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Abstract
Given a tropical divisor D in the intersection of two tropical plane curves, we study
when it can be realized as the tropicalization of the intersection of two algebraic curves,
and give a sufficient condition. It is shown that under a certain condition involving
a graph determined by these tropical curves, we can algorithmically find algebraic
curves such that the tropicalization of their intersection is D.

Keywords Tropical geometry · Intersection theory · Lifting problem · Divisor theory

Mathematics Subject Classification Primary 14T05; Secondary 14H50

1 Introduction

In this paper, let k be a fixed algebraically closed field with a nontrivial valuation
val : k → R ∪ {+∞}. A tropical plane curve is obtained by the tropicalization of an
algebraic curve in (k∗)2. Here, the tropicalization is defined using the following map:

trop : (k∗)2 → R
2

(x, y) �→ (− val(x),− val(y)).

Let f = ∑
i j ci j x

i y j ∈ k[x±1, y±1] be given. For a given tropical divisor D on the
tropical plane curve Trop(V ( f )), it has been considered whether D can be obtained by
the tropicalization of the intersection of two algebraic curves (Brugalle 2012; Len and
Satriano 2020; Morrison 2015; Osserman and Payne 2013; Osserman and Rabinoff
2013). This kind of problem is called a tropical lifting problem or a tropical realization
problem. In this paper, we give a sufficient condition involving a graph determined by
given tropical curves for the lifting problem for the intersection of curves.
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1.1 Tropical lifting problem

First, we explain what is known about tropical lifting problems for the intersection of
two tropical plane curves. Let F and G be bivariate tropical polynomials. They define
the tropical plane curves V (F) and V (G) (see Sect. 2).

Definition 1.1 We say that two tropical plane curves �1 and �2 meet properly at a
point p if p is an isolated point in �1 ∩ �2. We define PI(F ,G) as the multiset
of the points p at which V (F) and V (G) meet properly, with the local intersection
numbers as multiplicities. We also write PI(trop( f ), trop(g)) as PI( f , g) (for the
tropicalization of a Laurent polynomial, see Definition 2.5).

Proper intersections are the simplest intersections of tropical plane curves. Trop-
ical lifting problems of proper intersections are studied in Osserman and Rabinoff
(2013) (see Theorem 2.21). For algebraic curvesC1,C2 ⊂ (k∗)2, if the tropical curves
Trop(C1) and Trop(C2) meet properly, then trop(C1 ∩C2) is equal to the intersection
Trop(C1) ∩ Trop(C2), considered with multiplicities. Thus, we have to consider the
case where Trop(C1) ∩ Trop(C2) does not consist of isolated points, i.e., contains
1-dimensional components.

Definition 1.2 A (tropical) divisor on a tropical curve � is a finite sum D = ∑
ni Pi ,

where Pi ∈ � and ni ∈ Z.

Definition 1.3 A tropical rational function on a tropical curve � is a continuous func-
tionψ : � → R such that its restriction to any edge of � is a piecewise linear function
with integer slopes, i.e., piecewise Z-affine, and with only finitely many pieces. The
divisor of ψ is

∑
P∈� ordP (ψ)P , where ordP (ψ) is (−1) times the sum of the outgo-

ing slopes of ψ at P . We write (ψ) for the divisor of ψ . If D and E are divisors such
that D − E = (ψ) for some tropical rational function ψ , we say that D and E are
linearly equivalent. We define the support of ψ as Supp(ψ) = {P ∈ � | ψ(P) 
= 0}.

Morrison showed the following necessary condition for the realizability of a tropical
divisor as the intersection of curves.

Theorem 1.4 (Morrison 2015, Theorem 1.2) Let �1 and �2 be tropical plane curves
such that �1 is smooth (Definition 2.16). Let E be the stable intersection divisor
(Definition 2.20) of�1 and�2, and let D = ∑

ni Pi (ni ∈ Z≥0) be a divisor on�1∩�2.
Assume that there exist algebraic curves C1,C2 ⊂ (k∗)2 without common irreducible
components such that Trop(C1) = �1, Trop(C2) = �2, and trop(C1 ∩ C2) = D as
multisets. Then, there exists a tropical rational functionψ on�1 such that (ψ) = D−E
and Supp(ψ) ⊂ �1 ∩ �2.

In Morrison (2015), a conjecture on the converse is also presented.

Problem 1.5 (Morrison 2015, Conjecture 3.3) Let ψ be a tropical rational function
on a tropical curve Trop(V ( f )) such that Supp(ψ) ⊂ Trop(V ( f )) ∩ Trop(V (g)) and
(ψ) = D− E , where E is the stable intersection divisor and D = ∑

ni Pi (ni ∈ Z≥0)

is a divisor on �1 ∩�2 such that each coordinate of Pi is in the value group of k. Then
is it possible to find f ′, g′ ∈ k[x±1, y±1] such that Trop(V ( f ′)) = Trop(V ( f )),
Trop(V (g′)) = Trop(V (g)) and trop(V ( f ′, g′)) = D?
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This was answered in the negative. See Len and Satriano (2020, Theorem 5.2) for
a tropical self-intersection case, and Brugalle (2012, Lemma 3.15) for a non self-
intersection case. On the other hand, it would be useful to find sufficient conditions for
the realizability. The purpose of this paper is to give a sufficient condition involving a
certain graph. We introduce several notations before explaining the setting of the main
problem.

Definition 1.6 Let�1 and�2 be tropical plane curves. LetK be a connected component
of �1 ∩ �2. The intersection multiplicity of �1 ∩ �2 on K is defined as the sum of the
multiplicities of the stable intersection points on K (Definitions 2.19 and 2.20).

Let us introduce notations on the second simplest components of the intersection
of tropical curves.

Definition 1.7 We define R1(F ,G) as the set of rays L satisfying the following:

• L is a connected component of the intersection V (F) ∩ V (G).
• The intersection multiplicity of V (F) and V (G) on L is 1.
• Each 1-dimensional cell of V (F) or V (G) which has a 1-dimensional intersection
with L and contains the endpoint of L as its vertex has weight 1.

Also, we define LS2(F ,G) as the set of (bounded) line segments L satisfying the
following:

• L is a connected component of the intersection V (F) ∩ V (G).
• The intersection multiplicity of V (F) and V (G) on L is 2.
• Each 1-dimensional cell of V (F) or V (G) which has a 1-dimensional intersection
with L and contains an endpoint of L as its vertex has weight 1.

We write Ls(F ,G) := R1(F ,G) ∪LS2(F ,G). It turns out that any edge of V (F)

or V (G) that meets L ∈ Ls(F ,G) has weight 1 and any vertex contained in L is
smooth (see Lemma 3.3). For Laurent polynomials f , g ∈ k[x±1, y±1], we also write
R1( f , g), LS2( f , g) and Ls( f , g) for R1(trop( f ), trop(g)), LS2(trop( f ), trop(g))
and Ls(trop( f ), trop(g)), respectively.

Thus, the connected components of V (F)∩V (G) are points inPI(F ,G), elements
of Ls(F ,G), and possibly a number of other 1-dimensional sets.

Wewill see that, if L ∈ R1( f , g), then there are atmost one point in the intersection
trop(V ( f , g))∩ L (Corollary 4.2). Thus, in this paper, we will consider the following
condition.

Definition 1.8 The condition (∗) on a divisor D on Trop(V ( f )) ∩ Trop(V (g)) is the
following:

• D = ∑
ni Pi (ni ≥ 0).

• Each coordinate of Pi is in the value group of k.
• There exists a tropical rational function ψ on the tropical curve Trop(V ( f )) such
that Supp(ψ) ⊂ Trop(V ( f )) ∩ Trop(V (g)) and (ψ) = D − E , where E is the
stable intersection divisor of Trop(V ( f )) and Trop(V (g)).

• For L ∈ R1( f , g), deg(D|L) = 1.

123



Beitr Algebra Geom

Note that this condition is natural in view of Theorem 1.4.

Notation 1.9 For a tropical plane curve �, we write �(n)(�) for the set of the n-
dimensional cells of� (see Theorem 2.8). For a tropical polynomialF ∈ T[x±1, y±1],
we write �

(n)

F for the set of the n-dimensional cells of �F , where �F is the dual
subdivision of theNewton polygon ofF (seeDefinition 2.8). For a Laurent polynomial
f ∈ k[x±1, y±1], we write � f and �

(n)
f for �trop( f ) and �

(n)
trop( f ), respectively.

Note that the intersection multiplicity at an endpoint of a ray or a line segment
L ∈ Ls( f , g) must be at least 1, and hence the tropical curves Trop(V ( f )) and
Trop(V (g)) have no vertices in the interior of L (see Lemma 3.3 for details). Thus,
we can define the following maps.

Definition 1.10 We define maps φi (i = 1, 2) as follows:

φ1 : Ls(F ,G) → �(1)(V (F))

L �→ the 1-dimensional cell of V (F) containing L,

φ2 : Ls(F ,G) → �(1)(V (G))

L �→ the 1 -dimensional cell of V (G) containing L,

and we define maps �i (i = 1, 2) as follows:

�1 : Ls(F ,G) → �
(1)
F

L �→ the 1 -simplex of�F corresponding toφ1(L),

�2 : Ls(F ,G) → �
(1)
G

L �→ the 1 -simplex of�G corresponding toφ2(L).

Notation 1.11 Let a, b ∈ R
2 (a 
= b) be points such that the line segment ab has a

rational slope. Then, there is a primitive integer vector v ∈ Z
2 which has the same

slope as ab. The lattice length of ab is the ordinary length of ab divided by the ordinary
length of v. When a = b, we define the lattice length of ab as 0. We write dist(a, b)
for the lattice length of ab. We note that dist does not satisfy the metric inequality.

On a line segment L ∈ LS2(F ,G), a divisor D satisfying (∗) can be described as
follows.

Lemma 1.12 Let L ∈ LS2(F ,G) be a line segment. Let D be a divisor satisfying (∗).
Then, D|L = P1+ P2 for some P1, P2 ∈ L, and we have dist(P+, P1) = dist(P−, P2)
and dist(P+, P2) = dist(P−, P1), where P+ and P− are the endpoints of L.

Proof Straightforward from the fact that a tropical rational function ψ on V (F) as in
(∗) takes 0 at P+ and P−. �
Notation 1.13 Let a tropical divisor D satisfy (∗). For a line segment L ∈ LS2( f , g),
we define dist(D|L , E |L) = min{dist(P+, P1), dist(P+, P2)}, where D|L = P1 + P2
and E |L = P+ + P−. This is well-defined by Lemma 1.12. Also, when L ∈ R1( f , g),
we write dist(D|L , E |L) for the lattice length of the distance of the point in D|L and
the endpoint of L .
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By analogy with plane algebraic curves, it is a natural setting to fix f and change
g in realizing D, i.e., the zeros of ψ . For example, in Len and Satriano (2020), a
tropical curve � and an algebraic curve C satisfying Trop(C) = � are fixed and
trop(C ∩ C ′) are studied for curves C ′ with Trop(C ′) = �. Also, it would be useful
to study whether it is possible to realize a certain part of D. Let L′

s be a subset of
Ls( f , g) and PI := PI( f , g) the proper intersections. Let D|L′

s∪PI denote the
restriction of D to the union of the elements of L′

s ∪ PI. Then, when is it possible to
realize D|L′

s∪PI , i.e., does there exist a Laurent polynomial g′ ∈ k[x±1, y±1] such
that Trop(V (g′)) = Trop(V (g)) and trop(V ( f , g′))|L′

s∪PI = D|L′
s∪PI?

1.2 Main result

As a partial answer to the above question, our main theorems give sufficient conditions
for the realizability. To state the main theorems, we introduce terminologies on trees.

Notation 1.14 It is well known that any two vertices of a tree T are connected by a
unique simple path in T (see Diestel 2017, Theorem 1.5.1). We write pTq for the
simple path between two vertices p and q in T .

Definition 1.15 Let T be a tree and ≤ a total ordering on the set of its vertices. Let p0
denote the smallest vertex for ≤. The order ≤ is called normal if p ∈ p0Tq implies
p ≤ q.

Definition 1.16 For lattice points i, j ∈ Z
2 such that j − i is primitive and a tropical

polynomial F = ⊕
i∈Z2 αixi with αi, αj 
= −∞, where x(i1,i2) denotes xi1 yi2 , we

define μn(F; ij) (n ∈ Z) and μ(F; ij) by

μn(F; ij) := −αi+n(j−i) + αi + n(αj − αi),

μ(F; ij) := min{μn(F; ij) | n ∈ Z \ {0, 1}}.

For f = ∑
i cix

i ∈ k[x±1, y±1] with ci, cj 
= 0, we write μn( f ; ij) and μ( f ; ij) for
μn(trop( f ); ij) and μ(trop( f ); ij), respectively (Fig. 1).

Note that μn depends on the orientation of ij but μ does not, and that μ0(F; ij) =
μ1(F; ij) = 0.

Fig. 1 μn(F; ij) and μ(F; ij)
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Remark 1.17 LetF = ⊕
i∈Z2 αixi be a tropical polynomial, ij a 1-simplex of�F with

j − i primitive, and L the corresponding edge of V (F) (see Theorem 2.9). Then, for
any P ∈ L and n ∈ Z\{0, 1}, we have the following (see Remark 2.12):

αi + i · P = αj + j · P > αi+n(j−i) + (i + n(j − i)) · P,

and hence,

−αi+n(j−i) + αi + n(αj − αi) > 0,

i.e.,

μn(F; ij) > 0.

Thus, in this case, we have μ(F; ij) > 0. In particular, if L ∈ Ls( f , g), P ∈ L and
ij = �2(L), then μ(g; ij) > 0.

The value μ(F; ij) measures the margin for ij to be a 1-simplex of �F , in a sense.

Now, let us state the main theorems. We consider the following graph theoretic
condition which will be crucial in our sufficient conditions.

Definition 1.18 We say that L′
s is acyclic with respect to �2 if the map �2|L′

s
is

injective (see Definition 1.10), i.e., there is no duplication in �′ := �2(L′
s), and the

union of the elements of �′ is a forest.

Remark 1.19 The acyclicity of L′
s is not directly correlated with acyclicity in

Trop(V (g)). Even if L′
s is acyclic with respect to �2, the union of the corresponding

edges of Trop(V (g)) may have cycles (cf. Example 5.1).

The following theorem implies that D can be realized on L′
s ∪ PI if L′

s is acyclic
with respect to �2 and D is sufficiently close to E .

Theorem 1.20 (=Theorem 4.6) Let a divisor D satisfy the condition (∗) in Definition
1.8. Assume that L′

s is acyclic with respect to �2 and that for each L ∈ L′
s, we

have dist(D|L , E |L) < μ(g;�2(L)). Then, there exists g′ ∈ k[x±1, y±1] such that
trop(g′) = trop(g) and

trop(V ( f , g′))|L′
s∪PI = D|L′

s∪PI .

Remark 1.21 In the above theorem, we assume the distance condition that for each
L ∈ L′

s, we have dist(D|L , E |L) < μ(g;�2(L)). However, we do not know whether
this condition is absolutely necessary or not. Therefore, theremay be room for omitting
this condition.

Imposing a further assumption on L′
s, we may drop the restriction on the distance.

Notation 1.22 For a given set S ⊂ R
n , we write Aff(S) for the affine span of S.
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Theorem 1.23 (=Theorem 4.7) Let a divisor D satisfy the condition (∗) in Definition
1.8. Assume that L′

s is acyclic with respect to �2 and that we can number and order
the endpoints of the elements of �′ := �2(L′

s) as p1 < · · · < pn so that this order is
normal on each tree of the forest and that for each element pi p j of �′, its affine span
Aff(pi p j )does not contain apoint pl with l > i, j . Then, there exists g′ ∈ k[x±1, y±1]
such that trop(g′) = trop(g) and

trop(V ( f , g′))|L′
s∪PI = D|L′

s∪PI .

The proofs of the theorems proceed as follows. For an element L ∈ Ls( f , g), we
will give an algorithm to determine trop(V ( f , g)) ∩ L (see Lemma 3.8, Definition
3.10 and Proposition 4.1). This algorithm proceeds by constructing a suitable Laurent
polynomial in the ideal ( f , g) and tells us how to modify g in order to realize D on
L . Using this, we will determine the coefficients of g′ one by one. In the setting of
Theorem 4.7, we use the given ordering. We need the acyclicity condition to maintain
the consistency.

Remark 1.24 Let L ∈ L′
s and �2(L) = pi p j . In determining trop(V ( f , g)) ∩ L

and the coefficient d ′
pi of g

′, the coefficients di for i ∈ Aff(pi p j ) are essential. This
is why Theorem 4.6 (resp. 4.7) requires the condition about the coefficients di for
i ∈ Aff(pi p j ) (resp. about Aff(pi p j )).

Remark 1.25 The condition pl /∈ Aff(pi p j ) (l > i, j) in Theorem 4.7 depends on
the ordering, not just on L′

s. For example, the order on the left in Fig. 2 satisfies the
condition, but the one on the right does not.

The rest of this paper is organized as follows. Section2 gives fundamental defini-
tions and facts about tropical curves. In Sect. 3, we show several lemmas concerning
properties of V (F) and V (G) in a neighborhood of L ∈ Ls(F ,G) and introduce a
kind of division procedure for Laurent polynomials over a valuation field. In Sect. 4,
we explain how to determine trop(V ( f , g))∩ L for L ∈ Ls( f , g), and prove the main
theorems. In the last section, we give several examples concerning the main theorems
to illustrate the necessity of the acyclicity condition.

2 Tropical curves

In this section, we recall the basics about tropical plane curves. For details, see Macla-
gan and Sturmfels (2015). First, we give the definition of the tropical algebra which
is essential for studying tropical geometry.

Fig. 2 Two orderings of the
endpoints of the elements of
�′ = �2(L′

s)
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Definition 2.1 (Tropical algebra) We define T = R ∪ {−∞}. The tropical algebra is
the triple (T,⊕,�), where the addition ⊕ is defined as the operation that takes the
maximum of two numbers and themultiplication� is defined as the ordinary addition.
We can easily check that (T,⊕,�) is a semifield.

To define tropical plane curves in terms of tropical algebra, we define tropical
polynomials.

Definition 2.2 (Tropical polynomials)A tropical polynomial F is an expression of the
form

F =
⊕

i

αix
i1
1 . . . xinn ,

where i = (i1, . . . , in) ∈ Z
n and αi ∈ T, and only finitely many of the coefficients αi

are not−∞. We may drop terms with coefficients−∞. A tropical polynomial defines
a map from R

n to R ∪ {−∞} in a natural way:

F(t1, . . . , tn) = max
i

(αi + i1t1 + · · · + intn).

We write T[x±1
1 , . . . , x±1

n ] for the set of all n-variate tropical polynomials, and define
the addition and the multiplication in a natural way.

Definition 2.3 (Tropical hypersurfaces)LetF = ⊕
i αix

i1
1 . . . xinn 
= −∞ be a tropical

polynomial. The tropical hypersurface V (F) defined by F is the set

V (F) =
⎧
⎨

⎩
(t1, . . . , tn) ∈ R

n

∣
∣
∣
∣
∣
∣

∃i = (i1, . . . , in), j = ( j1, . . . , jn) ∈ Z
n(i 
= j) s.t.

αi + i1t1 + · · · + intn = αj + j1t1 + · · · + jntn
= F(t1, . . . , tn)

⎫
⎬

⎭
.

IfF = −∞, i.e. all the coefficients ofF are−∞, we define V (−∞) = R
n .When n =

2 andF 
= −∞, we call V (F) a tropical plane curve. Later, wewill consider a tropical
plane curve as a polyhedral complex endowed with weights on its 1-dimensional cells
(see Definition 2.11).

The following map is a bridge between algebraic geometry and tropical geometry.

Definition 2.4 (Tropicalization map) We define the tropicalization map as follows:

trop : (k∗)n → R
n

(x1, . . . , xn) �→ (− val(x1), . . . ,− val(xn)).

Definition 2.5 (Tropicalization of Laurent polynomials) Let f = ∑
i cix

i ∈
k[x±1

1 , . . . , x±1
n ] be a Laurent polynomial. We define the tropicalization of f as

trop( f ) =
⊕

i

trop(ci)xi
(

=
⊕

i

(
(− val(ci))xi

)
)

.
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Notation 2.6 For A ⊂ (k∗)n , we write Trop(A) for the closure of trop(A) in Rn .

Recall that k is an algebraically closed field with a nontrivial valuation.

Theorem 2.7 (Kapranov’s Theorem, Einsiedler et al. (2006), Theorem 2.1.1) Let f ∈
k[x±1

1 , . . . , x±1
n ] be a Laurent polynomial. Then, we have

V (trop( f )) = Trop(V ( f )).

Definition 2.8 (Dual subdivisions, (Mikhalkin 2005, Definition 3.10)) Let F =⊕
i, j αi j x i y j be a tropical polynomial. We write Newt(F) ⊂ R

2 for the convex

hull of the set {(i, j) ∈ Z
2 | αi j 
= −∞}. Let AF ⊂ R

3 be the convex hull of the set

{(i, j, α) ∈ Z
2 × R | α ≤ αi j }.

Then, the projections of the bounded faces of AF form a lattice subdivision of
Newt(F). This naturally has a structure of a polyhedral complex. The dual subdivision
of F is this polyhedral complex and we denote it by �F . For a Laurent polynomial
f ∈ k[x±1, y±1], we also write � f for the dual subdivision of trop( f ).

Theorem 2.9 (The Duality Theorem, (Mikhalkin 2005, Proposition 3.11)) Let � =
V (F) be a tropical plane curve. Then, � is the support of a finite 1-dimensional
polyhedral complex �F (possibly with noncompact cells) in R

2. It is dual to the
subdivision �F in the following sense:

• (Closures of) domains of R2 \ � correspond to lattice points in �F .
• 1-dimensional cells in �F correspond to 1-simplexes in �F .
• 0-dimensional cells in �F correspond to 2-dimensional cells in �F .
• This correspondence is inclusion-reversing.
• A 1-dimensional cell in �F is orthogonal to the corresponding 1-simplex in �F
(see Fig. 3).

For a cell σ ∈ �F , the corresponding cell in �F is given by {P ∈ R
2 | F(P) =

αi + i · P for any vertex i of σ }. In particular, 1-dimensional cells in�F have rational
slopes.

Notation 2.10 Let � be a tropical plane curve. We call a 0-dimensional cell of � a
vertex of � and a 1-dimensional cell of � an edge of �.

Fig. 3 (Smooth) tropical plane curves and their dual subdivisions
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We define the weight of an edge of a tropical plane curve using the dual subdivision.

Definition 2.11 Let � = V (F) be a tropical plane curve and σ ∈ �(1)(�) an edge of
�. The weight wσ of σ in � is the lattice length of the corresponding 1-simplex of
�F .

From now on, a “tropical curve” will refer to the polyhedral set � together with
weights on its edges.

Remark 2.12 LetF = ⊕
i, j αi j x i y j be a tropical polynomial. Let σ be an edge of�F

with weight 1 and ij the corresponding 1-simplex of �F . Assume that αk + k · P =
F(P) for P ∈ σ and k ∈ Z

2\{i, j}. Then k is one of the vertices of a 2-dimensional
cell in �F , corresponding to a vertex of σ , containing ij as its face. In particular, for
any k ∈ (Aff(ij) ∩ Z

2)\{i, j}, we have

αk + k · P < F(P).

Notation 2.13 Let � be a tropical plane curve, P a vertex of � and L an edge of �

containing P . Let R be the ray which contains L such that P is its endpoint. We denote
by vP,L the primitive vector that have the same direction as R.

Tropical plane curves satisfy the following balancing condition.

Theorem 2.14 (Maclagan and Sturmfels 2015, Theorem 3.3.2) Let � be a tropical
plane curve and P a vertex of � and L1, . . . , Ln the edges of � containing P with
weights wLi . Then, we have

∑

i

wLi vP,Li = 0.

Definition 2.15 Let � = V (F) be a tropical plane curve. A vertex P ∈ � is called
smooth if the area of the corresponding cell in�F is 1/2.We see that this is equivalent
to the condition that it is trivalent and all the weights of the three edges L1, L2 and
L3 containing P are 1, and for some (or any) pair (i, j) (i, j ∈ {1, 2, 3}, i 
= j), we
have | det(vP,Li , vP,L j )| = 1.

Definition 2.16 (Smooth tropical plane curves) A tropical plane curve � = V (F) is
called smooth if all the lattice lengths of the 1-simplexes of �F are 1 and all the areas
of the 2-dimensional cells of �F are 1/2 (see Fig. 3). In other words, � is smooth if
all the vertices are smooth and all the weights of the edges are 1.

Notation 2.17 Let � be a tropical plane curve and σ an edge of �. We denote by vσ

primitive vector that have the same direction as Aff(σ ). This is well-defined up to
sign.

Definition 2.18 (Transverse intersection points) Let �1 and �2 be tropical plane
curves. A point P is a transverse intersection point of �1 and �2 if it is a proper
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intersection point of them and is a vertex of neither of them. For a transverse inter-
section point P , there exist unique edges Li ∈ �(1)(�i ) (i = 1, 2) containing P in
their interiors. In this case, we say that L1 and L2 intersect transversely at P , and we
define the intersection multiplicity at P as

i(P;�1 · �2) := wL1wL2 | det(vL1 , vL2)|.

Tropical plane curves �1 and �2 intersect transversely if all the points in �1 ∩ �2 are
transverse intersection points.

Note that for a tropical plane curve � and a vector v ∈ R
2, � + v is a tropical plane

curve. For tropical plane curves �1 and�2, it is known that for a generic vector v ∈ R
2

and a nonzero real number ε ∈ R with sufficiently small absolute value, �1 + εv and
�2 intersect transversely, and the following sum is well-defined (see Osserman and
Rabinoff 2013, Sect. 6).

Definition 2.19 (Intersection multiplicities) Let �1 and �2 be tropical plane curves.
We define the intersection multiplicity at a point P ∈ �1 ∩ �2 as

i(P;�1 · �2) :=
∑

L1�P,L2�P

⎛

⎝
∑

Q∈(L1+εv)∩L2

i(Q; (�1 + εv) · �2)

⎞

⎠ ,

where L1 and L2 are edges of �1 and �2, v ∈ R
2 is a generic vector, ε ∈ R is a

sufficiently small nonzero real number.

It is easy to see that i(P;�1 · �2) = i(P;�2 · �1).

Definition 2.20 (Stable intersection divisor) Let �1 and �2 be tropical plane curves.
The stable intersection divisor of �1 and �2 is defined as

∑

P∈�1∩�2

i(P;�1 · �2)P.

In an appropriate sense, this is equal to the limit of (�1 + εv) ∩ �2 as ε → 0, where
v ∈ R

2 is a generic vector and ε is a sufficiently small nonzero real number.

The following theorem says that the tropicalization conserves the intersection num-
ber in a certain sense.

Theorem 2.21 (Osserman and Rabinoff 2013, Corollary 6.13) Let X1, . . . , Xm ∈
(k∗)n be pure dimensional closed subschemes of (k∗)n with

∑
i codim(Xi ) = n.

Let K be a connected component of
⋂

i Trop(Xi ), and suppose that K is bounded.
Then there are only finitely many k-valued points x ∈ (⋂i Xi

)
(k) with trop(x) ∈ K,

and

∑

x∈(⋂i Xi)(k)
trop(x)∈K

i(x; X1 . . . Xm) =
∑

P∈K
i(P;Trop(X1) · · ·Trop(Xm)).
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3 Preparations for themain theorems

We will provide additional explanations for some facts from Section 1 and make
preparations for the next section. Since we are going to compare the valuations of
different terms in polynomials, we make the following definition.

Definition 3.1 We define a map τ as follows:

τ : T[x±1, y±1] × Z
2 × R

2 → R ∪ {−∞}
(
⊕

i

αixi; j; P
)

�→ αj + j · P.

For a Laurent polynomial f ∈ k[x±1, y±1], we write τ( f ; j; P) for τ(trop( f ); j; P).

The map τ satisfies the following.

Lemma 3.2 Let f , g ∈ k[x±1, y±1] be Laurent polynomials. Then, for all i ∈ Z
2 and

P ∈ R
2, we have

τ( f + g; i; P) ≤ max{τ( f ; i; P), τ (g; i; P)}.

Moreover, the equality holds if τ( f ; i; P) 
= τ(g; i; P).

Proof This is clear from the ultrametric inequality for the valuation. �
For A = (ai j ) ∈ GL2(Z), b = (b1, b2) ∈ R

2 and t = (t1, t2) ∈ (k∗)2 such that
trop(t) = b, we define the following automorphisms and an affine transformation.

φ : (k∗)2 → (k∗)2

(a, b) �→ (aa11ba12 t1, a
a21ba22 t2),

φ∗ : k[x±1, y±1] → k[x±1, y±1]
x �→ xa11 ya12 t1, y �→ xa21 ya22 t2,

trop(φ) = � : R2 → R
2

v �→ Av + b,

�∗ : T[x±1, y±1] → T[x±1, y±1]
x �→ b1x

a11 ya12 , y �→ b2x
a21 ya22 ,

t�
− : R2 → R

2

v �→ tA−1
(v − b).

Then, the following can be verified by direct calculations.

• ∀P ∈ (k∗)2, trop(φ(P)) = �(trop(P)).

• ∀ f ∈ k[x±1, y±1], Trop(V (φ∗( f ))) = V (�∗(trop( f ))).
• ∀ f ∈ k[x±1, y±1], ∀P ∈ (k∗)2, f (φ(P)) = (φ∗( f ))(P).
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• ∀F ∈ T[x±1, y±1], t�
−
(V (F)) = V (�∗(F)).

Thus, if L is an edge of Trop(V ( f )), we can find an automorphism φ of (k∗)2 such
that trop(φ)(L) is contained in the y-axis, for example.

Recall that R1(F ,G) and LS2(F ,G) were the sets of rays and line segments
contained in V (F)∩V (G), defined inDefinition 1.7, and thatLs(F ,G) = R1(F ,G)∪
LS2(F ,G).

Lemma 3.3 Let F and G be bivariate tropical polynomials.

(1) Let L ∈ LS2(F ,G), and P+ and P− the endpoints of L. Then, P∗ (“∗ = + or−”)
is a smooth vertex in one of V (F) and V (G), and is in the interior of an edge of
weight 1 in the other. Furthermore, the interior of L contains no vertices of V (F)

and V (G). In other words, for a neighborhood U of L, the restrictions of V (F)

and V (G) to U are as in Fig. 4, where each vertex is smooth and each edge has
weight 1.
In particular, the stable intersection points of V (F) and V (G) on L are the end-
points of L, each with weight 1.

(2) For L ∈ R1(F ,G), the endpoint of L is a smooth vertex in one of V (F) and V (G),
and is in the interior of an edge of weight 1 in the other. Furthermore, the interior
of L contains no vertices of V (F) and V (G).

Proof First, note that each endpoint of L is a vertex of at least one of V (F) and V (G),
and that if P ∈ L is a vertex of V (F) or V (G), then we have i(P; V (F) · V (G)) ≥ 1.
It follows that V (F) and V (G) intersect with multiplicity 1 at each endpoint of L , and
that V (F) and V (G) do not have a vertex in the interior of L . Hence, an edge of V (F)

(resp. V (G)) intersecting the interior of L contains L .
Let us prove (1). The proof of (2) is similar. We can assume that L is contained in

the y-axis and P+ = (0, a1) and P− = (0, a2) with a1 > a2 by applying an affine
transformation with a unimodular integral coefficient matrix. LetU+ be a sufficiently
small neighborhood of P+ and DR := {(p1, p2) ∈ R

2 | p1 > 0}. Let L1, . . . , Ls

be the edges of V (F) which intersect U+, and L ′
1, . . . , L

′
t the edges of V (G) which

intersect U+, with L1 ⊃ L and L ′
1 ⊃ L . Assume that P+ is a vertex in both of V (F)

and V (G), i.e. s ≥ 3 and t ≥ 3. Then, by the balancing condition at P+, there are i
and j such that

DR ∩ Li 
= ∅ and DR ∩ L ′
j 
= ∅.

Fig. 4 V (F) and V (G) in a neighborhood of L ∈ LS2(F ,G)
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Note that by the assumption that L ∈ LS2(F ,G) is a connected component of V (F)∩
V (G), we have Li ∩L ′

j = {P+}. By symmetry, we assume that the slope of Li is larger

than that of L ′
j . Let v = (v1, v2) ∈ R

2 be a general vector such that v1, v2 > 0 and
v2/v1 is sufficiently large, and ε > 0 a sufficiently small positive number. We will
consider V (F)∩(εv+V (G)). Then, we have Li ∩(εv+L ′

j ) 
= ∅ and Li ∩(εv+L ′
1) 
=

∅. Hence, we have i(P+; V (F) · V (G)) ≥ 2, contradicting to what we saw at the
beginning. Thus P+ is a vertex of exactly one of V (F) and V (G).

Assume that P+ is a vertex of V (F). Then, by the definition of LS2(F ,G) (see
Definition 1.7), the multiplicity of L1 is 1. Since the intersection multiplicity at P+ is
1, it is cleat that exactly one of {L2, . . . , Ls}, say L2, intersects DR , that the weights of
L ′
1 and L2 are both 1 and that | det(vL2 , vL ′

1
)| = 1. Similarly, there is a unique edge of

V (F) intersecting U+ ∩ {(p1, p2) ∈ R
2 | p1 < 0}, and V (F) is trivalent at P+ (note

that V (F) contains no edge intersecting U+ ∩ {(p1, p2) ∈ R
2 | p1 = 0, p2 > a1}

since P+ is an endpoint of L). By the balancing condition, P+ is a smooth vertex of
V (F). The same holds at the point P−. �
Corollary 3.4 Let F ,G ∈ T[x±1, y±1], L ∈ Ls(F ,G), �1(L) = i0i1 and �2(L) =
j0j1. Then i1 − i0 = ±(j1 − j0).

Proof It is clear that Aff(�1(L)) = Aff(�2(L)), and hence, it is sufficient to show
that �1(L) and �2(L) have the same lattice length. By Lemma 3.3, each edge of
V (F) and V (G) intersecting L has weight 1. Then, by the definition of the weight of
an edge of a tropical plane curve (see Definition 2.11), the lattice lengths of �1(L)

and �2(L) are 1. �
Lemma 3.5 Let F = ⊕

i αixi,G = ⊕
i βixi ∈ T[x±1, y±1] be tropical polynomials,

L ∈ Ls(F ,G), and P+ an endpoint of L. Assume that �1(L) = �2(L) = i0i1,
αi0 = βi0 and αi1 = βi1 . Let U+ be a sufficiently small neighborhood of P+ and
L = Aff(L) (see Notation 1.22). By Lemma 3.3, for either (F1,F2) = (F ,G) or
(F1,F2) = (G,F), the point P+ is a smooth vertex of V (F1) and is in the interior of
an edge of multiplicity 1 in V (F2). Let σ+ be the 2-simplex of �F1 corresponding to
P+ and i+ the vertex of σ+ other than i0 and i1. Then, for all P ∈ U+ ∩ (L\L), we
have

τ(F1; i+; P) > τ(F; i; P), τ (G; i; P), τ (F2; i+; P) (i ∈ Z
2 \ {i+}),

and

τ(F1; i+; P+) = τ(F; i; P+) = τ(G; i; P+) (i = i0 or i1)

> τ(F; j; P+), τ (G; j; P+), τ (F2; i+; P+) (j ∈ Z
2 \ {i0, i1, i+}).

Proof By symmetry, we may assume that F1 = F . Let P ∈ U+ ∩ (L\L). Then, the
restrictions of the two tropical plane curves to a neighborhood of P+ are as in Fig. 5.
We have

τ(F; i+; P) > τ(F; i; P) (i ∈ Z
2 \ {i+}), (1)
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Fig. 5 V (F) and V (G) in a
neighborhood U+ of P+
(F = F1)

since i+ is the vertex corresponding to the domain containing P , and for all j ∈
Z
2\{i0, i1, i+}, we have

τ(F; i+; P+) = τ(F; i0; P+) = τ(F; i1; P+) > τ(F; j; P+). (2)

For all i ∈ Z
2 \ {i0, i1}, we have

τ(G; i0; P) = τ(G; i1; P) > τ(G; i; P), (3)

τ(G; i0; P+) = τ(G; i1; P+) > τ(G; i; P+). (4)

By the assumption that αi0 = βi0 and αi1 = βi1 , we have

τ(F; i; P) = τ(G; i; P), τ (F; i; P+) = τ(G; i; P+) (i = i0 or i1). (5)

By the inequalities (1), (3) and (5), we have

τ(F; i+; P) > τ(F; i0; P) = τ(G; i0; P) ≥ τ(G; i; P) (i ∈ Z
2).

The second inequalities follow from (2), (4) and (5). �

Notation 3.6 For a Laurent polynomial f = ∑
i cix

i ∈ k[x±1
1 , . . . , x±1

n ], we define
coeff i( f ) = ci and vi( f ) = val(ci).

Notation 3.7 Let f , g ∈ k[x±1, y±1] and L ∈ Ls( f , g) = R1( f , g)∪LS2( f , g). In
the rest of this paper, we use the following notation.

• �1(L) = i0i1 and �2(L) = j0j1, where i1 − i0 = j1 − j0 (see Corollary 3.4).
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• An endpoint P+ ∈ L is a vertex of Trop(V ( f1)) ( f1 ∈ { f , g}). Let (l0, l1) be
(i0, i1) (resp. (j0, j1)) if f1 = f (resp. f1 = g).

• The vertex of the 2-simplex of � f1 corresponding to P+ are l0, l1 and l+. Let
i+ := i0 + (l+ − l0) and j+ := j0 + (l+ − l0).

• If L ∈ LS2( f , g), the other endpoint P− ∈ L is a vertex of Trop(V ( f ′
1)) ( f

′
1 ∈

{ f , g}). Let (l′0, l′1) be (i0, i1) (resp. (j0, j1)) if f ′
1 = f (resp. f ′

1 = g).
• The vertex of the 2-simplex of � f ′

1
corresponding to P− are l′0, l′1 and l′−. Let

i− := i0 + (l′− − l′0) and j− := j0 + (l′− − l′0).

By multiplying a unit, we may assume that f , g and L further satisfy the following
condition (¶):

• �1(L) = �2(L) = i0i1.

• vi0( f ) = vi0(g).

• vi1( f ) = vi1(g).

Furthermore, by applying an affine transformation, multiplying units and changing
the variable x to coeff10( f )x , we may assume that f , g and L satisfy the following
condition (¶′):

• �1(L) = �2(L) = i0i1.

• i0 = (0, 0), i1 = (1, 0) and i+ = (0, 1).

• vi0( f ) = vi0(g) = vi1( f ) = vi1(g) = 0.

• P+ = (0, y+) and P− = (0, y−).

Now we are going to find an element of the ideal ( f , g) that is useful in studying
trop(V ( f ) ∩ V (g)). This will be of the form G = g + h(xv) f , where h ∈ k[t±1] is a
univariate Laurent polynomial. The proof of the following lemma gives an algorithm
to find this element.

Lemma 3.8 Let λ > 0 be a positive number. Let f , g ∈ k[x±1, y±1] be Laurent
polynomials satisfying the following:

• vi0( f ) = vi0(g) 
= ∞, vi1( f ) = vi1(g) 
= ∞.
• i1 − i0 is primitive.
• μ( f ; i0i1) > 0, μ(g; i0i1) > 0 (see Definition 1.16).

Then, there exists a Laurent polynomial h ∈ k[t±1] satisfying the following conditions:
• For all i ∈ Z, we have vi (h) > i(vi1( f ) − vi0( f )).
• For the Laurent polynomial g′ := g + h(xi1−i0) f , we have

vi0(g
′) = vi0(g

′),
vi1(g

′) = vi1(g
′),

μ(g′; i0i1) > λ.

Proof We can assume that i0 = (0, 0) and i1 = (1, 0) by applying an affine transfor-
mation. Then, the statements are only about the coefficients of xi , and we can assume
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that f = ∑
i ci x

i , g = ∑
i di x

i ∈ k[x±1]. We can also assume that c0 = 1 by multi-
plying a unit. By changing the variable x to c1x , we may also assume c1 = 1. Given
a Laurent polynomial F = ∑

i αi x i ∈ k[x±1], we define

v(F) = min{val(αi )},
v′(F) = min{val(αi ) | i 
= 0, 1},

v′+(F) = min{val(αi ) | i > 1},
v′−(F) = min{val(αi ) | i < 0}.

Then, we have v′( f ) > 0 and v′(g) > 0. It is sufficient to show that there exists a
Laurent polynomial h ∈ k[x±1] with v(h) > 0 such that for the Laurent polynomial
g′ := g + h f , we have v0(g′) = v1(g′) = 0 and v′(g′) ≥ λ. Let λ0 = v′( f ) and
λ1 = v′(g). Given a Laurent polynomial F ∈ k[x±1], we define

M−(F) = min{n ∈ Z | n ≤ 0, vn(F) < λ0 + λ1},
M+(F) = max{n ∈ Z | n ≥ 1, vn(F) < λ0 + λ1}.

Note thatM−(F) ≤ 0,M+(F) ≥ 1 and that for Laurent polynomials F1, F2 ∈ k[x±1],
we have

M−(F1 + F2) ≥ min{M−(F1),M−(F2)},
M+(F1 + F2) ≤ max{M+(F1),M+(F2)}.

Claim 1 The following hold.

• If M+(g) > 1, then there exist a ∈ k and i ∈ Z such that val(a) > 0, M+(g −
axi f ) < M+(g) and M−(g − axi f ) ≥ M−(g).

• If M−(g) < 0, then there exist a ∈ k and i ∈ Z such that val(a) > 0, M+(g −
axi f ) ≤ M+(g) and M−(g − axi f ) > M−(g).

Proof We show the case where n := M+(g) > 1. The proof in the case where
M−(g) < 0 is similar. Let a = dn . Then, we have val(a) ≥ λ1(> 0). Let−axn−1 f =∑

i αi x i and g − axn−1 f = ∑
i βi x i . Then, we have val(βn) = val(0) = ∞ and

i < n − 1 ⇒ val(αi ) ≥ λ0 + λ1,

i = n − 1, n ⇒ val(αi ) = val(a) ≥ λ1,

n < i ⇒ val(αi ) ≥ λ0 + λ1.

Thus, we have

n ≤ i ⇒ val(βi ) ≥ λ0 + λ1,

and M−(−axn−1 f ) = 0. Hence, we have

M+(g − axn−1 f ) < n = M+(g),

123



Beitr Algebra Geom

and

M−(g − axn−1 f ) ≥ min{M−(g),M−(−axn−1 f )} ≥ M−(g).

�
Note that in the proof of the above claim, we have val(β0) = val(β1) = 0. From

the first bullet in the above claim, we can show by induction on n = M+(g) that there
exists a Laurent polynomial h0 ∈ k[x±1] with v(h0) > 0 such that for the Laurent
polynomial g1 := g+h0 f , we have v0(g1) = v1(g1) = 0 and v′+(g1) ≥ λ0+λ1. Then,
from the second bullet in the above claim, wemay ensure that there exists h1 ∈ k[x±1]
with v(h1) > 0 such that for g2 := g1 + h1 f , we have v0(g2) = v1(g2) = 0 and
v′−(g2) > λ0 + λ1. It follows that g2 = g + (h0 + h1) f , v(h0 + h1) > 0 and
v′(g2) > λ0 + λ1.

Then, by induction on max
{
0,
[
(λ − v′(g))/v′( f )

]+ 1
}
, we may ensure that there

exists h ∈ k[x±1]with v(h) > 0 such that for g′ := g+h f , we have v0(g′) = v1(g′) =
0 and v′(g′) > λ. �
Definition 3.9 Let λ > 0 be a positive number and f , g ∈ k[x±1, y±1] Laurent
polynomials satisfying the assumption of Lemma 3.8. We define h(λ; g, f ; i0i1) ∈
k[t±1] to be the Laurent polynomial h ∈ k[t±1] obtained by the algorithm in the proof
of Lemma 3.8. We also define G(λ; g, f ; i0i1) ∈ k[x±1, y±1] by

G(λ; g, f ; i0i1) := gλ − coeff i1(gλ)

coeff i1( fλ)
fλ,

where

gλ := g + h(λ; g, f ; i0i1)(xi1−i0) f ,

fλ := f + h(λ; f , f ; i0i1)(xi1−i0) f .

More generally, we define the following set.

Definition 3.10 Let f , g ∈ k[x±1, y±1] be Laurent polynomials, L ∈ Ls( f , g) a ray
or a line segment and λ > 0 a positive number. Then, we define H4(λ; f , g; L) ⊂
k[x±1, y±1]4 and Elim(λ; f , g; L) ⊂ k[x±1, y±1] by

H4(λ; f , g; L) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h1, h2, h3, h4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

μ ( f + h1 f + h2g;�1(L)) > λ,

μ (g + h3 f + h4g;�2(L)) > λ,

and, for any P ∈ L,

trop(h1)(P) < 0,
trop

(
h2xj0−i0

)
(P) < vi0( f ) − vj0(g),

trop
(
h3xi0−j0

)
(P) < vj0(g) − vi0( f ),

trop(h4)(P) < 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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where �1(L) = i0i1 and �2(L) = j0j1 are endowed with the same orientation, and

Elim(λ; f , g; L) =

⎧
⎪⎨

⎪⎩
G

∣
∣
∣
∣
∣
∣
∣

∃(h1, h2, h3, h4) ∈ H4(λ; f , g; L) s.t.

G = g′ − coeffj1 (g′)
coeff i1 ( f ′)x

j1−i1 f ′,
where f ′ = f + h1 f + h2g and g′ = g + h3 f + h4g

⎫
⎪⎬

⎪⎭
.

Remark 3.11 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and L ∈ Ls( f , g) a
ray or a line segment satisfying the condition (¶). Let λ > 0 be a positive number.
Then, we have (h(λ; f , f ; i0i1)(x), 0, h(λ; g, f ; i0i1)(x), 0) ∈ H4(λ; f , g; L) and
G(λ; g, f ; i0i1) ∈ Elim(λ; f , g; L).

To compare the tropicalizations ofV ( f ),V (g) andV (G) forG ∈ Elim(λ; f , g; L),
we use the following lemma.

Lemma 3.12 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and L ∈ Ls( f , g)
a ray or a line segment. Let λ > 0 be a positive number and (h1, h2, h3, h4) ∈
H4(λ; f , g; L). Then, the following hold.

(1) For any i ∈ Z
2 and P ∈ L, we have

τ (h1 f + h2g; i; P) < τ( f ; i0; P),

τ (h3 f + h4g; i; P) < τ(g; j0; P).

(2) We have

vi0 ( f + h1 f + h2g) = vi0( f ),

vi1 ( f + h1 f + h2g) = vi1( f ),

vj0 (g + h3 f + h4g) = vj0(g),

vj1 (g + h3 f + h4g) = vj1(g).

Proof By replacing g by (coeff i0( f )/ coeff j0(g))x
i0−j0g, we may assume that f , g

and L satisfy (¶). Since inequalities about τ does not change by coordinate change,
we may further assume that f , g and L satisfy the condition (¶′). Then, the statements
(1) and (2) clearly hold. �
Lemma 3.13 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and L ∈ Ls( f , g) a ray
or a line segment. For any λ > 0 and G ∈ Elim(λ; f , g; L), the following hold.

V ( f ,G) ∩ trop−1(L) = V (g,G) ∩ trop−1(L) = V ( f , g) ∩ trop−1(L).

Proof We may assume that f , g and L satisfy the condition (¶′). Let λ > 0 and
G ∈ Elim(λ; f , g; L). We show V ( f ,G) ∩ trop−1(L) = V ( f , g) ∩ trop−1(L).
We can show V (g,G) ∩ trop−1(L) = V ( f , g) ∩ trop−1(L) in the same way. There
exists (h1, h2, h3, h4) ∈ H4(λ; f , g; L) such that G = g′ − (d ′/c′) f ′, where f ′ =
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f + h1 f + h2g, g′ = g + h3 f + h4g, c′ = coeff i1( f
′) and d ′ = coeff i1(g

′). Thus,
we have

V ( f ,G) = V

(

f ,

(

1 + h4 − d ′

c′ h2
)

g

)

.

Here, by Lemma 3.12 (2), we have val(d ′/c′) = 0. Combined with trop(h2)(P) <

0 = trop(1)(P) and trop(h4)(P) < 0 = trop(1)(P) for all P ∈ L , it follows that

V

(

1 + h4 − d ′

c′ h2
)

∩ trop−1(L) = ∅.

Therefore, we have

V ( f ,G) ∩ trop−1(L) = V ( f ) ∩ V

((

1 + h4 − d ′

c′ h2
)

g

)

∩ trop−1(L)

= V ( f ) ∩ V (g) ∩ trop−1(L)

= V ( f , g) ∩ trop−1(L).

�
Notation 3.14 We write e1 = (1, 0), e2 = (0, 1) ∈ R

2 for the standard basis.

Lemma 3.15 Let h ∈ k[x±1, y±1], j ∈ Z
2, P ′ ∈ R

2, v1 ∈ R
2\{0} and v2 ∈

R
2\Aff(v1). Let w ∈ R

2\{0} a normal vector of v1 such that w · v2 < 0.
Assume that for a lattice point i 
= j in the half plane j + Rv1 + R≥0v2, we have
τ(h; j; P ′) > τ(h; i; P ′). Then, for all P ∈ P ′ + R≥0w, we have

τ(h; j; P) > τ(h; i; P).

Proof Let P ∈ P ′ +R≥0w. Then, there exists a non-negative number r ≥ 0 such that
P = P ′ + rw, and hence, we have

τ(h; j; P) − τ(h; i; P) = (τ (h; j; P ′) − τ(h; i; P ′)) + r(j − i) · w > 0.

�
Remark 3.16 Let f , g ∈ k[x±1, y±1] and L ∈ Ls( f , g) satisfy (¶). Then, for an
endpoint P+ ∈ L , by Lemma 3.5, we have

τ( f1; i+; P+) > τ( f2; i+; P+),

where { f1, f2} = { f , g} and trop(V ( f1)) has a vertex at P+. Therefore, either
vi+( f ) < vi+(g) and f1 = f or vi+( f ) > vi+(g) and f1 = g, and hence,

vi+( f1) = min{vi+( f ), vi+(g)}.
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Lemma 3.17 Let f , g ∈ k[x±1, y±1] and L ∈ Ls( f , g). Let λ > 0 be a positive
number and G ∈ Elim(λ; f , g; L). Then, the following hold.

(1) If f , g and L satisfy (¶), then vi+(G) = vi+( f1) (= min{vi+( f ), vi+(g)}).
(2) Assume that a lattice point i 
= j+ is in the half plane j++R(j1−j0)+R≥0(j+−j0).

Then, for all P ∈ L, we have

τ(G; i; P) < τ(G; j+; P).

(3) Assume that L ∈ LS2( f , g) and i 
= j− is a lattice point in the half plane
j− + R(j1 − j0) + R≥0(j− − j0). Then, for any point P ∈ L, we have

τ(G; i; P) < τ(G; j−; P).

Proof LetG = g′ − coeff i1 (g′)
coeff i1 ( f ′) f

′, where f ′ = f +h1 f +h2g and g′ = g+h3 f +h4g

with (h1, h2, h3, h4) ∈ H4(λ; f , g; L). To show (1), first note that, by Lemma 3.12,
we have

τ( f ; i0; P+) > τ(h1 f + h2g; i+; P+), τ (h3 f + h4g; i+; P+).

LetU+ be a sufficiently small neighborhood of P+ and P ∈ U+ ∩(Aff(L)\L) a point.
Then, we have

τ( f ; i0; P) > τ(h1 f + h2g; i+; P), τ (h3 f + h4g; i+; P).

Combined with Lemma 3.5, this implies

τ( f1; i+; P) > τ(h1 f + h2g; i+; P), τ (h3 f + h4g; i+; P). (6)

Now, by Lemma 3.12 (2), we have val(coeff i1(g
′)/ coeff i1( f ′)) = 0 and

G = g − coeff i1(g
′)

coeff i1( f ′)
f + h3 f + h4g − coeff i1(g

′)
coeff i1( f ′) (h1 f + h2g) .

Therefore, we have τ(G; i+; P) = τ( f1; i+; P) by (6) and Lemmas 3.2 and 3.5. Thus,
we have vi+(G) = vi+( f1).

Next, let us show (2). (3) follows from (2) by symmetry. We may assume that f , g
and L satisfy the condition (¶′). Let P ′ ∈ L . By Lemmas 3.12 and 3.15, we have

max{τ (h1 f + h2g; i; P ′) , τ
(
h3 f + h4g; i; P ′)} < τ( f1; i+; P ′).

Since i 
= i+, by Lemmas 3.5 and 3.15, we have

max{τ( f ; i; P ′), τ
(
g; i; P ′)} < τ( f1; i+; P ′).
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Therefore, by Lemma 3.2, we have

τ(G; i; P ′) < τ( f1; i+; P ′).

Since vi+( f1) = vi+(G), we have

τ( f1; i+; P ′) = τ(G; i+; P ′),

and hence, we have

τ(G; i; P ′) < τ(G; i+; P ′).

�
Corollary 3.18 Let f , g ∈ k[x±1, y±1] and L ∈ Ls( f , g). Let λ > 0 be a positive
number and G ∈ Elim(λ; f , g; L). Then, for a point P1 = P++r1vP+,L (see Notation
2.13), where r1 ∈ R, we have

τ(G; j+; P) = τ(g; j0; P+) − r1.

If L ∈ LS2( f , g), then for a point P2 = P− + r2vP−,L (r2 ∈ R), we have

τ(G; j−; P) = τ(g; j0; P−) − r2.

Proof We may assume that f , g and L satisfy the condition (¶′). By Lemmas 3.5 and
3.17 (1), for the point P1 = (0, y+ − r1) ∈ R

2, we have

τ(G; i+; P1) = τ( f1; i+; P1)
= τ( f1; i+; P+) + r1i+ · (−e2)

= τ(g; (0, 0); P+) − r1.

Similarly, if L ∈ LS2( f , g), we have τ(G; i−; P2) = τ(g; (0, 0); P−) − r2. �
Notation 3.19 For L ∈ Ls( f , g) and λ > 0, we define

Lλ+ = L ∩ {P+ + rvP+,L | 0 ≤ r < λ}.

If L ∈ LS2( f , g), we also define

Lλ− = L ∩ {P− + rvP−,L | 0 ≤ r < λ}.

Lemma 3.20 Let f , g ∈ k[x±1, y±1] and L ∈ Ls( f , g). Let λ > 0 be a positive
number and G ∈ Elim(λ; f , g; L). Then, the following hold.

(1) ∀n ∈ Z\{0}, ∀P ∈ L, τ (G; j0 + n(j1 − j0); P) < τ(g; j0; P) − λ.
(2) If L ∈ R1( f , g), then for a sufficiently small neighborhood U+ of Lλ+, we have

{i ∈ Z
2 | ∃P ∈ U+ s.t. τ(G; i; P) = trop(G)(P)} ⊂ {j0, j+}.

123



Beitr Algebra Geom

(3) If L ∈ LS2( f , g), then for sufficiently small neighborhoods U+ of Lλ+ and U−
of Lλ−, we have {i ∈ Z

2 | ∃P ∈ U+ ∪ U− s.t. τ(G; i; P) = trop(G)(P)} ⊂
{j0, j+, j−}.

Proof We may assume that f , g and L satisfy the condition (¶′). Let us show (1). Let
λ > 0 and P ∈ L . Since we have

∀n ∈ Z \ {0, 1}, μ( f ′; i0i1) > λ and μ(g′; i0i1) > λ,

and G = g′ − (coeff i1(g
′)/ coeff i1( f ′)) f ′, we have

∀n ∈ Z \ {0, 1}, vn0(G) > λ,

i.e.,

∀n ∈ Z \ {0, 1}, τ (G; (n, 0); P) = −vn0(G) < −λ.

Noting that

τ(G; (1, 0); P) = −v10(G) = −∞ < −λ,

we see that

∀n ∈ Z \ {0}, τ (G; (n, 0); P) < −λ.

Let us show (2). (3) follows from (2) symmetry. Since the number of the termsofG is
finite and each term of trop(G) is a continuous and piecewise linear map, it is sufficient
to show that {i ∈ Z

2 | ∃P ∈ Lλ+ s.t. τ(G; i; P) = trop(G)(P)} ⊂ {i0, i+}. By the
assumption that the three vertices of the corresponding 2-simplex of � f1 are i0, i1 and
i+ = (0, 1), we have L = P+ +R≥0(−e2), and the condition �1(L) = �2(L) = i0i1
implies

∀(i, j) ∈ Z
2, j < 0 ⇒ ci j = di j = 0.

Combined with Lemma 3.17 (2), it follows that

{i ∈ Z
2 | ∃P ∈ L s.t. τ(G; i; P) = trop(G)(P)} ⊂ Ze1 ∪ {i+}.

Then, by (1) and Corollary 3.18, for any n ∈ Z\{0} and any P ∈ Lλ+, if we write
P = P+ + r(−e2) (0 ≤ r < λ), we have

τ(G; (n, 0); P) < τ(g; (0, 0); P) − λ = τ(g; (0, 0); P+) − λ < τ(G; i+; P),

and hence, the assertion holds. �
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4 Proofs of themain theorems

The following proposition gives us a way of determining trop(V ( f , g)) ∩ L for L ∈
Ls( f , g), and will be the main tool in finding a polynomial that realizes the desired
intersection. Note that the points in trop(V ( f , g)) are equipped with the multiplicities
coming from the intersection multiplicities of V ( f ) ∩ V (g).

Proposition 4.1 Let f , g ∈ k[x±1, y±1] be Laurent polynomials.
(1) Let L ∈ R1( f , g) be a ray. Then, for λ > 0 and some (or any) G ∈

Elim(λ; f , g; L), we have

trop(V ( f , g)) ∩ Lλ+ =
{

{P+ + (vj0(G) − vj0(g))vP+,L} (vj0(G) − vj0(g) < λ),

∅ (vj0(G) − vj0(g) ≥ λ).

In particular, trop(V ( f , g)) ∩ L = ∅ if and only if for any λ > 0 and G ∈
Elim(λ; f , g; L), we have vj0(G) − vj0(g) ≥ λ.

(2) Let L ∈ LS2( f , g) be a line segment. Let l = dist(P+, P−). Then, for λ > 0 and
G ∈ Elim(λ; f , g; L), we have

trop(V ( f , g)) ∩ (Lλ+ ∪ Lλ−)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
P+ + (vj0(G) − vj0(g))vP+,L ,

P− + (vj0(G) − vj0(g))vP−,L

}
(
vj0(G) − vj0(g) < min

{ l
2 , λ

})
,

{
P++P−

2

}
(multiplicity = 2)

( l
2 ≤ vj0(G) − vj0(g) and

l
2 < λ

)
,

∅ (
λ ≤ min

{ l
2 , vj0(G) − vj0(g)

})
.

In particular, if λ > l/2, then we have

trop(V ( f , g)) ∩ L =

⎧
⎪⎪⎨

⎪⎪⎩

{
P+ + (vj0 (G) − vj0 (g))vP+,L ,

P− + (vj0 (G) − vj0 (g))vP−,L

}
(
vj0 (G) − vj0 (g) < l

2

)
,

{
P++P−

2

}
(multiplicity = 2)

( l
2 ≤ vj0 (G) − vj0 (g)

)
.

Proof We may assume that f , g and L satisfy the condition (¶′). Let us show (1). Let
λ > 0 and G ∈ Elim(λ; f , g; L). LetU+ be a sufficiently small neighborhood of Lλ+.
By Corollary 3.18, for a point (0, y) ∈ R

2, we have τ(G; i+; (0, y)) = y − y+.
Assume that v00(G) < λ. Then, noting that τ(G; i0; (0, y)) = −v00(G), we have

y+ − v00(G) < y ⇒ τ(G; i+; (0, y)) > τ(G; i0; (0, y)),

y = y+ − v00(G) ⇒ τ(G; i+; (0, y)) = τ(G; i0; (0, y)),

y < y+ − v00(G) ⇒ τ(G; i+; (0, y)) < τ(G; i0; (0, y)).

Combined with Lemma 3.20 (2), it follows that Trop(V (G)) ∩ U+ ∩ (x = 0) =
{(0, y+−v00(G))}. Note that we considerU+ to deal with the case where v00(G) = 0.
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Fig. 6 Trop(V ( f1)), Trop(V ( f2)) and Trop(V (G)) in a neighborhood U+ of Lλ+

Then, for f2 = f or g, we have

Trop(V ( f2)) ∩ Trop(V (G)) ∩U+ = {(0, y+ − v00(G))} (see Fig. 6).

Hence, {(0, y+ − v00(G))} is an isolated point of Trop(V ( f2)) ∩ Trop(V (G)). Note
that the intersection multiplicity of Trop(V ( f2)) and Trop(V (G)) at (0, y+ −v00(G))

is 1 (see Fig. 6). Hence, by Theorem 2.21, there exists a unique point x ∈ V ( f2,G)

such that trop(x) = (0, y+ − v00(G)). Thus, by Lemma 3.13, we have

trop(V ( f , g)) ∩ Lλ+ = trop(V ( f2,G)) ∩ Lλ+ = {(0, y+ − v00(G))}.

If v00(G) ≥ λ and y ∈ (y+ − λ, y+], then {τ(G; i; (0, y)) | i ∈ Z
2} takes the

maximal value only at i = i+, and we have Trop(V (G)) ∩ Lλ+ = ∅. In this case, by
Lemma 3.13, it follows that trop(V ( f , g)) ∩ Lλ+ ⊂ Trop(V (G)) ∩ Lλ+ = ∅.

Let us show (2). Let λ > 0 andG ∈ Elim(λ; f , g; L). Note that L = {(0, y) | y− ≤
y ≤ y+}, l = y+ − y− and that by Corollary 3.18, we have

τ(G; i+; (0, y)) = y − y+, τ (G; i−; (0, y)) = y− − y.

First, consider the case where v00(G) < min{l/2, λ}. Let y1 := y+ − v00(G). Then,
we have

y1 < y ⇒ τ(G; i+; (0, y)) > τ(G; i0; (0, y)) > τ(G; i−; (0, y)),

y = y1 ⇒ τ(G; i+; (0, y)) = τ(G; i0; (0, y)) > τ(G; i−; (0, y)),

y+ − l

2
< y < y1 ⇒ τ(G; i0; (0, y)) > τ(G; i+; (0, y)) > τ(G; i−; (0, y)).

Combined with Lemma 3.20 (3), it follows that V (trop(G)) ∩ Lλ+ ∩ L
l
2+ = {(0, y1)},

and in the same way as in (1), we have

trop(V ( f , g)) ∩ Lλ+ ∩ L
l
2+ = {(0, y+ − v00(G))}.
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Similarly, we have

trop(V ( f , g)) ∩ Lλ− ∩ L
l
2− = {(0, y− + v00(G))}.

By considering the intersection multiplicity, we have

trop(V ( f , g)) ∩ (Lλ+ ∪ Lλ−) = {(0, y+ − v00(G)), (0, y− + v00(G))}

(in fact, this is equal to trop(V ( f , g)) ∩ L).
Next, consider the case where l/2 ≤ v00(G) and l/2 < λ. Then, we have

y+ + y−
2

< y ⇒ τ(G; i+; (0, y)) > τ(G; i−; (0, y)), τ (G; i0; (0, y)),

y = y+ + y−
2

⇒ τ(G; i+; (0, y)) = τ(G; i−; (0, y)) ≥ τ(G; i0; (0, y)),

y <
y+ + y−

2
⇒ τ(G; i−; (0, y)) > τ(G; i+; (0, y)), τ (G; i0; (0, y)).

Combined with Lemma 3.20 (3), it follows that

V (trop(G)) ∩ (Lλ+ ∪ Lλ−) = V (trop(G)) ∩ L =
{(

0,
y+ + y−

2

)}

.

and in the same way as in (1), we have

trop(V ( f , g)) ∩ (Lλ+ ∪ Lλ−) =
{(

0,
y+ + y−

2

)}

.

By Theorem 2.21, the multiplicity is 2.
Finally, consider the case where λ ≤ min{l/2, v00(G)}. Here, we have

y+ − λ < y ⇒ τ(G; i+; (0, y)) > τ(G; i−; (0, y)), τ (G; i0; (0, y)),

y < y− + λ ⇒ τ(G; i−; (0, y)) > τ(G; i+; (0, y)), τ (G; i0; (0, y)).

Combined with Lemma 3.20 (3), it follows that

V (trop(G)) ∩ (Lλ+ ∪ Lλ−) = ∅,

and hence, trop(V ( f , g)) ∩ (Lλ+ ∪ Lλ−) = ∅.
Thus, we conclude the proof of Proposition 4.1. �
The following corollary is immediate.

Corollary 4.2 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and L ∈ R1( f , g) a
ray. Then, there is at most one point, counted with multiplicity, in the intersection
trop(V ( f , g)) ∩ L.
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The following corollary shows a special case of themain theoremswhereL′
s consists

of one element.

Corollary 4.3 Let f and g = ∑
i, j di j x

i y j be Laurent polynomials in k[x±1, y±1] and
D adivisor satisfying the condition (∗) inDefinition 1.8. Let L ∈ Ls( f , g) be a ray or a
line segment and let�2(L) = j0j1. Then there exists an element d̃j0 ∈ k such that if we
set g′ := g−dj0x

j0 +d̃j0x
j0 , we have trop(g) = trop(g′) and trop(V ( f , g′))|L = D|L .

Proof We will show the statement in the case where L ∈ R1( f , g), and the proof
in the case where L ∈ LS2( f , g) is similar. We may assume that f , g, L and an
endpoint P+ := (0, y+) ∈ L satisfy the condition (¶′). Let P1 = (0, y+ − κ) (κ ≥ 0)
be the intersection point of D and L . Recall that we are using Notation 3.7 and P+
is a vertex of Trop(V ( f1)). Since we have τ( f1; i+; P+) = τ( f1; i0; P+) = 0 and
P1 = P+ − κe2, we have

τ( f1; i+; P1) = τ( f1; i+; P+) − κ(i+ · e2) = −κ.

Thus, we have

κ = −τ( f1; i+; P1) = vi+( f1) − i+ · P1.

Since the coordinates of P1 are assumed to belong to the value group, there
exists an α ∈ k∗ such that val(α) = vi+( f1) − i+ · P1 = κ . Let λ > κ ,
hλ := h(λ; f , f ; i0i1), h′

λ := h(λ; g, f ; i0i1), fλ := f + hλ(x) f = ∑
i, j c

′
i j x

i y j ,

gλ := g + h′
λ(x) f = ∑

i, j d
′
i j x

i y j and Gλ := gλ − (d ′
10/c

′
10) fλ = ∑

i, j ei j x
i y j .

Then Gλ ∈ Elim(λ; f , g; L) (see Definitions 3.9 and 3.10), and by the construction
of gλ, the term β := d ′

00 − d00 ∈ k satisfies val(β) > 0. We set

d̃00 = α − β + d ′
10

c′
10
c′
00 = α + d00 − d ′

00 + d ′
10

c′
10
c′
00 = α + d00 − e00.

Since we have

val(α) = κ ≥ 0, val(β) > 0, val

(
d ′
10

c′
10
c′
00

)

= 0,

we have val(d̃00) = 0 = val(d00) if κ > 0. If κ = 0, we may assume the same by
replacing α if neccesary. Let g′ := g − d00 + d̃00. Then, we have trop(g′) = trop(g).
Note that

h(λ; g′, f ; i0i1) = h(λ; g − d00 + d̃00, f ; i0i1) = h(λ; g, f ; i0i1) = h′
λ,

since in the algorithm of Lemma 3.8, the coefficient of g at i0 is not used. For the
Laurent polynomial

G ′
λ := g′ + h′

λ(x) f − d ′
10

c′
10

fλ = Gλ − d00 + d̃00 =
∑

i, j

e′
i j x

i y j ,

123



Beitr Algebra Geom

we have e′
00 = α and e′

i = ei (i 
= (0, 0)). Here, we have val(e′
00) = val(α) = κ , and

hence, by Proposition 4.1, we have trop(V ( f , g′))|L = D|L . �
Remark 4.4 In Corollary 4.3, we change the coefficient di0 . By symmetry, we may
change the coefficient di1 instead.

Corollary 4.5 Let f and g be Laurent polynomials in k[x±1, y±1], L ∈ Ls( f , g) a ray
or a line segment and �2(L) = j0j1 ∈ �g. Let D := trop(V ( f , g))|L , and assume
that D 
= 0 if L is a ray. Let g′ ∈ k[x±1, y±1] be a Laurent polynomial such that
trop(g) = trop(g′) and

vj0+n(j1−j0)(g
′ − g) > vj0(g) + n(vj1(g) − vj0(g)) + dist(D, E |L) (n ∈ Z),

where E is the stable intersection divisor of Trop(V ( f )) and Trop(V (g)). Then, we
have

trop(V ( f , g′))|L = trop(V ( f , g))|L = D.

Proof We may assume that f , g and L satisfy the condition (¶′). Note that since
trop(g) = trop(g′), we have L ∈ Ls( f , g′) and L is contained in the edge of
V (trop(g′)) corresponding to i0i1 ∈ �g′ , and hence, f , g′ and L also satisfy the
condition (¶′). Since min(vj0+n(j1−j0)(g

′ − g)) > dist(D, E |L), we can take λ such
that λ > dist(D, E |L) and λ < vj0+n(j1−j0)(g

′ − g) for any n ∈ Z. Let hλ :=
h(λ; f , f ; i0i1) and h′

λ := h(λ; g, f ; i0i1). Let fλ := f + hλ(x) f = ∑
i, j c

′
i j x

i y j ,

gλ := g + h′
λ(x) f = ∑

i, j d
′
i j x

i y j and g′
λ := g′ + h′

λ(x) f = ∑
i, j d

′′
i j x

i y j . Then,
we have g′

λ = g′ + h′
λ(x) f = (g′ − g) + gλ. Here, by the assumption, we have

vi0+n(i1−i0)(g
′ − g) > λ (n ∈ Z).

Combined with Lemma 3.12 (2), this implies that μ
(
g′ + h′

λ(x) f ; i0i1
)

> λ, and
hence, (hλ, 0, h′

λ, 0) ∈ H4(λ; f , g′; L). Let Gλ := gλ − (d ′
10/c

′
10) fλ and G ′

λ :=
g′
λ − (d ′′

10/c
′
10) fλ. Then, we have

G ′
λ = (g′ − g) + gλ − d ′

10 + coeff00(g′ − g)

c′
10

fλ

= (g′ − g) + Gλ − coeff00(g′ − g)

c′
10

fλ,

and hence, v00(G ′
λ) = v00(Gλ) = dist(D, E |L). Thus, by Proposition 4.1, we have

trop(V ( f , g′))|L = trop(V ( f , g))|L = D.

�
Theorem 4.6 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and D a divisor sat-
isfying the condition (∗) in Definition 1.8. Let L′

s be a subset of Ls( f , g) and write
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PI := PI( f , g). Assume that L′
s is acyclic with respect to �2 and that for each

L ∈ L′
s, we have dist(D|L , E |L) < μ(g;�2(L)). Then, there exists g′ ∈ k[x±1, y±1]

such that trop(g′) = trop(g) and

trop(V ( f , g′))|L′
s∪PI = D|L′

s∪PI .

Proof Let g = ∑
i, j di j x

i y j and C the union of the elements of �′ := �2(L′
s). We

number and order the endpoints of the elements of �′ as p1 < · · · < pn so that this
ordering is normal on each tree of the forest. We write Li j ∈ L′

s for the ray or the line
segment corresponding to pi p j ∈ �′. We will construct g′ = g − ∑n

i=1 dpi x
pi +

∑n
i=1 d̃pi x

pi by determining g j := g −∑ j
i=1 dpi x

pi +∑ j
i=1 d̃pi x

pi ( j = 1, . . . , n)
inductively. Assume that we have determined gt−1 with trop(g) = trop(gt−1) and so
that trop(V ( f , gt−1))|L = D|L holds for L ∈ L′

s if both vertices of �2(L) belong
to {p1, . . . , pt−1}. Let T be the connected component of C containing pt , and m =
min{i ∈ Z | pi ∈ T }. If t = m, we set d̃pt = dpt . If t > m, there is a unique s such that
the path pmT pt contains ps pt . By the normality of the ordering, s < t holds, and d̃ps is
already determined. By the assumption, we have dist(D|Lst , E |Lst ) < μ(g; ps pt ) =
μ(gt−1; ps pt ). By Corollary 4.3 and Remark 4.4, we determine an element d̃pt ∈ k
such that, if we set gt = gt−1−dpt x

pt + d̃pt x
pt , then we have val(d̃pt ) = val(dpt ) and

trop(V ( f , gt ))|Lst = D|Lst . Note that pt might be contained inAff(pq pr ) (q < r < t ,
pq pr ∈ �′). To show that trop(V ( f , gt ))|Lqr = trop(V ( f , gt−1))|Lqr , we check the
inequality

vpq+n(pr−pq )(gt − gt−1) > vpq (gt−1) + n(vpr (gt−1) − vpq (gt−1)) + κqr ,

where κqr := dist(D|Lqr , E |Lqr ), and applyCorollary 4.5. This clearly holds for n = 0
and 1. For n 
= 0, 1, this follows from

vpq+n(pr−pq )(gt − gt−1) − vpq (gt−1) − n(vpr (gt−1) + vpq (gt−1)) − κqr

≥ vpq+n(pr−pq )(gt−1) − vpq (gt−1) − n(vpr (gt−1) + vpq (gt−1)) − κqr

≥ μ(gt−1; pq pr ) − κqr

> 0.

By repeating this process, we get a Laurent polynomial g′ = g −∑n
i=1 dpi x

pi +
∑n

i=1 d̃pi x
pi such that for all L ∈ L′

s, we have

trop(V ( f , g′))|L = D|L .

Since we have trop(g′) = trop(g), we have PI( f , g) = PI( f , g′) ⊂
trop(V ( f , g′)) with the multiplicities taken into account by Theorem 2.21. This con-
cludes the proof of Theorem 4.6. �
Theorem 4.7 Let f , g ∈ k[x±1, y±1] be Laurent polynomials and D a divisor sat-
isfying the condition (∗) in Definition 1.8. Let L′

s be a subset of Ls( f , g) and write
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PI := PI( f , g). Assume that L′
s is acyclic with respect to �2 and that we can num-

ber and order the endpoints of the elements of �′ := �2(L′
s) as p1 < · · · < pn so

that this order is normal on each tree of the forest and that for each element pi p j of
�′, its affine span Aff(pi p j ) does not contain a point pl with l > i, j . Then, there
exists g′ ∈ k[x±1, y±1] such that trop(g′) = trop(g) and

trop(V ( f , g′))|L′
s∪PI = D|L′

s∪PI .

Proof Let g = ∑
i, j di j x

i y j and C the union of the elements of�′. We write Li j ∈ L′
s

for the ray or the line segment corresponding to pi p j ∈ �′. Let us construct g′ =
g−∑n

i=1 dpi x
pi +∑n

i=1 d̃pi x
pi by determining gt := g−∑t

i=1 dpi x
pi +∑t

i=1 d̃pi x
pi

(t = 1, . . . , n) inductively, as in the proof of Theorem 4.6. By the assumption, pt is
not contained in Aff(pq pr ) (q < r < t , pq pr ∈ �′). Combined with Corollary 4.5, it
follows that trop(V ( f , gt ))|Lqr = trop(V ( f , gr ))|Lqr . Thus, for all L ∈ L′

s, we have
trop(V ( f , g′))|L = D|L .

Since we have trop(g′) = trop(g), we have PI( f , g) = PI( f , g′) ⊂
trop(V ( f , g′)) with the multiplicities taken into account by Theorem 2.21. Thus,
we conclude the proof of Theorem 4.7. �

As an example of applications of Theorem 4.7, we have the following corollary,
which deals with the case where a tropical line and a smooth tropical plane curve
intersect.

Corollary 4.8 Let f , g ∈ k[x±1, y±1] be Laurent polynomials such that trop( f ) =
x ⊕ y ⊕ 0 and Trop(V (g)) is smooth. Let a divisor D satisfy the condition (∗) in
Definition 1.8. Assume that the origin (0, 0) is not a vertex of Trop(V (g)). Then,
there exists a Laurent polynomial g′ ∈ k[x±1, y±1] such that trop(g′) = trop(g) and
trop(V ( f , g′)) = D.

Proof First, we show that all the connected components of Trop(V ( f ))∩Trop(V (g))
are in Ls( f , g) ∪ PI( f , g). Let A be a connected component of (Trop(V ( f )) ∩
Trop(V (g)))\PI( f , g). Since the origin (0, 0) is not a vertex of Trop(V (g)), it is
clear that A is either a ray or a line segment. If the origin is an endpoind of A, the
origin is a smooth vertex in Trop(V ( f )) and is contained in the interior of an edge of
Trop(V (g)). An endpoint P 
= (0, 0) of A is a smooth vertex of Trop(V (g)) and is
contained in the interior of an edge of Trop(V ( f )). Therefore, all the multiplicities of
the endpoints of A are 1. Since Trop(V (g)) is smooth, it is clear that the interior of A
does not contain a vertex of Trop(g). Therefore, we have A ∈ Ls( f , g).

Next, let us show that the map�2 is injective and the union of�′ := �2(Ls( f , g))
is a forest. First, note that �(1)(Trop(V ( f ))) consists of three rays and they have
different slopes and that each region of R2 \ Trop(V (g)) is a convex polyhedral set.
Thus, if �2(L) = �2(L ′), then we have L = L ′. Thus, the map �2 is injective. Next,
we show that the union of �′ is a forest. Assume that the union of �′ is not a forest,
i.e., it contains a cycle C . Let q1, . . . , qm (m ≥ 3) be the vertices of C such that
qiqi+1 ∈ �′ for all i = 1, . . . ,m (we regard m + 1 = 1). Let

Dx := {(x, y) ∈ R
2 | x > y, x > 0},
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Fig. 7 Elements of
�2(Ls( f , g))

Dy := {(x, y) ∈ R
2 | y > x, y > 0},

D0 := {(x, y) ∈ R
2 | 0 > x, 0 > y}.

Let Di (i = 1, . . . ,m) be the closures of the domains ofR2\Trop(V (g)) corresponding
to qi . Then, Di are convex polyhedral sets, and hence, each intersection Di ∩ Di+1
is contained in exactly one of the edges of Trop(V ( f )). Assume that Di ∩ Di+1
(i ≥ 2) is contained in a ray Y− := {(0, y) ∈ R

2 | y ≤ 0} in Trop(V ( f )) (we
can handle the cases where it is contained in other rays in a similar way). Then, we
have Di ∩ D0 
= ∅ or Di+1 ∩ D0 
= ∅. By renumbering if necessary, assume that
Di ∩D0 
= ∅. Then, we have Di ∩Dx = ∅, Di+1∩Dx 
= ∅ and Di+1∩D0 = ∅. Here,
since Di+1 is a convex set and intersects Dx , the intersection Di+1 ∩ Di+2 must be
contained in the ray XY := {(x, y) ∈ R

2 | x = y ≥ 0}. By similar arguments, we have
Di−1∩Di ⊂ X− := {(x, 0) ∈ R

2 | x ≤ 0}, and so on. Thus, if qiqi+1 ∈ �2(Ls( f , g))
is the bold line segment in (a) of Fig. 7, �2(Ls( f , g)) must contain the bold line
segments in (b) of Fig. 7. Here, the 2-dimensional cell of �g enclosed by the bold line
segments in (b) of Fig. 7 corresponds to a vertex of Trop(V (g)). Since the edges of
Trop(V (g)) corresponding to the three 1-simplices are contained in the three edges of
Trop(V ( f )), this vertex must be the origin, and this contradicts the assumption. Thus,
the union of �2(Ls( f , g)) is a forest.

To prove the statement, it is sufficient to show that we can number and order the
endpoints of the elements of �′ as p1 < · · · < pn so that this order is normal on
each tree of the forest and that for each element pi p j of �′, its affine span Aff(pi p j )

does not contain a point pl with l > i, j . Note that for each ij ∈ �′, we have
val(di) = val(dj) < val(dl) (l ∈ (Aff(ij)∩Z

2)\{i, j}). Hence, if i′ and j′ are contained
in the same connected component of the union of �′, then val(di′) = val(dj′). Let
p1, . . . , pn be the endpoints of the elements of �′ such that val(dp1) ≥ val(dp2) ≥
· · · ≥ val(dpn ) and the order p1 < · · · < pn is normal on each tree of the forest.
For an element pi p j of �′, if its affine span Aff(pi p j ) contains a point pl , then
val(dpl ) > val(dpi ) = val(dp j ), and hence, by the condition of the numbering of the
endpoints p1, . . . , pn , we have l < i, j . �

5 Examples

In the following, let k = C{{t}} be the field of Puiseux series with coefficients in the
complex numbers with the usual valuation.
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Fig. 8 The tropical curves and dual subdivisions in Example 5.1

Example 5.1 Let

f = t3x2y2 + t2x2y + t2xy2 + xy + x + y + t−1 ∈ k[x±1, y±1],
g = t3x2y2 + xy + x + y ∈ k[x±1, y±1].

Then, the tropical curves Trop(V ( f )) and Trop(V (g)) are as in Fig. 8, and hence the
intersection Trop(V ( f )) ∩ Trop(V (g)) is the union of the elements of LS2( f , g). If
we setL′

s = LS2( f , g), then it is acyclic with respect to�2 and satisfies the condition
in Theorem 4.7. Therefore, a divisor D satisfying the condition (∗) in Definition 1.8
can be realized. Here, the edges of Trop(V (g)) corresponding to�2(L′

s) forms a loop,
but this is irrelevant to our condition.

Now we will give two examples to show that we need the acyclicity condition.

Example 5.2 Let

f = xy3 + t2xy2 + y3 + t5xy + t y2 + t5y + t10 ∈ k[x±1, y±1],
g = ax + by + 1 ∈ k[x±1, y±1] (val(a) = val(b) = 0).

Then, the tropical curves Trop(V ( f )) and Trop(V (g)) are as in Fig. 9, and hence the
intersection Trop(V ( f ))∩Trop(V (g)) is the union of the elements ofLS2( f , g), and
the stable intersection divisor is

E = (0, 0) + (0,−1) + (0,−4) + (0,−5).

Let

D =
(

0,−1

4

)

+
(

0,−3

4

)

+
(

0,−13

3

)

+
(

0,−14

3

)

.

Then, it is easy to see that there exists a tropical rational function ψ on Trop(V ( f ))
satisfying Supp(ψ) ⊂ Trop(V ( f )) ∩ Trop(V (g)) and (ψ) = D − E . Let L1 =
(0, 0)(0,−1), L2 = (0,−4)(0,−5) and L′

s = LS2( f , g) = {L1, L2}. Note that the
map �2|L′

s
is not injective. Assume that trop(V ( f , g))|L′

s
= D.

First, we consider trop(V ( f , g))|L1 . Noting that �1(L1) = (0, 3)(1, 3) and
�2(L1) = (0, 0)(1, 0), we easily see that (0, 0, 0, 0) ∈ H4(1; f , g; L1) and that
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Fig. 9 The tropical curves and
dual subdivisions in Example
5.2

∑
i, j ei j x

i y j = g − ay−3 f belongs to Elim(1; f , g; L1), we have e00 = 1 − a and,
by Proposition 4.1, val(1 − a) = 1/4.

Next, let us consider trop(V ( f , g))|L2 . For
∑

i, j e
′
i j x

i y j := g − (a/t5)y−1 f ∈
Elim(1; f , g; L2), we have e′

00 = 1−a and val(1−a) = 1/3. This is a contradiction.
Therefore, there does not exist g ∈ k[x±1, y±1] such that trop(g) = x ⊕ y ⊕ 0 and
trop(V ( f , g))|L′

s
= D.

Example 5.2 explains why we need the assumption that the map �2|L′
s
is injective.

Remark 5.3 If we regard the two bold line segments in �g as different things as in
Fig. 9, they form a cycle. Thus, we can regard the assumption that the map �2|L′

s
is

injective is a part of the assumption that the union of the elements of�2(L′
s), regarded

as a multiset, is a forest.

Example 5.4 Let

f = t3x3y3 + t x3y2 + t x2y3 + x2y2 + t x2y + t xy2 + t xy + t3 ∈ k[x±1, y±1],
g = ax + by + 1 ∈ k[x±1, y±1] (val(a) = val(b) = 0).

Then, the tropical curves Trop(V ( f )) and Trop(V (g)) are as in Fig. 10, and hence the
intersection Trop(V ( f ))∩Trop(V (g)) is the union of the elements ofLS2( f , g), and
the stable intersection divisor is

E = (−2, 0) + (−1, 0) + (0,−2) + (0,−1) + (1, 1) + (2, 2).

Let

D =
(

−7

4
, 0

)

+
(

−5

4
, 0

)

+
(

0,−5

3

)

+
(

0,−4

3

)

+
(
4

3
,
4

3

)

+
(
5

3
,
5

3

)

.

It is easy to see that there exists a tropical rational functionψ on Trop(V ( f )) satisfying
Supp(ψ) ⊂ Trop(V ( f ))∩Trop(V (g)) and (ψ) = D−E . Let L1 = (1, 1)(2, 2), L2 =
(−1, 0)(−2, 0), L3 = (0,−1)(0,−2) andL′

s = LS2( f , g) = {L1, L2, L3}. Note that
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Fig. 10 The tropical curves and
dual subdivisions in Example
5.4

the union of the elements of�2(LS ′
2) is not a forest.Assume that trop(V ( f , g))|LS ′

2
=

D.
First, we consider trop(V ( f , g))|L1 . We have �2(L1) = (0, 1)(1, 0). We regard

(0, 1) as j0, and then for
∑

i, j ei j x
i y j := g − (a/t)x−2y−2 f ∈ Elim(1; f , g; L1),

we have e01 = b − a. Then, by Proposition 4.1, we have val(b − a) = 1/3.
Next, let us consider trop(V ( f , g))|L2 and trop(V ( f , g))|L3 . For

∑
i, j e

′
i j x

i y j :=
g − (b/t)x−1y−1 f ∈ Elim(1; f , g; L2), we have e′

00 = 1− b and val(1− b) = 1/4.
For

∑
i, j e

′′
i j x

i y j := g − (a/t)x−1y−1 f ∈ Elim(1; f , g; L3), we have e′′
00 = 1 − a

and val(1 − a) = 1/3. Thus, we have

val(1 − a) = val(b − a) = 1

3
,

val(1 − b) = 1

4
.

Then, we would have

1

3
= val(1 − a) = val((1 − b) + (b − a)) = 1

4
.

This is a contradiction. Therefore, there does not exist g ∈ k[x±1, y±1] such that
trop(g) = x ⊕ y ⊕ 0 and trop(V ( f , g))|L′

s
= D.

Example 5.4 explains why we need the assumption that the union of the elements
of �2(L′

s) is a forest.
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