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Abstract. The solid torus core recognition problem is the problem that, given a

knot in the solid tours, decides whether the knot is the core of the solid torus. That
problem is in NP since the thickened torus recognition problem is in NP. We give

an alternate proof of that fact and prove that the problem is in co-NP. It is also

proved that the Hopf link recognition problem is in NP and co-NP as a corollary
of this result.

1. Introduction

The unknot recognition problem is the problem of deciding whether the knot
K represented by a given knot diagram is the unknot in the 3-sphere, namely, the
problem of deciding whether K has the diagram with no crossings. This prob-
lem is one of the fundamental problems in the computational topology. Haken
showed in [4] that there is an algorithm to solve the unknot recognition problem
using normal surface theory. With regard to the computational complexity of
this problem, Hass, Lagarias and Pippenger showed in [6] that this problem is
in NP, i.e. there is a non-deterministic polynomial time algorithm to solve the
problem. Moreover, it is proved by Lackenby in [10] that the unknot recognition
problem is in co-NP. Thus, the unknot recognition problem is in NP ∩ co-NP.
However, it remains to be an open problem whether this problem is in P.

A two-component link L in the 3-sphere S3 is called the Hopf link if L has
the diagram depicted as in Figure 1.1. The Hopf link recognition problem is
the problem of deciding whether the link represented by a given link diagram is
the Hopf link. It is known that a two-component link L in S3 is the Hopf link
if and only if the fundamental group of the exterior of L is an abelian group.
See Chapter 6 of [9]. Since the exterior of the Hopf link is the thickened torus
T 2 × [0, 1] and the fundamental group of T 2 × [0, 1] is an abelian group, a two-
component link in S3 is the Hopf link if and only if the exterior of the link is T 2×
[0, 1]. Recently, Haraway and Hoffman announced in [5] that for every compact
surface Σ, the Σ× [0, 1] recognition problem is in NP. This immediately implies
that the Hopf link recognition is in NP. In addition, assuming the generalized
Riemann hypothesis, the Hopf link recognition problem is in co-NP ([13]).
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Figure 1.1. A diagram of the Hopf link

In this paper, we consider knots in the solid torus V . When we regard V
as the product space of the annulus A and the unit interval [0, 1], a diagram
of a knot K in V is the image of a generic projection of K onto A × {0} with
over/under information at each double point. The knots in V that are non-affine
and prime up to 6 crossings are completely classified in [3]. Here, a knot K in
V is said to be non-affine if there are no embedded 3-ball in V containing K.

We regard the solid torus V as D2 × S1, where D2 denotes the disk and S1
the circle. Let x be a point of the interior of D2. A knot K is called the core
of V if K is ambient isotopic to the knot {x} × S1 in D2 × S1. The solid torus
core recognition problem is the problem that, given a knot K in the solid torus
V , decides whether K is the core of V , namely, the problem of deciding whether
K is non-affine and has a diagram with no crossings.

Let L = K1∪K2 be a two-component link in S3 such that K1 is the unknot.
Since the exterior of K1 is the solid torus, K2 can be regard as a knot in the
solid torus. In this situation, we see that K2 is the core of the exterior of K1

if and only if L is the Hopf link, i.e. the exterior of L is the thickened torus.
For this reason, a knot K in the solid torus V is the core of V if and only if
the exterior of K is the thickened torus. Thus, the solid torus core recognition
problem is in NP.

The proof that the Σ× [0, 1] recognition problem is in NP by Haraway and
Hoffman uses the powerful algorithm for cutting a 3-manifold along a properly
embedded surface developed by Lackenby [10]. In this paper, we give an alternate
proof that is independent of the results of Lackenby [10] for the theorem that
the solid torus core recognition problem is in NP, i.e. we give a new non-
deterministic polynomial time algorithm for that problem. Our algorithm does
not contain the operation of cutting a 3-manifold along a properly embedded
surface, and so it is simpler than the algorithm of Haraway and Hoffman.

Theorem 1.1. The solid torus core recognition problem is in NP.

Haraway and Hoffman also announced in [5] that for every compact surface
Σ, the Σ× [0, 1] recognition problem is in co-NP among orientable irreducible 3-
manifolds. Using that theorem, we can show that the solid torus core recognition
problem is in co-NP.



The computational complexity of the solid torus core recognition problem 3

Theorem 1.2. The solid torus core recognition problem is in co-NP.

A two-component link L = K1 ∪ K2 in the 3-sphere S3 is the Hopf link if
and only if K1 is the unknot and K2 is the core of S3− intN(K2). Thus, we also
give an alternate proof of the theorem that the Hopf link recognition is in NP
as a corollary of Theorem 1.1, and it is proved that the Hopf link recognition
is in co-NP as a corollary of Theorem 1.2 without assuming the generalized
Riemann hypothesis.

Corollary 1.3. The Hopf link recognition problem is in NP ∩ co-NP.
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2. Preliminaries

2.1. Knots in the solid torus. A knot K in a 3-manifold M is a piecewise-
linear simple closed curve embedded in M . Two knots K and K ′ in M are
ambient isotopic if there is a continuous map F : M × [0, 1] → M such that, if ft
denotes F |M×{t}, ft : M → M is a homeomorphism for each t ∈ [0, 1], f0 is the
identity map, and f1(K) = K ′. Given a knot K in a 3-manifold M , the exterior
of K is obtained from M by removing the interior of the regular neighborhood
N(K) of K.

Definition 2.1. Let K be an oriented knot in the solid torus V . Let [K]
denote the homology class of H1(V ;Z) represented by K. Fix an isomorphism
f from H1(V ;Z) to Z. Then the rotation number, denoted by rf (K), of K is
defined by f([K]) ∈ Z.

The absolute value of the rotation number does not depend on an orientation
of a knot and an isomorphism from H1(V ;Z) to Z. Thus, for an unoriented knot
K in V , we denote by |r(K)| the absolute value of the rotation number, where
an orientation of K and an isomorphism from H1(V ;Z) to Z are auxiliarily fixed.
This is an invariant of unoriented knots in V . If a knot K is the core of V , then
we see that |r(K)| = 1. However, |r(K)| = 1 does not necessarily mean that K
is the core of V (See Figure 2.1).

2.2. Triangulations. Let ∆ = {∆1, . . . ,∆n} be a collection of disjoint n
tetrahedra in R3. A face-pairing on ∆ is an affine map between two distinct
faces of tetrahedra ∆i and ∆j (possibly i = j). Let F be a collection of face-
pairings on ∆ such that each face of the tetrahedra appears at most once. Then
the pair (∆,F) is called a generalized triangulation. In this paper, we call a
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Figure 2.1. A knot K with |r(K)| = 1 but not the core of the
solid torus

generalized triangulation simply a triangulation. The underlying space, denoted
by |T |, of a triangulation T = (∆,F) is the quotient space obtained by gluing
the union of the tetrahedra by the face-pairings. If |T | is homeomorphic to a 3-
manifoldM , then T is called a triangulation of M . We abuse notation by writing
∆i for the image of a tetrahedron ∆i in |T |. The size, denoted by size(T ), of
a triangulation T is the number of tetrahedra of T . If size(T ) = n, then T is
called an n-tetrahedra triangulation.

An input of the solid torus core recognition problem is given as a pair of a
triangulation of the solid torus and a knot in its 1-skeleton.

Definition 2.2 (The solid torus core recognition problem). Let TV
be a triangulation of the solid torus V . Assume that a knotK in V is represented
by a collection of edges of the 1-skeleton of TV . The solid torus core recognition
problem is the problem that, given the pair (TV ,K), decides whether K is the
core of V .

Let TV be an n-tetrahedra triangulation of the solid torus V . By labeling
the vertices of the tetrahedra of TV by 1, . . . , 4n, each face-pairing of TV is
represented by a pair of triples of integers ((i1, i2, i3), (j1, j2, j3)). Since the
number of face-pairings of TV is at most 2n, the face-pairings of TV is represented
by at most 2n pairs of triples of integers. In addition, by labeling the edges of

T (1)
V by integers, a knot K in T (1)

V is represented by at most O(n) integers.
For these reasons, the input size of the solid torus core recognition problem is
measured by the size of an input triangulation of the solid torus.

Let TM be a triangulation of a compact 3-manifoldM containing a knotK in

its 1-skeleton T (1)
M . Let T ′′

M denote the triangulation obtained by barycentrically
subdividing TM twice. A triangulation of the exterior of K is obtained from T ′′

M

by removing the tetrahedra containing K in its edges. From this construction,
we have the following.
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Lemma 2.3. Let TM be an n-tetrahedra triangulation of a compact 3-

manifold M containing a knot K in its 1-skeleton T (1)
M . Then there is a O(n)

time algorithm that, given TM and K, outputs a triangulation TE of the exterior
of K. Moreover, size(TE) is at most O(n).

Proof. The barycentric subdivision is performed in O(size(TM )) = O(n)
time and multiplies the number of tetrahedra by 24. Thus, the triangulation T ′′

M

obtained by barycentrically subdividing TM twice is obtained in O(n) time, and
we have size(T ′′

M ) = 242n. Therefore, we can obtain a triangulation TE of the
exterior of K by removing the tetrahedra containing K in O(size(T ′′

M )) = O(n)
time, and the number of tetrahedra of TE is less than 242n.

2.3. An algorithm for calculating the rotation number of a knot in
the solid torus. Suppose that TV is a triangulation of the solid torus V and

K is a knot in V represented by a collection of edges of T (1)
V . In this subsection,

we describe that |r(K)| is calculated in polynomial time of size(TV ).

Lemma 2.4. Let TV be an n-tetrahedra triangulation of the solid torus V

and K be a knot in V represented by a collection of edges of T (1)
V . Then there

is an algorithm that, given TV and K, outputs |r(K)| in polynomial time of n.

Proof. For each dimension k ≥ 0, we denote the k-simplices of TV by
ck1 , . . . , c

k
nk
, and fix an orientation for each k-simplex cki . Let Ck denote the

k-chain group of TV over Z. We denote the set of the n × m matrices over Z
by Mn,m(Z). Let Dk ∈ Mnk−1,nk

(Z) denote the representation matrix of the
boundary operator ∂k : Ck → Ck−1 with respect to the standard basis. Then
there are unimodular matrices P ∈ Mn0,n0(Z) and Q ∈ Mn1,n1(Z) such that
PD1Q is the Smith normal form of D1. The matrices P and Q can be calculated
in polynomial time of n ([12]). Let Q = (q1, . . . , qn1

), D2 = (d1, . . . ,dn2
), and

rk = rank(Im(Dk)) for each k. We see that {q1, . . . , qn1
} is a basis of C1 and

{qr1+1, . . . , qn1
} is a basis of Ker(D1).

A basis of Im(D2) is obtained as follows. Let S = ∅. For each i (1 ≤ i ≤ n2),
if S ∪ {di} is linearly independent, then add di to S. We can check whether
a set of vectors {dj1 , . . . ,djm} is linearly independent by calculating the Smith
normal form of the matrix (dj1 , . . . ,djm) and checking the number of elementary
divisors is m. Unimodular matrices P ′ and Q′ such that P ′(dj1 , . . . ,djm)Q′ is
the Smith normal form are calculated in polynomial time of n since m is at most
n. Thus, the Smith normal form of the matrix (dj1 , . . . ,djm) is calculated in
polynomial time of n, and so a basis {di1 , . . . ,dir2

} of Im(D2) is obtained in
polynomial time of n.

Since H1(V ;Z) ≃ Z , there is a vector qj (r1 + 1 ≤ j ≤ n1) such that
{qj ,di1 , . . . ,dir2

} is a basis of Ker(D1). We can find qj by calculating rank(⟨qj′ ,
di1 , . . . ,dir2

⟩) for each j′ ∈ {r1 + 1, . . . , n1}. The rank of ⟨qj′ ,di1 , . . . ,dir2
⟩ is

obtained by calculating the Smith normal form of (qj′ ,di1 , . . . ,dir2
). Thus, a

vector qj is obtained in polynomial time of n. Then we see that {qj ,di1 , . . . ,dir2
, q1, . . . , qr1} is a basis of C1. Let X = (qj ,di1 , . . . ,dir2

, q1, . . . , qr1). Now,



6 Yuya Nishimura

for each 1-cycle α in V , if α = a1c
1
1 + · · · + an1

c1n1
, then the homology class

[α] ∈ H1(V ;Z) is the first element of X−1(a1, . . . , an1)
⊤. The inverse of X is

calculated in polynomial time of n by using the Gaussian elimination method.
Thus, given TV and K, we can calculate |r(K)| in polynomial time of n.

2.4. Normal surfaces. A properly embedded arc in a triangle is an elemen-
tary arc if the arc connects the interior of distinct edges of the triangle. An
elementary disk in a tetrahedron ∆i is a properly embedded disk in ∆i whose
boundary consists of three or four elementary arcs of the faces of ∆i depicted as
in Figure 2.2. Two elementary disks in a tetrahedron are said to be of the same
type if the vertices of them are on the same edges of the tetrahedron. There are
seven types of elementary disks in a tetrahedron. A properly embedded surface
F in a compact 3-manifold M with a triangulation TM is called a normal surface
with respect to TM if for each tetrahedron ∆i of TM , ∆i ∩ F is a collection of
disjoint elementary disks.

Figure 2.2. Elementary disks

Let n be the size of a triangulation TM of a compact 3-manifold M . We
record a normal surface F with respect to TM as the vector v(F ) ∈ Z7n, where
each coordinate describes the number of elementary disks of each type in each
tetrahedron. The vector v(F ) is called the vector representation of a normal
surface F .

A vector in Z7n does not always represent a normal surface with respect
to an n-tetrahedra triangulation TM . We describe the conditions for a vector
x = (x1,1, . . . , x1,7, x2,1, . . . , xn,7) ∈ Z7n to represent a normal surface F . Firstly,
each coordinate xi,j is greater than or equal to 0. This condition is called the non-
negative condition. Secondly, the elementary disks in two adjacent tetrahedra
are glued together. Since for each face of a tetrahedron of TM , there are two
types of elementary disks whose intersection with the face are the same type
elementary arcs, the equation

xi,s + xi,t = xj,u + xj,w

holds for each type of elementary arcs of an interior face of TM . See Figure 2.3.
Since there are three types of elementary arcs in each interior face and at most 2n
interior faces in TM , there are at most 6n equations. The matrix ATM

is defined
by the coefficient matrix of these equations. We call this matrix the matching
matrix of TM . The matching condition is the condition that ATM

x = 0. If there
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Figure 2.3. Elementary disks in adjacent tetrahedra

are distinct types of quadrilateral elementary disks in a tetrahedron, they must
intersect. The final condition is that each tetrahedron has at most one type
quadrilateral elementary disks. This is called the quadrilateral condition. Haken
showed in [4] that a vector x ∈ Z7n represents a normal surface with respect
to an n-tetrahedra triangulation TM if and only if x satisfies the non-negative
condition, the matching condition, and the quadrilateral condition.

Vertex surfaces are introduced by Jaco and Ortel [7] and by Jaco and Tollef-
son [8]. Let TM be an n-tetrahedra triangulation of a compact 3-manifold M
and ATM

denote the matching matrix of TM . The Haken normal cone CTM
of

TM is the polyhedral cone in R7n defined by ATM
x = 0 and xi ≥ 0 for each

coordinate. The integer points of CTM
that satisfy the quadrilateral condition

represent the normal surfaces with respect to TM . A normal surface F with
respect to TM is a vertex surface if F is connected and 2-sided in M , and the
vector representation v(F ) is on an extreme ray, namely a 1-dimensional face,
of CTM

.
Let M be a compact 3-manifold. A properly embedded surface F in M

that is not the disk or the 2-sphere is said to be essential if F is incompressible,
∂-incompressible, and not parallel to ∂M .

Theorem 2.5 (Jaco-Tollefson [8]). Let TM be a triangulation of M =
S× [0, 1], where S is a closed surface that is not a 2-sphere or a projective plane.
Then there is an essential two-sided annulus F that is a vertex surface with
respect to TM .

If K is the core of the solid torus, then the exterior of K is homeomorphic
to T 2 × [0, 1], where T 2 is the torus. Therefore, we have the following lemma.

Lemma 2.6. Let K be the core of the solid torus V and E = V − intN(K).
Assume that TE is a triangulation of E. Then there is an essential annulus F
that is a vertex surface with respect to TE.

Let M be a compact irreducible 3-manifold. A collection of properly em-
bedded disjoint disks {D1, . . . , Dn} in M is called a complete disk system for
M if each boundary component of the 3-manifold obtained by cutting M along⋃n

i=1 Di is incompressible.

Theorem 2.7 (Jaco-Tollefson [8]). Let TM be a triangulation of a com-
pact irreducible 3-manifold M whose boundary is compressible. Then there is
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a complete disk system {D1, . . . , Dn} for M such that each disk Di is a vertex
surface with respect to TM .

Vertex surfaces play an important role in analyzing the computational com-
plexity of algorithms using normal surfaces. Hass, Lagarias, and Pippenger
showed the following.

Theorem 2.8 (Hass-Lagarias-Pippenger [6]). Let TM be an n-tetrahedra
triangulation of a compact 3-manifold M . Assume that F is a vertex surface
with respect to TM represented by v(F ) = (x1, . . . , x7n) ∈ Z7n. Then each xi is
bounded from above by 27n−1.

This theorem implies that any vertex surface with respect to a triangulation
TM of a compact 3-manifold M is represented by a binary string whose length
is at most O(size(TM )2). Thus, if TM is an n-tetrahedra triangulation, then we
can guess a vertex surface with respect to TM in non-deterministic polynomial
time of n. Indeed, the unknot recognition problem is solved in non-deterministic
polynomial time by guessing a vertex surface with respect to a triangulation of
the exterior of a given knot.

Theorem 2.9 (Hass-Lagarias-Pippenger [6]). There is a non-deterministic
polynomial time algorithm that, given a knot diagram D, decides whether the
knot represented by D is the unknot.

Assume that x = (x1, . . . , x7n) ∈ Z7n is a vector such that xi ≤ 27n−1 for
each coordinate, that is, x is a candidate for the vector representation of a vertex
surface with respect to an n-tetrahedra triangulation of a compact 3-manifold.
In this situation, some computations on normal surfaces can be performed in
polynomial time.

Lemma 2.10. There is a polynomial time algorithm that, given an n-
tetrahedra triangulation TM of a compact 3-manifold M and a vector x =
(x1, . . . , x7n) ∈ Z7n such that xi ≤ 27n−1 for each coordinate, decides whether x
represents a normal surface with respect to TM .

Proof. We can decide whether x represents a normal surface with respect
to TM by verifying the non-negative condition, the matching condition, and the
quadrilateral condition. Since each coordinate is less than or equal to 27n−1, we
can verify each condition in polynomial time of n.

We describe a polynomial time algorithm that calculates the Euler charac-
teristic χ(F ) of a normal surface F . Schleimer [11] constructed a polynomial
time algorithm that calculates χ(F ) in the case where F is closed. By adding
a slight change to this algorithm, we can calculate χ(F ) of a normal surface F
with non-empty boundary.

Lemma 2.11. Let TM be an n-tetrahedra triangulation of a compact 3-
manifold M (possibly ∂M ̸= ∅) and F be a normal surface with respect to TM
represented by a vector x = (x1, . . . , x7n) ∈ Z7n. Assume that xi ≤ 27n−1 for
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each coordinate. Then there is a polynomial time algorithm that, given TM and
x, calculates the Euler characteristic χ(F ).

Proof. The Euler characteristic χ(F ) is calculated by the formula nf −
ne + nv, where nf , ne, and nv is the number of faces, edges, and vertices of F ,
respectively. The number of faces nf is the sum of the coordinates

∑
xi. The

number of edges ne is calculated as follows. For each face f of T (2)
M and each

integer i ∈ {1, . . . , 7n}, set ϵf,i = 1 if the elementary disks described by xi meet
f , otherwise set ϵf,i = 0. Then

ne =
∑
f :face

7n∑
i=1

ϵf,ixi

deg(f)
,

where deg(f) denotes the number of tetrahedra of TM containing f . Similarly,

the number of vertices nv is also calculated as follows. For each edge e of T (1)
M

and each integer i ∈ {1, . . . , 7n}, set ϵe,i = 1 if the elementary disks described
by xi meet e, otherwise set ϵe,i = 0. Then

nv =
∑

e:edge

7n∑
i=1

ϵe,ixi

deg(e)
,

where deg(e) denotes the number of tetrahedra of TM containing e. Since each
coordinate xi is less than or equal to 27n−1, we can calculate these values in
polynomial time of n.

3. Knots in the solid torus

In this section, we give a necessary condition and a sufficient condition for
a knot in the solid torus to be the core of the solid torus. Let V and W be solid
tori and K be a knot in V . For any essential simple closed curve α in ∂V , let
Mα denote the 3-manifold obtained by gluing ∂V and ∂W so that α and the
meridian of W are identified, KMα denote the knot in Mα obtained from K, and
EMα

denote the exterior of KMα
. The aim of this section is to prove Lemma

3.1.

Lemma 3.1. Let V and W be solid tori. Let K be a knot in V with |r(K)| =
1. If K is the core of V , then there is a properly embedded essential annulus A
in EV = V − intN(K) such that ∂A meets both ∂V and ∂N(K), and for any
essential simple closed curve α in ∂V , there is a properly embedded essential
disk D in EMα

. Moreover, if there is a properly embedded essential annulus A
in EV such that ∂A meets both ∂V and ∂N(K), and for some essential simple
closed curve α in ∂V that is not the meridian of V , there is a properly embedded
essential disk D in EMα

, then K is the core of V .

Note that even though there is a properly embedded essential disk in EMα

for some essential simple closed curve α in ∂V , K may not necessarily be the
core of V in the situation of Lemma 3.1. For example, we consider the knot K
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in the solid torus V depicted as in Figure 2.1, and suppose that α is a longitude
of V . In this case, Mα is the 3-sphere S3, and KMα

is the unknot in S3. Thus,
there is a properly embedded essential disk in EMα

, but K is not the core of V .

Lemma 3.2. Let K be a knot in the solid torus V , and assume that |r(K)| ≠
0. Then the exterior E of K is irreducible and ∂-irreducible.

Proof. Suppose that E is reducible, i.e. there is a properly embedded
essential 2-sphere S in E. Since V is irreducible, S bounds a 3-ball containing
K in V . This implies that |r(K)| = 0. This is a contradiction.

Suppose that E is ∂-reducible, i.e. there is a properly embedded essential
disk D in E. Let S′ be the 2-sphere in E obtained from ∂V by ∂-compression
along D. We see that S′ bounds a 3-ball containing K in V . Thus, |r(K)| = 0
holds. This is a contradiction.

The next lemma is used in Lemma 3.4 and 3.6.

Lemma 3.3. Let M be a compact 3-manifold with non-empty boundary.
Assume that F1 and F2 are properly embedded surfaces in M such that F1 and
F2 intersect transversely. Then we can isotope F1 and F2 so that there are no
bigons in ∂M whose boundaries consist of parts of ∂F1 and ∂F2. Moreover, this
procedure does not increase the number of intersections of F1 and F2.

Proof. Suppose that there is a bigon B whose boundary consists of two
arcs α1 and α2, where αi is a sub-arc of ∂Fi for each i. Let c1 and c2 denote
the vertices of B and βi denote the arc of F1 ∩ F2 containing ci for each i. In
this situation, we can remove B by moving α1 to α2 along B (See Figure 3.1).
If β1 and β2 are distinct edges, then this isotopy decrease |F1 ∩ F2|. Otherwise

B

F1 F2

α1α2

β1

β2

c1

c2

∂M

F ′
1 F ′

2

Figure 3.1. An isotopy to remove a bigon B in the boundary of M

this isotopy does not change |F1 ∩ F2|. By repeating the above procedure, we
can remove all bigons in the boundary of M without increasing |F1 ∩ F2|.

Suppose that EV is the exterior of a knot K in the solid torus V and A is
a properly embedded essential annulus in EV such that ∂A meets both ∂V and
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∂N(K) as in Lemma 3.1. First, we consider the case where A ∩ ∂N(K) is not
the meridian of N(K).

Lemma 3.4. Let E denote the exterior of a knot K in the solid torus V .
Assume that |r(K)| = 1. Then K is the core of V if and only if there is a
properly embedded essential annulus A in E such that ∂A meets both ∂N(K)
and ∂V , and ∂A ∩ ∂N(K) is not the meridian of N(K).

Proof. Suppose thatK is the core of V . SinceK is parallel to ∂V , there is
a properly embedded essential annulus A in E such that ∂A meets both ∂N(K)
and ∂V , and ∂A ∩ ∂N(K) is not the meridian of N(K).

Conversely, suppose that A is a properly embedded essential annulus such
that ∂A meets both ∂N(K) and ∂V , and ∂A ∩ ∂N(K) is not the meridian of
N(K). Let mk denote the meridian of N(K). We take A so that |∂A ∩mk| is
minimal up to isotopy of A. If |∂A ∩mk| = 1, then we see that K is parallel to
∂V . Since |r(K)| = 1, K is the core of V .

Suppose that |∂A ∩ mk| ≥ 2. We take the meridian disk D of V so that
|D∩K| is minimal up to isotopy ofD. Let F denote the surfaceD−int(D∩N(K))
in E.

Claim. The surface F is incompressible and ∂-incompressible in E.

Proof. Suppose that there is a compression disk δ for F . Then ∂δ divides
F into the two sub-surfaces d1 and d2. Assume that d1 contains ∂F ∩∂V . Since
∂δ is essential in F , we have |(δ∪d1)∩∂N(K)| < |F ∩∂N(K)|. This contradicts
the minimality of |D ∩K|. Therefore, F is incompressible.

Suppose that there is a ∂-compression disk δ for F . First, we consider the
case where the arc ∂δ ∩F connects the same component of ∂F . The arc ∂δ ∩F
divides F into the two sub-surfaces d1 and d2. We consider the first homology
class [∂D] ∈ H(∂V,Z). Since we have 0 ̸= [∂D] = [∂(d1 ∪ δ)] + [∂(d2 ∪ δ)],
either of ∂(d1 ∪ δ) or ∂(d2 ∪ δ) is essential in ∂V . Without loss of generality,
assume that ∂(d1 ∪ δ) is essential in ∂V . Since ∂δ ∩F is essential in F , we have
|(d1 ∪ δ)∩ ∂N(K)| < |F ∩ ∂N(K)|. This contradicts the minimality of |D ∩K|.
Next, we consider the case where ∂δ ∩ F connects distinct components of ∂F .
The loops ∂F ∩ ∂N(K) divide ∂N(K) into annuli. Let S denote the annulus
containing the arc ∂δ ∩ ∂N(K). We regard N(δ) as δ × [0, 1]. Then the disk
(S − (S ∩N(δ))) ∪ δ × {0, 1} is a compression disk for F . This contradicts that
F is incompressible. Therefore, F is ∂-incompressible.

We take F so that |F ∩ A| is minimal up to isotopy of F . Using Lemma
3.3, all bigons in ∂E bounded by ∂F and ∂A are removed while keeping the
minimality of |F ∩A|.

Claim. There are no loops and arcs of F ∩A that are inessential in A.

Proof. Suppose that α is a loop of F ∩ A such that α is inessential in A
and is an innermost loop in A with respect to F ∩ A. Let δ denote the disk in
A bounded by α. Since F is incompressible, α bounds a disk δ′ in F . We see
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that the 2-sphere δ∪ δ′ bounds a 3-ball B in E since E is irreducible. Thus, α is
removed from F ∩A by an isotopy of F along B. This contradicts the minimality
of |F ∩A|.

Suppose that α is an arc of F ∩A such that α is inessential in A and is an
outermost arc in A with respect to F ∩ A. Let δ denote the disk in A bounded
by α and a sub-arc of ∂A. Since F is ∂-incompressible, α co-bounds a disk δ′

in F with a sub-arc of ∂F . Since E is ∂-irreducible, ∂δ ∪ ∂δ′ bounds a disk δ′′

in ∂E. We see that the 2-sphere δ ∪ δ′ ∪ δ′′ bounds a 3-ball B in E since E is
irreducible. Therefore, α is removed from F ∩ A by an isotopy of F along B.
This is a contradiction. Thus, there are no loops and arcs of F ∩ A that are
inessential in A.

Since each component of ∂F ∩ ∂N(K) is the meridian of N(K) and ∂A ∩
∂N(K) is an essential loop that is not the meridian of N(K), we see that ∂A ∩
∂F ̸= ∅. This implies that each component of F ∩A is an essential arc in A.

Since there are no bigons in ∂E bounded by ∂F and ∂A, there is an integer
m such that each component of ∂F ∩∂N(K) intersects ∂A∩∂N(K) as m points.
By the assumption that |∂A ∩mk| ≥ 2, we see that m ≥ 2.

Claim. The number of components of ∂F ∩ ∂N(K) is one.

Proof. Let n denote the number of components of ∂F ∩∂N(K). Suppose
that n ≥ 2. Let (B3, τ) denote the tangle in the 3-ball B3 such that (B3, τ) is
obtained by cutting (V,K) along D. We see that τ has n strings t1, . . . , tn. Let
Eτ denote the exterior of τ , and let F+ and F− denote the two sub-surfaces
of ∂Eτ obtained from F . The surface F divides A into nm disks since each
component of F ∩ A is an essential arc in A. These disks are denoted by Ai,j

(1 ≤ i ≤ n, 1 ≤ j ≤ m), where Ai,j is a disk intersecting ∂N(ti). Now, we have
the following:

• for each string ti, there is a disk Ai,j since ∂A ∩ ∂N(K) is not the
meridian of N(K), and

• for each disk Ai,j , ∂N(ti) ∩ ∂Ai,j is an arc that connects F+ and F−

since there are no bigons in ∂E bounded by ∂F and ∂A.

These imply that (Eτ ,
⋃
Ai,j) is homeomorphic to (F+ × [0, 1], (

⋃
Ai,j ∩ F+)×

[0, 1]) as a pair.
Let a±i,j denote the arc Ai,j ∩ F± and b±i denote ∂N(ti) ∩ ∂F±. We define

f : F− → F+ to be the homeomorphism such that E is obtained from Eτ by
gluing F+ and F− by f . We also define g : F+ → F− to be the homeomorphism
such that g(b+i ) = b−i and g(a+i,j) = a−i,j for each i and j. Note that g is just the

projection from F+ to F− since (Eτ ,
⋃
Ai,j) ≃ (F+×[0, 1], (

⋃
Ai,j∩F+)×[0, 1]).

Let h = f ◦ g. If k > 0, then the function hk : F+ → F+ is defined by hk−1 ◦ h,
and if k = 0, then h0 : F+ → F+ is defined by the identity map. Since A is
connected, we have the following:

• hnm(a+1,1) = a+1,1 and
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• for each i and j (1 ≤ i ≤ n, 1 ≤ j ≤ m), there is an integer k (0 ≤ k ≤
nm− 1) such that a+i,j = hk(a+1,1).

Let s denote the boundary component ∂F+ −
⋃
b+i . Now, the points s ∩

⋃
a+i,j

divide s into nm sub-arcs s1, . . . , snm. We see that for each sub-arc si, there is
an integer k (0 ≤ k ≤ nm− 1) such that si = hk(s1).

We show that for each boundary component b+i , the arcs of A ∩ F that
meet b+i are mutually parallel in F+. If n = 2, i.e. F+ is the two-punctured
disk, then the arcs of A ∩ F that meets b+i are must mutually parallel. Suppose
that n ≥ 3. For simplicity, we show that the arcs meeting b+1 are mutually
parallel. Suppose that a+1,j and a+1,k are not parallel. In this situation, without

loss of generality, we can suppose that a+1,j ∪ a+1,k divides the set {b+2 , . . . , b+n }
into the two set X = {b+2 , . . . , b

+
l } and Y = {b+l+1, . . . , b

+
n } and |X| ≤ |Y |. Let

p be an integer such that hp(b+1 ) is in X. Then hp(a+1,j) ∪ hp(a+1,k) divides the

set {hp(b+2 ), . . . , h
p(b+n )} into the two set Xp = {hp(b+2 ), . . . , h

p(b+l )} and Y p =

{hp(b+l+1), . . . , h
p(b+n )}. Here, we see that a+1,j ∪a+1,k intersects hp(a+1,j)∪hp(a+1,k)

since |X − {hp(b1)}| < |Xp| depicted as in Figure 3.2. This contradicts that A
is an embedded annulus. Thus, we see that the arcs of A ∩ F that meet b+i are
mutually parallel for each b+i .

F+

b+1

b+l

b+l+1

hp
(
b+1

)

hp
(
b+l

)
hp

(
b+l+1

)

a+1,j

a+1,k

hp
(
a+1,j

)

hp
(
a+1,k

)

Figure 3.2. Arcs that are not parallel in F+

From this fact and the assumption that m ≥ 2, we see that there is a sub-arc
si of s bounded by endpoints of parallel arcs of A∩F . This implies that for each
integer k, hk(si) is bounded by endpoints of parallel arcs of A∩F , that is, each
sub-arc of s is bounded by endpoints of parallel arcs of A ∩ F . On the other



14 Yuya Nishimura

hand, since n ≥ 2, there is a sub-arc of s bounded by endpoints of non-parallel
arcs of A ∩ F . This is a contradiction. Therefore, we have n = 1.

Since the number of components of ∂F ∩ ∂N(K) is one, F is an annulus.
Let F ′ be a disk that is obtained by dividing F by ∂A1,1. Now, we see that
an annulus is obtained from F ′ and A1,1, and it intersects the meridian mk of
N(K) as a point. This implies that K is parallel to ∂V . Since |r(K)| = 1, K is
the core of V .

Next, we consider the case where A is a properly embedded annulus in the
exterior of a knot K such that ∂A ∩ ∂N(K) is the meridian of N(K).

Lemma 3.5. Let E be the exterior of a knot K in the solid torus V . Suppose
that |r(K)| = 1. Let i : ∂N(K) → E and j : ∂V → E denote the inclusion maps,
and let i∗ : H1(∂N(K);Z) → H1(E;Z) and j∗ : H1(∂N(K);Z) → H1(E;Z)
denote the homomorphisms induced by i and j, respectively. Then, i∗ and j∗ are
bijective.

Proof.

Claim. The homomorphism i∗ is injective.

Proof. Let i′∗ : π1(∂N(K)) → π1(E) denote the homomorphism induced
by i. Since ∂N(K) is the torus, there is an isomorphism f : π1(∂N(K)) →
H1(∂N(K);Z). By the Hurewicz theorem, π1(E)/[π1(E), π1(E)] is isomorphic
to H1(E;Z), where [π1(E), π1(E)] is the commutator subgroup of π1(E). Let
g′ denote this isomorphism map. We denote the natural homomorphism from
π1(E) to π1(E)/[π1(E), π1(E)] by g′′. Let g = g′◦g′′. Now, we have the following
commutative diagram.

π1(∂N(K)) π1(E)

H1(∂N(K);Z) H1(E;Z)

i′∗

f g

i∗

Since |r(K)| ̸= 0, ∂N(K) is incompressible by Lemma 3.2. This implies that
i′∗ is injective. Suppose that [m] and [l] are elements of π1(∂N(K)) such that
[m] and [l] generate π1(∂N(K)). Let N denote the sub-group of π1(E) such
that N is generated by i′∗([m]) and i′∗([l]). We see that N is an abelian group.
Therefore, g|N is injective. Since f is bijective, we see that i∗ = g|N ◦ i′∗ ◦ f−1

is injective.

Claim. The homomorphism i∗ is surjective.

Proof. Let α be an arbitrary oriented loop in E. Let l be an oriented
longitude of N(K). Suppose that h : E → V is the inclusion map and h∗ :
H1(E;Z) → H1(V ;Z) is the homomorphism induced by h. Since |r(K)| = 1,
there is an integer k ∈ Z such that h∗([α] + k · i∗([l])) = 0 ∈ H1(V ;Z).
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Suppose that F is an embedded annulus in E such that β1 = ∂F ∩ α is a
sub-arc of α and m = F ∩ ∂N(K) is the meridian of N(K) (See Figure 3.3).
Let β2 denote the arc ∂F − (intβ1 ∪m). Choose an orientation of F so that the

α

m

β1

β2

F α′

∂N(K)

Figure 3.3. The arc α′

orientation of β1 induced by the orientation of F is reverse to the orientation of
α. Assume that the orientations of β1, β2, and m are induced by the orientation
of F . Let α′ denote the loop (α − β1) ∪ β2. Now, we have [α′] = [α] + [m] in
H1(E;Z), and α′ is obtained by moving α across N(K) once. Thus, there is an
integer k′ ∈ Z such that [α] + k · i∗([l]) + k′ · i∗([m]) = 0 ∈ H1(E;Z). Therefore,
we have [α] = i∗(−k[l]− k′[m]) ∈ H1(E;Z). This implies that i∗ is surjective.

From the above two claims, i∗ is bijective. In a similar way, we can show
that j∗ is bijective.

Lemma 3.6. Let E denote the exterior of a knot K in the solid torus V .
Assume that there is a properly embedded annulus A in E such that ∂A meets
both ∂V and ∂N(K), and ∂A ∩ ∂N(K) is the meridian of N(K). Then K is
the core of V if and only if there is a properly embedded planar surface F in E
such that |∂F ∩ ∂N(K)| = 1, and ∂F ∩ ∂N(K) is an essential loop in ∂N(K)
and not the meridian of N(K).

Proof. Suppose that K is the core of V . Since K is parallel to ∂V , there
is a properly embedded annulus F such that |∂F ∩∂N(K)| = 1, and ∂F ∩∂N(K)
is an essential loop in ∂N(K) and not the meridian of N(K).

Conversely, suppose that there is a properly embedded planar surface F in
E such that |∂F ∩ ∂N(K)| = 1, and ∂F ∩ ∂N(K) is an essential loop in ∂N(K)
and not the meridian of N(K). Let a denote the loop ∂F ∩ ∂N(K). Suppose
that |∂F ∩∂V | = n, and let b1, . . . , bn be the components of ∂F ∩∂V . We prove
that K is the core of V by induction on n. If n = 1, i.e. F is the annulus, then
we see that K is the core of V by Lemma 3.4.

Assume that n ≥ 2. First, we consider the case where F is compressible,
i.e. there is a compression disk δ for F . The boundary ∂δ divides F into the
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two sub-surfaces d1 and d2. Suppose that d1 contains ∂F ∩ ∂N(K). Since ∂δ
is essential in F , we have |∂(δ ∪ d1) ∩ ∂V | < |∂F ∩ ∂V |. Using the induction
hypothesis, K is the core of V .

Next, suppose that F is incompressible. We take F so that |F ∩ A| is
minimal up to isotopy of F . Using Lemma 3.3, all bigons in ∂E bounded by ∂F
and ∂A are removed while keeping the minimality of |F ∩A|.

Claim. There is a ∂-compression disk for F whose intersection with F
connects distinct boundary components bi and bj of F .

Proof. Fix an orientation of F . The orientations of a, b1, . . . , bn are in-
duced by the orientation of F . Now, we see that [∂F ] = [a] +

∑n
i=1[bi] =

0 ∈ H1(E;Z). Thus, we have −[a] =
∑n

i=1[bi]. Let i : ∂N(K) → E and
j : ∂V → E denote the inclusion maps, and let i∗ : H1(∂N(K);Z) → H1(E;Z)
and j∗ : H1(∂V ;Z) → H1(E;Z) denote the homomorphisms induced by i and
j, respectively. By Lemma 3.5, i∗ and j∗ are bijective. Fix an orientation of A.
Let f : H1(∂N(K);Z) → Z ⊕ Z and g : H1(∂V ;Z) → Z ⊕ Z be isomorphisms
such that f(∂A ∩ ∂N(K)) = (0, 1), g(∂A ∩ ∂V ) = (0, 1), and if g(α) = (1, 0),
then f ◦ i−1

∗ ◦ j∗(α) = (1, 0), where α is a loop in ∂V . We see that ∂A∩ ∂V and
∂A∩∂N(K) are homologous in E. This implies that f◦i−1

∗ ◦j∗(∂A∩∂V ) = (0, 1),
and so f◦i−1

∗ ◦j∗◦g−1 is the identity map. Suppose that (x, y) = f◦i−1
∗ (−[a]) and

for each bi, (pi, qi) = g ◦ j−1
∗ ([bi]). Since F is incompressible, the loops b1, . . . , bn

are essential in ∂V . Thus, there is a pair of integers (p, q) ∈ Z⊕Z such that (p, q)
is equal to (pi, qi) or (−pi,−qi) for each i. This implies that there is an integer
k ∈ Z such that

∑n
i=1(pi, qi) = (kp, kq). Now, we have (x, y) = f ◦ i−1

∗ (−[a]) =∑n
i=1 f ◦i−1

∗ ([bi]) =
∑n

i=1 f ◦i−1
∗ ◦j∗◦g−1(pi, qi) =

∑n
i=1(pi, qi) = (kp, kq). Since

a is an essential loop in ∂N(K) and not the meridian of N(K), x and y satisfy
either of the following:

• (x, y) = (1, 0) or
• x ̸= 0, y ̸= 0, and x and y are relatively prime.

Thus, it follows that k = 1, and so (x, y) = (p, q). This implies that |∂F ∩ ∂A ∩
∂N(K)| = p and |∂F ∩ ∂A ∩ ∂V | = np. By the assumption that n ≥ 2, we
have |∂F ∩ ∂A ∩ ∂N(K)| < |∂F ∩ ∂A ∩ ∂V |. This implies that there is an arc
α of F ∩ A whose endpoints are in ∂A ∩ ∂V . Let δ denote the disk in A whose
boundary consists of α and a sub-arc of ∂A.

Suppose that there are loops of F ∩ A in δ. Let δ′ be an innermost disk in
δ and α′ denote the boundary of δ′. Since F is incompressible, α′ bounds a disk
δ′′ in F . From the irreducibility of E, the properly embedded 2-sphere δ′ ∪ δ′′

bounds a 3-ball in E. Thus, we can remove α′ from F ∩ A by an isotopy of F
along the 3-ball. This contradicts the minimality of |F ∩ A|. Therefore, there
are no loops of F ∩A in δ.

Let α′′ denote an outermost arc in δ and δ′′ denote the disk bounded by α′′

and a sub-arc of ∂A. Since there are no bigons in ∂E bounded by ∂F and ∂A,
α′′ connects distinct boundary components of F . Since intδ′′ ∩ F = ∅, the disk
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δ′′ is a ∂-compression disk for F such that F ∩ δ′′ connects distinct boundary
components of F .

Let F ′ denote the surface obtained from F by ∂-compression using the
boundary compression disk δ′′. Then we have |∂F ∩ ∂V | > |∂F ′ ∩ ∂V |. Using
the induction hypothesis, K is the core of V .

As in Lemma 3.1, Mα denotes the 3-manifold obtained by gluing the bound-
aries of solid tori V and W so that an essential simple closed curve α in ∂V and
the meridian of W are identified, KMα

denotes the knot in Mα obtained from a
knot K in V , and EMα

denotes the exterior of KMα
.

Lemma 3.7. Let V and W be solid tori. Let K be a knot in V and EV

denote the exterior V −intN(K). Assume that A is a properly embedded annulus
in EV such that ∂A meets both ∂N(K) and ∂V , and ∂A∩∂N(K) is the meridian
of N(K). If K is the core of V , then for any essential simple closed curve α
in ∂V , there is a properly embedded essential disk D in EMα

. Moreover, if for
some essential simple closed curve α in ∂V that is not the meridian of ∂V , there
is a properly embedded essential disk D in EMα , then K is the core of V .

Proof. Suppose that K is the core of V . We see that EMα
is homeomor-

phic to the solid torus for any essential simple closed curve α in ∂V . Thus, there
is a properly embedded essential disk D in EMα .

Conversely, suppose that there is an essential simple closed curve α in ∂V
such that there is a properly embedded essential disk D in EMα

and α is not the
meridian of ∂V . We denote the properly embedded torus ∂V = ∂W in EMα

by
T . Assume that D and T intersect transversely.

Claim. The simple closed curve ∂D is not the meridian of N(K).

Proof. Let δ denote the meridian disk of N(K) such that ∂δ = ∂D. Then
we see that D∪ δ is a non-separating 2-sphere in Mα. On the other hand, Mα is
irreducible since α is not the meridian of V . This is a contradiction. Thus, ∂D
is not the meridian of N(K).

Let F denote the component of V ∩D such that ∂F contains ∂D. Then F is
a properly embedded planar surface in EV , |∂F ∩∂N(K)| = 1, and ∂F ∩∂N(K)
is not the meridian of N(K). Using Lemma 3.6, K is the core of V .

Now, we are ready to show Lemma 3.1.

Proof (Proof of Lemma 3.1). Suppose that K is the core of V . Then
we have a properly embedded essential annulus A in EV such that ∂Ameets both
∂N(K) and ∂V , and ∂A ∩ ∂N(K) is the meridian of N(K). Using Lemma 3.7,
there is a properly embedded essential disk D in EMα

for any essential simple
closed curve α in ∂V .

Conversely, suppose that there is a properly embedded essential annulus in
EV such that ∂A meets both ∂V and ∂N(K), and there is an essential simple
closed curve α in ∂V such that there is a properly embedded essential disk D
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in EMα
and α is not the meridian of V . If ∂A ∩ ∂N(K) is not the meridian of

N(K), then we see that K is the core of V by Lemma 3.4. If ∂A ∩ ∂N(K) is
the meridian of N(K), then K is the core of V from Lemma 3.7.

4. An algorithm for the solid torus core recognition problem

In this section, we describe an algorithm for the solid torus core recognition
problem.

4.1. Algorithms for deciding whether disks and annuli in the exterior
of a knot are essential. Let TEM

be an n-tetrahedra triangulation of the
exterior EM of a knot K in a compact 3-manifold M . Suppose that EM is
irreducible. First, we describe that if D is a normal surface with respect to TEM

,
then it can be verified that D is an essential disk in EM in polynomial time of
n.

Lemma 4.1. Let TT be a triangulation of the torus T . Suppose that TT
contains n triangles. Then there is a polynomial time algorithm that, given

TT , outputs simple closed curves m and l in the 1-skeleton T (1)
T such that the

homology classes [m] and [l] generate H1(T ;Z).

Proof. Let ne and nv denote the number of edges and vertices of TT ,
respectively. There is a O(ne +nv) = O(n) time algorithm that, given T (1)

T and
a vertex of TT , outputs a non-contractive simple closed curve passing the given
vertex if it exists ([2]). Thus, we can obtain an essential simple closed curve m

in T (1)
T in polynomial time of n. Suppose that v is a vertex contained in m. Let

T ′
T denote the triangulation of the annulus obtained by cutting TT along m, and

let v+ and v− denote the vertices of T ′
T obtained from v. A simple path p in

T ′(1)
T connecting v+ and v− is obtained by using a depth-first search starting at

v+ in O(n) time. Let l denote the simple closed curve in T (1)
T obtained from

p by gluing v+ and v−. Now, we see that [m] and [l] generate H1(T ;Z). This
completes the proof.

Let TS be a triangulation of a compact surface S. A properly embedded
simple curve α in S is called a normal curve with respect to TS if for each
triangle ti of TS , α ∩ ti is a collection of elementary arcs of ti. In a similar way
of normal surfaces, a normal curve with respect to TS is represented by a vector
x = (x1, . . . , x3n) ∈ Z3n, where n is the number of triangles in TS .

Lemma 4.2. Let TT be a triangulation of the torus T . Suppose that TT
contains n triangles. Let α be a normal curve with respect to TT that is rep-
resented by a vector x = (x1, . . . , x3n) ∈ Z3n. Assume that each xi is at most
2O(n). Then there is an algorithm that, given TT and x, decides whether α is
essential in T in polynomial time of n.

Proof. By Lemma 4.1, simple closed curves m and l in T (1)
T such that the

homology classes [m] and [l] generate H1(T ;Z) are obtained in polynomial time
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of n. Since α is a normal curve with respect to TT , α andm intersect transversely.
For a similar reason, α and l also intersect transversely. The simple closed curve
α is essential in T if and only if either of |m ∩ α| or |l ∩ α| is odd. Since each
xi is at most 2O(n), |m ∩ α| and |l ∩ α| are calculated in polynomial time of n.
Thus, we can decide whether α is essential in T in polynomial time of n.

Lemma 4.3. Let TEM
be an n-tetrahedra triangulation of the exterior EM of

a knot K in a compact 3-manifold M . Suppose that EM is irreducible. Let D be
a normal surface with respect to TEM

represented by a vector x = (x1, . . . , x7n) ∈
Z7n. Suppose that each coordinate xi is less than or equal to 27n−1. Then there
is an algorithm that, given TEM

and x, decides whether D is an essential disk
in EM in polynomial time of n.

Proof. A normal surface D is the disk if and only if D is connected,
χ(D) = 1, and ∂D ̸= ∅. There is an algorithm that, given TEM

and x, outputs
the number of components of D in polynomial time of n log 27n−1 = (7n2 −
n) log 2 ([1]). Thus, we can verify whether D is connected in polynomial time of
n. By Lemma 2.11, χ(D) is calculated in polynomial time of n, and it can be
verified that ∂D ̸= ∅ in polynomial time of n. Therefore, we can check whether
D is the disk in polynomial time of n.

A disk D in EM is essential if and only if ∂D is essential in ∂EM since EM is
irreducible. Let ∂TEM

denote the triangulation of ∂EM obtained from TEM
and

n′ denote the number of triangles in ∂TEM
. Suppose that y = (y1, . . . , y3n′) ∈

Z3n′
is the representation vector of the normal curve ∂D with respect to ∂TEM

.
Since xi ≤ 27n−1 for each xi, we see that yi is at most 2O(n). Thus, we can
verify that ∂D is essential in ∂EM in polynomial time of n by Lemma 4.2.

Let TE be an n-tetrahedra triangulation of the exterior E of a knot K in
the solid torus V and A be a normal surface with respect to TE . We describe
that it can be verified that A is an essential annulus in E such that ∂A meets
both ∂N(K) and ∂V in polynomial time of n.

Lemma 4.4. Let E denote the exterior of a knot K in the solid torus V
and A be a properly embedded annulus in E such that ∂A meets both ∂N(K)
and ∂V . Assume that |r(K)| ≠ 0. Then A is essential if and only if ∂A∩ ∂V is
essential in ∂V .

Proof. Suppose that ∂A ∩ ∂V is inessential in ∂V . Then there is a disk
D in ∂V bounded by a component of ∂A, and the disk obtained by pushing D
to the interior of E is a compression disk for A. Thus, A is inessential.

Conversely, suppose that A is inessential. Since ∂A meets both ∂N(K)
and ∂V , A is ∂-incompressible and not parallel to ∂E. This implies that A is
compressible, i.e. there is a compression disk D for A. Let A′ and A′′ denote
the disks obtained by compressing A using D. Suppose that ∂A′ meets ∂V . By
the assumption that |r(K)| ≠ 0, E is ∂-irreducible by Lemma 3.2. Therefore,
∂A′ = ∂A ∩ ∂V is inessential in ∂V .
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Lemma 4.5. Let TE be an n-tetrahedra triangulation of the exterior E of
a knot K in the solid torus V and A be a normal surface with respect to TE
represented by a vector x = (x1, . . . , x7n) ∈ Z7n. Suppose that |r(K)| ≠ 0 and
each coordinate xi is less than or equal to 27n−1. Then there is a polynomial
time algorithm that, given TE and x, decides whether A is an essential annulus
in E such that ∂A meets both ∂N(K) and ∂V .

Proof. A normal surface A is a properly embedded annulus in E such
that ∂A meets both ∂N(K) and ∂V if and only if A is connected, χ(A) = 0, and
∂A meets both ∂N(K) and ∂V . The number of components of A is calculated
in polynomial time of n by [1]. Thus, we can verify whether A is connected
in polynomial time of n. The Euler characteristic χ(A) can be calculated in
polynomial time of n by Lemma 2.11. It also can be verified whether ∂A meets
both ∂N(K) and ∂V in polynomial time of n. Therefore, it can be verified that
A is a properly embedded annulus in E such that ∂A meets both ∂N(K) and
∂V in polynomial time of n.

Since |r(K)| ≠ 0, an annulus A in E is essential if and only if ∂F ∩ ∂V is
essential in ∂V by Lemma 4.4. By Lemma 4.2, we can decide whether ∂A∩ ∂V
is essential in ∂V in polynomial time of n. Thus, it can be verified whether A is
essential in E in polynomial time of n.

4.2. An algorithm for gluing the boundaries of two solid tori. In order
to solve the solid torus core recognition problem using Lemma 3.1, we describe
an algorithm for gluing the boundaries of two solid tori in polynomial time.

Lemma 4.6. Let TM be an n-tetrahedra triangulation of a compact 3-
manifold M with non-empty boundary and α be a simple closed curve in ∂M

represented by a collection of edges of T (1)
M . Let N be the 3-manifold obtained

by gluing a 2-handle along α. Then there is an algorithm that, given TM and α,
outputs a triangulation TN of N in polynomial time of n. Moreover, size(TN ) is
at most O(n).

Proof. We can obtain TN as follows. Let T ′′
M denote the triangulation

obtained by barycentrically subdividing TM twice. The barycentric subdivision
is performed in O(n) time, and size(T ′′

M ) is at most O(n). Let ∂T ′′
M denote the

triangulation of ∂M obtained from T ′′
M . Let A denote the triangulation of an

annulus in ∂M consisting of the faces of ∂T ′′
M that meet α. We can obtain A in

O(size(∂T ′′
M )) = O(n) time, and size(A) is at most O(n). Let B1, . . . , Bsize(A)

denote the triangulated 3-balls depicted as in Figure 4.1. Each Bi has the two
triangle faces and the two triangulated quadrilateral faces. Then TN is obtained
by gluing a triangle face of Bi and a face of A, and gluing the faces of adjacent
triangulated 3-balls Bi and Bj . If adjacent quadrilateral faces cannot be glued,
then the faces are glued by adding a tetrahedron (See Figure 4.2). This procedure
is performed in O(n) time and increases the number of tetrahedra by at most
O(n). Thus, TN is obtained in polynomial time of n, and size(TN ) is at most
O(n).
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The quadrilateral faces

The triangle faces

Figure 4.1. A triangulated 3-ball Bi

Bi Bj

Figure 4.2. Gluing adjacent quadrilateral faces

As in Lemma 3.1, Mα denotes the 3-manifold obtained by gluing the bound-
aries of solid tori V and W so that an essential simple closed curve α in ∂V and
the meridian of W are identified, and KMα

denotes the knot in Mα obtained
from a knot K in V .

Lemma 4.7. Let V and W be solid tori and mW be the meridian of W .
Let TV be an n-tetrahedra triangulation of V . Suppose that K is a knot in V

represented by a collection of edges of T (1)
V and α is an essential simple closed

curve in ∂V represented by a collection of edges of T (1)
V . Then there is an

algorithm that, given TV , K, and α, outputs a triangulation TMα
of Mα and the

knot KMα represented by a collection of edges of T (1)
Mα

in polynomial time of n.
Moreover, size(TMα

) is at most O(n).

Proof. We obtain TMα
and KMα

as follows. Let V ′ be the 3-manifold
obtained from V by gluing a 2-handle along α. Using Lemma 4.6, a triangulation
TV ′ of V ′ is obtained from TV in polynomial time of n, and size(TV ′) is at
most O(n). Then we obtain TMα by taking the cone of ∂TV ′ , where ∂TV ′ is a
triangulation of ∂V ′ obtained from TV ′ . This procedure increases the number of
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tetrahedra by O(size(∂TV ′)) = O(n). Thus, TMα
is obtained in polynomial time

of n, T (1)
Mα

contains KMα
, and size(TMα

) is at most O(n).

4.3. Proof of Theorem 1.1. Now, we are ready to show Theorem 1.1.

Proof (Proof of Theorem 1.1). Let TV be an n-tetrahedra triangula-
tion of the solid torus V and K be a knot in V represented by a collection of

edges of T (1)
V . We consider the following non-deterministic algorithm.

(1) Check whether |r(K)| = 1. If |r(K)| ≠ 1, then output “no”.
(2) Construct a triangulation TEV

of the exterior EV of K, and let n1 =
size(TEV

).
(3) Guess a vector x = (x1, . . . , x7n1) ∈ Z7n1 such that each coordinate xi

is less than or equal to 27n1−1.
(4) If x represents a normal surface with respect to TEV

, then let A denote
it. Otherwise output “no”.

(5) If A is not an essential annulus in EV such that ∂A meets both ∂N(K)
and ∂V , then output “no”.

(6) Take an essential simple closed curve α in ∂V such that α is not the

meridian of V and α is contained in T (1)
V .

(7) Construct a triangulation TMα
and the knot KMα

, where TMα
is a

triangulation of the 3-manifold Mα obtained by gluing ∂V and the
boundary of the solid torus W so that α is identified with the meridian
of W and KMα is the knot in Mα obtained from K.

(8) Construct a triangulation TEMα
of the exterior EMα

= Mα−intN(KMα
),

and let n2 = size(TEMα
).

(9) Guess a vector y = (y1, . . . , y7n2
) ∈ Z7n2 such that each coordinate yi

is less than or equal to 27n2−1.
(10) If y represents a normal surface with respect to TEMα

, then let D
denote it. Otherwise output “no”.

(11) If D is an essential disk in EMα , then output “yes”. Otherwise output
“no”.

Claim. The above algorithm outputs “yes” if and only if K is the core of
V .

Proof. Suppose that K is the core of V . Since |r(K)| = 1, the 1st step
does not output “no”. From Lemma 2.6, there is an essential annulus A such
that A is a vertex surface with respect to TE . Let x = (x1, . . . , x7n1) ∈ Z7n1

denote the vector representation of A. Using Theorem 2.8, we see that each
coordinate xi is at most 27n1−1. This implies that we can guess the vector x
representing the essential annulus A in E in the 3rd step. Thus, the 4th step
and 5th step do not output “no”. From Theorem 2.7 and Lemma 3.1, there is
an essential disk D in EMα such that D is a vertex surface with respect to TEMα

.
Since D is a vertex surface, we can guess the vector representation y of D in the
9th step, and the 10th step does not output “no”. Since D is an essential disk,
the 11th step outputs “yes”.
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Conversely, suppose that K is not the core of V . If |r(K)| ≠ 1, then the
1st step outputs “no”. Suppose that |r(K)| = 1. From Lemma 3.1, there are
no properly embedded essential annuli in EV such that the annuli meet both
∂N(K) and ∂V or there are no properly embedded essential disks in EMα for
any essential simple closed curve α in ∂V . Therefore, the algorithm outputs
“no” in the 4th, 5th, 10th, or 11th step.

Claim. The running time of the above algorithm is bounded by a polyno-
mial of n.

Proof. The 1st step is performed in polynomial time of n by Lemma
2.4. Using Lemma 2.3, the 2nd step is performed in polynomial time of n, and
n1 is at most O(n). Since each coordinate xi is less than or equal to 27n1−1,
x is represented by a binary code whose length is at most O(n2

1). Thus, we
can guess x in O(n2

1) = O(n2) time in the 3rd step. By Lemma 2.10, the 4th
step runs in polynomial time of n. Lemma 4.5 implies that the 5th step runs
in polynomial time of n. From Lemma 4.1, two simple closed curves m and l
in ∂V satisfying that [m] and [l] generate H1(∂V ;Z) is obtained in polynomial
time of n. Since at least one of m and l is not the meridian of V , we can
obtain a simple closed curve α in ∂V such that α is not the meridian of V by
calculating the homology classes [m] and [l] in H1(V ;Z). Therefore, the 6th
step runs in polynomial time of n. By Lemma 4.7, the 7th step is performed in
polynomial time of n, and size(TM ) is at most O(n). A triangulation TEMα

of
the exterior EMα

= Mα− intN(KMα
) is obtained by barycentrically subdividing

TMα twice and removing the tetrahedra containing KMα . Thus, we obtain TEMα

in polynomial time of n, and size(TEMα
) is at most O(n). In a similar way of

the 3rd step and the 4th step, the 9th step and the 10th step run in polynomial
time of n. Since |r(K)| ̸= 0, EMα is irreducible. Thus, the 11th step runs in
polynomial time of n by Lemma 4.3. Since each step is performed in polynomial
time of n, the above algorithm runs in polynomial time of n.

Now, we see that there is a non-deterministic polynomial time algorithm
for the solid torus core recognition problem. Therefore, this problem is in NP.

4.4. Proof of Theorem 1.2. For every compact surface Σ, the Σ × [0, 1]
recognition problem is the problem of determining that the underlying 3-manifold
of a given triangulation is homeomorphic to Σ × [0, 1]. Haraway and Hoffman
showed that this problem is in co-NP among orientable irreducible 3-manifolds.

Theorem 4.8 (Haraway-Hoffman [5]). For every compact surface Σ,
the Σ × [0, 1] recognition problem is in co-NP among orientable irreducible 3-
manifolds.

Proof (Proof of Theorem 1.2). Let TV be an n-tetrahedra triangula-
tion of the solid torus V and K be a knot in V represented by a collection of

edges of T (1)
V . We consider the following non-deterministic algorithm.

(1) If |r(K)| ≠ 1, then output “yes”.
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(2) Construct a triangulation TE of the exterior E = V − intN(K).
(3) If E is not homeomorphic to T 2 × [0, 1], then output “yes”, where T 2

is the torus. Otherwise output “no”.

The knotK is not the core of V if and only if E is not homeomorphic to T 2×[0, 1].
Thus, this algorithm outputs “yes” if and only if K is not the core of V . By
Lemma 2.4 and Lemma 2.3, the 1st step and the 2nd step run in polynomial
time of n. In the 3rd step, we see that |r(K)| = 1 since if |r(K)| ̸= 1, then the
1st step outputs “yes”. This implies that E is irreducible by Lemma 3.2. Using
Theorem 4.8, the 3rd step is performed in non-deterministic polynomial time
of n. Since there is a non-deterministic polynomial time algorithm that decides
whether K is not the core of V , the solid torus core recognition problem is in
co-NP.

4.5. The Hopf link recognition problem. In this subsection, we give an
alternate proof that the Hopf link recognition problem is in NP and show that
problem is in co-NP.

Definition 4.9 (The Hopf link recognition problem). Let D be a
diagram of a link L in S3. The Hopf link recognition problem is a problem that,
given D, decides L is the Hopf link.

Let D be a diagram of a link L in S3. Suppose that c is the number of
crossings of D and k is the number of components of L. The crossing measure
n of D is defined as

n = c+ k − 1.

The computational complexity of a problem whose input is a link diagram is
measured by the crossing measure of the input diagram. See [6] for details.

Lemma 4.10 (Hass-Lagarias-Pippenger [6]). Let D be a diagram of a
link L in S3 and n be the crossing measure of D. Then there is a O(n log n)
time algorithm that, given D, outputs a triangulation TL of S3 such that the

1-skeleton T (1)
L contains L. Furthermore, size(TL) is at most O(n).

Corollary 1.3. The Hopf link recognition problem is in NP ∩ co-NP.

Proof. Let D be a diagram of a link L in S3. Suppose that the crossing
measure of D is n.

Claim. The Hopf link recognition problem is in NP.

Proof. We consider the following non-deterministic algorithm.

(1) If the number of components of L is two, then let L = K1 ∪ K2.
Otherwise output “no”.

(2) If K1 is the unknot in S3, then construct a triangulation TE1
of the

solid torus E1 = S3− intN(K1) such that T (1)
E1

contains K2. Otherwise
output “no”.

(3) If K2 is the core of E1, then output “yes”. Otherwise output “no”.
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The link L = K1 ∪K2 is the Hopf link if and only if K1 is the unknot and
K2 is the core of E1 = S3 − intN(K1). Therefore, the above algorithm outputs
“yes” if and only if L is the Hopf link.

The 1st step is performed in O(n) time. Let D1 be the diagram of K1 that
is contained in D. By Theorem 2.9, we can determine whether D1 is a diagram
of the unknot in non-deterministic polynomial time of n. By Lemma 4.10, a

triangulation TL of S3 such that the 1-skeleton T (1)
L contains L is constructed

in polynomial time of n, and size(TL) is at most O(n). A triangulation TE1

of E1 = S3 − intN(K1) is obtained by barycentrically subdividing T (1)
L twice

and removing the tetrahedra containing K1. This implies that TE1
is obtained

in polynomial time of n, and size(TE1) is at most O(n). Thus, the 2nd step
runs in polynomial time of n. Using Theorem 1.1, the 3rd step is performed
in non-deterministic polynomial time of n. Therefore, the above algorithm runs
in non-deterministic polynomial time of n. Since there is a non-deterministic
polynomial time algorithm for the Hopf link recognition problem, this is in NP.

Claim. The Hopf link recognition problem is in co-NP.

Proof. We consider the following non-deterministic algorithm.

(1) If the number of components of L is two, then let L = K1 ∪ K2.
Otherwise output “yes”.

(2) If K1 is not the unknot in S3, then output “yes”. Otherwise construct
a triangulation TE1

of the solid torus E1 = S3 − intN(K1) such that

T (1)
E1

contains K2.
(3) If K2 is not the core of E1, then output “yes”. Otherwise output “no”.

If L is not the Hopf link, then the number of components of L is not two,
K1 is not the unknot, or K1 is the unknot and K2 is not the core of E1. Thus,
the above algorithm outputs “yes” if L is not the Hopf link. Conversely, if L
is the Hopf link, then this algorithm outputs “no” in the 3rd step. Thus, this
algorithm outputs “yes” if and only if L is not the Hopf link.

We see that the 1st step runs in polynomial time of n. The 2nd step is
performed in non-deterministic polynomial time of n since the unknot recogni-
tion is in co-NP ([10]). Using Theorem 1.2, we see that the 3rd step runs in
non-deterministic polynomial time of n. Since there is a non-deterministic poly-
nomial time algorithm that decides whether L is not the Hopf link, the Hopf
link recognition problem is in co-NP.

From the above two claims, the Hopf link recognition problem is in NP ∩
co-NP.
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