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Object detection and instance segmentation are foundational tasks in the field of
computer vision, and they have made significant strides, particularly with the prolif-
eration of deep learning. While these tasks find a multitude of practical applications
in the real world, they are not immune to the challenges of false recognitions and
detections, which can have detrimental consequences. One of the contributing fac-
tors to this inconsistency is our belief that the solutions derived from the provided
supervision and losses lead to suboptimal solutions that lack an understanding of
real-world structures and physical constraints.

In response to this challenge, our research addresses this issue by augmenting the
information provided to existing object detection and instance segmentation mod-
els. We believe that introducing additional information regarding the structural con-
straints and prior knowledge about the images can lead to closer-to-optimal solu-
tions. The proposed techniques introduce novel forms of prior information, namely,
“grid boundary information,” “foreground-background information,” and “class label
boundary information.”

The first piece of prior information, the grid boundary information, refers to
the rule-based boundaries of grids that divide the entire image, which are adopted
by state-of-the-art object detection techniques. We experimentally discovered that
when these grid boundaries coincide with the center positions of detected objects,
the discriminative performance significantly deteriorates. Therefore, we propose the
necessity of instructing the model about the existence of these designer-specific grid
boundaries. To address this issue, we introduced two techniques: a module for fea-
ture extraction from grid boundaries and data augmentation that involves shifting
object centers parallel to the grid boundaries. Combining these methods enhances
the model’s shift-invariant features and contributes to improved generalization per-
formance.

The second piece of prior information involves the proposal of a method to address
the issue of class imbalance between foreground and background in object detection,
which is a concern often faced by the field. While object detection and instance
segmentation are similar tasks, combining them has not been actively explored until
now. Given the recent feasibility of zero-shot learning in segmentation, we believe
that it is a viable approach to utilize segmentation information for other tasks. Con-
sequently, we introduce SODet, a two-step learning framework. In the first step, we
train a model for instance segmentation, enabling the construction of a model capable
of generating background masks. The second step involves integrating the generated
background masks into the input images and conducting retraining. This innovative
framework allows us to leverage prior information about foreground and background,
leading to finer-grained discrimination capabilities and performance improvements
across multiple benchmarks.

The third aspect of prior information pertains to introducing a regularization
method in the context of instance segmentation, which involves providing bound-
ary information of segmented instances as penalties. This approach stands out by
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addressing the common trend in conventional methods, where errors are predomi-
nantly considered at the pixel level. We observed that most existing techniques do
not adequately account for the spatial structural information formed among adjacent
pixels at object boundaries, whether it’s the boundary with the background or with
other objects. In our proposed approach, we aim to incorporate this spatial structure
information into the segmentation process. Specifically, the spatial structure of the
image of which the image of the teacher mask is composed introduces a regularisation
mechanism that ensures that if neighboring pixels belong to the same class, they also
belong to the same class as the neighboring pixels on the predicted image (and vice
versa). This mechanism is derived from the spatial structure of the image formed
by the ground truth mask, ensuring consistency in class labeling between adjacent
pixels in the predicted image. This innovative regularization technique yields a more
distinct mask, particularly at the boundary regions between instances and the back-
ground. As a result, it contributes to an enhancement in the quality of the output
generated by the instance segmentation process.
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Chapter 1

Introduction

1.1 Overview of Object Detection and Instance Segmen-
tation

In the field of computer vision, two fundamental tasks have gained remarkable promi-
nence over the years: object detection and instance segmentation. These tasks serve
as the cornerstones for a wide range of applications, from autonomous navigation to
content understanding, and play a pivotal role in modern technology.

1.1.1 Overview of Object Detection

Object detection is a fundamental computer vision task that revolves around the
identification and localization of objects within an image. At its core, it entails an-
swering two critical questions for each object: ”What is it?” and ”Where is it located?”
Object detection goes beyond simple object recognition by providing precise spatial
information in the form of bounding boxes. These bounding boxes encapsulate the
object’s position and dimensions, allowing for object localization and categorization
simultaneously.

1.1.2 Overview of Instance Segmentation

Instance segmentation is a closely related task that builds upon the foundations of
object detection. In instance segmentation, the objective is twofold: not only to iden-
tify and localize objects but also to provide a pixel-wise delineation of each individual
object instance within an image. This results in a fine-grained segmentation mask
for each object, allowing for a comprehensive understanding of the object’s spatial
extent.

While object detection is concerned with bounding boxes and object categoriza-
tion, instance segmentation takes the analysis to a pixel level, providing a more
granular representation of the objects. This level of detail is particularly valuable in
scenarios where objects may overlap or interact closely within the same region of the
image.
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Figure 1.1: A sample annotated image from the COCO dataset,
illustrates the difference between object detection and instance seg-

mentation.

1.1.3 Differences of Each Task

Object detection and instance segmentation share a substantial similarity in terms
of their fundamental task. Both aim to identify objects within images and provide
spatial information about them. While the basic network structure used for predic-
tions is fundamentally similar for both object detection and instance segmentation,
variations arise in the head components of the network, tailored to the respective
tasks. The backbone, responsible for feature extraction and object representation, is
often shared.

The critical differences lie in predictions and the ground-truth information used
during training:

Ground-Truth Information

In object detection, the ground truth for training typically consists of bounding box
coordinates and class labels, specifying the object’s category. Fig. 1.1 (b) shows some
examples of annotated bounding boxes. In contrast, instance segmentation requires
pixel-wise annotations, where each pixel is associated with a specific object instance.
Fig. 1.1 (c) shows some examples of annotated segmentation masks.

Prediction Resolution

Object detection networks produce predictions at the level of bounding boxes, defining
the object’s position and category. Instance segmentation networks, on the other
hand, provide pixel-level predictions, creating detailed segmentation masks for each
object instance.

Despite these nuanced differences, both object detection and instance segmenta-
tion serve as indispensable and practical technologies with diverse applications across
numerous domains. Their significance lies in their ability to provide machines with
the capability to interpret and interact with the visual world, fostering advancements
in automation, safety, and content understanding.
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We treated these two domains as the same task with the same challenges and
approached our research with this in mind.

1.2 The Emergence of Real-World Object Detection Ap-
plications

In recent years, the field of computer vision has witnessed significant advancements,
primarily driven by the development of Deep Neural Networks (DNNs). Among the
various computer vision technologies, object detection stands out as a crucial and
rapidly evolving area. Object detection refers to the process of identifying and locat-
ing objects of interest within images or video frames. One of the key advantages of
object detection is its versatility. It can be used in a variety of real-world scenarios in
automating tasks that require the identification and localization of objects in images,
making it an important technology in many applications.

The impact of object detection extends far beyond the confines of academia and
research laboratories. It has permeated into various industries, enriching them with
enhanced capabilities and safety measures. Here, we explore some of the practical
applications where object detection has made a substantial difference:

1.2.1 Survellance Camera Systems

Surveillance camera systems have become ubiquitous in our modern world. Object
detection plays a pivotal role in enhancing the effectiveness of these systems. It en-
ables automated monitoring and alerting, allowing security personnel to focus their
attention on potential threats. In crowded spaces, object detection can identify indi-
viduals, track their movements, and trigger alarms in the event of suspicious activities,
contributing to improved public safety.

1.2.2 Medical Imaging

In the field of healthcare, object detection has found vital applications in medical
imaging. Radiologists and healthcare practitioners rely on accurate and timely iden-
tification of anomalies and pathological structures within medical images. Object
detection models can assist in locating tumors, identifying fractures, and detecting
abnormalities, thereby expediting diagnoses and improving patient outcomes.

1.2.3 Automotice Safety Systems

The automotive industry has witnessed a significant transformation with the integra-
tion of object detection into vehicles. Advanced Driver Assistance Systems (ADAS)
utilize object detection to enhance road safety. These systems can detect pedestrians,
other vehicles, and road signs, providing crucial information to the vehicle’s control
system. In critical situations, object detection can trigger autonomous emergency
braking or other safety measures to prevent accidents.
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1.3 Risk of malfunction

Object detection systems have become integral components of various systems, with
a common goal of achieving autonomous operations. However, as we embrace this
advancement, it is imperative to recognize and address the inherent risks associated
with the deployment of object detection in critical domains, where the consequences
of system malfunction can lead to severe accidents and unintended outcomes. These
unintended consequences can range from false positives to false negatives, each car-
rying its own set of risks.

1.3.1 Surveillance and Security: Detecting Intruders or False Alarms?

Consider the scenario of using object detection to monitor a high-security facility. The
consequences of a malfunction in this context are dire. If the system fails to detect
an intruder, it could result in a significant security breach, potentially jeopardizing
lives and valuable assets.

On the other hand, if the system repeatedly misidentifies small animals as humans,
it can lead to a cascade of false alarms, eroding trust in the system’s reliability. This
not only diminishes the effectiveness of the security measures but also diverts valuable
resources to investigate false incidents.

1.3.2 Medical Imaging: The Consequences of False Positives and
Negatives

In the realm of healthcare and medical imaging, object detection plays a pivotal
role in diagnosing and treating patients. Medical professionals rely on accurate and
consistent results to make critical decisions about patient care. However, the risk of
malfunction in medical object detection systems can have profound consequences.

Consider a scenario where a medical imaging system frequently produces false
positives. This means that it erroneously identifies anomalies or abnormalities that
do not exist. Such frequent false alarms can create confusion and doubt among
healthcare practitioners, leading to unnecessary interventions, additional tests, and
potentially misdiagnoses. This not only places an additional burden on the healthcare
system but also poses risks to patient safety.

Conversely, the risk of false negatives in medical imaging object detection is
equally concerning. If the system fails to detect critical abnormalities, it can lead
to delayed diagnoses and missed opportunities for timely interventions. This delay
can significantly impact patient outcomes and the effectiveness of medical treatments.

1.3.3 Automotive Safety: Avoiding Catastrophic Accidents

Another domain where object detection is in Advanced Driver Assistance Systems
(ADAS), which are designed to enhance road safety. Accurate object detection is
crucial for identifying pedestrians, vehicles, and other obstacles on the road.
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Failure to detect pedestrians or other vehicles can lead to catastrophic accidents,
especially in situations where a human driver might not have sufficient time to react.
Moreover, misclassifying objects, such as mistaking a stationary object like a utility
pole for a human, can trigger emergency braking systems unnecessarily, potentially
causing rear-end collisions or loss of control.

1.4 Addressing the Challenge

The challenges posed by the risk of malfunction in object detection for critical appli-
cations are undeniable. As object detection continues to permeate our daily lives and
essential systems, there is an urgent need to address this challenge comprehensively.

As researchers and practitioners, we have been committed to bridging the gap
between academic achievements in object detection and their practical applications in
various industries. However, this journey has been fraught with challenges, primarily
stemming from the susceptibility of object detection systems to unexpected anomalies.

In this dissertation, we embark on a comprehensive exploration of three pivotal
questions that have guided our research endeavors:

1.4.1 Is object detection weak against translations?

In recent years, Convolutional Neural Networks (CNNs) have become the cornerstone
of deep learning for computer vision tasks, including object detection. The founda-
tion of CNNs can be traced back to Fukushima’s Neocognitron, proposed in 1980.
Inspired by the brain’s structural principles. In particular, the combination of convo-
lution and pooling employed by Fukushima et al. [20] in their Neocognitron for CNNs
is motivated by the desire to give the network invariance to image translations, scal-
ing, and other small deformations. Building upon Fukushima’s ideas, Yann LeCun
introduced LeNet [34], a neural network capable of end-to-end learning through error
backpropagation. This marked a significant milestone in the exploration of neural
network capabilities, expanding their potential for various tasks.

However, CNNs, which are widely employed in classification tasks, have been re-
ported to be sensitive to image transformations such as translations, rotations, and
scales [1, 52]. Even subtle changes introduced by such transformations can dramati-
cally reduce the accuracy of classification models.

Given the prevalence of CNN-based architectures in object detection, we ques-
tioned whether object detection systems were also vulnerable to this sensitivity. Our
experiments revealed that indeed, even slight translations of objects within an image
could lead to significant variations in prediction results.

Fig. 1.2 shows the results we observed in our shift-invariance evaluation. The left
and right pictures in Fig. 1.2 show the images before and after an 18-pixel translation
in the horizontal direction. These show that the prediction results for all objects are
different, even though the results were obtained from the same network. The dog in
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Figure 1.2: Qualitative result of shift variance for FCOS on the
COCO validation set, with confidence threshold set to 0.3. Inference
results on the image before and after shifting the input image horizon-

tally by 18 pixels.

the picture shows a decrease in class score from 0.666 to 0.311. In the right picture,
the clock fails to detect because it is below the detection threshold of 0.3.

This vulnerability is particularly problematic in practical scenarios. For instance,
in surveillance applications, the potential for object detection to fail when an intruder
is slightly translated within the frame poses a severe security risk. Similarly, in the
context of Advanced Driver Assistance Systems (ADAS), where pedestrian detection
is crucial, small movements of pedestrians could lead to inconsistent detection results,
which is far from ideal.

Object detection models inherently possess a multi-resolution information propa-
gation component, which is often considered a strength. This multi-resolution struc-
ture allows fine-grained information, such as the effects of parallel translations, to be
transmitted effectively to the final output. Despite this design, we found that object
detection systems were still susceptible to the influence of subtle translations. Our
research seeks to delve into the factors contributing to this vulnerability and pro-
pose solutions to enhance the robustness of object detection systems against parallel
translations.

1.4.2 Can We Address Class Imbalance in Object Detection by Quest-
ing for Balanced Foregrounds?

The application of object detection to pedestrian safety systems in autonomous ve-
hicles suffers from the problem of background misrecognition. One of the factors
contributing to this misrecognition is the problem of class imbalance. This is even
worse in the context of object detection than in classification tasks.

In standard image classification tasks, the problem of class imbalance arises when
some categories are vastly overrepresented while others are underrepresented or even
absent in the training data. This imbalance can severely impact the model’s ability to
generalize effectively, leading to biased predictions in favor of the majority class. In
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this case, one solution would be to spend an enormous amount of effort re-collecting
training data.

However, in the domain of object detection, the class imbalance problem takes on
a new dimension. Beyond the standard class imbalance, object detection faces the
additional challenge of foreground-background class imbalance [44]. This arises due
to the inherent nature of object detection, where the majority of the image regions
correspond to the background, devoid of any objects of interest.

Figure 1.3: Number of label assignments in FCOS for background
and foreground for MS-COCO dataset and CityScapes.

To underscore the pervasive nature of foreground-background imbalance in object
detection, let us turn our attention to Fig. 1.3, which depicts the distribution of
foreground and background labels in the COCO [39] and CityScapes [9] datasets when
utilizing the FCOS (Fully Convolutional One-Stage) [57] object detection framework.

As Fig. 1.3 illustrates, both datasets exhibit a staggering dominance of back-
ground regions, encompassing approximately 99% of the dataset.

The ramifications of foreground-background imbalance extend beyond mere statis-
tical curiosity. This imbalance introduces instability into the training process, making
it challenging for the model to effectively learn from foreground examples.

Various indirect methods have been proposed to tackle this issue, including cus-
tomized loss functions [38] and alternative strategies for label assignment [41, 57,
22]. While these approaches have shown promise, they still lack a direct means of
addressing the imbalance at its core.

In response to this challenge, our research embarks on a quest to investigate
whether we can directly leverage background information to alleviate the pervasive
foreground-background imbalance in object detection. Rather than relying on indirect
methods, we explore the feasibility of incorporating explicit background information
as a part of the model’s input. This approach represents a departure from traditional
methods and holds the promise of directly mitigating the imbalance, potentially lead-
ing to more stable training and enhanced model performance.
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1.4.3 Why does the segmentation mask fail at the boundary?

In recent years, instance segmentation has also seen dramatic improvements in mask
accuracy. This progress has been driven by state-of-the-art techniques and architec-
tures, making instance segmentation one of the most exciting and impactful areas in
computer vision. The appeal of instance segmentation lies in its ability to provide a
pixel-level segmentation mask that provides a more intuitive representation of objects
than the bounding boxes required by object detection. The ability to make pixel-level
predictions opens up new possibilities for applications that require a fine-grained un-
derstanding of visual data.

Instance segmentation suffers from the cost of annotation. However, zero-shot
segmentation methods such as SAM (Segment Anything Model) [31] have recently
been proposed, and an era where annotation is no longer necessary is approaching.
The attractive prospect of easily segmenting objects that were not seen during training
holds great promise for real-world applications.

While the achievements in instance segmentation are undeniable, a closer inspec-
tion of the predicted masks reveals areas ripe for enhancement. Notably, the chal-
lenging aspects lie at the boundaries of objects and classes. Predictions often falter
in these regions, resulting in errors and inconsistencies. This is a critical issue that
requires our attention.

Figure 1.4: An example of mask failure at boundary.

The root of this problem can be attributed to how predictions are currently made.
Existing models tend to focus on pixel-level errors, scrutinizing predictions at a gran-
ular level but overlooking the holistic context that human perception inherently relies
upon. When humans recognize object boundaries, they draw upon contextual infor-
mation from surrounding pixels, facilitating a more coherent understanding of the
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scene. The failure to effectively incorporate such spatial contextual information into
the learning process is a prime contributor to the challenges at hand.

To address this issue, our research focused on the context of the image, with a
particular focus on the pixel-to-pixel structure of the object boundary. We thought
that the training of the network needed to provide information about the spatial
context, i.e. the interactions of the pixels that make up the structure of the image.
One of our research topics was how to get the network to learn the concept of spatial
context as a guiding teacher for the model.

By providing models with spatial relationships among pixels, we aim to imbue
them with a richer understanding of the context in which objects exist. This spa-
tial context, we believe, will enable more accurate and coherent mask predictions,
especially in regions where object boundaries meet background or other objects.

1.5 structure of the thesis

In the following chapters, we further explore the technical aspects of object detection
and instance segmentation. We then describe in detail the solutions that we have de-
veloped through investigation and analysis of the three problems mentioned. Finally,
we summarise our contributions throughout this thesis.

1.5.1 Related works

Chapter 2, we provide a comprehensive overview of the state-of-the-art techniques
in object detection and instance segmentation. We explore the evolution of these
fields, from traditional methods to the most recent innovations. By understanding
the current landscape, we lay the foundation for the novel approaches presented in
subsequent chapters.

1.5.2 Improved head and data augmentation to reduce artifacts at
grid boundaries in object detection

Chapter 3 focuses on a novel approach that centers on grid boundaries as a funda-
mental element in improving object detection. We delve into the intricacies of this
paradigm, elucidating how it alters the traditional methodologies and contributes to
enhanced performance.

1.5.3 An Object Detection Method Using Probability Maps for In-
stance Segmentation to Mask Background

Chapter 4, presents techniques for refining object detection and instance segmen-
tation by resolving foreground-background imbalances through effective background
masking.
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1.5.4 Graph Laplacian Regularization based on the Differences of
Neighboring Pixels for Conditional Convolutions for Instance
Segmentation

Chapter 5 delves into the art of enhancing instance segmentation boundaries. We
propose novel methods to sharpen the boundaries between objects, resulting in clearer
and more precise segmentation. The techniques presented aim to transform the way
we perceive object boundaries.

1.5.5 Conclusion

The final chapter concludes our scientific journey by summarising the key findings,
contributions and implications of our work. It also outlines the potential for future
research and describes directions for further progress in the exciting areas of object
detection and instance segmentation.
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Chapter 2

Evolution of Object Detection
and Instance Segmentation

This chapter delves into the history of object detection, tracing its development from
its early days to the current state-of-the-art methods. Object detection has been a
fundamental task in computer vision, and its evolution has been marked by a relentless
pursuit of both accuracy and processing speed.

This section explores key milestones and breakthroughs in the field and details
the techniques that have paved the way for modern object detection systems.

2.1 Object Detection Methods

2.1.1 Traditional Detectors

In the 1990s, object detection relied primarily on handcrafted feature representations.
Face detection methods at the time used feature representations based on Gabor filters
modeled after the human retina, which produced beneficial results [50, 16]. These
representations were designed to capture specific features of objects in images. While
they showed promise, they were limited in their ability to handle complex variations
in object appearance, pose, and scale.

A significant breakthrough in real-time object detection came with the introduc-
tion of the Viola-Jones (VJ) detector in 2001 [61]. The VJ detector laid the foundation
for real-time processing by employing a sliding window approach. It scanned all pos-
sible locations and scales within an image, checking whether each window contained
a human face.

The VJ detector proposed several important technologies that will be influential
in this field. One is an integral image. This is a technique that avoids redundancy in
feature computation and speeds up the process. Another is detection cascades. The
detection cascade allows negative samples to be quickly removed, further increasing
processing speed. These innovations not only contributed to real-time object detection
but also influenced subsequent developments in the field.

In 2005, the Histogram of Oriented Gradients (HOG) [11] emerged as a significant
advancement in feature extraction. Inspired by the response of neurons in the primary
visual cortex to image gradients, HOG provided a robust representation of object
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edges and textures. HOG-based methods divided images into grids and computed
gradient histograms within each grid cell. This approach proved effective in capturing
object contours and patterns, making it widely adopted in object detection.

HOG paved the way for the development of deformable part-based models (DPM)
[17, 19] and other derivatives, which extended its principles to handle more complex
object structures and deformations. Techniques like bounding box regression and
hard negative mining, introduced during this era, continue to serve as foundational
concepts in modern deep learning-based object detection.

2.1.2 CNN-based Detectors

The advent of deep learning marked a significant breakthrough in the field of computer
vision, including object detection. Deep neural networks revolutionized how features
were extracted and how object detection was approached. The traditional handcrafted
feature extraction methods struggled to capture the complex and hierarchical patterns
present in images.

Deep learning-based object detectors brought about a paradigm shift by auto-
matically learning discriminative features from data. Convolutional Neural Networks
(CNNs) emerged as the backbone of these detectors, enabling the efficient extraction
of meaningful features.

Object detectors based on CNNs can be broadly categorized into two-stage and
single-stage methods, each with its strengths and weaknesses.

Two-stage methods, as the name suggests, involve a two-step process for object
detection. These methods first propose a set of potential object regions or bound-
ing boxes, often referred to as region proposals, and then classify these regions to
determine the presence of objects and refine their locations.

Single-stage methods, in contrast, directly predict object bounding boxes and
class labels from a fixed set of anchor boxes or default boxes, eliminating the need for
a separate region proposal stage. These methods aim to achieve a balance between
speed and accuracy by simplifying the detection pipeline.

The core architecture of modern object detectors consists of three primary com-
ponents: the backbone, the neck, and the head. The following Fig. 2.1 illustrates the
basic structure of modern object detectors:

Backbone is responsible for feature extraction from input images. It typically em-
ploys well-known CNN architectures like VGG [51] or ResNet [26]. These architec-
tures have proven effective in capturing hierarchical features, from edges and textures
to object parts and semantics. The backbone generates a feature map that serves as
the basis for subsequent processing.

Neck positioned between the backbone and the head, the neck’s primary role is to
refine the feature map from the backbone. It enhances the representational power of
the features, making them more suitable for object detection. One commonly used
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Figure 2.1: Basic network architecture of modern object detector.

neck architecture is the Feature Pyramid Network (FPN) [37], which helps address
scale variation in object sizes.

Head takes the refined feature map from the neck and performs object detection.
It predicts bounding box coordinates (object locations) and assigns class labels to the
detected objects. The head’s design can vary across different object detection models
and has a significant impact on the model’s accuracy and speed.

2.1.3 Two Stage Methods

The transition to deep learning for object detection began with the advent of R-CNN
(Region-based Convolutional Neural Network) [23]. R-CNN introduced a ground-
breaking approach by combining Convolutional Neural Networks (CNNs) with tradi-
tional object detection methods. Its architecture laid the foundations for two-stage
detectors and became a fundamental technology for future advances.

R-CNN followed a two-stage detection process. The first stage involved generating
region proposals—candidate bounding boxes that potentially contained objects of
interest. In the second stage, the task of object detection is performed by predicting
the categories of objects contained in the candidate regions. These proposals were
obtained using an algorithm called Selective Search [59].

Selective Search, based on the Felzenszwalb method [18], was instrumental in
generating region proposals. It operated by grouping similar pixels into segments and
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gradually merging them to form larger regions. This hierarchical approach created a
diverse set of region proposals by exploring multiple scales and shapes.

In the second stage, R-CNN extracted features from the candidate regions using
a CNN. AlexNet [33], a pioneering deep neural network, was commonly employed
for feature extraction. However, AlexNet had a fixed input size, necessitating the
resizing of candidate region images into a square format.

Once features were extracted, a linear Support Vector Machine (SVM) [60] was
utilized for classifying the objects within the candidate regions. R-CNN’s learning
process consisted of two separate steps: training the CNN-based feature extraction
part and training the SVM classifier separately.

R-CNN laid the groundwork for future advancements in object detection. How-
ever, it had certain limitations, such as slow training and inference speeds due to
its multi-step process of region proposal, feature extraction, and classification. Re-
searchers focused on overcoming these challenges, leading to the development of more
efficient two-stage detectors.

SPP-Net improvement upon R-CNN was SPP-Net (Spatial Pyramid Pooling Net-
works) [29]. SPP-Net introduced a novel pooling architecture that significantly en-
hanced both processing speed and accuracy.

SPP-Net addressed the inefficiency of fixed-size inputs by introducing Spatial
Pyramid Pooling (SPP). Rather than resizing candidate regions to a fixed size, SPP-
Net employed pyramid pooling, which created a spatial pyramid of bins of different
sizes. This allowed the network to process regions of various dimensions effectively.

SPP-Net also introduced multi-task learning, simultaneously handling object de-
tection and bounding box regression. It learned to predict class labels and refine
bounding box coordinates in a unified manner. This innovation simplified the archi-
tecture and training process, making it more efficient.

SPP-Net’s contributions, especially the spatial pyramid pooling technique, remain
influential in modern object detection systems. Its ability to handle regions of varying
sizes and multi-task learning set the stage for subsequent advancements in object
detectors.

Fast R-CNN emerged as a breakthrough in the evolution of two-stage detectors
[22]. It introduced the concept of end-to-end learning, streamlining the training
process and improving both accuracy and efficiency.

One of the key innovations in Fast R-CNN was the integration of the entire detec-
tion process into a single CNN. This allowed for end-to-end learning, where the model
learned to generate region proposals, extract features, and perform classification and
bounding box regression in a single pass. This holistic approach reduced training
time and complexity.

Fast R-CNN introduced Region of Interest (RoI) pooling, an efficient technique
for cropping and resizing features from the feature map. RoI pooling enabled the
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network to adaptively process candidate regions of various sizes and aspect ratios,
eliminating the need for fixed-size inputs.

Fast R-CNN’s achievements, particularly its end-to-end learning and RoI pooling,
significantly influenced subsequent advancements in object detection. The ability to
train the entire network in a unified manner paved the way for more efficient and
accurate detectors.

Faster R-CNN represented a major leap forward in two-stage detectors by ad-
dressing the inefficiencies associated with region proposal [47]. It introduced the con-
cept of Region Proposal Networks (RPNs) and achieved remarkable improvements in
both speed and accuracy.

Faster R-CNN seamlessly integrated region proposal generation into the CNN.
RPNs used the features extracted from the shared backbone network to predict region
proposals directly. This eliminated the need for external algorithms like Selective
Search and significantly accelerated the region proposal process.

One of the key innovations of Faster R-CNN was the introduction of anchors—
fixed aspect ratio boxes that served as priors for object locations. These anchors
helped guide the initial predictions of bounding box coordinates. By using multi-
ple anchor scales and aspect ratios, Faster R-CNN improved the accuracy of initial
predictions.

Figure 2.2: Evolution of the two-stage method.

Single Stage Methods

As discussed earlier, two-stage detectors brought substantial improvements in object
detection accuracy, but they came with a trade-off in processing speed due to the need
for an additional region proposal step. One-stage detectors emerged as a response
to this challenge, emphasizing speed and simplicity while maintaining competitive
detection performance.
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Around the same time as Faster R-CNN, a new paradigm of object detection began
to gain traction - Anchor-Based one-stage detectors. These methods introduced a sig-
nificant departure from the two-stage pipeline by directly predicting object bounding
boxes and class labels within a dense grid of anchor boxes placed across the image.

In Anchor-Based one-stage detectors, the feature maps produced by the backbone
network are densely populated with anchors. These anchors span a range of scales
and aspect ratios, and they are distributed uniformly across the spatial grid. Instead
of proposing region candidates, these detectors process the entire image in a grid-
wise manner, simultaneously predicting class probabilities and bounding box offsets
for each anchor.

YOLO One of the pioneering one-stage detectors is YOLO (You Only Look Once)
[46]. YOLO introduced a unique architecture, using the Darknet neural network as
its backbone. YOLO’s core idea is to divide the image into an S × S grid of equally
sized cells, where each cell is responsible for predicting bounding boxes and class
labels.

YOLO’s prediction process involves three primary components: Bounding Box
Regression: Each cell predicts multiple bounding boxes with associated coordinates
relative to the cell’s boundaries. These predictions aim to localize objects. Class
Prediction: YOLO assigns class probabilities for each bounding box, indicating the
presence of specific object classes within the box. Objectness Prediction: An addi-
tional prediction, known as ”objectness,” estimates the probability that an object’s
center falls within a given cell. This helps filter out boxes that do not contain objects.

YOLO then combines these three types of predictions and uses them as the basis
for learning. By providing supervision for these aspects during training, YOLO learns
to predict bounding boxes directly from the image in a single pass.

SSD Another notable Anchor-Based one-stage detector is SSD (Single Shot Multi-
Box Detector) [41]. SSD adopts a fully convolutional network (FCN) architecture
and relies on pre-trained backbones such as VGG or InceptionNet [54].

Unlike YOLO, SSD applies multiple detection heads to feature maps of varying
resolutions, enabling it to handle objects at different scales effectively. Each detection
head predicts class scores and bounding box offsets specific to its associated feature
map.

While SSD and YOLO offered significant speed improvements compared to two-
stage detectors, they faced some limitations. For instance, YOLO had difficulty
detecting small objects, and SSD was still outperformed by two-stage methods on
certain datasets. These challenges motivated further research into refining one-stage
detectors and addressing their weaknesses.

The Anchor-Based one-stage detectors, particularly YOLO and SSD, laid the
foundation for modern one-stage detectors.
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While one-stage detectors demonstrated advantages in processing speed compared
to two-stage detectors, they faced challenges in achieving the same level of detection
accuracy. One pivotal moment in overcoming these challenges, which continued to be
understood and improved upon, was the introduction of RetinaNet [38] in 2017.

RetinaNet was proposed in a paper titled “Focal loss for dense object detection”
citefocal. The author of RetinaNet recognized that the key issue hampering the
accuracy of one-stage detectors was the problem of class imbalance during training.
Class imbalance occurs when there is a significant disparity in the number of instances
of different classes in the training dataset.

For one-stage detectors, which consider the entire image in one pass, the majority
of regions contain background objects, leading to an unbalanced class distribution.
Two-stage detectors partially alleviate the class imbalance problem by filtering out a
majority of easy negatives in the first stage, focusing on more challenging regions in
the second stage. This imbalance makes learning more efficient in the second stage.
However, One-stage detectors do not have this luxury.

To tackle this challenge, RetinaNet introduced the innovative Focal Loss. The
Focal Loss addressed class imbalance by assigning higher weights to hard-to-classify
examples during training. Essentially, it ”focused” on samples that had been mis-
classified in previous iterations, giving them more importance in the loss calculation.
This idea effectively down-weighted easy negatives, thereby mitigating the problem
of overwhelming background regions.

The introduction of Focal Loss marked a breakthrough in the field of object de-
tection. It became a fundamental component in improving the accuracy of one-stage
detectors. Focal Loss significantly mitigated the class imbalance issue and allowed
one-stage detectors to compete with their two-stage counterparts in terms of accuracy,
all while maintaining real-time processing capabilities.

2.1.4 Anchor Free Detectors

In anchor-based object detection, numerous anchor boxes are used to cover various
aspect ratios and scales within an image. While this approach provides flexibility,
it exacerbates the class imbalance problem during training. Anchor-free methods
spurred the success of RetinaNet and Focal Loss, and several single-stage detectors
appeared in the following years, pushing the boundaries of object detection perfor-
mance.

The anchor-free approaches embraced by FCOS [57], CenterNet [14], and Fove-
abox [32] were motivated by a desire to mitigate this class imbalance issue. By
eliminating the need for anchors and assigning one object prediction per grid cell,
they restructured the detection process to focus on objects directly and alleviate the
impact of the background class. This shift led to a more balanced training process,
resulting in improved detection accuracy and performance. These methods marked
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a significant step forward in the evolution of one-stage detectors and became pivotal
in addressing the challenges associated with class imbalance in object detection.

FCOS (Fully Convolutional One-Stage Object Detection) : FCOS intro-
duced the concept of an ”anchor-free” detection approach.

Figure 2.3: FCOS network architecture.

Traditionally, anchor-based methods lead to class imbalance, as the number of
background labels is much larger than that of object labels due to the multitude
of anchors. FCOS alleviated this problem by predicting objects without using an-
chors, improving accuracy by focusing on object instances. FCOS further refined the
assignment of positive and negative samples, outperforming RetinaNet.

CenterNet : CenterNet took a different approach by considering the detection
task as finding the center point of objects. It focused on learning the center key point
and regressing the object size. This keypoint-based approach enabled accurate and
efficient object detection and offered an alternative to anchor-based methods.

Foveabox : Foveabox continued the trend of “anchor-free” detection. It adopted
the idea of assigning one object per grid cell, eliminating the class imbalance issue
and allowing each object to have its dedicated prediction.

2.2 Instance Segmentation Methods

Instance segmentation is a challenging computer vision task that extends the capa-
bilities of both object detection and semantic segmentation. It requires not only
identifying and locating objects within an image but also precisely delineating each
instance with pixel-level accuracy. It involves identifying and delineating individual
object instances within an image, assigning each pixel to a specific object, and pro-
viding a unique label for each instance. This task requires a model to not only detect
objects but also to generate fine-grained masks that precisely outline the shape of
each object.
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Instance segmentation is closely related to semantic segmentation, as both tasks
involve pixel-wise predictions. However, the key distinction lies in their objectives. In
semantic segmentation, the goal is to assign each pixel to a particular object category
or class, ignoring instance-specific distinctions. In contrast, instance segmentation
goes a step further by distinguishing individual instances of the same class, providing
a distinct label for each object instance. This distinction brings an added layer of
complexity to the task.

The history of instance segmentation is intertwined with object detection, partic-
ularly the development of Faster R-CNN, which served as a foundational framework.
Faster R-CNN is a fundamental two-stage object detection model that employs region
proposal networks (RPNs) for region-of-interest (ROI) generation. This methodology
significantly improved object detection accuracy.

Mask R-CNN Following the success of Faster R-CNN, Mask R-CNN [28] was
introduced in 2017 as a natural extension of the framework.

Figure 2.4: Mask R-CNN network architecture.

Mask R-CNN is a pioneering instance segmentation model that combines object
detection with pixel-wise mask prediction.

Mask R-CNN retains the two-stage architecture of Faster R-CNN but extends it to
include mask prediction for each region of interest. The model generates high-quality
object masks in addition to bounding boxes and class labels. This breakthrough al-
lowed computer vision applications to progress beyond object detection and semantic
segmentation by providing fine-grained object delineation.

Subsequently, the following Mask R-CNN derivation methods have been proposed,
leading to improved mask quality.

Cascade Mask R-CNN To further improve mask prediction and segmentation
quality, Cascade Mask R-CNN was introduced. Cascade Mask R-CNN [4], an ex-
tension of Mask R-CNN, iteratively refines masks in multiple stages. This approach
enhanced the accuracy of mask predictions by progressively adjusting and refining
the masks through a series of stages. This iterative refinement process allowed the
model to achieve highly precise instance segmentation.

Mask Scoring R-CNN Mask Scoring R-CNN [30] was another significant devel-
opment in instance segmentation. It addressed a critical limitation of existing models.
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While traditional instance segmentation models generate masks for all detected ob-
jects, these masks may not always be accurate. Mask Scoring R-CNN introduced
a mask quality assessment mechanism that ranks and refines the predicted masks,
enhancing the overall segmentation quality.

The contributions of Mask Scoring R-CNN and other Mask R-CNN-based ap-
proaches significantly improved the accuracy of instance segmentation. However,
these methods predominantly rely on local information detected by the detectors,
and they have a notable limitation in their inability to effectively utilize global image
context information.

As discussed earlier, as RetinaNet outperformed Faster R-CNN in the context
of object detection, the emergence of the one-stage method was expected to lead
to a similar paradigm shift in instance segmentation. Transitioning to one-stage
approaches holds the promise of facilitating the integration of global information, a
limitation inherent to traditional methods. YOLACT [3] emerged as the pioneering
solution to this challenge, effectively harnessing global context within the domain of
instance segmentation.

YOLACT While most instance segmentation models, including Mask R-CNN,
adopt a two-stage architecture, YOLACT took a different approach. YOLACT is
a one-stage instance segmentation model that provides real-time performance with
global context information. YOLACT leverages a single convolutional neural net-
work to predict both masks and class scores concurrently. This streamlined approach
demonstrated that one-stage models could achieve impressive instance segmentation
results while maintaining real-time capabilities.

However, it has been demonstrated that relying solely on global information leads
to ambiguities in the masks of object boundaries. Consequently, it became evident
that the generation of precise masks requires the incorporation of local information.

Combining Local and Global Features CenterMask [35] and BlendMask [6] rep-
resent innovative approaches to instance segmentation by combining local and global
features, while leveraging the FCOS network architecture. These models leverage a
dual-head design, with one head focusing on local features and another on global fea-
tures. This combination allows them to capture both fine-grained object details and
contextual information, significantly enhancing the quality of instance segmentation.

Early iterations of one-stage instance segmentation models exhibited a promising
blend of local and global information. However, these models often struggled to
surpass the accuracy achieved by their two-stage counterparts, exemplified by Mask
R-CNN. The challenge was to reconcile the efficiency of one-stage models with the
precision of two-stage models.
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SOLO In response to the challenge, the research group behind the Fully Convo-
lutional One-Stage (FCOS) detection framework introduced SOLO (Segmenting Ob-
jects by Locations) [62]. The FCOS framework had successfully eliminated the need
for anchors, pioneering anchor-free object detection on a grid-cell basis. SOLO ex-
panded this concept to pixel-level segmentation, a remarkable achievement.

Figure 2.5: SOLO network architecture.

The presented approach simplifies the process by transforming the branch respon-
sible for bounding box generation in FPN-based object detection into an instance
mask generation branch. The detection process encompasses two branches: class
estimation and mask estimation.

The class branch divides the image into S× S grids, and the grid cell corresponding
to the center of the instance infers the class category C. Grid cells that do not contain
centers are treated as background.

The mask branch produces masks of resolution H×W corresponding to the output
of the class estimation branch. Specifically, since the class estimation branch outputs
a resolution of S × S, the mask generation branch yields an output dimensionality of
H × W × S2. The mask branch is structured as an H × W feature map to maintain
high resolution, with one mask prediction for each grid cell in the category branch.
Therefore, the output of the mask branch is H × W × S2.

SOLOv2 SOLOv2 [63] sought to tackle the challenge of high computational costs.
The original SOLO architecture necessitated extensive feature maps due to the large
number of grid cells, resulting in a considerable amount of redundancy. SOLOv2
introduced the use of dynamic convolution, a method to mitigate this redundancy,
providing a more memory-efficient solution without compromising accuracy. Fur-
thermore, SOLOv2 demonstrated superior performance over both the original SOLO
model and Mask R-CNN, not only in terms of accuracy but also in speed.

CondInst CondInst [56], a novel approach, introduced a simpler architecture com-
pared to SOLOv2. In CondInst, the categories’ predictions and mask predictions are
integrated into a single branch. The innovation lies in predicting masks conditioned
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on the class. This change resulted in a configuration that is independent of object
detection.

Furthermore, the mask prediction was adjusted to utilize only high-resolution
feature maps, avoiding the need for all hierarchical feature maps and achieving high-
resolution masks.

2.3 Loss Function for Object Detection and Instance Seg-
mentation

In the domain of object detection, the choice of appropriate loss functions is crucial
for training models effectively. These loss functions play a vital role in optimizing
the parameters of the detection networks. This section will delve into the different
loss functions employed for class classification, bounding box regression, and instance
segmentation mask prediction in the context of object detection.

2.3.1 Classification Loss

In the realm of object detection, the class classification loss is designed to determine
the likelihood of an object belonging to a specific category. Three common loss
functions are discussed here.

SoftMax Cross Entropy Loss Historically, the RCNN family and SSD employed
SoftMax Cross Entropy Loss. SSD adopted an approach to classification by adding
background as one of the categories. On the other hand, Faster R-CNN uses Binary
Cross Entropy Loss for the first-stage Region Proposal Network (RPN) and SoftMax
Cross Entropy Loss for the second stage.

SoftMax is defined by the following equation:

pc =
ezc

∑j ezj
, (2.1)

where zc represents the logit for class c.
Let p = [p1, p2, ..., pC]

T be the value of Softmax output pi ∈ [0, 1] by the model, N
the number of mini-batches in training and t = [t1, t2, ..., tN ]

T the number of correct
labels ti ∈ 1, 2, ..., C in the mini-batches, then the SoftMax Cross Entropy Loss can
be expressed as:

Lce = −
N

∑
i=1

log(pti). (2.2)

Binary Cross Entropy Loss Binary cross entropy (BCE) loss is used in object
detection frameworks like YOLO. This loss function is particularly suited for binary
classification tasks and calculates the cross-entropy loss for binary class prediction
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problems. According to the authors of YOLO, class classification in object detec-
tion is better framed as a two-class classification problem rather than a multi-class
classification; YOLO uses a ” One versus the other” structure for optimization.

In the context of binary classification models, the logits output zi is further pro-
cessed using a logistic function to obtain the predicted class probability pi. Logistic
function is defined by the following equation:

pi =
ezi

ezi + 1
, (2.3)

then the BCE Loss can be expressed as:

Lbce = − 1
N

N

∑
i=1

{ti log(pi) + (1 − ti) log(1 − pi)}. (2.4)

Focal Loss The Focal Loss addressed class imbalance by assigning higher weights
to hard-to-classify examples during training. Essentially, it ”focused” on samples that
had been misclassified in previous iterations, giving them more importance in the loss
calculation. This idea effectively down-weighted easy negatives, thereby mitigating
the problem of overwhelming background regions. In recent years, focal loss has
gained prominence, primarily associated with models such as RetinaNet and FCOS.
Focal loss addresses the issue of class imbalance by giving higher weights to hard
examples, thereby improving training efficiency and focusing on challenging cases.
Its formulation is as follows:

Lfocal = − 1
Npos

N

∑
i=1

{tiα(1 − pi)
γ log(pi) + (1 − ti)(1 − α)pγ

i log(1 − pi)}, (2.5)

where, αi and γ are hyperparameters controlling the weight distribution and the rate
of focusing.

2.3.2 Bounding Box Regression Loss

Bounding box regression is crucial for localizing objects accurately. Different loss
functions have been used to measure the discrepancy between predicted and ground
truth bounding boxes. Some notable ones include:

L1 Loss L1 loss (also known as the Mean Absolute Error) was a predominant choice
in early object detection methods [23]. It computes the absolute differences between
predicted and true bounding box coordinates. The L1 loss is given by:

LL1 =
1

Npos

Npos

∑
i=1

{ ∑
j∈{x,y,w,h}

abs(b∗i,j − bi,j)}, (2.6)

where, b∗i,j represents the ground truth bounding box of instance i, and bi,j is the
predicted bounding box.
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Smooth L1 Loss Smooth L1 loss [22] is another commonly used regression loss
function. L1 Loss has limitations, particularly in areas near zero where it lacks
differentiability and maintains large gradients. To address this, “Smooth L1 Loss”
was introduced. It combines the characteristics of Mean Squared Error (MSE) near
zero and Mean Absolute Error (MAE) further away, creating a piecewise loss function
proposed in Fast R-CNN. The smooth L1 loss is defined as:

smoothL1(x) =

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(2.7)

However, in the actual object detection, the loss in box regression task is

Lsmooth =
1

Npos

Npos

∑
i=1

∑
j∈{x,y,w,h}

{smoothL1(b∗i,j − bi,j)}. (2.8)

Both Faster R-CNN and YOLO have adopted the Smooth L1 Loss for bounding
box regression.

IoU Loss While Smooth L1 Loss works well, it may not sufficiently consider the
diversity of Intersection over Union (IoU) scores. IoU loss [48] has become a recent
favorite in object detection, particularly in anchor-based detectors. It measures the
discrepancy between predicted and ground truth bounding boxes by considering the
IoU between the two. IoU loss is defined as:

LIoU =
1

Npos

Npos

∑
i=1

{1 − IoU(b∗
i , bi)}, (2.9)

where b∗
i represents the box coordinate vector of ground truth of instance i, and bi

represents the predicted box coordinate vector.

2.3.3 Mask Loss

The choice of an appropriate loss function plays a pivotal role in the training and
optimization of instance segmentation models.

Binary Cross Entropy Loss Early approaches in instance segmentation predom-
inantly relied on binary cross-entropy loss, where pi,j represents the predicted prob-
ability that a pixel at j belongs to a particular instance of i, and ti,j is the ground
truth label.

Lbce = − 1
Npos × M

Npos

∑
i=1

M

∑
j=1

{ti,j log(pi,j) + (1 − ti,j) log(1 − pi,j)}, (2.10)

where M is the total number of pixels in the target image. MASK R-CNN and
YOLACT both employ BCE loss for mask prediction.
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Dice Loss BCE was also significantly successful in the task of instance segmenta-
tion. However, these methods had limitations when dealing with images in which the
background occupies many pixels. A significant milestone in the evolution of instance
segmentation loss functions was the introduction of the Dice loss [53].

The Dice loss measures the overlap between predicted and ground truth segmen-
tations and primarily concentrates on foreground labels. Dice loss is defined as:

Ldice =
1

Npos

Npos

∑
i=1

{1 −
2 ∑M

j=1 pi,jti,j

∑M
j=1(ti,j + pi,j)

}, (2.11)

2.4 Datasets for Object Detection and Instance Segmen-
tation

Commonly used datasets for object detection and instance segmentation are MS-
COCO [39] and CityScapes [9]. Both play a pivotal role in the advancement of
models and high standards for assessing the performance of these computer vision
systems have been widely adopted.

Both provide extensive annotations for each image. It includes annotations for
object detection, where each instance is annotated with a bounding box, and for
instance segmentation, where each instance is further outlined with pixel-level masks.

2.4.1 MS-COCO

The COCO dataset is one of the most widely used benchmarks for object detection
and instance segmentation tasks. It is known for its large-scale and diverse set of
images that depict complex scenes, making it an excellent resource for evaluating the
performance of computer vision models. COCO contains 118,287 images for training
and 5,000 images for validation spanning 80 object categories.

The dataset encompasses a wide variety of images, including both indoor and
outdoor scenes. This diversity poses a significant challenge to computer vision models
due to the varying lighting conditions, object scales, and complex backgrounds.

Below are sample images from the COCO dataset:

2.4.2 CityScapes

The CityScapes dataset is another crucial benchmark, but it differs from COCO
as it focuses on urban scenes and is primarily designed for semantic and instance
segmentation in the context of autonomous driving. CityScapes is composed of images
captured in urban settings, mainly streets and roads. This dataset aims to evaluate
how well models can perform in real-world traffic scenes.

It offers fine-grained pixel-level annotations for semantic segmentation, making it
valuable for tasks like road and lane segmentation. Additionally, it includes instance-
level annotations for certain object classes.

Below are sample images from the CityScapes dataset:
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Figure 2.6: Sample images from the COCO dataset with annotation.

Figure 2.7: Sample images from the CityScapes dataset with anno-
tation.

2.4.3 Evaluation Metric

In the realm of object detection and instance segmentation, the evaluation of model
performance is of paramount importance. COCO and CityScapes datasets, a funda-
mental benchmark for these tasks, employ a range of evaluation metrics to assess the
quality of results generated by algorithms. Among these metrics, Average Precision
(AP), with variations including AP50, AP75, APS, APM, and APL, plays a central role
in gauging detection and segmentation accuracy.

AP Average Precision serves as a comprehensive indicator of detection and segmen-
tation performance. It calculates the area under the precision-recall curve, giving a
clear sense of how well an algorithm can balance precision and recall. A higher AP
signifies better accuracy in localizing objects and segmenting instances.

AP at Different IoU Thresholds: Intersection over Union (IoU) is a crucial
parameter that dictates the extent of overlap between predicted bounding boxes and
ground-truth instances. AP50 and AP75 evaluate performance at specific IoU thresh-
olds of 0.50 and 0.75, respectively. AP50 provides an overview of the algorithm’s
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performance under moderate overlap, while AP75 emphasizes stricter matching crite-
ria. Algorithms achieving higher AP50 and AP75 scores exhibit superior accuracy in
localization and segmentation.

AP for Different Object Sizes: Objects within an image vary in size, from
small to medium and large. APS, APM, and APL focus on evaluating performance
for objects of different scales. APS represents the average precision for small objects
with an area less than 32× 32 pixels, APM for medium-sized ones that fall within the
range of 32 × 32 to 96 × 96 pixels, and APL for large objects with an area exceeding
96 × 96 pixels. This segmentation enables a nuanced understanding of how well an
algorithm caters to varying object sizes.
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Chapter 3

Improved head and data
augmentation to reduce artifacts
at grid boundaries in object
detection

3.1 Problems at Grid Boundaries

3.1.1 What is the Grid?

One-stage methods in object detection have gained prominence for their unique ap-
proach to handling images by partitioning them into a grid structure, enabling dense
predictions across all grid cells [41, 46]. Unlike two-stage methods, which often deal
with fixed-size inputs to their heads, one-stage methods take advantage of these grid
cells to perform detection. This strategy offers several advantages.

One of the key benefits of one-stage methods is their adaptability to objects of
various scales. To address multi-scale objects, one-stage models generate hierarchical
feature maps with different resolutions. These feature maps are designed to detect
objects at scales that match their sizes [37]. By using a coarse grid on low-resolution
feature maps, these models can effectively detect larger objects, while employing a
finer grid on high-resolution feature maps facilitates the detection of smaller objects.
This flexible grid-based approach allows one-stage methods to maintain robustness
across different scales, a notable advantage when compared to some two-stage meth-
ods that may struggle to detect small objects due to information loss from resizing
[41, 46].

Furthermore, one-stage methods often employ heads built using Fully Convolu-
tional Networks (FCN), which have yielded remarkable performance improvements in
recent years [38, 14, 57]. These heads utilize stacked convolutional layers to expand
the receptive field and obtain high-dimensional feature representations. This results
in a more comprehensive understanding of the image and its contents, aiding in the
accurate detection of objects across the grid structure.
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3.1.2 What Is the Problem?

Recent research has brought to light the intriguing observation that Convolutional
Neural Networks (CNNs) can experience a significant drop in classification accuracy
due to even the slightest pixel translation [1, 15]. Consequently, there has been
a surge in the development of various methods aimed at achieving shift-invariant
feature representation [67, 5].

A noteworthy example comes from Manfredi et al. [43], who reported a notice-
able decrease in object detection performance associated with minor translations.
This revelation prompted a closer examination of the effects of translation on object
detection and its implications.

In light of this context, both classification tasks and object detection are recog-
nized to be susceptible to performance degradation due to minor translations. How-
ever, existing studies have primarily acknowledged this degradation without delving
into the distinct factors contributing to it. They tend to treat the factors affecting
object detection and classification as homogenous.

However, our investigation has unveiled a critical dissimilarity in the nature of
degradation due to translations in object detection compared to classification. In
particular, this degradation in object detection is shown to stem from artificially
imposed grid boundaries, setting it apart from classification and underscoring unique
characteristics intrinsic to object detection.

Of significant note is the susceptibility of object detection to misalignments in the
input data. This vulnerability is particularly pronounced within the context of one-
stage methods and hinges on a specific challenge a decrease in class scores attributed
to the Euclidean distance between the object’s location and the grid boundary. This
difference highlights the distinctive features and challenges specific to object detection,
particularly within the framework of one-stage methods.

This vulnerability assumes heightened significance in real-world scenarios. For
instance, in surveillance applications, the prospect of object detection failing when an
intruder undergoes slight translations within the frame presents a significant security
risk. Similarly, within the domain of Advanced Driver Assistance Systems (ADAS),
where pedestrian detection plays a pivotal role, the potential for minor movements
of pedestrians to result in inconsistent detection outcomes is far from ideal. This
realization underscores the critical importance of addressing and mitigating the issue
of shift variance in object detection, particularly concerning one-stage methods, to
ensure the reliability and robustness of these systems across various applications.

3.1.3 Previous Methods for Shift Invariance

Grid-Based One-Stage Object Detector

Recent one-stage object detection methods have achieved remarkable success using
multi-scale feature pyramids on grids. EfficientDet [55] employs a multi-scale feature
representation by adding a bottom-up path in addition to the top-down path. This
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method uses conventional feature pyramid networks (FPN) [37] to propagate feature
maps from low to high resolution. YOLOv4 [2] uses SPP [29] to obtain multi-scale
feature representations by simultaneously using pooling layers with multiple kernel
sizes 1, 5, 9, and 13 to collect both local and global information.

Furthermore, the feature extraction part of the head of recent one-stage methods
[57, 38, 55, 21] obtains features from adjacent grid cells by expanding the receptive
field using multiple 3 × 3 convolution layers of feature maps from the FPN.

However, in evaluating robustness to shift in FCOS [57], we find that the class
score drops when the object center aligns with the grid boundary of the feature
map. This means that the FPN cannot directly improve feature representation at
the grid boundaries, and the stacking of multiple convolutional layers is implicit and
insufficient for information propagation at grid boundaries. Thus, it is necessary to
introduce further ingenuity.

Shift Invariance and Equivalence

In the classification task, current CNN-based methods are reported as not shift in-
variant [15]. One approach to obtain shift-invariant models is data augmentation,
such as random cropping, but the improvement is reported to be limited to similar
images [1].

The research on shift perturbations in object detection tasks is limited. Manfredi
et al. [43] noted that object detection is applied to safety-critical applications, such as
autonomous driving, which requires equivalence, not invariance, for the shift. They
proposed a method to evaluate the robustness to shift in object detection, which is
the first step in consideration of shift equivalence, and confirm an improvement in
robustness due to down-sampling [67]. Nevertheless, it shows a poorer performance
as a general benchmark evaluation method.

Thus, it is necessary to develop new data augmentation techniques by which data
are generated with adequate shifts depending on the target size.

SwinTransformer

Vision Transformer (ViT) [13] divides an image into multiple patches and obtains the
feature values for each patch after calculating the relationship between the patches.
Therefore, when applied to tasks such as object detection and segmentation, where
detailed features of images should be considered, a smaller patch size increases the
number of patches and the number of combinations between patches, significantly
increasing the computational complexity during learning and inference.

Swin Transformer [42] addresses this problem by dividing patches into multi-
ple groups called“windows”and limiting the calculation of the relationship between
patches to within windows, thereby reducing the amount of computation during learn-
ing and inference. In this case, the target object is divided by a window, and the
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relationship between originally adjacent and highly related patches may not be con-
sidered. Therefore, Swin Transformer extracts features at the boundary of a window
by adding a Shifted Window to calculate the degree of relationship between patches.

This suggests the importance of introducing information from neighboring grids.
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3.1.4 Reducing Class Scores in Object Detection at Artefactual Grid
Boundaries

Figure 3.1: Effect of image shift on class scores. Results of FCOS
inference of the image from the COCO train set. The first row shows
the image and its ground truth. The second row shows the variation
of the class score of the correct label when the image is horizontally
translated; the third row shows the scores of the object’s center (blue
line), right neighbor (green line), and left neighbor (pink line) grid cell.
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This section shows our observations of class scores dropping at the boundaries with
adjacent grids when the input image is shifted. Then, we propose solutions to this
problem.

In object detection, the kernel sizes of convolutions in both the network backbone
and FPNs [37] are designed to consider the down-sampling strides. Moreover, the head
is composed of enough convolution layers to construct a sufficiently large receptive
field that considers the size of the targets. Therefore, the prediction results are
expected to be robust to the object’s position in the grid.

Let f 0
j be the grid cell of the feature vector containing the center of the object j

in the original input image I0, and let Iδx and f δx
j be the image and feature vector of

I0 translated horizontally by δx pixels, respectively. Then, the classifying operation
Hcls at the head is expected to be Hcls( f 0

j ) = Hcls( f δx
j ).

We performed experiments to investigate the variations of the prediction results
for each Hcls( f δx

j ) when the image I0 is translated horizontally. Fig. 3.1 shows graphs
of the variations obtained for a target object in an input image.

The first column of Fig. 3.1 shows the input image on the left and the zoomed-in
image of the object to be detected with grids on the right. The second column shows
the class scores of the grid cell containing the center of the ground-truth box when the
input image is translated horizontally to the right. From this graph, we can see that
the class scores are changing periodically depending on the shift value. The range
of scores varies from 0.85 to 0.6. Also, from this graph, we can see that the score
becomes minimum at the position where the center of the bounding box overlaps the
boundary of the grid. The period of the scores is equal to the grid size of the feature
map, which corresponds to the scale of the target object. In this example, the grid
size assigned to the target object is 64 px. We observed that the same phenomenon
occurs for other targets and,

a larger target object (assigned to a large grid size) tends to show larger drops
in the class scores. This phenomenon in large objects suggests that the current one-
stage object detection methods cannot extract sufficient information from adjacent
grid cells using the implicit receptive field expansion method with convolution layers.

The bottom graph in Fig. 3.1 shows the class scores of the center (blue), right
neighbor (green), and left neighbor (pink) grid cells when horizontal shifts are applied
to the input image. From this graph, we can see that the class scores of the center
grid cell suddenly drop at the horizontal axis position 55, which corresponds to the
boundary of the grid for that target. Meanwhile, the class scores of the left neighbor
grid cell gradually decrease and become minimum at horizontal axis position 55.
Then, they suddenly increase when the shifts become larger than 55. Also, the right
neighbor cell behaves oppositely to the left neighbor cell.

These results suggest that the class scores of the left cell become high when the
target center is close to the left boundary, and vice versa for the right side. However,
at grid boundaries, information for target classification is not well propagated between
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adjacent grids. Thus, class scores at the grid boundary become low in all three grid
cells.

This means we should train the classification head using the neighboring grid
information. To improve the training further, we should train the head with the
augmented data generated by adding the horizontal and vertical shifts of the input
image depending on the target scale and location.

3.2 Proposed Method

3.2.1 Overview of Our Proposed Method

(a) (b) (c)

Figure 3.2: Location relationship between the grid boundary and
object center., where the class score drops, and our proposed feature
representation strategy. The orange circle represents the object center.
The black lines represent the feature map grid. FCOS drops class
scores when the grid boundary of the feature map aligns with the
object center. (B) The feature map is one level higher resolution than
the original feature map. (C) The feature map of (B) is shifted by one
grid to shift the object center from the grid boundary to the center of

the grid.

The vulnerability at the grid boundary arises when the bounding box center as-
sociated with an object coincides with the grid boundary, as illustrated in Fig. 3.2a.
This issue becomes more prevalent when dealing with larger objects. Large objects of-
ten span multiple grids, necessitating the exchange of information between these grids
for accurate detection. However, pixels near the grid boundaries exhibit disparate
features inside and outside the grid, making precise object information estimation
challenging. This discrepancy leads to a drop in class scores at the grid boundaries.

Concurrently, while down-sampling techniques have been instrumental in mitigat-
ing aliasing effects and preserving detailed information within feature maps, they fall
short of completely resolving the challenges posed by grid boundaries.

In light of these challenges, this study introduces two novel methods aimed at
ameliorating the decrease in class scores around the grid boundary and enhancing
the overall robustness of trained networks, particularly concerning target locations.
The first method, the Sub-Grid Feature Extraction Module (SGFEM), is integrated
into the network’s head. SGFEM augments the original feature map with a feature
map at one-level higher resolution (as depicted in Fig. 3.2b) and a feature map shifted
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by one grid (as shown in Fig. 3.2c). This process results in a new feature map that
compensates for the information loss at the grid boundary.

The second method, Grid-Aware Data Augmentation (GADA), presents a data
augmentation technique designed to shift the object’s center, with a specific focus on
the grid boundary’s vulnerable points. The extent of translation is contingent on the
size of the target objects.

By seamlessly integrating these two innovative approaches into the Fully Con-
volutional One-Stage Object Detection (FCOS) framework [57] and applying them
rigorously, this research showcases substantial performance improvements, particu-
larly on the COCO validation set [39].

3.2.2 Network Architecture

Figure 3.3: Overview of the network architecture of the proposed
method. P3-P7 generated from the feature pyramid are the feature
maps used for the final prediction. The grid size represents the step
size width of the feature map. The head is a twin-head configuration
of FCOS’s original head and Our Head, where Our Head is a shared

head between feature levels.

We implemented and investigated FCOS [57]. FCOS generates 5-level feature
maps with different resolutions in the feature extractor. Let Pi ∈ {P3, P4, P5, P6, P7}
be the feature map, where i denotes the layer index of the feature map. P3, P4, and P5

are connected top-down with a convolution layer of 1 × 1 kernel from the backbone,
and P6 and P7 are generated by applying a convolution layer of stride 2 to P5 and P6,
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respectively. The grid cell size is [8, 16, 32, 64, 128] for P3, P4, P5, P6, P7, respectively.
The receptive field M implicitly expanded by the four 3 × 3 convolution layers of the
head is [32, 64, 128, 256, 512].

The target object is assigned the feature map level with rules based on the max-
imum distance of the box regression. The rule is to assign positive labels to areas
where the maximum distance of regression is within the receptive field M of each level.
If positive labels overlap between feature maps, the lower resolution is employed, and
the higher resolution label is redefined as a negative label.

3.2.3 Sub-Grid Feature Extractor

Figure 3.4: Illustration of SGFEM. The upper pass is the feature
extractor from Pi in the regular head of FCOS, and the lower pass is
the proposed sub-grids P̂i−1 one. The final layer outputs predictions
for each task from the feature map, which fuses the features generated

from each pass.

Fig. 3.3 presents an overview of the SGFEM. The network propagates the feature
pyramid generated from the backbone to the head. It predicts bounding boxes and
categories from the feature map that fuses the original and sub-grid features using
SGFEM. For the highest resolution feature map P3, we apply the original FCOS
head. For the other feature maps, we apply our proposed head.

Our head is fed two feature maps with different resolutions. SGFEM performs
feature extraction from feature maps of these two resolutions, considering features at
the grid boundaries. As shown in Fig. 3.4, SGFEM contains three parts.

The feature map Pi is embedded in Zi using a 3× 3 convolution layer, as in FCOS.
Higher resolution features P̂i−1 are embedded in Ẑi−1 using a 5× 5 convolution layer.
In this case, P̂i−1 is a feature map with Pi−1 shifted by one grid and can be regarded
as a feature representation shifted by half a grid compared to Pi (Fig. 3.2c). Then, to
fuse Zi and Ẑi−1 features, the feature map of Ẑi−1 is re-organized into 4 channels, as
denoted by {A, B, C, D} in Fig. 3.4, aligned to the resolution of Zi, and fused using
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concatenation operations. Each branch consists of 3 × 3 convolution layers, the same
as FCOS, to predict bounding boxes and categories from fused features.

3.2.4 Auxiliary Loss

The original FCOS loss function is defined as follows:

LFCOS =
1

Npos
∑
x,y

Lcls(px,y, c∗x,y) + (3.1)

1
Npos

∑
x,y

1{c∗x,y>0}Lbox(bx,y, b∗
x,y),

where Lcls is the focal loss [38] and Lbox is the IoU Loss [48]. Npos defines the number
of positive samples. Let b∗

x,y denote the ground-truth box at position (x, y) on the
feature map Zi and its class label c∗x,y, and let bx,y and px,y denote the prediction
results, respectively.

Here, we provide an auxiliary loss because the feature Ẑi−1 leads to a more stable
optimization. For the auxiliary loss, we also assign a positive label ĉ∗x,y to the sub-grid
high-resolution feature map Ẑi−1 and define it as follows:

Laux =
1

N̂pos
∑
x,y

Lcls(p̂x,y, ĉ∗x,y), (3.2)

where N̂pos defines the number of positive samples on Ẑi−1. Let the category label
and prediction result be ĉ∗x,y and p̂x,y respectively.

The final loss function is formulated as follows:

Loss = LFCOS + λLaux, (3.3)

where λ is a hyper-parameter to balance the auxiliary and original loss.
In the testing phase, the auxiliary branches are abandoned. Thus, the auxiliary

loss path does not add any extra parameters or calculations to the model in inference.

3.2.5 Grid-Aware Data Augmentation

Let b∗
x,y = (l, t, r, b) be the ground-truth box assigned to object j at position (x, y)

on feature map Pi, where (l, t, r, b) is the offset from the center of the grid cell to the
four sides of the bounding box.

The value of the image shift (∆xj, ∆yj) to the grid boundary where the class score
drops can be defined as

∆xj =
r + l

2
− xsi, (3.4)

∆yj =
b + t

2
− ysi, (3.5)

where si is the grid size of the feature map Pi.
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In training, we generate an image shifted by (∆xj + δx, ∆yj + δy) pixels with prob-
ability δ to provide randomness. This experiment used δx, δy ∈ [−8, 8].

3.3 Experiments

Table 3.1: Comparison of baseline on COCO val dataset.“Ours”
represents the head with SGFEM. GADA represents Grid-Aware Data

Augmentation.FPS measured in runtime on a GeForce RTX3090.

method backbone params(M) FPS GFLOPs AP AP50 AP75 APS APM APL

FCOS ResNet-18 19.1 43.2 155.6 33.3 51.6 39.7 18.8 35.8 42.8
FCOS+GADA ResNet-18 19.1 43.2 155.6 34.2 52.6 39.8 19.1 37.0 44.4

SGFEM ResNet-18 26.6 33.9 198.3 33.5 52.6 39.6 17.6 36.3 44.0
SGFEM+GADA ResNet-18 26.6 33.9 198.3 35.0 53.9 40.1 19.6 37.9 46.5

FCOS ResNet-50 32.0 29.5 200.6 36.3 55.4 38.4 19.6 39.6 47.8
FCOS+GADA ResNet-50 32.0 29.5 200.6 38.2 57.3 40.9 22.6 42.0 48.9

SGFEM ResNet-50 39.5 24.8 243.2 36.5 55.8 38.6 19.9 39.3 48.6
SGFEM+GADA ResNet-50 39.5 24.8 243.2 38.5 58.2 40.9 22.1 42.2 49.6

FCOS ResNet-101 51.0 22.1 276.6 39.4 58.8 41.9 22.6 43.3 51.6
FCOS+GADA ResNet-101 51.0 22.1 276.6 40.3 59.8 43.1 24.0 44.6 51.3

SGFEM ResNet-101 58.5 19.3 319.3 39.4 59.1 41.7 23.2 43.4 51.6
SGFEM+GADA ResNet-101 58.5 19.3 319.3 40.0 59.7 42.9 23.5 43.8 51.7

3.3.1 Dataset and evaluation protocol

The COCO [39] benchmark is a large-scale object detection, instance segmentation,
and image captioning dataset with 80 categories. Following standard practice, the
COCO train2017 split (115k images) is taken as the training set and the val2017 split
(5k images) as the validation set.

We use the COCO API to measure the average precision (AP) for IoUs in the
range 0.5:0.05:0.95. We also checked the breakdown of AP for small (APS; area ≤
322), medium (APM; 322 < area ≤ 962), and large (APL; area > 962) objects.

3.3.2 Experimental settings

In this section, we describe the experimental settings. For a fair comparison, the
same learning settings are used in the baseline and the proposed method. The details
of the settings are shown below.

We use ResNet-18/50/101 [26] as the backbone network, with weights pre-trained
by ImageNet [12] for initialization. The weights of the newly added layers are initial-
ized by the Kaiming initialization [27].

The network is trained by stochastic gradient descent (SGD) for optimization,
with an initial learning rate of 0.01, 16 mini-batches, and 24 total epochs. The
learning rate is reduced by 10 at the 16th and 22nd epochs. The weight decay and
the momentum are set as 0.0001 and 0.9, respectively.
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Input images are resized to a maximum scale of 1333× 800, without changing the
aspect ratio. Only random horizontal image flipping is used for data augmentation.
The baseline author’s experimental results report that the number of learning epochs
is sufficient at 12, regardless of backbone size, and changes to 24 epochs when applying
multiscale augmentation. Therefore, we compared the number of learning epochs
when we applied GADA with 12 and 24 and confirmed that 24 epochs are more
effective. We believe that this is because the augmentation’s randomness increases
the input data’s variation. So, we conduct all experiments with 24 epochs.

The hyper-parameters used in the proposed method are as follows: GADA appli-
cation ratio α = 0.5 and original and auxiliary loss balance adjustment λ = 1.0.

Figure 3.5: Comparison of robustness to shift on COCO val dataset.
Four samples plotted images with ground-truth boxes on the target
and variance of the class score relative to the shift. The top row shows
cases where the proposed method improves the results. The lower row

shows the failure cases.

3.3.3 Comparison With Baseline Method

We compare our proposed method with the baseline FCOS in object detection.
When ResNet-18 is used as the backbone, our proposed method shows improve-

ment: adopting SGFEM results in an improvement of only 0.2AP in the typical metric
and 1.2APL in the metric for large objects. This demonstrates that our head is more
effective for feature maps with large grid sizes, where large objects are assigned.
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In addition, a comparison with and without Grid-aware Data Augmentation shows
improvements for both the baseline and proposed method. Data augmentation im-
proves in all evaluation metrics regardless of the size of the object. We believe this is
because features can be successfully extracted from two feature maps with different
grid partitions.

Combining SGFEM with data augmentation yields improvements of 1.7AP and
3.7APL.

Similarly, using ResNet-50 for the backbone gives improvements of 2.2AP and
1.8APL.

When we apply ResNet-101 to the backbone, there is no improvement via SGFEM.
This trend is attributed to the higher ability of feature extraction in deeper and more
complex networks. Thus, we believe that deep networks can extract multi-resolution
features without relying on SGFEM. On the other hand, we reach the highest accuracy
when GADA is applied, yielding 0.9AP and 1.4APS and 1.3APM improvements. The
combination of SGFEM and GADA yields an improvement of 0.1APL for large objects.

The network size increases by 7.5M parameters by adding the head of SGFEM.
Therefore, the number of parameters increases by a factor of 1.39 for ResNet-18, 1.23
for ResNet-50, and 1.14 for ResNet-101. In addition, an increase of 42.69 GFLOPs
in computational cost results in processing speeds of 33.9 fps for ResNet-18, 24.8 fps
for ResNet-50 and 19.3 fps for ResNet-101 on the GeForce RTX3090.

3.3.4 Impact on Grid Boundaries

A comparison of the baseline and proposed method for class score drop at grid bound-
aries is shown in Fig. 3.5. The vertical axis shows the class score, and the horizontal
axis shows the shift value. The blue, orange, green, and red lines represent the re-
sults obtained by the baseline method, applying SGFEM, applying Grid-aware Data
Augmentation, and applying both SGFEM and Grid-aware Data Augmentation, re-
spectively.

The top row of Fig. 3.5 shows successful improvement cases. Comparing the
results of applying only SGFEM to the baseline shows an improvement specifically
in grid boundary drop. Comparing the baseline with only Grid-aware Data Augmen-
tation, the overall behavior changes with respect to the shift. We assume that this
is due to the fact that the network is encouraged to obtain information from various
locations in the grid. When both SGFEM and Grid-aware Data Augmentation are
applied, the drop of the grid boundary is improved, and the effect is more robust to
shifts.

The bottom row is a failure case. The left figure shows a case where equality is
obtained but the highest class score is lower than the baseline. The right figure shows
a case where the grid boundary drop cannot be improved.
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Table 3.2: Comparison of Data Augmentation Methods on the
COCO val set.

Head Augmentation AP APS APM APL

FCOS - 33.3 18.8 35.8 42.8
FCOS Random Shift 34.2 18.8 37.2 43.9
FCOS Random Crop 33.4 18.5 36.5 43.0
FCOS GADA 34.2 19.1 37.0 44.4

SGFEM - 33.5 17.6 36.3 44.0
SGFEM Random Shift 34.1 18.4 37.2 44.6
SGFEM Random Crop 33.4 18.6 36.6 43.5
SGFEM GADA 35.0 19.6 37.9 46.5

3.3.5 Comparison with the Standard Data Augmentation Methods

Table 3.2 shows the comparison of our proposed data augmentation method, GADA,
with commonly used data augmentation methods with random shift and random
crop. The data augmentation application ratio and shift range are unified at 0.5 and
[−8, 8], respectively. The experiment employs Resnet-18 as the network backbone.
The top rows of Table 3.2 show the FCOS results and the second rows show the
SGFEM results. FCOS shows improvement in GADA and random shift. GADA also
shows the highest performance for APS and APL. Furthermore, results applied to
SGFEM show that GADA has the highest performance.

This indicates that GADA focusing on the grid boundaries achieves robustness
more effectively.

3.3.6 Quantitative evaluation on grid boundaries

To quantitatively evaluate the identified weaknesses at the grid boundaries, we con-
ducted an evaluation. For this assessment, we applied the GADA method to the
COCO validation dataset, generating a new dataset for thorough analysis. In par-
ticular, we set δx, δy to zero, randomly chose objects when multiple objects coexisted
within a single image, and shifted the entire image to ensure the selected objects
overlapped with the grid boundary.

The outcomes of this evaluation are depicted in Table 3.3, presenting results for
both the original COCO dataset and the newly created dataset that underwent the
applied shift.

The findings revealed a clear distinction between the performance on the original
dataset and the shifted dataset. Notably, the performance on the shifted dataset
exhibited a noticeable decrease compared to the original dataset, highlighting the
vulnerability associated with grid boundaries.
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Table 3.3: Comparison results on a dataset created from COCO-val
images by transforming the images to overlap the centre of the object

and the grid boundaries.

method backbone original-coco shifted-coco
AP AP

FCOS ResNet-18 33.3 31.6
FCOS+GADA ResNet-18 34.2 32.2

SGFEM ResNet-18 33.5 31.9
SGFEM+GADA ResNet-18 35.0 34.0

FCOS ResNet-50 36.3 35.3
FCOS+GADA ResNet-50 38.2 37.5

SGFEM ResNet-50 36.5 35.0
SGFEM+GADA ResNet-50 38.5 37.7

FCOS ResNet-101 39.4 37.2
FCOS+GADA ResNet-101 40.3 39.4

SGFEM ResNet-101 39.4 37.2
SGFEM+GADA ResNet-101 40.0 39.2

These results substantiate the presence of weaknesses at grid boundaries, em-
phasizing the importance of addressing this issue in object detection models. Fur-
thermore, the experiments also demonstrated that the proposed method, a combined
model utilizing both GADA and SGFEM, outperforms other configurations.

3.3.7 Ablation Study

We verify the effectiveness of each component of our proposed method. For ablation,
we use the ResNet-18 backbone and report the performance on the COCO val set.

Grid-Aware Data Augmentation

Table 3.4: Analysis of different hyper-parameters for data augmen-
tation ratio α on the COCO val set.

α AP APS APM APL

0.0 33.3 18.8 35.8 42.8
0.1 33.7 19.4 36.7 43.1
0.3 34.1 19.4 37.0 43.8
0.5 34.2 19.1 37.0 44.4
0.7 34.2 18.7 36.9 45.0

We compare the effect of the application rate α of the GADA on performance in
Table 3.4.

The highest performance is achieved when the ratios of data augmentation α

are 0.5 and 0.7, which show an improvement of 0.9AP compared to without data
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augmentation applied α = 0.0. APL improves as α increases, meaning that large
objects are more sensitive to grid boundaries.

SGFEM

Table 3.5: Analysis of different head configurations for SGFEM on
the COCO val set.“cls”,“box”, and“ctr”indicate branches of class

classification, box regression, and centerness, respectively.

branch
cls box ctr AP APS APM APL

33.1 17.9 35.2 44.4
X 33.7 17.9 35.6 45.6

X 33.1 17.9 35.2 44.4
X 33.1 17.9 35.2 44.4

X X 33.7 17.9 35.6 45.7
X X 33.1 17.9 35.2 44.4

X X 33.7 17.9 35.6 45.7
X X X 33.7 17.9 35.6 45.7

The FCOS head consists of three branches: classification, centerness, and box
regression, and our proposed SGFEM can be employed for all branches. Table 3.5
shows the combination results for branches applying SGFEM. This table shows the
effectiveness of applying SGFEM to the classification branch. It also shows that it
has little effect on the box regression branch.

The configuration with the highest performance applies SGFEM to the classifica-
tion and centerness branches but not to the box regression branch.

Auxiliary Learning

Table 3.6: Analysis of different hyper-parameters for auxiliary loss
weight λ on the COCO val set.

λ AP APS APM APL

0.0 33.1 18.3 34.8 44.1
0.5 33.4 18.1 35.5 44.1
1.0 33.5 17.6 36.3 44.0
1.5 33.4 17.5 36.3 43.6
2.0 33.0 17.4 35.5 43.7

Table 3.6 compares the performance for different values of the hyper-parameter λ,
which adjusts the balance between the original and auxiliary losses shown in Equa-
tion3.3. The highest performance is shown when λ = 1.0. The improvement with
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Figure 3.6: Plot of class scores for a small horizontal translation of
the image using YOLOX.

auxiliary learning (λ > 0.0) compared to without auxiliary learning (λ = 0.0) indi-
cates its effectiveness.

3.3.8 Experimental Application to Yolox

Reproducibility Study in Yolox

YOLOX [21] is a fast, high-performance one-stage object detection method that mod-
ifies YOLOv3 [45]. In the YOLO family, YOLOX is the first anchor-free system with
a head similar to FCOS.

For the multi-scale object detection problem, the network employs Spatial Pyra-
mid Pooling (SPP) [29] and Path Aggregation Network (PAN) [40] for the backbone
and neck, respectively, to obtain feature representation from multiple resolutions.
In addition, the data augmentation method employs Mosaic [2] and Mixup [66] to
improve robustness.

There are four versions of the YOLOX architecture: YOLOX-S (small), YOLOX-
M (medium), YOLOX-L (large), and YOLOX-X (extra large).

We experimented with YOLOX-S to investigate the variation in class scores when
the image is translated horizontally. Fig. 3.6 shows the result of the variation of the
class score for the target object in the input image.

The first row in the figure shows the image of the observed object, and the second
row shows the variation of the class score when the input image is horizontally trans-
formed in the right direction. The plot shows that the class score varies cyclically
with shift values in YOLOX-S as well as FCOS. The score period is equal to the grid
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size of the feature map, and the range of class scores varies from 0.89 to 0.75. This
result suggests that even with the improvement of networks such as SPP and PAN
modules and the data augmentation such as Mosic used in YOLOX, it is weak at
extracting features at the grid boundaries.

Therefore, we apply our two proposed improvement methods for extracting grid
boundary features, SGFEM and GADA, to YOLOX to confirm their effectiveness.

Network Modification Details

Figure 3.7: Overview of the network architecture of YOLOX with
the proposed method. P3-P5 generated from the feature pyramid are
the feature maps used for the final prediction. The grid size represents
the step size width of the feature map. The head is a twin-head con-
figuration of YOLOX original head and Our Head, where Our Head is

a shared head between feature levels.

The backbone of YOLOX is Darknet53, a new network architecture that focuses
on feature extraction characterized by small filter windows and residual connections.

The feature maps generated by the backbone are hierarchical, with P3, P4, and
P5 consisting of grid cell sizes of 52 × 52, 26 × 26, and 13 × 13, respectively.

YOLOX uses SPP module. The SPP module is a method that allows a neural
network to accept inputs of different sizes and then spatially pool the features in a
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fixed-size feature map. It enables the network to handle objects of various sizes within
the input image. The neck connecting the backbone to the head uses PAN module,
which adds a bottom-up path to the FPN that combines the bottom-up and top-down
paths to propagate high-resolution features to the upper layers. The head of YOLOX
has a similar structure as FCOS, consisting of a branch for class prediction and a
branch for bounding box regression prediction.

We apply our proposed SGFEM to this head section. SGFEM is applied to the
class branches connected to the feature maps of P4 and P5, as shown in Fig. 3.7, in
an attempt to capture features at grid boundaries.

Data Augmentation Improvement

YOLOX employs not only RandomFlip and ColorJitter data augmentation methods
but also applies powerful data augmentation methods such as MixUp and Mosaic.

Mixup is a data augmentation technique that creates new training samples by
combining pairs of images and their corresponding labels from the original training
data set. The process involves taking a weighted sum of the two input samples and
their labels to produce a new augmented sample and corresponding ”mixed” label.
Mosaic is a data augmentation technique combining four random training images
into one image while merging and adjusting their bounding box annotations. This
method yields images with varying object placement at each epoch, which is expected
to result in a more shift-robust model.

However, as mentioned above, mosaic has not been able to extract grid boundary
features well, so we expect our proposed GADA to be applied to more shift-robust
feature representation.

To apply GADA, it is necessary to know the grid size of the feature map assigned
to the object. However, YOLOX uses SimOTA to assign labels dynamically, so it is
impossible to define by rule which of the grid sizes {8, 16, 32} is selected, as is the
case with FCOS. Therefore, we adopt a fixed grid size of 32, which is the greatest
common divisor of the grid size.

Experimental Settings

The hyperparameter settings are almost the same as the original settings of YOLOX.
we conduct training 300 epochs, with the initial 5 epochs dedicated to a warm-

up phase on the COCO train2017 dataset. We utilize Stochastic Gradient Descent
(SGD) as our optimization algorithm for training. The learning rate is 0.01, and the
training adopts a cosine learning rate schedule. To regularize the training process,
we set the weight decay to 0.0005, while configuring the SGD momentum to 0.9. We
employ Binary Cross-Entropy (BCE) Loss to train class and object branches, while the
regression branch is trained using IoU Loss, ensuring a comprehensive optimization
process.
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Table 3.7: Comparison of proposed Methods on the COCO val set
with YOLOX.FPS measured in runtime on a GeForce RTX3090.

Network Proposed Methods params(M) FPS GFLOPs AP APS APM APL

YOLOX-S - 8.97 81.4 33.5 39.9 22.8 43.8 52.8
YOLOX-S GADA 8.97 81.4 33.5 40.4 24.0 44.4 54.3
YOLOX-S SGFEM 11.61 56.6 49.2 39.9 22.8 43.9 52.8
YOLOX-S SGFEM + GADA 11.61 56.6 49.2 40.0 22.7 44.5 53.2

Furthermore, we employ various data augmentation techniques. These include
Random Horizontal Flip, Color Jitter, Mixup, and Mosaic. Image size is fixed at
640 × 640.

The hyper-parameters used in the proposed method are as follows: GADA appli-
cation ratio α = 0.5 and original and auxiliary loss balance adjustment λ = 1.0.

Experimental results in YOLOX

In this section, we apply and evaluate the proposed methods to YOLOX. Table 3.7
shows the comparison results.

Applying GADA shows an improvement of 0.5AP in a typical metric. GADA
improves the original YOLOX learning strategy in all metrics, regardless of object
size.

When we apply SGFEM, the accuracy is almost identical to the original YOLOX.
We believe this is because YOLOX successfully extracted the grid boundary informa-
tion with the SPP and PAN modules employed in the backbone. The combination of
SGFEM and GADA yields an improvement of 0.1APM.

The evaluation in YOLOX shows that the best accuracy is obtained when only
GADA is applied to the original model. These results suggest that YOLOX has
successfully extracted features at the grid boundaries due to the ingenuity of the
backbone. We believe that the original data augmentation suffers from feature ex-
traction at the grid boundaries, but the proposed GADA successfully addresses this
problem.

3.3.9 Experimental Application to the Faster RCNN method

In this experiment, we aimed to investigate the phenomenon of score drop at grid
boundaries, specifically examining whether this issue is unique to one-stage methods
that divide images into a grid or if it also occurs in two-stage methods such as Faster
RCNN. The selected dataset for this investigation was the COCO validation dataset.

The results of the experiment are illustrated in Fig. 3.8. Notably, the figure
demonstrates that one-stage methods, such as FCOS and YOLO, exhibit the phe-
nomenon of score drop at grid boundaries. Despite this occurrence, the two-stage
method, Faster RCNN, displays consistent class scores and robustness against shifts
in the grid.
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Figure 3.8: Observed score variation for shifts in the One-stage meth-
ods FCOS and YOLOX and the Two-stage method Faster RCNN.

These results suggest that the problem of reduced scores at the boundaries of the
grid is often found in one-stage methods, highlighting a potential design limitation.
In contrast, the behavior of the Faster RCNN towards this phenomenon shows the
superiority of the two-stage method, which does not split the image into grids, and
the promising property of the two-stage method of maintaining stable class scores.
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An Object Detection Method
Using Probability Maps for
Instance Segmentation to Mask
Background

4.1 Problem of Imbalance Between Foreground and Back-
ground

In contemporary object detection, two predominant paradigms, one-stage and two-
stage methods, offer distinct trade-offs in terms of speed and accuracy. The one-stage
approach is celebrated for its high-speed processing capability, enabling real-time ob-
ject detection. However, it generally exhibits reduced accuracy when compared to
two-stage methods. The primary characteristic of one-stage methods involves the
division of the entire image into a grid structure, whereby bounding boxes and cor-
responding object classes are predicted for each grid cell. This real-time processing
capability, particularly showcased by popular solutions like YOLO [46] and SSD [41],
makes one-stage detectors an appealing choice for applications prioritizing rapid ob-
ject detection.

Nonetheless, the accuracy of one-stage methods tends to lag behind that of two-
stage counterparts. A key factor contributing to this performance gap is the issue of
class imbalance between foreground and background categories. With the grid-based
partitioning of the image, a considerably larger proportion of grid cells are allocated
to the background class. This class imbalance has the effect of tilting the learning
process, giving the background class more influence during training, leading to an
asymmetry that hinders the classification accuracy of the foreground objects.

In contrast, two-stage methods employ a distinctive strategy. Initially, they ex-
tract candidate foreground regions during the first stage, substantially alleviating
concerns related to class imbalances between foreground and background. The sec-
ond stage, which typically focuses on refining the region proposals, benefits from a
better-balanced set of foreground and background classes. Consequently, two-stage
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detectors experience less difficulty in managing class imbalance issues, which can be
a key driver of their superior accuracy.

Notably, recent advancements in one-stage methods have demonstrated remark-
able progress in addressing the class imbalance challenge. Prominent models like Reti-
naNet [38] and FCOS [57] have successfully implemented strategies to mitigate the
impact of class imbalances. These innovations have effectively leveled the playing field
between one-stage and two-stage methods, enabling one-stage detectors to achieve
accuracy on par with their two-stage counterparts while preserving their renowned
real-time processing capabilities. This breakthrough showcases the ongoing evolution
of object detection techniques and their pursuit of optimal trade-offs between speed
and precision.

To address the issue of foreground-background class imbalance in object detec-
tion, two notable advancements in the field, RetinaNet and FCOS, have introduced
innovative strategies. These techniques have substantially contributed to the miti-
gation of class imbalance problems and improved the overall performance of object
detectors.

RetinaNet introduced a pioneering solution in the form of the Focal Loss. The
core concept behind Focal Loss is to suppress background error while prioritizing the
accurate learning of foreground error. This is achieved through a dynamic weighting
mechanism embedded within the cross-entropy loss function. Focal Loss takes into
account that the accumulation of minor errors from easy samples classified as back-
ground may hinder the effective learning of foreground objects. To counter this, it
assigns dynamic weights to the loss based on the magnitude of errors.

The dynamic weight allocation performed by Focal Loss is a pivotal component
of its effectiveness. Specifically, the loss function assigns higher weights to challeng-
ing samples with substantial prediction errors, ensuring that gradients from these
challenging instances are adequately reflected during the training process. Simul-
taneously, Focal Loss diminishes the impact of minor errors associated with easy
samples that exhibit low prediction errors. By doing so, Focal Loss significantly alle-
viates the foreground-background class imbalance issue, leading to more robust and
accurate object detection.

In contrast, FCOS tackled the class imbalance challenge through a distinctive ap-
proach the development of an anchor-free object detection method. Traditional object
detectors, particularly one-stage approaches, often rely on anchor-based mechanisms
to generate region proposals for objects. These anchors contribute to the disparity
between foreground and background grids, exacerbating the imbalance issue. FCOS
introduced an anchor-free alternative that reduces the foreground-background grid
ratio.

The anchor-free design of FCOS eliminates the reliance on predefined anchor
boxes, thereby eliminating the bias that such anchors may introduce. Instead, FCOS
operates by directly predicting the location and size of objects within an image,
without the need for anchor-based proposals. This fundamental shift in the detection
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paradigm yields a more balanced distribution of grids for foreground and background
objects, thus mitigating the class imbalance problem.

4.2 Can We Further Bridge the Imbalance Gap Between
Foreground and Background?

In the domain of object detection, the management of foreground-background im-
balance holds a paramount role in enhancing detection accuracy. It is widely ac-
knowledged that addressing this imbalance can lead to significant improvements in
the precision of object detection models. However, this imbalance is far from being a
solved problem, and further explorations into effective strategies are essential.

4.2.1 Uncertainties and Limitations of Banding Box Information

Recognizing the persistent challenge of foreground-background imbalance, we em-
barked on a quest to explore alternative avenues for reducing the influence of back-
ground information. While previous state-of-the-art models such as RetinaNet and
FCOS have demonstrated the effectiveness of certain approaches, we hypothesized
that additional methods aimed at diminishing the impact of background elements
could provide further enhancements in object detection accuracy.

In contemporary object detection methodologies, the reliance on bounding box
information is a prevailing trend. This information aids in the localization of objects,
making it instrumental for object detection tasks. However, it also introduces a par-
ticular challenge. The spatial confines of bounding boxes often encompass substantial
background regions, a characteristic that complicates the learning process within the
model. Background elements within bounding boxes may inadvertently interfere with
the features extracted for object identification, leading to suboptimal performance.

4.2.2 The Evolution of Instance Segmentation Techniques

The landscape of computer vision has witnessed substantial progress in the domain
of image segmentation. With the emergence of cutting-edge techniques, including
SOLO [62, 63] and CondInst [56], the line between object detection and instance seg-
mentation has begun to blur. These methods embrace anchorless grid-like prediction
strategies similar to those proposed by FCOS.

SOLO, for instance, takes a holistic approach to segmentation, segmenting the
entire image into grids and predicting instance masks based on the grid cell containing
an object’s center. CondInst, on the other hand, opts for grid-wise prediction, albeit
with a unique twist. Instead of directly predicting instance masks, it focuses on
the prediction of Fully Convolutional Network (FCN) parameters used in the mask
branch. This innovative approach allows CondInst to achieve instance-aware masks,
reflecting the evolution of techniques in this domain.
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The art of meticulously painting a picture typically involves numerous iterations
rather than being completed in a single attempt. It is when we strive for precision
and perfection that we employ multiple careful strokes. Drawing an analogy from this
practice, we conjecture that a recursive structure might hold the key to enhancing
the effectiveness of instance segmentation.

In the realm of instance segmentation, where the task is to predict segmentation
masks, a deviation from traditional bounding box predictions, our research has led
us to an innovative approach. Inspired by the observation that achieving a seam-
less and detailed outcome often necessitates repeated, meticulous efforts, we propose
the utilization of recursive structures. These structures offer a novel perspective on
addressing the challenges of instance segmentation, where the inherent intricacies of
predicting masks require a unique approach.

Remarkably, in the context of instance segmentation tasks, our exploration has
unveiled an unconventional method that introduces self-predicted outcomes as prior
knowledge in a feedback mechanism. To the best of our knowledge, this approach,
which leverages self-predicted results as prior knowledge in a feedback structure, is
unprecedented in the field of instance segmentation.

4.2.3 Overview of Our Proposed Method

Figure 4.1: SODet Architecture. SODet is a two-step structure, the
network having two branches, one for instance segmentation and the
other for object detection. The first step, with the original image I as
input, generates a mask image, and the second step predicts each task

with the image I′ transformed by the generated mask image.

Our novel approach, named Segmented Object Detection (SODet), represents a
paradigm shift in the domain of object detection. It introduces a twin-stage traversal
of the same neural network, as illustrated in Figure 4.1. This dual-pass architecture
is underpinned by a transformative concept.
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In the initial stage, SODet conducts instance segmentation to generate a prob-
ability map. This probability map plays a pivotal role as it assumes the guise of a
background mask, effectively concealing the background information. It is during the
second stage of the detection process that this background mask is reintroduced. This
ingenious strategy allows the second stage to operate within an environment that has
been meticulously purified of background interference.

4.3 Proposed Method

4.3.1 Mask Functions

The mask function K is used to fuse the mask image of the probability map with the
input RGB image.

We select the most efficient mask function K from the following three equations.

a). Masked Image

K(a)(I, M) = I ⊗ M {I′ ∈ RW×H×3} (4.1)

b). Concatenation of the input Image and Mask

K(b)(I, M) = I � M {I′ ∈ RW×H×4} (4.2)

c). Concatenation of the input Image and the Masked Image

K(c)(I, M) = I � (I ⊗ M) {I′ ∈ RW×H×6} (4.3)

Here ⊗ denotes element-wise multiplication, and � denotes concatenate opera-
tion. In the case of K(b), where the number of input channels has been expanded
from 3 to 4, the initial value of kaiming [27] is applied to the added channel.In the
case of K(c), where the number of input channels has been expanded from 3 to 6, the
pre-training weights are copied to the additional 3 channels.

4.3.2 SODet Overview

The proposed SODet consists of two steps of the processing as shown in Fig. 4.1.
In the first step, both object detection and instance segmentation are trained as

a multi-task problem on a three-channel RGB color image I. Then we will use the
trained network to estimate the pixel-wise probability map M as instance segmenta-
tion for the image I by feeding it to the network as input.

In the second step, the parameters of the network are re-trained by using the
transformed image I′ by transforming the mask function K from the original input
image I with the background region. The mask function is given as

I′ = K(I, M). (4.4)
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By introducing this transformation in the second step, it is expected that the trained
CNN can reduce the effect of the unnecessary background regions in the input image.

4.3.3 Network Architecture

Figure 4.2: Network of SODet. FPN [37] generates the five-layer
feature maps from the three-layer feature maps generated by Backbone
and predicts the final result with a head from the feature maps.~

denotes the dynamic convolution operation.

The proposed method employs the CondInst architecture to train and evaluate
both bounding box predictions by the object detection task and mask predictions
by the instance segmentation task. The CondInst network consists of a backbone
network and a feature pyramid network (FPN) to extract features, and branches for
object detection and instance segmentation. In the instance segmentation branch,
each mask is predicted using a dynamic convolution layer, and the parameters are
changed based on the instance to generate a high-resolution mask. The schematic
figure of the proposed network is shown in Fig.4.2.

Feature Extractor

The feature extractor generates feature maps with different resolutions using a fully
convolutional fashion that combines the backbone bottom-up path and the FPN
top-down path for input images in order to detect objects at various scales. As
shown in Fig.4.2, the three-layer feature map produced by the backbone CNN and
the upsampling feature maps is added to each element to generate a three-layer feature
map (P3, P4, P5) with high-resolution. In addition, two more layers of feature maps
(P6, P7) are added from the deeper layers by convolutional operations for a total of
five layers of feature maps. Each feature map consists of 256 channels.

Object Detection Branch

Following the FCOS, the object detection branch adds four convolutional layers after
the feature extractor. The feature map to predict an 8-dimensional vector p of clas-
sification labels, a 4-dimensional vector t = (l, t, r, b) of bounding box coordinates,
and a 1-dimensional vector q for centerness that represents the location of object
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center. The class label is given to any grid in the ground-truth box and is considered
a positive sample. Otherwise, it will be a negative sample and will be the background
class. Also, the vector t in the bounding box regression is the distance from the grid
center to the four sides of the bounding box.

Instance Segmentation Branch

The segmentation branch uses NMS to remove duplicate detections for bounding
boxes predicted by the object detection branch and predicts a mask of instances
centered on the top 100 bounding box positions. Each bounding box is also associated
with a filter parameter for the mask head generated by the controller head, which
produces a dynamic mask head for the detected instance. The mask branch, which
acts in parallel with the detection branch, receives feature map P3 generated by the
FPN [37] and generates a feature map F with a resolution of 1/8 size of the input
image with eight channels. Feature map F̂ is generated by combining F with a
coordinate map Ox,y relative to center position (x, y) of the instance. F̂ is input to
an instance-aware dynamic mask head, and the number of channels is reduced from
8 to 1 using the FCN, which consists of three 1 × 1 Conv layers while preserving
the resolution. However, in the study by Tian et al. [56], the final performance has
been better at 1/4 resolution than at the upsampled resolution of the input image;
therefore, in our experiments, we also use a resolution mask of 1/4 size of the input
image as the final output.

4.3.4 Loss Function

The training loss function is defined as follows:

L = Lbbox + Lsegm (4.5)

Lbbox = Lreg + Lcls + Lcent (4.6)

Lsegm = Lmask (4.7)

where Lcls is the Focal Loss [38] for boundingbox classification and Lreg is the IOU loss
[48] for bounding box regression, and Lcent is binary cross entropy loss for centerness
and Lmask is the Dice Loss [53] for mask prediction.

4.3.5 Probability Map

The mask used for the proposed SODet feedback is based on the method of Condinst,
which uses NMS to generate a single probability map from the probability maps for
each class generated in the instance segmentation branch.

The probability map is used to mask the background, so we do not give any
category information, but use the foreground confidence S. If K instance masks
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Figure 4.3: Sample images of masked cityscape verification data.
Left is the original image I and right is the image masked by the

probability map.

Table 4.1: Comparison results between the binary mask and soft
mask.

Type of Mask APbox APmask

binary mask 35.1 31.1
soft mask 35.2 31.3

overlap at pixel i, the probability map defines as:

Mi = arg max
k∈K

Sk
i , (4.8)

and employs the value with the highest foreground confidence Si in the overlapping
masks.

Two types of masks are possible: the soft mask, which uses the probability map as
a sequence of values from 0 to 1, and the binary mask, which binarizes the probability
map with a certain threshold value. We found that the performance of the soft mask
was better than that of the binary mask for both object detection (APbox) and instance
segmentation (APmask). Table 4.1 shows the results of comparing the performance of
applying soft and binary masks to the mask M applied in Equation 4.8. Thus, we
decided to use the mask with a probability value.

As an example, Fig.4.3 shows an image masked by using the estimated probability
map. By feeding back the probability map as a mask to the input image, we can reduce
the influence of the background by setting the background region close to zero. It is
expected that the detection accuracy of the trained model using masked images can
be improved.
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4.4 Experiments

4.4.1 Dataset

We present our experiments and results on the Cityscapes[9] benchmark for two tasks:
object detection and instance segmentation. We use the COCO API to measure the
AP (average precision) for IOUs in the range 0.5:0.05:0.95. As an evaluation metric
for object detection, the AP of the bounding box is APbox, and as an evaluation
metric for instance segmentation, the AP of the mask is APmask.

Cityscapes is a dataset of real urban scenes, containing 3,475 images captured
by an in-vehicle camera; 2,975 images are used for training and the remaining 500
images are used for validation. Since there are no annotations in the test set, we
report the results of the validation set. We prepare the tightest bounding box of the
instance segmentation mask as the ground truth using the conversion tool provided
by MMDetection[7]. The dataset contains eight object categories: persons, riders,
cars, trucks, buses, trains, motorcycles, and bicycles.

4.4.2 Implementation Details

The backbone network is ResNet-50, and 256-channel feature maps are generated
in FPN. From this feature map, the object detection branch predicts the centerness
(foreground or background), bounding box, and classifications for each grid, and the
instance segmentation branch predicts the instance mask.

We trained the proposed SODet by using Stochastic Gradient Descent (SGD) for
64 epochs and an initial learning rate of 0.01 which is decreased by a factor of 10 at
56 epochs. The parameters of the weight decay and the momentum are set to 0.0001
and 0.9, respectively.

The image is randomly clipped from the original image width of 2048 to 1024
regions, and random flips are applied as data augmentation at a rate of 50% for
training.

The network weights are not shared between the first and second steps, and both
steps are starting to train from initialized parameters by pre-training with ImageNet
[12].

4.4.3 Comparison of Mask Functions

In order to find the better use for the probability maps estimated in the second step
of the proposed SODet, we experimentally investigate the three mask functions(K(a),
K(b),K(c)) described above.

Table 4.2 shows the average precisions obtained by applying mask functions K(a),
K(b), K(c). The top row in the table also includes the result obtained for the case of
using the original image as input without using the mask function.

It is noticed that the average precisions obtained by the mask function K(b) are
higher than the precisions by the original image and the other map functions. On the
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Table 4.2: Comparison of the average precisions for mask functions.

Method APbox APmask

Original image 34.4 31.1
K(a) 33.2 29.9
K(b) 35.2 31.3
K(c) 33.3 29.5

Table 4.3: Comparison of Average Precision(AP) between our pro-
posed method and various state-of-the-art methods.

AP for object detection AP for instance segmentation
Method APbox APbox

S APbox
M APbox

L APmask APmask
S APmask

M APmask
L

FCOS 34.3 15.0 33.4 53.9 - - - -
CondInst 34.4 16.3 34.8 52.7 31.1 8.4 29.3 55.2
SODet 35.2 16.2 34.1 54.9 31.3 8.9 27.7 56.9

Mask R-CNN 33.7 16.8 35.0 49.5 30.9 9.2 29.1 50.7
SODet (Mask RCNN base) 34.3 16.6 35.1 51.2 30.5 8.8 26.9 51.2

other hand, the other mask functions K(a) and K(c) did not give a better performance
than the baseline.

For these reasons, we assume that K(a) performs poorly because only the masked
image is input, erasing even the edges of the object. The input image and mask
are provided in separate channels for K(b), so we assume that the edge and mask
information is effectively obtained. We assume that mathcalK(c) performs poorly
because the input consists of 6 channels of original and masked images, and the
information is redundant and difficult to capture features.

From this result, we decided to use K(b) for the following experiments.

4.4.4 Comparison of proposed method and state-of-the-art methods

To confirm the effectiveness of the proposed SODet, Table 4.3 shows the results of
a comparative evaluation with the state-of-the-art object detection method FCOS
and the state-of-the-art instance segmentation methods Mask R-CNN and CondInst.
Since FCOS is the object detection method and is not an instance segmentation
method, we can not evaluate the instance segmentation accuracy.

First, we compare the FCOS and CondInst results. FCOS and CondInst have the
same architecture and loss function as object detection, but CondInst has a parallel
instance segmentation branch, where a per-pixel instance mask is given as super-
vised. Comparing the APbox of object detection, FCOS has 34.3 while CondInst has
34.4, almost the same results, but for small objects, the APbox

s detection accuracy for
CondInst has improved significantly from 15.0 to 16.3. We thought this is because
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CondInst shares feature maps in both the object detection and instance segmenta-
tion branches only for the high-resolution feature map (P3), and thus the instance
segmentation learning had a beneficial impact on the object detection learning.

Next, we compare CondInst and SODet results. Compared to CondInst, the
proposed method improves the APbox for object detection by 0.8 points and the
APmask for instance segmentation by 0.2 points. We think this improvement is due
to the effective learning of prior knowledge of instance segmentation, which is given
in the second step using the probability map from the first step as a mask.

Further Comparing the results in more detail, for large objects, both the object
detection accuracy APbox

L and the instance segmentation accuracy APmask
L show sig-

nificant improvement. The fact that the detection accuracy of large objects that
should be detected in the lower resolution feature maps (P4, P5, P6, P7) improves
can not be observed from the difference between FCOS and CondInst, which simply
added an instance segmentation branch. This suggests that the proposed method
can effectively propagate the information obtained from instance segmentation to the
entire feature pyramid by providing instance segmentation information as input.

Similarly, compare the results with a mask feedback procedure like SODet in Mask
R-CNN. Compared to Mask R-CNN, SODet (Mask R-CNN base) improves APbox of
object detection by 0.6 points and decreases APmask of instance segmentation by
0.4 points. For larger objects, the trend of improvement is the same as for CondInst.
This suggests that improvement can be expected when Mask R-CNN is used as object
detection (Faster R-CNN [22] configuration).

4.4.5 Qualitative Evaluation

(a) Object detection (b) Instance segmentation

Figure 4.4: Results of comparative evaluation of AP at varying IoU
thresholds.

In order to investigate the factors that led to the improvement in the proposed
method, we will discuss the differences between the CondInst and SODet results from
two different perspectives.
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Figure 4.5: Confidence score histogram for classification.

The first is a comparison of the distribution of robustness with respect to the IoU
threshold. The results are shown in Fig.4.4. The left graph in the figure shows the
results of object detection and the right graph shows the results of instance segmenta-
tion, showing the change in detection accuracy AP for different IoU thresholds. The
proposed method is able to preserve accuracy in both object detection and instance
segmentation tasks, even if the IoU threshold is increased. Therefore, we consider
that the proposed method is able to extract features that more accurately capture
the boundary with the object by adding a background mask.

The second is a comparison of the distribution of confidence scores for classifica-
tions in the object detection branch. A histogram of the prediction results showing
a confidence score of 0.1 or higher for class classification in object detection is shown
in Fig.4.5. We can see that the proposed method has fewer detections at lower confi-
dence levels with respect to CondInst. We believe that this is due to the fact that the
proposed method is able to make more robust predictions by using the probability
map given as input to suppress the effects of unnecessary information given by the
background.

4.4.6 Quantitative Evaluation

The results of object detection are shown in Fig.4.6. Comparing the results of
CondInst in the left column of this figure with the results of the proposed method
in the right column, we can see that the proposed method can detect more objects
as shown by the red dashed areas in the figure. We thought this was because the
proposed method could separate the densely overlapping detection targets and make
a sharper estimation due to the effect of the mask. In addition, as shown in the third
column, there were a few cases where detection failed because the mask erased small
objects.
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Figure 4.6: Displays the results of the object detection: the left col-
umn shows baseline results and the right column shows SODet results.

The red dashed area is the change in results of interest.

Following the results of object detection, the results of instance segmentation are
shown in Fig.4.7. CondInst results are shown in the top row and the results of the
proposed method are shown in the bottom row. Also, columns 1 and 2 show the
successful cases where the proposed method worked well, and column 3 shows the
failure cases where the proposed method lost accuracy. Comparing the results of
the instance segmentation, the proposed method can recognize the boundary more
clearly, as shown by the red dashed area in the figure, and it can capture the shape
of the instance. However, there are some cases of false positive detection. The failure
case shown in the figure misclassified washed clothing as a person. We think that
these false positives are due to local features caused by masking.

4.4.7 Comparison on the COCO dataset

To prove the generalization ability of the SODet, we evaluate our proposed method
with the COCO [39] data set.

The network is trained by SGD for optimization, with an initial learning rate of
0.01, 16 mini-batches, and 12 total epochs. The learning rate is reduced by 10 at the
8th and 11th epochs. The weight decay and the momentum are set as 0.0001 and 0.9,
respectively. Input images are resized to a maximum scale of 1333 × 800, without
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Figure 4.7: Displays the results of the instance segmentation: the
left column shows baseline results and the right column shows SODet

results. The red dashed area is the change in results of interest.

changing the aspect ratio. Only random horizontal image flipping is used for data
augmentation.

As shown in Table 4.4, SODet shows improvement over state-of-the-art methods
on the COCO data set. The improvements follow the same trend as CityScapes.
Compared to CondInst, the proposed method improves the APbox for object detection
by 0.6 points and comparable performance on APmask for instance segmentation.

We also experiment with applying the SODet-like mask feedback procedure to
Mask R-CNN. Mask R-CNN obtains an improvement of 0.4APbox as object detection.
For instance segmentation, it degrades by 0.1APmask.
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Table 4.4: Comparison of Average Precision(AP) between proposed
method and various state-of-the-art methods on COCO val set.

Method APbox APmask

FCOS 40.8 -
CondInst 41.8 37.9
SODet 42.4 37.9

Mask R-CNN 39.3 35.9
SODet (Mask R-CNN base) 39.7 35.8
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Chapter 5

Graph Laplacian Regularization
based on the Differences of
Neighboring Pixels for
Conditional Convolutions for
Instance Segmentation

5.1 Blurring of Instance Masks

5.1.1 Developments and Challenges in Instance Segmentation

Instance segmentation has emerged as one of the most intricate and demanding tasks
in the realm of computer vision. This task involves not only accurately delineating
object instances within an image but also assigning each pixel to a specific object
category. Recent years have witnessed remarkable progress in the field of instance
segmentation, primarily propelled by the advent of convolutional neural networks
(CNNs). These advanced neural networks have contributed significantly to the en-
hanced performance and efficiency of instance segmentation methods [28, 8, 68, 64,
65, 10, 36, 3, 6, 35].

Despite the impressive advancements and the utilization of state-of-the-art method-
ologies [63, 56], certain challenges persist in the instance segmentation domain. No-
tably, issues concerning the smoothness of instance boundaries and the presence of
indistinct regions within the instance masks have been identified (Fig.1.4). It is our
belief that these challenges stem from the prevailing approach in conventional instance
segmentation methods, which predominantly focus on predicting masks at a pixel-by-
pixel granularity. This approach tends to overlook the inherent spatial relationships
and structural dependencies among neighboring pixels. Consequently, there exists a
critical need for innovative strategies that consider the broader context of neighboring
pixels in order to address these persisting challenges effectively.
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5.1.2 Spatial Regularization for Improved Instance Segmentation

Even with the results of high-resolution masks, there are problems such as blurred
boundaries and hollows in the instances. We assume that these problems are due
to the spatial structure and contextual information contained in the relationships
between neighboring pixels not being incorporated well into the model.

Hakim et al. [24] demonstrated that a regularization defined by using the dif-
ference between the differences of the predict and target images can improve the
performance of a CNN model in super-resolution and image segmentation tasks.

This method assumes that Binary Cross Entropy (BCE) and Sum Square Er-
ror (SSE), provided as pixel-wise losses, do not preserve the relationships between
neighboring pixels. For pairs of neighboring pixels, they defined a regularization that
preserves the relationships between neighboring pixels by introducing a constraint.
Consequently, the differences between pairs belonging to the same class are small,
whereas between those belonging to different classes are large. Hakim et al. proposed
a Graph Laplacian Regularizer method based on Differences of Neighboring Pixels
(GLRDN). This regularizer can be defined as a graph Laplacian by representing the
relationships between neighboring pixels as a graph. These authors successfully gen-
erated images with clear boundaries in super-resolution and image segmentation tasks
by applying this regularization.

We propose a method for applying this regularisation to instance segmentation
that penalizes errors in the spatial structure using a graph consisting of the differences
between neighboring pixels.

5.1.3 Graph-based regularization

Many studies have viewed regularization in learning methods as a graph optimization
problem. For simplicity, we describe the task of predicting a binary mask of the
foreground and the background. Let node V = {i|i = 1, ..., N} represent the set
of mask probability values for a pixel with N pixels, where the probability is 1 if
the pixel belongs to the foreground and 0 if it belongs to the background. Let an
edge E = {(u, v)|u, v ∈ V} represent a set of adjacencies between pixels, where the
adjacency is set as 1 if the edge belongs to the four nearest neighbors of a node, and
0 otherwise. Consider the following problem on a graph G = (V , E):

minimize ∑
i∈V

L(yi, ti) + ∑
(u,v)∈E

P(yu, yv). (5.1)

where yi and ti denote the prediction mask and the target mask, respectively, L
denotes the loss term, and P denotes the regularization term.

We focus on the regularization term, for which the traditional method is Laplacian
regularization. In Laplacian regularization assumes that the neighboring data are
labeled the same, and the equation is defined as follows:
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minimize ∑
i∈V

L(yi, ti) + λ ∑
(u,v)∈E

wu,v‖yu − yv‖2
2. (5.2)

The regularization term represented by an edge penalizes the differences between the
variables of neighboring nodes, where wu,v is the weight of the importance of the
edge between nodes u and v. This equation is known as a graph Laplacian. In the
case of a graph consisting of four neighborhoods, modifying the regularization term
of the above equation to the L1 norm is regarded Fused Lasso [58], and it is known
to cluster and force neighboring pixels to have the same values if they belong to the
same class.

However, these regularizations using a graph Laplacian begin to fail owing to
a lack of scalability when the dataset becomes larger and more complex. For this
problem, Hallac et al. showed that Network Lasso [25], which does not use all edge
pairs in the graph, but only adjacent edges, is a helpful method for representing the
above convex optimization problem. Let an edge S = {S ⊂ E} represent a set of
adjacencies between pixels; then the above equation can be modified as follows.

minimize ∑
i∈V

L(yi, ti) + λ ∑
(u,v)∈S

wu,v‖yu − yv‖2
2. (5.3)

Therefore, we propose a regularization that incorporates important information
such as the spatial structure, local context, and structural knowledge contained in
pixel neighborhood relations into the learning of a model and enforces consistency for
neighboring pixels belonging to the same label. We propose a new graph Laplacian
regularizer for instance segmentation, in which neighboring pixels are forced to be
closer if they belong to the same class and to be apart if they belong to different
classes. We also conduct experiments to examine if the proposed regularization term
can be modified like Fused Lasso to achieve the effect of clustering.

5.2 Proposed Method

In this section, we first introduce the proposed graph Laplacian regularizer for in-
stance segmentation and subsequently present the network and the loss function used
in our experiments.

Most instance segmentation methods, including CondInst [56], use a sigmoid func-
tion to convert the logit of the last layer that predicts the mask into a probability
value for each pixel, which implicitly represents the spatial structure of the pixel
neighborhood. Because neighboring pixels frequently belong to the same class in
instance segmentation masks, we thought we could improve accuracy by explicitly
incorporating important information obtained from pixel neighborhood relations into
the training of the network.
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Figure 5.1: Visualization of our proposed approach, where ηi is out-
put logit of mask head for instance i.

Moreover, the Graph Laplacian Regularization (GLR) used in segmentation is
defined using the predicted mask y as in the following equation, which focuses on
pixel-by-pixel regularization.

PGLR(y) =
1
M ∑

(u,v)∈S
(yu − yv)

2, (5.4)

where M is the number of pixels in the mask.
Our proposed regularization method aims to solve optimization problems that

incorporate the spatial structure and context of the neighborhood by providing not
only the pixel-level error but also the error of the differences between the surrounding
pixels as a teacher in training the network.

The difference between our regularization and the general graph Laplacian regu-
larization is that we apply the difference between ∆t and ∆y as the regularization,
where ∆t is the difference between adjacent pixels in target mask t and ∆y is the dif-
ference between adjacent pixels in predicted mask y. Thus, the relationships between
neighboring pixels can be represented as constraints that follow the target mask, mak-
ing the predicted mask more similar to the target mask. We call our regularization
GLRDN-L2 (Graph Laplacian L2-Regularizer based on Differences of Neighboring
Pixels) and define it as follows:

PGLRDN−L2(y, t) =
1
M ∑

(u,v)∈S
((yu − yv)− (tu − tv))

2

=
1
M

(y − t)T L(y − t), (5.5)

where L is the graph Laplacian matrix. This regularization term is expected to impose
a grouping force on pixel pairs belonging to the same class to make predictions more
consistent, whereas it applies a separation force on paired pixels belonging to different
classes to make predictions more inconsistent.
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5.2.1 Formula as a Graph Laplacian Matrix

In this subsection, we will express Eq.5.4 and Eq.5.5 in the form of a graph Laplacian.
To begin, the graph for Eq.5.4 is constructed by considering the 4-neighbors of pixels
as an undirected graph. We assign a value of 1 to edges connecting pixel nodes that
are 4 neighbors, and a value of 0 to all other edges. The node values are represented
as prediction values denoted as bmy. Under this setup, Eq.5.4, which represents the
differences between predicted pixels, can be defined as follows using the Laplacian
matrix L:

Figure 5.2: Illustration of the nodes and edges of a 4-neighborhood
graph and the degree matrix (D) and adjacency matrix (A) in the

graph Laplacian.

∑
(u,v)∈S

(yu − yv)
2 = yT Ly, (5.6)

here, D represents the degree matrix of the graph, and A is the adjacency matrix.
The Laplacian matrix L can be expressed as L = D − A.

In the case of Eq.5.5, we define the 4-neighbors as a directed graph. The nodes
are assigned values of 1 for foreground and 0 for background. Let the target mask
be denoted as t and the predicted mask as bmy. We define the difference between
neighboring nodes as edges. In this setup, Eq.5.5, which calculates the difference of
differences between nodes, can be defined as follows using the Laplacian matrix L:
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Figure 5.3: llustration of the nodes and edges of a 4-neighborhood
graph and the incident matrix (B) in the graph Laplacian matrix for

difference of neighboring pixels.

∑
(u,v)∈S

((yu − yv)− (tu − tv))
2

= ∑
(u,v)∈S

(∆yu,v − ∆tu,v)
2

= (∆y − ∆t)T (∆y − ∆t)

= (By − Bt)T (By − Bt)

= (y − t)T BTB (y − t)

= (y − t)T L (y − t) . (5.7)

5.2.2 Architecture

We use the CondInst [56] architecture for our experiments. CondInst is composed of
a ResNet-based FPN [37] backbone, mask branch, and detection branch. CondInst
adds a head called controller to the FCOS [57]-like detection branch. It dynamically
predicts the weights of the mask head. By dynamically predicting the weight param-
eters of the mask head, it is possible to generate highly representational masks with
instance-aware FCN.

When an input image is fed into the network, multiple feature maps (P1, P2,
P3, P4, P5) with different resolutions are generated by the FPN, and the bounding
box, category, and center-ness predictions for each instance are determined in the
object detection branch. Subsequently, a bounding-box-based NMS removes duplicate
detections and predicts the masks for the top 100 instances. Each bounding box is
also associated with a filter parameter for the mask head generated by the controller
head, which produces a dynamic mask head for the detected instance.
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Figure 5.4: Overall of the network architecture used in our
experiments.P3 - P7 are feature maps generated by backbone network.
There are mask and detection branches. Detection branch predicts cat-
egory, bounding box, center-ness, and controller of target instance at
position (x, y). Controller generates filter parameters of mask head
for that instance. Mask head is instance-aware and applied to image

same number of times as number of instances in image.

The mask branch, which acts in parallel with the detection branch, receives feature
map P3 generated by the FPN [37] and generates a feature map F with a resolution
of 1/8 size of the input image with eight channels. Feature map F̂ is generated
by combining F with a coordinate map Ox,y relative to center position (x, y) of the
instance. F̂ is input to an instance-aware dynamic mask head, and the number of
channels is reduced from 8 to 1 using the FCN, which consists of three 1 × 1 Conv
layers, while preserving the resolution. However, in the study by Tian et al. [56], the
final performance has been better at 1/4 resolution than at the upsampled resolution
of the input image; therefore, in our experiments, we also use a resolution mask of
1/4 size of the input image as the final output.

5.2.3 Loss function

The overall loss function of CondInst is formulated as follows:

Loverall = Ldet + λmLmask + λgLreg, (5.8)

where Ldet, Lmask, and Lreg represent the loss of the object detection, loss of the
instance masks, and proposed graph Laplacian regularizer, respectively.

Ldet is defined as follows:

Ldet = λkLcate + λrLreg + λcLcent, (5.9)

where Lcate is Focal Loss [38] for the bounding box classification and Lreg is IoU Loss
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[48] for the bounding box regression, and Lcent is Binary Cross Entropy Loss for the
center-ness.

Denoting a sigmoid function as σ, the mask prediction result for location (x, y) is
defined as follows:

yx,y = σ(MaskHead(F̂x,y; θx,y)), (5.10)

where θx,y is the filter parameter for the mask head of the instance with central
location at (x, y).

Lmask is defined as follows:

Lmask =
1

Npos
∑
x,y

1{cx,y>0}Ldice(yx,y, tx,y), (5.11)

where cx,y is the classification label of location (x, y). If cx,y = 0, it is not associated
with any instance. Npos is the number of locations in the foreground region where
cx,y > 0. 1cx,y>0 is an indicator function, which is 1 if cx,y > 0 and 0 otherwise. Ldice

is Dice Loss [53], which is used to resolve the imbalance between the foreground and
background pixels.

To calculate the loss between predicted mask y and target mask t, they must be
of the same size. As mentioned above, the best resolution for the final prediction on
the COCO dataset is 1/4 of the input image size; therefore, target mask t is also
downsampled to 1/4, making both sizes the same to calculate the loss.

We combined the proposed regularizer,

Lreg =
1

Npos
∑
x,y

1{cx,y>0}PGLRDN−L2(yx,y, tx,y), (5.12)

with the loss adopted by CondInst. Because target mask t and predicted mask y in
the regularization term have precisely the same forms as the input form for the mask
loss term, the proposed regularizer is straightforward to implement.

5.3 Experiments

To evaluate the effectiveness of the proposed method, we have performed experiments
on the COCO and Cityscapes instance segmentation datasets.

5.3.1 Implementation Details

ResNet-50 [26] is used as our backbone network, and weights pre-trained in ImageNet
[12] are used for initialization. The weights of the newly added layers are initialized
by the Kaiming initialization [27].

The network is trained by stochastic gradient descent (SGD) for optimization,
with an initial learning rate of 0.01, 8 mini-batches, and 36 total epochs. The learning
rate is reduced by a factor of 10 at the 28th and 34th epochs, respectively. The weight
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decay and the momentum are set as 0.0001 and 0.9, respectively. The input image
is resized to 640 or 800 on the short side as multi-scale data augmentation during
training. The long side is set as 1333 or less. This scaling technique is followed in
CondInst. The scale factor of the mask resolution is set as 4, which is the best value
based on the experimental results of Tian et al. [56].

All hyperparameters for balancing the loss terms are λr, λk, λc, and λm are set as
1.0. For the main experiment, for λg, we adopt the parameter with the highest AP
evaluated on the COCO val dataset in the model trained by COCO minitrain [49].
In addition, because learning with regularization from its initial stage is unstable, λg

is set as 0.0 for up to two epochs to stabilize the learning. The comparison results
for λg are summarized in TABLE.5.1.

We used a single GPU RTX3090 in experiments. A training time increased by
about 2 minutes with the proposed regularization, compared to the baseline training
time of about 3 hours and 6 minutes per epoch on the COCO dataset. It is a negligible
small (about 1%) increase.

Table 5.1: Results of instance partitioning with varying number of
λg in COCO val dataset. The model is trained with COCO-minitrain.

AP
λg GLR GLRDN-L1 GLRDN-L2
0.0 26.3 26.3 26.3
0.01 - 25.7 -
0.1 26.1 26.5 26.3
1.0 26.3 25.0 26.5
10.0 26.5 16.0 27.0
20.0 26.3 - 26.6

5.3.2 Results

Comparison on COCO Instance Segmentation

Table 5.2: Comparison of baseline and several regularization meth-
ods on COCO val dataset.“baseline” is CondInst without regulariza-
tion,“GLR” is general graph Laplacian regularization,“GLRDN-L2”
is proposed regularization, and ”GLRDN-L1” is a modification of pro-

posed method to L1 norm.

regularization AP AP50 AP75 APS APM APL

baseline 37.2 58.3 39.7 18.7 40.7 52.8
GLR 37.2 58.3 39.8 18.2 40.6 52.8

GLRDN-L1 37.1 58.2 39.6 18.4 40.5 52.6
GLRDN-L2 37.7 58.7 40.1 18.3 41.1 54.0
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We compare the proposed method with different regularizations to show its effec-
tiveness. TALBE.5.2 summarizes the comparison results, where the baseline is the
original CondInst [56] without any regularizer, GLR is a simple Laplacian regularizer,
GLRDN-L2 is our regularizer, and GLRDN-L1 is a variant of the proposed regularizer
defined using L1 norm.

Comparing based on AP, we note that our GLRDN-L2 regularization outper-
forms the other methods, improving the performance by 0.005 points compared to
the baseline.

The fact that the GLR does not improve its performance compared to the base-
line shows that applying only a simple consistency penalty is lesser effective, and
that learning with a spatial structure such as in GLRDN-L2 is more effective as a
regularization. The fact that the performance of GLRDN-L1 is degraded compared
to that of the baseline suggests that it is more suitable to measure the errors in the
L2 norm than in the L1, norm for the COCO dataset.

The results for all scales - APS, APM, and APL - show that our regularization de-
grades the performance for small objects, denoted by APS, and significantly improves
it for large objects, denoted by APL.

Comparison on Cityscapes Instance Segmentation

We demonstrate the effectiveness of our method on other datasets by showing the
results of the experiments on the Cityscapes dataset. We train the model by changing
λg, and the best results with the val-dataset are summarized in TABLE.5.3. The
optimal values of λg for the GLR, GLRDN-L1, and GLRDN-L2 methods are 10.0,
0.1, and 10.0, respectively. As the table shows, GLRDN-L2 is effective even for the
high-resolution images of the Cityscapes dataset.

5.3.3 Qualitative Results

We show the output results of the final mask in Fig. 5.5 and Fig. 5.6. Different
instances are shown in different colors. The left column shows the results of the
baseline method, and the right column those of our GLRDN-L2 method. Particularly

Table 5.3: Comparison of baseline and several regularization meth-
ods on Cityscapes val dataset. “baseline”is CondInst [56] without
regularizer, GLR is general Laplacian regularizer,“GLRDN-L2”is pro-
posed regularizer, and“GLRDN-L1”is the modification of proposed

method to L1 norm.

regularization AP
baseline 36.5

GLR 36.8
GLRDN-L1 36.1
GLRDN-L2 37.1
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Figure 5.5: Successful examples of improvements in the foreground
and background boundaries. Instance mask results of baseline (left)
and our proposed regularization GLRDN-L2 (right) on COCO val

dataset.

for large objects, it is notable that the hollowing is suppressed and the boundary
details are segmented well by GLRDN-L2. Fig. 5.5 shows an example of a successful
improvement in the masking of the boundary with the background, and Fig. 5.6 shows
an example of an improved boundary mask between classes in an area overlapping
with another class.

Also, we searched failure cases which are very few. The examples of such cases
are shown in Fig.5.7 some samples that failed to predict the mask. Our GLRDN-L2
method does not work well when the predicted masks are far from the targets due to
the lack of differences between the neighboring pixels.
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Figure 5.6: Successful examples of improvements at the boundaries
with other classes. Instance mask results of baseline (left) and our

proposed regularization GLRDN-L2 (right) on COCO val dataset.

5.3.4 Ablation Study

We aggregated the output logit values of the mask head for all pixels in the bounding
box of an instance to observe the changes in the discriminant space due to different
regularizations. We did not use all images in the dataset for the observations, instead
we selected 100 bounding boxes randomly in advance from the COCO val dataset as
the observation targets.

The histogram of the aggregated data is shown in Fig. 5.8. There are three types
of observation targets: baseline (without regularization), GLRDN-L1, and GLRDN-
L2, which are displayed in red, green and blue, respectively.

In the case of the L2 norm, the variance within the positive class is smaller than
in the baseline; therefore, we believe that the regularization provides the expected
consistency of the labels. In the case of the L1 norm, the variance between the classes
is larger than in the baseline, particularly for the negative class, suggesting that the
L1 norm effect results in a sparse mask.
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Figure 5.7: Failure examples where the proposed method has re-
duced the quality of the mask in the COCO val dataset. Instance mask
results for the baseline (left) and our proposed regularized GLRDN-L2

(right).
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Figure 5.8: Histogram of posterior probabilities of mask prediction.
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Chapter 6

Conclusion

6.1 Summary

In this research, our primary objective was to investigate the potential improvements
in object detection and instance segmentation by introducing previously unavailable
information as additional guidance. Our proposed methodologies revolved around
three key aspects: “Grid Boundary Information,” “Foreground and Background In-
formation,” and “Foreground and Background Boundary Information,” all serving as
prior knowledge for the models.

Chapter 1 showed that deep learning-based object detection and instance seg-
mentation applications are already widely operational in the real world. We then
discussed the impact of misrecognition and false positives that often occur in these
applications on real-world operations. We also gave an overview of how our proposed
approach reflects the challenges in different practical scenarios.

Chapter 2 delves into the history of object detection methods since the 1990s and
traces the evolution of network architectures and loss functions, which have devel-
oped dramatically since the advent of deep learning. Moreover, we emphasize the
intricate relationship between object detection and instance segmentation. We eluci-
date how these two tasks have nurtured each other’s development, with innovations
from one domain inspiring advancements in the other. This mutual influence has
fostered a dynamic environment for the continual improvement of both tasks. Fur-
thermore, we introduce benchmark datasets commonly adopted for evaluation in the
field. These benchmark datasets serve as essential tools for assessing the performance
and progress of object detection and instance segmentation methodologies, providing
a standardized means for comparing and benchmarking various approaches.

Chapter 3 focused on the vulnerability of object detection models to minor transla-
tions in input images and identified grid boundaries and object position relationships
as the underlying factors. To address this weakness, we introduced two modules:
SGFEM, aimed at feature extraction from grid boundaries, and GADA, designed to
align object centers with dropped grid boundaries. The combination of these meth-
ods demonstrated the efficacy of mitigating the model’s translation susceptibility and
enhancing its generalization performance.
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Chapter 4 presented a novel framework, SODet, designed for two-step model
learning. In the first step, the model was trained for instance segmentation, enabling
the creation of a background mask-capable model. In the second step, we integrated
the generated background mask into the input image to facilitate a feedback-driven
retraining process, allowing us to incorporate foreground and background prior infor-
mation. This innovative approach resulted in more detailed recognition capabilities
and demonstrated performance improvements across multiple benchmarks.

In Chapter 5, we emphasized that conventional instance segmentation methods
predominantly focus on pixel-wise errors, neglecting valuable spatial information re-
lated to boundaries with the background or other objects. We introduced a method-
ology that considered the spatial structure as information composed of relationships
between neighboring pixels. This spatial structure information was formulated as a
graph Laplacian regularization based on the differences between pixel pairs. This
regularization provided the model with the capability to produce sharper masks at
boundary regions, thus enhancing the overall quality of instance segmentation out-
puts.

6.2 Future Works

This research has addressed the challenging fields of object detection and instance
segmentation, leveraging the recent advancements in deep learning. However, as
outlined earlier, there remains a demand for further progress in practical applications.
We firmly believe that harnessing untapped prior knowledge, as investigated in this
work, is a vital perspective for the continuous advancement of these domains.

Looking ahead, several avenues for future research beckon us. First and foremost,
we are considering the extension of our methods to video data. Incorporating tem-
poral information, such as the lack of changes between adjacent frames or exploiting
inertia in rigid objects, remains uncharted territory and holds promise for improved
performance in dynamic settings.

Moreover, the incorporation of multi-scale features deserves attention. Existing
approaches often introduce artificial structures to handle maps of varying resolutions,
but there is still room for improvements in capturing the interplay between different
scales by imposing resolution-related constraints.

In the context of the rapidly advancing technological landscape of contemporary
society, I consider myself privileged to be engaged in research within this field. The
pursuit of knowledge in object detection and instance segmentation has become my
vocation, and I wholeheartedly commit to making further contributions to the ongoing
advancements in these domains.

As the realm of computer vision continues to expand its practical applications in
the real world, the demand for increasingly sophisticated and innovative technologies
has grown exponentially. My proximity to the realms of development places me in
a favorable position to readily incorporate research outcomes into tangible products.
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It is my earnest aspiration to continue forging new frontiers, fostering collaborations
with fellow researchers, and pushing the boundaries of object detection and instance
segmentation.

Collectively, we aspire to help bridge the chasm between the current state of tech-
nology and the evolving requisites of practical applications, ultimately contributing
to the creation of a safer and more secure world.
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