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Fig  1-3  Relation between passenger car’s mass and CO2 emission
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Fig. 1-5  Difference of floor panel heights of body structure with fuel tank and 
that with underfloor battery pack

(a)Body structure with fuel tank (b)Body structure with underfloor battery pack
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Fig 1-6  Dynamic and static function required by body and body floor
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Fig 1-7  Consideration factors at the time of purchase for all customers and those 
of the young generation
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Fig  2-1  Flow of Fully Stressed Design (FSD) applied to static loads

(1)Load static bending force and measure von Mises stress σn which is generated in each 
design element n.

(0)Set initial thickness for each design variable

(4)End. A combination of 
stiffeners' thickness which 
are the design variables are 
obtained.
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n tt

(2)Determine element thickness in the next iteration by applying equation (1) and (2), 
based on σn and σst.
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Fig. 2-2  Flow of Fully Stressed Design Applied to Eigen Vibration

(0)Define two models; one is Model Tmin of 
which stiffeners are tmin, the thinnest. The other is 
Model Tmax of which stiffeners are tmax, the
thickest.

(1)Calculate normalized stresses on each element 
of Model Tmin and Model Tmax. Define normalized 
stresses on each element n,              and               , 
the smallest normalized stresses of                  
and                 , and the largest normalized 
stresses of                   and                   .

(7)Set initial thickness for each design variable, 
or those back from (9), and simulate eigen 
viberations and calculate normalized von Mises 
stress            which is generated in each design 
element n.

(2)Obtain overlap between normalized stresses of 
Model Tmin and Model Tmax. The lowest and the 
highest stresses are defined as standard of 
normalized stress           and              respectively.st
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(4)Optimize the initial model of which design 
variables were initialized at process (0)  by 
applying Eq(2-6) with the three standard 
normalized stresses,              , and

respectively until the objective 
function (Sum of thickness) a1 and  the restraints 
(static stiffness a2 and 1st order eigen frequency 
a3) converge

st
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(3)Obtain average of the normalized stresses of 
Model Tmin and Model Tmax. Eq(2-7) shows the 
lowest stress, the highest stress, and the average 
of the lowest and the highest of stresses. These 
three values are defined as standard of 
normalized stress            ,           , and                    .st
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(5)By applying the results from process (4), the 
objective function (sum of thickness a1) and the 
restraints (static stiffness a2 and 1st order eigen 
frequency a3) , make three two-axial graphs of 
((a1, a2), (a2 a3), (a3, a1)) .

(6)Solve the simultaneous linear equations with 
the three unknowns which were developed from 
the three two-axial graphs of  ((a1, a2), (a2 a3), 
(a3, a1)). Finally, obtain the answer, the standard 
normalized stress , which is named True standard 
normalized stress .
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Fig. 2-34  Flow of Genetic Algorithm

(2) Determine Augmented Objective 
Function(AOF) and Penalty Function by 
calculating each individual's performances 
regarding the restrictions and the penalty 
functions; g1(x) and g2(x) as achievements,
which define penalty functions p(x,r). As shown 
in eq(8), AOF for each individual is calculated by 
using objective function (OF) and penalty 
functions p(x,r).

(5) Conduct GA operations; Tournament strategy,
one-point-crossover, and mutations.

(8) Generate 
individuals, except 
elites, by using 
random numbers the 
same as conventional 
GA.

(4)End
Yes

No

(3) Elite strategy: Rank all individuals in order of 
augmented objective function (AOF). Among all 
the individuals, rank top six as elites.

(1) Generate 
individuals by using 
random numbers.

(4) Judge if it is  
convergent.* 

* In this paper, condition 
to terminate calculation 
was to attain some 
number of generations,
although any rule for 
termination can be set.
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Fig. 2-5  Schematic flow of optimization for Proposed method
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Fig. 3-1  A sandwich panel in the left and its lattice stiffeners in the right  
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Fig  3-3  Structure of design variables. The design variables are represented by genes. 
A thickness is represented by 3 bits of a gene so that the overall length of a 
gene (=a design variable) is 120(=3×120) bits.
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Fig 3-4  History of sum of design variables' thickness until the 4th iteration. Sum of 
thickness of both the 3rd and the 4th iteration are 31.7 which shows that the 
calculation attains convergence.
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Fig 3-5  Iteration history of combinations of stiffeners' thickness. The design 
variables began to show a condition which all thicknesses were 1.0 mm at the 
0th iteration. After that, thicknesses of the inner stiffeners became the 
minimum thickness 0.4 mm shown in blue, while those of the outer stiffeners 
became the maximum number 1.8 mm shown in red.
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Fig  3-7  Iteration history of sum of thickness, stiffness(displacement), and eigen 
frequency by applying the three standard normalized stresses 4437, 6181 and 
7924.
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Fig  3-8  Relation between a1: sum of thickness, a2: displacement, and a3: eigen 
frequency.

(a) Stiffness(Displacement) vs Eigen Frequency

(b) Stiffness(Displacement) vs Sum of thickness

(c) Eigen frequency vs Sum of thickness
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Fig  3-9  Relation between sum of thickness a1 and standard normalized stress st
n

~  
A linear approximate equation of (a1, st

n
~ ) is shown as equation (3-12)  Since 

sum of thickness a1(=36.8) is shown in equation (3-11), standard normalized 
stress tst

nσ~ 6598 to be named “true standard normalized stress” is obtained by 
equation (3-12), which is shown as the red open diamond-shaped point in the 
graph  The red solid diamond-shaped point shows the result of verification 
by using the true standard normalized stress tst

nσ~ 6598.
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Fig  3-10-1  Iteration history of sum of stiffeners' thickness at 6598 of the 
true standard normalized stress .

Su
m

 o
f t

hi
ck

ne
ss

(m
m

)

Iteration History



Fig  3-10-2  Iteration history of stiffeners' thickness at 6598 of the true standard 
normalized stress  
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3 5 3

Fig  3-11  Distribution of normalized stress of the model’s outer panels 
in the top (a), that of stiffeners in the center (b) and stiffeners’ 
thickness distribution in the bottom (c). They are results of the 5th 
FSD iteration based on the true standard normalized stress tst

n
~ 6598 

and in motion of the 1st eigen torsional vibration.

(a) Distribution of normalized stress of the model’s outer panels

(b) Stiffness(Displacement) vs Sum of thickness

(c) Distribution of normalized stress of the stiffeners
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(b)Normalized stress level of results of FSD



Table 3-2  Maximum, minimum, |max -min | and average of normalized stresses

3.5.4 1st Step  

Proposed method Base 1st Step FSD FSD-Bending FSD-

EigenF 3 2nd Step GA Base

FSD 2 Base

FSD-Bending 21.0 % FSD-EigenF 22.5 %

2 FSD-Bending Displacement 0.01806 mm

Base 0.01824 mm 2.5 % 469 Hz Base

479 Hz 2.0 FSD-EigenF Displacement 0.01832 mm Base

0.4 % 491 Hz 2.5 %

3-8 3 2 3-13

3 3

AOF 3-3 AOF 3

Base AOF 40.0 mm FSD-Bending AOF 42.0 mm

5.0 % FSD-EigenF 40.5 mm 1.3 %

(1)Base( t=1.0mm)

(2)True standard 

normalized 

stress tst
n

~ 6598

Difference

= (2)/(1)-1

Maximum

Minimum

|Max.-Min.|

Average

9334.0

3707.0

5627.0

5898.1

8011.0

3198.0

4813.0

5561.2

-14.2 %

-13.7 %

-14.5 %

-5.7 %



Fig  3-13  Relation between a1: sum of thickness, a2: displacement, and a3: eigen 
frequency of Base, FSD-Bending, and FSD-EigenF.
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Table 3-3  Comparison between Base, FSD-Bending, and FSD-EigenF

Item Base FSD-Bending FSD-EigenF

OF(mm) 40.0 (base) 31.6

(21.0%better)

31.0

(22.5%better)

AOF(mm) 40.0 (base) 42.0

(5.0%worse)

40.5

(1.3%worse)

Displacement(mm) 0.01824 (base) 0.01806

(1.0%better)

0.01832

(0.4%worse)

Eigen 

frequency(Hz)
479 (base) 469

(2.0%worse)

491

(2.5%better)

3.6 2nd Step  GA

3.6.1 Proposed method

4 Method 1 Method 2 Method 3 Proposed method

3-14 3 1

3 20 2

 



FSD Method 1 5 5th 

generation 3

5 31.0 mm 20.0 %

5 Proposed method 28.4 mm
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Fig. 3-14  GA’s results of the four methods
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3.6.2 3Elites
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3-8 3-13 a1
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a2 a3 a2 a1 a3 a1  
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Table 3-4 Results of the 50th generation of Method 1, 2, 3, and Proposed method

Item Standard Method 1 Method 2 Method 3
Proposed 

method

Elite - Base
FSD-

Bending

FSD-

EigenF

Base

FSD-Bending

FSD-EigenF

OF(mm)
40.0

(base)

32.2

(19.5%better)

28.2

(29.5%better)

28.8

(28.0%better)

27.0

(32.5%better)

Displacement

(mm)

0.01824

(base)

0.01824

(base)

0.01823

(0.1%better)

0.01824

(base)

0.01823

(0.1%better)

Eigen 

frequency

(Hz)

479

(base)

483

(0.8%better)

482

(0.6%better)

485

(1.3%better)

485

(1.3%better)



Fig. 3-15  Relation between a1: sum of thickness, a2: displacement, and a3: eigen 
frequency of the best result, Base, FSD-Bending, FSD-EigenF, and individuals 
generated by using a random number list at the beginning generation.

(a) a2 Stiffness(Displacement) vs a3 
Eigen Frequency

(b) a2 Stiffness(Displacement) vs a1 Sum of thickness

(c) a3 Eigen frequency vs a1 Sum of thickness
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3.6.3

Proposed method tst
nσ~ 6598

3-16 3-6

3-8 4437 7924 7 st
n

~ =4500 5000

5500 6000 6500 7000 7500 FSD

FSD-EigenF FSD-EigenF

Proposed method Base FSD-Bending 3 GA

50 GA

50

Method 1, 2, 3

Proposed method

27.0 27.8 6500

7000 27.2 6500 28.0 Proposed method

7 Method 1, 2, 3

4500 5000 5500 6000 Method 1

Method 2 3  

6500 7000 7500 Method 1, 2, 3

6500
tst
nσ~ 6598 Proposed method

Proposed method 6500



3.6.4  
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Fig. 3-16  Results of verification if Proposed method of which true standard 
normalized stress tst

nσ~ 6598 is effective.
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2

Method 0th generation 10th generation 25th generation 50th generation

Method1

40.0 38.4 35.0 32.2

Method2

40.0 28.6 28.2 28.2

Method3

40.0 31.0 30.0 28.8

Proposed
method

40.0 28.4 27.2 27.0

Legend Thickness
(mm)

* Number in the above boxes shows sum 
of thickness (mm) of the stiffeners

Fig 3-17  Distribution of stiffeners’ thicknesses of the four Methods(Method 1, 
Method2, Method 3 and Proposed method) at the 0th, the 10th, the 25th and 
the 50th iteration.



3.6.5 Proposed method  
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3-17 0 Base 50

0 Base 50
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Fig. 3-18  Distributions of von Mises stresses at static bending load and normalized 
von Mises stresses at eigen vibration at the 0th and the 50th generation, that 
is before and after Proposed method was applied.

0th generation 50th generation
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Stiffeners Stiffeners

Static bending stiffness

von Mises stress (MPa)

Scale factor=1000 Scale factor=1000
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Outer shell Outer shell
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Eigen vibration
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Scale factor=1.0 Scale factor=1.0

Stiffeners

Scale factor=1.0 Scale factor=1.0

Fig. 3-19  Distributions of normalized von Mises stresses at eigen vibration at the 
0th and the 50th generation, that is before and after Proposed method was 
applied
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Fig. 3-21  Design variables. (a) is before reduction of number of design variables  
(b) is after reduction which the number of design variables are reduced 
from 40 to 22.

(a)Number of design variables = 40 (b)Number of design variables = 22

Fig. 3-20  Load and boundary conditions at bending, which is 
divided into two even portions by a Z-X plane.

Z-X plane surface



3.7.3
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Fig. 3-22  Results of optimization. Sum of stiffeners’ thickness of the models 
at the 300th generation

40.0

27.6
25.6

20.0

25.0

30.0

35.0

40.0

Base Model A(Num of
design variables=40)

Model B(Num of
design variables=22)

Su
m

 o
f t

hi
ck

ne
ss

(m
m

)

-31.0% -36.0%



(a) Model A (Number of 
design variable = 40)

(b) Model B (Number of 
design variable = 22)

Fig. 3-24  Results of optimization. Distribution of stiffeners’ thickness at 
the 300th generation

Fig. 3-23  Generation history of two models of which number of design 
variable are 40 and 22.
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4.1

4.2

4.2.1

F

4.5 m 1300 kg

370 kg FF 4-1

F

2

0.6 mm 6 kg 1.6 %

Fig. 4-1  Floor panels in an auto body structure 
© 2024 Mazda Motor Corporation

Floor Panels



4.2.2

F F

1150 mm × 500 mm × 2 8.5 mm

78 kg 1

2.0 N 2.0 mm 1.7 Hz

 

1 10.0 mm 1.0 mm 2 4 

2.0 mm 408 26 kg

78kg 26kg

67%

2.0 N 1.9 mm 2.9 Hz

4-2 4-

3 4-4 1

XY 4-5 4-6

SPC 2 1.0 N 4-1

4-2 4-3



Fig. 4-2  Single panel model

8.5

10

Fig. 4-3  Sandwich panel model 



1.0N

123456

Fig. 4-6  Boundary and load conditions for the models

(mm)

Fig. 4-4  Stiffeners in the Sandwich panel model 

Fig. 4-5  Dimension of a section of stiffeners



Table 4-1  Specification of Single-panel model

Length Width Area
Number 

of pieces
Thickness

Sum of 

volume

mm mm mm2 mm mm3

Panel 1,150 500 575,000 2 8.5 9,775,000

Table 4-2  Specification of Sandwich-panel model

Length Width Area
Number 

of pieces
Thickness

Sum of 

volume

mm mm mm2 mm mm3

UP&LWR 

panels
1,150 500 575,000 2×2 1.0 2,300,000

Side panels 1,150 10 11,500 2×2 1.0 46,000

Side panels 500 10 5,000 2×2 1.0 20,000

Stiffener A 50 10 500 210×2 2.0 414,000

Stiffener B
50

56
10

500

560
198×2 2.0 420,000

Total 3,200,000



Table 4-3 Comparison of the two models' mass and performances

A: Single-panel 

model

B: Sandwich-panel 

model
B/A-1

Mass kg 78 26 -67%

Displacement mm 2.0 1.9 -5%

Eigen 

Frequency
Hz

1.7

(The 2nd order)

2.9

(The 3rd order)
71%

4.2.3



Fig. 4-7  Distribution of von Mises stress of bending displacement

(a)Single Panel

(b)Sandwich Panel



Fig. 4-8  Distribution of von Mises stresses on sandwich panel’s stiffeners at 
bending load

(a)Overall view of sandwich panels’ stiffeners and bottom panel and side walls

(b)Detailed view of sandwich panels’ stiffeners



Fig. 4-9  Distribution of normalized von Mises stress of eigen vibration

(a)Single Panel

(b)Sandwich Panel



(a)Overall view of sandwich panels’ stiffeners, sidewalls and bottom panel

(b)Detailed view of sandwich panels’ stiffeners, sidewalls and bottom panel

Fig. 4-10  Distribution of normalized von Mises stress in eigen vibration
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Fig. 4-11 An image of a battery pack unit



4.4.2
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Fig  4-12 A periodic structure

Basic section of the periodic structure

Fig  4-13 Dimensions of the basic unit of the periodic structure  
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4.4.3
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Fig. 4-15 Schematic view of the optimized basic unit of the periodical structure, 
which shows a result of optimization  Sum of the stiffeners is 19.4mm
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Fig. 4-14 Generation history of optimization



Fig. 4-17 Before and after optimization for vonMises stresses

(a) Distribution of vonMises stress 
before optimization  Upper is 
outside shell and Lower is 
stiffeners inside

(b) Distribution of vonMises stress 
after optimization at the 200th 
generation

Fig. 4-16 Plan view of the optimized basic unit of the periodical structure. Sum of 
stiffeners is 19.4mm, the same as Fig. 4-15



Fig. 4-18  Before and after optimization for normalized stresses  

(a) Distribution of normalized stresses 
before optimization  Upper is 
outside shell and Lower is 
stiffeners inside

(b) Distribution of normalized stresses 
after optimization at the 200th 
generation
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