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Abstract

As for the conventional theory for superfluids, the macroscopic theory and

the microscopic one are raised mainly. The former corresponds to the two-fluid

model[15,16] which regards superfluids as the system consisting of the superfluid

and normal fluid components. The latter corresponds to the Gross-Pitaevskii(GP)

theory[17-19], which gives physical quantities of the superfluid component by the

order parameter of the Bose-Einstein Condensation(BEC), and then, the Bogoli-

ubov theory[20,21], which gives physical quantities of the normal fluid compo-

nent by using the quasiparticle description. Although there are theories such as the

above ones approaching in terms of the microscopic surface, there are also some

problems to be solved. As one of these problems, the GP and Bogoliubov theories

cannot calculate physical quantities such as the density and current-density of the

superfluid and normal fluid simultaneously within just one theory.

To solve these problems, we have developed the current-density functional the-

ory for bosonic superfluids(sf-CDFT) in the thermal equilibrium state. In sf-

CDFT, we have chosen the particle number density, current-density of super-

fluids, and also, the order parameter of the BEC as basic variables reproduced

in sf-CDFT. It is shown that sf-CDFT can reproduce the particle number den-

sity and current-density of the superfluid and normal fluid components simulta-

neously while incorporating the effect of the interaction between these two flu-

ids. Physical quantities such as the particle number density and current-density

of these two fluids are determined by solutions of two crucial equations called

the Gross-Pitaevskii-Kohn-Sham(GPKS) and Kohn-Sham(KS) equations. More-

over, in the discussion, we propose some interesting comparisons of sf-CDFT

with conventional theories for superfluids, and in addition to this, the sum rule for

the exchange-correlation(xc) energy functional defined in sf-CDFT is derived and

would be useful for the development of its approximate form.
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Chapter 1

Introduction

1.1 Approach of conventional theories for superflu-
ids

The liquid helium-4 and the dilute Bose gases, what are called superfluids gen-

erally, have been studied actively, and research for superfluids has been one of

the well-known study fields in modern condensed matter physics nowadays[1-

8]. At the beginning of the history of research for superfluids, F. London[11]

pointed out the relation between superfluidity and BEC[9,10] after the discovery

of superfluidity[1,2]. Specifically, this relation can be explained by the concept

of the off-diagonal-long-range-order(ODLRO) introduced by O. Penrose[12], L.

Onsager[13], and C.N. Yang[14].

In terms of conventional approaches for superfluids, we can raise the macro-

scopic and microscopic theories for superfluids, respectively. As the macroscopic

theory for superfluids, the two-fluid model[15,16], which is externalism and known

as the theory that regards superfluids as the system consisting of the superfluid

(non-viscosity) and normal fluid (viscosity) components, is used for the descrip-

tion of the macroscopic behavior of superfluids. On the other hand, as for the

microscopic theory for superfluids, the Gross-Pitaevskii(GP)[17-19] and Bogoli-

ubov[20,21] theories have been used for the research of superfluids in terms of

the microscopic surface. The GP theory is the approach that considers the delta

function model as the weakly boson-boson interaction potential,

u(r, r′) = gδ(r− r′), (1.1)

where u(r, r′) is the boson-boson interaction potential and g is the positive fac-

tor which denotes the strength of their interaction[17,18]. Since the GP theory

describes and gives the behavior of the order parameter of the BEC by solving
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the GP equation[17-19], and since the order parameter of the BEC corresponds

to the single-particle state which is occupied by a lot of particles described as the

order of the total particle number O(N), we can calculate the density and current-

density described by the order parameter of the BEC in the GP theory, which are

related to a fluid component that the BEC is caused, i.e, the superfluid component.

On the other hand, in general, the many-body wave function of the system in the

ground state is approximately described by the multiplication of N set of the or-

der parameter of the BEC(it is generally called the Hartree approximation[62]),

so the GP theory, which deals with the order parameter of the BEC, is the theory

concerning the ground state of the system. Then, the Bogoliubov theory deals

with superfluids in the excited states, which consist of bosons interacting weakly.

The Bogoliubov theory applies the quasiparticle description to the excited states

of superfluids, specifically, this theory considers that the properties concerning

the excited states are given from the excited energy spectrum of the quasiparti-

cle while the properties concerning the ground state are given by solving the GP

equation. In this way, the Bogoliubov theory is the approach that we can calculate

the density and current-density concerning the excited states by using the excited

energy spectrum of the quasiparticle. Also, since the density and current-density

concerning the excited states correspond to the remaining component except for

the superfluid component concerning the ground state, from the point of view of

the two-fluid model, these physical quantities concerning the excited states cor-

respond to those of the normal fluid component. Thus, the Bogoliubov theory

enables the calculation of the density and current-density of the normal fluid com-

ponent.

Although we mention some conventional theories for superfluids in the above,

there are also some problems to be solved. In the GP and Bogoliubov theories,

as mentioned in equation (1.1), the boson-boson interaction is assumed as the

delta function model, and it leaves room for improvement. The real system as

superfluids, for example, the liquid helium-4, is constituted by bosons interact-

ing strongly. Indeed, some experimental results for the liquid helium-4 cannot be

described by using the GP or Bogoliubov theories[22,23]. Moreover, the simul-

taneous treatment of the superfluid and normal fluid components cannot be done

in these conventional theories. Thus, it would be convenient if we could describe

physical quantities such as the density and current-density of the superfluid and

normal fluid components simultaneously.

On the other hand, concerning the fermion system, the density functional the-

ory(DFT)[24,25] and its extensions[26-35] have been used for the investigation of

the electronic and magnetic properties of some materials. DFT deals with many-

electrons systems in which they interact. Particularly, DFTs for superconductors,

in which U(1) gauge symmetry breaking emerges, have been also developed at

present[36-43]. Also, the order parameter for superconductors has been discussed,
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and there are several types of DFTs developed so far[42,43]. In addition, as for

the fermionic superfluids, work like the superfluid local density approximation

has been also developed based on DFT[44-47].

1.2 Proposal of the current-density functional the-
ory for bosonic superfluids

In this paper, we propose the current-density functional theory for bosonic

superfluids(sf-CDFT) which enables the simultaneous treatment of the superfluid

and normal fluid components. In our theory, the particle number density, current-

density, and the order parameter of the BEC are chosen as reproduced basic vari-

ables. The paper on this theory is organized as follows: In Chapter 2, we first

introduce conventional theories for superfluids such as the two-fluid model, the

GP and Bogoliubov theories. In Chapter 3, let us explain the finite temperature

density functional theory(FTDFT) for the electron system in the thermal equilib-

rium state, which is supposed to be applied to develop sf-CDFT. In the crucial

Chapter 4, we propose sf-CDFT. In this chapter, similar to DFT or FTDFT, we

first prove that the extension of the Hohenberg-Kohn(HK) theorem is established.

HK theorem can be divided into two theorems, the first one is that basic vari-

ables, external potentials, and the density matrix in the thermal equilibrium state

are in one-to-one correspondence, and another one is that the variational principle

concerning a functional of basic variables can be proved. Next, we introduce the

non-interaction reference system similar to DFT or FTDFT, and there we can de-

rive two single-particle equations called the Gross-Pitaevskii-Kohn-Sham(GPKS)

and Kohn-Sham(KS) equations using this HK theorem. It is shown that the par-

ticle number density and current-density of the superfluid component can be cal-

culated by the solution of the GPKS equation while those of the normal fluid one

can be calculated by solutions of the KS equation. After these formulations, in

Chapter 5, we discuss sf-CDFT. In the first section, we derive the sum rule for the

exchange-correlation(xc) energy functional defined in sf-CDFT, and then from the

next section, we start to compare sf-CDFT with conventional theories for superflu-

ids raised in the above. In this discussion, we can find some interesting features,

particularly, we can show that sf-CDFT reproduces the particle number density

and current-dnsity of the superfluid and normal fluid components simultaneously

while incorporating the effect of the interaction between the superfluid and normal

fluid components. In the final Chapter 6, we present the conclusion of this paper.
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Chapter 2

Conventional theories for
superfluids

In this chapter, we briefly summarize several theories for superfluids which are

known conventionally. In section 2.1, we first introduce the two-fluid model[15,16]

which is externalism describing the macroscopic properties of superfluids, in this

model superfluid(non-viscous fluid) and normal fluid(viscous fluid) are introduced

as components constituting superfluids. In section 2.2, we summarize the defini-

tion of the order parameter of the BEC[12,13], which provides the particle number

density and current-density of the superfluid component. Sections 2.3 and 2.4 give

two microscopic conventional theories for superfluids respectively. In section 2.3,

the Gross-Pitaevskii theory[17-19], which gives the equation the order parameter

of the BEC follows, is introduced and this theory describes the behavior of the

superfluid. Then, in section 2.4, the Bogoliubov theory[20,21] that describes the

excited states of superfluids is introduced and this theory enables us to describe

the properties of the normal fluid.

2.1 Two-fluid model
The two-fluid model, which describes the macroscopic behavior of superfluids,

was proposed by L. Tisza and L.D. Landau[15,16]. In this model, if we write the

phase transition temperature of the BEC like Tc, superfluids under the condition

of T < Tc are considered that they consist of two fluid components called the su-

perfluid and the normal fluid, respectively. The superfluid is the non-viscous fluid

while the normal fluid is the viscous one, and it is known that each fluid moves

independently when its fluid velocity is very small. However, when their fluid

velocity become large, it is also known that the quantum vortex is generated in the

superfluid and two fluid components interact with each other through the quan-
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tum vortex[63]. In this section, we first describe the case of two fluid components

moving independently, and after that, we will discuss the case they interact with

each other.

First, we consider superfluids in the stationary state. Now let us write the par-

ticle number density of the superfluid like nsf(r), and also the one of the normal

fluid like nnf(r). In addition, we write the fluid velocity of the superfluid like

vsf(r), and also the one of the normal fluid like vnf(r). In this case, the total den-

sity n(r) and the total current-density j(r) are described as

n(r) = nsf(r) + nnf(r), (2.1)

j(r) = nsf(r)vsf(r) + nnf(r)vnf(r). (2.2)

The particle number density and the current-density of the superfluid nsf(r) and

nsf(r)vsf(r) are calculated by using the order parameter of the BEC, which is ex-

plained in next section, and concerning the normal fluid, it is known that nnf(r)
and nnf(r)vnf(r) are given by the quasiparticle description. As regards this, we

will describe in section 2.4. In this section, we next show the continuity equation

related to n(r) and j(r) below.

Now we consider superfluids in which the current-density j(r) occurs and in

this case, a vector potential A(r), which is considered the fictitious potential that

appears when we are in the rotational coordinate system which is related with the

current-density j(r), exists. In detail, we will discuss the derivation of this poten-

tial in Appendix A, so here we only mention the formula of this potential. Now,

we are in the rotational coordinate system which moves with j(r), and when we

write the position vector of this coordinate system r, and the angular velocity vec-

tor concerning j(r) like ω, then we can describe the formula of a vector potential

A(r) as

A(r) = −mω × r, (2.3)

where m is the mass of a particle constituting superfluids, and here ω is the vector

in the direction of the z-axis like (0, 0, ω). Therefore, due to the addition of

the term that is proportional to A(r), the total density n(r) and the total current-

density j(r) follow the continuity equation as

∇ · (j(r) + n(r)A(r)/m) = 0, (2.4)

Next, we discuss the case that two fluid components interact with each other. As
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the history of the experimental research for hydrodynamic properties of superflu-

ids such as the liquid helium-4, research for the thermal counterflow in superfluids

is one of the most attractive studies[64]. The thermal counterflow is the flow that

the superfluid and normal fluid components flow in the opposite direction respec-

tively, and this flow is caused by the inflow of the heat. The experimental situation

is described in Fig.2.1.

superfluids

T, P

x
sfv

nfv

T

W

Pmeasure

measure

heater

vessel

r

Fig. 2.1: The experiment of the thermal counterflow

Now, we consider superfluids such as the liquid helium(its temperature and

pressure are T, P ) in the thermal equilibrium state in the above vessel(the axis

of the center of the vessel is x, and the radius of the vessel is a), and here we

add the heat per unit of time W from the heater. This heat makes the changes of

temperature and pressure like ΔT , ΔP from initial values, and the flow veloci-

ties of the superfluid and normal fluid components vsf(r, t) and vnf(r, t), also the

gradients of temperature and pressure ∇T and ∇P are produced along the axis-x.

In this way, the non-equilibrium state that the superfluid and normal fluid flow

respectively realizes in superfluids, and after enough time passes, the state of the

system becomes the thermal equilibrium state again(its temperature and pressure

are T + ΔT and P + ΔP ). Under this process, the hydrodynamic equations of

motion concerning the superfluid and normal fluid flow velocities vsf(r, t) and

vnf(r, t) are described respectively,
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nsf [
∂

∂t
vsf + (vsf · ∇)vsf ] = −nsf

n
∇P + snsf∇T, (2.5)

nnf [
∂

∂t
vnf + (vnf · ∇)vnf ] = −nnf

n
∇P − snsf∇T + ηnf∇2vnf , (2.6)

where in equations (2.5) and (2.6), we omitted arguments of r and t to make these

equations simple, and s is the entropy density per unit of mass of superfluids, and

the coefficient ηnf denotes the viscosity of the normal fluid component. As seen

in terms described by the gradient of T in (2.5) and (2.6), the normal fluid flows

in the direction from a high-temperature area to a low-temperature area, while the

superfluid component flows in the opposite direction. Since this vessel is closed

and there is no additional source or sink in superfluids, the thermal counterflow

that the total current-density j(r, t) is zero occurs in superfluids. In the process

of the state change of the system, we first focus on the superfluid component.

In the thermal equilibrium state after the non-equilibrium state that the thermal

counterflow occurs, the superfluid flows stationarily and the relation between the

gradient of temperature and that of pressure written as

∇P = sn∇T (2.7)

is derived from the equation (2.5). Since we are considering the flow and gradient

in the direction of the x-axis, from now on let us write the dependence of x in the

above equations. In short, the equation (2.7) is rewritten as

dP

dx
= sn

dT

dx
. (2.8)

On the other hand, next, we consider the normal fluid component. When the

heat W is small and the relative velocity between the superfluid and normal fluid

components is small, we can consider the Hagen-Poiseuille(or Poiseuille) flow as

the normal fluid flow. In this case, the flow velocity of the normal fluid vnf is the

velocity of the Hagen-Poiseuille flow which depends on the distance r from the

central axis-x and the solution of equation (2.6) can be obtained as

vnf(r) = − a2

4ηnf
(1− r2

a2
)
dP

dx
. (2.9)

Thus, the mean flow velocity at the cross-section of the vessel v̄nf is calculated as

v̄nf =
1

πa2

∫ a

0

vnf(r)2πrdr = − a2

8ηnf

dP

dx
= −a

2sn

8ηnf

dT

dx
, (2.10)
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here in the last term, we used the equation (2.8). On the other hand, the heat added

from the heater is carried by the normal fluid and it flows as the heat energy flow

per unit of time and space given by

W

πa2
= snv̄nfT. (2.11)

Thus, by equations (2.10) and (2.11), we can derive the following relation,

W

πa2
= snT v̄nf = −(asn)2T

8ηnf

dT

dx
, (2.12)

therefore, the gradient of temperature, i.e., the amount of change concerning tem-

perature ΔT is proportional to the heat energy from the heater W . By the way,

in the actual experiment, this amount of change ΔT (or ΔP ) is measured. The

above relation between ΔT (or ΔP ) and W described by (2.12) has been verified

in experiments under the condition that the heat W is small[64].

However, in the case that W becomes large, it has been observed that ΔT (or

ΔP ) does not follow the above relation and the additional term for (2.12) which is

proportional to W 3 instead of W occurs[65]. To explain this, C.J. Gorter and J.H.

Mellink, scientists who observed this had introduced the mutual friction between

the superfluid and normal fluid like Fsf−nf into equations (2.5) and (2.6)[65],

nsf [
∂

∂t
vsf + (vsf · ∇)vsf ] = −nsf

n
∇P + snsf∇T − Fsf−nf , (2.13)

nnf [
∂

∂t
vnf + (vnf · ∇)vnf ] = −nnf

n
∇P − snsf∇T + ηnf∇2vnf + Fsf−nf . (2.14)

The mutual friction Fsf−nf can be written as the below by the comparison with

results of experiments[65],

Fsf−nf � Ansfnnf(vsf − vnf)
3, (2.15)

where A is the function of temperature(When we consider (2.15) as the form of

the mutual friction and follow the similar way mentioned above using equations

(2.13) and (2.14), we can indicate that the additional term mentioned above is

proportional to W 3). Besides, H.E. Hall and W.F. Vinen have shown that this mu-

tual friction is related to the interaction between the normal fluid and the quantum

vortex caused in the superfluid[63]. In their discussion, the concept of the motion

of the vortex filament has been used to explain the mutual friction.
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2.2 Order parameter of the BEC
In this section, we briefly describe the definition of the order parameter of the

BEC when bosons interact with each other, proposed by O. Penrose[12] and L.

Onsager[13]. BEC, which is the phase transition phenomenon caused in the bo-

son system, is essential to understand the superfluidity, and it is well known that

we can define the BEC by using the single-particle state description described

by wave functions of plane waves when bosons do not interact. However, when

bosons interact with each other, we cannot simply use this description for the def-

inition of the BEC. Therefore, as explained below, the definition of the BEC when

bosons interact was proposed by using the concept of the one-particle reduced

density matrix.

First, we consider the one-particle reduced density matrix ρ1(r, r
′) defined as

ρ1(r, r
′) �

〈
Ψ
∣∣∣ψ̂†(r)ψ̂(r′)

∣∣∣Ψ〉
, (2.16)

where ψ̂†(r), ψ̂(r) are field operators for bosons, and |Ψ〉 is the state vector of the

N particles system. As the above definition, ρ1(r, r
′) is the probability amplitude

that the state of the system |Ψ〉 stays as it was when a particle at r′ is deleted

and a particle at r is created. Here ρ1(r, r
′) is obviously the Hermite matrix, and

this matrix can conduct the spectral decomposition by using its eigenvalues and

eigenfunctions as

ρ1(r, r
′) =

∑
i

Niu
∗
i (r)ui(r

′), (2.17)

where Ni is the eigenvalue of ρ1(r, r
′) for the single-particle state i, and ui(r)

is the eigenfunction of ρ1(r, r
′) for i. Concerning the derivation of the equation

(2.6), we proved this in Appendix B. Here, let us show that the eigenvalue Ni of

ρ1(r, r
′) is the occupation number for the single-particle state i below.

First, taking into consideration the definition of ρ1(r, r
′) given by the equation

(2.16), when r equals r′, the one-particle reduced density matrix equals the parti-

cle number density which is the expectation value of the particle number density

operator given by

n̂(r) = ψ̂†(r)ψ̂(r), (2.18)

then we write the particle number density like n(r), and describe

ρ1(r, r) =
〈
Ψ
∣∣∣ψ̂†(r)ψ̂(r)

∣∣∣Ψ〉
≡ n(r). (2.19)
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On the other hand, by the equation (2.17),

ρ1(r, r) =
∑
i

Ni|ui(r)|2, (2.20)

so compare equations (2.19) and (2.20),

n(r) =
∑
i

Ni|ui(r)|2, (2.21)

here integrate both hand sides of equation (2.21) concerning r, and consider

N =

∫
n(r)dr, (2.22)

therefore,

N =
∑
i

Ni

∫
|ui(r)|2dr =

∑
i

Ni, (2.23)

where we considered that eigenfunctions of ρ1(r, r
′) were normalized. As equa-

tion (2.23), the eigenvalue Ni of ρ1(r, r
′) is the occupation number for the single-

particle state i.
Now we define the BEC in the system consisting of interacting bosons that the

BEC is caused when the eigenvalue of ρ1(r, r
′) for the one single-particle state

(here we write it as i = 0) is O(N), and the others(i �= 0) are O(1). At this time,

let us rewrite the equation (2.17) as

ρ1(r, r
′) =

∑
i

Niu
∗
i (r)ui(r

′) = N0u
∗
0(r)u0(r

′) +
∑
i �=0

Niu
∗
i (r)ui(r

′), (2.24)

where in equation (2.24), we divided the term of the sum for i into two terms

which are the term of i = 0 and the others i �= 0. Here eigenfunctions u0(r)
and ui(r) are about the order of V −1/2(V is the volume of the system) due to the

normalization of the wave function, and when the BEC is caused, eigenvalues N0

and Ni are written as

N0 = O(N), Ni = O(1)(i �= 0), (2.25)

at this time, we take the limit |r− r′| → ∞ which is equivalent to the thermo-

dynamic limit N → ∞, V → ∞ keeping N/V constantly concerning both hand

13



sides of equation (2.24), then we obtain

lim
|r−r′|→∞

ρ1(r, r
′) = N0u

∗
0(r)u0(r

′). (2.26)

Eq. (2.26) is the formula representing the condition that the BEC is caused, and it

is said that the system has the off-diagonal long-range order (ODLRO). Here, we

rewrite the right-hand side of equation (2.26) by using

ψ(r) �
√
N0u0(r), (2.27)

then the equation (2.26) is

lim
|r−r′|→∞

ρ1(r, r
′) = ψ∗(r)ψ(r′). (2.28)

On the other hand, about the equation (2.16), we apply the cluster decomposition

principle,

lim
|r−r′|→∞

ρ1(r, r
′) =

〈
Ψ
∣∣∣ψ̂†(r)

∣∣∣Ψ〉〈
Ψ
∣∣∣ψ̂(r′)∣∣∣Ψ〉

, (2.29)

therefore, we obtain

ψ(r) =
√
N0u0(r) =

〈
Ψ
∣∣∣ψ̂(r)∣∣∣Ψ〉

(2.30)

ψ∗(r) =
√
N0u

∗
0(r) =

〈
Ψ
∣∣∣ψ̂†(r)

∣∣∣Ψ〉
. (2.31)

ψ(r) is the order parameter of the BEC, also known as the macroscopic wave

function, and the space integral of |ψ(r)|2 gives the total particle number for the

single-particle state i = 0, which is the state the BEC is caused. When the BEC

is caused in the system, bosons whose particle number is macroscopic as O(N)
occupy the same single-particle state i = 0 described by ψ(r), and therefore these

bosons behave like following the same wave function ψ(r).
The order parameter ψ(r) is the crucial parameter that features the BEC, and

generally the complex classical field, so we can write ψ(r) by using the amplitude

and the phase as

ψ(r) = A(r)eiθ(r), (2.32)

where A(r) is the complex amplitude and θ(r) is the phase of the real number.
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Now considering that the space integral of |ψ(r)|2 gives the particle number of

bosons occupying the single-particle state i = 0,∫
|ψ(r)|2dr = N0

∫
|u0(r)|2dr = N0, (2.33)

so, as the equation (2.33), we can interpret |ψ(r)|2 as the particle number density

concerning the single-particle state that the BEC is caused, therefore, we write

this density as n0(r),

|ψ(r)|2 � n0(r), (2.34)

then, from equations (2.21) and (2.23), we obtain

ψ(r) =
√
n0(r)e

iθ(r). (2.35)

Where we contained the term of the phase factor into eiθ(r). In this way, the

particle number density concerning the single-particle state that the BEC is caused

n0(r) is the density concerning the state that the superfluidity is caused, therefore,

equals the particle number density of the superfluid component nsf(r). On the

other hand, concerning the phase θ(r) in equation (2.35), it is shown that this

phase gives the fluid velocity of the superfluid in a later section.

2.3 Gross-Pitaevskii theory
In this section, we derive the equation that the order parameter of the BEC ψ(r)

follows. It is necessary to understand the behavior of the order parameter of the

BEC for investigating the properties of the superfluid. Therefore, in this section,

we start to discuss the Heisenberg equation of motion that the field operator for

bosons follows and aim to derive the equation of motion that the order parameter

of the BEC satisfies when bosons weakly interact with each other.

At first, we consider the boson system in which the external field corresponding

to the external potential Vext(r) is applied, and the Hamiltonian of this system Ĥ
is given by

Ĥ = T̂ + V̂ + Ŵ , (2.36)

where T̂ , V̂ and Ŵ are the kinetic energy, external potential, and boson-boson
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interaction operators, respectively, given by

T̂ =

∫
ψ̂†(r)(−�

2∇2

2m
)ψ̂(r)dr, (2.37)

V̂ =

∫
ψ̂†(r)Vext(r)ψ̂(r)dr, (2.38)

Ŵ =
1

2

∫∫
ψ̂†(r)ψ̂†(r′)u(r, r′)ψ̂(r′)ψ̂(r)drdr′. (2.39)

Here, m is the mass of the boson, u(r, r′) denotes the boson-boson interaction

potential.

Then, we consider the grand canonical Hamiltonian which is used in the method

of the grand canonical ensemble given by

K̂ � Ĥ − μN̂, (2.40)

where μ is the chemical potential and N̂ is the total particle number operator given

by

N̂ =

∫
n̂(r)dr. (2.41)

To deal with the case that bosons weakly interact, here we consider the potential

which is described by the delta function as u(r, r′),

u(r, r′) = gδ(r− r′), (2.42)

where g is the positive constant that denotes the strength of the boson-boson in-

teraction. It is known that this description does not function well concerning the

liquid helium, but not the dilute Bose gas.

Under this description, the operator K̂ is described as

K̂ =

∫
ψ̂†(r)(−�

2∇2

2m
+ Vext(r)− μ)ψ̂(r)dr+

g

2

∫
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)dr.

(2.43)

Next, concerning K̂, we consider the Heisenberg equation of motion below,

i�
∂

∂t
ψ̂(r, t) = [ψ̂(r, t), K̂], (2.44)
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where ψ̂(r, t) is the field operator for bosons which is described by the Heisenberg

picture as,

ψ̂(r, t) = ei
K̂
�
tψ̂(r)e−i

K̂
�
t. (2.45)

Substitute equation (2.43) into (2.44), and proceed the calculation,

i�
∂

∂t
ψ̂(r, t) = [ψ̂(r, t),

∫
ψ̂†(r′)(−�

2∇2

2m
+ Vext(r

′)− μ)ψ̂(r′)dr′]

+ [ψ̂(r, t),
g

2

∫
ψ̂†(r′)ψ̂†(r′)ψ̂(r′)ψ̂(r′)dr′] (2.46)

here we use the following formula of the commutation relation,

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ], (2.47)

moreover, we consider the commutation relation of field operators for bosons as,

[ψ̂(r, t), ψ̂†(r′)] = δ(r− r′), (2.48)

[ψ̂(r, t), ψ̂(r′)] = 0, (2.49)

[ψ̂†(r, t), ψ̂†(r′)] = 0. (2.50)

Then, by using equations from (2.47) to (2.50), we can derive the following equa-

tion,

i�
∂

∂t
ψ̂(r, t) = (−�

2∇2

2m
+ Vext(r)− μ)ψ̂(r, t) + gψ̂†(r, t)ψ̂(r, t)ψ̂(r, t). (2.51)

Here, we consider that we expand the field operator (2.45) by using eigenfunctions

of the one-particle reduced density matrix as

ψ̂(r, t) =
∑
i

ui(r)âi(t), (2.52)

where, âi(t) is the annihilation operator of bosons for the eigenfunction of the
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one-particle reduced density matrix ui(r), which is described by the Heisenberg

picture. This operator of bosons satisfies the following commutation relation,

[âi(t), â
†
j(t)] = δi,j, (2.53)

[âi(t), âj(t)] = 0, (2.54)

[â†i (t), â
†
j(t)] = 0. (2.55)

Now, we divide the right-hand side of equation (2.52) into two terms which are

respectively the term that the BEC is caused and others like

ψ̂(r, t) = u0(r)â0(t) +
∑
i �=0

ui(r)âi(t). (2.56)

Here, we consider the commutation relation of the annihilation and creation oper-

ators â0(t) and â†0(t) as

[â0(t), â
†
0(t)] = â0(t)â

†
0(t)− â†0(t)â0(t) = 1, (2.57)

therefore,

â0(t)â
†
0(t) = â†0(t)â0(t) + 1, (2.58)

here, concerning both hand sides of equation (2.58), we calculate the expectation

by using eigenfunctions of the one-particle reduced density matrix as bases for the

trace,

〈â0(t)â†0(t)〉 = 〈â†0(t)â0(t)〉+ 1 = N0(t) + 1, (2.59)

where, the notation 〈· · · 〉 means the expectation by using eigenfunctions of the

one-particle reduced density matrix as bases for the trace, and N0(t) is the ex-

pectation of the occupation particle number concerning the state that the BEC is

caused. When the BEC is caused, N0(t) is macroscopic like O(N), and 1 is too

small compared with N0(t), therefore, we rewrite the equation (2.59) as

〈â0(t)â†0(t)〉 = 〈â†0(t)â0(t)〉+ 1 ≈ N0(t) = 〈â†0(t)â0(t)〉, (2.60)

then,
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〈â0(t)â†0(t)〉 = 〈â†0(t)â0(t)〉 = N0(t). (2.61)

Eq. (2.61) means that we ignore the non-commutativity of â0(t) and â†0(t) and in

this case, it follows that we consider these operators as the classical number,

â0(t) = â†0(t) =
√
N0(t). (2.62)

Here, we omitted the phase factor of â0(t) and â†0(t) in equation (2.62).

Therefore, we apply this approximation that the first term in the right-hand side

of equation (2.56) becomes the classical field, equation (2.56) is

ψ̂(r, t) =
√
N0(t)u0(r) +

∑
i �=0

ui(r)âi(t). (2.63)

Here, we consider equations (2.27) and (2.30), and we can describe equation

(2.63) as

ψ̂(r, t) = ψ(r, t) +
∑
i �=0

ui(r)âi(t). (2.64)

Eq. (2.64) means the description that we represent the field operator for bosons by

the sum of the term of the order parameter of the BEC, which is the expectation of

the field operator, and another term of the fluctuation around the order parameter,

which is described by the difference between the field operator and the order pa-

rameter. Here, when we ignore this fluctuation term, the field operator equals the

order parameter of the BEC, and then we can derive the following equation from

equations (2.51) and (2.64),

i�
∂

∂t
ψ(r, t) = (−�

2∇2

2m
+ Vext(r)− μ)ψ(r, t) + g|ψ(r, t)|2ψ(r, t). (2.65)

This equation (2.65) is called the Gross-Pitaevskii(GP) equation[17-19]. When

the temperature T = 0, i.e, the state of superfluids is the ground state, it is the-

oretically considered that all particles occupy one single-particle state described

by ψ(r, t) due to without the Pauli exclusion principle, so in this case, the ground

state of superfluids is the state of the system that the BEC is caused, and its state

is given by the order parameter of the BEC ψ(r, t). So, the GP theory describes

the ground state of superfluids.

The stationary solution of the equation (2.65) ψ(r) is also given by the same
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calculation procedure,

(−�
2∇2

2m
+ Vext(r)− μ)ψ(r) + g|ψ(r)|2ψ(r) = 0. (2.66)

The time-dependent GP equation describes the time evolution of the order param-

eter of the BEC ψ(r, t), and it is known that this GP equation is useful for dealing

with the dilute Bose gas although it is not appropriate for the liquid helium be-

cause particles constituting the liquid helium interact strongly.

Next, we derive the continuity equation which the particle number density of

the superfluid component satisfies. First, we take the complex conjugate of the

equation which is the multiplication of the GP equation (2.65) and the order pa-

rameter of the BEC and subtract its original one from the conjugate equation, then

we can get

∂

∂t
|ψ(r, t)|2 + �

2mi
∇ · (ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)) = 0, (2.67)

here, we use equation (2.34) and define as

j0(r, t) �
�

2mi
(ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)), (2.68)

therefore, we can describe equation (2.67) as

∂

∂t
n0(r, t) +∇ · j0(r, t) = 0, (2.69)

this equation (2.69) is the continuity equation concerning n0(r, t) and j0(r, t), and

we can interpret that j0(r, t) is the particle number current-density by equation

(2.68).

Next, we substitute equation (2.35) into equation (2.68), and then we can describe

the current-density as

j0(r, t) = n0(r, t)
�

m
∇θ(r, t), (2.70)

in this way, we define the fluid velocity of the superfluid component v0(r, t) as

v0(r, t) =
�

m
∇θ(r, t). (2.71)
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The velocity v0(r, t) is described by the phase of the order parameter of the BEC.

On the other hand, we substitute the equation (2.35) into the GP equation (2.65),

and then focus on the real part of this equation, we can get the following equation

as a result,

m
∂

∂t
v0(r, t) = −∇(gn0(r, t) + Vext(r)− μ+P0(r, t) +

1

2
m(v0(r, t))

2), (2.72)

where, P0(r, t) is defined as

P0(r, t) � − �
2

2m

∇2
√
n0(r, t)√
n0(r, t)

. (2.73)

This equation (2.72) is called the Euler equation concerning the superfluid com-

ponent, and the fourth term on the right-hand side of the equation (2.72) is called

the quantum pressure term, which contains the effect of the quantum mechanical

correction. In general, if the spatial change of n0(r, t) is mild, we can ignore this

quantum pressure term.

2.4 Bogoliubov theory
The GP equation, which was discussed in the former section, is derived from

the way that in equation (2.64) we approximate the field operator for bosons as

the classical field, i.e., the order parameter of the BEC ψ(r, t). Additional to

this theory which uses the GP equation, i.e., the theory of the ground state of

superfluids, the theory that it describes the excited states of superfluids by the

quasiparticle description was developed by N.N. Bogoliubov[20]. His method

starts from the step in which we describe the field operator for bosons as the

sum of the order parameter of the BEC ψ(r, t) and its fluctuation term
˜̂
ψ(r, t),

and substitutes it into the Hamiltonian of the system given by equation (2.36),

then ignores higher terms than O(
˜̂
ψ2). After that, we can get the formula of the

Hamiltonian, which is described by the zeroth, first and second-order terms of
˜̂
ψ(r, t), but actually, we can drop the first-order term of

˜̂
ψ(r, t) due to the GP

equation. Therefore, after this, we apply the Bogoliubov transformation to
˜̂
ψ(r, t)

and describe the excited states of superfluids by the quasiparticle description. In

this section, we explain this procedure below.

To make the discussion simple, first we consider the situation that the superfluid

component flows by the fluid velocity v0, i.e., its velocity does not depend on the
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time and position vector. In addition, in terms of the particle number density of

the superfluid, we also consider the case that n0 does not depend on the time and

position vector(Namely, we here consider the homogeneous superfluid system).

These situations correspond with the case that the order parameter of the BEC is

written as

ψ(r) =
√
n0e

iθ(r), (2.74)

therefore, it follows that we consider the stationary state and the case that the

stationary current occurs in superfluids.

The solution of the GP equation under the above situation is given by

μ = gn0 +
1

2
mv2

0, (2.75)

ψ(r) =
√
n0e

im
�
v0·r. (2.76)

Where we considered Vext(r) = 0. Next, we consider the fluctuation operators
˜̂
ψ(r, t) and

˜̂
ψ†(r, t). Now we expand these operators by the plane wave function

as the bases like

˜̂
ψ(r, t) =

1√
V

∑
k�=0

ei(
m
�
v0+k)·râk(t). (2.77)

Where concerning the wave number index of the sum k, we eliminated the term

k = 0 which corresponds with the order parameter of the BEC (2.76) to avoid the

double count of this term when we consider the field operator for bosons. And

here, we considered the annihilation operator which deletes one boson having the

wave number k as âk(t).(V is the volume of the system.)

Now, let us consider that we can write the grand canonical Hamiltonian as

equation (2.43) in the system constituting bosons interacting weakly like equa-

tion (2.42), and substitute

ψ̂(r, t) = ψ(r) +
˜̂
ψ(r, t) (2.78)

into this Hamiltonian, then we can get
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K̂ = K0 + K̂1 + K̂2, (2.79)

K0 =

∫
ψ∗(r)ĥψ(r)dr+

g

2

∫
|ψ(r)|4dr, (2.80)

K̂1 =

∫
(ĥ+ g|ψ(r)|2)ψ∗(r) ˜̂ψ(r, t)dr+

∫
(ĥ+ g|ψ(r)|2)ψ(r) ˜̂ψ†(r, t)dr,

(2.81)

K̂2 =

∫
(2g|ψ(r)|2 ˜̂ψ†(r, t) ˜̂ψ(r, t) +

˜̂
ψ†(r, t)ĥ ˜̂ψ(r, t) +

g

2
ψ∗(r)2 ˜̂ψ(r, t) ˜̂ψ(r, t)

+
g

2
ψ(r)2

˜̂
ψ†(r, t)

˜̂
ψ†(r, t))dr, (2.82)

ĥ = −�
2∇2

2m
− μ, (2.83)

where we ignored higher terms thanO(
˜̂
ψ2). Then, we focus on the first-order term

and find that we can drop this first-order term due to the GP equation like

(ĥ+ g|ψ(r)|2)ψ(r) = 0, (2.84)

therefore, we can get the following result.

K̂ = K0 + K̂2, (2.85)

K0 =

∫
ψ∗(r)ĥψ(r)dr+

g

2

∫
|ψ(r)|4dr, (2.86)

K̂2 =

∫
(2g|ψ(r)|2 ˜̂ψ†(r, t) ˜̂ψ(r, t) +

˜̂
ψ†(r, t)ĥ ˜̂ψ(r, t) +

g

2
ψ∗(r)2 ˜̂ψ(r, t) ˜̂ψ(r, t)

+
g

2
ψ(r)2

˜̂
ψ†(r, t)

˜̂
ψ†(r, t))dr. (2.87)

Next, we substitute (2.77) into K̂2 and rewrite this by the creation and annihilation

operators â†k(t), âk(t) like

K̂2 =
∑
k�=0

(ε0k + �k · v0 + gn0)â
†
k(t)âk(t) +

gn0

2

∑
k �=0

(â†k(t)â
†
-k(t) + âk(t)â-k(t)),

(2.88)

where,
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ε0k =
�
2k2

2m
. (2.89)

Then, next, we introduce the Bogoliubov transformation below to diagonalize the

operator K̂2,

Âk = ukâk + vkâ
†
-k (2.90)

Â†
-k = ukâ

†
-k + vkâk. (2.91)

However, we omitted the symbol of the time to avoid making the discussion com-

plex, and we will follow this rule in the below discussion. And here, uk and vk are

the classical numbers that we will determine from now on.

This Bogoliubov transformation is used to diagonalize the Hamiltonian and this is

made by using the creation and annihilation operators concerning the quasiparticle

Â†
k, Âk. First, we can derive the following relational expression by the definition

(2.90) and (2.91),

uk = u∗-k, vk = v∗-k, (2.92)

therefore, as the classical numbers that satisfy (2.92), we opt uk and vk which are

real and even functions of k.

Next, we consider the quasiparticle of the excited states of superfluids which de-

scribes the Landau energy spectrum[16], then we require the commutation relation

for bosons concerning the creation and annihilation operators of quasiparticle,

[Âk, Â
†
k’] = δk,k’, (2.93)

[Âk, Âk’] = 0, (2.94)

[Â†
k, Â

†
k’] = 0. (2.95)

As the appropriate values for uk and vk which satisfy equations from (2.90) to

(2.95), we can derive the following relational expression,

u2k − v2k = 1. (2.96)

In this way, let us rewrite equation (2.88) by using Â†
k, Âk. By using the relations
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of (2.90) and (2.91) and calculating carefully, we can derive the following result,

K̂2 =
∑
k �=0

[(ε0k + gn0)(u
2
k + v2k)− 2gn0ukvk + �k · v0]Â

†
kÂk

+
∑
k�=0

[
gn0

2
(u2k + v2k)− ukvk(ε

0
k + gn0)](ÂkÂ-k + Â†

kÂ
†
-k) + K̃0. (2.97)

Where,

K̃0 =
∑
k�=0

(ε0k + gn0 + �k · v0)v
2
k − gn0

∑
k�=0

ukvk. (2.98)

Then, we summarize such like,

εk � (ε0k + gn0)(u
2
k + v2k)− 2gn0ukvk, (2.99)

therefore,

K̂2 =
∑
k �=0

[εk + �k · v0]Â
†
kÂk

+
∑
k�=0

[
gn0

2
(u2k + v2k)− ukvk(ε

0
k + gn0)](ÂkÂ-k + Â†

kÂ
†
-k) + K̃0. (2.100)

Therefore, as the values for uk and vk which enable us to drop non-diagonal terms,

we find that they should satisfy,

gn0

2
(u2k + v2k)− ukvk(ε

0
k + gn0) = 0. (2.101)

In this way, we can derive formulas of uk and vk specifically by (2.96) and (2.101),

u2k =
1

2
(
ε0k + gn0

Ek
+ 1), (2.102)

v2k =
1

2
(
ε0k + gn0

Ek
− 1), (2.103)

Ek �
√
ε0k(ε

0
k + 2gn0). (2.104)

25



Then, substitute from (2.101) to (2.104) into (2.99),

εk = Ek =
√
ε0k(ε

0
k + 2gn0). (2.105)

Therefore, we finally summarize the equation (2.100) as

K̂2 =
∑
k�=0

[Ek + �k · v0]Â
†
kÂk + K̃0. (2.106)

This equation (2.106) is the energy term given by the excited states of superfluids,

and it is described by the creation and annihilation operators of the quasiparticle.

And then, we can also derive formulas of the particle number density and current-

density in the excited states by using the above results. First, we should remember

the formula of the particle number density operator given by (2.18), and moreover

we consider the current-density operator given by,

ĵ(r) =
�

2mi
(ψ̂†(r)∇ψ̂(r)− ψ̂(r)∇ψ̂†(r)). (2.107)

By substituting (2.76), (2.77), (2.78), (2.90), and (2.91) into (2.18) and (2.107)

respectively, and calculating carefully, we can derive the following result,

n = n0 +
1

V

∑
k�=0

[(u2k + v2k)fB(Ẽk) + v2k], (2.108)

j = nv0 +
1

V

∑
k�=0

�k
m

[(u2k + v2k)fB(Ẽk) + v2k], (2.109)

where,

Ẽk = Ek + �k · v0, (2.110)

fB(E) =
1

eβE − 1
. (2.111)

However, uk and vk are values given by (2.102) and (2.103), respectively. In

this way, the particle number density and current-density concerning the excited

states of superfluids are given by the excited energy spectrum of the quasiparticle,

respectively.
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Chapter 3

Finite temperature density
functional theory(FTDFT)

In this chapter, we will explain Density functional theory (DFT) for the electron

system which is applied to sf-CDFT. DFT is one of the theories for dealing with

the electron system, and this theory was formulated by P.C. Hohenberg, W. Kohn

in 1964[24], and W. Kohn, L.J. Sham in 1965[25]. In this theory, we can calculate

the electron number density and the energy of the real system in the ground state,

and also the excited states, instead of solving the Schrödinger equation of the

many-body system. Therefore, although the original DFT is the theory related to

the ground state, here we explain the Finite temperature density functional theory

(FTDFT) which is applied to the system at a finite temperature in the thermal

equilibrium state.

3.1 Hohenberg-Kohn theorem
The expansion of DFT to the system at the finite temperature was done by N.D.

Mermin[26]. The theory is called Finite temperature density functional theory

(FTDFT), and this theory enables us to deal with the electron system at the finite

temperature in the thermal equilibrium state while the original DFT is applied to

the ground state. In this section, we will explain the Hohenberg-Kohn (HK) theo-

rem, which is proved in FTDFT.

First, we consider the electron system in the thermal equilibrium state, which

touches the reserver whose temperature and chemical potential are θ and μ, re-

spectively. In this system, under the external potential v(r), we describe the

Hamiltonian as
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Ĥ = T̂ + V̂ + Ŵ , (3.1)

T̂ =

∫
ψ̂†(r)(−�

2∇2

2m
)ψ̂(r)dr, (3.2)

V̂ =

∫
ψ̂†(r)v(r)ψ̂(r)dr, (3.3)

Ŵ =
1

2

∫∫
ψ̂†(r)ψ̂†(r′)

e2

|r− r′| ψ̂(r
′)ψ̂(r)drdr′. (3.4)

Eq. (3.3) can be rewritten below by using (2.18),

V̂ =

∫
v(r)n̂(r)dr. (3.5)

In this way, the operator n̂(r) is coupled with the external potential v(r) so that the

electron number density can be chosen as the basic variable, which is explained

later. For this system, we can prove two crucial theorems as below. In short,

HK theorem I insist that the potential v(r), density matrix of the system ρ̂eq, and

electron number density in the thermal equilibrium state neq(r) are in one-to-one

correspondence. Here, neq(r) is

neq(r) = Tr[ρ̂eqn̂(r)]. (3.6)

First, we prove this theorem I.
Since the Hamiltonian given by (3.1) is uniquely determined by the potential

v(r), the density matrix is also uniquely determined by it,

ρ̂eq =
e−β(Ĥ−μN̂)

Tr[e−β(Ĥ−μN̂)]
. (3.7)

Then, we can calculate neq(r) by using this ρ̂eq like (3.6). Therefore, the electron

number density neq(r) is determined if the potential is given.

Next, we prove that the potential is uniquely determined if ρ̂eq is given. We

assume that the density matrix is obtained from two different potentials v(r) and

v′(r), i.e,

ρ̂eq =
e−β(Ĥ−μN̂)

Tr[e−β(Ĥ−μN̂)]
=

e−β(Ĥ′−μN̂)

Tr[e−β(Ĥ′−μN̂)]
, (3.8)
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here, Ĥ and Ĥ ′ are the Hamiltonian under the potential v(r) and v′(r), respec-

tively. (3.8) can be rewritten as

e−β(Ĥ−Ĥ′) =
Tr[e−β(Ĥ−μN̂)]

Tr[e−β(Ĥ′−μN̂)]
, (3.9)

Since the right-hand side of (3.9) is the classical number, Ĥ − Ĥ ′ in the left-hand

side must be the classical number. In short, it follows that v(r) differs from v′(r)
by more than a constant. This contradicts our assumption, and therefore, the po-

tential is uniquely determined if ρ̂eq is given. Thus, v(r) and ρ̂eq are in one-to-one

correspondence.

Next, we prove that neq(r) and ρ̂eq are in one-to-one correspondence by using

Gibbs’s variational principle[66,67] below. According to this principle, the func-

tional of the density matrix ρ̂′ as

Ωv[ρ̂
′] � Tr[ρ̂′(Ĥ − μN̂ + β−1 ln ρ̂′)], (3.10)

becomes minimum and equals the grand potential when ρ̂′ equals the density ma-

trix in the thermal equilibrium state ρ̂eq. Then, we assume that neq(r) is obtained

from two different density matrices ρ̂eq and ρ̂′eq. Under this,

Ωv′ [ρ̂
′
eq] = Tr[ρ̂′eq(Ĥ

′ − μN̂ + β−1 ln ρ̂′eq)]

< Tr[ρ̂eq(Ĥ
′ − μN̂ + β−1 ln ρ̂eq)]

= Ωv[ρ̂eq] + Tr[ρ̂eq(V̂
′ − V̂ )]

= Ωv[ρ̂eq] +

∫
dr(v′(r)− v(r))neq(r). (3.11)

As well as the above,

Ωv[ρ̂eq] = Tr[ρ̂eq(Ĥ − μN̂ + β−1 ln ρ̂eq)]

< Tr[ρ̂′eq(Ĥ − μN̂ + β−1 ln ρ̂′eq)]

= Ωv′ [ρ̂
′
eq] + Tr[ρ̂′eq(V̂ − V̂ ′)]

= Ωv′ [ρ̂
′
eq] +

∫
dr(v(r)− v′(r))neq(r). (3.12)

However, equations (3.11) and (3.12) lead to an inconsistent inequality as
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Ωv[ρ̂eq] + Ωv′ [ρ̂
′
eq] < Ωv[ρ̂eq] + Ωv′ [ρ̂

′
eq], (3.13)

therefore, ρ̂eq is determined uniquely if neq(r) is determined. Thus, the potential

v(r), density matrix of the system ρ̂eq, and the electron number density in the

thermal equilibrium state neq(r) are in one-to-one correspondence. In short, the

HK theorem I was proved. The density neq(r) is regarded as the basic variable

because it determines the thermal equilibrium properties of the system. Finally,

we indicate the figure of this relation in Fig. 3.1.

v r ˆeq

eqn r
Fig. 3.1: Relation in the HK theorem I

Next, HK theorem II insists that the functional of the basic variable Ωv[n] takes

a minimum value at the thermal equilibrium value of the basic variable neq(r).
This theorem concerning the basic variable is obtained by rewriting Gibbs’s vari-

ational principle with the aid of HK theorem I. Here, the functional of the basic

variable Ωv[n] is defined by

Ωv[n] = F [n] +

∫
drv(r)n(r), (3.14)

F [n] � Tr[ρ̂[n](T̂ + Ŵ + β−1 ln ρ̂[n])]. (3.15)

Here, F [n] is the universal functional defined by (3.15). In equation (3.15), ρ̂[n]
is the density matrix which is uniquely determined by the basic variable n(r) via
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HK theorem I. Then, the above variational principle concerning the basic variable

is given by

min
n

Ωv[n] = Ωv[neq]. (3.16)

We prove this theorem below.

Consider HK theorem I, and we can describe ρ̂ as the functional of the basic

variable like ρ̂ = ρ̂[n]. Therefore, the functional Ωv[ρ̂] can be rewritten as Ωv[n].
Thus, we have

Ωv[ρ̂] = Ωv[ρ̂[n]]

= Ωv[n]

= Tr[ρ̂[n](Ĥ − μN̂ + β−1 ln ρ̂[n])]

= F [n] +

∫
drv(r)n(r), (3.17)

on the other hand, we also have

Ωv[ρ̂eq] = Ωv[ρ̂[neq]]

= Ωv[neq]

= Tr[ρ̂[neq](Ĥ − μN̂ + β−1 ln ρ̂[neq])]

= F [neq] +

∫
drv(r)neq(r). (3.18)

According to Gibbs’s variational principle, the right-hand side of equation (3.17)

becomes minimum when ρ̂[n] coincides with ρ̂[neq], therefore, we have

min
n

Ωv[n] = Ωv[neq]. (3.19)

Thus, Ωv[n] takes a minimum value at the thermal equilibrium value of the basic

variable neq(r).

3.2 Kohn-Sham equation
In this section, we explain how to calculate the basic variable in FTDFT. We

first introduce the noninteracting reference system which touches the reservers
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whose temperature and chemical potential are θ, μ, respectively, and in which the

basic variable of the real system in the thermal equilibrium state is reproduced.

The Hamiltonian of this reference system ĤS is given by

ĤS = T̂ + V̂S, (3.20)

V̂S =

∫
vS(r)n̂(r)dr, (3.21)

where vS(r) is the effective potential which is determined later so that the thermal

equilibrium value of the basic variable in the reference system coincides with one

in the real system. As well as the case of the real system, we can prove the HK

theorem for the reference system(see Fig.3.2). In short, the effective potential

vS(r), the density matrix of the reference system ρ̂Seq, and variable nSeq(r) in the

thermal equilibrium state are in one-to-one correspondence.

( )v r

( )Sv r

( )Seqn r

( )eqn r

ˆeq

ˆSeq

Real system

Reference system

Fig. 3.2: Relation of the real and reference system

In addition, the functional ΩvS [nS] given by

ΩvS [nS] = TS[nS]− θSS[nS] +

∫
(vS(r)− μ)nSdr, (3.22)

TS[nS] = Tr[ρ̂S[nS]T̂ ], (3.23)

SS[nS] = −kBTr[ρ̂S[nS] ln ρ̂S[nS]], (3.24)
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becomes minimum at the thermal equilibrium value of the basic variable. In other

words,

min
nS

ΩvS [nS] = ΩvS [nSeq] = ΩvS [neq]. (3.25)

Here, nSeq(r) denotes the thermal equilibrium value of the basic variable in the

reference system given by

ρ̂Seq =
e−β(ĤS−μN̂)

Ξ
, (3.26)

Ξ = Tr[e−β(ĤS−μN̂)], (3.27)

nSeq(r) = Tr[ρ̂Seqn̂(r)]. (3.28)

Then, let us derive the formula of the effective potential vS(r). First, the universal

functional defined by the equation (3.15) can be rewritten as

F [n] = T [n] +W [n]− θS[n], (3.29)

where we use the notation as

T [n] = Tr[ρ̂[n]T̂ ], (3.30)

W [n] = Tr[ρ̂[n]Ŵ ], (3.31)

S[n] = −kBTr[ρ̂[n] ln ρ̂[n]]. (3.32)

Here, we formally rewrite the equation (3.29) by TS[n], SS[n], and the Coulomb

interaction of electrons U [n] as

F [n] = TS[n] + U [n]− θSS[n] + Fxc[n], (3.33)

where, U [n] is

U [n] =
1

2

∫∫
e2n(r)n(r′)
|r− r′| drdr′. (3.34)

In equation (3.33), the functional Fxc[n] is the xc energy functional of FTDFT and
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is defined as the functional described by the difference between functionals of the

real and reference system,

Fxc[n] = (T [n]− TS[n]) + (W [n]− U [n])− θ(S[n]− SS[n]). (3.35)

Substituting (3.33) into Ωv[n] and using this for HK theorem II in the real system,

we have

δTS[n]

δn(r)

∣∣∣∣
n=neq

+
δU [n]

δn(r)

∣∣∣∣
n=neq

− θ
δSS[n]

δn(r)

∣∣∣∣
n=neq

+
δFxc[n]

δn(r)

∣∣∣∣
n=neq

+ v(r)− μ = 0.

(3.36)

Similarly, we can derive below from HK theorem II in the reference system,

δTS[nS]

δnS(r)

∣∣∣∣
nS=nSeq

− θ
δSS[nS]

δnS(r)

∣∣∣∣
nS=nSeq

+ vS(r)− μ = 0. (3.37)

We can recognize that (3.36) is the equation for the thermal equilibrium value of

the basic variable neq(r) of the real system while (3.37) is for nSeq(r) of the ref-

erence system. When (3.36) coincides with (3.37), the effective potential vS(r)
is considered the potential that enables us to reproduce neq(r) in the reference

system. In short, we can derive the formula of the effective potential which repro-

duces the same basic variable as one in the real system:

vS(r) = v(r) +
δU [n]

δn(r)

∣∣∣∣
n=neq

+
δFxc[n]

δn(r)

∣∣∣∣
n=neq

= v(r) +

∫
e2n(r′)
|r− r′|dr

′ +
δFxc[n]

δn(r)

∣∣∣∣
n=neq

. (3.38)

In this way, we could get the formula of the effective potential vS(r).
Next, we derive the single-particle equation for calculating the basic variable.

First, we focus on the grand canonical Hamiltonian ĤS − μN̂ to calculate the

expectation of the particle number density operator n̂(r),

K̂S = ĤS−μN̂ =

∫
ψ̂†(r)(−�

2∇2

2m
+vS(r)−μ)ψ̂(r)dr ≡

∫
ψ̂†(r)(ĥS−μ)ψ̂(r)dr,

(3.39)
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where,

ĥS = −�
2∇2

2m
+ vS(r). (3.40)

In equation (3.39), K̂S is the quadratic form concerning the field operator, there-

fore, we here expand ψ̂†(r), ψ̂(r) by the eigenfunction of the single-particle Hamil-

tonian ĥS . Suppose the eigenfunction and eigenvalue of ĥS are denoted by φi(r),
εi,

ĥSφi(r) = εiφi(r), (3.41)

then, we expand ψ̂†(r), ψ̂(r) as

ψ̂†(r) =
∑
i

φ∗
i (r)ĉ

†
i , (3.42)

ψ̂(r) =
∑
i

φi(r)ĉi, (3.43)

where ĉ†i , ĉi are the creation and annihilation operator of fermions with the state

of φi(r). By using (3.42) and (3.43), we rewrite (3.39) as

K̂S =

∫
dr

∑
i

φ∗
i (r)(ĥS − μ)

∑
j

φj(r)ĉ
†
i ĉj =

∑
i

(εi − μ)ĉ†i ĉi, (3.44)

in equation (3.44), we considered the orthonormality of φi(r). Hereafter, we will

refer to the single-particle equation (3.41) as the Kohn-Sham (KS) equation in

FTDFT.

In this way, let us formulate the basic variable, i.e., the electron number density

n(r) reproduced in the thermal equilibrium state by using (3.44).

n(r) = Tr[ρ̂Sn̂(r)] = Tr[ρ̂Sψ̂
†(r)ψ̂(r)]

=
∑
m

〈
Φm

∣∣∣∣∣e
−βK̂S

Ξ

∑
i,j

φ∗
i (r)φj(r)ĉ

†
i ĉj

∣∣∣∣∣Φm

〉

=
∑
i,j

φ∗
i (r)φj(r)

∑
m

〈
Φm

∣∣∣∣∣e
−βK̂S

Ξ
ĉ†i ĉj

∣∣∣∣∣Φm

〉
, (3.45)
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here, as the one electron state label i, we consider not only the single-particle state

α such as the wave number vector k, but also the spin σ, and in this case we can

rewrite (3.45) as

∑
i,j

φ∗
i (r)φj(r)

∑
m

〈
Φm

∣∣∣∣∣e
−βK̂S

Ξ
ĉ†i ĉj

∣∣∣∣∣Φm

〉

=
∑

α,α′,σ,σ′
φ∗
α,σ(r)φα′,σ′(r)

∑
m

〈
Φm

∣∣∣∣∣e
−βK̂S

Ξ
ĉ†α,σ ĉα′,σ′

∣∣∣∣∣Φm

〉

=
∑

α,α′,σ,σ′
φ∗
α,σ(r)φα′,σ′(r)

∑
{nα′′,σ′′}

〈
{nα′′,σ′′}

∣∣∣∣∣e
−βK̂S

Ξ
ĉ†α,σ ĉα′,σ′

∣∣∣∣∣{nα′′,σ′′}
〉

=
∑
α,σ

|φα,σ(r)|2
∑

{nα′′,σ′′}

e
∑

α′′′,σ′′′ (εα′′′,σ′′′−μ)nα′′′,σ′′′

Ξ
nα,σ

=
∑
α,σ

|φα,σ(r)|2 e−β(εα,σ−μ)

e−β(εα,σ−μ) + 1

=
∑
α,σ

|φα,σ(r)|2 1

eβ(εα,σ−μ) + 1

≡
∑
α,σ

|φα,σ(r)|2f(εα,σ), (3.46)

however, in equation (3.46), first we used the eigenstate vector |{nα,σ}〉 of the

operator K̂S as bases of the trace(note that the operators ĤS and N̂ are commuta-

tive operators as seeing (3.20) and we can consider the simultaneous eigenstate of

them), and nα,σ is the occupation number with respect to the state (α, σ). More-

over, we used the notation of the Fermi-Dirac distribution function given as

f(ε) =
1

eβ(ε−μ) + 1
. (3.47)

In this way, we could get the formula of the basic variable n(r) given by the

equation (3.46). Concerning the KS equation given by (3.41), if we provide the

equation (3.41), i.e, the effective potential vS(r) with the approximate form of

the xc energy functional Fxc, and we conduct the self-consistent calculation by

using (3.38), (3.41) and (3.46), then we can get the electron number density in the

thermal equilibrium state n(r).
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Chapter 4

Current-density functional theory
for bosonic superfluids(sf-CDFT)

In this chapter, we will propose the finite temperature current-density functional

theory for bosonic superfluids in the thermal equilibrium state, which is named sf-

CDFT. In this theory, we chose the particle number density, current-density of su-

perfluids, and the order parameter of the BEC as the basic variables reproduced in

sf-CDFT. It is shown that the sf-CDFT enables us to reproduce the particle number

density and current-density of the superfluid and normal fluid components simul-

taneously while incorporating the effect of their interaction. We can show that

these hydrodynamic physical quantities of two fluid components are determined

by solving two single-particle equations named the Gross-Pitaevskii-Kohn-Sham

and Kohn-Sham equations. As the crucial things, we can discuss some advan-

tage points by the comparison of this sf-CDFT with the conventional theories for

superfluids proposed in Chapter 2.

4.1 Hamiltonian
In this section, we first mention the Hamiltonian of the real system which will

be used in the after formulation of sf-CDFT. we consider the boson system under

the external potentials, and its Hamiltonian given by

Ĥ0 =

∫
ψ̂†(r)[

1

2m
(p̂+A(r))2 + v(r)]ψ̂(r)dr

+
1

2

∫∫
ψ̂†(r)ψ̂†(r′)u(r, r′)ψ̂(r′)ψ̂(r)drdr′, (4.1)

where the function u(r, r′) denotes the interaction potential of bosons, p̂ is the
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momentum operator, v(r) is the external potential, for example, it is considered

the potential which is made by the vessel, and A(r) denotes one vector potential,

for example caused by rotating the vessel[48], which is proposed in Chapter 2.

The Hamiltonian (4.1) is similar to one in the current-density functional theory

for fermion systems[29]. For later discussion, let us rewrite the equation (4.1) as

Ĥ0 = T̂ + Ŵ +

∫
dr[v(r) +

1

2m
A(r)2]n̂(r) +

∫
drĵ(r) ·A(r), (4.2)

T̂ =

∫
ψ̂†(r)(−�

2∇2

2m
)ψ̂(r)dr, (4.3)

Ŵ =
1

2

∫∫
ψ̂†(r)ψ̂†(r′)u(r, r′)ψ̂(r′)ψ̂(r)drdr′, (4.4)

n̂(r) = ψ̂†(r)ψ̂(r), (4.5)

ĵ(r) =
�

2mi
(ψ̂†(r)∇ψ̂(r)− ψ̂(r)∇ψ̂†(r)), (4.6)

where operators in equations (4.3) to (4.6) have been already proposed in Chapter

2. While formulating the current-density functional theory(CDFT) for fermion

systems[29], as well as the original DFT[24,25], physical quantities coupled with

external potentials can be chosen as the basic variables. For the Hamiltonian (4.2),

n̂(r) and ĵ(r) are coupled with external potentials v(r) and A(r) so that the parti-

cle number density and current-density can be chosen as the basic variables. Here,

it would be useful to reproduce not only these physical quantities but also the or-

der parameter of the BEC which is given by the expectation of the field operator

in describing the properties of the superfluid component. So in this theory, we

chose the order parameter of the BEC, in addition to the particle number density

and current-density as the basic variables. For this aim, instead of applying the ex-

tended constrained-search theory[30,31] to this system, one artificial fields D(r)
and D∗(r) are introduced as the mathematical device[39] to deal with the order

parameter of the BEC ψ(r) and ψ∗(r) as the basic variables. These artificial fields

are coupled with the field operators ψ̂(r) and ψ̂†(r) in the Hamiltonian and we

will finally make them zero. The Hamiltonian with these artificial field terms is

given by

Ĥ = Ĥ0 + D̂, (4.7)

D̂ =

∫
drψ̂(r)D∗(r) +

∫
drψ̂†(r)D(r). (4.8)

Note that these artificial fields have sometimes been introduced to deal with the
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basic variables that are not coupled with external potentials. For example, artificial

pair fields are introduced to deal with the order parameter of the superconducting

state as a basic variable in the DFT for superconductors[36,39].

4.2 Hohenberg-Kohn theorem
Similar to the original DFT, in sf-CDFT, the HK theorem consists of two theo-

rems. HK theorem I insists that the class of potentials [v(r),A(r), D(r), D∗(r)],
the density matrix of the system ρ̂eq, and the class of variables [neq(r), jeq(r), ψeq(r), ψ

∗
eq(r)]

in the thermal equilibrium state are in one-to-one correspondence. Here the vari-

ables [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)] are calculated by using ρ̂eq as

neq(r) = Tr[ρ̂eqn̂(r)], (4.9)

jeq(r) = Tr[ρ̂eqĵ(r)], (4.10)

ψeq(r) = Tr[ρ̂eqψ̂(r)], (4.11)

ψ∗
eq(r) = Tr[ρ̂eqψ̂

†(r)]. (4.12)

HK theorem I can be proven similarly to that in FTDFT[26]. We show this below.

The Hamiltonian (4.7) is uniquely determined by the class of potentials, so the

density matrix of the system ρ̂eq is also uniquely determined by them and it is

given by

ρ̂eq =
e−β(Ĥ−μN̂)

Tr[e−β(Ĥ−μN̂)]
. (4.13)

Subsequently, we can calculate the class of variables [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)]

by using ρ̂eq as seeing equations (4.9) to (4.12), therefore, the class of variables

[neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)] is determined if the class of potentials is given.

Next, let us prove that the class of potentials is uniquely determined if the den-

sity matrix of the system is given. We assume that ρ̂eq is obtained from two differ-

ent classes of potentials [v(r),A(r), D(r), D∗(r)] and [v′(r),A′(r), D′(r), D∗′(r)],

ρ̂eq =
e−β(Ĥ−μN̂)

Tr[e−β(Ĥ−μN̂)]
=

e−β(Ĥ′−μN̂)

Tr[e−β(Ĥ′−μN̂)]
, (4.14)

here, Ĥ and Ĥ ′ are the Hamiltonian under the potentials [v(r),A(r), D(r), D∗(r)]
and [v′(r),A′(r), D′(r), D∗′(r)], respectively. Eq.(4.14) can be rewritten as
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e−β(Ĥ−Ĥ′) =
Tr[e−β(Ĥ−μN̂)]

Tr[e−β(Ĥ′−μN̂)]
, (4.15)

Since the right-hand side of (4.15) is the classical number, Ĥ−Ĥ ′ in the left-hand

side must be the classical number. In short, it follows that [v(r),A(r), D(r), D∗(r)]
differ from [v′(r),A′(r), D′(r), D∗′(r)] by more than a constant. This contradicts

our assumption, and therefore, the potential is uniquely determined if ρ̂eq is given.

Thus, [v(r),A(r), D(r), D∗(r)] and ρ̂eq are in one-to-one correspondence.

Next, we prove that [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)] and ρ̂eq are in one-to-one

correspondence by using the Gibbs’s variational principle below. According to

this principle, the functional of the density matrix ρ̂′ as

Ωv,A,D,D∗ [ρ̂′] � Tr[ρ̂′(Ĥ − μN̂ + β−1 ln ρ̂′)], (4.16)

becomes minimum and equals the grand potential when ρ̂′ equals the density ma-

trix in the thermal equilibrium state ρ̂eq. Then, we assume that the class of vari-

ables is obtained from two different density matrices ρ̂eq and ρ̂′eq. Under this,

Ωv′,A′,D′,D∗′ [ρ̂′eq] = Tr[ρ̂′eq(Ĥ
′ − μN̂ + β−1 ln ρ̂′eq)]

< Tr[ρ̂eq(Ĥ
′ − μN̂ + β−1 ln ρ̂eq)]

= Ωv,A,D,D∗ [ρ̂eq] +

∫
dr[v′(r) +

1

2m
A′(r)2 − v(r)− 1

2m
A(r)2]neq(r)

+

∫
drjeq(r) · [A′(r)−A(r)] +

∫
drψeq(r)[D

∗′(r)−D∗(r)]

+

∫
drψ∗

eq(r)[D
′(r)−D(r)]. (4.17)

As well as the above,

Ωv,A,D,D∗ [ρ̂eq] = Tr[ρ̂eq(Ĥ − μN̂ + β−1 ln ρ̂eq)]

< Tr[ρ̂′eq(Ĥ − μN̂ + β−1 ln ρ̂′eq)]

= Ωv′,A′,D′,D∗′ [ρ̂′eq] +
∫
dr[v(r) +

1

2m
A(r)2 − v′(r)− 1

2m
A′(r)2]neq(r)

+

∫
drjeq(r) · [A(r)−A′(r)] +

∫
drψeq(r)[D

∗(r)−D∗′(r)]

+

∫
drψ∗

eq(r)[D(r)−D′(r)]. (4.18)
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However, equations (4.17) and (4.18) lead to an inconsistent inequality as

Ωv,A,D,D∗ [ρ̂eq] + Ωv′,A′,D′,D∗′ [ρ̂′eq] < Ωv,A,D,D∗ [ρ̂eq] + Ωv′,A′,D′,D∗′ [ρ̂′eq], (4.19)

therefore, ρ̂eq is determined uniquely if [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)] is deter-

mined. Thus, the potentials [v(r),A(r), D(r), D∗(r)], density matrix of the sys-

tem ρ̂eq, and variables in the thermal equilibrium state [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)]

are in one-to-one correspondence. In short, the HK theorem I was proved. The

class of variables [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)] is regarded as basic variables be-

cause it determines the thermal equilibrium properties of the system. We indicate

the figure of this relation in Fig. 4.1.
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Fig. 4.1: Relation in the HK theorem I

Next, HK theorem II insists that the functional of the basic variable described

as Ωv,A,D,D∗ [n, j, ψ, ψ∗] takes a minimum value at the thermal equilibrium value

of basic variables. This theorem concerning basic variables is obtained by rewrit-

ing Gibbs’s variational principle with the aid of HK theorem I. Here, the func-

tional of the basic variable Ωv,A,D,D∗ [n, j, ψ, ψ∗] is defined by
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Ωv,A,D,D∗ [n, j, ψ, ψ∗] = F [n, j, ψ, ψ∗] +
∫
dr(v(r) +

1

2m
A(r)2 − μ)n(r)

+

∫
drj(r) ·A(r) +

∫
drψ(r)D∗(r) +

∫
drψ∗(r)D(r),

(4.20)

F [n, j, ψ, ψ∗] � Tr[ρ̂[n, j, ψ, ψ∗](T̂ + Ŵ + β−1 ln ρ̂[n, j, ψ, ψ∗])].
(4.21)

Here, F [n, j, ψ, ψ∗] is the universal functional defined by (4.21). In equation

(4.21), ρ̂[n, j, ψ, ψ∗] is the density matrix which is uniquely determined by the

basic variable [n(r), j(r), ψ(r), ψ∗(r)] via HK theorem I. Then, the above varia-

tional principle concerning the basic variable is given by

min
n,j,ψ,ψ∗

Ωv,A,D,D∗ [n, j, ψ, ψ∗] = Ωv,A,D,D∗ [neq, jeq, ψeq, ψ
∗
eq]. (4.22)

We prove this theorem below.

Consider HK theorem I, and we can describe ρ̂ as the functional of the basic

variable like ρ̂ = ρ̂[n, j, ψ, ψ∗]. Therefore, the functional Ωv,A,D,D∗ [ρ̂] can be

rewritten as Ωv,A,D,D∗ [n, j, ψ, ψ∗]. Thus, we have

Ωv,A,D,D∗ [ρ̂] = Ωv,A,D,D∗ [ρ̂[n, j, ψ, ψ∗]]

= Ωv,A,D,D∗ [n, j, ψ, ψ∗]

= Tr[ρ̂[n, j, ψ, ψ∗](Ĥ − μN̂ + β−1 ln ρ̂[n, j, ψ, ψ∗])]

= F [n, j, ψ, ψ∗] +
∫
dr(v(r) +

1

2m
A(r)2 − μ)n(r)

+

∫
drj(r) ·A(r) +

∫
drψ(r)D∗(r) +

∫
drψ∗(r)D(r), (4.23)

on the other hand, we also have
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Ωv,A,D,D∗ [ρ̂eq] = Ωv,A,D,D∗ [ρ̂[neq, jeq, ψeq, ψ
∗
eq]]

= Ωv[neq, jeq, ψeq, ψ
∗
eq]

= Tr[ρ̂[neq, jeq, ψeq, ψ
∗
eq](Ĥ − μN̂ + β−1 ln ρ̂[neq, jeq, ψeq, ψ

∗
eq])]

= F [neq, jeq, ψeq, ψ
∗
eq] +

∫
dr(v(r) +

1

2m
A(r)2 − μ)neq(r)

+

∫
drjeq(r) ·A(r) +

∫
drψeq(r)D

∗(r) +
∫
drψ∗

eq(r)D(r),

(4.24)

According to Gibbs’s variational principle, the right-hand side of equation (4.23)

becomes minimum when ρ̂[n, j, ψ, ψ∗] coincides with ρ̂[neq, jeq, ψeq, ψ
∗
eq], there-

fore, we have

min
n,j,ψ,ψ∗

Ωv,A,D,D∗ [n, j, ψ, ψ∗] = Ωv,A,D,D∗ [neq, jeq, ψeq, ψ
∗
eq]. (4.25)

Thus, Ωv,A,D,D∗ [n, j, ψ, ψ∗] takes a minimum value at the thermal equilibrium

value of basic variables [neq(r), jeq(r), ψeq(r), ψ
∗
eq(r)].

4.3 Gross-Pitaevskii-Kohn-Sham equation and Kohn-
Sham equation

In this section, we explain how to calculate basic variables in sf-CDFT. Sim-

ilar to the FTDFT[26], we introduce the noninteracting reference system which

touches the reservers whose temperature and chemical potential are θ, μ, respec-

tively, and in which basic variables of the real system in the thermal equilibrium

state are reproduced. The Hamiltonian of this reference system ĤS is given by

ĤS = T̂ +

∫
dr[vS(r) +

1

2m
AS(r)

2]n̂(r) +

∫
drĵ(r) ·AS(r) + D̂S, (4.26)

D̂S =

∫
drψ̂(r)D∗

S(r) +

∫
drψ̂†(r)DS(r), (4.27)

where, vS(r), AS(r), DS(r), D
∗
S(r) are the effective potentials which are deter-

mined later so that the thermal equilibrium value of basic variables in the reference

system coincide with those in the real system. As well as the case of the real sys-

tem, we can prove HK theorem for the reference system(see Fig.4.2). In short, the
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class of effective potentials [vS(r), AS(r), DS(r), D
∗
S(r)], the density matrix of

the reference system ρ̂Seq, and variables [nSeq(r), jSeq(r), ψSeq(r), ψ
∗
Seq(r)] in the

thermal equilibrium state are in one-to-one correspondence.
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Fig. 4.2: Relation of the real and reference system

In addition, the functional ΩvS ,AS ,DS ,D
∗
S
[nS, jS, ψS, ψ

∗
S] given by

ΩvS ,AS ,DS ,D
∗
S
[nS, jS, ψS, ψ

∗
S] = TS[nS, jS, ψS, ψ

∗
S]− θSS[nS, jS, ψS, ψ

∗
S]

+

∫
(vS(r) +

1

2m
AS(r)

2 − μ)nSdr+

∫
drjS(r) ·AS(r)

+

∫
drψS(r)D

∗
S(r) +

∫
drψ∗

S(r)DS(r), (4.28)

TS[nS, jS, ψS, ψ
∗
S] = Tr[ρ̂S[nS, jS, ψS, ψ

∗
S]T̂ ], (4.29)

SS[nS, jS, ψS, ψ
∗
S] = −kBTr[ρ̂S[nS, jS, ψS, ψ∗

S] ln ρ̂S[nS, jS, ψS, ψ
∗
S]],

(4.30)

becomes minimum at the thermal equilibrium value of basic variables. In other

words,

min
nS ,jS ,ψS ,ψ

∗
S

ΩvS ,AS ,DS ,D
∗
S
[nS, jS, ψS, ψ

∗
S] = ΩvS ,AS ,DS ,D

∗
S
[nSeq, jSeq, ψSeq, ψ

∗
Seq]

= ΩvS ,AS ,DS ,D
∗
S
[neq, jeq, ψeq, ψ

∗
eq].

(4.31)
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Here, nSeq(r), jSeq(r), ψSeq(r), ψ
∗
Seq(r) denote the thermal equilibrium value of

basic variables in the reference system given by

ρ̂Seq =
e−β(ĤS−μN̂)

Ξ
, (4.32)

Ξ = Tr[e−β(ĤS−μN̂)], (4.33)

nSeq(r) = Tr[ρ̂Seqn̂(r)], (4.34)

jSeq(r) = Tr[ρ̂Seqĵ(r)], (4.35)

ψSeq(r) = Tr[ρ̂Seqψ̂(r)], (4.36)

ψ∗
Seq(r) = Tr[ρ̂Seqψ̂

†(r)]. (4.37)

Then, let us derive the formula of the effective potentials [vS(r), AS(r), DS(r),
D∗
S(r)]. First, the universal functional defined by the equation (4.21) can be

rewritten as

F [n, j, ψ, ψ∗] = T [n, j, ψ, ψ∗] +W [n, j, ψ, ψ∗]− θS[n, j, ψ, ψ∗], (4.38)

where we use the notation as

T [n, j, ψ, ψ∗] = Tr[ρ̂[n, j, ψ, ψ∗]T̂ ], (4.39)

W [n, j, ψ, ψ∗] = Tr[ρ̂[n, j, ψ, ψ∗]Ŵ ], (4.40)

S[n, j, ψ, ψ∗] = −kBTr[ρ̂[n, j, ψ, ψ∗] ln ρ̂[n, j, ψ, ψ∗]]. (4.41)

Here, we formally rewrite the equation (4.38) by TS[n, j, ψ, ψ
∗], SS[n, j, ψ, ψ∗]

and the classical boson-boson interaction U [n] as

F [n, j, ψ, ψ∗] = TS[n, j, ψ, ψ
∗] + U [n]− θSS[n, j, ψ, ψ

∗] + Fxc[n, j, ψ, ψ
∗],

(4.42)

where, U [n] is

U [n] =
1

2

∫∫
u(r, r′)n(r)n(r′)drdr′. (4.43)
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In equation (4.42), the functional Fxc[n, j, ψ, ψ
∗] is the xc energy functional of

sf-CDFT and is defined as the functional described by the difference between

functionals of the real and reference system,

Fxc[n, j, ψ, ψ
∗] = (T [n, j, ψ, ψ∗]− TS[n, j, ψ, ψ

∗]) + (W [n, j, ψ, ψ∗]− U [n])

− θ(S[n, j, ψ, ψ∗]− SS[n, j, ψ, ψ
∗]). (4.44)

Substituting (4.42) into Ωv,A,D,D∗ [n, j, ψ, ψ∗] and using this for HK theorem II in

the real system, we have

δTS[n, j, ψ, ψ
∗]

δn(r)
+
δU [n]

δn(r)
− θ

δSS[n, j, ψ, ψ
∗]

δn(r)

+
δFxc[n, j, ψ, ψ

∗]
δn(r)

+ v(r) +
1

2m
A(r)2 − μ = 0, (4.45)

δTS[n, j, ψ, ψ
∗]

δj(r)
− θ

δSS[n, j, ψ, ψ
∗]

δj(r)
+
δFxc[n, j, ψ, ψ

∗]
δj(r)

+A(r) = 0, (4.46)

δTS[n, j, ψ, ψ
∗]

δψ(r)
− θ

δSS[n, j, ψ, ψ
∗]

δψ(r)
+
δFxc[n, j, ψ, ψ

∗]
δψ(r)

+D∗(r) = 0, (4.47)

δTS[n, j, ψ, ψ
∗]

δψ∗(r)
− θ

δSS[n, j, ψ, ψ
∗]

δψ∗(r)
+
δFxc[n, j, ψ, ψ

∗]
δψ∗(r)

+D(r) = 0, (4.48)

where notations of the functional derivative in equations (4.45) to (4.48) denote

the following in detail,

δF [n, j, ψ, ψ∗]
δX(r)

=
δF [n, j, ψ, ψ∗]

δX(r)

∣∣∣∣
n=neq ,j=jeq ,ψ=ψeq ,ψ∗=ψ∗

eq

. (4.49)

Here, F denotes the functional of variables and X deserves variables. Similarly,

we can derive below from HK theorem II in the reference system,

δTS[nS, jS, ψS, ψ
∗
S]

δnS(r)
− θ

δSS[nS, jS, ψS, ψ
∗
S]

δnS(r)

+
δFxc[nS, jS, ψS, ψ

∗
S]

δnS(r)
+ vS(r) +

1

2m
AS(r)

2 − μ = 0,

(4.50)

46



δTS[nS, jS, ψS, ψ
∗
S]

δjS(r)
− θ

δSS[nS, jS, ψS, ψ
∗
S]

δjS(r)
+
δFxc[nS, jS, ψS, ψ

∗
S]

δjS(r)
+AS(r) = 0,

(4.51)

δTS[nS, jS, ψS, ψ
∗
S]

δψS(r)
− θ

δSS[nS, jS, ψS, ψ
∗
S]

δψS(r)
+
δFxc[nS, jS, ψS, ψ

∗
S]

δψS(r)
+D∗

S(r) = 0,

(4.52)

δTS[nS, jS, ψS, ψ
∗
S]

δψ∗
S(r)

− θ
δSS[nS, jS, ψS, ψ

∗
S]

δψ∗
S(r)

+
δFxc[nS, jS, ψS, ψ

∗
S]

δψ∗
S(r)

+DS(r) = 0,

(4.53)

where notations of the functional derivative in equations (4.50) to (4.53) denote

the following in detail,

δF [nS, jS, ψS, ψ
∗
S]

δX(r)
=
δF [nS, jS, ψS, ψ

∗
S]

δX(r)

∣∣∣∣
nS=nSeq ,jS=jSeq ,ψS=ψSeq ,ψ

∗
S=ψ

∗
Seq

.

(4.54)

We can recognize that equations (4.45) to (4.48) are equations for the thermal

equilibrium value of basic variables neq(r), jeq(r), ψeq(r), ψ
∗
eq(r) of the real sys-

tem while equations (4.50) to (4.53) are for nSeq(r), jSeq(r), ψSeq(r), ψ
∗
Seq(r) of

the reference system. When (4.45) to (4.48) coincide with (4.50) to (4.53) re-

spectively, the effective potentials vS(r),AS(r), DS(r), D
∗
S(r) are considered the

potentials that enable us to reproduce neq(r), jeq(r), ψeq(r), ψ
∗
eq(r) in the refer-

ence system. In short, we can derive the formulas of the effective potentials which

reproduce the same basic variables as those in the real system:

vS(r) = v(r) +

∫
dr′u(r, r′)neq(r′) +

δFxc[n, j, ψ, ψ
∗]

δn(r)
+

1

2m
A(r)2 − 1

2m
AS(r)

2,

(4.55)

AS(r) = A(r) +
δFxc[n, j, ψ, ψ

∗]
δj(r)

, (4.56)

DS(r) =
δFxc[n, j, ψ, ψ

∗]
δψ∗(r)

, (4.57)

D∗
S(r) =

δFxc[n, j, ψ, ψ
∗]

δψ(r)
, (4.58)
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however, in the derivation of equations (4.55) to (4.58), we made the artificial

fields D(r), D∗(r) zero. In this way, we could get the formulas of the effective

potentials.

Taking into consideration that there is an analogy with the vector potential in

electromagnetics, the second term of (4.56) may be considered as a sort of vector

potential inducing the fluid current consisting of bosons. The vector potential in

electromagnetics results from the Coulomb interaction of charged particles, and is

coupled with the electric current while the second term of (4.56) results from the

boson-boson interaction as (4.56) and is coupled with the current-density jeq(r)
as (4.26). On the other hand, as for the effective potential DS(r), since DS(r) is

coupled with the order parameter of the BEC ψeq(r), we can recognize that ψeq(r)
is induced by the potential DS(r) in the reference system. This is similar to the

case of superconductors, whose order parameter is induced by the effective pair

potential in the reference system in DFT for superconductors.[40,41]

Next, let us derive the single-particle equations for calculating basic variables.

First, we focus on the grand canonical Hamiltonian ĤS − μN̂ to calculate the

expectation of the particle number density operator n̂(r), the current-density op-

erator ĵ(r), field operators ψ̂(r), ψ̂†(r)

K̂S = ĤS−μN̂ = T̂+

∫
dr[vS(r)+

1

2m
AS(r)

2−μ]n̂(r)+
∫
drĵ(r)·AS(r)+D̂S,

(4.59)

here, we can rewrite above (4.59) as

K̂S =

∫
drψ̂†(r)(ĥS − μ)ψ̂(r) + D̂S, (4.60)

ĥS =
1

2m
(p̂+AS(r))

2 + vS(r). (4.61)

As seen in (4.26), the Hamiltonian in the reference system ĤS and the total par-

ticle number operator N̂ are not commutative, therefore, the calculation of the

trace concerning the expectation of physical quantities such as (4.34) is difficult.

However, if ĤS had been the quadratic form concerning the field operator, it could

have been diagonalized simultaneously with N̂ . On the other hand, ĤS includes

the pair potential term described by D̂S , which is the first-order term of the field

operator. Then, with reference to the Bogoliubov theory[20,21], we consider that

the field operator for bosons ψ̂(r) is described by the sum of one complex classi-

cal field Ψ(r) and the operator of the difference ψ̂(r) and Ψ(r) written as
˜̂
ψ(r),
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ψ̂(r) = Ψ(r) +
˜̂
ψ(r). (4.62)

As seen in Chapter 2, in the Bogoliubov theory, the solution of the GP equation

ψGP (r) corresponds to this classical field Ψ(r) so that the first-order terms of the

fluctuation vanish in its Hamiltonian. On the other hand, in our case, we determine

Ψ(r) so that the first order terms of
˜̂
ψ(r) vanish in K̂S . Specifically, we substitute

(4.62) into (4.60) as

K̂S =

∫
drΨ∗(r)[ĥS − μ]Ψ(r) +

∫
dr[Ψ(r)D∗

S(r) + Ψ∗(r)DS(r)]

+

∫
dr[(ĥS − μ)Ψ(r) +DS(r)]

˜̂
ψ†(r) +

∫
dr[(ĥ†S − μ)Ψ∗(r) +D∗

S(r)]
˜̂
ψ(r)

+

∫
dr

˜̂
ψ†(r)[ĥS − μ]

˜̂
ψ(r). (4.63)

As shown in equation (4.63), the first and second terms on the right-hand side of

equation (4.63) deserve the zeroth-order terms of
˜̂
ψ†(r) and

˜̂
ψ(r). Then, the third

and fourth terms are first-order terms, and the last term is the second-order term

of
˜̂
ψ†(r) and

˜̂
ψ(r), respectively. Here, we determine complex classical fields Ψ(r)

and Ψ∗(r) as functions that satisfy the below :

(ĥS − μ)Ψ(r) = −DS(r), (4.64)

(ĥ†S − μ)Ψ∗(r) = −D∗
S(r). (4.65)

When Ψ(r) and Ψ∗(r) are determined by (4.64) and (4.65), we can eliminate the

first-order terms of
˜̂
ψ†(r) and

˜̂
ψ(r)(ĥS is the Hermitian operator[51], so note that

(4.64) and (4.65) are equivalent). We refer to the equation (4.64) as the Gross-

Pitaevskii-Kohn-Sham(GPKS) equation. Thus, using these classical fields, we

can rewrite (4.63) as

K̂S = K0 +

∫
dr

˜̂
ψ†(r)[ĥS − μ]

˜̂
ψ(r), (4.66)

here, we described the zeroth-order terms of
˜̂
ψ†(r) and

˜̂
ψ(r) as K0 in the equation

(4.66). In this way, we can calculate the trace concerning the expectation of phys-

ical quantities by using the grand canonical Hamiltonian given by (4.66).
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As a next step, since the operator K̂S is the quadratic form concerning
˜̂
ψ†(r) and

˜̂
ψ(r), we here expand

˜̂
ψ†(r) and

˜̂
ψ(r) by using the eigenfunctions of the operator

ĥS . We denote the eigenfunctions and eigenvalues of ĥS as φi(r), εi, respectively,

ĥSφi(r) = εiφi(r), (4.67)

then, we expand as

˜̂
ψ(r) =

∑
i

φi(r)âi, (4.68)

˜̂
ψ†(r) =

∑
i

φ∗
i (r)â

†
i , (4.69)

where â†i and âi are the creation and annihilation operators for a certain boson

with the state φi(r), respectively. By equations (4.67) to (4.69), we rewrite (4.66)

as

K̂S = K0 +
∑
i

(εi − μ)â†i âi. (4.70)

We refer to the equation (4.67) as the Kohn-Sham(KS) equation.

4.4 Formulas of basic variables
Next step, we shall derive formulas of basic variables by using (4.70). Specif-

ically, we substitute (4.70) into (4.32) and (4.33), then by using these results, we

calculate the trace such as (4.34) and can get the following results from equations

(4.34) to (4.37) by means of the similar calculation procedure with FTDFT,

neq(r) = |Ψ(r)|2 + Tr[ρ̂Seq
˜̂
ψ†(r) ˜̂ψ(r)]

= |Ψ(r)|2 +
∑
i,j

φ∗
i (r)φj(r)Tr[ρ̂Seqâ

†
i âj]

= |Ψ(r)|2 +
∑
i

|φi(r)|2fB(εi), (4.71)
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jeq(r) =
�

2mi
(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)) + Tr[ρ̂Seq

× �

2mi
(
˜̂
ψ†(r)∇ ˜̂

ψ(r)− ˜̂
ψ(r)∇ ˜̂

ψ†(r))]

=
�

2mi
(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)) +

∑
i,j

Tr[ρ̂Seqâ
†
i âj]

× �

2mi
(φ∗

i (r)∇φj(r)− φj(r)∇φ∗
i (r))

=
�

2mi
(Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r))

+
∑
i

�

2mi
(φ∗

i (r)∇φi(r)− φi(r)∇φ∗
i (r))fB(εi), (4.72)

ψeq(r) = Ψ(r) + Tr[ρ̂Seq
˜̂
ψ(r)] = Ψ(r), (4.73)

ψ∗
eq(r) = Ψ∗(r) + Tr[ρ̂Seq

˜̂
ψ†(r)] = Ψ∗(r), (4.74)

where in equations (4.71) and (4.72), fB(εi) denotes the Bose-Einstein distribu-

tion function which is the expectation of the occupation number concerning the

single-particle state i in the thermal equilibrium state of the reference system. In

this way, basic variables neq(r), jeq(r), ψeq(r), ψ
∗
eq(r) can be reproduced in the

reference system by solving the GPKS and KS equations.

Here note that the classical field Ψ(r) is just the order parameter of the BEC

as shown in equations (4.73) and (4.74). Thus, we can recognize that the GPKS

equation is the single-particle equation that the order parameter of the BEC sat-

isfies. As seen in Chapter 2, the order parameter of the BEC is the eigenfunc-

tion of the one-particle reduced density matrix whose occupied number, which

is its eigenvalue, is O(N). Specifically, Ψ(r) is the function described by the

multiplication of the square root of the eigenvalue and the eigenfunction of the

one-particle reduced density matrix. Thus, the first term on the right-hand side

of (4.71) is regarded as the particle number density of the superfluid component.

And more, neq(r) is the total particle number density of superfluids, so the second

term on the right-hand side of (4.71) is regarded as the particle number density

of the normal fluid component. Moreover, since we reproduce neq(r) and Ψ(r) in

the reference system, another term, i.e., the term of the normal fluid component
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can be also reproduced. A similar discussion can be done concerning the current-

density jeq(r). The relationship between sf-CDFT and the two-fluid model will

be discussed in Chapter 5.

Finally, let us comment on the calculation procedure. This procedure is shown

in Fig.4.3. Specifically, we can write it below.

(i)Assume a set of basic variables

(ii)The effective potentials given by (4.55) to (4.58) are prepared.

(iii)By using effective potentials of (ii), solve the GPKS and KS equations.

(iv)Using solutions of the GPKS and KS equations, basic variables are calculated

by means of formulas (4.71) to (4.74).

(v)Compare the obtained basic variables with the trial set of those of (i) and ver-

ify the self-consistency. If basic variables are inconsistent with some accuracy,

this calculation procedure is restarted and the input is changed. We repeat this

calculation procedure until the self-consistency is achieved, and when we can ver-

ify this self-consistency, it follows that the GPKS and KS equations are solved in

conjunction.

(vi)We can calculate the particle number density and current-density of the super-

fluid component by using the solution of the GPKS equation, while those physical

quantities of the normal fluid component by using the solution of the KS equation.
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(ⅰ)Assume basic variables 

(ⅱ)Effective potentials are prepared

(ⅲ)By using effective potentials of (ⅱ), 
solve the GPKS and KS equations

(ⅳ)By means of solutions of (ⅲ), basic 
variables are calculated by using 
formulas (4.71) to (4.74)

self-consistent

(ⅵ)Calculate the particle number 
density and current-density both of 
the superfluid and normal fluid 
components by using solutions of (ⅲ)

not consistent

(ⅴ)Compare results of (ⅳ) with trial 
basic variables of (ⅰ)

Fig. 4.3: The calculation procedure in sf-CDFT
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Chapter 5

Discussion

In this chapter, we will discuss some features and advantages of sf-CDFT. In

the first section, we derive the sum rule for the xc energy functional which is

expected to be used for developing its approximate form. In the next section, we

compare sf-CDFT with conventional theories for superfluids which are introduced

in Chapter 2. Specifically, we focus on the comparison with the two-fluid model,

the GP theory and the Bogoliubov theory, respectively.

5.1 Sum rule for the exchange-correlation energy func-
tional

Before deriving the sum rule, first, let us show the continuity equation for su-

perfluids. Take the complex conjugate of the equation which is the multiplication

of (4.64) and Ψ∗(r), and subtract its original equation from this conjugate one,

then we get

∇ · [jsf(r) + 1

m
nsf(r)AS(r)] = −2

�
Im[Ψ(r)D∗

S(r)]. (5.1)

Here, nsf(r) and jsf(r) are the particle number density and current-density of the

superfluid component shown in a later discussion,

nsf(r) = |Ψ(r)|2, (5.2)

jsf(r) =
�

2mi
(Ψ∗(r)∇Ψ(r)−∇Ψ∗(r)Ψ(r)). (5.3)

Next, we also follow the same way with the above for the equation (4.67), and we
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derive

∇ · [jnf(r) + 1

m
nnf(r)AS(r)] = 0, (5.4)

where nnf(r) and jnf(r) are the particle number density and current-density of the

normal fluid component also shown in a later discussion,

nnf(r) =
∑
i

|φi(r)|2fB(εi), (5.5)

jnf(r) =
∑
i

�

2mi
(φ∗

i (r)∇φi(r)− φi(r)∇φ∗
i (r))fB(εi). (5.6)

Finally, we add both hand sides of (5.1) and those of (5.4) and use (4.71), (4.72),

then we get

∇ · [jeq(r) + 1

m
neq(r)AS(r)] = −2

�
Im[Ψ(r)D∗

S(r)]. (5.7)

On the other hand, the continuity equation in the real system is given as

∇ · [jeq(r) + 1

m
neq(r)A(r)] = 0. (5.8)

Therefore, from equations (4.56), (5.7), and (5.8), we derive the equation of the

sum rule for the xc energy functional given as

∇ · {neq(r)
δFxc[n, j, ψ, ψ

∗]
δj(r)

} = −2m

�
Im{Ψ(r)

δFxc[n, j, ψ, ψ
∗]

δψ(r)
}, (5.9)

where of course the functional derivative in the equation (5.9) follows the same

notation introduced in the equation (4.49).

Eq.(5.9) is the equation of the condition that the xc energy functional should

satisfy. The approximate form of the xc energy functional in the original DFT

or its extensions has been developed by the equation of the sum rule for the xc

energy functional as the restrictive conditions[52-56]. About this, we can sug-

gest some examples which are the generalized gradient approximation[52-54] in

DFT, the vorticity expansion approximation in the current-density functional the-

ory(CDFT)[55,56], and so on. Thus, the equation (5.9) is considered to be used

for developing the approximate form of the xc energy functional in sf-CDFT.
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5.2 Comparison with conventional theories

5.2.1 sf-CDFT and two-fluid model
From this subsection, we shall compare sf-CDFT with conventional theories

for superfluids shown in Chapter 2. First, we start to comment on the compari-

son with the two-fluid model. As shown in Chapter 2, in the two-fluid model, we

consider that superfluids consist of two components called the superfluid and nor-

mal fluid components respectively, and it is known that they interact through the

quantum vortex. In this subsection, we insist that sf-CDFT can reproduce these

components simultaneously while incorporating the effect of their interaction.

First, as mentioned in Chapter 4, terms of the particle number density and

current-density which are respectively described by the order parameter of the

BEC Ψ(r) are physical quantities concerning the superfluid component while the

remaining terms which are described by solutions of the KS equation εi and φi(r)
are physical quantities concerning the normal fluid component. Here, we denote

the particle number density and current-density of the superfluid component as

nsf(r) and jsf(r), and also those of the normal fluid component as nnf(r) and

jnf(r), then at this time, equations (4.71) and (4.72) are rewritten as

neq(r) = nsf(r) + nnf(r), (5.10)

jeq(r) = jsf(r) + jnf(r), (5.11)

with

nsf(r) = |Ψ(r)|2, (5.12)

jsf(r) =
�

2mi
(Ψ∗(r)∇Ψ(r)−∇Ψ∗(r)Ψ(r)), (5.13)

nnf(r) =
∑
i

|φi(r)|2fB(εi), (5.14)

jnf(r) =
∑
i

�

2mi
(φ∗

i (r)∇φi(r)− φi(r)∇φ∗
i (r))fB(εi). (5.15)

Also, take the term described by the vector potential A(r) into consideration, and

the total current-density in the real system when A(r) occurs is given by

Jeq(r) = jeq(r) +
1

m
neq(r)A(r). (5.16)
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Here, we can divide this equation (5.16) into two parts concerning the superfluid

and the normal fluid components respectively,

Jsf(r) = jsf(r) +
1

m
nsf(r)A(r), (5.17)

Jnf(r) = jnf(r) +
1

m
nnf(r)A(r), (5.18)

where Jsf(r) and Jnf(r) are total current-densities concerning the superfluid and

normal fluid components respectively. In sf-CDFT, the order parameter of the

BEC Ψ(r) is reproduced, and then, physical quantities of the superfluid compo-

nent such as nsf(r) and jsf(r), which are given by Ψ(r), are also reproduced and

also, as shown in (5.17), the total current-density of the superfluid component

Jsf(r) is reproduced. Similarly, as for the normal fluid component, the parti-

cle number density and current-density of superfluids neq(r) and jeq(r) are re-

produced, then physical quantities of the normal fluid component such as nnf(r)
and jnf(r), which are given by subtractions between neq(r) and nsf(r), jeq(r)
and jsf(r) respectively, are also reproduced and as shown in (5.18), the total

current-density of the normal fluid component Jnf(r) is reproduced. Therefore,

sf-CDFT can deal with the superfluid and normal fluid components simultane-

ously. Moreover, as seen in formulas of the effective potentials which are in-

cluded in the GPKS and KS equations, these potentials include not only the effect

of the interaction between the superfluid and normal fluid components described

by the classical boson-boson interaction U [n], but also the xc energy functional

Fxc[n, j, ψ, ψ
∗]. Thus, sf-CDFT is the theory that it enables the simultaneous re-

production of the superfluid and normal fluid components while incorporating the

effect of their interaction. This point is quite different from conventional theo-

ries for superfluids like the GP and Bogoliubov theories, as mentioned in the later

subsection.

5.2.2 sf-CDFT and Gross-Pitaevskii theory
As mentioned in Chapter 2, the GP theory is related to the superfluid compo-

nent, and its density and current-density are respectively calculated by using the

solution of the Gross-Pitaevskii equation given by

(−�
2∇2

2m
+ v(r) + g|ΨGP (r)|2)ΨGP (r) = μΨGP (r). (5.19)

Here, we can show that the solution of the GPKS equation Ψ(r) given from (4.64)
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includes some correction terms in addition to the solution of the GP equation given

from (5.19). To compare Ψ(r) with ΨGP (r), first let us rewrite the GPKS equation

of (4.64) like,

∇2Ψ(r) =
2m

�2
f(r), (5.20)

with

f(r) = DS(r) + [
1

2m
([p̂,AS(r)] +AS(r)

2) + v(r)− μ

+ vH(r) + vxc(r)]Ψ(r), (5.21)

where vH(r) and vxc(r) are

vH(r) =

∫
dr′u(r, r′)neq(r′), (5.22)

vxc(r) =
δFxc[n, j, ψ, ψ

∗]
δn(r)

. (5.23)

Here, for the comparison with the solution of the GP equation, let us use the delta

function model as u(r, r′) like

u(r, r′) = gδ(r− r′), (5.24)

where g is a positive factor[17,18], and by (5.24) we get

vH(r) = gneq(r). (5.25)

Eq.(5.25) is the interaction term which is shown in the GP equation. Eq. (5.20) is

similar to the Poisson equation, so we get the general solution for (5.20) from the

addition of the general solution of the Laplace equation and the particular solution

of (5.20), which is given by using the Green function for the free particle. From

this discussion, we can get the general solution of (5.20) as

Ψ(r) = ΨGP (r)− m

2π�2

∫
dr′

DS(r
′) + [âxc(r

′) + vH,nf(r
′) + vxc(r

′)]Ψ(r′)
|r− r′| ,

(5.26)
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where

âxc(r) =
[p̂,Axc(r)] + 2A(r) ·Axc(r) +Axc(r)

2

2m
, (5.27)

Axc(r) =
δFxc[n, j, ψ, ψ

∗]
δj(r)

, (5.28)

vH,sf(r) =

∫
dr′u(r, r′)nsf(r

′), (5.29)

vH,nf(r) =

∫
dr′u(r, r′)nnf(r

′). (5.30)

Here, if the xc energy functional is ignored and we take vH,sf(r), which is the

potential concerning the superfluid component, into consideration as vH(r), our

GPKS equation is reduced to the GP equation. Concomitantly with this reduc-

tion, the equation (5.26) becomes like Ψ(r) = ΨGP (r). On the other hand, we

can consider that the second term on the right-hand side of the equation (5.26) is

the correction term resulting from the effect of the xc energy functional and clas-

sical interaction potential between the superfluid and normal fluid components.

Therefore, the order parameter reproduced in sf-CDFT is determined by the in-

teraction term between the superfluid and normal fluid components via vH,nf(r),
while the order parameter of the GP theory is determined by only the interaction

in the superfluid component. Moreover, as shown in the equation (5.26), our or-

der parameter in sf-CDFT includes effects concerning the xc energy functional via

vxc(r), Axc(r), and DS(r) which are described as the functional derivative of the

xc energy functional, and also about the KS equation, these effects are included in

the KS equation as effective potentials, and of course, this KS equation includes

the effect of the interaction between the superfluid and normal fluid components.

Thus, the physical quantities of these components are considered to be interre-

lated, and these physical quantities can be determined by solving the GPKS and

KS equations in conjunction.

5.2.3 sf-CDFT and Bogoliubov theory
As seen in Chapter 2, the Bogoliubov theory is the theory that the normal fluid

component is considered in addition to the superfluid component given by the

solution of the GP equation. In this theory, physical quantities such as the den-

sity and current-density of the superfluid component are calculated from the GP

theory, however, we should calculate them separately with the Bogoliubov the-

ory, and as for physical quantities of the normal fluid component, they can be
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calculated by the excited energy spectrum of the quasiparticle in the Bogoliubov

theory. In other words, about these conventional theories, we cannot calculate

these physical quantities of the superfluid and normal fluid components simulta-

neously within just one theory.

In contrast, in our sf-CDFT, the particle number density and current-density

reproduced in this theory can be expressed by two crucial terms, which are de-

scribed by the order parameter of the BEC given from the GPKS equation and

are described by solutions of the KS equation. The former corresponds to the su-

perfluid component, and the latter corresponds to the normal fluid component. In

this way, in our sf-CDFT, we can calculate physical quantities such as the particle

number density and current-density of the superfluid and normal fluid components

simultaneously within just one theory.

In addition, the Bogoliubov theory does not include the term of the effect con-

cerning the interaction between the superfluid and normal fluid components as

shown in Chapter 2, on the other hand, as mentioned above, our theory can in-

corporate this effect in terms concerning not only the classical boson-boson in-

teraction about two-fluids but also the xc energy functional Fxc[n, j, ψ, ψ
∗]. We

can insist on this crucial point as the difference between our sf-CDFT and the

Bogoliubov theory.

60



Chapter 6

Conclusion

We have proposed sf-CDFT, which is applied to superfluids consisting of bosons

interacting with each other. In our theory, basic variables such as the particle num-

ber density and current-density of superfluids, and also the order parameter of the

BEC are reproduced if we solve the GPKS and KS equations in conjunction and

self-consistently. One of the noteworthiest points in our theory is that physical

quantities such as the particle number density and current-density of the super-

fluid and normal fluid components can be calculated simultaneously. Moreover,

sf-CDFT is the theory incorporating the effect of the interaction between the su-

perfluid and normal fluid components, in other words, our theory can consider the

effect of the interaction of two fluids. Thus, we may be able to insist that sf-CDFT

gives the microscopic foundation of the two-fluid model for superfluids. As for

the application to the real system, we can mention that sf-CDFT can be applied to

not only superfluids consisting of bosons interacting weakly but also one consist-

ing of bosons interacting strongly such as the liquid helium-4.

In sf-CDFT, the physical quantities of the superfluid component are calculated

by using the solution of the GPKS equation while those of the normal fluid com-

ponent are calculated by using solutions of the KS equation. These two equations

are interrelated via the classical boson-boson interaction potential and effective

potentials described by the xc energy functional. In other words, the superfluid

and normal fluid components move with mutual interaction. Therefore, it is in-

sisted that our theory incorporates the mutual friction of the superfluid and nor-

mal fluid components in terms of not only the classical boson-boson interaction

but also the xc energy functional. In addition, the backflow effect[57-59] may be

incorporated via the developed xc energy functional. It is known that this back-

flow occurs when bosons constituting superfluids push others out of the way as

they move, and that’s why the backflow effect is caused by the boson-boson in-

teraction. Thus, this backflow effect may be incorporated when we develop the

approximate form of the xc energy functional. This topic is our future study.
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We also mention the calculation method in our theory. To carry out the calcula-

tion, we need to develop the approximate form of the xc energy functional. About

this, we have already prepared the condition formula that the xc energy functional

should satisfy and we can utilize this when developing the approximate form of

the xc energy functional. In addition to this, we need to develop the numerical

calculation method for the differential equation including the vector potential. As

for this, we have also developed a method for the case where a uniform magnetic

field is applied[60,61]. While referring to this, we can develop the numerical

calculation method for the GPKS and KS equations in sf-CDFT.
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Appendix

A.A vector potential in the rotational coordinate sys-
tem

Now, consider that we stand in the rotational coordinate system moving with

the current-density j(r), and let us write r′ as the position vector in this rotational

coordinate system. Furthermore, we write a constant vector ω as the angular

velocity vector related to j(r), which is in the direction of the z′-axis like

ω = (0, 0, ω). (A.1)

First, we consider the following situation.

o o'

'z z

x

y

'x

'y

inertia system
rotational  system

r
r'

t

t

Fig. A.1: The rotational coordinate system
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Where the system whose original point is o is the inertia system while the

system whose original point is o′ is the rotational coordinate system, and r is

the position vector in the inertia system. In this case, the relation of coordinates

between the inertia system and the rotational system is described as⎛
⎝x′y′
z′

⎞
⎠ =

⎛
⎝ cosωt sinωt 0
− sinωt cosωt 0

0 0 1

⎞
⎠

⎛
⎝xy
z

⎞
⎠ . (A.2)

Next, let us rewrite (A.2) as⎛
⎝xy
z

⎞
⎠ =

⎛
⎝cosωt − sinωt 0
sinωt cosωt 0
0 0 1

⎞
⎠

⎛
⎝x′y′
z′

⎞
⎠ , (A.3)

then, differentiate x, y, z with respect to time,

ẋ = ẋ′ cosωt− ωx′ sinωt− ẏ′ sinωt− ωy′ cosωt, (A.4)

ẏ = ẋ′ sinωt+ ωx′ cosωt+ ẏ′ cosωt− ωy′ sinωt, (A.5)

ż = ż′. (A.6)

Now, we consider the Lagrangian of the inertia system given by

L =
m

2
(ẋ2 + ẏ2 + ż2)− U(x, y, z), (A.7)

where m is the mass of a particle constituting the system, and U is the poten-

tial energy including the external potential and interaction potential depending on

x, y, z. Let us substitute (A.4) to (A.6) into (A.7), and rewrite the Lagrangian as

the formula described by coordinates (x′, y′, z′) and (ẋ′, ẏ′, ż′),

L =
m

2
{(ẋ′ − ωy′)2 + (ẏ′ + ωx′)2 + ż′

2} − V (x′, y′, z′), (A.8)

where V (r′) is the potential term rewritten by using (A.3). Then we can calculate

the canonical momentum in the rotational coordinate system by using

p′i =
∂L

∂q̇′i
, (A.9)

therefore, a careful calculation by using (A.8) and (A.9) leads us to the following
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results,

p′x = mẋ′ −mωy′, (A.10)

p′y = mẏ′ +mωx′, (A.11)

p′z = mż′. (A.12)

In equations (A.10) to (A.12), we can also rewrite them as the vector notation,

p′ = mṙ′ +mω × r′, (A.13)

where p′ = (p′x, p
′
yp

′
z) is the canonical momentum vector in the rotational co-

ordinate system. Thus, we can calculate the classical Hamiltonian of a particle

constituting superfluids in the rotational coordinate system H by using (A.13)

and the Legendre transformation given by

H =
∑
i

p′iq̇′i − L, (A.14)

therefore, by using (A.8) and (A.14), we finally get the following result,

H =
p′2

2m
− p′ · (ω × r′) +

1

2m
(mω × r′)2 − mω2

2
(x′2 + y′2) + V (r′). (A.15)

Here, we can rewrite the equation (A.15) as

H =
p′2

2m
+

p′

m
·A(r′) +

1

2m
A(r′)2 − mω2

2
(x′2 + y′2) + V (r′), (A.16)

with

A(r′) ≡ −mω × r′. (A.17)

In this way, the fictitious vector potential A(r′) appears in the rotational coordi-

nate system moving with j(r′). Of course, although the above derivation is related

to the Hamiltonian of a particle, we can also extend this derivation to the whole

system consisting of many particles, and the fictitious vector potential A(r′) also

appears in the rotational system as well as (A.16).
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B.Spectral decomposition of the one-particle reduced
density matrix

Now, we denote the eigenvalues and eigenfunctions of the one-particle reduced

density matrix ρ1(r, r
′) as ni and ui(r

′), respectively, and the eigen equation con-

cerning ρ1(r, r
′) is described for each i,∫

dr′ρ1(r, r′)ui(r′) = niui(r). (B.1)

Here, multiply u∗i (r
′′) to both hand sides of (B.1), and calculate the sum for i

concerning both hand sides,

∑
i

u∗i (r
′′)
∫
dr′ρ1(r, r′)ui(r′) =

∑
i

niu
∗
i (r

′′)ui(r), (B.2)

concerning the left-hand side of the equation (B.2),

∑
i

u∗i (r
′′)
∫
dr′ρ1(r, r′)ui(r′) =

∫
dr′ρ1(r, r′)

∑
i

u∗i (r
′′)ui(r′)

=

∫
dr′ρ1(r, r′)δ(r′ − r′′)

= ρ1(r, r
′′), (B.3)

where in the equation (B.3), we considered the property of the complete set con-

cerning the eigenfunctions ui(r). Thus, we derive the formula of the spectral

decomposition of the one-particle reduced density matrix by equations (B.2) and

(B.3),

ρ1(r, r
′) =

∑
i

niu
∗
i (r

′)ui(r). (B.4)
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