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Abstract

Given a tropical divisor D in the intersection of two tropical plane curves, we study
when it can be realized as the tropicalization of the intersection of two algebraic curves,
and give a sufficient condition. It is shown that under a certain condition involving
a graph determined by these tropical curves, we can algorithmically find algebraic
curves such that the tropicalization of their intersection is D.
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1 Introduction

In this paper, let k£ be a fixed algebraically closed field with a nontrivial valuation
val : k = R U {4-00}. A tropical plane curve is obtained by the tropicalization of an
algebraic curve in (k*)2. Here, the tropicalization is defined using the following map:

trop : (k*)?> - R?
(x,y) — (—val(x), —val(y)).

Let f = Zi./' c,-jx"y/ € k[x*!, y*!] be given. For a given tropical divisor D on the
tropical plane curve Trop(V (f)), it has been considered whether D can be obtained by
the tropicalization of the intersection of two algebraic curves (Brugalle 2012; Len and
Satriano 2020; Morrison 2015; Osserman and Payne 2013; Osserman and Rabinoff
2013). This kind of problem is called a tropical lifting problem or a tropical realization
problem. In this paper, we give a sufficient condition involving a graph determined by
given tropical curves for the lifting problem for the intersection of curves.
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1.1 Tropical lifting problem

First, we explain what is known about tropical lifting problems for the intersection of
two tropical plane curves. Let F and G be bivariate tropical polynomials. They define
the tropical plane curves V (F) and V (G) (see Sect.2).

Definition 1.1 We say that two tropical plane curves I'; and I'> meet properly at a
point p if p is an isolated point in I'y N I';. We define PZ(F, G) as the multiset
of the points p at which V(F) and V(G) meet properly, with the local intersection
numbers as multiplicities. We also write PZ(trop(f), trop(g)) as PZ(f, g) (for the
tropicalization of a Laurent polynomial, see Definition 2.5).

Proper intersections are the simplest intersections of tropical plane curves. Trop-
ical lifting problems of proper intersections are studied in Osserman and Rabinoff
(2013) (see Theorem 2.21). For algebraic curves Cy, Co C (k*)?, if the tropical curves
Trop(C1) and Trop(C3) meet properly, then trop(C; N C3) is equal to the intersection
Trop(C1) N Trop(Cy), considered with multiplicities. Thus, we have to consider the
case where Trop(C1) N Trop(C>) does not consist of isolated points, i.e., contains
1-dimensional components.

Definition 1.2 A (tropical) divisor on a tropical curve T" is a finite sum D = Y " n; P;,
where P; e I" and n; € Z.

Definition 1.3 A tropical rational function on a tropical curve I is a continuous func-
tion ¢ : I' — R such that its restriction to any edge of I' is a piecewise linear function
with integer slopes, i.e., piecewise Z-affine, and with only finitely many pieces. The
divisor of v is ZPel" ordp () P, where ord p () is (—1) times the sum of the outgo-
ing slopes of ¢ at P. We write (¢) for the divisor of v. If D and E are divisors such
that D — E = () for some tropical rational function ¥, we say that D and E are
linearly equivalent. We define the support of ¥ as Supp(¢) = {P € I' | ¥ (P) # 0}.

Morrison showed the following necessary condition for the realizability of a tropical
divisor as the intersection of curves.

Theorem 1.4 (Morrison 2015, Theorem 1.2) Let I'y and Ty be tropical plane curves
such that T'1 is smooth (Definition 2.16). Let E be the stable intersection divisor
(Definition 2.20) of Ty and Ty, andlet D = Y n; P; (n; € Z>0) be adivisoronT'|NIy.
Assume that there exist algebraic curves C1, Co C (k*)2 without common irreducible
components such that Trop(C1) = I'1, Trop(Cy) = I's, and trop(C1 N C2) = D as
multisets. Then, there exists a tropical rational function r on "1 suchthat (v) = D—E
and Supp(y) C I'1 N Ty.

In Morrison (2015), a conjecture on the converse is also presented.

Problem 1.5 (Morrison 2015, Conjecture 3.3) Let ¥ be a tropical rational function
on a tropical curve Trop(V (f)) such that Supp(y) C Trop(V (f)) N Trop(V(g)) and
(¥) = D — E, where E is the stable intersection divisor and D = Y n; P; (n; € Z>0)
is adivisor on I'{ N I" such that each coordinate of P; is in the value group of k. Then
is it possible to find f', g’ € k[x*!, y*!] such that Trop(V (f’)) = Trop(V(f)),
Trop(V (g')) = Trop(V (g)) and trop(V (f', ¢)) = D?
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This was answered in the negative. See Len and Satriano (2020, Theorem 5.2) for
a tropical self-intersection case, and Brugalle (2012, Lemma 3.15) for a non self-
intersection case. On the other hand, it would be useful to find sufficient conditions for
the realizability. The purpose of this paper is to give a sufficient condition involving a
certain graph. We introduce several notations before explaining the setting of the main
problem.

Definition 1.6 LetI"| and I'; be tropical plane curves. Let £ be a connected component
of I'y N I'y. The intersection multiplicity of I'y N ', on K is defined as the sum of the
multiplicities of the stable intersection points on & (Definitions 2.19 and 2.20).

Let us introduce notations on the second simplest components of the intersection
of tropical curves.

Definition 1.7 We define R (F, G) as the set of rays L satisfying the following:

e L is a connected component of the intersection V (F) N V (G).

e The intersection multiplicity of V(F) and V(G) on L is 1.

e Each 1-dimensional cell of V (F) or V(G) which has a 1-dimensional intersection
with L and contains the endpoint of L as its vertex has weight 1.

Also, we define LS2(F, G) as the set of (bounded) line segments L satisfying the
following:

e L is a connected component of the intersection V(F) N V (G).

e The intersection multiplicity of V(F) and V(G) on L is 2.

e Each 1-dimensional cell of V (F) or V(G) which has a 1-dimensional intersection
with L and contains an endpoint of L as its vertex has weight 1.

We write Ls(F, G) := R1(F, G) U LS2(F, G). It turns out that any edge of V (F)
or V(G) that meets L € Ls(F, G) has weight 1 and any vertex contained in L is
smooth (see Lemma 3.3). For Laurent polynomials f, g € k[x*!, y*!], we also write
Ri(f,8), LS2(f, g) and Ls(f, g) for Ry(trop(f), trop(g)), LS2(trop(f), trop(g))
and Lg(trop( f), trop(g)), respectively.

Thus, the connected components of V (F) NV (G) are points in PZ(F, G), elements
of Li(F, G), and possibly a number of other 1-dimensional sets.

We will see that, if L € R1(f, g), then there are at most one point in the intersection
trop(V (f, g)) N L (Corollary 4.2). Thus, in this paper, we will consider the following
condition.

Definition 1.8 The condition () on a divisor D on Trop(V (f)) N Trop(V (g)) is the
following:

D = ZniP,- (n; = 0).

Each coordinate of P; is in the value group of k.

There exists a tropical rational function ¥ on the tropical curve Trop(V ( f)) such
that Supp(vy) C Trop(V (f)) N Trop(V (g)) and () = D — E, where E is the
stable intersection divisor of Trop(V (f)) and Trop(V (g)).

For L € Ri(f, g),deg(D|r) = 1.
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Note that this condition is natural in view of Theorem 1.4.

Notation 1.9 For a tropical plane curve I', we write %) (I") for the set of the n-
dimensional cells of I" (see Theorem 2.8). For a tropical polynomial F € T[x*!, y*1],

we write A(]_'f) for the set of the n-dimensional cells of Ax, where Az is the dual
subdivision of the Newton polygon of F (see Definition 2.8). For a Laurent polynomial
f € k[xE!, y£1], we write A s and A(;-L) for Agop(f) and At(r"o)p(f), respectively.

Note that the intersection multiplicity at an endpoint of a ray or a line segment
L € L(f,g) must be at least 1, and hence the tropical curves Trop(V (f)) and

Trop(V (g)) have no vertices in the interior of L (see Lemma 3.3 for details). Thus,
we can define the following maps.

Definition 1.10 We define maps ¢; (i = 1, 2) as follows:

¢1: Ls(F,G) — OV (F)

L +— the I-dimensional cell of V (F) containing L,
¢ L(F, G) — =DV (G)

L > the 1 -dimensional cell of V (G) containing L,

and we define maps ®; (i = 1, 2) as follows:

D) Ly(F,G) — AP

L + the I -simplex of A r corresponding to ¢ (L),
Oy 1 Ly(F.G) > AY

L — the 1 -simplex of Ag corresponding to ¢ (L).

Notation 1.11 Let a, b € R? (a # b) be points such that the line segment ab has a
rational slope. Then, there is a primitive integer vector v € Z> which has the same
slope as ab. The lattice length of ab is the ordinary length of ab divided by the ordinary
length of v. When a = b, we define the lattice length of ab as 0. We write dist(a, b)
for the lattice length of ab. We note that dist does not satisfy the metric inequality.

On a line segment L € LS>(F, G), a divisor D satisfying (x) can be described as
follows.

Lemma 1.12 Let L € LS>(F, G) be a line segment. Let D be a divisor satisfying ().
Then, D|; = P1+ P> for some Py, P, € L, and we have dist(Py, Py) = dist(P—, P»)
and dist(Py., P») = dist(P—, P1), where P and P_ are the endpoints of L.

Proof Straightforward from the fact that a tropical rational function ¥ on V (F) as in
() takes O at P4 and P_. O

Notation 1.13 Let a tropical divisor D satisfy (x). For a line segment L € LS>(f, g),
we define dist(D|r, E|r) = min{dist(P4, Py), dist(Py, P>)}, where D|; = P + P>
and E|; = P+ P_. This is well-defined by Lemma 1.12. Also, when L € R{(f, g),
we write dist(D|r, E|r) for the lattice length of the distance of the point in D|; and
the endpoint of L.
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By analogy with plane algebraic curves, it is a natural setting to fix f and change
g in realizing D, i.e., the zeros of ¥. For example, in Len and Satriano (2020), a
tropical curve I'" and an algebraic curve C satisfying Trop(C) = I are fixed and
trop(C N C") are studied for curves C’ with Trop(C’) = T". Also, it would be useful
to study whether it is possible to realize a certain part of D. Let L be a subset of
Ls(f,g) and PZ := PI(f, g) the proper intersections. Let D|.;ypz denote the
restriction of D to the union of the elements of E; U PZ. Then, when is it possible to
realize D|r;upz, i.e., does there exist a Laurent polynomial g € k[x*!, y*!] such
that Trop(V (g")) = Trop(V (g)) and trop(V (f, &)Iciupz = Dlciupz?

1.2 Main result

As apartial answer to the above question, our main theorems give sufficient conditions
for the realizability. To state the main theorems, we introduce terminologies on trees.

Notation 1.14 It is well known that any two vertices of a tree T are connected by a
unique simple path in T (see Diestel 2017, Theorem 1.5.1). We write pTg for the
simple path between two vertices p and g in T'.

Definition 1.15 Let 7T be a tree and < a total ordering on the set of its vertices. Let pg
denote the smallest vertex for <. The order < is called normal if p € poTq implies

pP=q-

Definition 1.16 For lattice points i, j € 72 such that j—iis 'pr‘imitive and a trppical
polynomial F = 691622 aix' with o4, j 7# —oo, where x(1:2) denotes xi1yi2, we
define /1, (F; i) (n € Z) and u(F; ij) by

pn(F3 1j) i= —Qign(j—i) + i + nlej — o),
W (F3 ij) := min{u, (F; ij) | n € Z\ {0, 1}}.

For f = Y ;cixt € k[xT!, yF!] with ¢;, ¢j # 0, we write 11, (f; ij) and p(f; ij) for
Un (trop(f); i_j) and p(trop(f); ﬁ), respectively (Fig. 1).

Note that 11, depends on the orientation of ij but 1 does not, and that ;1 (F; ij) =
w1 (Fsij) = 0.

Fig. 1 pn (F; ij) and u(F; ij) Qi (j—i)

p2(Fiij) = p(F:1j)
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Remark 1.17 Let F = ;2 a;x! be a tropical polynomial, ij a 1-simplex of A z with
J — i primitive, and L the corresponding edge of V (F) (see Theorem 2.9). Then, for
any P € L and n € Z\{0, 1}, we have the following (see Remark 2.12):

aj+i-P=oj+j-P > dignji+A+n({—-10)- P,
and hence,

—Qin(j—i) + o +n(ej — o) >0,

[ (F; ij) > 0.

Ihus, in this case, we IEIVG w(F, ﬁ) > 0. In particular, if L € L(f, g), P € L and
ij = ®2(L), then n(g;ij) > 0. B
The value p(F; ij) measures the margin for ij to be a 1-simplex of A £, in a sense.

Now, let us state the main theorems. We consider the following graph theoretic
condition which will be crucial in our sufficient conditions.

Definition 1.18 We say that L is acyclic with respect to @; if the map @[z is
injective (see Definition 1.10), i.e., there is no duplication in A" := ®5(L}), and the
union of the elements of A’ is a forest.

Remark 1.19 The acyclicity of L] is not directly correlated with acyclicity in
Trop(V (g)). Even if £ is acyclic with respect to ®,, the union of the corresponding
edges of Trop(V (g)) may have cycles (cf. Example 5.1).

The following theorem implies that D can be realized on £, U PZ if L] is acyclic
with respect to @, and D is sufficiently close to E.

Theorem 1.20 (=Theorem 4.6) Let a divisor D satisfy the condition (x) in Definition
1.8. Assume that L is acyclic with respect to ®, and that for each L € L, we
have dist(D|r, E|1) < u(g; ®2(L)). Then, there exists g’ € k[x*!, yil] such that
trop(g’) = trop(g) and

trop(V (f, ¢)lcupz = Dlcupt-

Remark 1.21 In the above theorem, we assume the distance condition that for each
L € L, we have dist(D|, E|1) < u(g; ®2(L)). However, we do not know whether
this condition is absolutely necessary or not. Therefore, there may be room for omitting
this condition.

Imposing a further assumption on £, we may drop the restriction on the distance.

Notation 1.22 For a given set S C R", we write Aff(S) for the affine span of S.
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Theorem 1.23 (=Theorem 4.7) Let a divisor D satisfy the condition (x) in Definition
1.8. Assume that L is acyclic with respect to ® and that we can number and order
the endpoints of the elements of A" := ®(Ly) as p1 < -++ < py so that this order is
normal on each tree of the forest and that for each element p;p; of A', its affine span
Aff(pip;) does not containapoint py withl > i, j. Then, there exists g’ € k[xEL, y*
such that trop(g’) = trop(g) and

trop(V(f, g))lcupz = Dlgiupt-

The proofs of the theorems proceed as follows. For an element L € Ls(f, g), we
will give an algorithm to determine trop(V (f, g)) N L (see Lemma 3.8, Definition
3.10 and Proposition 4.1). This algorithm proceeds by constructing a suitable Laurent
polynomial in the ideal (f, g) and tells us how to modify g in order to realize D on
L. Using this, we will determine the coefficients of g’ one by one. In the setting of
Theorem 4.7, we use the given ordering. We need the acyclicity condition to maintain
the consistency.

Remark 1.24 Let L € L and ®»(L) = p;p,. In determining trop(V(f,g)) N L
and the coefficient d;,i of g’, the coefficients dj for i € Aff (pipj) are essential. This
is why Theorem 4.6 (resp. 4.7) requires the condition about the coefficients d; for
i € Aff(p;p;) (resp. about Aff (p;p;)).

Remark 1.25 The condition p; ¢ Aff(p;p;) (I > i, j) in Theorem 4.7 depends on
the ordering, not just on L. For example, the order on the left in Fig.2 satisfies the
condition, but the one on the right does not.

The rest of this paper is organized as follows. Section2 gives fundamental defini-
tions and facts about tropical curves. In Sect.3, we show several lemmas concerning
properties of V(F) and V(G) in a neighborhood of L € L (F, G) and introduce a
kind of division procedure for Laurent polynomials over a valuation field. In Sect. 4,
we explain how to determine trop(V (f, g))NL for L € Ls(f, g), and prove the main
theorems. In the last section, we give several examples concerning the main theorems
to illustrate the necessity of the acyclicity condition.

2 Tropical curves
In this section, we recall the basics about tropical plane curves. For details, see Macla-

gan and Sturmfels (2015). First, we give the definition of the tropical algebra which
is essential for studying tropical geometry.

Fig.2 Two orderings of the D2 P3

endpoints of the elements of
&= 0 AN AN

P3 P4 P11 P2 P1 P4
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Definition 2.1 (Tropical algebra) We define T = R U {—o00}. The tropical algebra is
the triple (T, &, ©), where the addition @ is defined as the operation that takes the
maximum of two numbers and the multiplication © is defined as the ordinary addition.
We can easily check that (T, &, ©) is a semifield.

To define tropical plane curves in terms of tropical algebra, we define tropical
polynomials.

Definition 2.2 (Tropical polynomials) A tropical polynomial F is an expression of the
form

; 4
F = @aixll cX
i

wherei = (i, ...,i,) € Z" and o € T, and only finitely many of the coefficients «;
are not —oo. We may drop terms with coefficients —oo. A tropical polynomial defines
a map from R" to R U {—o0} in a natural way:

F(t, ..., t) =max(ej + i1ty + - - +inty).
1
We write T[xf—Ll, A xnﬂ] for the set of all n-variate tropical polynomials, and define
the addition and the multiplication in a natural way.

Definition 2.3 (Tropical hypersurfaces) Let F = P ocixil .. .x,i," # —oobe atropical
polynomial. The tropical hypersurface V (F) defined by F is the set

H=C1,..in), j=Ulsooes Ju) €ZM1 #J) sit.
V(F) = (tlv-n,tn)ERn ai“‘iltl+"'+intn=05j+jlt1+"'+jntn
:]:(tl’--wtn)

If F = —o0, i.e. all the coefficients of F are —oo, we define V (—o0) = R". Whenn =
2and F # —oo, wecall V(F) atropical plane curve. Later, we will consider a tropical
plane curve as a polyhedral complex endowed with weights on its 1-dimensional cells
(see Definition 2.11).

The following map is a bridge between algebraic geometry and tropical geometry.

Definition 2.4 (Tropicalization map) We define the tropicalization map as follows:

trop : (k*)" — R”

(x1,...,x,) = (—val(xy), ..., —val(xy)).
Definition 2.5 (Tropicalization of Laurent polynomials) Let f = ) cxl €
k[xftl, el x,ﬂfl] be a Laurent polynomial. We define the tropicalization of f as

wop(f) = &P rop(ep)x’ <= D (- Val(ci))xi)> .
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Notation 2.6 For A C (k*)", we write Trop(A) for the closure of trop(A) in R”.
Recall that & is an algebraically closed field with a nontrivial valuation.

Theorem 2.7 (Kapranov’s Theorem, Einsiedler et al. (2006), Theorem 2.1.1) Let f €
k[xlil, e, x,jfl] be a Laurent polynomial. Then, we have

V (trop(f)) = Trop(V (f)).

Definition 2.8 (Dual subdivisions, (Mikhalkin 2005, Definition 3.10)) Let F =
@i’ jijx'y! be a tropical polynomial. We write Newt(F) C R? for the convex

hull of the set {(i, j) € 72 | a;jj # —oo}. Let Axr C IR? be the convex hull of the set
{(i,j,@) €Z?> xR |a < a;j}.

Then, the projections of the bounded faces of Ax form a lattice subdivision of
Newt(F). This naturally has a structure of a polyhedral complex. The dual subdivision
of F is this polyhedral complex and we denote it by A . For a Laurent polynomial
f € k[x™!, y*1], we also write A ¢ for the dual subdivision of trop( f).

Theorem 2.9 (The Duality Theorem, (Mikhalkin 2005, Proposition 3.11)) Let I’ =
V(F) be a tropical plane curve. Then, T" is the support of a finite 1-dimensional
polyhedral complex ¥ r (possibly with noncompact cells) in R%. It is dual to the
subdivision A r in the following sense:

(Closures of) domains of R* \ T' correspond to lattice points in A r.
1-dimensional cells in X r correspond to 1-simplexes in A r.

0-dimensional cells in X r correspond to 2-dimensional cells in Ar.

This correspondence is inclusion-reversing.

o A l-dimensional cell in T r is orthogonal to the corresponding 1-simplex in A x
(see Fig.3).

For a cell o € A, the corresponding cell in L is given by {P € R* | F(P) =
aj+i- P for any vertexiofo}. In particular, 1-dimensional cells in X r have rational
slopes.

Notation 2.10 Let I" be a tropical plane curve. We call a O-dimensional cell of I" a
vertex of I" and a 1-dimensional cell of I" an edge of I

Toen T

V(G)

Fig.3 (Smooth) tropical plane curves and their dual subdivisions
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We define the weight of an edge of a tropical plane curve using the dual subdivision.

Definition 2.11 Let I’ = V ([F) be a tropical plane curve and o € >M(T) an edge of
I". The weight w, of o in I is the lattice length of the corresponding 1-simplex of
Ar.

From now on, a “tropical curve” will refer to the polyhedral set I" together with
weights on its edges.

Remark2.12 Let F = @, ; aijx' y/ be a tropical polynomial. Let o be an edge of X

with weight 1 and ij the corresponding 1-simplex of A 7. Assume that o + k - P =
F(P) for P € o and k € Z*\{i, j}. Then k is one of the vertices of a 2-dimensional
cell in A £, corresponding to a vertex of o, containing ij as its face. In particular, for
any k € (Aff(ij) N Z*)\(i, j}, we have

ok + k- P < F(P).

Notation 2.13 Let I" be a tropical plane curve, P a vertex of I" and L an edge of I
containing P. Let R be the ray which contains L such that P is its endpoint. We denote
by vp . the primitive vector that have the same direction as R.

Tropical plane curves satisfy the following balancing condition.

Theorem 2.14 (Maclagan and Sturmfels 2015, Theorem 3.3.2) Let " be a tropical
plane curve and P a vertex of I" and Ly, ..., L, the edges of I containing P with
weights wy,. Then, we have

Z Wr;VP,L; = 0.
i

Definition 2.15 Let I' = V(F) be a tropical plane curve. A vertex P € I is called
smooth if the area of the corresponding cell in A r is 1/2. We see that this is equivalent
to the condition that it is trivalent and all the weights of the three edges L, Ly and
L3 containing P are 1, and for some (or any) pair (i, j) (i, j € {1,2,3},i # j), we
have | det(vp r,, VP’L_/.)| =1.

Definition 2.16 (Smooth tropical plane curves) A tropical plane curve I' = V (F) is
called smooth if all the lattice lengths of the 1-simplexes of A r are 1 and all the areas
of the 2-dimensional cells of Az are 1/2 (see Fig. 3). In other words, I'" is smooth if
all the vertices are smooth and all the weights of the edges are 1.

Notation 2.17 Let I" be a tropical plane curve and o an edge of I'. We denote by v,
primitive vector that have the same direction as Aff(o). This is well-defined up to
sign.

Definition 2.18 (Transverse intersection points) Let I'1 and I'y be tropical plane
curves. A point P is a transverse intersection point of I'1 and I'; if it is a proper
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intersection point of them and is a vertex of neither of them. For a transverse inter-
section point P, there exist unique edges L; € X(I';) (i = 1, 2) containing P in
their interiors. In this case, we say that L and L, intersect transversely at P, and we
define the intersection multiplicity at P as

i(P;T-T2) :=wp,wp,|det(vy,, vi,)l|.

Tropical plane curves I'1 and I'; intersect transversely if all the points in I'; N I", are
transverse intersection points.

Note that for a tropical plane curve I' and a vector v € R%, " + v is a tropical plane
curve. For tropical plane curves I'y and I', it is known that for a generic vector v € R?
and a nonzero real number € € R with sufficiently small absolute value, I'; + €v and
I'; intersect transversely, and the following sum is well-defined (see Osserman and
Rabinoff 2013, Sect. 6).

Definition 2.19 (Intersection multiplicities) Let I'; and 'y be tropical plane curves.
We define the intersection multiplicity at a point P € 'y N T'p as

i(P;Ty-Ty) = ) Yo 0 Titen) Ty,

L3P, Ly>P \Qe(Li+ev)NLy

where L1 and L, are edges of I'; and ['p, v € R2isa generic vector, € € Ris a
sufficiently small nonzero real number.

Itis easy to see that i (P; 'y - I'2) = i(P; > - T'y).

Definition 2.20 (Stable intersection divisor) Let '} and 'y be tropical plane curves.
The stable intersection divisor of I'1 and I'; is defined as

Z i(P;Ty-T)P.

Pel NIy

In an appropriate sense, this is equal to the limit of (I'; 4+ €v) NIy as € — 0, where
v € R? is a generic vector and € is a sufficiently small nonzero real number.

The following theorem says that the tropicalization conserves the intersection num-
ber in a certain sense.

Theorem 2.21 (Osserman and Rabinoff 2013, Corollary 6.13) Let X1, ..., Xy, €
(k*)* be pure dimensional closed subschemes of (k*)" with ), codim(X;) = n.
Let & be a connected component of (); Trop(X;), and suppose that R is bounded.
Then there are only finitely many k-valued points x € (ﬂl Xi) (k) with trop(x) € R,
and

> i@ Xy Xp) =) i(P:Trop(Xy) - Trop(Xp)).

xe () X)) =
trop(x)eR
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3 Preparations for the main theorems

We will provide additional explanations for some facts from Section 1 and make
preparations for the next section. Since we are going to compare the valuations of
different terms in polynomials, we make the following definition.

Definition 3.1 We define a map t as follows:

T Tx*!, yF ) x 22 x R? - RU {—o0}
<@aixi;j; P) = aj+j-P.
i

For a Laurent polynomial f € k[x®!, yil], we write t(f; j; P) for t(trop(f); j; P).
The map 7 satisfies the following.

Lemma3.2 Let f, g € k[x*!, y='] be Laurent polynomials. Then, for all i € Z* and
P € R?, we have

(f + g i P) <max{t(f:i; P), 7(g; i; P)}.
Moreover, the equality holds if T(f; i; P) # t(g;1i; P).

Proof This is clear from the ultrametric inequality for the valuation. O

For A = (a;;) € GLy(Z),b = (b1, b2) € R?> and t = (11, 1) € (k*)? such that
trop(t) = b, we define the following automorphisms and an affine transformation.

¢ (k) — (k)
(a, b) = (@™'b™2ty, a*'b*221y),
oF kI, yE] o ke v
X — xa“yalztl, y > xa21ya22t2,
trop(¢) = & : R? > R?
Vi Av+Db,
O : T, y&] — T, y*]
PN blxa“yalz, V> bzxamyazz,
'd” :R? > R?
vis AT (v = b).

Then, the following can be verified by direct calculations.
e VP € (k*)?, trop(¢p(P)) = ®(trop(P)).
o Vf € klx™!, yE!], Trop(V(¢*(f))) = V(®*(trop(f))).
o Vf e klxTl yE, VP € (k)2 f(@(P)) = (¢*())(P).
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o VF e Tlxt!, yE!], 1d ™ (V(F)) = V(®*(F)).

Thus, if L is an edge of Trop(V (f)), we can find an automorphism ¢ of (k*)% such
that trop(¢) (L) is contained in the y-axis, for example.

Recall that R (F, G) and LS>(F,G) were the sets of rays and line segments
contained in V (F)NV (G), defined in Definition 1.7, and that L;(F, G) = R{(F, G)U
LS (F, ).

Lemma 3.3 Let F and G be bivariate tropical polynomials.

(1) Let L € LS2(F, G), and Py and P_ the endpoints of L. Then, Py (“x = +or—")
is a smooth vertex in one of V(F) and V(G), and is in the interior of an edge of
weight 1 in the other. Furthermore, the interior of L contains no vertices of V (F)
and V (G). In other words, for a neighborhood U of L, the restrictions of V (F)
and V(G) to U are as in Fig.4, where each vertex is smooth and each edge has
weight 1.

In particular, the stable intersection points of V(F) and V (G) on L are the end-
points of L, each with weight 1.

(2) For L € Ri(F, G), the endpoint of L is a smooth vertex in one of V(F) and V (G),
and is in the interior of an edge of weight 1 in the other. Furthermore, the interior
of L contains no vertices of V(F) and V (G).

Proof First, note that each endpoint of L is a vertex of at least one of V (F) and V (G),
and that if P € L is a vertex of V(F) or V(G), then we have i (P; V(F) - V(G)) > 1.
It follows that V (F) and V (G) intersect with multiplicity 1 at each endpoint of L, and
that V(F) and V (G) do not have a vertex in the interior of L. Hence, an edge of V (F)
(resp. V(G)) intersecting the interior of L contains L.

Let us prove (1). The proof of (2) is similar. We can assume that L is contained in
the y-axis and Py = (0,a;) and P— = (0, az) with a; > ap by applying an affine
transformation with a unimodular integral coefficient matrix. Let U be a sufficiently
small neighborhood of P and Dr := {(p1, p2) € R2 | p1 > 0}). Let Ly, ..., Ly
be the edges of V(F) which intersect Uy, and L/, ..., L; the edges of V(G) which
intersect Uy, with L1 D L and L’] D L. Assume that Py is a vertex in both of V (F)
and V(G),i.e. s > 3 and ¢ > 3. Then, by the balancing condition at P, there are i
and j such that

DRNL; #@%and DrN L) # 0.

P, p, P, P, P P, P P,
pP P P P P P P P
(a) (b) (c)

Fig.4 V(F) and V(G) in a neighborhood of L € LS, (F, G)
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Note that by the assumption that L € LS (F, G) is a connected component of V (F)N
V(G), wehave L; L', = { P, }. By symmetry, we assume that the slope of L; is larger
than that of L}. Letv = (vi,v2) € RZbea general vector such that vy, v > 0 and
vy /v1 is sufficiently large, and € > 0 a sufficiently small positive number. We will
consider V(F)N(ev+V(G)). Then, we have L; N (ev—l—L’j) #Pand L;N(ev+L)) #
). Hence, we have i(Py; V(F) - V(G)) > 2, contradicting to what we saw at the
beginning. Thus Py is a vertex of exactly one of V(F) and V(G).

Assume that P, is a vertex of V(F). Then, by the definition of LS>(F, G) (see
Definition 1.7), the multiplicity of L is 1. Since the intersection multiplicity at Py is
1,1t is cleat that exactly one of {L,, ..., Lg}, say Ly, intersects D, that the weights of
L' and L; are both 1 and that | det(vy,, v L )| = 1. Similarly, there is a unique edge of
V(F) intersecting Uy N {(p1, p2) € R?2 | p1 < 0}, and V (F) is trivalent at Py (note
that V (F) contains no edge intersecting Uy N {(p1, p2) € R? | p1 = 0, pr > ai}
since Py is an endpoint of L). By the balancing condition, P, is a smooth vertex of
V (F). The same holds at the point P_. O

Corollary 3.4 Let F,G € T[x™!, y'], L € LJ(F.G), ®1(L) = ioly and ®(L) =
Joj1. Then iy —ip = £(j1 — jo)-

Proof 1t is clear that Aff(®;(L)) = Aff(®,(L)), and hence, it is sufficient to show
that @1 (L) and ®,(L) have the same lattice length. By Lemma 3.3, each edge of
V(F) and V(G) intersecting L has weight 1. Then, by the definition of the weight of
an edge of a tropical plane curve (see Definition 2.11), the lattice lengths of ®1(L)
and ®,(L) are 1. O

Lemma3.5 Let F = ; oixt, G = b Bixt € T[x*!, y=1] be tropical polynomials,
L € Ly(F,G), and Py an endpoint of L. Assume that ®1(L) = ®5(L) = ioiy,
aiy = Piy and o, = Pi. Let Uy be a sufficiently small neighborhood of P, and
L = Aff(L) (see Notation 1.22). By Lemma 3.3, for either (Fi, F») = (F,G) or
(F1, F2) = (G, F), the point Py is a smooth vertex of V (F1) and is in the interior of
an edge of multiplicity 1 in V (JF3). Let o be the 2-simplex of A, corresponding to
P, and iy the vertex of oy other than iy and iy. Then, for all P € Uy N (L\L), we
have

t(Fiiig; P) > ©(F:i; P), 1(G: i; P), t(Faiiy: P) (i € Z2\ {iy}),
and

T(Fiiig Py) = t(F i Pr) = ©(Gi 1 Py) (i=iporiy)
> t(F;j; P1), t(G;§; Py), t(Fa; iy Py) (j € 7? \ {io, i1, 1+}).
Proof By symmetry, we may assume that 7| = F. Let P € U, N (L\L). Then, the
restrictions of the two tropical plane curves to a neighborhood of P, are as in Fig. 5.
We have
T(Fiigs P) > (F5i P) (€ 22\ (i), M
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Fig.5 V(F)and V(G) ina
neighborhood Uy of Py
(F=FD

l

since iy is the vertex corresponding to the domain containing P, and for all j €

Z2\{ig, i1, i}, we have
T(]:, i+y P+) = 'L'(]:, i(), P+) = 7:(]:, ilv P+) > T(j:,j, P+)
For alli € ZZ \ {iOa il}7 we have

(G io; P) = ©(G;i1; P) > 1(G;i; P),

©(G; io; P+) = 1(G;i1; P1) > ©(G; i; Py).

By the assumption that aj, = B, and o, = fj,, we have

©(F;i; P) = t(G;1i; P), t(F;i;, Py) = 1(G;i; Py) (i=igorip).

By the inequalities (1), (3) and (5), we have
T(Fiig: P) > 1(Frio: P) = 1(Giio: P) = ©(G:1: P) (i€ Z?).

The second inequalities follow from (2), (4) and (5).

Notation 3.6 For a Laurent polynomial f = Zi cixi IS k[xlil, .. .,xnil],
coeffi(f) = ci and vi(f) = val(cj).

2

3

“

&)

we define

Notation 3.7 Let f, g € k[x*!, y*]and L € Li(f, g) = R1(f. ) ULS>(f, g).In

the rest of this paper, we use the following notation.

o ® (L) =igi and ®>(L) = joji, where i; —ig = ji — jo (see Corollary 3.4).
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e An endpoint Py € L is a vertex of Trop(V(f1)) (f1 € {f, g}). Let (o, 1;) be

(o, i1) (resp. (o, ju)) if f1 = f (resp. f1 = g).

e The vertex of the 2-simplex of Ay, corresponding to Py are lp, 1; and 1. Let
iy :==ip+ (14 —lo) and j4 := jo + (14 — lo).

o If L € LS>(f, g), the other endpoint P_ € L is a vertex of Trop(V (f])) (f{ €

{f. gD Let (I, 1)) be (o, i1) (resp. (o, J1)) if f{ = f (resp. f] = g).
e The vertex of the 2-simplex of A/ corresponding to P_ are Iy, I} and I__. Let

i_=ig+ 1. -1 andj_ :=jo+ A_ —1)).

By multiplying a unit, we may assume that f, g and L further satisfy the following
condition ({):

o ®1(L) = P2(L) = i
o Vi, (f) = vjy(8).
e v, (f) =i (8)-

Furthermore, by applying an affine transformation, multiplying units and changing
the variable x to coeffio(f)x, we may assume that f, g and L satisfy the following
condition ({"):
®1(L) = ®2(L) = oir.
ip = (0,0),i; = (1,0) and iy = (0, 1).
vip () = vig (&) = vi, (f) = v3, (g) = 0.

Py = (0, y4) and P_ = (0, y_).

Now we are going to find an element of the ideal (f, g) that is useful in studying
trop(V (f) N V(g)). This will be of the form G = g + h(x") f, where h € k[t*']isa
univariate Laurent polynomial. The proof of the following lemma gives an algorithm
to find this element.

Lemma3.8 Let o > O be a positive number. Let f,g € k[xt', y*'] be Laurent
polynomials satisfying the following:

® i, (f) = vip(g) # 00, v (f) = vi; (g) # o0
e iy —ig is primitive.
o u(f;ipiy) > 0, w(g;ipi1) > O (see Definition 1.16).
Then, there exists a Laurent polynomial h € k[t*"] satisfying the following conditions:

e Foralli € Z, we have v;(h) > i(vi, (f) —‘vio'(f)).
o For the Laurent polynomial g' := g + h(x"'7') f, we have

Vi (g/) = Vi, (g/)’
vi, (8) = v, (&),
(g’ ioir) > A.

Proof We can assume that ip = (0, 0) and i; = (1, 0) by applying an affine transfor-
mation. Then, the statements are only about the coefficients of x’, and we can assume
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that f =, cix’, g = >, dix" € k[x*!]. We can also assume that ¢ = 1 by multi-
plying a unit. By changing the variable x to c;x, we may also assume ¢; = 1. Given
a Laurent polynomial F =), ojx’ € k[x*!], we define

v(F) = min{val(«;)},

v/ (F) = min{val(a;) | i #0, 1},
v/ (F) = min{val(a;) | i > 1},
v/ (F) = min{val(¢;;) | i < 0}.

Then, we have v'(f) > 0 and v'(g) > 0. It is sufficient to show that there exists a
Laurent polynomial 2 € k[x*!] with v(h) > 0 such that for the Laurent polynomial
g = g+ hf, we have vg(g’) = vi(g’) = 0 and v'(g’) > A. Let Ag = V/(f) and
X1 = v'(g). Given a Laurent polynomial F € k[x*!], we define

M_(F)=min{n € Z |n <0, v,(F) < Ao+ A1},
Mi(F)=max{n € Z|n > 1, v,(F) < o + M}

Note that M_(F) < 0,M4 (F) > 1 and that for Laurent polynomials F1, F; € k[xil],
we have

M_(F; + F2) = min{M_(F1), M_(F>)},
M, (F| + F2) < max{My (F1), My (F2)}.

Claim 1 The following hold.

e [fMi(g) > 1, then there exist a € k and i € 7 such that val(a) > 0, My (g —
ax' f) < My (g) and M_(g — ax' f) = M_(g).

o [fM_(g) < 0, then there exista € k and i € 7Z such that val(a) > 0, My (g —
ax' f) = My (g) and M—_(g — ax' f) > M—(g).

Proof We show the case where n := M (g) > 1. The proof in the case where
M_(g) < 0 is similar. Leta = d,. Then, we have val(a) > A1(> 0).Let —ax""! f =
> aix'and g — ax"" 1 f = > Bix'. Then, we have val(8,) = val(0) = oo and

i <n—1=val(a;) > Ao + A1,
i=n—1,n= val(y;) = val(a) > A,
n <i= val(a;) > Ao+ A1.

Thus, we have
n <i = val(8) > iy + A1,
and M_(—ax"_lf) = 0. Hence, we have

M (g —ax"""'f) <n =My (g),
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and
M_(g —ax""'f) > min{M_(g), M_(—ax""' f)} > M_(g).
O

Note that in the proof of the above claim, we have val(8y) = val(81) = 0. From
the first bullet in the above claim, we can show by induction on n = M (g) that there
exists a Laurent polynomial hg € k[x®!] with v(hg) > 0 such that for the Laurent
polynomial g1 := g+ho f,wehavevyg(g1) = v1(g1) = Oand vjr(gl) > Xo+AX1. Then,
from the second bullet in the above claim, we may ensure that there exists 4] € k[xE1]
with v(h1) > O such that for g» := g1 + h1 f, we have vp(g2) = vi(g2) = 0 and
v’ (g2) > Ao + Ap. It follows that go = g + (ho + h1) f, v(hg + h1) > 0 and
v'(g2) > Ao + Al

Then, by induction on max {0, [ (A — v/())/v'(f)] + 1}, we may ensure that there
exists h € k[xT!]withv(h) > Osuchthatforg’ := g+hf,wehavevy(g’) = vi(g") =
Oand v'(g’) > A. O

Definition3.9 Let A > 0 be a positive number and f, g € k[x*!, y!] Laurent
polynomials satisfying the assumption of Lemma 3.8. We define (A; g, f;ioi;) €
k[t~ to be the Laurent polynomial 2 € k[t*!] obtained by the algorithm in the proof
of Lemma 3.8. We also define G(%; g, f; ioiy) € k[x*!, yil] by

— Coeffil (gk)
Gy g, fiioh) i=g0 — ————< fa,
& f & coeffi, (f3.)
where

g =g +hO:g, f; H)@if—i?)f,
fioi=f+hQs £, frigin o) £

More generally, we define the following set.

Definition 3.10 Let f, g € k[x™!, y*!] be Laurent polynomials, L € Ls(f, g) aray
or a line segment and A > 0 a positive number. Then, we define Ha(A; f, g; L) C
k[x®EL, y*11* and Elim(; f, g; L) C k[x*!, y*!] by

w(f +hif+hag; ®i1(L)) > A,
w(g+h3f +hag; P2(L)) > A,
and, forany P € L,

Hy(%; £, 8 L) = { (b1, ha, b, ha) | rop(i)(P) <0, ,
trop (hzxfo_fo) (P) < viy(f) — vjy(8),
trop (h3x0730) (P) < vjy(8) — vig(f).
trop(ha)(P) <O
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where @ (L) = ipi; and Oy (L) = ﬁ are endowed with the same orientation, and

3(hy, ha, hs, he) € Ha(hs f, g5 L) s.t.
: . . . _ coeff, (g') i _;
Elim(; f,g;L)=3{G |G=g — mle i
where f' = f+hif+hygand g’ = g+ h3f + hag

Remark3.11 Let f,g € k[x™!, y*!] be Laurent polynomials and L € L¢(f, g) a
ray or a line segment satisfying the condition (). Let A > O be a positive number.
Then, we have (h(A; f, f3iol1)(x), 0, h(k; g, f3Toin)(x), 0) € Ha(h; £, g; L) and
G(X; g. fiioir) € Elim(A; f, g; L).

To compare the tropicalizations of V (), V(g) and V(G) for G € Elim(4; f, g; L),
we use the following lemma.

Lemma3.12 Let f,g € k[xT!, y*'] be Laurent polynomials and L € Ly(f, g)
a ray or a line segment. Let .. > 0 be a positive number and (hy, ha, h3, hy) €
Hy(X; £, g; L). Then, the following hold.

(1) Foranyie Z* and P € L, we have

T (h1 f +hag;i; P) < t(f;io; P),
T (h3f + hag;i; P) < 1(g;jo: P).

(2) We have

vig (f +h1f + hag) = viy,(f),
viy (f +hi f + h2g) = vi, (f),
Vjo (& + 3 f + hag) = vjy(8),
vj, (g +haf + hag) = vj (8).

Proof By replacing g by (coeffj, (f)/ coeffj, (g)x0 g we may assume that f, g
and L satisfy (]). Since inequalities about T does not change by coordinate change,
we may further assume that f, g and L satisfy the condition (]'). Then, the statements
(1) and (2) clearly hold. O

Lemma3.13 Ler f, g € k[x™!, y*'] be Laurent polynomials and L € L(f, g) a ray
or a line segment. For any A > 0 and G € Elim(}; f, g; L), the following hold.

V(f,G)Nuop~ (L) = V(g, G) Nop™ ' (L) = V(f, ) Ntrop™ ' (L).
Proof We may assume that f, g and L satisfy the condition ({'). Let A > 0 and
G € Elim(x; f, g; L). We show V(f,G) Ntrop~' (L) = V(f,g) N trop~!(L).
We can show V (g, G) Ntrop (L) = V(f, g) Ntrop~' (L) in the same way. There
exists (hy, hp, h3, hy) € Hy(A; f, g; L) such that G = g’ — (d'/c’) f/, where [/ =
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fHhif+hg g =g+h3f+hag, c = coeffi (f') and d’ = coeffy, (¢'). Thus,

we have
d/
V(f,G):V(f, (1+h4—?h2>g>.

Here, by Lemma 3.12 (2), we have val(d’/c") = 0. Combined with trop(h;)(P) <
0 = trop(1)(P) and trop(h4)(P) < 0 = trop(1)(P) for all P € L, it follows that

d/
14 <1 + hy — —/h2> Ntrop™ (L) = .
c
Therefore, we have

V(f.G)Nwop~ (L) =V(f)H)NV ((1 +hy — Cci/h2> g) Ntrop™' (L)

= V(f)NV(g)Ntrop (L)
= V(f, g Ntrop ' (L).

Notation 3.14 We write e; = (1, 0), e; = (0, 1) € R for the standard basis.
Lemma3.15 Let h € k[xT!, y*') j € Z> P € R?% vi € R*\{0} and v, €
R2\ Aff(vy). Let w € R2\{0} a normal vector of vi such that w - v» < O.

Assume that for a lattice point i # j in the half plane j + Rv| 4+ Rx>ova, we have
©(h; j; P") > ©(h;i; P’). Then, for all P € P’ + Rxow, we have

t(h;j; P) > t(h;i; P).

Proof Let P € P’ + R>ow. Then, there exists a non-negative number » > 0 such that
P = P’ + rw, and hence, we have

t(h;j; P) — t(h;i; P) = (t(h; j; P') — t(h;i; P))) +r(j—1i) - w > 0.
O

Remark3.16 Let f,g € k[x*!,y*'] and L € L(f,g) satisfy ({). Then, for an
endpoint P, € L, by Lemma 3.5, we have

t(fisigy; Py) > ©(fariys Py),

where {f1, f2} = {f,g} and trop(V(f1)) has a vertex at P;. Therefore, either
vi, (f) <wvi,(g)and f1 = foruv, (f) > v, (g) and f1 = g, and hence,

vi, (f1) = min{vi, (f), vi, (&)}
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Lemma3.17 Let f,g € k[xT', y*'l and L € Ly(f,g). Let » > 0 be a positive
number and G € Elim(X; f, g; L). Then, the following hold.

(1) If f, g and L satisfy (1), then vi, (G) = vi, (f1) (= min{vi, (f), vi, ().
(2) Assume that alattice pointi # jy isinthe halfplane j++R(j1 —jo) +R=0(+—Jo)-
Then, for all P € L, we have
T(G:i; P) < 1(Gs jys P).

(3) Assume that L € LS2(f,g) and i # j— is a lattice point in the half plane
j— +R@G1 — jo) + R>0(— — jo)- Then, for any point P € L, we have

©(G;i; P) < 1(G; j—; P).

Proof LetG = g/—%;((]gu))f’,where f'=f+hf+hgandg = g+h3f+hag

with (hy, ha, h3, ha) € Ha(X; f, g; L). To show (1), first note that, by Lemma 3.12,
we have

t(fiio; P+) > t(hif + hagiiy; Py), t(haf + hagi iy Py).

Let U be a sufficiently small neighborhood of Py and P € U N (Aff(L)\L) apoint.
Then, we have

©(fiio; P) > t(hi f + hogiiy; P), T(hsf + hag;iy; P).
Combined with Lemma 3.5, this implies

t(fi;i43 P) > t(hi f + hagiig; P), T(h3f + hagiiy; P). (6)
Now, by Lemma 3.12 (2), we have val(coeff;, (g")/ coeff;, (f')) = 0 and

coeffj, (g’ coeff;, (g’
—g— ll(g)f+/’l3f+h4g— ll(g)

coeffi, (f7) coeffi, (f7) (hif +hag).

Therefore, we have t(G; iy; P) = t(f1; i+; P) by (6) and Lemmas 3.2 and 3.5. Thus,
we have vi, (G) = v, (f1).

Next, let us show (2). (3) follows from (2) by symmetry. We may assume that f, g
and L satisfy the condition (). Let P’ € L. By Lemmas 3.12 and 3.15, we have

max{t (k1 f +hog:i; P'), v (haf + hag:i; P')} < T(f1;ig: P).
Since i # iy, by Lemmas 3.5 and 3.15, we have
max{t(f;i; P, 7 (g; % P)} < t(fi;ip; P)).
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Therefore, by Lemma 3.2, we have
T(Gii; P) < t(fi3is; P).
Since vi, (f1) = vi, (G), we have
t(fisip; P) = 1(Giiy; P,
and hence, we have
1(G;i; P) < 1(G;iy; P)).
(]

Corollary 3.18 Let f, g € k[xT', y*' Y and L € Ly(f, g). Let » > 0 be a positive
number and G € Elim(R; f, g; L). Then, for a point Py = Py +r1vp, | (see Notation
2.13), where r1 € R, we have

T(Gij+: P) = t(g:jo: P) —r1.
If L € LS2(f, g), then for a point P, = P_ +rvp_ 1 (r2 € R), we have
(G j—; P) = t(8: jo; P-) —ra.

Proof We may assume that f, g and L satisfy the condition ({"). By Lemmas 3.5 and
3.17 (1), for the point P; = (0, yy —r1) € R2, we have

©(G:ig; P) = t(f1;i; P1)
=1(f1;ip; Py) +riiy - (—e)
=1(g;(0,0); Py) —r1.

Similarly, if L € LS>(f, g), we have t(G;i_; P») = t(g; (0,0); P_) — r. O

Notation 3.19 For L € Ls(f, g) and A > 0, we define

Ly =LN{Py+rvp, 1 10<r <A
If L € LS,2(f, g), we also define

LY =LN{P_+rvp 1 ]|0<r<a}

Lemma3.20 Let f,g € k[xE!, yil] and L € Ly(f,g). Let . > 0 be a positive
number and G € Elim(X; f, g; L). Then, the following hold.

(1) Yn € Z\{0}, VP € L, ©(G; jo +n(i1 — jo): P) < t(g;jo: P) — A.
) If L € R1(f, g), then for a sufficiently small neighborhood Uy of L);, we have
{ieZ? 3P € Uy s.t. 1(G; i; P) = trop(G)(P)} C {jo, j+}-
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(3) If L € LS2(f, g), then for sufficiently small neighborhoods U of Lf“_ and U_
of L*, we have {i € Z* | 3P € U, U U_ s.t. 1(G;i; P) = trop(G)(P)} C
{jo. J+,J-}.

Proof We may assume that f, g and L satisfy the condition (). Let us show (1). Let
A > 0and P € L. Since we have

Vi€ Z\ {0, 1}, u(f'iioln) > & and p(g'siol) > 4,

and G = g’ — (coeffj, (g')/ coeffi, (f')) f', we have
Vn € Z\ {0, 1}, v,0(G) > A,
ie.,
Vn € Z\ {0, 1}, 1(G; (n,0); P) = —v,0(G) < —A.
Noting that
7(G: (1,0); P) = —v10(G) = —00 < —4,
we see that
vn € Z\ {0}, 7(G; (n,0); P) < —A.

Letus show (2). (3) follows from (2) symmetry. Since the number of the terms of G is
finite and each term of trop(G) is a continuous and piecewise linear map, it is sufficient
to show that {i € Z2 | 3P € Li s.t. 7(G; i; P) = trop(G)(P)} C {ip, i+}. By the
assumption that the three vertices of the corresponding 2-simplex of A y, are i, i1 and
i, =(0,1),wehave L = P, +R-((—e,), and the condition @ (L) = ®,(L) = ipis
implies

Vi, j)eZ? j<0=cij=dj=0.
Combined with Lemma 3.17 (2), it follows that
{ieZ?|3P € L st 1(G;i; P) = trop(G)(P)} C Ze; U {iy}.

Then, by (1) and Corollary 3.18, for any n € Z\{0} and any P € L%, if we write
P =P;+r(—e) (0 <r <A),wehave

(G; (n,0); P) < 7(g;(0,0); P) — A =1(g; (0,0); Py) — A < (G iy; P),
and hence, the assertion holds. O
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4 Proofs of the main theorems

The following proposition gives us a way of determining trop(V (f, g)) N L for L €
Ls(f, g), and will be the main tool in finding a polynomial that realizes the desired
intersection. Note that the points in trop(V (f, g)) are equipped with the multiplicities
coming from the intersection multiplicities of V() N V(g).

Proposition 4.1 Let f, g € k[x*!, y*'] be Laurent polynomials.

(1) Let L € Ri(f,g) be a ray. Then, for . > 0 and some (or any) G €
Elim(X; f, g; L), we have

{P1 + (13, (G) —vjo (8)Ve,.L} (0jo(G) — vjp(8) < A),

t V(f, NL: =
rop(V(f, §)) {@ (0jo (G) — vjy () = A).

In particular, trop(V(f, g)) N L = @ if and only if for any A > 0 and G €
Elim(A; f, g; L), we have vj,(G) — vj,(g) = A.

(2) Let L € LS>(f, g) be a line segment. Let | = dist(P4, P_). Then, for > > 0 and
G € Elim(%; f, g; L), we have

trop(V (f, ) N (L UL™)

Py 4 (0jo(G) — vjp(8))Ve, L _ s -
{R+wmm—%@mpi}(%@>lw@<muruy

{#} (multiplicity = 2) (5 < jo(G) — vjy(g) and 5 < 1),
g (1 = min {5, v5,(G) — vjo(2)}) .

In particular, if . > 1/2, then we have

Py + (v, (G) — vj,(g)Vp, L, I
. G — ). 5),
trop(V(f. g NL = { | P+ j,(G) — v, ()vp_1 } (v30(G) — vy (8) < 3)
PP

L=k Gnuripticity =2) (5 = 3y (G) = vjy(®)) -

Proof We may assume that f, g and L satisfy the condition (). Let us show (1). Let

A > 0and G € Elim(a; f, g; L). Let U4 be a sufficiently small neighborhood of Li.

By Corollary 3.18, for a point (0, y) € R?, we have (G iy; (0,y)) =y — y4.
Assume that vgo(G) < A. Then, noting that t(G; igp; (0, y)) = —vgo(G), we have

v+ —vo0(G) <y = ©(G;iy; (0, y) > ©(Gsip; (0, y)),
y =y+ —vo0(G) = 1(G;iy; (0, ) = (G ip; (0, y)),
Yy < y+ —vo0(G) = ©(G;iy; (0, y) < ©(Gsip; (0, y)).

Combined with Lemma 3.20 (2), it follows that Trop(V(G)) N U+ N (x = 0) =
{(0, y+ —v00(G))}. Note that we consider U to deal with the case where vgy(G) = 0.
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Trop(V'(f1)) Trop(V(f2)) Trop(V(G))
Fig.6 Trop(V(f1)), Trop(V(f2)) and Trop(V (G)) in a neighborhood U of Lf;_

Then, for f> = f or g, we have
Trop(V (f2)) N Trop(V(G)) N U4 = {(0, y+ — voo(G))} (see Fig.6).

Hence, {(0, y+ — vo0(G))} is an isolated point of Trop(V (f2)) N Trop(V (G)). Note
that the intersection multiplicity of Trop(V (f2)) and Trop(V (G)) at (0, y+ — voo(G))
is 1 (see Fig.6). Hence, by Theorem 2.21, there exists a unique point x € V(f2, G)
such that trop(x) = (0, y+ — voo(G)). Thus, by Lemma 3.13, we have

trop(V (f, g)) N L% = trop(V (f2, G)) N L% = {(0, y4 — voo(G))).

If vo(G) > A and y € (y4 — A, y4], then {z(G;1i; (0,y)) | i € Z?} takes the
maximal value only at i = iy, and we have Trop(V(G)) N L% = @. In this case, by
Lemma 3.13, it follows that trop(V (f, g)) N Li C Trop(V(G)) N Li = 0.

Letus show (2). Let A > Oand G € Elim(}; f, g; L). Notethat L = {(0, y) | y— <
y < y1}, 1 = y4 — y_ and that by Corollary 3.18, we have

T(G;ip; (0,y) =y —yy, T(G;iz;(0,y) =y- —y.

First, consider the case where vpo(G) < min{//2, A}. Let y; := y+ — voo(G). Then,
we have

yi <y = 1(G;ig; (0,y)) > 1(Gsip; (0,y) > t(G;i; (0, y)),
y=y1 = ©(G;iy; (0, y)) = (G ip; (0, y)) > t(G;i-; (0, y)),

l
YT <Y< = 1(G;ip; (0, ) > t(G;iy; (0,y) > 1(G;i; (0, ).

1
Combined with Lemma 3.20 (3), it follows that V (trop(G)) N Lﬁ‘r NL; ={0,yD}
and in the same way as in (1), we have

1
trop(V(f, ) N LG N L2 = {(0, y; — voo(G))}.
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Similarly, we have

1
trop(V(f. ) N LY N L2 = {(0, y_ + voo(G))}.
By considering the intersection multiplicity, we have
wop(V (f. ¢)) N (L U LL) = {(0, y4 — v00(G)), (0, y— + v00(G)))}

(in fact, this is equal to trop(V (f, g)) N L).
Next, consider the case where [/2 < vg9(G) and [/2 < A. Then, we have

+ y_ . i i
HTY <y = 1(G;ig; (0,y) > 1(G;i_; (0, y)), T(G;io; (0, y)),
+ y- . . :
y =22 = 1(G (0.9) = T(Gs i (0.y) = TG io: (0. ).
+y- . . :
y < Y+ ; Y = 1(G;i-; (0,y)) > t(G;ig; (0, y)), 1(G;ip; (0, y)).

Combined with Lemma 3.20 (3), it follows that

V(rop(G)) N (L, U L*) = V (irop(G)) N L = {(o ety )} .

and in the same way as in (1), we have

trop(V(f, ) N (L}, ULY) = {(o %)} .

By Theorem 2.21, the multiplicity is 2.
Finally, consider the case where A < min{l//2, vpo(G)}. Here, we have

Y+ =A<y =1(G;ip; (0,y) > t(G;i-; (0, y)), T(G;ip; (0, y)),
y<y-+xi=1(G;i-; (0,y)) > 1(G;ig; (0, ), ©(G;ip; (0, y)).

Combined with Lemma 3.20 (3), it follows that
V(trop(G)) N (L% U L") = @,

and hence, trop(V(f, g)) N (Lf‘Ir UL*) =0.
Thus, we conclude the proof of Proposition 4.1. O

The following corollary is immediate.

Corollary 4.2 Let f, g € k[x*', y*'] be Laurent polynomials and L € Ri(f, g) a
ray. Then, there is at most one point, counted with multiplicity, in the intersection

trop(V(f, g)) N L.
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The following corollary shows a special case of the main theorems where £, consists
of one element.
Corollary 4.3 Let fandg = Zi’j d[jxiyj be Laurent polynomials in k[x', y*' 1 and
D adivisor satisfying the condition (x) in Definition 1.8. Let L € Ls(f, g) bearayora
line segment and let ®>(L) = joji. Then there exists an element d~j0 € k such that if we
setg = g—djoxjo —}—cijoxjo, we have trop(g) = trop(g’) and trop(V(f, &)L = D|L.
Proof We will show the statement in the case where L € R(f, g), and the proof
in the case where L € LS>(f, g) is similar. We may assume that f, g, L and an
endpoint Py := (0, y+) € L satisfy the condition ({'). Let P; = (0, y+ — k) (x > 0)
be the intersection point of D and L. Recall that we are using Notation 3.7 and P4
is a vertex of Trop(V (f1)). Since we have 7(f;iy; P+) = t(f1;i0; P+) = 0 and
P; = Py — kep, we have

T(f1sigs P) = t(f15 g Py) — (i - ) = —
Thus, we have
kK =—t(f1:iy; P1) = vi, (f1) — iy - Pr.

Since the coordinates of P; are assumed to belong to the value group, there
exists an @ € k™ such that val(a) = vl+(f1) — iy - PL = k. Let A > «,

By = R f, frioh), B = hOs g, friol), fu = f + () f = 3 jefx'y/,

g =8 +h X)) f = Z d/ X yj and G), = g, — (d10/c10)fk = Zi j€ijx y/
Then G, € Ehm(k f,g; L) (see Definitions 3.9 and 3.10), and by the construction
of g5, the term B := d(y, — doo € k satisfies val(8) > 0. We set

/ /

do=o—p+ mcf)o—a+doo—doo+ 1OCE)O—Ot+dloo—€oo-

€10 €10

Since we have

d/
val(a) =k > 0, val(B) > 0, Val< 10c60> =0,
€10

we have val(dy) = 0 = val(dg) if k > 0. If k = 0, we may assume the same by
replacing o if neccesary. Let g’ := g — doo + doo. Then, we have trop(g’) = trop(g).
Note that

h(x; g’ fiioh) = h(x; g — doo + doos £ ioi1) = h(k; g, fioh) = K,

since in the algorithm of Lemma 3.8, the coefficient of g at ip is not used. For the
Laurent polynomial

G; = 8/+h£\(x)f— 7o f;\ =Gy —doo+doo =) ej;x'yl,
i,j

@ Springer



Beitr Algebra Geom

we have e, = « and ¢ = ¢; (i # (0, 0)). Here, we have val(e(,) = val(«) = «, and
hence, by Proposition 4.1, we have trop(V (f, &)L = D|r. O

Remark 4.4 In Corollary 4.3, we change the coefficient dj,. By symmetry, we may
change the coefficient dj, instead.

Corollary 4.5 Let f and g be Laurent polynomials in k[x*', y*'], L € Ly(f, g) a ray
or a line segment and ®>(L) = joji € Ag. Let D := trop(V(f, &)L, and assume
that D # 0 if L is a ray. Let g’ € k[x*', y*'] be a Laurent polynomial such that
trop(g) = trop(g’) and

Vjotn(i—jo) (8 — &) > vjo(8) + n(vj, (8) — vj,(8)) +dist(D, E|1) (n € Z),

where E is the stable intersection divisor of Trop(V (f)) and Trop(V (g)). Then, we
have

trop(V (f, gDl = trop(V(f, &)l = D

Proof We may assume that f, g and L satisfy the condition (]’). Note that since
trop(g) = trop(g’), we have L € Ly(f, g’) and L is contained in the edge of
V (trop(g")) corresponding to ipi; € A, and hence, f, g’ and L also satisfy the
condition (). Since min(vjy4n(j,—jo) (&' — g)) > dist(D, E[), we can take A such
that A > dist(D, E|r) and A < Vjy4n(j,—jo) (&' — &) for any n € Z. Let h) :=
h(x; f, f;ioir) and hi = h(A; g, fiiol). Let fi := f+ () f =), J Ux iyl
g =g+ h (x)f Z” ” yf and g =g +h, () f = Zl]dl’; x’y/. Then,
we have g} = g’ + I} (x) f = (¢’ — g) + g».. Here, by the assumption, we have

Vig+n(ir—io) (&' — &) > A (n € Z).
Combined with Lemma 3.12 (2), this implies that p (g' + &} (x) f; ioi;) > A, and
hence, (hy,0,h5,0) € Hy(x; f,8; L). Let Gy := g — (dy/c)p) fo. and G =
i — (d{y/c’p) fo.- Then, we have

djo + coeffoo (g’ — &)

G,=E -9+ - fi
an
, coeffoo (g’ — &)
(¢ —9)+G; — —2° S p
& -9 s s fa

and hence, UOO(G&) = v00(G,) = dist(D, E|L). Thus, by Proposition 4.1, we have

trop(V (f, g'Dlr = trop(V (f, g)le = D
O

Theorem 4.6 Let f,g € k[x™!, y*!] be Laurent polynomials and D a divisor sat-
isfying the condition (x) in Definition 1.8. Let L] be a subset of Ls(f, g) and write
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PIL := PI(f,g). Assume that L is acyclic with respect to ®, and that for each
L € L}, we have dist(D|r, E|1) < u(g; ®2(L)). Then, there exists g’ € k[xE!, y*1
such that trop(g’) = trop(g) and

top(V (f, )Nl cupz = Dlcupt-

Proof Let g = Zi,j dijxiy/ and C the union of the elements of A" := ®5(L}). We
number and order the endpoints of the elements of A" as p; < --- < p, so that this
ordering is normal on each tree of the forest. We write L;; € L/ for the ray or the line
segment corresponding to p;p; € A’. We will construct ' = ¢ — >/, dp,xPi +
S dp,xP by determining g; i= g — Y /_, dp, XV + 31 dpxP (j=1,...,n)
inductively. Assume that we have determined g, with trop(g) = trop(g;—1) and so
that trop(V (f, g—1))Iz. = D], holds for L € L} if both vertices of ®2(L) belong
to {p1,..., pr—1}. Let T be the connected component of C containing p;, and m =
min{i € Z | p; € T}.1ft = m, we set C?pz =dp,.Ift > m, there is a unique s such that
the path p,, T p; contains p; py. By the normality of the ordering, s < ¢ holds, and d b, 18
already determined. By the assumption, we have dist(D|.,,, E|r,,) < n(g; pspr) =
u(gi—1; Pspr)- By Corollary 4.3 and Remark 4.4, we determine an element c?p, €k
such that, if we set g; = g; | —d,x"" +c§,,txpf , then we have val(c?p[) = val(dp,) and
trop(V (f, g))IL,, = D|r,,. Note that p; might be contained in Aff (p, p,) (¢ < r < t,
Pqpr € A). To show that trop(V (f, gL, = wop(V(f, &-1))lIL,,, we check the
inequality

qu+n(pr—pq)(gt —&-1) > Upy, (gr—1) + n(vpr (8r—1) — Upy (gr—1)) + Kgr,

where kg, := dist(D|r,,, E|L,, ), and apply Corollary 4.5. This clearly holds forn = 0
and 1. For n # 0, 1, this follows from

quJrn(p,.qu)(gt —8g-1) — Up, (gr—1) — n(”pr (gr—1) + Upy, (&—1) — Kqr
> qu—&-n(p,—pq)(gtfl) — Up, (gr—1) — n(vpr (g—1) + Up, (&—-1) — Kgr
> u(gi—1; PqPr) — Kqr
> 0.

By repeating this process, we get a Laurent polynomial ¢’ = ¢ — Y7, dp,,xP +
S, dpxPi such that for all L € £/, we have

trop(V (f, &Nl = Dlr.

Since we have trop(g’) = trop(g), we have PZ(f,g) = PI(f,g) C
trop(V (f, g’)) with the multiplicities taken into account by Theorem 2.21. This con-
cludes the proof of Theorem 4.6. O

Theorem 4.7 Let f, g € k[x™!, y*!] be Laurent polynomials and D a divisor sat-
isfying the condition (x) in Definition 1.8. Let L] be a subset of Ls(f, g) and write
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PL :=PI(f, g). Assume that L is acyclic with respect to ®, and that we can num-
ber and order the endpoints of the elements of A’ := ®y(L]) as p1 < -+ < pp s0
that this order is normal on each tree of the forest and that for each element p;p; of
A, its affine span Aff(p;p;) does not contain a point p; with | > i, j. Then, there
exists g’ € k[x*!, y*] such that trop(g’) = trop(g) and

toop(V (f, &Nl ciupz = Dlciupt-

Proof Letg =Y, ; d;jx'y/ and C the union of the elements of A". We write L;; € L
for the ray or the line segment corresponding to p;p; € A’. Let us construct g’ =
g—Y 0 dpXP 43| d,xPi by determining g, i= g— Y _; dp, X"+ 30| dpxPi
(t =1, ..., n) inductively, as in the proof of Theorem 4.6. By the assumption, p; is
not contained in Aff(pypy) (¢ <r < t,pgp, € A'). Combined with Corollary 4.5, it
follows that trop(V (£, g:))Iz,, = trop(V(f, g-))IL,,- Thus, forall L € L, we have
trop(V(f, g))Ir = DIr.

Since we have trop(g’) = trop(g), we have PZ(f,g) = PI(f,g) C
trop(V (f, g’)) with the multiplicities taken into account by Theorem 2.21. Thus,
we conclude the proof of Theorem 4.7. O

As an example of applications of Theorem 4.7, we have the following corollary,
which deals with the case where a tropical line and a smooth tropical plane curve
intersect.

Corollary 4.8 Let f, g € k[x*', y*'] be Laurent polynomials such that trop(f) =
x @y & 0 and Trop(V (g)) is smooth. Let a divisor D satisfy the condition (x) in
Definition 1.8. Assume that the origin (0, 0) is not a vertex of Trop(V(g)). Then,
there exists a Laurent polynomial g' € k[x*', y*'] such that trop(g’) = trop(g) and
trop(V(f, ")) = D.

Proof First, we show that all the connected components of Trop(V (f)) NTrop(V (g))
are in Lg(f, g) UPZ(f,g). Let A be a connected component of (Trop(V (f)) N
Trop(V (g))\PZ(f, g). Since the origin (0, 0) is not a vertex of Trop(V (g)), it is
clear that A is either a ray or a line segment. If the origin is an endpoind of A, the
origin is a smooth vertex in Trop(V (f)) and is contained in the interior of an edge of
Trop(V (g)). An endpoint P # (0, 0) of A is a smooth vertex of Trop(V (g)) and is
contained in the interior of an edge of Trop(V (f)). Therefore, all the multiplicities of
the endpoints of A are 1. Since Trop(V (g)) is smooth, it is clear that the interior of A
does not contain a vertex of Trop(g). Therefore, we have A € Ls(f, g).

Next, let us show that the map @ is injective and the union of A" := ®5(L(f, g))
is a forest. First, note that E(l)(Trop(V( f))) consists of three rays and they have
different slopes and that each region of R? \ Trop(V (g)) is a convex polyhedral set.
Thus, if ®»(L) = ®(L’), then we have L = L’. Thus, the map @ is injective. Next,
we show that the union of A’ is a forest. Assume that the union of A’ is not a forest,
i.e., it contains a cycle C. Let q1, ..., g, (m > 3) be the vertices of C such that
qigiv1 € N foralli =1,...,m (weregardm + 1 = 1). Let

Dy = {(x,y) eR*|x >y, x >0},

@ Springer



Beitr Algebra Geom

Fig.7 Elements of
D2 (Ls(f, 8)

D, ::{(x,y)eR2|y>x, y > 0},
DO::{(x,y)e]R2|O>x, 0> y}.

LetD; (i = 1, ..., m)betheclosures of the domains of R*\ Trop(V (g)) corresponding
to g;. Then, D; are convex polyhedral sets, and hence, each intersection D; N D; 4
is contained in exactly one of the edges of Trop(V (f)). Assume that D; N D; 4
(i = 2)1is contained in a ray Y_ := {(0,y) € R? | y < 0} in Trop(V(f)) (we
can handle the cases where it is contained in other rays in a similar way). Then, we
have D; N Dy # () or Diy1 N Dy # . By renumbering if necessary, assume that
D; N Dy # §. Then, we have D; N\ D, = @, Dj ;1N\ D, # @#and D; 1 N Dy = ¥. Here,
since m is a convex set and intersects Dy, the intersection D;11 N D;j4> must be
contained in the ray XY := {(x, y) € R? | x = y > 0}. By similar arguments, we have
D;_1ND; C X_ :={(x,0) € R? | x <0},andsoon. Thus, if 7;giz1 € ®2(Ls(f, g))
is the bold line segment in (a) of Fig.7, ®>(Ls(f, g)) must contain the bold line
segments in (b) of Fig. 7. Here, the 2-dimensional cell of A enclosed by the bold line
segments in (b) of Fig.7 corresponds to a vertex of Trop(V (g)). Since the edges of
Trop(V (g)) corresponding to the three 1-simplices are contained in the three edges of
Trop(V (f)), this vertex must be the origin, and this contradicts the assumption. Thus,
the union of ®,(Ls(f, g)) is a forest.

To prove the statement, it is sufficient to show that we can number and order the
endpoints of the elements of A’ as p; < --- < p, so that this order is normal on
each tree of the forest and that for each element p; p; of A, its affine span Aff (p; p;)
does not contain a point p; with [ > i, j. Note that for each ij € A’, we have
val(d;) = val(dj) < val(d)) (I € (Aff (ﬁ) ﬁZZ)\{i, Jj}). Hence, if i’ and j are contained
in the same connected component of the union of A’, then val(dy) = val(dy). Let
Pl .., pa be the endpoints of the elements of A’ such that val(d,,) > val(d,,) >

- > val(dp,) and the order p; < --- < p, is normal on each tree of the forest.
For an element p;p; of A’, if its affine span Aff(p;p;) contains a point p;, then
val(dp,) > val(dp,) = val(dpj), and hence, by the condition of the numbering of the
endpoints p1, ..., py, wehavel < i, j. O

5 Examples

In the following, let k = C{{t}} be the field of Puiseux series with coefficients in the
complex numbers with the usual valuation.
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Ay Ag Trop(V'(f)) and Trop(V (g))

Fig.8 The tropical curves and dual subdivisions in Example 5.1

Example 5.1 Let

f= t3x2y2 + t2x2y + tz)cy2 +xy+x+y+ 1! e kxE, yil],
g= t3x2y2 +xy+x+ye€ k[x*!, yil].

Then, the tropical curves Trop(V (f)) and Trop(V (g)) are as in Fig. 8, and hence the
intersection Trop(V (f)) N Trop(V (g)) is the union of the elements of LS, (f, g). If
we set L, = LS2(f, g), then it is acyclic with respect to @, and satisfies the condition
in Theorem 4.7. Therefore, a divisor D satisfying the condition () in Definition 1.8
can be realized. Here, the edges of Trop(V (g)) corresponding to @, (L£;) forms a loop,
but this is irrelevant to our condition.

Now we will give two examples to show that we need the acyclicity condition.
Example 5.2 Let
f=xy 007 433+ Pxy 4oyt + 0y + 110 e kix L yH
g=ax+by+1e k[x*!, yil] (val(a) = val(b) = 0).

El

Then, the tropical curves Trop(V (f)) and Trop(V (g)) are as in Fig.9, and hence the
intersection Trop(V (f)) NTrop(V (g)) is the union of the elements of LS, (f, g), and
the stable intersection divisor is

E =1(0,0)+ (0, —1) + (0, =4) + (0, —5).

D 0 1 0 3 0 13 0 14

_<’ 4>+(’ 4>+<’ 3>+(’ 3)'

Then, it is easy to see that there exists a tropical rational function ¥ on Trop(V (f))
satisfying Supp(yr) C Trop(V(f)) N Trop(V(g)) and () = D — E. Let L =
(0,0)(0, —1), L, = (0, —4)(0, —5) and L, = LS2(f, g) = {L1, L2}. Note that the
map P2z is not injective. Assume that trop(V (f, )z, = D.

First, we consider trop(V(f, g))|1,. Noting that ®;(Ly) = (0,3)(1,3) and
Dr(L1) = (0,0)(1,0), we easily see that (0,0,0,0) € Ha(l; f, g; L1) and that

Let
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Fig.9 The tropical curves and
dual subdivisions in Example
52
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Ay Ay Trop(V'(f)) and Trop(V (g))

Zi,j eijxiyj —g—ay3f belongs to Elim(1; f, g; L1), we have egop = 1 — a and,
by Proposition 4.1, val(1 — a) = 1/4.

Next, let us consider trop(V (f, &)|r,. For 3, ;ej:x'y/ = g — (a/P)yy~ ' f e
Elim(1; f, g; L>), we have 660 = 1 —aand val(1 —a) = 1/3. This is a contradiction.
Therefore, there does not exist g € k[x*!, y*!] such that trop(g) = x ® y @ 0 and

trop(V (f, §))lz, = D.
Example 5.2 explains why we need the assumption that the map ®:|; is injective.

Remark 5.3 1If we regard the two bold line segments in A, as different things as in
Fig.9, they form a cycle. Thus, we can regard the assumption that the map ®»|z; is
injective is a part of the assumption that the union of the elements of ®, (L)), regarded
as a multiset, is a forest.

Example 5.4 Let

f= t3x3y3 + tx3y2 + tx2y3 + x2y2 + txzy + txy2 +txy + e k[xil, yil],
g =ax +by+ 1 € k[xE, y£!] (val(a) = val(b) = 0).

Then, the tropical curves Trop(V (f)) and Trop(V (g)) are as in Fig. 10, and hence the
intersection Trop(V (f)) NTrop(V (g)) is the union of the elements of LS>(f, g), and
the stable intersection divisor is

E=(-20+C1,0+0,-2)+0O,-D+{,1)+@2,2).

Let

D= U 0)+ > 0)+10 > +10 1 + 22 + 22
N 4’ 4’ "3 T3 33 3'3)°
Itis easy to see that there exists a tropical rational function ¥ on Trop(V ( f)) satisfying

Supp(y¥r) C Trop(V(f))NTrop(V(g))and () = D—E.LetL; = (1,1)(2,2), L, =
(—1,0)(=2,0),L3 = (0, —1)(0, =2) and £ = LS2(f, g) = {L1, L2, L3}. Note that
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Fig. 10 The tropical curves and
dual subdivisions in Example
5.4

AN

Ag Ay Trop(V(f)) and Trop(V(g))

the union of the elements of @, (L£S}) is not a forest. Assume that trop(V (f, ¢))| 2 Sy =
D.

First, we consider trop(V (f, g))|L] We have ®,(L1) = (0, 1)(1, 0). We regard
(0, 1) as jo, and then for 3, ; e;jx'y/ := g — (a/t)x2y~* f € Elim(1; f, g; L1),
we have g1 = b — a. Then, by Proposition 4.1, we have val(b —a) = 1/3.

Next, let us consider trop(V (f, g))|1, and trop(V (f, g))|1,. For Zi’j elfjx’yf =

— (b/t)x~'y~! f € Elim(1; f, 8 L), we have e, = 1 — b and val(1 —b) = 1/4.
For i e’;x y/ =g — (a/H)x~'y~l f € Blim(1; f, g; L3), we have e, = | —a
and val(l — a) = 1/3. Thus, we have

1
val(l1 —a) = val(b —a) = 3
I(1 —b) !
val(l — b) = —
4
Then, we would have
1 1
3= val(l —a) =val((1 = b) + (b —a)) = T
This is a contradiction. Therefore, there does not exist g € k[x*!, y*!] such that

trop(g) = x @ y ® 0 and trop(V (. £))lz; = D

Example 5.4 explains why we need the assumption that the union of the elements
of (L)) is a forest.
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