been developed by Higuchi group for a
better description of the properties of materials immersed in a uniform magnetic field. The above-
mentioned methods enable the calculation of the realistic magnetic energy band structure of
materials immersed in a magnetic field by taking the effects of the magnetic field, the effect of the
periodic potential, and the relativistic effect. Thus far, the MFRTB method can revisit the Haas-
van Alphen oscillations [53,54] and magnetic breakdown [54] and predict the additional oscillation
peaks of the magnetization [55-57]. The nonperturbative MFRTB method reveals that
nonperturbative effects appear both in high and low magnetic field regions [51] and successfully
predicts the second-order phase transition of silicon from a band insulator to a metal [58]. The
above-mentioned discussions are based on the magnetic energy band structure calculated using the

MFRTB or nonperturbative MFRTB method.

In this thesis, a novel description of the orbital motion of the magnetic Bloch electron is
explained to describe the quantum Hall effect using the nonperturbative MFRTB method. The
theoretical calculations are performed to investigate the QHE in graphene based on the magnetic
energy band structure using the nonperturbative MFRTB method. Because the description of the
quantum Hall effect based on the first principles calculations has not been made yet. The Fermi
energy dependence of oy,;; 1s investigated using the nonperturbative MFRTB method [45]. It is
evident that the quantized oy,;; with FFs of 2, 6, 10, 14 etc., and with 0, 4, 8, 12 etc., is revisited



successfully using the nonperturbative MFRTB method [45]. The former set of FFs has wide
plateaus (WPs) and the latter set of FFs has narrow plateaus (NPs) due to the corresponding energy
splitting. It is noted that both plateaus are the Fermi energy and magnetic field dependence. The
width of the WPs relatively decreases with increasing Fermi energy due to the negative curvature
of the energy band at zero magnetic field. The spin-Zeeman effect and the spin-orbit interaction
are the reasons for the NPs in graphene. The width of the NPs belongs to the Fermi energy and

magnetic field dependence that are shown later.
This thesis is decorated in the following fashion:

In Chapter 2, the description of the relativistic tight binding (TB) approximation method
in the absence of a magnetic field as a building block is decorated to describe the MFRTB
approximation method. In this Chapter, the relativistic version of the Slater-Koster (SK) table is
also presented for the calculation of the relativistic hopping integrals for the zero magnetic field
case. The nonperturbative MFRTB method is presented in Chapter 3 to express the magnetic
hopping integrals approximately in terms of both the relativistic hopping integrals for zero
magnetic field case and magnetic-field dependent phase factor (Peierls phase factor). In Chapter
4, the derivation of the Streda formula is briefly discussed to calculate the magnetic field
dependence Hall conductivity using the nonperturbative MFRTB method. The application of the
non-perturbative MFRTB method to a two-dimensional honeycomb lattice, graphene is discussed
in Chapter 5. In this Chapter, the magnetic hopping integrals are also presented in tabular form.
The calculating results such as magnetic field dependence of energy spectrum, Fermi energy
dependence of quantized Hall conductivity, Fermi energy dependence of the width of the WPs
with comparing conventional theoretical model and magnetic field dependence of the width of the
NPs with comparing spin Zeeman effect are presented in Chapter 6. Finally, in Chapter 7, the

conclusion remarks of this thesis are presented.



Chapter 2

Relativistic Tight Binding (TB) approximation method for

zero magnetic field

In this Chapter, the Relativistic Tight Binding (TB) approximation method for zero magnetic field

is described in the following sequence:

2.1 Matrix elements of the Dirac Hamiltonian

2.2 Relativistic hopping integrals, tZ{]aAl/I LM (ﬁn + cii — cij)
22.1Incaseof R, =0,d; = d;
2.2.2 In case of ﬁn * 0, c_l)l- * d)j

2.3 TB parameters for the relativistic hopping integrals

2.4 Expressions of the relativistic hopping integrals for the relativistic version of the
Slater -Koster table

2.5 Relativistic version of Slater Koster table



2.1 Matrix elements of the Dirac Hamiltonian

In order to derive the expression of the matrix elements of the Dirac Hamiltonian, let us
consider an electron moves only in a periodic potential in the crystal in the absence of a magnetic

field. The Hamiltonian of this system is given by [59]
H=cd.p+pmc?+35 SiVy (F— Ry — dy) (2.1)

In Eq. (2.1), p (= —ihV), m and c are the energy-momentum of the electron, rest mass of the

electron, and velocity of light respectively, the quantities, @ = (ay, @, a,) and B stand for the
usual 4 X 4 matrices and also denote the Hermitian operators [59], V, (7 — ﬁn — cil-) is the scalar
potential that is caused by the nucleus of an atom, a;; where the atom, a; is located at the position
ﬁn + Eil-, where I_?)n and cii are the lattice translation vector, and the vector specifying position of

the an atom, q; in the crystal respectively.

The electron in the above-mentioned system obeys the Dirac equation. The Dirac equation for this

electron in a periodic potential in the absence of a magnetic field is given by [59]

HYo i) = E it 2.2)

InEq. (2.2), Y, % () and E « % are the four-component eigenfunction and eigenvalue respectively,

the subscripts a, and Kin¥ (@) and E , 3 are the band index and crystal momentum, respectively.

In order to estimate the appropriate form of the relativistic atomic orbitals of an atom
similar to the non-relativistic Tight-Binding (TB) approximation method, it is very important to

expand the four-component eigenfunction, ¥ (#) by using the Bloch sum of the relativistic

atomic orbitals as a basis function. The expanded four-component eigenfunction is given by



l/)a}(r) an]MZl nl]ML TlUM( ) (2-3)

In Eq. (2.3), Cﬁl}‘Ml and Cl)n; ]M(r) are the expansion coefficient, and the Bloch sum of the

relativistic atomic orbitals of an atom. The Bloch sum for the normalized condition is given by
QUL (P) = = N e FE) ot G~ R, —d)) (2.4)

In Eq. (2.4), <pnl M (G I_?)n — cii) is the relativistic atomic orbitals of an atom, a;. In Egs. (2.3)

and (2.4), the letters n,l, ] and M are the principal, azimuthal, total angular momentum, and
magnetic quantum numbers, respectively. It is noted that the number [ is related to the parity,
which is conserved in the atomic system [59]. In Eq. (2.4), N is the total number of unit cells in

the given system. Since the relativistic atomic orbital, ‘PZZ M () of an atom, a;, obeys the Dirac

equation in the given system, the Dirac equation for the relativistic atomic orbital, gozl‘ M (1) is

given by
[c@.p + Bmc? + Vo, (D] oniiny P = &Pty @) (2.5)
In Eq. (2.5), snl ym 1s the atomic spectrum of an atom, a; for zero magnetic field case. The

relativistic atomic orbital, (pzli ™ (7) is related to the four-component eigenfunction of ¥,z (7).

The relativistic atomic orbital, ¢! i (T) is given by [59]

0% () = (2.6)

T

F () Y56, ¢) ]
lGﬁ{]( ) Y21-1,(0,¢)

In Eq. (2.6), Fnczl] () and G:,Llli] (7) are the large and small components of the radial part of the

relativistic atomic orbitals, qozli]M(?) respectively, and ‘y%(e,qb) is the spinors spherical



harmonics of order [ and also the function of the total angular momentum [59]. Here, the parity is

given by (—)!, where [ takes two values [ = J + %w andl =] — %w and @ is a quantum number

1
which is defined by @ = +1 for the states of parity (—=)’*z and @ = —1 for the states of parity

1
(=)72 [59]
Using Egs. (2.2) and (2.3), we have

HanJMZl nl]Ml nl]M() aanl]MZl nl]Ml nl]M() (2.7)

Using Egs. (2.4) and (2.7), we have

H Ynym X ZRn nl]Ml el K (Fntdi) <pnl]M(r — Ry — d;)

aanl]MZ ZRn Tll]Ml ik'(Rn-ml) P UM(T‘ - ﬁn - di) (2.8)

Multiplying by ¢ G d))T from left on both sides in Eq. (2.8) and integrating, then Eq. (2.8)

becomes

—

ik. _)n Ei - -
Ynijm Li ZRn nl]ML K(Rut )f nl]M(r d) H‘Pnz/M( — Ry — di) d’r

,E .—>. = 3 a; 5 - a; N - -
EpiZnym Zi 25, Coimie'™ (Futdd) [ (pﬁ;jM(r - dj)Tgan;]M(r — R, —d;)d?r

(2.9)
The relativistic hopping integral between two atoms, a; and a; from Eq. (2.9) is given by
aja; = — -
tﬁ%jl\fl nlyM (R" + d d ) f(an]M(r d ) H(pnl]M(r — Ry — di) d*r (2.10)



If the relativistic atomic orbitals, (psi ™ (F - ﬁn — cfl) are highly localized around (ﬁn + c?i), the

overlap integral from Eq. (2.9) is given by

i N - - a; N — -
f‘/’zle(r —Rn — di)T(pﬁ;jM(r —Rp —dj)d’r = OR, +d, ,ﬁm+&j5nl/M.ﬁijM (2.11)

Using Egs. (2.10) and (2.11), then Eq. (2.9), becomes

i k.(Rnp+d;) 4 %% 3} 3 3\ wk
an]M 2i2§ne (Rn l)tﬁl'jM,nl]M (Rn +d; - dj)Cnl]M,i

_ i (Rp+ds Lk
= Eo3 Suym X Zg, €' FFntdds, o Rt Onumitjnn Cigmi (2.12)

After simplifying, Eq. (2.12) becomes

i%(Rptdi—d;), 4% B d _dNrak
Sym X1 2, e FEAAa) U0 R+ di = d) iy,

*
= E 761, Snymanijmt Cutjmi (2.13)

The matrix element of the Dirac Hamiltonian from Eq. (2.13) is given by

ajai

— . Lﬁ(ﬁn+d'l—dj)
ZRn € triijM nlyM

Hisiin) 7., i () (Ry +d; - d)) (2.14)

Using Eq. (2.14) into Eq. (2.13), then we have

Nk K
Toym Zi Hisigm) g, nuymni () Cotymi = E o 260i6num, nijat Caip i (2.15)
Since the matrix element in Eq. (2.14) is Hermite, it is possible to calculate the eigenvalues,
E7 in a fixed band for each k point and the four-component eigenfunctions, ¥, (7) for each k
point by solving Eq. (2.15). For this aim, firstly, it is urgent to calculate the relativistic hopping

integrals, th;i],M, néjM (ﬁn + cii - cfj) which are expressed in Eq. (2.10).



2.2 Relativistic hopping integrals for the cases: I_fn =0, _c—ii

—

and I_in * O, Zii * d]

2.2.1 In case of ﬁn =0 and Zl)i = Zl}

Using Eq. (2.1) into Eq. (2.10), the relativistic hopping integrals become

ajai - -)l . _).
tr'lijzv’l nlyM (Rn +d; dJ)

- MZ;'],M(F —dp)t[cd.p+ pmc? + S5 2 Ve, (F = Ry — dj)] oyt (7 — di) dr

= f(anM(r—d) [cd.B + pmc? + 1, NG d)] <PnUM(T—C_ii)d3T

aj - = N -
+ [ 0 @ = AT Eg w0 Ziei Vo, (7 = R — di) oy (7 — dy) dr
Using Eq. (2.5) into Eq. (2.16), the first term becomes
aja; .
tﬁ;]’M,nl]M (R, + d f(p UM(r d; ) anM(anM(r —d;) d®r
aj N - N - - i N -
+ f (pm{]’M(r - dj)-r Zfin:&o Zi:ﬁi Vai (T - Rn - di)<pfoM(r - di) d37‘

Using Eq. (2.11) into Eq. (2.17), the first term becomes

aja; — - -

tﬁijM niM (Rn + dl d; ) nl]M5nl]M nijm Sj,i
+/ (pnl]M —d; DT (r dk) (pnl]M(r - di) d*r
Rn + di( * di

(2.16)

(2.17)

(2.18)

In Eq. (2.18), the second term is the energy of the crystal field. In Eq. (2.18), the scalar potential,

Vo, (F — ﬁn —d i) is constant for the symmetrical behavior at position 7 = (Zl- due to the relativistic

10



atomic orbitals, (pZ?Z,],M,(F —d;)and @ (= d;) are sufficiently localized around 7 = d; . The
integral part in Eq. (2.18) would be vanished for the orthogonality condition of relativistic atomic
orbitals, (pig],M,(? —d;) and (p,?}m(? — d;) in the condition of n' = n, I #1,] # ] and M' #

M. For this reason, the energy of the crystal field can be approximated in the following form:

S o = 67i)T{ 25, i Vi (F = B — ‘Zk)} iy (F = di) d*r

-

R, +d, # d; .
Agnl]MSnijM,nl]M (2.19)

Using Egs. (2.18) and (2.19), the relativistic hopping integrals become

ajai

=4 —a;
Caijni miym (Rn + d; - d; ;) = nl]M Snymnijm i + D& Onijatniym

= (gnl]M + Agnl]M)6nl]M nijm 0ji (2.20)

2.2.2 Incase of R, # 0 and d; # Zi)]-

Using Eq. (2.1) into Eq. (2.10), the relativistic hopping integrals become

ajai - - -
Caift muym (Rn+d; - d;)
aj - 7 > - - 3
= f(pﬁij(r —dp)t [ca.p + pmc? + X5, 2 Ve (7 - —d; )] (anM(r —d;) d*r
a; R s 1 N Va-(F_&j)+Vai(F_ﬁn_di)
- fgoﬁ;jM(r —d;) [{ca.p + pmc? + .
Va.(‘F—&j)+Vai(f—ﬁn—&j) > N -
. 2 + Zﬁh Zi, i Vai(r Rn dl) q)nl]M Rn_di)dgr
Ri#0,i%0
R,#Ry,i%1i

_‘f‘l’nUM(T_d){Cap+ﬁmc + Vo (F = d)) 9ty (7 — Rp—dy)dPr

11



T I .
+%f <p2jM(r —d;) {ca.p+ pmc? +V, (7 - Rn—di)(pg{m(r — R,—d;)d®r

ot (Ve (F=dj)+Va,(F-Rn—-d;) .
+ f (le{jM(r - dj) { - : 2 : }(»DS;]M r— Rn_di)dSr
i - >N - = 7 ; - = 7
+ g Toi <p§llm(r — d;) Vo (7 — Ri—dy)opt (7 — Ry—d;)dr (2.21)
R, #0i+0

R,# R,i#i

For the simplicity Eq. (2.21) can be taken by parts in the following way:
The 1% part of RHS in Eq. (2.21), we have

1

Ef nUM(T d ) {C(X p + ,Bmc +V, (T d )}(pnl]M(r R d )d3

= —f<anM(r d; ) nl]M ‘Pnle(r - ﬁn_&)i)dgr

1_q 3
=3 _Zl]Mf(anM( d) (pnl]M(r Rn—di)d3r

1—‘11

nl]M X0

(2.22)

The 2" part of RHS in Eq. (2.21), we have

—f (anM(r —d; ) {ca.p + pmc® + V(7 — R,—d; )}(pn”M(r — ﬁn—ﬁi)d3r

- _f qonUM(r ) nl]M (pnl]M(r - Rn—c_l)l-)d3r

1 _al -
= S &M J ‘Pnl]M(r d; ) (pnl]M(r Rn—di)dgr
1 _al
2 nl]M X0
= (2.23)
From the 4" part of RHS in Eq. (2.21), it is noticeable that it has three central integral parts. Three

central integral parts provide a very small numerical value compared to the other integral parts.

For this reason, the numerical value of the 4™ part can be neglected. From the discussion in Egs.

12



(2.22), (2.23), and the 4" part, these three parts are zero. As a result, only the 3™ part remains for

the two centrals integrals. Finally, the relativistic hopping integrals in Eq. (2.21) become

aja; - - -
Caifnt muym (Rn+d; - df)

Va, (7~ d])+Va (F~Rp-d

= f(pZ{]M(F - (ZJ) { > }‘an]M(r Rn—gi)d3r (2.24)

For simplicity, let us consider a new variable 7 — d’j =7in Eq. (2.24), then

a;aj
AljM nijM

- f gonl]M(r)

t (R, +d; —d))

{Va () +Va, (r —Rp—d; +d1)}

Ot (F = Ro—d; + dj)d3r (2.25)
Using Egs. (2.19) and (2.25) into Eq. (2.13) then we can get the Dirac Hamiltonian

Hijn)j, uganyi (k)

aja; — - >
X tlini nyn (Rn + di — dj) (2.26)

2.3 TB parameters for the relativistic hopping integrals
The relativistic hopping integrals, tn{ ]1(4 _—_— (Rn + (Zi - c_l)]) can be expressed in terms of
several relativistic TB parameters that are the same of the non-relativistic hopping integrals [60].
By using relativistic hopping integrals in the case of non-relativistic [60,61], the relativistic TB
parameter can be defined as the relativistic hopping integral between two sites that are placed on

the z-axis. For this aim, the atom, a; is placed at the origin and the atom, a; is placed in a position

where the position is away from the origin by the distance, |§n + cfi - o_l;| More clearly, the

13



distance, |ﬁn + cil- — ci]| is the distance between the position of the atoms, a; and origin. Then the

Ce . a;ai = 3 T A~ N
relativistic TB parameter can be defined as, t, LM LM (|Rn +d; — dj|ez) where é, denotes the

unit vector in the direction of the z-axis. The relativistic TB parameters can be defined using the

condition n, 11, [, Z,],f and |M|.

]al

AU )i = bt (R + di = djl2,)

( )+Va (?_|ﬁn_a)i+a)'|éz) i — =1 -3 -3
_f(pnlj|M|( ) { 2 j }¢311M(T—|Rn—di+dj

(2.27)

In Eq. (2.27), the subscript, d in K, Y ai(‘r’li], nlJ)|u| represents the dependence of the relativistic

d +d; | Therefore, the distance, |ﬁn - cfi + &,| is equal to
the distance between the first nearest neighboring atoms, second nearest neighboring atoms, and
so on, then d denotes the number of 1, 2... respectively. For the s and p orbitals of carbon atom in

caseof Il =0and ! =1, ten kinds of relativistic TB parameters are in the following:

K005, n0 s K005, n1 s K005, n1 D
2 2 2 2 2
K015, n0 s K015, n1 s K015, n1 s
2 2 2 2 2
K12, n0 ) K12, n1 ) K12, n1 2,
2 2 2
K012, n1 D)
2

If we consider the relativistic TB parameters, ng ai(ﬁf ], nlJ )|m) are independent of atoms a; and

a;, then, the relativistic TB parameters can be defined by K, (1], nlJ)m|- Therefore, we have

seven kinds of relativistic TB parameters instead of ten kinds of relativistic TB parameters in the

following:

14



K" 0— nO—)1 K% 0‘ nl‘)l K" (A 0_ 1

2 2 2

ngai(ﬁ 1%’ n1 %)% K;jai(ﬁ 1%’ n1 %)% ngai(ﬁ 1;, nl ;)%
K012, n1 D)
2

By using the large and small components of the relativistic atomic orbitals which are expressed in

Eq. (2.6), then the relativistic TB parameters, K; (], nlJ )|m| can be perfectly approximated.

In the following subsequent section, firstly, I would like to express the expressions of the
relativistic hopping integrals for the four cases:

N =il 4l
(i) ]—l+2 and]—l+2

@ =0+ and =1
i) S=I-7 and]=1+-
v) J=I-5 and]=1--

2.4 Expressions of the relativistic hopping integral for the relativistic version

of the Slater -Koster table

.. . . . ] 1_ > > . o . .
The relativistic hopping integrals, ¢ ; ALIM mUM (Rn +d; — dj) in terms of several relativistic TB

parameters, K;j “ (nlf, nlJ)|y| by using Slater-Koster table for the non- relativistic hopping

integrals [60] that are expressed in terms of the linear combination of some TB parameters. In
order to calculate the relativistic hopping integrals for the relativistic version of the Slater-Koster
table in terms of several relativistic TB parameters, we consider the spinor spherical harmonics,

Ui/ (6, ¢) in the following

15



Y6, ¢) =

In Eq. (2.28), the symbols, Y, 1(8,¢) andY
M-

27,0 0.9)
J’_’”’ Vo2 (6,9)

J—M+1,
2(J+1) l M- 1(9 )

J+M+1

2(J+1) lM+1(9 ¢)

lM+

for]=l+%

(2.28)
1
for] =1— 5

1(6, @) are the spherical harmonics. Using Egs.

(2.6) and (2.28), we can write the four-component of relativistic eigenfunction in the following for

J =1+ inEq. (2.29) and for ] =

(psli]M(F) =

and

¢’gli]M(F) ==

. ~QAj
i il mYZJ—l,M+%(9’ ) |

E%

’]+M
n[] lM 1(9 ¢)
i /I‘M
nai] T Yl 'M+%(0l ¢)

F
M+1
—lGa‘ s

J+M+1

g J—-M+1
n4| 2(J+1)

’]+M+1
FTLl] 2(J+1) lM+ (6 ¢)

a; ]+M
lGn” 2] l 1.M- 1(9 ¢)

. ~Aj ]_M
KA RGO}

16

nlj\| 2(J+1) 2] 1, M— 1(9 ¢)

Yl ) M_%(er ¢)_

[ — % in Eq. (2.30) respectively.

(2.29)

(2.30)



Using Egs. (2.29) and (2.30) into Eq. (2.25), we can express the relativistic hopping integrals in

term of several TB parameters for the four cases step by step.

2.4.1 Incaseof]'=i+% and]=l+%

In this case, using Eqgs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become

a; Va;(F)+Vq, (r Rp—d;) -
e (Rardi=d) = [02,() { } 0% (7 — B — d)d%r

V -(F)+Vai(F_§n_di+&j) J+M
TTij

M1 a i (=
=157 m B @Y, 1(9"1’){ ’ 2 S5 g (i)Y s Gujns ijn)dr

+/

Va.(F)+Vai(F—§n—&i+&j) J-M ai (= 3
nl]( )Y, %(9‘ ¢){ - 5 = rijn)yl‘M_,_% Bijns Pijn)d>r

TTijn

(#)+Vg, (F-Rp—d;+d;)
] -M+1 aj a; itd; =
+f 2(]+1) TTijn { Gnl](r)} i+1M- 1(9 ¢) { }

2 2(J+1) Tll](rl]n)}

XY . -t Bijny Gijn)d’r

j+M+1 aj(F)"'Vai(F_ﬁn_&i"'d)j) J+M+1
) 2J+1) rrijm {lGnl](r)} l+1M+1(9 ¢){ 2 t 2(J+1) nll(r”")}
XYy st O bia)dn (231)
.1 1
2.4.2 In case of ]=l+5 and]=l—§

In this case, using Eqgs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become

a;a;

tr’li]'M nijM (ﬁn + d d ) f(PnUM(T')

nUM(r R, - d)i)d3r

_—f M 1 () v (9 ) aj(F)+Vai(f—ﬁn—di+d’j) TM+1 i (2
o 2f T Tijn nl] i, m-= 2 2(J+1) nl] Tijn

{Va (F)+Va, (r —Rp— d])}
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XY, ud e ¢ijn)d3r

J—-M 1 aj(F)"'VaL-(F_ﬁn_ai‘l'&j) J+M+1 al _)
+J 2] i nll() YLM 1(9 ¢){ 2 2(J+1) Euj(Tijn

X YLMJ,% Bijns ijn)d>r

Va () +V,, (F—Ry—di+d))
-M+1 ; 1 ! o
+- 2(J+1) T Tijn o Gnll(r)} Yl+1M 1(9 ¢){ }{

ai (=
2 — Gy, (Fijm)}

X Yl—l,M—% (Bijn, Pijn)d’r

f+M a; (M) +Vg (7-R,—di+d;
J+M+1 l
/ 2(+1) TTijn {lGnl](r)} l+1M+1(6 ¢){ 2 } Neys lGﬁl}(riin)}
R Mt Bijns Gijn)d’r (2.32)

243 Incaseof J=1-—

N | =

and ]=l+%

In this case, using Egs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become

a; I ()+Val(r Bomd)) a0 12 = =
t:,:;}lM’nUM (R, +d,—d) =] 9] ]M(r) { =t ont (F = Ry — dy)d?r

Vaj(F)+Vai(?—ﬁn—ai+&/) J+M F (7
2] Tll] l]Tl.

J-M+1
=-J 2+1) T nl]() Y 1(9’¢){ 2

X YLM_% Bijn, Pijn)d’r

(#)+Vg, (F-R,—d;+d))
]+M+1 aj i J
+J 20+1) Trijn nl]( )’ lM+1(9 d)){ 2 },/ 2J nl] Un)

X Yl,M+% Bijn, Gijm)d>r

. ]+M 1 {Gnu(r)}ylM 1(9¢){ a; () +Va; (F=R,—di+d; }{ T—M+1

2 2(J+1) nl](rl]n)}

X Yl,M—% Bijns ijn)d>r
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a; (M) +Vg (7-R,—d;+d; T+M
+ |57 nl] 1M+1(9 ¢){ 5 } { 2JEJ+J;1 nl](rl]n)}
XY, Mk (Bijn, Pijn)d’r (2.33)
- z 1 1
244 Incaseof J= l_E and | = 1_E

In this case, using Egs. (2.29) and (2.30) into Eq. (2.25), the relativistic hopping integrals become

a L. ( )+Va (F—Rn- L
trjl{]"lM,nl]M (Rn +d; - d) f(pnl]M( ) { (pnl]M(r Ry — di)dBT

M1 a-(F)‘l'Va'(F_ﬁn_&i'*'&’) —-M+1 =
= (S L B (6,9 “t s Fa(Fm
20+0) 7o i) Vw 2 20+n

X YLM_% Bijn, Pijn)d’r

f J+M+1 () (6, 4) Vaj(F)+Vai(?—Rn—di+dj) ML pay
2(J+1) 7r7ijn nl] M+E ! 2 2(J+1) nl] Tijn

X Y,,M% Bijns Bijn)d’r

- Vo () 4V (F—R,—di+d;)
]+M i J ]+M a;
+ T nl] M- 1(9 ¢){ : 5 } { lGnl](rijn)}
S -t Bijns Bijn)d®r
— (r)+Va (F—R,—d;+d
j-M i
+f T 1M+1(9 ¢) { 5 } { lG;l](rijn)}
X Yl—l, M+% (Hijn, (l)ijn)dg'f' (2.34)

In Egs. (2.31), (2.32), (2.33) and (2.34), the arguments (7}, 6;jn, ¢ijn) stand for the polar

coordinates of the vector, (77 — Rn d +d; ;). The relativistic hopping integrals, t] o ] ¥ M (Rn +

c?i — El}) can be calculated in terms of K;iai(r'li], nlJ)|m| by using Egs. (2.31), (2.32), (2.33) and
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(2.34) for the combinations of (1{fM) and (nlJM) atomic orbitals. Now I explain how to calculate

the relativistic hopping integrals for the combination of atomic orbitals in the following two cases:

. , ~11 11
(1) (Tl 0 EE) and (n 0 EE)
.. L, A11 11
(i1) no0 EE) and (n 1 EE)
(i) Relativistic hopping integrals for the combination of (120 %%) and (n0 %%) atomic

orbitals:

From Eq. (2.31), we can write the expression of t (}_?)n + c?i — cf]) for (RIfM) and (nlJM)

nl]M nlym

atomic orbitals
ajai — - -
Caijst muym (Ru+di— df)

2] TLl] Un

Va.(F)'FVa.(F—ﬁn—&i-F&j)} J+M al _)

=] 5 7 EfO Y, 1(e,¢){1 -~

T'Tij

X Yl,M—% Bijns Pijn)d>r

]_ ' Vaj(F)'*Vai(T_z—ﬁn_&i"'aj)
2] Trijn nl]( ) +%(9’ ('b){ 2 2] nl] Un)

XY, Mk Bijns Bijn)d®r

+/

A ,(F)+Vai(?—ﬁn—&i+&/)} ( T—M+1

+/ - = {Gnl](r)} Yl+1M 1(9 ¢){ : 2 2(J+1) nll(rlln)}

2(]+1) T Tijn
3
X Yl+1,M—§ Bijn, Gijn)d>r

f J+M+1
2(f+1) T Tijn

aj(F)+Vai(?—Rn—di+d/)} J+M+1

{lGnl]( Y Yl+1M+1(9 qb){ 2 2(J+1) nl](rlln)}

X Yl+1, M+% (Bijn, ¢)ijn)d3r (2.35)
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The 1 term of RHS in Eq. (2.35), we have

ajai - - B -
LM nljM (Rn - di dj 1st term

o [ 1 Vo, (P)+Vq,(F~Ry—di+d)

_f 2] T Tijn nl]( ) Yl M- 1(9 ¢){ 2 2] nl] l]n)

X Yl,M—% (eijn' q,')l-jn)ds‘r‘ (236)

Using of (n 0 %%) and (n 0 %%) atomic orbitals, Eq. (2.36) becomes

aia - - -
JHL
e Oll(Rn +d,—d;)
22 22 1st term

1,1 a; (F)+Va, [(F-R,—di+d))) |41
=I |5 7 F 1() ¥y 116, qb){ 5 e (i)
2 2

X YO,%_% Bijns Pijn)d>r

(D) +Vq, (F-Ry—d;+d))

= f 1( )" Yy (6, ¢){ = 5 . } Fjiol(ﬁjn)yo,o Bijns Pijn)d’r  (2.37)

TT']

The 2" term of RHS in Eq. (2.35), we have

o +d; —d;
nljm ,nl]M( " ' 7 2nd term
Va,(#)+Vg, (F—R,—d;+d;)
_ j i ai (>
=+] T Tijn nl]( Y M+%(9' ('b){ 2 \’ 2] nl/ Un)

X Yl, M+% (Hijn, (,‘bl-jn)dgr (238)

Using of (n 0 %%) and (n 0 %%) atomic orbitals, Eq. (2.38) becomes
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22 22 2nd term

11 ] (r)+Va (7-R,—d;+d))
1 a PR 14 J
=+ f 2212 TTijn Fr'l (]) 1(7") YO%+%(0' ¢) { 2 l nl] (T”n)
2 2

X YO%J,% Bijns Pijn)d>r

-+ 0 (2.39)

The 3" term of RHS in Eq. (2.35), we have

ajal- — - - _
ij ,nl]M( * di B dj 3rd term B
() 4V, (F-R,—d+d;)
a; a; J J—M+1
+f 2(]+1) Ty {lGnlJ(r)} Yl+1 M- 1(0 ¢){ 2 } 2(J+1) {LGnU(r”")}

X Yl+1, M—% (Gijnv ¢ijn)d37' (240)

Using of (n 0 %%) and(n 0 %%) atomic orbitals, Eq. (2.40) becomes

a;a; = - -
t (R, +d;—d))
( O%' nO% ! 3rd term
o+1 Va,(P)+Va,(F-Ry—d;+d))
j— 2 2 ] 4
=+ /—2( S o UG Y Vo %w,qb){ -

1 1

—=+1 .~ 5 3
Ce) U6 (n) oyt iy biyn)dr

_-|_f

{lG 1(7‘)} Y1 0(6 ¢) { aj(F)+Vai(127_Rn_di+dj)}

37‘7‘

1 . : -
X \/; {lGZlOl(Tijn)}Yl,o Bijns Pijn)d>r
2

v, .(F)+Vai(?—ﬁn—d'l+&-)

1 1 . ~Qjf SNV* UF a ) . ~Q§ Y
=+§f - lGﬁJO%(r)} Y1,0(9'¢){ ’ 5 }lGnO%(Tijn)}

TT”
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X Y10 (Bijn, Gijn)d’r (2.41)
The 4 term of RHS in Eq. (2.35), we have

t9%  (R,+d;—d,

M ntjM / 4th term
Vo () 4V, (F-Ry—di+d;)
. J+M+1 j ; !
=+J 20+1) Trijm i Gnl]( Y Yl+1 M+1(9 ¢){ 2 }
J+M+1 a;
2(J+1) Gnll(rlln)} X Yl+1 M+ 1 (6 ijn ¢ijn)d3r (2.42)

Using of (n 0 %%) and (n 0 %%) atomic orbitals, Eq. (2.42) becomes

aia; - - -
j4i
t 11 11 (Rn + di - dj)
no—, no—

22” 22 4th term

1,10 Va,(#)+Va, (F—R,—d;+d))
j— 2 2 ] i
=+ f—z(_ﬂ) pr— {i G (r)} Y0+11+1(6 ¢){ -

LR} @ o
:~a 3
22(;1) {LGn(l)%(rifn)}YOH%% Bijn, dijn)d>r

_+f

3rr 2

{lG (r)} Y7, (6, ¢>){ “j(F)Wai(?_R"_d”df)}

2 . i -
X \E {lGZOE(rijn)}Yl,l Bijns Pijn)d>r
2

2
3

1(r)} Y71 (6,9) { aj(F)+Vai(F—§n—di+dj)}

2

X {iGziOl(?'ijn)}Yl,l (Bijn, dijn)d’r (2.43)
2

Using Egs. (2.37), (2.39), (2.41) and (2.43), then Eq. (2.35) becomes
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a]al

o (R +d, — c?j)

nO—
a; Vg () +Va, (F~Ry—d;+d)) o
= f”] n] ()" Y5,0(0, ¢){ ’ 5 ] } F:lll()l(rijn)yo,o (Bijns Pijn)d’r
in 2
1 Vo, (P)+Vq,(F-Ry—di+d))) D
3 1(7”)} Y70(0, ¢){ . 5 . {leol(Tijn)}YLo Bijns Pijn)d>r
2

2

ai(?_ﬁn_&i"'&j) i [ 3
+‘f {lG 1(7”)} Y1100, ¢){ 5 } {lGnég(Tijn)}Y1,1 Bijn, Pijn)d°r

3

(2.44)

If the atoms, a; and a; are placed along z axis, using the relation in Eq. (2.27), the relativistic

hopping integrals, ¢, { ]1; M (|ﬁn + cii - &j|a2) is equal to the relativistic TB parameter,

a]al . .. aja; - - 3N

(nl] nl])1 The above statement leads this condition, 15,011 o1 (Rn +d; - dj) =
0% M9%

ajal

(n 0 -, n0 —)1 Then, Eq. (2.44) becomes

a]al

(10 3, nO—)1

-/

a; a-(F)+Vai(7j_|ﬁn_&i+&j|éz) N
n} ()" Y5006, ¢){ - . F* 1 (Fijn)Yo,0 (Bijns Bijn)d’r
2

T Tijn

1 aj(f)+Vai|f—ﬁn—&i+&j|éz 4 s 5

+5/- 1(r)} Yi0(6, ) > (6" 1 (7in)}io Bijn, Pij)d’r
2

2 a-(F)"'Vai(?_lﬁn_di"'&ﬂéz) . ; N

+3)- 1(7")} Y, (6, ¢){ ’ 5 {leol(rijn)}Yl,l Bijns Pijn)dr
2
(2.45)
Let, [Appendix A]
Ldaja;
5502 m02)
a a-(F)+Vai(f)_|§n_&i+&j|éz) i N

[— . (7’) Y5 0(6,¢) 1~ F (7in)Yo,0 (Bijn dijn)d>r

TTijn n 2 TLO2
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(2.46)

Sda;a;
(ro),. '\ =
( 2’”05)
(P)+Vq,|F-Rn—di+d;le,

m} Y106, ¢>>{“" . ’ }{ic,‘jgl(ﬁjn)}n,o Bijnr Pijn)d*r

(2.47)

sda;a

(ppﬂ)( aj:()l) =
2’ 2
a-(F)+Vai(7j_|ﬁn_&i+a'|@z) i (o
(T)} Y7, (6, ¢){ - 5 : } {lGZ(l)l(rijn)}Yl,l Bijns Pijn)d>r
2

(2.48)

It is noted that in Eqs. (2.46), (2.47) and (2.48), the letters, L and S indicate the large and small
components of the relativistic atomic orbitals respectively. The label by letters I or [ takes the
value of 0,1,2, ..... for the atomic orbitals namely s,p, d, ... respectively and the label M is

expressed as o, 7, §, ... inplaceof 0,+1,+2,..... respectively.

Using Egs. (2.46), (2.47) and (2.48) into Eq. (2.45), then Eq. (2.45) becomes

a]al Sda]al

nO) _(pp )( 1 ) _(pp )( 1)

2, 2 0-no0 no

2’ 2 2' 2

n 0— nO—)1=(ss )(

(2.49)

It is confirmed from Eq. (2.49), the relativistic TB parameters, K ;j ai(r'l 0 %, no0 %)3 is the
2

resultant or the linear combination of the atomic orbitals for the large and small components of the

relativistic atomic orbitals. We can write the relativistic hopping integrals, tc,lé ?i o1 (ﬁn + c?i —
o "3

Jj) by using cubic harmonics or real harmonics [61] that are given in the following Egs. (2.50),

(2.51) and (2.52) [ Appendix B] instead of the spherical harmonics that are inserted in Eq. (2.44).
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YO,O(HI ¢) = CS(Q, ¢)

(2.50)
Yl,O(eﬂ ¢) = CZ(QJ ¢) (251)
Y11(6,8) = = 5 [(C.(6,9) +iC, (6, ¢)] (2:52)

The relativistic hopping integrals from Eq. (2,44) becomes

a;a;
t J

ol noll (Rp + d;i — d))
n 22’ n 22

1 Aj ok Va.(?)+Vai(r*_ﬁn_5i+&j) o
= f ~ F, },1(7') CS (9; ¢)) J Fal l(rijn)cs (Qijn’ ¢ijn)d3r
T Tijn nOE 2 noz

1 1 R 5 Vaj(F)"'Vai(?—ﬁn—&ﬁ&j)
t3l o 60y G6.9) {

2

X {iG:lliOl(Fijn)}Cz (Bijn, Pijn)d’r
2
2 1 TR 1 ) i Vg [ (F)+Vq,(F-Ry—di+d;d;)
+3 e {zcjj;%(r)} (=5 [(C(6,9) +iC, (6, )] }{ : - — }

X {iG,ff)%(F)} - % [(Cx(Oins Dijn) +iCy(Bijns Pijn)3dr (2.53)

In Eq. (2.53), the symbols, C5(8, @), C (0, ), C,, (6, @) and C,(6, ¢) are the cubic harmonics
[Appendix B]. After simplifying, Eq. (2.53) becomes

a]-ai

tn (R, +d;—d))

]
2z %2

1 Aj s Va.(F)+Vai(f_ﬁn_gi+&j) o
= frr-, F/ ]'1(7‘) CS (Gl ¢) { J . Fa l(rijn)CS (eijn; ¢ijn)d37"
umono3 nos

1 1 cAOf NNk s Va]-(?)'*Vai(?—ﬁn—ai‘F&j)
#3166 €00,9) {

2 }{iGZiol(Fijn)}Cz Gy ¢ijn)d3r
2

l 1 R ¥ B N Vaj(F)+Vai(?—f€n—&i+&j)
AT 06,6 (66, 9) }{

2 } {iGrl:(iJ%(Fijn)} Cx(Bjns Pijn) d°r
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v, j(F)+Vai(7—§n—C_ii+3')

i 60 [cx(9,¢>]*}{“ : ’}{iG,‘j;l(ﬁ,-n)}icy(ei,-n, bijn) d*r

v, .(F)+Vai(F—§n—d+d-)

% (7')} [iCy(e, ¢)]*}{ - > S }{iGzél(Fijn)} Cx(eijn: qbijn) d3r
2
Vo, (M) 4V, (F=Rn=di+d))) (. 0 .. ]
i 65, TG 0,90) }{ — j}{l&f&z(mn)}wy(%n, Dijn) d°r
2
(2.54)
Using the non-relativistic Slater Koster table [60], then Eq. (2.54) becomes
ajal
02 nold (R, +d;—d)
Ldaja; 2 sdaja; 1 2 sdaja;
= ooy 37 PP (aotny *3 2P
sd i d i
PP T3 AR
2 2’ 2
+5xy [(ppo) P = opm) ST L
3 (ﬁoz'noz) (noznoy)
—Lxy (o) 25"\ — (ppm )Sda’al ]
3 (ﬁoz'noz) ( 2’n0%)
sdaija; 1 sdaja;
+2 (@ —y? O
;Y% (ppm )( 03 no) ; (1= y9)(ppr )( nod)
Ldaja sda;a; sda;a;
= (ss0), "9+ ZZ(PPG) KNS (1—22)(PP0) T
(oz’noz) ( 05) ( 2’n0%)
+3x2(ppm) VY 2= xD)pm) VY 2y [(opo) - pm) SV )
( z'noz) 3 (ﬁ 2,7102) ( 2,n02) ( z’nO%)
i sdaja sdaja; sdaja; sdaja;
——xy [(ppo), “ T 1 —ppm) ST 1+ y(ppﬂ) T oty (1 yHpm),
3 ( %'"02) (Rognog) 3 (ogmo3) (7ozmo3)
Lda aja; sda]al
= (sso - + - + -
( )(noz'noz) (p )( 02) (p )( z’noz) (pp )( 2’n0%)
Ldaja; 1 sda sdaja;
= N s0zma3 3 PP 2oty 3 PP 0o 259
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Using Eqgs. (2.49) and (2.55). we have the relation between the relativistic hopping integrals and
relativistic TB parameter in the following

(1 ai a al - - -
(] 0- nO—)1=t J nOE(Rn+di—dj) (2.56)
22' 22

(ii) Relativistic hopping integrals for the combination of (1 0 %%) and(n1 ll) atomic orbitals

Form Eq. (2.32), we can write the expression of the relativistic hopping integrals
a;aj

LM UM (ﬁn + cil- - &;) for (AIfM) and (nlJM) atomic orbitals.

ajai

triijM nlJM (Rn +d; - dj) =

. ]+M aj(F)"’Vai(F_ﬁn—&i‘l'&j) J-M+1 _a;
f 2] TTijn nl]( ) Yl M- 1(0 d)){ 2 2(J+1) Fnl] Un) X

l M—— (Hunu ¢L}n)d r

i—M (P)+Vq,(F-R,—d;+d;) _
J-M aj aj J JAM+1 nap (o
+f 2j T Tijn nl]( ) I M+1(8 ¢){ 2 } 2(J+1) Fnl] len) x

Y, mil (Bijn, Pijn)d’r

+f -M+1

a; (M) +Vg (r —R,—d;+d;) a
e I COI bR ey G

X Yl_l,M_i Bijns Bijn)d’r

/17 o, (P +Vo,(F~Ry—ditd)
+ ]Z-EJNJI:;)I 7y {lGnlJ(r)} Yl+1 M+1(9 ¢){ 2 }{

aj
({6 (Fyjn)}
X Yl—l,M+% (Bijns Pijn)d’r

(2.57)
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The 1 term of RHS in Eq. (2.57), we have

aja; =g 3 _ 3
tr’lifM nljM (Rn +d; d] 1st term

-] J+M 1 () Y (9 ) Va; (M +Va,(F-Ru=di+d)))  [[Tare1 R (7
- 2F T Tijn nl] _1W 2 20+1) nl] Tijn

X YL,M—% (eijnl qbl-jn)d3r (258)

Using of (n 0 %%) and (n 1 %%) atomic orbitals, Eq. (2.58) becomes

aia; = =2 =
g et
t 1 11(Rn+di_ j)
n 0— 1—
22 1st term

’ Va ,(F)+Vq,(F-Ry—d;+d)) ’
=— 22_2 m_n 1( )" Y 1 1(0 ¢){ J - } 2 +1) nl (run)

X Y11 (Bijn, Bijn)dr

(#)+V,, (F~R,—di+d,))

1() Y0 (6, ¢){“" - ’}th(ﬁm)

X Y10 (Bijn, Pijn)d’r

S §f

TTijn

(2.59)
The 2" term of RHS in Eq. (2.57), we have
a;a; - - _ —>‘ _
nijM nijm (Rn +ds d] 2nd term
+f - 1 v )Vaj(F)+Vai(F—§n—67i+5,-) JEMAT )
2 TTim Fy @ 10,9 2 20+ ol
XY, s B ST (2.60)
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Using of (n 0 ll) and (n 1 ll) atomic orbitals, Eq. (2.60) becomes
S u(Ravdi—d)

22 2nd term

nO

2

( )" Y (0 ¢){ “j(F)J’V“i(F"ﬁ"_&iJ’&f)}
1 1 1

X Y % %( ijn ¢l]n)d3

S 2.61)

The 3" term of RHS in Eq. (2.57), we have

ajai T - _ —>' _
HijM nijM (R +d; d] 3rd term
Johet Vo (F) Ve, (F—Ru-di+d) .
] = [ e Oy 1 a0 65 o))
XY -t (Bijn, ¢ijn)d37” (2.62)

Using of (n 0 %%) and (n 1 %%) atomic orbitals, Eq. (2.62) becomes

aia; - >
j&i _
v L (Frd-d) -
22’ 22 3rd term

1la a; () +V, o, (F-Rn-di+d)))  [242 .
_ |22 2 2 (:n (3
+J /2(%“) o G 1(r)} v 1%(9,@{ ; } 2 06,5 (Fyn))

X Y1—1%—% Bijns Pijn)d®r

- -

(#)+Va, (F—Rn—di+d,)

1(r)} Yo (6, ¢>{“" = }{lG 2 (Fin)}

XYoo (Bijn, Pijn)d®r

(2.63)
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The 4" term of RHS in Eq. (2.57), we have

-

tajai (ﬁn + Cji - d]) =

ALJM M 4th term
417 o, ) +Va,(F~Rn—di+d))
J+M+1
f [ S GO ¥, a6 )

X Yl—l, M+% (Gijnr ¢ijn)d3r (264)

Using of (n 0 %%) and (n 1 %%) atomic orbitals, Eq. (2.64) becomes

n 0=, 1—
22 22 4th term

a.(?)+Vai(F—§n—di+dj) i D
~ {iG 1(r)} ARERIC ¢>>{ : - }{/— 06,111 (7ijn))

XY 1-1, +1 (QL]TU ¢L]n)d r

=0 (2.65)
Using Egs. (2.59), (2.61), (2.63) and (2.65) into Eq. (2.57) then Eq. (2.57) becomes
aja; =
tnO%, nI%(Rn-}_ ‘ ])
a;(P)+Va, (r —-Rp—d;+d;) o
f I “’1< M) Y50 (6, ¢){ ’ } F .\ (Fin)
2
X Yo Bijn ijn)d’r
B l 1 . aj vk . Vaj(?.)'l'vai(?_fén_&i"'&j) . a; N
ﬁf e G2 Y Yo @, ¢>{ . 6, (m)3
X Yoo (Bijn, Pijn)d’r
(2.66)
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Similarly to (i), if the atoms, a; and a; are placed along the z axis, using the relation in Eq. (2.66),

.« . . . . ] 1_ g = = . o . .
the relativistic hopping integrals, tiis M LM (|Rn +d; — dj|ez) is equal to the relativistic TB

parameter, K, G4 lf, niy )1 and this statement leads the condition, t ’0 e (ﬁn +d, — cfj) =

22’ 22

a]aL

(n O -, nl —)1 Then, Eq. (2.66) becomes

a]al

(10 2, n1—)1=

_ l 1 A oy Vaj(?)+Vai(F—|f<"n+&i—&j|ez) a; .
ﬁ AR GIC ¢>){ ; Fra(m)

X Y0 (Bijn, Pijn)d’r

B l 1 . A0 vk ok Va]-(F)+Vai(?_|ﬁn+di_&j|ez) . a; 5
\/;frri]_n {lGﬁ 0% (M} Yo 6,9) { > {lGn 1% (riin)}
X Yo (Bijn, bijn)d>r (2.67)
Let,
Ld a]al _ aj(f)+Vai(F—|§n+&i—&j|ez)
(spo )( 02)—frr 1() Y00(9 ¢)){ >
X F:ill(?ijn)yl,o Bijnr Pijn)d3r (2.68)
2
sdaja Vo ,(P)+Vq,(F—|Rn+di—djle;)
(pso), U= 1(r)} Yy (6, ¢){ ’ d
TLOE,TLOE) 2

X {(iG™ 1 (Fijn) oo Bijn Pijn)d’r (2.69)
2

If we consider the above Eqgs. (2.68) and (2.69), then eq. (2.67) becomes

a]al( 0— n1—)1= f(sp )Ldajal f(p )Sdajal ) (2.70)
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Similarly to (i), we can write the relativistic hopping integrals, t:é Cll_; ol (I_?)n + Ji — c?,) by
22

22’

using cubic harmonics [61] [ Appendix A] instead of the spherical harmonics that are inserted in

Eq. (2.44). The relativistic hopping integrals from Eq. (2.44) becomes

ajai - - - _
ALfM niyM (R” +d; — d]') =
Va, () +Va,(F—Rn—d;+d; ,
-3l = o 1( )" €5 (6, ¢){ : (2 ’)} F,‘j;%(njn)cz Oijns bijn)d>r
P ST TR Vo (P) 4V, (F=Rp—di+dj)) .
_\/; e {lGﬁ]()% My 6, ¢){ : 2 {‘6515 (rijn)}Cs (Bijns Bijn)d®r
(2.71)
Similarly (1), using the non-relativistic Slater-Koster table [60], Eq. (2.71) becomes
aia; 2
nf)_ 11(R +d; — d;)
1 Ldaja; Ldajal
\ﬁgz(sw)(ﬁo%'nlz) fgz(p )( n1d) (2.72)

Using Egs. (2.70) and (2.72). we have the relation between the relativistic hopping integrals and

relativistic TB parameter in the following

a]al ajal

10 2

(ot d; — d;)) (2.73)

22’ 22

(102, n1 1= g,(t
275

Similarly to (i) and (ii), it is possible to calculate all relations between relativistic TB parameters,

ajal

(hlf, nlJ )1 and relativistic hopping integrals, t] (Rn + c?l- — cfj) of the eight atomic

ni ]M nijMm
orbitals, ( E > + E)’ (1’11 > + E)’ (1'11 > + E) and (7’11 > + E)' After calculations of the all relations

that are tabulated in Table-1 in order to upgrade the Slater-Koster table. This table (Table -1) is

called the relativistic version of the Slater-Koster table.
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2.5 Relativistic version of Slater Koster table

Table-1: It is noted that g,, g, and g, are the direction cosines of the vector, (ﬁn +d; - J]) .

(RIfM) (nlJM) Hopping integrals, t(arglfl]'iM),(nl]M) (ﬁn +d; - J])
soll 11 a4 1 1
(nozz) (nOEE) K,” (20 > 20 2)%
11
(7033 (nO% - %) 0
,~A11 11 a;a; 1 1
(7033 (n12-) 9: K, (203,21 21
,A11 . a;a; 1 1
(03 | (15— (9x — ig,)K, ™ (20 5, 21
rn11 33 V3 . aja; 1 3
w039 | 33 =5 (9 +1gy) K205, 2190
11 3 3 0
(n0>-) 122
jj - 23 12) aja; 1 3
(7’105;) (nlff) 9z de ‘20 > 21 E)§
N 3 1 1 . aja; 1 3
(102) (1% -2 ~(9x—1gy)K, (20 2, 21 i
1 1 11 0
(05730 | (033)
o1 1 1 a;a; 1 1
(nOE—E) (TIOE—E) Kd (202'202)%
1 1 1 . aja; 1 1
05 --) | (n157) (gx +1gy)K," "(20 5, 21 2
1 1 1 1 aja; 1 1
: —-g,K 20-,21-=
(nOE—E) (nli_f) 9Ky (203 2)%
1 1 33 0
(05720 | (133)
L, 11 3 3 V3 . aja; 1 3
(nog— ?) (n1 53—15) Zl(gx igy)K,” (20 21, 21 23)%
. a;a;
1T 1 3 1 G 1 .3
01 N KY%2023, 213,
(n0 ) | (n15-5) 9z%a 2 275
'12112 i KP"@21=, 202
(n122) (n0->) g:Ky (215, 5)%
L 11 1 1 . aa; 1 1
29 | (072 (9x —igy)K, (215,20
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(7'1111
25) ( 1
(h1== nl==
2}) ( 122)
(ﬁlll nli_l) Kaja.
22) 332 d 1(21 T
(T'L111 (nl== L 21 1
o, 22) 1
5 (n13 3 NG 0 2
(13 22 —2 9209
2 3 x+ig T
(Tl . V3 Y)K JUi
(ﬁlll) 155) —92(gx 1 d (211
22 ( 3 x — L9 )ZKa'a. 2,213)
41 nl__l l y ja; . 1
(nl__l 5 9 2(392 4 (211 :
2 5) 2 Z_]‘)Kajai 2’213
12 ("011 . Y21 2 i
;- : 22 29:(9 13,2132 2
272 | ( 12 21 <~ 19K > 2191
27D 1 ig, )K" > 219
(t13-3 (152 S P IEETEN
2 _) 22 gZK jai 2! 0 _)1
(115 D | my-3 S TERTE s
- 13 0 :
( 1__1 15_) Kaja.
( 15> nli_—) —E( 2'211)
22 2 > (G i 2/%
: ( 31 NE) gy)ZKajaL. 2
(ﬁll_l nlo3) _—39 d 21 1
272 322 —92(gx — . 5.215)
112 (Tll__l 2 9y)K jo 7)1
(Tll_i 2 =) Zgz(g + d (211 >
22) 112 . X lgy)Kajai 27 21 E)l
(7,7-133) (nOE_) E(1_2 d (211 5 325
- ( 1 21 g;)](;jai 2’ 15)1
(1137 i -3 (213213 :
- - : gx_ig aja; E)l
( 11 Y)K J¥i
(1133 39 RACEE :
25) 22 2 20 .
22 272 SYRCAE: |
(n 33 V3 gY)KaJai
159 -2 g AR
n132 R VK i
15_) 2(1_ a (21§2 12
2 32 (n1§ 3 ) gg)l(sjai 2’ 1 5)1
(133 27 -1 (212,212 2
- 3 12 0T 3g2)K™ 2 21 —) n
(nl__) a 1(21§ 2%
22 0 2' 21 E)
Eg ( 2%
2 JZ g .
) ng/)K;jai (2
13
’ 21 3
2 2
2)1
2
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-2 9.(0x~ ig))KP (213,213,
(A132) (n1; - %) 2 (gc—1g,) K" (213, 21 g)%
_?(gx - igy)ngjai(z 1 %’ 21 Z)E
@ | otk 0" 215,20 ),
12D (nO%—%) (0 19K @212, 20 D
T gt D@13, 21,
W15 | mi-b 0.0 g, )K @12, 21 Dy,
e LS g+ i (215,219,
2
-2, (9. + i,k 215,21 D
(1159 | 13 T o= gk, (215, 213),
z
Do)k (215, 213),
2
I e a0 (212,219,
+2(1-gHK (212,212 g
(W13 | m1-) '
(7’11% — %) (nO%%) %(gx +ig,)K, (21 ; 20 %)%
(W15-9 | (moz-2) 9Ky 215,20 51
@3- | nih 20.00: 19K 213,21 91
(15 -3) (n1%—%) %(1—39§)K§jai(21 ; 21 %)%
, 43 1
(W3- | m1ro) ?(gx +ig)K{" (213,21 ;);
—?(gx +ig,)%K, " (21 ; 21 ;;
(15 -3) m%‘%) 29,090~ iK™ (213, 213),
2
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V3 , aja; 3 3
~20,(gx— iKY (212,212

3
2

, 43 1 31 0
(15— 31
2
, 1 a;a; 3 3
(Tllz—z (nlz_z) Z(1+3g§)Kd] (215'215)1
2
3 aja; 3 3
+11-ghK 213,21 s
2
(13 3) 011 0
o
V3 . aja; 3 1
(7’,115—5) (nOE—E) T(gx-l_lgy)KdJ (215’ 205)%
.. 3 3 11 VE . N2 ,0j0i 3 1
(nlg—g) (nllzz)1 —(9x +igy)°K," (213,21 2)%
, _E . ajai E 1
(15-2) | (n15-7) 7 92(gx +igy)Ky (215,21 91
3 3 33 0
(15— | (@153)
2 2 22
.3 3 3 3 3.0 2\ % 3 3
Ml5-2) | (15 -3) s (1 - 92)K, (212'212)%
1 aja; 3 3
.3 31 V3 . \2,a5a 3 3
@33 iy B gy K" (21 3,212),
2
~ (g0 +19y) K21 2,21 9,
2
.. 3 3 3 1 V3 . aja; 3 3
(Tllz—z) (TllE—E) 7gz(gx+lgy)KdJ (215;215)1

2
aj;ai

V3 . 3 3
—5 92(9x Higy)K, (215,21 9)s
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Chapter 3

Nonperturbative Magnetic Field Containing Relativistic

Tight Binding (MFRTB) Approximation Method

In this Chapter, the nonperturbative MFRTB approximation method for a uniform

magnetic field is described in the following sequence:

3.1 Matrix elements of the Dirac Hamiltonian
3.1.1 In case of ﬁm + &,- = ﬁn + 071- and

3.1.2 In case of ﬁm + c_fj * I_?)n + Ei
3.2 Approximation of eigenvalues, (sgi' o+ Aegi’d") and eigenfunctions, lpg NG

aja,-

3.3 Approximation of magnetic hopping integrals, T77 £ (ﬁn — ﬁm + c?i—c?j)

38



3.1 Matrix elements of the Dirac Hamiltonian

In this subsection, the description of the derivation of matrix elements of the Dirac
Hamiltonian (H) in case of material immersed in a uniform magnetic field is explained. Now let
us consider an electron moves both in a uniform magnetic field and periodic potential. If the
electron moves in this system, the electron is affected by the vector potential and periodic potential

in the system. The Dirac equation for this dynamic electron is given by [59]
Ho (7) = Ez@3(7) (3.1

With
H=ca{p+ e/f(?)} +pme? + Xz X Vo, (7 — R, - Jl) (3.2)

In Eq. (3.1), @3 (7) and E3, are the four-component eigenfunction and eigenvalue respectively, the
subscript K in W+ (¥) and Ey, is the crystal momentum. In Eq. (3.2), m, e and c are the rest mass of
the electron, the elementary charge of the electron and velocity of light respectively, the quantities,
a = (ay, ay, a,), and B stand for the usual 4 X 4 matrices [59]. In Eq. (3.2), the symbols, A
and V,, (7 — ﬁn - cfi) are the vector potential caused by the uniform magnetic field, B which is
applied perpendicular to the electric field, and the scalar potential caused by the nucleus of an atom
a;, where the atom is located at the position ﬁn + czl-, where }_fn is the lattice translation vector and

Ji determine specific position of an atom respectively.
If we consider, the uniform magnetic field B is applied along the z-axis, then B = B¢,
where é, is the unit vector along the z-axis. According to the Landau gauge transformation, the

vector potential A (7) becomes

A@#) = (0,xB,0) (3.3)
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It is noted that B is the magnitude of the applied magnetic field which is defined later in
Eq. (5.1) in Chapter 5. In order to calculate the appropriate form of the relativistic atomic orbitals
of an atom in the presence of a magnetic field similar to the relativistic atomic orbitals of an atom
in the absence of a magnetic field, it is urgent to expand the four-component eigenfunction, ¥ ()

by using the Bloch sum of the relativistic atomic orbitals as a basis function for the development

of the non-perturbative MFRTB method.

The expanded four-component eigen function, @ (¥) is given by
() = T, BT € R + dp) 9™ () (34

In Eq. (3.4), Cg (R, +d;) and 1/1? vRn*di2) are the expansion coefficient and relativistic atomic

orbitals respectively. The subscript, ¢ in l/)a‘ R"+di(77) and superscript, ¢ in Cé (ﬁn + &i) is the

quantum number in the atomic system.

The relativistic atomic orbital for an electron in an atom immersed in the uniform magnetic

field also obeys the Dirac equation. The Dirac equation in the above system is given by

[cd. (B + eA()} + pmc? + V, (7 — R, — d))] e Rn”i(?)

— ggi:Rn*'di lpgi»Rn*'di (?) (3‘5)

iRp+d;

In Eq. (3.5), the eigenvalue, g?' is the atomic spectrum of an atom, a; in the uniform

magnetic field. Using Egs. (3.4) and (3.1), the Dirac equation becomes

H g, 50 Se CE Ry + d) W™ F) = By B, %S € Ry + d) ™ (1)
(3.6)

40



Multiplying by ll),[; yRm ) (#)T from left on both sides in Eq. (3.6) and after integrating, Eq. (3.6)

becomes
= > ajRm+dj oRn+d; >
S, i Xe CL Ry + dy) [ )" I @®TH et i@y =
5] 3 (Rmtd; o pRn+d;
Ex2g, SiXe C(Ry +dp) [, ™ U@ et @dPr (3.7)

Similar to the relativistic TB approximation method (Chapter 2) and conventional MFRTB
method [61], the following two equations can be defined from Eq. (3.7) for the matrix element and

overlap integral respectively [51],

ajRm+d; DBntd o

Hg in e =1 by " OTHP @ dPr (3.8)
ajRm+d; o Rn+d; =

85, &, One 6y = [ 0, (B T @D (3.9)

Using Egs. (3.8) and (3.9) into Eq. (3.7) then Eq. (3.7) becomes

S, 22 C Ry +d) Hy, 1 mie = B 2, 22 Co (R + dp) S5, 7, Sne 81
(3.10)

It is noted that the overlap integrals can be negligible for the different centered of atoms.

The Dirac Hamiltonian in a uniform magnetic field can be defined using Eq. (3.2) as:

H= %[cd’. {p+ eff(?)} + pmc? + Vaj(f"’ —R,, - (Z})
+Z[¢j Val(F - ﬁm - gl) + Zkim Zl Val(? - ﬁk - (Zl)
+ca. {p + e/f(?)} + pmc? + Vai(F —R, — &l)

+ i Val(7 — R, - C_iz) + Ykzn 2 V;n(F — R, - Cil)] (3.11)
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In Eq. (3.11), the 2" term, Vaj (? — ﬁm — ci]) is the scalar potential which is caused by nucleus of
a; atom with respect to ﬁm, the 3™ term, Y, iV (? — ﬁm — d)l) is the scalar potential which is
caused by nucleus of all a; atoms but not including a; atom with respect to ﬁm, the 4" term,
Dezm 21 Vg, (F — }_fk — &l) is scalar potential which is caused by nucleus of all a; atoms including
a; atom with respect to ﬁk but not including ﬁm, the 6 term, Va, (F — ﬁn — Eil) is the scalar
potential which is caused by nucleus of a; atom with respect to ﬁn, the 7% term,
Yi=i Ve, (F — ﬁn — (Zl) is the scalar potential which is caused by nucleus of all a; atoms but not
including a; atom with respect to ﬁn and the 8" term, Y ,un Y, Va, (F — ﬁk — cfl) is the scalar

potential caused by nucleus of all a; atoms including a; atom with respect to ﬁk but not including

-

R,.
Substituting Eq. (3.11) into Eq. (3.8) and then using Eq. (3.5), then the Dirac Hamiltonian becomes

1 a',ﬁn+&' an dl
Hg, jn, Ruig = 5[551 "0, By 01 Oyt € ? ' 8z 0.l
a; Rm+d iRn d
I R G UA G —dl) PRl iy gy
Rm+d; R
F 280 [ o @D (7 - Ry — dy) 98 @y dir

L S B0 [ Y@ (F - Ry - &) @@

aj, Rm+d

2 S S f g @ (7 - Ry - d) R i @i

(3.12)

The matrix elements of the Dirac Hamiltonian can be estimated by using Eq. (3.12), for the

following two cases:
() Rnm
R

(i)

1
g
1

and

o

~ v ~
+#

S ¢ S
o

S
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3.1.1 In case of Rm+ =§n+2,-

=g — -

If we consider, R,, + 07]- = R, + d; then q; = a; and ﬁm = ﬁn, then Eq. (3.12) becomes

_ aj,ﬁn+cij
Hﬁm}'n, ﬁnlf - Sf 8
a; Rn+d a; Rn+d- N
+ X0 [ 0, @MW (R - Ry —d D (D
a Rn+d- N N = - a-,§n+&- N
+ ke X ) ) OV (F - R —dy) T () (3.13)

In Eq. (3.13) of RHS, the 2" and 3™ terms are called the energy of the crystal field. If we consider,
relativistic atomic orbitals, 1/) R"+d‘(r) and l/}al Rntd (#) are localized at R, +d; but not

localized at ﬁk +c?i. Under this treatment the scalar potential, Val(F—ﬁk —c_l)l) can be

approximated by the V, (R + d l) So, the 3" term in Eq. (3.13) becomes

Sen o [ R @Y, (7 - R, — d)) w“l’?n”( ) d3r

= [ pgeRnrdi ) (2, X1V, (F - R —d D} PRt ) gy
Ro+d #R,+d,

= [ pgiRntdigeyt {5, S Ve (Re + dy — Ry — dy)} ¢ Rutdi () g3y
Re+d, # R, +d,
iin ‘ii
= Mgt s, (3.14)

Using Egs. (3.13) and (3.14), then the matrix elements approximated by

o ~( a;Rp+d; + As aLRn+di) 6,7,5 (3.15)

Rmjn, Rnpi& 3
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In Eq. (3.15), the diagonal elements of the matrix are non-zero and non-diagonal elements of the

matrix are zero.

3.1.2 In case of I—fm + El}- * I_i’)n + Ei
If we consider, I_?)m + c?,- * ﬁn + c?i then a; #a; , 6ﬁm g, = 0 and 6;; = 0, then Eq. (3.12)

becomes

1 aj,Rm+d; a = > Qi Ro+d; -
Hﬁm}'n. ﬁni5=521¢jf ¢,,’ " J(r)TVal(r_Rm_dl) ¢§L " l(r)dsr

aj,l_fm+&

1 i > - =g 3 i'ﬁ‘n C_ii e
=TS 0, OV (F = Ry — ) 9T (D dPr

1 a-,§m+¢§- N N - - irﬁn ai 5
= Tem X Yy DV (F = Ry — dy) T B

1 a-,§m+&- N N - - i'ﬁn &i 5
- Tkan X @ WV (7 = Ry — dy) gt T Ry dPr

(3.16)

In Eq. (3.16), it is noticeable that in 1% term, [ #j and in 2" term, [ # i are present, so three centers
are involved. So, the numerical values of these two integrals are small comparing two centers or

one center. So, we can neglect these two terms. But, in 3™ term [ #j or [ # i are not present and
k# m: ﬁk * ﬁm but l_?)k = ﬁn. The 4™ term [ # i or [ #j is not present and k+# n, ﬁk * }_?)n but

ﬁk = }_fm . So, there are very possible to form both two centers and three centers. We can get

matrix elements for the two centers in the following fashion. Therefore, Eq. (3.16) becomes

aj,ﬁm+&

1 i > - =g 3 i,f\;n &i -
Hg in Rie = 3 2kem ] Wy @ Wo (F = Ri — dy) 97 (D dr
1 a-,ﬁm+d- N N - - ivﬁn di N
T X Wy Ve (7 = Ry — dy) T R dPr

1 a-,ﬁm+d- N N = - ivﬁn di 5
= L[ ittty (7 - R, — dp) porft @
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aj, Rm+d

I T U (r—Rk—d)waan”i(F)d%

Rm d RAnTE] 2
+ 2 S em Sesc S Y (7 Ry — dy) p i @yatr
+%f w;j'Rm+dj(?)TI/‘lj(F— d ) lpaan+di(T—g)d3r

aj, Rm+d

+- Zkianf l/) ]( )TV (T - Rk - d ) l/J Rn+&i(?)d3T

1 a-,§m+5- N N - - ir_)n &i N
= Sien S [ Wy OV (7 = Ry = ) p @ dBr
(3.17)

In Eq. (3.17) the 2", 3™ 5™ and 6 terms are three centers. Therefore, we can neglect these

integrals. Then, Eq. (3.17) becomes

Rm+d pAnTA 2
Hgjn, Raig = f ‘»b T, (7 - R, — dy) e Fontd Ad3r
+ - f l/Ja] Rm+d}( )'I'V (r _ d ) l/)aan+d( )d3T
= 0Ty Y EY (7 = R — de) + Ve (7 — Ry — ) 9§ @)

Vaj (F_ﬁm_‘ij)ﬂ/ai (F_ﬁn—&L)
2

= [y, @ A GV AN AT

Finally, we can get the matrix elements from Eq. (3.12) by using Eqgs. (3.14) and (3.18)

_ Rn+d
HRmJ m Rnl & (

A an d
+Ae g : ) 67%5 6§m,§n + (1 - 6j'i6§mrﬁn) X
(#=Rm—d;)+Va, (F—Rp—d;
G )+ 1( 1)2 i ) aan"'d( r)d3r (3.19)

aj, Rm+d

J
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For the simplicity, let us consider that an electron moves in a uniform magnetic field and periodic
potential which is caused by the nucleus of an atom, where the atom is located at origin. The Dirac

equation for this electron is given by
cd. {f + A} + pmc? + Vo, D] Pe° () = & Y’ (7) (3.20)

In Eq. (3.20), the eigenfunction, 1,0? w0 (7) and eigenvalue, e?i’o are the relativistic atomic orbital
and atomic spectra of an atom, a; in the presence of a magnetic field respectively. For our

convenience, the vector, 7 can be changed by the vector (77 — ﬁn — &i). Then, Eq. (3.20) becomes

[cd. (B + eA(F — Ry — d;)} + Bmc? + V(7 — Ry — d)] 9™ (F — Ry — dy)

= & Y (F - R, — d) (3.21)

In Eq. (3.21), /T(? — I_Q)n — (Zl) is the vector potential in uniform magnetic field. The vector

potentials A (7) and A (? — ﬁn - Jl) are related by the following gauge transformation.

A(#—R,—d) =A@ +Vx(#, R, +d)) (3.22)
Using Eqgs. (3.3) and (3.22), we have

x(7, Ry +d;) = B(Rpy + diy)y (3.23)

In Eq. (3.23), R, and d;, are the x component of the vector ﬁn and &i respectively. By the choice
of the gauge transformation, the eigenfunction and eigenvalue are related in the following

equations
lpgi,O (? R, — &i) — o X7, Rntdy) ngi'R”+di(F) (3.24)
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and

00 _ _apRp+d;
gt =gt (3.25)
respectively.

Eq. (3.25) leads the following equation
Aelri = pgdiRntdi (3.26)

§ §

Using Eqgs. (3.24), (3.25) and (3.26), the matrix element becomes

. . _ ai,ﬁnﬂii ai,ﬁn+&i . _ N
Hi,jn, Raie = (& +4¢ )6;,i0n¢ O, &, T (1 = 605, 7,) ¥

£
aj,ﬁm+&]' > .l.Vaj(?_ﬁm_dj)+vai(F_§n_ai) ai;ﬁn‘l'd)i > 3
[y @) A ety ddr
. -3 _i€B o —d: .
= (60" + Aeg "8 8y S5 5, + (1= 8,05, 5, ) n Rt dinfimx=djo) Bny )
0y Va, (D Ve, (F-Ri—d;+d)) Ri+di—d;
x [y (L Y @y ady
) 3 _i€B o —d: .
= (&g + 8e{"08;8y 6 g, + (1= 8,85, 5, Je (xR fmy )
a]-ai - — - -
X T 1Ry = Ry + di—d)) (3.27)

With

-

(B B+ dimd = [ 90 iyt DI RAD) -
n m i j) = n

ajal-
T 2 ¢

dj o 13
iy (MHd°r

(3.28)

In Eq. (3.27), the hopping integrals, Tnaéai (ﬁn — ﬁm + cii—cij) are known as the magnetic hopping

integrals that is defined in Eq. (3.28). In order to calculate the matrix element, H £ of the

ﬁmj77ﬁni
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Dirac Hamiltonian, it is very urgent to calculate the magnetic hopping integrals and overlap
integrals. Again, in order to calculate magnetic hopping integrals and overlap integrals, it is need

to calculate eigenvalues, sgi’o, As? “Oand eigenfunction, 1/;? io(f’). Now, I will explain how to

calculate these in the following sequence:

3.2 Approximation of eigenvalues, (e? 00y Asgi’di) and eigenfunctions,

Yo

In this subsection, the estimation of the eigenvalue and eigenfunction using non-

perturbative MFRTB method is explained. In order to calculate of H firstly, we need

Rnjn, Rni§’
to estimate of (s?i’o + (Ae?i'ai ~ 0)) and yb? (%) by avoiding some difficulties by using the
perturbation theory. Because the perturbation theory becomes invalid for the estimation of the
correction terms in the eigenvalue and eigenfunction in high magnetic field case due to the power
series of the ratio (x,,; is defined Eq. (3.31) later in this Chapter) of the spin Zeeman splitting and
spin-orbit splitting [51]. For this difficulty, the Hofstadter butterfly diagram becomes worse in the
high magnetic field case [51]. For this reason, the non-perturbative MFRTB is applied in the high
magnetic case in order to overcome these difficulties using in the perturbation theory [51]. For this

purpose, we consider the Dirac equation for an isolated atom, a; at origin in the uniform magnetic

field.
[cd@. (B + A} + Bmc? + Vo, (D] Yr' (D) = &7 Ye° (P) (3.29)

In Eq. (3.29), the term ecc?./f(f") appears due to the magnetic field which is known as the

perturbation term. In order to evaluate the value of (e?i’ + (Aegi’d" ~ 0)) and ng (), we have

to estimate the solution of Eq. (3.29). The solutions of Eq. (3.29) are obtained by the
nonperturbative MFRTB method, specifically the variational method [51]. The eigenvalues and

eigenfunctions are approximated by
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( ~a; ehB

Tll] - 2m
ot E g g 2
nlj nlj-1 + ehB + nlj nij-1 1+Ex +1+85nlx2
2 am — 2 3l 9 nl
B+ B g g f 2
nlj nl]—1+ehB_ nlj nlj-1 1+Ex _|_1+8Snlx2
a;,0 _ 2 am 2 37l 9 nl
& = + g% T 2
Enly Enij-1 + ehB n nly T Eniy-1 1— Ex + 1+85nlx2
2 am 2 37l 9 nl
Sty + Ent hB Enij = Bt 2 1+8s2
nlj nlj-1 , en5  “nij nlj—1 1-25  + w2
2 4m 2 37l 9 nl
—a; ehB
\ g+ 22
With
ehB
— 2
Xl = —ar—ar—
Snl] snl]—l
and
a; —
( (pnl]iM(r) )
a; - a; aj o
Py @ + 1 @y ()
S
a; aj > a; N
4" Py @+ Pry ()
a;,0 .- 1+(Tlii)2
lrbfl' (T) = < a; . a; aj .
Py @+ 100 g (D)
,1+(nfi)2
a; a; N a; N
—U—l (pn;] —M(T) + <Pn;]_1 —M(T)
’1+(nfi)2
a; -
\ (pnl]iM(r)' )
With
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i 3 Xn 2 1+8S2

respectively.

In Eq. (3.31), x,,; is the ratio of the spin Zeeman splitting energy (ezh—mB) and spin-orbit splitting
energy (& fl; ; énali]_l). In Eq. (3.34), S,,; is overlap integral between the radial parts of the atomic
orbitals of @} u(7) and () j—1m (7). From Eq. (3.31), in the low magnetic field case, x,; < 1
because spin Zeeman splitting term is small compare to the spin-orbit splitting. In this case, spin-
orbit interaction is the dominant part that is called the anomalous Zeeman effect. In the high
magnetic field case, x,,; > 1 because spin Zeeman splitting term is large compare to the spin-orbit
splitting. In this case, spin Zeeman splitting term is the dominant part that is called the Paschen—

Back effect.

3.3 Approximation of magnetic hopping integrals,
ajai

Tnf

(Rn - Rm + di_dj)
In this subsection, the approximation of the magnetic hopping integrals is explained briefly.
For this purpose, let us consider an electron moves in uniform magnetic field and in a periodic

potential in the crystal. Let us consider the atoms, a; and a; are located at origin and (ﬁl + cil- —

cij ) respectively. The Dirac equation for an atom, a; is given by
> (= o - 2 - _ajno — aij _aj:O —
[cd. (B + e(A®) + Vx(F)} + pmc? + V()] v, ) =¢" ¢ () (3.34)
With

l/;naj,o (F) _ e—i%x(?)lp;—j'o(?) (3.35)

And the Dirac equation for an atom, a; is given by
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[ca. (5 + ¢ (A + vx@®)} + pme? + V(F - d - d; +d)] 50 @)

-

L

.

= A dy R dd gy (3.36)
With
LR Gy _ i@y uerdiod g (337)

Egs. (3.35) and (3.37) have been written by using Eq. (3.24). It is noted that, in Egs. (3.35) and
(3.37), the transformation of the wave function is called Landau gauge transformation that can be
obtained from the symmetric gauge transformation. By using the gauge transformation of a

function from the symmetric gauge to the Landau gauge leads the following equation

Bxy

x(7) === (3.38)

2

Using Eq. (3.38), then, the Egs. (3.35) and (3.37) become

a0, —iZ a0,
v, () =e ‘thxylpn’ (P sym (3.39)
I G (S T (3.40)

. e
. . . . . .. —i~Bxv-
Since the eigenfunction of atom, a; is localized around the origin, so the phase factor, e s

nearly equal to 1. So, the eigenfunction, 1/);1 70 () sym in Eq. (3.39) is approximated by

0 i -
P, D~ 0y () (3.41)
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By using the gauge transformation of a function of Landau gauge, A= % (§ x 7) that leads the

following equation

> 1
X(T) = EB{(Rly + diy - djy)x - (Rly + diy - djy)y} (342)

pRi+di—

. . . : dj . . :
Using the symmetric gauge the eigenfunction, 1[)? I(#) sym 18 related by the eigenfunction ,

lp?i,o (77 — ﬁl — cfi + Jj)sym' For this gauge transformation in Eq. (3.42), the wave function in Eq.
(3.40) becomes
— e_ize_hB{(Rly+diy_djy)x_(Rlx+dix_djx)y}

Yoo (R —d+ ),

ai,§l+&i— d

da; -
X ' sym (3.43)
Using Egs. (3.40) and (3.43), we have
Py = By iy

= e_iZthyl’bgi,O (77 — ﬁl — Cii + &)])

sym

_ e—i:—thy eize—hB{(Rly+diy—djy)x—(Rlx+dix—djx)y} lpai,o (?— ﬁz _d+ J)
¢ t 1/ sym
.e
_ _—i==B{(Riy+diy—djy)x—(Rix+dix—djx)y+xy} ;@0 (2 5 _ 3 3
=e ‘2n ytdiy=djy xt@ix=djx 1/)5 (r R, —d; +d]~)

- dijy—d; —(Rixtdix—djx 00 (2 D i i
= o inB(Ry+diy=djy)x—(Rix+dix=djx)y+x7} Y (F— R, — d +dj)sym (3.44)

If we consider the wave function, 1/1? w0 (F — 1_?)1 — c?l- + aj)sym in Eq. (3.44) is localized at 7 =

ﬁl + c_fi - jj, then the wave function approximated by
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i,O - =2 2 e _ i - - - -
e (F =R —d; + dj)sym = i@ =R —d; +d)) (3.45)

. e
—i——B{(Ryy+diy—d ) x—(Rix+dix—d jr )y +xy} . 5 B
B {(Riy+diy=djy)x= (Rt diz=dju)y +27) is approximated at ¥ = R; +

If the phase factor e
c?i - Jj and the components are approximated at x = Rj, + d;x — dj and y = Ry, + d;y, — d;,, ,
using these components, the phase factor becomes

e—i:—hB{(Rly+diy—djy)x—(Rlx+dix—djx)y+xy}
— e_ize_hB{(Rly"‘diy_djy)(Rlx+dix_djx)_(Rlx+dix_djx)(Rly+diy_djy)+(Rlx+dix_djx)(Rly+diy_djy)}
~iB{(Riy+diy=djy) Rix+dix—djx)

=e

e
~ e—lEB(R[y+diy_djy)(Rlx'l'dix_djx) (346)

Using Eqgs. (3.44) and (3.46), the wave function becomes

ayRi+di—d; L —d i) )x— —d; .0 S 33

lpgl FATY () = e izB{(Riy+diy=djy)x—(Rix+dix=djx)y+xy} l,l)gl' (7—R1 —d, +dj)sym
a;Ri+d;—d; _i& . —d . S0 o - - -

Y, P ~e ignB (Riy+diy=djy)(Rix+ dix—djx) Qi@ — Ry —d; +dj) (3.47)

Using Eq. (3.47), the magnetic hopping integrals from Eq. (3.28) become

j(F)+Vai(F—§l—&i+&j)

2

ajal-
Tn 3

aj
nijm

- - - N Va
(Ri+di—d) =[¢ M
X e_ize_nB(Rly’fdiy_djy)(Rlx+dix‘djx)q;sli]M(F —R —d; + cij)d3r

_ aj R Vaj(F)+Vai(F—§l—&i+&j) a: R N - - 3
- f‘pij (7')-r 5 (Pnf]M(T' - Rl - di + dj)d r

X e_ize_hB(Rly+diy_djy)(Rlx+dix_djx)

a; R N Va.(F)+Vai(F—§l—&i+ﬁj) a; R N N N
= f(pn{]M(r) (r)-l- : 2 (pnl]M(r - Rl - di + dj)d3r
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X e_ize_hB(Rly"'diy_djy)(Rlx"‘dix_djx)

__—i=B(Ryy+diy—djy)(Rix+dix—djy) , 4% 2 .3 3
=g ‘zn My TGy TGy ) ARIx T Gix ™ A jx tr’lijM,nl]M(Rl + d;—d;) (3.48)

With

a;ai

Caiwt, g (Bt + di—dj)
Vaj(F)+Vai (?—ﬁl—&i+&j)

= [0y @ O - oniy(F— R —di+dpd®r  (3.49)

a]-ai

In Eq. (3.49), Csijnt, ni ]M(ﬁl + d’i—&j) is known as the relativistic hopping integral for zero

magnetic fields. From Eq. (3.48), it is clear that the magnetic hopping integral is affected by the
phase factor, e~ GrB (Riy+diy=djy)(Ructdin=djz) que 1o the uniform magnetic field. The magnetic
hopping integrals are the product of the hopping integrals in the absence of magnetic field and the
. B . . aja; = = = .
phase factor (Peiperl’s phase factor). The hopping integrals, t.i M UM (R, +d;—d;) in the
absence of magnetic field can be calculated easily which is called the relativistic version of the
Slater-Koster table [52]. It is noted that Eq. (3.48) corresponds to the well-known approximation
of using the Peierls phase factor [46,62]. Eq. (3.48) is widely used as the approximation of the
magnetic hopping integral [62]. The resultant approximated forms of the resultant magnetic atomic

orbital and atomic spectrum are given in Refs. [24, 51]. Since the resultant magnetic atomic orbital
is expressed in the linear combination of the relativistic atomic orbital, Tnaé;ai (ﬁl + c?i—c_l)j) can be
expressed using the linear combination of relativistic hopping integrals and overlap integrals in the
absence of a magnetic field. The resultant approximate forms for Tnaéai(ﬁl + cii—cij) are given in

Table II of Ref [51].
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Chapter 4

Derivation of Streda formula for the Hall Conductivity

In this Chapter, the magnetic field dependence Hall Conductivity via Streda formula is
described.
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Magnetic field dependence Hall conductivity

The quantum Hall effect can be analyzed by the Streda formula [50].The derivation of
Streda formula [50] for the magnetic field dependence Hall conductivity, oy, is discussed. It is
noted that the Hall conductivity oy,;; 1s quantized immersed in a uniform magnetic field according
to experimental results [4,33,41-44], and theoretical predictions [31,32]. According to the Streda
formula the Hall conductivity is the derivative of the number of electrons which means the number
of states with respect to the magnetic field at the Fermi energy. The numbers of states change with

magnetic field at a fixed Fermi energy level. So, the oy,;; 1s a function of a magnetic field. The

2
2D electron system has integral values of the Hall conductivity in unit of % if the Fermi energy

lies in a gap between two successive Landau levels in a magnetic field.

Let us consider, a uniform magnetic field is applied in a system along the z-direction, so

the Hamiltonian of the system is given by

2
7 1 - e 2. - >
Hy = %<p - zA(r)) + V(1) (4.1)
In Eq. (4.1), A (7), V(¥), m, e and c are the vector potential due to the magnetic field, periodic
potential that is caused by the nucleus of an atom, rest mass of the electron, charge of the electron
and velocity of light respectively.
If we consider the electric field is applied along the y-direction, additional Hamiltonian will be

added with Hamiltonian in Eq. (4.1). The additional Hamiltonian is given by

—~
7

fi = —eEy 4.2)

We can write the following equation for the ket, |& >
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Hyla > = E|a >

For the total Hamiltonian, we can write the following equation for the ket, |¢ >

(Hy+M)|¢p >=El¢p >
The Hall current
Jx =< ¢|jx|¢ >

For the perturbation theory, we can write

<ﬁ|ﬁ|a> B> 4o

¢ >=la>+X.p Fa-Ep

Using Eq. (4.2), from eqn. (4.6), we have

<B|-eEy|a>

lp >=|a>+X4p FuEp B> +--
And
<BleEy|a>"
<Pl =< al+< Bl Tap=p 2 — +

The charge current density operator is given by

In Eq. (4.9), L? is the area of the system.

Using Egs. (4.7), (4.8) and (4.9) then, Eq. (4.5) becomes
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(4.6)
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(4.8)

(4.9)



<pBleEy|la>

]x:_L_ze<a|v’C|a> _L_Ze<a|vxza'ﬁ EUC_Eﬁ
1 <BleEyla>* .
Lze < ,Blztx,[)’ Eq—Ep Uy

The 1* term < a|?,|a >= 0, vanishes, then Eq. (4.10) becomes

. e? <al|bg| B><Blyla>+<Bly|a> *<B |y a>
H=—=X E
x 12 ~ap Eq—Ep
= Opau E
With
_e? <al|byg| B><Blyla>+<Bly|a> *<B|Dy|a>
OHall = _EZa,ﬁ Eq—Eg

In Eq. (4.11), oyqy is the Hall conductivity.

The velocity operator along the y direction
o 1, &5 0
vy = E(J’HO — Hyy)

Using Eq. (4.13), we can write

" 1 5 O
<,B|vy|a >= — < BlyHy — Hyy |a >

Using Eq. (4.3), then, Eq. (4.14) becomes

~ 1
< ,8|vy|a >= E(E“ —Ep) <Blyla>

Eq. (4.15) implies that
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|af > — e

(4.10

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



<Blvy|a>
< >=h—— 4.1
Bly la > = ih 2l (4.16)

Similarly, the velocity operator for the x direction

<Bldxla>
4.17
<Blx|a>= lh(E “Ep) (4.17)
Using Egs. (4.16) and (4.17), the Hall conductivity from Eq. (51.12) becomes
<La|Uy | B><B|Vy|a>—<a|Dy |f><L|Ux|a>
Onan = —il—= g Zaﬁf 6(E —Ey) | y(|E _Eﬁ)lz | dE (4.18)

Eq. (4.18) is Hall conductivity which is known as the Kubo formula. This expression is also known
as the linear response formula for the first-order perturbation because first-order perturbation is
linear. A linear response of the current in the perpendicular direction to the applied electric field
is Hall conductivity. So, Eqn. (4.18) represents the Hall conductivity.

The total Hall conductivity can be written as:

EF

. vx|B><B|vy —vy2|B><ﬁ|vx 5(8 _ ﬁ)] (4.19)
(8—&‘,3)

_ te
OHall = —

In Eq. (4.19), 5(5 — ﬁ)|a >=03§(e — g,)|a > is used.

After simplification, the Hall conductivity in Eq. (4.19) becomes

nan =+ Tr[7 de 8(e — )F @ Zp 18 > 5 () < Al

—vy XplB > (S — ) Blvil] (4.20)
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For the better treatment in Eq. (4.20), we need to use the following equation namely Green's

functions, G*(¢&):

1

) <Bl=r775= GE(e) 4.21)

—H+

5518 > (2

Using Eqgs. (4.20) and (4.21), the Hall conductivity becomes

ac*t ( ) aGc (e
Onau = [f_goFo{ “v,8(e — H) — v, 6(e — H)v, — z }de] (4.22)
For the simplification, we can define the following term from Eq. (4.22) by Ayqy (€) as:

dct (s)

Apau(e) = ih TT{ v,6(e —H) —v,6(e — H)v, a6 (S)} (4.23)

de

The Hall conductivity from Eq. (4.22) becomes
Oran = 5 I Ao (e) de (4.24)

The Hall conductivity can be split into two parts for convenience and after simplification, Eq.

(4.24) becomes

OHall = Ze; st h — Tr{v, Gt (&v,6(e —H) — v, 6(e — H)v, G (&) }de
- Ze; [ i Tr{v, G* ()v, LD~y BBy 6-() Y de
+ 5 1% Apau(e) de (4.25)

We can define the 1 part from Eq. (4.25) by By (€)as:
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Buau(e) = ih Tr {v, G*(e)v,6(e — H) — v, 6(e — H)v,G™ (&)} (4.26)

The Hall conductivity in Eq. (4.25) becomes

2 d
OHau = :Lz fEF — Buau(e)de
5 -
:Lz L i Tr{v, G*(e)v, d5(;€ I Uy d6(; ) v, G~ (e) }de
For the better treatment in Eq. (4.27), we can use the following delta function in terms of Green
function:
—~ -1 _
§(e—H) = —{G* (-6 (e)} (4.28)

Eq. (4.28) implies that

L65(e- 1) =—{264() - 267 (o)} (4.29)

2mi

And
= G*(e) = —G*()G*(e) (4.30)

Using Eqgs. (4.29) and (4.30), we have
=8(e—H) =—{G*(e)G* (&) — G~ ()G~ (2)} 4.31)

After simplification the 2" part in Eq. (4.27) becomes

ihTr {vx Gt(e) yda(i ) — v, da(s ) v, G~ (s)}

= Z Tr [v, GT(e)vy,GT(e)G (&) — v, GT ()1, G~ ()G ()

61



—0,G* ()G (), G (&) + v, G~ ()G ()1, G~ (8)] (4.32)

In the 3™ part in Eq. (4.27) using Eq. (4.23) we have

dG*(e)
de

Apau(e) =i Tr {vx

v,8(e — ) — v,8( — H)v, 2 G_(s)}

de

(4.33)
Using Eq. (4.30), then, Eq. (4.33) becomes

Apau(e) =
—ih Tr{v,G* ()T (v {G*(e) — G~ (&)} — v, 6(e — H)v,G~ ()G~ ()} (4.34)

Using Eq. (4.28), then, Eq. (4.33) becomes

Apau() = = Tr[v,6* ()6 * ()1, 6 (e) — 1:6* ()G (&), 6 (e)
—1,GF (v, G (e)G™ () + v, G~ (), G~ (e)G™(8)] (4.35)

Using Egs. (4.32), (4.34) and (4.35), after simplification Eq. (4.27) becomes

e? rep d
OHalu = Ef — Byau(e)de

— dg
— 2 ) [T Tr [ GH @y 6 (DG (6) — 1y G ()16 ()G ()
—v, G ()1, G~ (e)G™ (&) + v, G ()1, G~ ()G~ (&)]de (4.36)

The velocity operator, D,
P = =[x, GE(e)™Y] (4.37)

ih

Eq. (4.37), implies that
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ihD, = Gt(e) tx —x G¥(e)™?

Multiplying by G*(£)*! from left on both sides in Eq. (4.38) and after simplification

ihGE(e) D, = x — GE(e)x GE(e)™?

Multiplying by G*(£)*? from right on both sides in Eq. (4.39) and after simplification

GE(2) 0,G*(e) = —{xG*(e) — G* (o))
Similarly, for the velocity operator, D,

G*(2) 0,G*(e) = —{yG*(e) — G*()y)
After simplification the 2" part in Eq. (4.36), becomes

Tr [vy G* (v, G (e)GT (&) — vy GF ()1 G (e)G T (e)
—0 G~ ()vyGT(e)G (&) + v, G~ (), G~ (e)G™(&)]
=Ye=4 & TT (G5 (v, Gf(e)vyGf(s) — Gf(s)vyGf(e)vaf(s)

Using Egs. (4.40) and (4.41) into (4.41) and after simplification Eq. (4.42) becomes

Tr [v, GT (v, G ()G (&) — vy GH (), G ()G ()
—0,GT(E)v, 6T ()G () + v, G~ (), G ()G (€)]

2T d 31
== Tr {(xvy — yvx)a6(s — H)}
The Hall conductivity from Eq. (4.36) becomes
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_62 cr |1 d
OHal = 2 ) |24z

B,y (&) + %Tr % 6(8 — ﬁ) (xvy - yvx)] de (4.44)

We know the following relation [Appendix C],
lTrid(e—ﬁ) {xvy, — v}=£iTr6(s—ﬁ) (4.45)
2" de y ~ YVx e dB ’

Using Eq. (4.45) into Eq. (4.44) and after simplification, the Hall conductivity from Eq. (4.44)

becomes

2 —~ —~
OHall = % [ihTT{D,G* (er) D,6(ep — H) — 0,6 (er — H)D,G ™ (ep)}

ec 0

+2= [ Trs(e — H)de (4.46)

12 9B I~
We have

Tr6(e — ﬁ) =Y < a|6(s — ﬁ)|a >
6

1
= 2a (e—£4)2 462 (447
. Lim 1 5 .
Using 5> 0nGeiie = 6 (e — g,) into Eq. (4.44)
Tr6(s — ﬁ) =2.0(e—¢€)
= D(¢) (4.48)

D(¢) is the density of states.

The total number of states below the Fermi energy level

I Trs(e — H)de = [ D(e)de
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= N(ep) (4.49)

N (EF) is the number of states below Fermi energy.

Using Eq. (4.49) into Eq. (4.46), then the Hall conductivity from Eq. (4.42) becomes

z . N R PO AN a
Onai = ze? [lhTT{va+(€F) vy6(ep — H) — vx6(£F - H)vyG (EF)} + ga—BN(ep)
2 a
= %BHall(gF) + %EN(EF) (4.50)

In Eq. (4.50), 044 1s the Hall conductivity. It is noticeable that the second term is the magnetic
field dependence Hall conductivity below the Fermi energy level. It is more clear that the Hall
conductivity is the derivative of the number of states below Fermi energy level with respect to the

magnetic field.
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Chapter 5

Application of the nonperturbative MFRTB method in
graphene immersed in the uniform magnetic field

In this Chapter, the application procedure of the nonperturbative MFRTB method in

graphene is described in the following sequence:

5.1 Applied rational magnetic field
5.2 Magnetic Brillouin zone

5.3 Matrix Elements of the Dirac Hamiltonian

5.4  Approximated forms of Eigenvalues, e? 40

5.5 Approximated forms of Eigenfunctions, wsf“’o @)

. . CaCpi = 2 2
5.6 Magnetic hopping integrals, T(r’l?jlel),(nl]M)(Rn +dc, — ch)

5.7  Simultaneous equation for graphene
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5.1 Applied rational magnetic field

A rational magnetic field [S1] which is defined by the following Eq. (5.1) is described for
the calculation of the Hall conductivity in graphene using the nonperturbative MFRTB method
based on the obtained magnetic energy band structure. The magnetic field is applied perpendicular

to the plane of graphene.

P
B=%b (5.1)

In Eq. (5.1), a is the lattice constant of graphene, its value is 24.6 nm, and p and q are relatively
prime integers [51]. The values p/q determine the strength of the applied magnetic field. The
magnitude of the magnetic field is proportional to the rational number p/q, for this reason, the
magnetic field is called rational the magnetic field [46, 63,64]. In the present calculations, the
magnetic hopping integrals between the outer shells (2s- and 2p-orbitals) of the nearest-neighbor
carbon atoms were considered. Their values were calculated using a table of the nonperturbative
magnetic hopping integrals (Table I of Ref. [51]) and the relativistic version of the Slater—Koster
table [52]. In this work, it is adopted a set of relativistic tight-binding parameters for graphene that

is given in the previous paper [51].

5.2 Magnetic Brillouin zone

Figure 1 shows the magnetic Brillouin zone (MBZ) of graphene immersed in a uniform magnetic
field. The area of the magnetic unit cell is q times larger than that of a conventional unit cell of
graphene. The magnetic energy band structure of graphene is calculated for the wave vectors lying

in the MBZ [52]. The MBZ of graphene immersed in the magnetic field of Eq. (5.1) is illustrated
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in Figure. 1. The total number of k points in the MBZ represents the degree of degeneracy for the

magnetic energy spectrum.

a "3 6q q2vy3
I'(0,0) K= C0)

Figure. 1: Magnetic first Brillouin zone (MBZ) of graphene immersed in a magnetic field [45].

5.3 Matrix Elements of the Dirac Hamiltonian

In this subsection, the nonperturbative MFRTB method [27] considering the magnetic
hopping and overlap integrals is explained for the description of the electronic band structure of
graphene immersed in a uniform magnetic field. Let us consider an electron of the carbon atom
that moves in both a uniform magnetic field and the periodic potential of the graphene. In this case,

the total Hamiltonian becomes [59],
H = ca.{p +eA(®} + pmc? + Y, XaVe, (7 - R, —dy) (5.2)

The Dirac equation in this system is given by [59]
Hop (7)) = Ez @3 (F) (5.3)
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In Eq. (5.2), # is the momentum of the moving Bloch electron in the system, A(7) and

Ve, (7_" — ﬁn —-d A) are the vector potential for an applied uniform magnetic field along the z axis

and scalar potential caused by the nucleus of an atom C4 located at ﬁn + c_l)A respectively. It is

noted that the vector potential A (7) follows the gauge transformation. The vectors fén and d 4 are
the translational vector of the lattice and the vector determine the position of an atom C,4
respectively. The letters c, e, and m represent the velocity of light, a charge of the Bloch electron,
and rest mass of the Bloch electron respectively. The quantities @ (= a,, ay, a;), and 8 denote the

usual 4 X 4 matrices, and also the Hermitian operators [59]. The eigenfunction @, (¥) is the four-

component eigenfunction that can be expanded by the following Eq. (5.4). The subscript, k in the
eigenfunction, @3 (7) is the wave vector and also denotes the crystal momentum that belongs to

the magnetic first Brillouin zone [25].

The expanded wave function is given by
Op(F) = Tz TaZe C Ry +dy) ™ (@) (5.4)

In Eq. (5.4), Cg (R, + d,) is the expansion coefficient and the eigenfunction, lllfc aRn+da 2y s the

relativistic atomic orbitals for an atom Cylocated at ﬁn + C_iA that is immersed in a uniform
magnetic field. The generalized eigenvalue problem for the expansion coefficient, Cg (ﬁn + &A)

that can be solved by the following equation Eq. (5.5). The Eq. (5.5) can be obtained by the similar
treatment which is used in Eq. (2.13) in Chapter 2 and Eq. (3.10) in Chapter 3.

S, Za%e Hy gy goae Co Ry +dy)

= Ex Xz, SaXe Siony ioae Co Ry +dy) (5.5)
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In Eq. (5.5), Hg gy g,a¢ and Sg g, g 4 are the matrix elements of the Hamiltonian and

overlap integral between the two relativistic atomic orbitals; 1,0,? 5 Rm+dp () and IIJCA Rn+da (),

respectively.
The matrix elements of the Hamiltonian by using the similar treatment which is used in Eq. (3.27)

in chapter 3 by neglecting both integrals involving three different centers.

Cy, O d
Hg 5 Roae = (6" +Aef“ *)8p,46n¢ 0%, & +(1- 85,405, ﬁn)

% e_iT (Rnx+dax—Rmx—dpx) (Rmy+dpy) TnC?CA (ﬁn _ ﬁm + JA_JB) (56)

With

TCBC Cg,0 Ve M+Ve, (F-Ri—da+dp) | ¢, Ri+das—dp -
TLEA(R, + da—dpg) = [ y™° (7)1 4= e AT (B dPr

(5.7
The overlap integrals between the two relativistic atomic orbitals; l,b,fB'RerdB (#) and

VA7) ds given by

CBCA(Rl + dA dB) J‘ l/)CBO( )1- lpgA,ﬁl+&A—aB(F)d3r (58)

In Eq. (5.6), the eigenvalues, 85 % and AECA a TCBCA (Rl + dA dB) are the atomic spectrum,

energy of the crystal field in the presence of a magnetic field, magnetic hopping integral [51]
respectively. This magnetic hopping integral is affected by a phase factor due to the uniform
magnetic field (similar to the Eq. (3.48) in Chapter 3). This magnetic hopping integral is the
product of the hopping integral in the absence of a magnetic field and a phase factor which is
known as Peiperl’s phase factor. The hopping integral in the absence of a magnetic field can be
calculated easily which is called the relativistic version of the Slater-Koster table [52].

Using Eq. (5.6), it is very easy to calculate the matrix elements of the Dirac Hamiltonian. For this

reason, firstly, we have to calculate the CBCA(Rl + dA dB) and in order to calculate
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CBCA (Rl +d,— dB) we have to calculate egA 0 AegA A4 and wcA %(#). For this purpose, let us

consider an electron in an isolated atom that is immersed in a uniform magnetic field.

The Dirac equation is given by
[cd. (B + eAP)} + Bmc? + Ve, (D] we ' () = ¢ ° 4" (7) (5.9)

The solutions of the eigenfunctions, wcAO(r) and eigenvalues, SECA’O in Eq. (5.9) are

approximately estimated by the nonperturbative MFRTB method specifically the variational

method [51]. For these calculations, the matrix elements of the Hamiltonian are considered of Eq.

(5.9) by using a finite number of the relativistic atomic orbitals {(p,f{‘]M (F)} as a basis functions
[27,51], where (pﬁ{‘] v (7) is the relativistic atomic orbital for the atom Cj in the zero magnetic field

case. The subscripts n,l,J] and M in the (pS{}M(F), are the principal, azimuthal, total angular

momentum, and magnetic quantum numbers, respectively.

In order to calculate the matrix elements of the Hamiltonian under this approximation by

taking only the outermost, (2s, 2py, 2p, and 2p,) atomic orbitals, <prcl{‘]M (7) by neglecting inner
atomic orbitals. The atomic orbitals, <pfl{‘]M (7) have two components same as Eq. (2.6) in Chapter
2. The small component is approximated by the relation G,; ]M(r) nl M (), where o ,
nl M (7) and Gnl ™ (7) are the Pauli matrix, the large and small components of the radial part of
the relativistic atomic orbital (pr(i{‘]M (7) respectively [27]. By diagonalizing the resultant matrix,

the approximated forms of the eigenvalues, egA’ % and the eigen function, ng'O (7) are given [27].

5.4 Approximated forms of Eigenvalues, eg“" 0

In this subsection, similar to Eq. (3.30) in Chapter 3, the approximated forms of the

eigenvalues, eg“" % for the case of s-orbitals (I = 0) and p-orbitals (I = 1) is given by [24]:
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( ~Ca 4 €hB )

gnl] -
64, 5Ca
Eniy T €11 n ehB - nl] 1 + 14852,
2 am Xnl xnl
—CA C _CA
Enl] + Enl]—l + ehB nl] 1 \/1 1+8$ xz
l
Ca, 0 2 i4m 9 n
et = > (5.10)
3 -Ca Cy
& + € 8
nlj nij-1 , ehB nl] nl] 1 1+85%, 5
2 tom T 1__xnl+ LX)
_C _c _c _c
Bty + Eniya 4 €hE _ Enty ~ enf}_l 1-%, 4 1+85,2ﬂx2
2 4m 2 37l 9 nl
_Cyp ehB
L &y T J
With
ehB
Xni = @ ea 2 (5.11)

Snl] nl] 1

In Eq. (5.10), Sy;; is the overlap integral between the radial parts of the atomic orbitals of

D ]M(r) and (Z)nl J—1M (7) and x,,; is the ratio of the spin Zeeman splitting, ?—T: and spin-orbit
splitting, s'nali] — ‘g_nazi]—1 that is expressed in Eq. (5.11). It is noticeable from Eq. (5.11), in the low
magnetic field case, x,,; < 1 because the spin Zeeman splitting term is small compared to the spin-
orbit splitting. In this case, spin-orbit interaction is the dominant part which is known as the
anomalous Zeeman effect in graphene. In the high magnetic field case, x,; > 1 because spin

Zeeman splitting term is large compared to the spin-orbit splitting. In this case, the spin Zeeman

splitting term is the dominant part which is known as the Paschen—Back effect graphene.

5.5 Approximated forms of Eigenfunctions, 1[1?"0 (1)

In this subsection, similar to Eq. (3.32) in Chapter 3, the approximated forms of the eigen
function, l/)é: 40 () for the case of s-orbitals (I = 0) and the case of p-orbitals (I = 1)is given by
[24]

72



[ Ca -
Pnij+m ()
(o . c Cc S
Catin @ + Ao @

J1+mSay

C Cc . Cc .
A 0@+ ot @

J1+mbay

C . c Cc .
Pty @ + Aol @

1/1+(an)2

Cc Cc o Cc .
_7I—A (pn‘lA]—M(r) + <Pn'lA]_M(7’)

,1+(nEA)2

C —
\ (pnf]iM (r)J y,

N GES (5.12)

With

Ca _ 3 Xni 2 1+8S2;, -
N = s s as Snlxnl{li 2 \/1¢3xnl+—9 xnl} (5.13)

In Eq. (5.12), S;;; 1is overlap integral between the radial parts of the atomic orbitals of

(D:EJM(F) and ®flli]—1M (.

. L . C C i — —_ —
5.6 Magnetic hopping integrals, .25 (R, +dc, —dc,)

In order to calculate the matrix element from Eq. (5.6), we need to calculate the magnetic
hopping integral from Eq. (5.7). Similar to Eq. (3.49) in subsection 3.3 in Chapter 3, we can
calculate the magnetic hopping integrals via Eq. (5.7) which are the product of relativistic hopping

integral for zero magnetic field and the Peiperl’s phase factor. Using Eq. (5.12) into Eq. (5.7), we

can get the resultant approximated magnetic hopping integrals, Tncg Ca (ﬁl + JA—&B) [51]. The

resultant approximated magnetic hopping integrals, Tncg Ca (ﬁl + JA—C?B) are reported in Table-

2.
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Table 2: Magnetic hopping integrals for graphene. In this table, r]g“‘ and n[C;A defined by ng“‘ =

c c c c c : . .
Matj—am = ~Naigm and ng* =n,05_4_y = —N,];_y. respectively. Cp; (i = 1,2,3) indicate the

1% nn B carbon atoms of A atom.

(nif M) (nl/M) Magnetic hopping integrals, T(Cr{%]qﬁ") (nt ]M)(ﬁn + &Cs —d, )
11 1 1 _'2 . = - -
(20 EE) (20 EE e lZfleRyt(CZAOCl‘_Ii; (202) (Rn + dCB - dCA)

227’ 22
11 1 1 _'2 . - - -
(20 EE) (20 E — E e thRnyt(C;:)Cﬁ; (203—1) (Rn + dCB - dCA)
227" 2 2
11 11 ~i%2R Ry 1, CaChi 5 3 3
CaC i — - -
rlg“t(z“oﬁ) (212) (Rn +dcg — dCA)]/ 1+ (772‘4)2
22)’ 22
11 1 1 ~i28R Ry, CaCpi = 3 2
(20 2 2) (21 E —_ E) e 2h y[t(ZAO;—B;),(Zlg—%)(Rn + dCB - dCA) -
CaCpj =y 3 3
ngAt(:ol_li) (211_1)(Rn +dc, — dCA)]/ ’1 + (TllC;A)z
22)’ 2 2
11 33 _eB ] o R S
(2059 | (132 e g cael o 5 (R +dg, —dc,)
22 2022) (2222 )V B Ca
(20 ll) 31 —i@Rny CaCpi ( 12)( _2’ 2) 7
22 (21 33 e 2t [t(z()%)_(m%%) (Rn +dc, — dCA) +
CaC i — - -
B o (g~ o)1) 1+
22)’ 22
11 3 1 ~i€8R4Ry 1,CaCBi = 3 3
(2022) (215_5) e an Xty [t(;og),(m%—%)(Rn +dc, — dCA) +
CaC i - - -
n;At(;ol_li) (213- l)(R” +de, — dCA) 1/ \’ 1+ (n;A)z
22)’ 2 2
11 3 3 _'2 . - - -
20-- i——RxRy . CACpi _
_-e_ » CaC i - - -
1 1 1 1 —lﬁR R CaCnrn; - - -
20— — = 20— = e 2Ry ATB R,+d.. —d
272 | 20573 (zo%—%x(zo%—%)( nt dog — d,)
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202 -1 11
2 E) (21 EE) e_ingRy [tCACBi I
1 3 -
(205_%).(21%)(}?71 +dc, — dCA) _
Ca,CaCpi
11 WAL o (Rt dgy = d
205 -5 1 (201 2)(2222)\Rn F g —
0379 | Ciz-p | [tcfc;) () (e + ey = eI/ {1+ (10"
(o) (p13-2) (R + oy = de,) -
1 ngit AP (7
11 ol 1 (1 1\ (R F ;o3
203-9 | @159 (s oy (Rt ey = e, )V 1+ oy
1 22 e~ igpRxRy CaC g )
20——1 31 ytjollg_il 33(1_?) +d 3
7P| Qg |G 2(5)’(21?}) )
e 201-2) (212 )n F de, —de,) +
naAt(Z‘AOC;Bil (R.) N C_i
S 11 _ -
2 1 - () " Cs ch) 1/ m
2 E) (21 27 E) e_i§Rny [tCACBi =
1 7 -
(205-3)(215-3) (Ry +de, —de,) +
ngt A S .
11 R 3 >
1 (205 2)1(2%_%)( ot de, —de)1 |1+ Gy
20= — = 3 3 Urp)
2 2) (21 E — E) —iﬁR a2 p
e 2Vt 4Cgi N
1 1 - N
(21 ll) 11 (207_5)'(2137_ %) (Rn +dc, — ch)
22 (20 EE) e_iﬁRny [tCACB'
(212),(205) (Rn + C_I)CB - (ZCA) B
Ca.,CaCpi
et ! 17 R 1
11 R 3
(2111) : (2122)'(2017%)( n + dCB - dCA) ]/ \/m
22 (20=— 1 —i¢8 “
2 E) e lanfxRy [tCACBi N
31 3 -
Gt dey o)~
Ca,CaCgi
Nt 17 D 3
2111 (201 R, + _ 3
22 (21 —l —iﬁR @
22 ¢ xRy [t CaCBi I
(2122) (2122) (R, +dg, —de,) -

Ca.CaCpi
N, t ACBj o 3 =
d (21;_;)'(21%) (R +dc, —dc,) —ngit 4B
CB _ dCA) + (ngA)thAcﬁi ) (ﬁ _)(215)’221%)
(215)(15) ™ +dcg — dCA)/ 1/1+

(r]gA)Z 22

(R, +
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11 1 1 8RRy [+CACBi >33y
B | gy |y (Bt ey e =
CaChi 23 i
T ) gy (o o =) g (et
‘ch - Cch) + (1) (TIZA) t(cjlczél)’(m%_%)(Rn + ch ch)/ 1/
1+ (ng“)z /1 + (n5")?
11 33 <Ry 1,CaCBi 3\
(2157) (2159 |€ iR Ry[t(z“‘lf) (2133)(R +d¢, —dc,)
ngAt(C:fSBll) (2 3_3)(]_?)11 + &)CB - JCA) ]/ ,/1 + (naA)z
22 22
11 31 B R Ry [+CACBi > .3 3y
G| @iz |G (R dey o)
CaCpi = 3 i
ngAt(;ls) (2131)(12 +de, —de,)+1 At(z“‘l B) (2111)(1? +
dCA) ( CA) E:ACBL) (21%)(§n + dCB - dCA)/ /1+
(no/*)2
11 3 1 B RxRy [+ CACBi 5 .3 _ 3\
@ | @z |G Rt ey -
CuCpi = 3 ;
1) gy (B + e = o) 1 1y (Bt
doy = dey) = (0) (15" €158 (s (R oy =)/ 1/
2
J1+ ) 1+ g2
11 3 3 . CaCpi — - - _
(21 EE) (21E _ E) e th Ry [t(ZAll_Bl)’(21%_§)(Rn + dCB — dCA)
CaCaCpi 3] i _3 1 4+ (n%4)2
Na t(”;;) (2137_%)(Rn +dc, dCA) 1/ 1’ (Me*)
T 1 11 l R
(215-2) (2055) e” thny[t(C;‘liB__) (202) (R +de, —dc,) —
Ca,CaCpi _Ci 1 + Can2
ng t(212 ;) (2017%)(Rn + dCB CA) ]/ ’ (Tlﬁ )
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l—l 1 1 RxR CaC i = 2 _ = _
@379 | @oz-3 | % Ty (20%_%)(}3" +dg, —dc,)
Ca,CaCpi _ 1+ Can2
Mg t(21§_1) (2012 (R +dc, —dc,) 1/ / ure)
1 11 B R Ry ,CaCBi TN
I+ e T
C i AprlA Bl
nﬁAt(Z“lB 1) () (R +ch ch) Na t( )(2 3;)(Rn+
&)CB dCA) + (UEA)( ﬁ ) (C:fBl )( 31)(R + dCB dCA)/ ]/
2
J1+ @) 1+ gy
11 1 1 B R Ry +CACB: o) I, —d.)—
(212 2) (215—5) eC th Cy[t(ZI%—%) (21%_%)(R + dCB dcg) - )
ACBi D i A;CACpi R
T8 )t P e = ) =T Gy (Bt
de, —dc,) + (’IZA) t(cflczB_iz) (215_1)(Rn +de, —dc,)/ 1/ +
2 2) 2 2
M52 )
13- 33) | e iERRxRy [ CaChi (R, +dc, —de,) -
2 2 (21 EE) (212-2)(2122)Vn T Gea e
Ca,CaCpgi 3 Cay2
ﬁAt(: %B-%),(u%%)(Rn +de,—de,)]/ 1+ g™
L 31 i8R Ry, CACBi S
TR g | ey )
ngAt(;l B 5 (o1 31)(R +de, —de,) + "“At(zAl o )(2111)(R +
CaCpi
dey — de,) — (na )( ) (A > )(21%)(Rn+dcg de,)/ 1/
JU+@) 1+ mf?
1.1 3 1 B ReRy [,CACRi Sy L
G| @z | s R+ ey )
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Ca,CaCp; = 3 3 Ca,CaCpi =
" 12 1) a2ty (R + e = ea) 050 Py 0 (Rt

2 2

de, —de,) - (”;C%A)zt(cfff_iz) (212-) (Rp+de, —de,)/ 1/
2 2/ 2 2

J1+ @)’ 1+

11 3 3 | i 5
(212 2) (215_5) e Lthny[tCAlClB;1 3—3)(Rn + dCB — dCA) —

(2 22 )’(2157

Cp,CaCpi N - B N Ca
U i g ) P+ o~ de) I/ L+ 0

i

33 11 eB _ . . S
(21-=9) L —i==RxRy ,CaCp;j B

D mp | R Ed)
(21=5) e —i2=RxRy  CACpi o 3 _ 3

zz = 21 12) 5 o yt(“%%)'(zo% ) (R +de, — dc,)

R _'e_ x CaC i - - -
(2122 (21 EE) e~ oy [t(;;g),(z% D) (R +dc, —dc,) -

ngAt(C:fEBéi) (2111)(§n +de, —de,) 1/ ,/ 1+ (15")?
22/\?122

33 1 1| 2 . .
21-- - _ = I3aRxRy 1, CACBi — —
HED | @1 |G g (et e )
CayCaCBi

= - _ - CA 5
et da A 1 05

(2123 EE ~iBReRy  CaCh S
e+ B € TS )
21== —i22RyRy 1, CaCpi = s 3
P ey I (e ey — de) ¢
Ca,CaCpi = 2 3
Tt 153 it (R + ey = de)) 1/ J1+ ey
2133 3 1 —i28R Ry [, CaCi = 3 3
G| @) |G (et e ) ¢
Ca,CaCpi = > > c
UﬁAt(ZAl%B%)'(Zl%—%)(Rn + dCB - ch) 1/ /1 + (773“)2
33 3 3 ~i%8RyR, , CaCpi = 3 3
(2133) @15-2) e ZrRxRy¢ ;1%‘9%)’(2137 _73)(Rn +dc, —dc,)
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31 11 B . S - B
2122 i—RxRy1,.CACBi _
HE@gp |G Gy et e el
ni’*t(c;f%i),(zo%)(ﬁn +dg, —de, )1/ 1+ @5
31 1 1 -
2122 i—RxRy1,.CACBi _
NG ML T
e 1) (ot =) (B + ey = de,) )/ 1+ me?
(2139 11 ~i5pReRy [ CaChi R,+d.. —d,)+
2| @y | ey mda)
A4+CACBi _ _..Ca,CACpi
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5.7 Simultaneous equation for graphene

In this subsection, the simultaneous equations with a finite number of coefficients in

graphene are explained. The lattice vector of the honeycomb lattice is given by
ﬁ - nlal + nzaz (5.14)

In Eq. (5.14), n, and n, are integers and the vectors d; and d, are the primitive vectors of the

honeycomb lattice that are defined by Eqs. (5.15) and (5.16) respectively.
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i, = az+2ay (5.15)
i, = —taz+2aj (5.16)

In Egs. (5.15) and (5.16), a is the lattice constant of graphene, and its value is 24.6 nm. In order

to define the magnetic first Brillouin zone, we should consider a special set of magnetic translation
operators that commute to each other [24]. The magnetic translation operator, U (ﬁn) can be

defined as:
U(R,) = """ T(R,) (5.17)

In Eq. (5.17), the operator, T(ﬁn) (= e~ iRnP/ " is the usual translation operator. It is easily shown
that the magnetic translation operator, U (ﬁn) commutes with the Hamiltonian.

[H,U(R,)] =0 (5.18)
The multiplication of two magnetic translation operators, U (ﬁn) and U (ﬁm) leads [24]

U(R,)U(R,,) = " RmxRny=Rnckmy) y (R YU (R,,)

= Mg (MM (B V(R (5.19)
The special set of the magnetic translation operators is given by
(U(L)1E, = nydy + nyqdy} (5.20)
With

ETL == nlal + nzqaz (5.21)
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In Eq. (5.21), d4, d, are the primitive lattice vectors and n,, n, are integers. The set in Eq. (5.20)

forms an abelian group. We have
U(En)U(zm) = U(Em)U(En) (5.22)
The eigenfunctions of the Hamiltonian form basis functions of the irreducible representation (IRs)

of the symmetry group of the Hamiltonian. Therefore, eigenfunctions @, (') are the basis functions

of IRs of the Abelian group Eq. (5.20). We have

U(t,) PP = C(£,) @1(F) (5.23)

In Eq. (5.23),C (En) is the IR of the Abelian group. A set of translation vectors, {£,} which are the

subsets of translation vectors {ﬁn} and also satisfy the following relations by using Eq (5.18).

U(8)U(t) = U(£:)U(n) (5.24)

Therefore, U(fn) and U(Eﬁ) commute with each other.

[U(E)U(E:)] =0 (5.25)

Using Egs. (5.18) and (5.24), it is easily shown that H, U(En), U(fnr) , U(fnu), ..... are commutes
with each other. This information leads that H, U(En), U(Enr) s U(fnu), ..... have the simultaneous

eigen function. Let, the simultaneous eigen function, @ (7), then we have

Ho®(#) =E & (7 (5.26)
U(t) () = C(&) 2@ (5.27)
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Multiplying by U(En) from left on both sides in Eq. (5.26), after simplifying
H{U(t,)®o @} =E {U(¢,) (P} (5.28)

Using Egs. (5.27) and Eq. (5.28), it is confirmed that the function,{U(En)d>(?)} is also eigen
function of the Hamiltonian, H. These two eigen functions, @ (#) and {U(fn)cb(f))} are related to

each other by a gauge transformation.

Since, normalization condition, (|C(fn) |2 = 1), we can also write from Eq. (5.27)

U(L,) () = ermimkitanzka) @ () (5.29)

—

The wave vector, k
7(-) == klz;l + kzz;z (5.30)

In Eq. (5.30), 1_51 , Ez are magnetic reciprocal lattice vectors.

Using Eqgs. (5.21) and (5.30), we have

E. En = 21‘[(](1711 + qkznz) (531)
Using Eq. (5.29) and (5.31) we have

U(Z,) @(7) = ei*in & (7) (5.32)

The wave functions, {U(En) and ID(?)} are related with each other by a gauge transformation. We

can write from Eq. (5.32) in the following fashion by using a gauge transformation.
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0(E) 2@ = eHCHTE o)
U(t,) () = X (Fin) (F—1,)
o(F—t,) = o)y (&) o)

e o> .
(p(? _ tTL) — e_lﬁ)((rrtn) elk.tn CD(F)

.e

(p(f.’ _ En) — elhBtnxy eiﬁ.fn (p(F)

(5.33)

Eq. (5.33) is regarded as the extension of the Bloch theorem for electrons that are moving in the

uniform magnetic field and a periodic potential of the crystal. Eq. (5.33) is known as the magnetic

Bloch theorem.

All lattice vectors ﬁn in the crystal can be expressed in terms of special lattice vectors £,, as:

ﬁn =, + lae,

InEq.(5.34),1=0, 1,2, ........ q — 1 integers.
Using Egs. (5.4) and (5.34) we have

aj tn

> — - ~ +laé >
Op(F) = Xz, T Diso Co (£ + 1aé, )iy Y(#)
Similarly,
ai, En

‘pk’(F - Em) = an X¢ ?=_01 C,% (En + Iaéy)lpg Haéy(F - Em)

Using Eqgs. (5.33), (5.35) and (5.36) we have
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- rd A i ton+laéy 5 - e oz —_
2z, u¢ s CI—S; (t, + Iaey)lp;" n -t,) =e X (Fin) pikim

- - N iEn+I By
i XeXilo €5 (En+1ady ) "V () (5.37)

In order to calculate the coefficients, Cg (En +1 aéy) from Eq. (5.37), we need to find out

. . cto+laé N - Cth+laé N .
the relationship between w.* ™ V(7 -t and Yot "TYY(#). The wave function,
p £ m £
i tp+laéy ) )
lpg" nT9Y (#) obeys the Dirac equation.

[ca. (B + eA(®)) + me? + V(7 — By — Ia) )|y ™1 () =

t,+laé
—F y

; l/lai’ tntlaéy (F) (5.38)

3

By changing the variable, 7 = 7 + &,,, and § = B, Eq. (5.38) becomes

[ci. (B + eA(F — En)} + Bmc? + Vo (F — £ — £y — Lad, ) "% F — £)
_ E§n+1aéy ;Lil En+1aéy(7—,: _ Em) (539)

By using, A (7_: - Em) =4 (;) + 17)((1_':, fm) this gauge transformation and changing the variable

 to 7 and B to P, then Eq. (5.39) becomes

[cd. {B + eA(?) + eV)((f‘), tm) }+ Bmc? + V(7 — &, — laéy, — )]

i tn+laé, o - t,+laé i tn+laé, o -
X ¢§l' YR -t = E" 4 ¢§" Y@ -1 (5.40)
i, tn+laéy+tm

Now, considering the wave function 1,[)? (7) obeys the Dirac equation.
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[ca. {p + eA(®) } + pmc? + V, (7 — £, — laé, — fm)]lpgi' fHlacythm gy
_ E§n+1aéy+fm ‘l’?i' En+1aéy+fm(?) (5.41)

a; tn+laéy+tm

By comparing Egs. (5.38) and (5.39), ¥ fn+lady (7 —t,,) and Vs

: () are related with

each other by a gauge transformation.

it lIaé N - _'E e s Iaé £ -
Pt T (F — ) = TR X ) e TS T Gy (5.42)

Substituting Eq. (5.42) into Eq. (5.3) we have

- > N —if v(RE  tntlaéy+tm o _ie (7T 22
St De g €5 (B + 1agy e mxTim) y ST IONTn (y o7t (in) ikl

— - N iEn+I By
i XeXilo €5 (En+1ady ) "V () (5.43)

Canceling this term e "Xt from both sides in Eq. (5.43), then we have

- ? A a; tntlaéy+ty o o
i XeXiso €5 (£ + 1aey) v, yHbm iy = pifin
- rd A a;, fn+1ae“ N
S, Do Sine €5 (B, + Iae, g T @) (5.44)

N

By changing the variable, £, + £,,, = t; in Eq. (5.44), we have

-1 f - N n a; El+1aé o '_)._)
an Zs‘ ?:0 C,? (tz —ty t+ Iaey) ¢§‘ y(r) = giktm

— > N a;, fn+1aé -
i Xe Xl 5 (£ + 1aéy )y Y (7) (5.45)

Again, by changing the variable, £, to £, in Eq. (5.44), we have

88



a;, tn

B y 7 A +laé, ., PR

Zzn Zf Z;I=01 Cé’ (tn =ty t+ Iaey) 1.,[}f y(r) = gikitm %
- rd A a;, En+1ae“ N
X, L iy C,% (En + Iaey)lpf Y ()

— - - N - ~ ey Cli' fn+1aé -
Yi Xe Z?zol{Cé (ty —tp + Iaé,) — Cé(tn + Iaé, )etktm Y, Y =0

Multiplying by w;i' fictlagy (7) on the both side in Eq. (5.46) and integrating, we have
le((fn — b +1agy) = C;(En + Iaéy))etktm

Now replacing by &, — £,, = £; in Eq. (5.47), then we have
Ci(E, + Iaey) = C2 (&, + Iag,)eEn=t

If £, = 0 in Eq. (5.48), then we have
CI%(EI +1Iaé,) = C;(Iaéy)e‘ﬁfl

Finally, by changing the variable, t; to £, in Eq. (5.45), then we get

C;(En + Iaéy) = Cé([aéy)e‘i’;-fn

Co(E, +1d;) = e ™inC? (1)

From Eq. (5.51), it is noticeable that all lattice vectors, I_?)n can be also expressed as:

89

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)



b, +1dy = (nq + Daé, + nyaé, (5.52)

In Eq. (5.52), means that all coefficients C é(fn +1 &2) can be obtained by using Eq. (5.51), then
we can get g coefficients {Cl_i(ldz)|1 =012, .....q— 1}.

By replacing R,, with &, + [d, ([ = 0,1,2,  ......... ¢ — 1).
Co(Em + [d,) = e~*EnCE () (5.53)
We know,

2j+1

jodj
{ + L 2m (21+1

e Y RYCEIY Ry + d)) + Sty X

(Rnx+dlx Rmx—djx) Rny+diy+Rmy+djy) . 4j%i 3
zh ] y T8y yT&jy .
e tnl]M nljM (T (d ))

x C2M(T,,(d;) + Ry + d))=Ey ””M(Rm +d,) (5.54)
Using Eq. (5.53) and Eq. (5.54), we have

= = eB (2]+1 iiMm, s> _.eB= EPYG: .
Entj + Vénijn ¥ 5 (21+1) hM}Cn TM([dy) + Tiym Ty e 2nwx (@ Twyt2102)

l l [
X taiinngu T Co ™ (T + [a,)=EzC2™ (1) (5.55)

Since the vector 7“, + Id, is generally rewritten in the form of fn“ +1 d, , the coefficients,

nUM (T,, + [d,) of the LHS in Eq. (5.52) can be rewritten as

—

TUM(T, + 1d;) = e e (1dy) (5.56)
Eq. (5.55) is the simultaneous equations with a finite number of coefficients Cg UM (f )|l =

012 ....q—1).
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Chapter 6

Results and Discussions

In this Chapter, the results and discussions using the Nonperturbative MFRTB method are

described in the following sequence:

6.1  Magnetic energy band structure of graphene

6.2  Magnetic-field dependence of energy levels

6.3 Quantized Hall conductivity using nonperturbative MFRTB method

6.4  Fermi energy dependence of widths of WPs plateaus

6.5 Magnetic field dependence of widths of NPs plateaus

6.6  Description of the quantized Hall conductivity based on the magnetic energy

band structure
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6.1 Magnetic energy band structure of graphene

In this subsection, the magnetic Bloch band structure of graphene in the presence of a
magnetic field that is calculated using the nonperturbative MFRTB method is discussed briefly.
Figures 2(a) and 2(b) show the magnetic Bloch energy band structure of B =200.5 (T), where p/q
takes the value 1/787 and B'=200.9 (T), where p/q takes the value 2/1571 respectively. The main
reason for considering of these two close magnetic fields for the investigation of the degeneracy
of a magnetic energy band structure of graphene immersed in the respective magnetic field (Eq.
(5.1) in Chapter 5). In Figure 2, the horizontal axis represents the wave vector lying in the Magnetic
Brillouin Zone (MBZ) shown in Figure.1, and the vertical axis represents the energy in electron
volts (eV). From the numerical calculation using the nonperturbative MFRTB method, it is clear
that the magnetic energy band structure of graphene immersed in the magnetic field is almost

independent of k, and k,, in the MBZ.

o -

Energy (eV)

92



b

Energy (eV)
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=
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Figures. 2: Magnetic Bloch flat energy bands for (a) B=200.5 (T) and (b) B'=200.9 (T) in the MBZ. The
arrow indicates the position of & level for the intrinsic graphene [45].

The discussion of the magnetic energy band structure of graphene immersed in a magnetic
field which is presented in Figures 2 in order to investigate the quantized oy, based on the
magnetic energy band structure. The cluster of the nearly flat magnetic energy bands of graphene
immersed in a magnetic field is discussed [56] that are corresponding to the Landau levels due to
the energy level splitting in the magnetic field. These Landau levels are attributed due to Onsager’s
area quantization rule of the orbit of an electron in a magnetic field. The calculation using the
nonperturbative MFRTB method is more realistic because the nonperturbative MFRTB method is
based on the Dirac equation for the Dirac fermions or electrons (Dirac particles), where these Dirac
particles are moving in both a uniform magnetic field and the periodic potential of the crystal. So,

the spin-orbit interaction and spin Zeeman effect are inherently included in this calculation using
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the nonperturbative MFRTB method. For this reason, each almost flat magnetic energy band splits

into two energy bands due to the spin-orbit interaction and the spin Zeeman effect.

In this work, in order to explain the magnetic energy band structure, the degeneracy of the
magnetic energy band is discussed briefly by two approximations in the following.

Firstly, for the explanation of the magnetic energy band, a nearly flat band is a completely
flat approximation is considered that are shown in Figures 2. It is noted that each eigenvalue

corresponding eigenfunction at I' point is N3-fold degenerate in the magnetic energy band, where

N7 denotes the number of k points in the MBZ of graphene. If the area of the usual unit cell in the
absence of a magnetic field is denoted by A,,;; and if the total number of unit cells contained in
the system is denoted by N, then the total area of the system is given by A = A,,,;+ N. Because the
area of the magnetic unit cell is g-times larger than the area of the usual unit cell in the absence of

a magnetic field [24, 51,52], then the total number of magnetic unit cells in the system is given by
N/q. The total number of the E-points in the MBZ, N3, is equal to the total number of magnetic

unit cells [52]. Consequently, under the completely flat approximation, each eigenvalue

corresponding eigenfunction at " point is N /q-fold degenerate.

Secondly, the magnetic energy band structure for the two close magnetic fields, B and B,
are considered (Eq. (5.1) in Chapter 5) for the explanation of the magnetic energy band. Let us
consider, that the two magnetic fields B and B’ are proportional to values of p/q and 1/q’,
respectively, where q’ is also a prime integer. The relationship of B = B’ for the two close
magnetic fields, this implies that q is nearly equal to pq’. According to this relationship, ¢ = pq’,
the period in the real space for the case of B is p times larger than that for the case of B'. If the
difference of the Hamiltonian for these two magnetic fields cases is treated as the perturbation
potential, and if the Hamiltonian for the case of B’ corresponds to the nonperturbative Hamiltonian,
then the perturbation potential would be small owing to the relationship B ~ B’. This small
perturbation potential for these two close magnetic fields makes the periodicity p times longer than
that for the nonperturbative system because of this relationship g = pq’. For the change of the

periodicity without considering the small shift in energy due to the small perturbation potential,
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the magnetic energy bands for the case of B can be obtained by p-times folding of the magnetic
energy bands for the case of B’ within the MBZ of the nonperturbative system. Therefore, these
two close magnetic fields approximation leads only the change in periodicity without considering
the small shift in energy caused by the small perturbation potential. Considering these two close
magnetic fields approximation, this the flatness of the magnetic energy bands means the p-times
folding in an energy band with p-fold degeneracy. This p-fold degeneracy was confirmed by actual
calculations using the nonperturbative MFRTB method that are shown in Figures 2(a) and 2(b) for
the case of B = B’ respectively. From these Figures, it is confirmed that the degeneracy of the
magnetic energy band for B’ field where p/q takes value of 2/1571 is twice that of the magnetic
energy band for B field where 1/q takes value of 1/787. So, the eigenvalue around 0 (eV) at " point
is 4-fold degeneracy for 1/q" = 1/787 which is shown in Figure. 2(a), and 8-fold degeneracy for
p/q = 2/1571 which is shown in Figure. 2(b). According to the above discussion, it is confirmed
that the degeneracy of the magnetic energy band is Np/q-fold degenerate.

It is noted that another degeneracy was found except for the above-mentioned degeneracy
from the calculated magnetic energy band using the nonperturbative MFRTB method. This
degeneracy of the magnetic energy band is a multiple of four. In these calculations, this degeneracy
appears due to the two reasons. First, each unit cell of graphene in a honeycomb structure consists
of two carbon atoms. For this reason, the number, twice is utilized of bases to expand the magnetic
Bloch function [24, 51,52]. This number leads to two-fold degeneracy in the magnetic energy
band. Second, Dirac points exist at two inequivalent points, namely the K and K’ points, in the
BZ. These inequivalent two points lead to another 2-fold degeneracy. Consequently, the
degeneracy of the magnetic energy band of graphene becomes a multiple of four. Finally, the

degeneracy of the magnetic energy band, g(B), for graphene is given by

9(B) ==" (6.1)

Since the area of the system is denoted by A, then the number of unit cell in the system is

given by N = A/Anic- Therefore, we have the degeneracy of the magnetic energy band
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A p

9B) =4 Ty (6.2)
Using Eq. (5.1) in chapter 5, Eq. (6.2) can be rewritten as follows:
AB
g(B) === (6.3)

Eq. (6.3) corresponds to the conventional degeneracy of the Landau level given in the literature
[54]. From Eq. (6.3), the important point is that g(B) is proportional to the magnetic field. This

relation provides the magnetic field dependence Bloch energy band structure in graphene.

6.2 Magnetic-field dependence of energy levels
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Figure. 3: Magnetic field vs energy of the magnetic energy spectrum of the Bloch electrons (Hofstadter
butterfly diagram) at I" point in the MBZ calculated by using the nonperturbative MFRTB method [45].

Figure 3 shows the magnetic energy spectrum of electrons in graphene with a magnetic-field at

the I' point using the nonperturbative MFRTB method. This magnetic field dependence energy
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spectrum is well known as the Hofstadter butterfly diagram [46]. It is noted that the Figure 4 shows
a magnified view of Figure. 3. In Figures. 3 and 4, the horizontal axis denotes the magnetic field
(B) in Tesla (T) and the vertical axis denotes the energy in eV. It is well discussed in the literature
that the magnetic energy spectrum of graphene is proportional to the square root of the magnitude

of the magnetic field at low magnetic fields regions [11,12].
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Figure. 4: Magnified view of Fig. 3 for the ma;nezic energy spectrum of the Bloch electrons [45].
According to the Onsager’s area quantization rule, the behavior of the square root of the magnetic
field was first predicted by McClure [11,12] The nonperturbative MFRTB method for the
calculation of magnetic field dependence energy spectrum can revisit the square-root behavior [24]
that is shown in Figure. 3. According to Figure. 4, each quantized energy level of graphene is
immersed in a uniform magnetic field split into two energy levels due to the relativistic effects,
including the spin-Zeeman effect and spin-orbit interaction. For this reason, there are two types of
energy level splitting in the magnetic-field-dependence energy spectrum in graphene. The first
type splitting a relatively large gap in the energy spectrum which is related to the Onsager’s area
quantization rule of the electron orbit that are indicated by (1), (ii), and (iii) in Figure. 4. The other

type of splitting energy level relatively narrow gap in the energy spectrum which is related to the
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relativistic effects that mean the spin-Zeeman effect and spin-orbit interaction that are indicated
by (iv), (v), and (vi) in Figure. 4. The first type energy level splitting gap decreases with the Fermi
energy level for a constant magnetic field that are shown at (1) and (i1) and increases with the
magnetic field that are shown at (i) and (iii) in Figure. 4. The other type of energy level splitting
gap decreases with the Fermi energy level for a constant magnetic field that are shown at (iv) and
(vi) and increases with the magnetic field that are shown at (iv) and (v) in Figure. 4. These two
types of energy level splitting are the origins of corresponding observed plateaus that means the
wide and narrow plateaus attributed for the large energy gap and small energy gap respectively
that lead the Fermi energy dependence of the quantized oy,;; in graphene immersed in a uniform

magnetic field.

6.3 Quantized Hall conductivity using nonperturbative MFRTB method

Figures 5(a)-5(f) show the Fermi energy dependence of oy,;; in graphene for (a) B =
10.00 (T), (b) B = 20.02 (T), (¢c) B =48.50 (T), (d) B = 101.50(T), (e) B = 239.50 (T), and
(f) B =600.50 (T), respectively. The quantized oy, in graphene immersed in a uniform
magnetized field based on the magnetic energy band spectrum is calculated using the Streda
formula that is discussed in Chapter 4 [50]. According to these Figures 5(a)-5(f), there are two
types of plateaus are observed due to the respective energy splitting gap. It is noted that the widths
of the attributed plateaus shown in Figures 5(a)-5(f) are consistent with the energy splitting that
are shown in Figure. 4. It is clearly shown in Figures 5(a)-5(f) that one set of these plateaus has a
comparatively wide width, with FFs of 2, 6,10, 14 etc. due to the large energy splitting gap in the
magnetic energy band structure. The other set of these plateaus is also shown in figures 5(a)—5(f)
has a comparatively narrow width, with FFs of 0, 4, 8, 12 etc due to the small energy splitting gap.
According to the Figures. 5(a)-5(f), the WPs that are corresponded to the energy splitting for the
Onsager’s area-quantization rule and the NPs that are corresponded to the energy splitting caused
by relativistic effects including Zeeman spin effect and spin-orbit interaction. For this reason, the
magnetic energy band structure can effectively explain the quantized oy,;; in graphene immersed

in a uniform magnetic field.
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Figure. 5: Fermi energy dependence of the normalized Hall conductivity (o4 (€?/h)) (a) for 10.00
(T), (b) for 20.02 (T), (c) for 48.50 (T) (d) for 101.50 (T), (e) for 239.50 (T) and (f) for 600.50 (T) [45].
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6.4 Fermi energy dependence of widths of WPs plateaus

In this subsection, the Fermi energy dependence of the widths of the observed plateaus
using the nonperturbative MFRTB method is discussed. The WPs are attributed due to the energy
level splitting that is related to the Onsager’s area quantization rule. Figure 6 shows the Fermi
energy dependence of the width of WPs. In Figure. 6, the horizontal axis denotes the FFs which
means on the position Fermi energy level and the vertical axis denotes the widths of the WPs in
eV. According to Figure. 6, the width of WPs decreases with increasing FFs that means with
increasing Fermi energy. It is noted that in the conventional 2DEG system, the energy separation
of two successive quantized energy levels caused by Onsager’s area quantization rule is the same
for all energy levels (for the whole energy region) but in graphene, the energy separation of two
successive quantized energy levels caused by Onsager’s area quantization rule is not the same for
all energy levels (for the whole energy region). For this aim, the energy separation of two
successive quantized energy levels using Onsager’s area quantization rule is calculated in order to

justify the above two statements. According to the area quantization rule, the quantized energy

level for a magnetic field is given by E,, = y/2evzh|n|B, where n denotes the Landau level index,
and vp (= 1.0 X 10® m/s) is the Fermi velocity of graphene [11,12]. The energy difference

between two successive energy levels is given by

AE, = J2evEhB (\[Inl + 1 - /Inl) (6.4)

In Eq. (6.4), AE,, represents the width of WPs for the energy gap due to the two successive energy
levels. The width of WPs is calculated by using conventional model using Eq. (6.4) and the
nonperturbative MFRTB method that are shown in Figure. 6. According to the Figure. 6, the width
of WPs which is calculated using Eq. (6.4), has a good agreement with the result of using the
nonperturbative MFRTB method in the lower FF region which means the low-energy region. This
implies that the conventional model (Eq. (6.4)) is a good approximation in the low-energy region.
The conventional model (Eq. (6.4)) is established based on the Onsager’s area quantization rule;

more clearly for the linear energy—dispersion relationship at zero magnetic field. The linear
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energy—dispersion relationship at zero magnetic field in graphene is valid only in the low energy
region which means near the Dirac point. This good agreement suggests that these treatments are
valid in the low-energy region, that is, in the lower-FF region. On the other hand, a discrepancy
appears in the higher-FF region, that is, in the higher-energy region. The linear energy—dispersion
relationship at zero magnetic field in graphene is not valid in the high energy region that means
far away from the Dirac point. This discrepancy would be expected that the linear energy—
dispersion relationship becomes less appropriate as the energy level moves away from the Dirac
point which means in the high energy region. Because in the energy band structure in the absence
of a magnetic field, the curvature of the energy dispersion becomes negative as the energy level
moves away from the Dirac point. For this reason, the density of the quantized energy levels is
different compared with low and high-energy region. As a result, the density of the quantized
energy levels that satisfy Onsager’s area quantization rule increases with increasing energy range

or FFs. Therefore, the width of WPs decreases with increasing FF or energy range.
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s |
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Figure. 6: Filling factor dependence width of WPs for 48.50 (T) [45].
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6.5 Magnetic field dependence of widths of NPs plateaus

Figure 7 shows the magnetic-field dependence of the width of NPs for FF=4. In Figure. 7,
the horizontal axis denotes the magnetic field in Tesla (T) and the vertical axis denotes the widths
of the NPs in eV. The well-known spin-Zeeman energy (2ugB) that represents the width of the
NP is also indicated in this Figure by a line which is expected. It is noted that this expected width
of the NPs is discussed in literature only due to the spin-Zeeman effect (conventional model). On
the other hand, it is confirmed that the width of the NPs using the nonperturbative MFRTB method

is attributed due to the spin-Zeeman effect and spin-orbit interaction. The difference between the
calculation of the conventional model and the nonperturbative MFRTB method is denoted by A.
This difference, A may be regarded by the effect of the spin-orbit interaction. If the spin-orbit

interaction is neglected, the NPs are attributed only due to the spin Zeeman effect. So, the width

of NPs coincides with the width expected from the spin-Zeeman effect.

0-07 T T I I T
—— (line) represents the calculation from 2ugB
0.06 F @ (solid circle) represents the calculation from the L . E
nonperturbative MFRTB method
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Figure. 7: Magnetic-field dependence width of the NP for the FF=4 [45].
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Figure 8 shows the magnetic-field dependence of the difference A. In Figure. 8, the horizontal

axis denotes the magnetic field in Tesla (T) and the vertical axis denotes the difference, A in meV.
According to the Figures. 7 and 8, the width of the NP using the nonperturbative MFRTB method
coincides with the width expected from a conventional model that is, the spin-Zeeman effect in
both the low and high magnetic field regions. Figure. 8, in the high magnetic field region, the
difference, A is very small. In the high magnetic field region, according to Eq. (5.11) in Chapter
5, the spin-Zeeman effect is more dominant compared to the spin-orbit interaction. For this reason,
the calculated width of NPs using the nonperturbative MFRTB method is nearly the same as the
calculated width of NPs by the spin-Zeeman effect. So, in this region, the effects of the spin-orbit
interaction become negligible compared to the spin-Zeeman effect, which is known as the
Paschen—Back effect. Figure. 8, in the low magnetic field region, the difference, A is also very
small. In the low magnetic field region, according to Eq. (5.11) in Chapter 5, the spin-Zeeman

effect is less dominant compared to the spin-orbit interaction. So, the spin-orbit interaction would

be expected as a dominant part. The difference, A should be large. However, the calculation using
the nonperturbative MFRTB method coincides with the result of the conventional model for an FF
of four. This agreement is explained in the following as, in this region for this FF of four (4), the
agreement indicates that the energy splitting caused by the anomalous Zeeman effect is consistent
with that of the spin-Zeeman effect for magnetic Bloch states. This agreement for a particular FF
is possible (may be it is not true for all FFs), for example, when the magnetic quantum number of
the total angular momentum is given by +1/2, the energy splitting caused by the anomalous
Zeeman effect is consistent with that caused by the spin-Zeeman effect in a low magnetic field
[51]. This agreement in the low magnetic field region implies that the magnetic Bloch states related

to FF of four mainly comprise atomic orbitals with the magnetic quantum number of +1/2.
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On the other hand, in the middle magnetic field region, the difference, A is
comparatively large. For this reason, the discrepancy is comparatively large in the middle magnetic
field region (approximately 200 (T)) that is shown in Figures. 7 and 8. This result suggests that the
width of NPs in a magnetic field of approximately 200 (T) can be affected due to the effect of the
spin-orbit interaction in graphene. This effect provides very important information in research in
graphene around this magnetic field. Although the width of NPs has not necessarily been estimated
accurately in experiments [41], it is expected that the effect of the spin-orbit interaction and

Paschen—Back effect will be observed in NPs by further experiments, especially in high magnetic

fields greater than 100 (T) [65]. The description of the difference, A in the middle magnetic field
case can be realized for the nonperturbative calculation of the effects of the magnetic field and

spin-orbit interaction using the nonperturbative MFRTB method.
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6.6 Description of the quantized Hall conductivity based on the

magnetic energy band structure

In this subsection, the reason is explained briefly, why the magnetic field dependence oy,;;
in graphene can be appeared based on the magnetic energy band structure calculated by using the
nonperturbative MFRTB method. It is confirmed that all the magnetic energy bands approximately
have a magnetic field dependence degeneracy of g(B), which is proportional to the magnetic field.
If the number of completely flat magnetic energy bands below the Fermi energy is N (&r), then the

total number of states per unit area below the Fermi energy level is given by

N(er) g(B)

n(B) = o

2e B

=22 N(er) (6.2)

According to the Streda formula (Eq. (4.50) in Chapter 4), oy4;; 1s given by [50].

2
Oau = €5 n(B)

=2 N(ep) (6.6)

The Hall conductivity, oy, is proportional to the number of completely flat magnetic energy
bands below the Fermi energy level. Since the Fermi energy dependence number, N(&g) is an

integer, so the oy, from Eq. (6.6) is quantized.

The relationship between the magnetic energy band structure and oy, is discussed in
more detail in the following. The calculation using nonperturbative MFRTB provides 16q
eigenvalues for each E-point in the MBZ in this system. Because the total number of magnetic unit
cells is given by N/q, 16N states are obtained using the nonperturbative MFRTB method. In the

honeycomb lattice structure of graphene, each magnetic unit cell consists 2q number of carbon
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atoms. Therefore, the magnetic unit cell consists 8q number of valence electrons. Therefore, the
total number of valence electrons in the system is equal to 8N (= 8q X N/q). For intrinsic
graphene, half of the 16N states, that is, the 8N states, are occupied. The completely flat band
approximation is described in subsection 6.1, 8q of 16q magnetic energy bands are fully occupied.
As mentioned in subsection 6.1, each cluster of magnetic energy bands consists of 4p magnetic
energy bands, which leads to an approximate p-fold degeneracy. Considering that the cluster
corresponds to the so-called Landau level, the following numbering to the clusters can be assigned:
the O-th cluster can contains (8q — 4p), (8q —4p + 1),--,(8q — 1), 8q-th magnetic energy
bands from the bottom. Similarly, the first cluster contains the (8q + 1), (8q + 2),---, (8q + 4p)-
th magnetic energy bands from the bottom. Herein, the energy level of the nth cluster is denoted

by E,,.

For the intrinsic graphene, the Fermi energy level lies between the 0-th and st cluster, that
is, Ey < er < E;. Here, the total number of states below the Fermi energy is 8N. Therefore, the

total number of states per unit area is

n(B) = =

16
" V3az

(forEy < er < Ey) (6.7)

where we used the relation A/N = Ay = V3a?/2. Therefore, n(B) is independent of B when
E, < €r < E;. This leads the following equation

UHall == 0 (fOI' EO < SF < El)' (6.8)
Subsequently, in the case of Fermi energy is located between E; and E,, that is, F; < e <

E,. Here, the total number of states below the Fermi energy is given as (8 + 4p/q)N (=
(8q + 4p) X N/q). Therefore, the total number of states per unit area is
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8
n(B) = —,
= +2B (for E; < &p < E,) (6.9)

where we used Eq. (5.1) which is discussed in subsection 5.1 in Chapter 5. Therefore, we have

(6.10)

N

OHall = (for Ey < &p < Ep)
Similarly, in the case of Fermi energy lies between the (n-1)th and n-th clusters. That is,
E,_1 <ée&p <E,. Here, the total number of states below the Fermi energy level is

(8 + 4np/q)N (= (8q + 4np) x (N /p)). Therefore, the total number of states per unit area is

(8+4"T”)N

n(B) =——
6.11)

16 2
=== +an (for Ep_q < € < E)

Therefore, we have

2
Onall = %Zn (for E,_; < & < Ep) (6.12)

Finally, the conductivity oy,;; in graphene immersed in a uniform magnetic field which is

quantized can be described based on the magnetic energy band structure calculated using the

nonperturbative MFRTB method.
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Chapter 7

Conclusions

The quantized Hall conductivity, oy4; 1n graphene is investigated using the
nonperturbative MFRTB method. In these present calculations, it was confirmed that WPs with a
set of FFs of 2, 6, 10, 14, etc., and NPs with another set of FFs of 0, 4, 8, 12, etc. were revisited in
the Fermi energy dependence of gy,;;. It is noted that the first set of FFs is attributed due to the
energy splitting in a magnetic field. This energy splitting corresponds to Onsager’s area-
quantization rule. The second set of FFs arises due to the energy splitting caused by the spin-

Zeeman effect and the spin-orbit interaction in a magnetic field.

It is important to notice that the width of WPs and NPs is dependent on Fermi energy for a
constant magnetic field or magnetic field for a fixed Fermi energy level. In this thesis, it is shown
that the width of WPs decreases with Fermi energy for a constant magnetic field, which is the same
with experimental results. In the lower-energy region, the dependence of the width of WPs is more
consistent with the result of the conventional theoretical model [8-11]. This consistency appears
in the lower energy region which means near the Dirac point due to the linear energy dispersion
relationship approximation for the energy band structure in the absence of a magnetic field. On the
other hand, in the higher-energy region, the result of the nonperturbative MFRTB method does not
coincide with the conventional theoretical model. In this region, a discrepancy appears when
comparing the conventional theoretical model and the nonperturbative MFRTB method. Because
the conventional theoretical model is valid only for the linear energy dispersion relationship which
appears near the Dirac point or low energy region. On the other hand, the nonperturbative MFRTB
method is valid both in the lower and high-energy regions. The nonperturbative MFRTB method
provides a practical magnetic energy band structure in both regions. For this reason, the

discrepancy appears due to the lack of validity of the linear energy dispersion relationship in the
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higher-energy region. Thus, it is confirmed that the description in this thesis of the Fermi energy

dependence of the width of WPs is more reliable in both the lower and higher energy regions.

It is possible to observe the effect of the spin-orbit interaction and Pachen—Back effect in
graphene by investigating the Fermi energy dependence of the width of NPs at magnetic fields
greater than 100 (T). In general, the Pachen—Back effect appears if the ratio of the spin Zeeman
splitting to the spin-orbit splitting exceeds one (1) [51]. For graphene, the magnetic field that
makes ratio 1 is approximately 144 (T) [51]. This magnetic field appears to be consistent with the
results shown in Figures 7 and 8. Thus, the detection of the Paschen—Back effect in NPs is expected
to be realized using the recent progress [65] in generating an extremely high magnetic field greater

than 1000 (T) and in measuring physical quantities in the extremely high magnetic field [66-68].

In the present calculations, the relationship between the magnetic energy band structure
and quantized oy,;; was measured. It is noted that in every case the Fermi energy crosses a cluster
of magnetic energy bands, and as a result o4, changes by the quantity, 2e?/h. This statement
coincides with the description of dHVA oscillations based on the magnetic energy band structure

[55-57].

The effect of the fine energy band structure of a cluster on oy, in graphene is very
interesting. Because many properties are affected by the cluster of the band structure. For example,
the fine energy band structure in a cluster generates additional oscillation peaks in the magnetic
oscillation of the dHVA effect [56] under a high magnetic field. The conventional MFRTB and
Hofstadter methods are based on perturbation theory [51]; thus, these methods are not sufficient
for describing such phenomena due to some lacking. On the other hand, the nonperturbative
MFRTB method is sufficient for describing these phenomena. For this reason, only the
nonperturbative MFRTB method may be applied for an accurate result as a first-principles
calculation method in a high magnetic field region. The effect of the fine energy band structure
due to the splitting of an energy band in the high magnetic field case will be investigated in future

studies.
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Appendix A

Relation between the large and small components of the relativistic atomic orbitals by using the

label by letters [ or [ takes the value of 0,1,2, ..... for the atomic orbitals namely s,p,d, ...

respectively and the label M is expressed as g, m, §, .... in place of 0,11, £2, ..... respectively.
) KOOy 9un) = (550,017 5 (A1)
@) KOO Y (Byn byn) = g0, 5 (A2)
G L@ (8w ) = 9y (A3)
@ KOO Gy byn) = 9.000), 1, '1) (A4)
®) V0,9, (Oyn dijn) = 9x9:(Pp0 )(20 . ) — 9:9.(ppm )(20 . ) (A5)
©) V@)Y, (Oin $ijn) = 9y9.(0p0 )(20 'y 12) ~ 959:(pP )é‘;“f‘l) (A6)
M KOO, Gy ) = 9:0y@P0) 9 = 99 PPT 1 (A7)
® GO YOy dun) = 959x@P9) 0 = GygeOPT 1 (A8)
(9) Y;(G,q,')) Yx (gijn' ¢ijn) gzgx(pp )(20 21 ) gzgx(pp )(20 21 ) (A9)
(10) Y;(@,d)) Yy (gijn: d)ijn) - gz.gy(pp )(20 21 ) gzgy(pp )(20 21 ) (AIO)
(1) K@) Ve By dyn) = g20P0) 15 + (1= gDEP 1 (A1)
(12 KO8 (B dun) = BB 1,5+ (1= gDEPT 17 (A12)
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(13)

(14

(15)

(16)

)

(18)

(19)

(20

@n

(22)

(23)

(24)

(25)

a

OO, By dun) = 9200015+ (1= gDEPT) 1) (A13)

H 0. 9)¥er (B, i) = V3 520, pdo) 1) + (1~ 209 pdm) (7 o (Al4)
6,00 (B ) = V3 920, (pd0) V5 + (1= 20209, (i) 17 (AL5)
B0 Wey (B, 9n) = V3 G39:00) 1 o) + (1= 209 17 (A16)
B0y (G D) =3 95,0 V7o + (1= 2090000 1 (A17)
Y (0,9)Yyx (Bijns Pijn) = V3 gxgy(pda)( )+(1 2gx)gy(pdﬂ)( 21) (A18)
K0, ee (Bun Bun) = V3 9300 ) + (1= 2009, 1 (A19)

; o)=Y 2 _ 2 sda;a; 22 sda;ja

Y; (0, qﬁ)sz_yz (eun, ¢un) 2 9x(9x gy)(pda)(z 0%,2 1%) +9.(1—gx + gy)(PdT[)(z 0%'2 1%) (A20)
. V3

Y5 (0,9 2_y2 (8ijns bijn) =9, (9% — 93)(pdo )( ) 9,1 +g% - gy)(pdﬂ)( vy )(AZI)
. b )=V a2 g2 sdaja; 2 _ 2 sdaja;

Y;(6,)Y 2_y2 (eun; ¢11n) =7 9.(9% gy)(pda)(z 0%‘ 5 1%) 92(gx gy)(pdn)(z ola1 3) (A22)

2 2

sdajaL

Y (9 ¢)Y3z2—r (eun' ¢Un) gz{gz - _(gx + gy)}(de')( 194 ) (A23)
Y0, 83z 2 (Oujns bijn) = 9:002 =5 (92 + gﬁ)}(pdrf)(iiff 1)~ V3.2 (pdn)éj?’j"l 5 (A24)

" 1 sda;a; sda;ja;
B0, 8)asey2 (B Gim) = 9y107 =5 (07 + G0, 1/, 2y = VB Gy 02 (R, o', (A29)
2 2 2 2
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Appendix B

Definition of the Cubic Harmonics

(1)
2)
3)
(4)
()
(6)
(7)
(8)
)

Cs(6,0) = Y,0(6,0)
Cc,(6,0) = Y10(9 ?)
C.(6,0) = [Y1 1(6,0) —Y,1(6,0)]

Cy(6,0) = 7 [11,-1(6,) + 1,1(6,0)]

C322-72(0,0) = Y2,0(6,0)

Cy2(6,0) = = [Vo-1(6,8) + Y, (6, 0)]
Cxz(0,0) = = [Y2,1(6,8) — Y, (6,0)]

Crz_y2(0,0) = T [V2,2(6,0) + Y,,(6,0)]

Cry(6,0) = [Yz 2(6,0) — Y2,(6,0)]

Definition of the spherical Harmonics

(10)
(11)
(12)

(13)
(14)

(15)
(16)
(17)
(18)

Yo,o 6,0) = Cs(ev ?)
Yl,O(e! Q) = Cz(e, ?)

Y;1(6,0) = —%[c (6,0) +iCy(6,0)]
Y, _1(6,0) = [c 6,0) —iC,(6,0)]
Yz,o(e; Q) = Csp2_p2 (6,90)

Y2,1(9J Q)) = - \/_15 [sz (01 Q)) + iCyz(9; Q))]
Y2-1(6,0) = 55[Cs(6,8) = iC,, (6, 0)]
Y,,(6,0) = % [Cyo_y2(6,8) +iCyy (6,0)]

V5,-20,0) = 5 [Cro_y2(6,0) — iCy (6,0)]
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Appendix: C

d 8(e—H)

cad = 1
Show that ——Tr&(e — H) = - Tr
We know the following expressions:

§(e—H) = —={G*() - G~ (&)}

and

Gi(e)= (e—H+i6)™?
Gr(e)(e—-H+is)=1

If we defend & = £, then Eq. (C2) becomes
GS(e)(e—H+iE6) =1

Multiplying by |@ > on both sides in Eq. (C3)
GS(e)(e—H+iéd)|a >= |a >
GS(e)(e — g4 + iE8)|a >= |a >

GS(e)|a > (e — ey +iE8) = |a >

GE(e)|a >=

1
(e—egqtid) |a =

Multiplying by < «a| on both sides in Eq. (C4)

1

3 — - -
< alGs(e)|a >=< a P TTS

| >
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. 1 .
Since i) S8 number, Eq. (C5) becomes

+ -
< a|G*(e)|a >= e < ala>
+ -t
< a|GE(e)|a >= " (Co)
Again, we know
Za<a|6(e—ﬁ)|a >= Tr6(£—ﬁ) (C7)
By using the above property, we can write
c o =~ c o =~
;£Tr6(e -0)= csZa<al S(e—H)|a >
_c9o _ L + -
=2y <al-={6"(e) ~ 6 ()}|a >
1¢d -
= —%5520{ <alGt(e)|a > +———Ea <alG(&)|a>
1 co0 1 c¢c0 1
- _%252“ (g~ sa+16) 2mie 0B @ (g;—£q—16) (C8)
If g; is number and &, is a magnetic field dependent then Eq. (C8) becomes
c 0 = 1 asa 1 65(1
EﬁTré\(g N H) - %eZa (g;—£q+i8)2 8 2mie Za (gi—£4—18)2 8
6£,x 1 6sa
_gez (gj—¢ +L5)2 B Zmeza (gi—£4—16)2 @
=—LCty 1 1 aﬂ+L£2 L 1 % (C9)

2mi e “F (gj—g4+i8) (6j—€q+i8) OB 2mie =% (gj—g4—i6) (6j—€q—i8) OB

Since < a|GE(e)|a >= , Eq. (C9) becomes

(e—¢ +L§)
2 1r6(e — ) = — =55, < alG*(e)la >< a|G+(s)|a 5 2o

2mie

——Za<a|G &)]a>< alG™ (£)|a>

2mi e
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= ———Za < a|lGt(e)|a >< alGt(e)|a > == as“

2mi e

——Za<a|G (&)]a>< alG™ (s)|a>a£“

2mi e

= — L 5,35 <alG* ()| >< IG*(e)|a > 2=

2mi e

——zazg<a|6 (©)B >< BIG" <e>|a>"’"‘“

2mi e

=——= S _ 1 Y&
- Z“Zﬁ (g—sﬁ+i5) <alf ><fla> (e—eq+i8) OB

2mi e

asa

1
__Zaz:ﬁ (e—ep—ié) < al’B < 'Bla = (e—¢ —16) 0B

2mi e

1 Oegy 1 650_,

Zmeza (e—gq+i6)%2 0B 2meza (e—gq—16)% 0

1

___Z 1 6ea 1
2mi e “¥ (e—gq+i6)?

+__

Oeg
Zmeza(s £q—18)2 <ala> oB

<ala>

1
Zmeza (e—gq—168)?

1

Zmeza (e—gq+i8)2

1 1 1
- _%gza |BB (e—¢ +16)2|a = ﬁgza |aB (e—¢ —16)2|

<a| |a> <a| |a>

a >

=-——=I%,< |—G+(€)G+(8)Ia> +—-Za<a| G (&6 (e)a >

2mi e

= - L%, <a|Z{6H ()6 (&) — 67 ()6 ()} a > (C10)

2mi e

dés(e-H)

Since
de

—{G*(e)G*(e) — 6™ ()G~ (&)}, Eq. (C10) becomes

ﬁ d&(e—H)

S a > (C11)

—a%Tr(?(e — ﬁ) = _EZ“ < al

Since Tr (a” M) Yo < I {d oe- H)}la > Eq. (C11) becomes

a o~ 8H (d 8(e—H)
SETrc?(s —H) = —gza <a 5{—; }|a >

__c @ d §(e—H)
- e Ir (aB de ) (Clz)
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2
We know the expression for the Hamiltonian, A = ﬁ (;_5 — SZ(?)) + V(7), the derivative of the

Hamiltonian, A with respect to magnetic field, B

o _ ai{_m (5-2i) +ve)

2
Py ((px +py +p,) — (Ax + A, + Az)) + V(F)}

Il
S|
/—A—\

= %{ﬁ((px - SAx)z +(py - fAy)Z +(p2 - SAZ)Z) + V(?)}
(P2 +2 px——By + (— —By) +ps—2 pyE%Bx + (E %Bx)2 +p2) + V(F)}
(pZ + %pry +2 %2 B%y? 4+ ps — %pyBx + % :422 B%x? +p2) + V(F)}
(pz + pry + = — Bzy2 +p3 - %pyBx + % :422 B*x* +pZ) + V(F)}
px + py +pi+ prBy - ipyBx +2 %2 B%y? + i %2 B%x?) + V(F)}
p? +- B(pxy pyx)+—— B%(y* + «x )) +V(r)}
p?+- B(pxy pyx)+— - Bz(y + x )) +V(r)}

~ 9B2m ( (pxy - pyx)+—(p + < B O*+ x )) +%V(F)

e

ch(pxy pyx) +a3{<_( ? %C—ZZBZ(y2 + x° )) +V(®)}

—2 (py — pyx) +( ZZB(y2 + x? ))

2mc

=——2(p,x Px}’)"'(zm 2 BO+ x ))

2mc

——-{ B(y*+ x*) — (pyx — pxy)}

2mc

=5 C{ (Byy + Bxx) — pyx + pxy}

_le
2mc

=m0 (P + 55BY) =2 (py = 5B}
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=0 (= 4x) = x(py - £ )

=l (et a) - xi e -5 a))

=§{yvx—xvy}

=§{yvx—xvy} (C13)

Using Eq. (C12) and (C13), we have

c o s\ ¢ 0H d §(e—H)

CsTrs(e— 1) = —1r (55 <)
8(e—H)

= =511 (£ (ny - myx) )

1 d §(e—H)
= ETT ((vyx - vxy) T)

1 d §(e—H)
= ETT T(xvy - yvx)

1 d 6(e—H)
= ETT —ar (xvy - yvx)

1 d 5(e—-H)
= Tr ———(xv, — yv,) (C14)
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