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Abstract
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Doctor of Science

An experimental study on the upper bounds of Bell’s inequality violations and
quantum contextuality

by Kengo MATSUYAMA

In this thesis, experimental evidence is used to explore the upper limits of a CHSH-type
Bell’s inequality violation and the quantum contextuality by an operationally optimized
input state. In the first experiment, the question of whether the upper limit of the CHSH-
type Bell inequality violation obtained by experiment is consistent with the theoretical
Cirelson bound is clarified by introducing a POVM measurement of polarization and
varying the ratio of the measurement errors for two complementary polarization physical
properties. A measurement outcome with an extremely low number of events appears in
the joint probability distribution that includes the complementary polarization physical
properties. Careful analysis of the measurement errors associated with this measurement
outcome shows that any quantum correlation that exceeds the Cirelson bound requires
negative measurement probabilities. Since it is impossible to obtain a negative probabil-
ity in a real experiment, it is clear that the upper limit of Bell’s inequality breaking that
can be achieved in practice is the Cirelson bound, and that the Cirelson bound is limited
by the uncertainty limit of the measurement. In the second experiment, we investigate
whether quantum states exhibiting quantum correlations such that quantum contextu-
ality appears in the experimental data can be realized operationally. The possibility of
preparing a quantum state preparation such that it shows quantum contextuality based
entirely on experimentally observed characteristics is investigated. An input state can be
prepared by imposing certain deterministic conditions on quantum states showing non-
local correlations that the degree of entanglement variable polarization entangled photon
pairs source. The two experimental parameters of the experimental setup are optimized
based on actual measurements. We refer to this method of optimization as adaptive input
state control. Adaptive input state control returns parameter values that automatically
account for non-trivial imperfections that the experimental setup may contain. Such a
method not only enables an operational verification of quantum contextuality, but can
also make significant contributions to the solution of recent technical problems in quan-
tum information technologies by providing a method of optimizing the quantum state
input generated in the presence of a number of unspecified error sources.
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Chapter 1

Introduction

1.1 Introduction

In 1935, A. Einstein, B. Podolsky, and N. Rosen submitted a remarkable paper that would
later cause crucial controversy[1](see Appendix A). The EPR paradox is a paradox in
which the phenomena that could occur if quantum mechanics is correct contradict the
classically correct assumption of reality and locality. EPR have argued that if these as-
sumptions that mush of course be true are correct, they cannot explain the behavior of
particles in an entangled state of the position and the momentum; therefore, the quan-
tum mechanical description of nature is not complete. Although the EPR paradox raised
the essential question of whether the quantum mechanical description of physics is com-
plete or not, it could not go beyond the realm of an interpretative problem because of the
difficulty of experimental verification.

In 1957, D. Bohm and Y. Aharonov developed the thought experiment on the EPR
paradox and proposed a variant of the EPR paradox that the spin of the two particles are
measured instead of their position and momentum[2]. This thought experiment measur-
ing spin not only redefined the problem in a realistically demonstrable framework, but
was also a key factor in J. S. Bell’s later submission of his landmark paper[3]. D. Bohm
also extended L. de Broglie’s wave theory[4] and proposed a non-local realistic quantum
theory that is valid for many-body systems[5, 6], but it has been pointed out that it is
inconsistent with theory of relativity because it admits non-locality in the sense that it
assumes the existence of physical influences beyond the speed of light.

In 1964, J. S. Bell proposed an inequality to determine whether local realism claimed
by EPR or quantum mechanics was correct, providing a tool to end the long-running
controversy[3]. Bell’s inequality must be satisfied if local realism is correct, but if the
prediction of quantum mechanics is correct, the Bell’s inequality is violated. Since the
inequality proposed in the paper was not in a form suitable for experiment, attempts
were subsequently made by many researchers to improve the inequality. The most im-
portant and most realistic of these inequalities is the CHSH inequality, which stands for
the initials J. Clauser, M. Horne, A. Shimony, and R. Holt and consists of four different
correlations for a two-particle system with two degrees of freedom[7].

In 1972, J. Clauser and S. J. Freedman performed the first experimental verification of
Bell’s inequality of the CHSH-type using photon polarization and observed a violation of
Bell’s inequality, but noted that the distance between the two measurement devices was
not far enough apart so that the measurement made in one system could have physical
effects on the other system that were consistent with theory of relativity[8]. In 1981 and
1982, a research group led by A. Aspect conducted an experiment in a form that resolved
this locality loop-hole. Aspect’s group used cascade radiation of calcium atoms to gener-
ate polarization entanglement and observed the violation of Bell’s inequality at a distance
between the detectors[9, 10]. Since then, many follow-up experiments have successively
reported violations of Bell’s inequality, which are now understood phenomenologically
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as EPR correlations[11–34]. On the other hand, the physical postulate that explains the
non-local correlations of entanglement has not yet been clarified, and remains one of the
most profound unsolved problems in physics.

After the violation of Bell’s inequality was confirmed, it was a natural question to
wonder how large quantum correlations could increase; in 1980, Cirel’son provided an
upper bound on the quantum mechanical EPR correlations, later known as the Cirel’son
bound[35](see Appendix B). In 1994, S. Popescu and D. Rohrlich showed that quantum
correlations beyond the Cirel’son bound can be realized by assuming non-locality that
satisfies relativistic causality[36](see Appendix C). The upper bounds that EPR correla-
tions can achieve depend on the physical principle assumed, and the question of how far
EPR correlation can be achieved in actual experiments has remained unresolved. In this
context, the motivation for the first experiment in this study is to provide experimental
evidence that the Cirel’son bound is a realistically achievable upper bound for the EPR
correlation.

We chose a joint measurement of complementary physical properties as a foothold to
experimentally investigate the upper limits of EPR correlation[37–40]. Although the con-
ventional idea of measurement is that it is impossible to measure complementary physi-
cal properties simultaneously, it is possible to obtain information on two physical prop-
erties simultaneously to the extent that the uncertainty principle is not violated. When
performing such a measurement, it is necessary to discuss a property of the measure-
ment device called measurement uncertainty. Measurement uncertainty is the property
that the statistics obtained from a joint measurement always include measurement errors
that would not be included in a precise measurement. Recent studies have suggested that
the upper bound of the EPR correlation is limited by the local measurement uncertainty
limit[41]. Thus, in order to experimentally explore the relation between the measurement
uncertainty limit and the upper limit of the EPR correlation, it is necessary to introduce
a joint measurement of a physical quantity in a complementary two-level system and to
obtain a joint statistical distribution of the complementary physical properties.

In the first experiment discussed in this thesis, photon pairs are generated using spon-
taneous parametric down-conversion inside a Sagnac interferometer to prepare the max-
imum entangled state of photon polarization[42–45]. By performing conventional Bell’s
inequality verification experiments on the photon pairs, we confirm that EPR correla-
tions are achieved to the extent that a violation of Bell’s inequality is observed. Up to this
point, the experiment is the same as the numerous Bell inequality violation experiments.
We introduce a POVM measurement (see AppendixD) for the two measurement systems
and perform a measurement uncertainty limited joint measurement of two complemen-
tary polarization properties. We introduce a parameter that determines which of the two
complementary polarization properties is measured accurately, the joint measurement
parameter, and we evaluate the measurement visibility for several different setting of
the joint measurement parameter. The results show that for the two-level system, the
value of measurement visibilities is independent of the initial quantum state. Next, we
perform joint measurements in the two measurement systems at several different joint
measurement parameters and evaluate the joint statistical distributions of all four polar-
ization physical properties, including the complementary polarization physical property.
Noting the property that the statistical distributions obtained by joint measurements con-
tain measurement uncertainties, we discuss the relation between the joint probability of
a particular measurement outcome and the measurement uncertainty. Two types of joint
probability distributions are related by the spin-flip model (see Appendix E), one with
and one without the effect of measurement uncertainty, and the fact that if there is an
EPR correlation that exceeds the Cirel’son boundary, then realistically a negative proba-
bility must be obtained in the experiment. This provides strong experimental evidence
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that the Cirel’son bound is an upper bound on the EPR correlations that can be achieved
in the real world.

The origin of the second experiment discussed in this thesis dates back to the time
when the violation of Bell’s inequality began to be accepted as experimental fact. One
of the problems that EPR thought experiments with particle spin have is that the rela-
tion between measurement outcomes becomes unclear because of the need to evaluate
statistical averages. When there is a strong correlation, for example, when the measure-
ment outcome of physical property A is a, the measurement outcome of physical prop-
erty B is always b, the relation or logical relation between the measurement outcomes
becomes clear. Some examples of paradoxes arising from such reasons is the three box
paradox[46, 47](see Appendix F), GHZ paradox[48](see Appendix G) and Hardy’s para-
dox[49, 50](see Appendix H), GHZ paradox and Hardy’s paradox have been confirmed
in various experiments [51–55]. Paradoxes such as these, in which results deduced from
deterministic conditions based on non-contextual logic contradict conclusions predicted
from quantum mechanics, are named consistency paradox here. Theoretically, it is char-
acterized by the fact that the inconsistency is derived after only one trial because no
statistical values are required, but experimentally, it is no different from an experiment to
verification of the Bell’s inequality with respect to the process of obtaining data, since a
statistical distribution must be obtained. However, due to the experimental incomplete-
ness that the experimental setup involves, it is very difficult to prepare deterministic
conditions in a real experiment. Although L. Hardy himself cited as one of its features
the fact that inequalities such as Bell’s inequality are no longer needed in order to verify
the truth, the statistical and systematic errors that experimental results invariably contain
forced him to evaluate discriminant formulas described as inequalities[54]. L. Mandel’s
group is similarly conducting experiments to test local realism based on deterministic
conditions, but since it is impossible to realize deterministic conditions, they are analyz-
ing the errors that the statistics contain[52].

The thought experiment proposed by Frauchiger and Renner in 2018 is another exam-
ple of such a consistency paradox[56]. Originally conceived as an extension of Wigner’s
friend’s thought experiment[57, 58] and proposed to demonstrate the No-go theorem,
it has been noted that this thought experiment is a special case of Hardy’s paradox:
In Frauchiger and Renner’s thought experiment, a total of four observers appear and,
based on non-contextual logic, the consistency between the measurement outcomes the
observers obtain is discussed. As a result, it is argued that the three plausible physical
assumptions cannot hold at the same time, since no matter what measurement outcomes
are acquired, inconsistencies cannot be avoided. An interesting aspect of this thought
experiment is that the initial state is determined by correlations between physical prop-
erties. This is convenient for experimentally investigating quantum contextuality, which
is considered one of the fundamental properties of the quantum world. Quantum con-
textuality, also known as the BKS theorem, an acronym for Bell’s paper[59] and S. Kochen
and E. P. Specker’s paper[60], is a no-go theorem that asserts that the values of two
or more physical properties with different measurement contexts cannot be determined
precisely and simultaneously. Since Frauchiger and Renner’s thought experiment is pre-
cisely about the relation between measurement outcomes obtained in different measure-
ment contexts, it seems a suitable scenario for considering quantum contextuality.

One of the problems with the previous paradoxes is that the discussion starts from
a single quantum state whose physical meaning is not well understood at the begin-
ning. Attempting to faithfully reproduce something whose physical meaning is not well
understood often involves technical difficulties, and the verification of Frauchiger and
Renner’s thought experiment was one such example[31]. Furthermore, the difficulty of
actual realizing deterministic conditions in this verification experiment ultimately led to
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the evaluation of inequalities, such as Bell’s inequality, in which the relation between
measurement outcomes is ambiguous. In quantum mechanics, the gap between theo-
retically assumed unrealistic situations and experimental incompleteness often tends to
be large. Some theories adopt physical interpretations as principles, as if they are as-
sumed to be unprovable, and there is a need to reexamine the question of what empirical
science is all about. Moves to bridge this gap can be seen in the experiments to verify
Bell’s inequality, an example of which is the various loop-hole experiments[18, 20–23, 26].
Loop-hole problems are logical loopholes caused by the fact that the physical conditions
realized in the experiment do not match the physical conditions assumed in the theory,
and because of this loop-hole problem, many follow-up experiments were required to
verify Bell’s inequality. Such a loop-hole problem can be solved by attempting to bring
the experimental situation as close as possible to that of a theory, but on the other hand, it
would be desirable to have a framework for experiments that would allow contradictions
to be shown even under the experimental imperfections, and a way to reduce the tech-
nical difficulties associated with input state preparation. If there were a way to do this,
it would not only give a boost to fundamental experimental research, which is becoming
more and more complicated every year, but might also contribute to the development of
quantum information technology.

In the second experiment discussed in this paper, we propose a completely new initial
state preparation method, Adaptive input state control (AISC), and demonstrate it along
the lines of Frauchiger and Renner’s thought experiment. The validity of AISC is judged
by the strength of the quantum contextuality, by introducing a figure of merit. In actual
experiments, we will prepare an entanglement source with variable degree of entangle-
ment, and evaluate the local degree of polarization and entanglement witness to see if the
degree of entanglement is really controlled. Next, local polarization rotation is applied
to the two generated entanglement photons in order to optimize two of the three physi-
cal conditions assumed in Frauchiger and Renner’s thought experiment. By aligning the
counts of two particular measurement outcomes, quantum interference effects reduce
the frequency at which one particular measurement result is detected. The symmetry
of the physical system automatically optimizes the second physical condition; the third
physical condition is optimized by finding the degree at which the counts are minimized
while varying the degree of entanglement. Prior research has shown that there is only
one quantum state for which that particular three physical conditions are imposed[61].
After optimizing the experimental parameters, the inequalities derived from the non-
contextual logic are evaluated to see if quantum contextuality appears. The results show
that quantum contextuality appears over a wide range of degrees of entanglement, in-
dicating that AISC is effective as an operational definition of an input state preparation
method.

The structure of this paper is as follows. Chapter 2 describes the theoretical frame-
work for describing the joint measurements in the Bell experiment in the first experiment
and the strategy of AISC in the second experiment. Chapter 3 describes the principles of
the experimental setup and summarizes the results of the performance evaluation of the
setup in preparation for conducting the experiments. Chapter 4 presents the results of the
first experiment, Chapter 5 presents the results of the second experiment, and Chapter 6
provides a discussion of those results. Chapter 7 presents the conclusions of this paper.
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Chapter 2

Upper bound of the Bell’s inequality
and adaptive input state control of a
contextual quantum state

2.1 Bell correlations investigated by joint measurements

In this section, strategies are described for how to experimentally explore what deter-
mines the upper bounds of the Bell’s inequality. The Bell’s inequality is violated by a
number of experiments. However, the current situation is that the Cirel’son bound, which
is a quantum mechanical upper bound, is still a matter of controversy, such as why it is
such a value and the PR-box argument, which suggests the possibility of crossing the
Cirel’son bound. In order to overcome this situation, the first experiment is aimed at ob-
taining experimental evidence to answer the problem of why the Cirel’son boundary is
an upper bound of the Bell’s inequality.

2.1.1 Joint measurement of complemantary polarization physical properites

The introduction of joint measurements of complementary polarization physical prop-
erties may provide new insights compared to the evaluation of Bell correlations using
only precise measurements. A joint measurement is a measurement that simultane-
ously obtains information on complementary physical properties. In this subsection,
we describe joint measurements of complementary photon polarizations. FIG. 2.1 is a
schematic diagram of the flow of obtaining measurement outcomes by joint measure-
ments of complementary polarization physical properties. Polarization is a two-level
system in air medium; therefore, a joint measurement of two complementary physical
properties yields 2 × 2 = 4 measurement outcomes. In conventional POVM measure-
ments, it is not possible to describe what value of the physical property each measure-
ment outcome corresponds to, but here we consider that it is a combination of four dif-
ferent eigenvalues. Instead, we interpret that the statistical numbers resulting from the
joint measurements have measurement errors, and that the errors affects the final average
value. The average value including the measurement error is closer to the result obtained
when all measurements are completely random than the average value without the error.
Note that the measurement error here does not mean statistical error. It is necessary to
quantitatively evaluate how much error each measurement outcome has, so as a measure
of the precision of a joint measurement, we define the measurement visibility defined by

VΞ :=
⟨Ξ⟩joint

⟨Ξ̂⟩precise
, (2.1)
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Joint measurement of non-commuting physical 
properties

0

MeasurementInitial state

ො𝜌

Outcome
𝑚 = 1,2,3,4

1 = (+1, +1)

2 = (+1, −1)

3 = (−1, +1)

4 = (−1, −1)

𝐸𝑚
( 𝑋, 𝑌)

FIGURE 2.1: Schematics of a joint measurement of complementary polar-
ization physical properties. ρ̂ is an initial state, Êm is POVM element, X̂ and
Ŷ are complementary physical properties whose values are x, y ∈ {0, 1},
m = 1, 2, 3, 4 are the labels to distinguish the difference measurement out-

comes, (±1,±1) means (x, y).

where Ξ is a specific polarization physical property, ⟨Ξ⟩joint is the average value of Ξ
evaluated in the joint measurement, and ⟨Ξ̂⟩precise is the average value of Ξ evaluated in
the precise measurement.

Let us consider the specific form of the POVM element in order to clarify the relation
between the measurement visibilities and the average of the physical property obtained
in the experiment. From an experimentally obtained joint probability distribution, the
four relations with respect to the average are given by

⟨X⟩joint = P(+,+) + P(+,−)− P(−,+)− P(−,−) (2.2)
⟨Y⟩joint = P(+,+)− P(+,−) + P(−,+)− P(−,−) (2.3)

⟨XY⟩joint = P(+,+)− P(+,−)− P(−,+) + P(−,−) (2.4)
1 = P(+,+) + P(+,−) + P(−,+) + P(−,−), (2.5)

where all joint probabilities are P(x, y), and x, y ∈ {+1,−1} are the values of the physical
properties X̂ and Ŷ. Using Eqs. (2.1)-(2.5), the four probabilities are given by

P(+,+) =
1
4
(
1 + VX⟨X̂⟩precise + VY⟨Ŷ⟩precise + ⟨XY⟩joint

)
(2.6)

P(+,−) =
1
4
(
1 + VX⟨X̂⟩precise − VY⟨Ŷ⟩precise − ⟨XY⟩joint

)
(2.7)

P(−,+) =
1
4
(
1 + VX⟨X̂⟩precise + VY⟨Ŷ⟩precise − ⟨XY⟩joint

)
(2.8)

P(−,−) =
1
4
(
1 − VX⟨X̂⟩precise − VY⟨Ŷ⟩precise + ⟨XY⟩joint

)
. (2.9)

It would not be easy to physically consider what ⟨XY⟩joint means. From the uncertainty
principle of physical properties, X̂Ŷ = iẐ holds, so mathematically ⟨XY⟩joint is equal
to the average value of the physical property Ẑ in the joint measurements multiplied
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by an imaginary unit. However, since the POVM elements assumed in this experiment
are completely insensitive to Ẑ, the average value obtained by the joint measurement is
expected to be zero even if the average value in a precise measurement is not zero. Thus,
if we assume that the relational relation in X̂Ŷ = iẐ is correct, the probabilities described
by Eqs. (2.6)-(2.9) are given by

P(±,±) =
1
4
(
1 ± VX⟨X̂⟩precise ± VY⟨Ŷ⟩precise

)
. (2.10)

Working back the form of the POVM elements from Eq. (2.10), they are given by

Êm =
1
4
(

Î ± VXX̂ ± VYŶ
)

. (2.11)

Regarding the probability P(−,−), it can be likely negative because the measurement
visibility satisfies 0 ≤ VX, VY ≤ 1 and the average of the polarization physical property is
maximally +1. However, obtaining a negative probability in the actual experiment never
happens, a restraint condition is necessary given by

V2
X + V2

Y ≤ 1, (2.12)

named measurement uncertainty limit[62, 63].

2.1.2 Observation of the Bell correlations using joint measurements

In the verification of the Bell’s inequality, there are the four non-local correlations among
the four physical properties of the two level system. The Bell’s inequality is given by

−2 ≤ ⟨X̂AX̂′B⟩ − ⟨X̂AŶ′B⟩+ ⟨ŶAX̂′B⟩+ ⟨ŶAŶ′B⟩ ≤ 2, (2.13)

where X̂, Ŷ, X̂′ and Ŷ′ are the four different physical quantities, and A and B are labels
for the measurement system. It is impossible to simultaneously observe the four Bell
correlations . In other word, it is impossible to precisely observe a physical property
given by

B̂ ≡ X̂AX̂′B − X̂AŶ′B + ŶAX̂′B + ŶAŶ′B. (2.14)

The joint measurements described in subsec. 2.1.1 are introduced into the experiment of
Bell’s inequality. The eigenvalues of the eigenstates of this operator B̂ include ±2

√
2, and

in the following we assume eigenstates whose eigenvalue is −2
√

2.
Using the joint measurements of the complementary physical properties, X̂A and ŶA

can be measured in system A, X̂′B and Ŷ′B can be measured in system B, taking simulta-
neous measurements of system A and B allows us to simultaneously obtain the values of
the four physical properties; therefore, it is possible to obtain the value of B̂ given by

b = xAx′B − xAy′B + yAx′B + yAy′B, (2.15)

where lowercase letters mean the value of the physical property represented by upper-
case letters, and x, y, x′, y′ ∈ {+1,−1}. To reconcile this with the experimental fact of
Bell’s inequality violation, the effect of measurement uncertainty must be taken into ac-
count. The joint measurement of complementary physical properties brings the statistics
obtained in the experiment closer to a random result, so that the absolute value of the
mean of the physical properties is smaller. Bell’s inequality, which would have been de-
feated if the four Bell correlations had been measured independently using only precision
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FIGURE 2.2: Joint statistical distributions that can be evaluated in an ex-
periment to validate Bell’s inequality by introducing a joint measurement.
The yellow squares are the results of the measurement where b = +2 and
the green squares are the results of the measurement where b = −2. The
position of the physical property values correspond to P(xA, yA; x′B, y′B),
where the sign means ±1, the ";" means that the measurement systems are

non-local.

measurements, becomes smaller in the mean value of B̂ due to measurement uncertain-
ties, and eventually the inequality is no longer violated.

The evaluated joint statistical distribution yields the joint probability distribution
shown in FIG. 2.2: all sixteen measurements correspond to either b = ±2; therefore, a
joint probability distribution in FIG. 2.2 can provides the average of B̂,

⟨B̂⟩ = 2P(b = +2)− 2P(b = −2), (2.16)

where P(b = +2) is the sum of probabilities for the yellow squares and P(b = −2) for the
green squares. In this experiment, the result of Eq. (2.16) is expected to be negative be-
cause the eigenstate with eigenvalue of −2

√
2 will be prepared as the initial state. Thus,

P(b = −2) > P(b = +2) would hold. If the magnitude of the EPR correlation can further
cross the Cirel’son bound, the difference between these two probabilities should widen
further and the value of ⟨B̂⟩ should be closer to −2. Such a joint probability distribution
should result in a measurement outcome with a count close to zero for the measurement
outcomes with b = +2 in the joint statistical distribution, since the probability of a mea-
surement outcome with b = −2 is larger and the probability of a measurement outcome
with b = +2 is smaller. Such measurement results indicate that the magnitude of the
EPR correlation is maximized, which should provide strong evidence as to whether the
Cirel’son bound represents a realistic maximal correlation.

2.2 Operational preparation of an input state

This section describes the theoretical framework for the second experiment. Frauchiger
and Renner presented the No-go theorem, which states that in order to explain the mea-
surement outcomes by multiple measurers in a consistent manner along a time series,



2.2. Operational preparation of an input state 9

three conditions that at first glance might be valid in classical dynamics are no longer
valid simultaneously in quantum mechanics[56]. This result is important from two per-
spectives: first, the deterministic conditions are used in the thought experiment. A de-
terministic condition is an event that has a probability of 0 or 1. The thought experiment
based on deterministic conditions ideally have the advantage of not requiring statistics
and are characterized by the ability to discuss relation between different measurement
outcomes rather than statistical averages. The second is that the initial state is inferred
based on the results of measurements. In most cases, initial states are prepared based on
theoretical predictions of quantum mechanics, but ideally, theoretical and experimental
studies should be conducted independently. While it is important to conduct experi-
ments to verify the theory, establishing methods and measurements that allow for inde-
pendent experimental research will give us a glimpse into the true nature of the natural
world, which we have not been able to see until now. The purpose of our research is to
experimentally verify the possibility of preparing a quantum state which outcomes in a
contradiction between quantum and classical dynamics based on measurement outcomes
and relations between different measurement contexts.

2.2.1 Consistency paradox using deterministic conditions

A consistency paradox is a paradox in which the results predicted from classical mechan-
ics contradict those predicted from quantum mechanics. In each of the two separated
physical systems (System A and System B), physical properties of two complementary
two-level systems are measured. If the two physical properties are common to systems
A and B, and F̂i and Ŵi(i = A, B) are the labeled subscripts that identify the systems, a
prepared quantum state satisfies the three conditions given by

P( fA = 0; wB = a) = 0 (2.17)
P(wA = a; fB = 0) = 0 (2.18)
P( fA = 1; fB = 1) = 0, (2.19)

where fi = 0, 1 are measurement outcomes of F̂i (i = A, B), wi = a, b are measurement
outcomes of Ŵi (i = A, B). From Bayes’ theorem, Eq. (2.17) implies that the result
of F̂A is always 1 under the condition of wB = a. Similarly, Eq. (2.18) shows that the
result of F̂B will always be 1 if wA = a. Eq. (2.19), on the other hand, implies that the
simultaneous detection of 1 does not happen. Therefore, under non-contextual logic,
which assumes that the value does not change depending on the measurement context,
P(wA = a; wB = a) = 0 is expected since the simultaneous detection of a in both systems
should never happen. This impossibility can be expressed as an inequality given by

P(a; a) ≤ P(0; a) + P(a; 0) + P(1; 1), (2.20)

where P(x; y) represents the probability such that the value of F̂A or ŴA is x and the value
of F̂B or ŴB is y. In an actual experiment, the three deterministic conditions represented
by Eqs. (2.17) - (2.19) are not achievable because of the experimental imperfection. In
such a situation, it is basically expected that the equality sign will not hold.

Eq. (2.20) can also be derived quantitatively by assuming the joint probabilities of the
four physical properties, F̂A, ŴA, F̂B and ŴB. The four joint probabilities in Eq. (2.20) can
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be represented as

P(a; a) = P(0, a; 0, a) + P(0, a; 1, a) + P(1, a; 0, a) + P(1, a; 1, a) (2.21)
P(0; a) = P(0, a; 0, a) + P(0, a; 1, a) + P(0, b; 0, a) + P(0, b; 1, a) (2.22)
P(a; 0) = P(0, a; 0, a) + P(0, a; 0, b) + P(1, a; 0, a) + P(1, a; 0, b) (2.23)
P(1; 1) = P(1, a; 1, a) + P(1, a; 1, b) + P(1, b; 1, a) + P(1, b; 1, b), (2.24)

where the all joint probabilities follow the manner of P( fA, wA; fB, wB). Since an exper-
imentally obtained probability is definitely greater or equal to zero and less or equal to
one, Eq. (2.21) is definitely less than the sum of Eqs. (2.22)-(2.24). All four joint probabil-
ities included in Eq. (2.21) are included in the sum of Eqs. (2.22)-(2.24).

It is possible to show that Eq. (2.20) is equivalent to the Bell’s inequality. Defining
|1⟩ , |b⟩ as eigenstates with eigenvalue 1 and |0⟩ , |a⟩ as eigenstates with eigenvalue of
−1, considering how the four non-local correlations ⟨F̂A F̂B⟩, ⟨F̂AŴB⟩, ⟨ŴA F̂B⟩, ⟨ŴAŴB⟩
are expressed using the joint probability of the four physical properties as Eq. (2.21)-
(2.24) results in the relation given by

P(0; a) + P(a; 0) + P(1; 1)− P(a; a)

=
1
4
(
⟨F̂A F̂B⟩+ ⟨F̂AŴB⟩+ ⟨ŴA F̂B⟩ − ⟨ŴAŴB⟩+ 2

)
≥ 0. (2.25)

Except for the assumption that the joint probability of all four physical properties is a
real number between 0 and 1, Eq. (2.25) is not guaranteed. Conversely, if this inequality
is violated, then either the probabilities must be negative, or the values of the physical
properties must be other than eigenvalues, or both must be true.

2.2.2 Adaptive input state control for Frauchiger and Renner’s thought exper-
iment

The deterministic conditions expressed in Eqs. (2.17)-(2.19) is corresponding to the or-
thogonal relation in the Hilbert space,

⟨0; a|ψ⟩ = 0 (2.26)
⟨a; 0|ψ⟩ = 0 (2.27)
⟨1; 1|ψ⟩ = 0. (2.28)

Regarding F̂ and Ŵ as the complementary physical properties, the relation of the differ-
ent eigenstates are given by

|a⟩ =
1√
2
(|0⟩ − |1⟩) (2.29)

|b⟩ =
1√
2
(|0⟩+ |1⟩) . (2.30)

A quantum state such that Eqs. (2.26)-(2.28) are satisfied is unique, and leads to P(a; a) =
1/12[61]. This paradox corresponds to a special case of Hardy’s paradox of quantum con-
textuality and quantum non-locality. What is important in this example is that all three
conditions determining the quantum state are experimentally measurable. My goal is to
determine how to optimize the three conditions expressed in Eqs. (2.17)-(2.19), taking
into account the unspecified imperfections of the experimental setup.
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Quantum states that satisfy the three conditions in Eqs. (2.26)-(2.28) are non-maximal
entanglement states; therefore, a physical system with a variable degree of entanglement
is necessary to find the optimal degree of entanglement. An entanglement source using
a Sagnac interferometer and spontaneous parametric downward conversion (SPDC) can
change the degree of entanglement from the product state to the maximally entangled
state by changing the polarization of the pump beam injected into the interferometer[42–
45]. The polarizations of the photon pairs produced by SPDC is determined by the direc-
tion of the optical axes of the nonlinear crystal. Using a non-linear crystal that generated
photon pairs have horizontal(H) and vertical(V) polarizations, the quantum state that the
interferometer provides is given by

|ψ0⟩ = cos ϕS |H; V⟩ − sin ϕS |V; H⟩ , (2.31)

where ϕS is an experimentally variable parameter, changes the intensity ratio of pump
beam between two light paths in the interferometer. It is easy to change the negative
correlations to the positive correlations by inserting by flipping the polarization in one
system, then the quantum state becomes

|ψ0⟩ = cos ϕS |H; H⟩ − sin ϕS |V; V⟩ . (2.32)

Such a conversion to positive correlation is due to the fact that the conditions in Eqs.
(2.26)-(2.28) are symmetric with respect to the exchange of the system. Conversion from
a quantum state with a certain degree of entanglement is achieved by applying local
polarization rotation to the quantum state described by Eq. (2.32). The local polarization
rotations are given by

|0⟩ = Û(ϕM) |H⟩ (2.33)
|1⟩ = Û(ϕM) |V⟩ , (2.34)

where ϕM is experimentally adjustable parameter and changes the rotation angle of a
local polarization. AISC determines ϕM while holding Eq. (2.17) and Eq. (2.18). Using
Eq. (2.26), Eq. (2.27) and Eq. (2.29) become

⟨0; 1|ψ⟩ = ⟨0; 0|ψ⟩ (2.35)
⟨1; 0|ψ⟩ = ⟨0; 0|ψ⟩ . (2.36)

These imply P(0; 0) = P(0; 1) = P(1; 0) in other words to the statistical data obtained
in experiments. These conditions are achievable irrespective of the imperfection of the
experimental setup. Since the optimal ϕM is determined under a certain ϕS, the condition
P(1; 1) = 0 corresponding to Eq. (2.28) is satisfied by varying ϕS. By optimizing these
two parameters, it is possible to prepare a quantum state such that the three conditions
expressed in Eqs. (2.17)-(2.19) are satisfied.

It is interesting to note so far that all the conditions necessary for input state prepa-
ration are achieved using only the {0, 1}-basis. While quantum state preparation usually
requires measurements in different basis to confirm quantum correlations, AISC uses
only one measurement basis. This means that AISC has the potential to reveal relations
between different measurement contexts.
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Preparation for the experiment

3.1 Preparation for the first experiment

3.1.1 Experimental setup

The first experiment investigates the cause of the reason why the Bell’s inequality is lim-
ited by Cirel’son bound, quantum mechanical upper bound. FIG. 3.1 shows the schematic
of the experimental setup for the first experiment. The semiconductor laser whose wave
length is 405 [nm] is used to generate entangled photon pairs at the nonlinear crystal by
spontaneous parametric down conversion (SPDC). This pump beam is efficiently injected
into a single-mode fiber (SMF) using the two dielectric mirrors. Since the polarization
beam splitter (PBS) extracts H polarization after the FC1, a polarization controller (Pol
C) makes the pump beam of H polarization at the output of a fiber coupler (FC1). The
intensity immediately after the FC1 was approximately 15 [mW]. The half-wave plate
(HWP1) converts H polarization to diagonal polarization(P) polarization. The dichroic
mirror (DM) transmits light near 405 [nm] and reflects light near 810 [nm]. The double
polarization beam splitter (DPBS) is a polarizing beam splitter designed to act appro-
priately for light of two wavelengths, 405 [nm] and 810 [nm]; when P-polarized light is
incident, the intensity is split roughly in half in the transmission and reflection directions.
In the clockwise path, the pump beam is converted from V to H polarization by a dou-
ble half-wave plate (DHWP) and reflected by a silver mirror before entering the PPKTP,
which previous studies have shown to be most efficient at producing down-converted
photon pairs when the temperature is kept at 18.5 [°C] and the H-polarized pump beam
is injected[64]. Therefore, the temperature of the PPKTP is maintained at 18.5 [°C] by a
temperature controller. In addition, the collimation lens inside FC1 is adjusted so that
the pump laser creates a focal point roughly at the center of the PPKTP. The beam ra-
dius at the circumference store was ωx = 132.2 ± 1.8 [µm] in the direction parallel to the
optical table and ωy = 132.2 ± 1.2 [µm] in the direction perpendicular to the optical ta-
ble. The generated photon pairs are reflected by the silver mirror and then split by the
DPBS, with the H-polarized photon propagating to the left and the V-polarized photon
propagating downward. In the counterclockwise path, the generated photon pairs enter
the DHWP, but since the H and V polarizations are only converted, the example of the
relation between the polarizations of the photon pairs is not affected. In this case, the
V-polarized photon propagates to the left and the H-polarized photon downward. In
each path the polarization to be measured is selected by a half-wave plate (HWP2) and a
Glan Taylor prism: the two gold mirrors efficiently inject the photon into fiber couplers
(FC2 and FC3), and the band-pass filter (BPF) prevents the pump beam from entering
the optical fiber. The two detected photons are each converted into an electrical pulse
signal by a single-photon detector and signal processing is performed to count them. In
the signal processing, the signal is converted from TTL to NIM by a logic level adapter
and the signal width is converted to 30 [ns] by a DISCRIMINATOR. The shaped NIM
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𝜆 = 810 𝑛𝑚
Δ𝜆 = 10[𝑛𝑚]

𝜆 = 405 𝑛𝑚
𝑃 ≈ 30[𝑚𝑊]

15[𝑚𝑊]

Pol C

FIGURE 3.1: Setup for the first experiment. It consists of three parts: the
part for generating polarization entanglement photon pairs (surrounded
by dotted lines), the part for measurement (surrounded by red and blue),

and the part for signal processing.

signal is simultaneously measured by the COINCIDENCE module. The collimation lens
inside FC1 is adjusted so that the pump beam creates a beam waist at the center of the
PPKTP; the collimation lenses inside FC2 and FC3 are designed so that the 810 [nm] laser
light creates a beam waist at the center of the PPKTP too. The collimation lenses have
a focal length such that the Rayleigh length of the pump beam and the Rayleigh length
of the 810 [nm] laser light coincide. The silver mirrors are used inside the interferometer
because they have high reflectivity for both 405 [nm] and 810 [nm] photons, and the gold
mirrors are used immediately after the GT because they have high reflectivity for the 810
[nm] photon pairs but absorb the 405 [nm] noise source.

3.1.2 Performance of the setup and the interferometer visibility

Evaluation of the performance of an entanglement source is accomplished by counting
the number of photons under specific conditions. Therefore, it is important to check the
performance of the measuring instrument. The number of photons is converted into elec-
trical pulses by the SPCMs, and the count of photons is corresponding to the number of
rising pulses. It is necessary to know the number of dark counts because the measuring
instrument produces pulses even if there is no light in the experimental environment,
due to thermal fluctuations, defects in the crystal or bad insulation. The dark counts
of SPCM1 and SPCM2 were 46 ± 7 [1/s] and 7080 ± 84 [1/s], respectively, which were
checked immediately before the first experiment. The dark counts for SPCM2 have in-
creased due to aging. That such dark counts have almost no effect in the coincidence
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(a) (b)

FIGURE 3.2: Electrical pulses after DISCRIMINATOR. (a) Pulse wave-
form immediately after the SPCM1 signal and Logic Level Adapter passes
through the DISCRIMINATOR (b) Pulse waveform immediately after the
SPCM2 signal and Logic Level Adapter passes through the DISCRIMINA-

TOR.

count of entanglement photon pairs can be shown by evaluating the delay curves as ex-
plained later. The delay curve is achieved by intentionally applying a delay to the electri-
cal pulse while making coincidence count in the absence of GT and HWP2 in FIG. 3.1. As
shown in FIG. 3.2, the electrical pulse after DISCRIMINATOR has a width of 30.04± 0.06
[ns] and a height of −773 ± 4 [mV] on the System A and a width of 30.14 ± 0.11 [ns] and
a height of −745 ± 4 [mV] on the System B. Both pulse signals have a width of roughly
30 [ns], so if entanglement photon pairs are really detected, the counts should drop to the
same order of magnitude as the coincidence counts when greater than 30 [ns] delayed
pulse is applied. FIG. 3.3 shows the results of the delay curves evaluated prior to conduct-
ing the first experiment. In the range of delay times from roughly −20 [ns] to 30 [ns], the
two pulse signals are judged to overlap and the number of simultaneous measurements
is roughly 1.9 × 104 [1/s], but outside that range, the count rate is roughly 102 [1/s]. At 2
[ns], roughly in the middle of the range where counting rates are higher, the single counts
for SPCM1 and SPCM2 were 82305[1/s] and 75620[1/s], respectively. Therefore, the ac-
cidental coincidence count is 82305 × 75620 × 60 × 10−9 ≈ 373 [1/s]. This is consistent
with the order of magnitude of the number of coincidence counts in the region where the
entanglement photon pairs are not coincidentally measured. FIG. 3.3 therefore provides
evidence that the entanglement photon pairs are indeed being detected. Two more de-
tailed features are not yet clear: First, the delay time is not symmetrical with respect to
the t = 0 [ns] position. The second is that the count rate is slightly declining in the region
where the entanglement photon pairs can be detected. We investigated the cause of this
feature, but were unable to identify the cause.

Now that we have confirmed that the entanglement photon pairs are really detected,
it is necessary to quantitatively evaluate how much quantum coherence these photon
pairs have. Quantum coherence can be evaluated as the clarity of interference fringes,
similar to the classical wave interference phenomenon. Photon pairs generated by SPDC
are correlated in HV polarization in our case. If photon pairs have quantum coherence,
then they should also be strongly correlated in PM polarization where M polarization
is anti-diagonal linear polarization, which is complementary to the physical property of
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FIGURE 3.3: Delay curves evaluated before the first experiment. The posi-
tive area of Delay Time on the horizontal axis means multiplying the delay
to the pulses from SPCM1, while the negative area means multiplying the
delay to the pulses from SPCM2. The value on the vertical axis is the count-

ing rate.

HV polarization. Therefore, the definition of the visibility of a photon pair is given by

VΞ :=
N++ + N−− − N+− − N−+

N++ + N−− + N+− + N−+
, (3.1)

where Ξ is a polarization physical property which has two outcomes of +1 and −1, N+−

TABLE 3.1: Coincidence counts in the basis of and evaluated immediately
before the first experiment. The counting time is 10 seconds. 0◦, 90◦, 45◦

and 135◦ means four polarization physical properties X, Y, X′ and Y′.

Label o f counts 0◦ 90◦ 45◦ 135◦

N++ 711 1054 867 878
N−− 685 1150 878 881
N+− 68283 68903 69438 69292
N−+ 68991 69531 70794 68985

is a coincidence counting rate that an outcome of +1 is obtained in System A and an
outcome of −1 is obtained in System B. The results of the four coincidence counts in the
four polarization physical properties X(0◦), Y(90◦), X′(45◦) and Y′(135◦) are shown in
TAB. 3.1. Therefore, TAB. 3.1 and Eq. (3.1) give

VX = −0.980 ± 0.004 (3.2)
VY = −0.969 ± 0.004 (3.3)

VX′ = −0.975 ± 0.004 (3.4)
VY′ = −0.975 ± 0.004. (3.5)
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These show the strong negative correlations, indicating that a quantum state is close to
the singlet state.

3.2 Preparation for the second experiment

3.2.1 Experimental setup

The second experiment investigates how to prepare a quantum state that shows spe-
cific quantum correlations providing the appearance of quantum contextuality. As in the
setup of the first experiment, it consists of three parts: generation of polarization entan-
glement, measurement of polarization, and signal processing. However, there are several
changes as follows. First, the intensity of the semiconductor laser that outputs the pump
light has been reduced by about 3 or 4 [mW] due to age-related deterioration. Second,
the PBS placed immediately after the FC1 has been replaced by a GT for 405 [nm]. Third,
the beam radius of the pump beam at PPKTP were ωx = 166 ± 3 [µm] in the direction
parallel to the optical table and ωy = 168 ± 3 [µm] in the direction perpendicular to the
optical table. In general, the extinction ratio of GTs is two orders of magnitude larger than
that of PBSs, indicating that they can discriminate H and V polarization more precisely.
A half-wave plate (HWP3) is placed on the downward path from the DPBS to convert
between H and V polarizations. This converts the correlations that the photon pairs have
from negative to positive correlations. Finally, in System A and System B, two mirrors
were removed to allow the entanglement photon pairs source to be more stable. The
adjustment to increase the photon pair counts becomes more difficult, but the stability
of the setup as an entanglement source increases because the number of optical compo-
nents is reduced. However, since gold mirrors were used for the two mirrors, they also
played a role in absorbing the pump beam. To prevent the pump beam from entering the
optical fiber and being measured as background, a long-pass filter (LPF) as well as a BPF
were inserted into both FC2 and FC3. By inserting these two filters inside the two FCs,
the space in front of the FCs can be secured. The situation in the subsequent part of the
signal processing is exactly the same as in first experiment.

3.2.2 Performance of the setup and the trade off relation between a local po-
larization and entanglement witness

The dark counts for SPCM1 and SPCM2, confirmed just before the second experiment,
were 52± 7[1/s] and 7289± 85 [1/s], respectively; for SPCM1, the increase in dark counts
is within the error margin, but for SPCM2 it is about 200 [1/s] more. As shown in FIG.
3.5, the electrical pulses sent from the two SPCMs are shaped by the DISCRIMINATOR.
The electrical pulses after DISCRIMINATOR are 30.06 ± 0.02 [ns] wide and −918 ± 10
[mV] high on the System A and 30.09 ± 0.02 [ns] wide and −902 ± 11 [mV] high on the
System B. Both pulses show roughly 30 [ns] in width, but the voltage values are about
150 [mV] smaller than in the first experiment. However, the shaped pulses are eventually
converted to TTL signals and counted, so they can be measured without problems. FIG.
3.6 shows the results of the delay curve evaluated before conducting the second experi-
ment. In the range of delay time from roughly −22 [ns] to 30 [ns], two pulse signals are
judged to overlap, and the number of simultaneous measurements is roughly 1.1 × 104

[1/s], but outside that range, the counting rate is roughly in the order of 102 [1/s]. At
2 [ns], roughly in the middle of the range of higher counting rates, the single counts for
SPCM1 and SPCM2 were 56958 [1/s] and 60472 [1/s], respectively. Therefore, the acci-
dental coincidence counts are 56958 × 60472 × 60 × 10−9 ≈ 207 [1/s]. This indicates that
the entanglement photon pairs of polarization were still detected just before the second
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FIGURE 3.4: Setup for the second experiment. It also consists of three
parts: the part for generating polarization entanglement photon pairs (sur-
rounded by dotted lines), the part for measurement (surrounded by red
and blue), and the part for signal processing. Compared to the setup in
the first experiment shown in FIG. 3.1, fewer optical components realizes

higher stability.

experiment. The most significant difference from the delay curve of the first experiment
is the decrease in the single-count and coincidence count. The decrease is roughly one
third as a count, which can be attributed to a decrease in the intensity of the pump beam
due to aging and the change of the beam radius of the pump beam at the PPKTP. Higher
pump beam energy densities produce more photon pairs because SPDC is a non-linear
effect of polarization.

TABLE 3.2: Coincidence counts in HV basis and PM basis evaluated im-
mediately before the second experiment. The counting time is 10 seconds.

0◦ and 90◦ means two polarization physical properties X and Y.

Labelo f counts Counts in HV basis Counts in PM basis
N++ 5902 207
N−− 5611 175
N+− 109 5627
N−+ 81 5795

The quantum coherence of the entanglement photon pairs prepared in the second
experiment can also be evaluated based on Eq. (3.1). TAB. 3.2 shows the number of
coincidences in the HV and PM basis evaluated just before the second experiment. The
number of coincidence counts is one order of magnitude smaller than in TAB. 3.1. The
FC2 and FC3 are adjusted so that the number of N−+ and N+− are equal when the pump
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EXP2 DISCRIの後の波形

1

(a) (b)

FIGURE 3.5: Electrical pulses after DISCRIMINATOR. (a) Pulse wave-
form immediately after the SPCM1 signal and Logic Level Adapter passes
through the DISCRIMINATOR (b) Pulse waveform immediately after the
SPCM2 signal and Logic Level Adapter passes through the DISCRIMINA-

TOR.

beam is P polarized. As a result of such adjustment, the number of coincidence counts
became one order of magnitude smaller. Although we was unable to determine the cause
of this, the beam radius of the pump beam at the center of the PPKTP is thought to have
a significant effect. Without polarization selection, the number of coincidences would be
the same by an order of magnitude as shown in FIG. 3.3 and FIG. 3.6, but in the setup of
the second experiment, the beam radius of the photon pair beams are also wider, which
may have reduced the number of coincidences at the positions where N−+ ≈ N+− is
satisfied. The results of TAB. 3.2 and Eq. (3.1) provides

VX = 0.968 ± 0.013 (3.6)
VY = −0.935 ± 0.011. (3.7)

Compared to the results obtained in the first experiment shown in Eq. (3.2) and Eq.
(3.3), the interferometer visibilities are worse than the results in the first experiment. The
reduced degrees of freedom for fine tuning made it difficult to increase the visibility in
the PM polarization. There is room for improvement by devising the procedures and
methods used to construct the setup.

In the second experiment, the degree of entanglement is changed from a product state
to a maximally entangled state by transforming the polarization of the pump beam from
V to P polarization with HWP1 in FIG. 3.4. This experimentally variable characteristic is
parameterized with ϕS, and ϕS = 0◦ is corresponding to V polarization and ϕS = 45◦ is to
P polarization of the pump beam. It is useful that there are indexes showing the degree
of local polarizations and entanglements to know the actual performance of the exper-
imental setup. As an index showing the entanglement, we introduce an entanglement
witness described by

WE ≡ VX − VY − 1. (3.8)

The minus sign in front of VY reflects the result of interference visibility shown in Eq.
(3.7). Ideally speaking, the decrease of the degree of entanglement results in the increase
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FIGURE 3.6: Delay curves evaluated before the second experiment. The
positive area of Delay Time on the horizontal axis means multiplying the
delay to the pulses from SPCM1, while the negative area means multiply-
ing the delay to the pulses from SPCM2. The value on the vertical axis is

the counting rate.

of the degree of the local polarization described by

CΞ ≡ N+ − N−
N+ + N−

, (3.9)

where N+ and N− are the count rate of polarizations of ξ = +1 and ξ = −1, ξ is the value
of Ξ. Since photon pairs produced by nonlinear crystals are strongly correlated between
the original HV polarizations, the appropriate physical property for the degree of local
polarization is X. The raw data needed to evaluate Eqs. (3.8) and (3.9) are shown in TAB.
3.3. When evaluating Eq. (3.9), P(xA = +; xB = +) + P(xA = +; xB = −) − P(xA =
−; xB = +) − P(xA = −; xB = −) for system A and P(xA = +; xB = +) − P(xA =
+; xB = −) + P(xA = −; xB = +)− P(xA = −; xB = −) for system B, and the average
of these is P(xA = +; xB = +) − P(xA = −; xB = −). To see how much these three
differ, comparison of these three is shown in FIG. 3.7, showing that the three data points
agree within the margin of error; henceforth, when evaluating local polarization, Eq. (3.9)
shall be evaluated for each of systems A and B, and the average value of the two shall be
shown.

The graphs and actual values of the degree of local polarization CX, the interferome-
ter visibility VX with respect to X, and the degree of entanglement WE are shown in FIG.
3.8 and TAB. 3.4. The VX is a constant value within the error range; since the photon pairs
generated in nonlinear crystals always have a strong negative correlation in HV polar-
ization. The reason why it has a value close to +1 instead of −1 is because it is converted
to a positive correlation by the HWP3 in FIG. 3.4. The reason why +1 is not included
in the error range is due to imperfections in the mainly polarizers in the experimental
setup. The CX and the VX are the same at ϕS = 0◦, but VX and WE do not coincide at
ϕS = 45◦. This means that the local coherence represented by the local polarization is
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TABLE 3.3: Count rates of the four measurement outcomes for X above
and Y below. X is the polarization physical property composed of HV
polarization and Y is the polarization physical property composed of PM

polarization. The ± sign means ±1.

ϕS[deg] N(xA = +; xB = +) N(xA = +; xB = −) N(xA = −; xB = +) N(xA = −; xB = −)
0 11326 119 27 47
10 10379 115 26 379

175 10030 107 28 1101
20 9860 111 40 1336

225 9391 109 51 1666
25 9218 108 45 1947

275 9695 105 46 2415
35 7923 114 54 3689
45 5902 109 81 5611

ϕS[deg] N(yA = +; yB = +) N(yA = +; yB = −) N(yA = −; yB = +) N(yA = −; yB = −)
0 3013 2926 2836 3033

10 1895 3657 3611 1853
175 1369 4353 4387 1342
20 1152 4711 4506 1182

225 1082 4655 4640 969
25 946 4854 4935 895

275 767 5327 5464 812
35 459 5651 5611 430
45 207 5629 5795 175

not completely transferred to the non-local coherence represented by the entanglement
witness.

TABLE 3.4: Numerical results of CX , VX , WE for each ϕS, and the total co-

herence
√

C2
X + W2

E

ϕS[deg] VX CX WE

√
C2

X + W2
E

0 0.975 ± 0.013 0.979 ± 0.013 −0.049 ± 0.017 0.980 ± 0.013
10 0.974 ± 0.013 0.918 ± 0.013 0.294 ± 0.017 0.963 ± 0.014

17.5 0.976 ± 0.013 0.793 ± 0.013 0.503 ± 0.017 0.938 ± 0.014
20 0.973 ± 0.012 0.751 ± 0.012 0.569 ± 0.016 0.943 ± 0.014

22.5 0.971 ± 0.012 0.689 ± 0.012 0.610 ± 0.017 0.920 ± 0.014
25 0.973 ± 0.012 0.642 ± 0.012 0.656 ± 0.016 0.918 ± 0.014

27.5 0.975 ± 0.012 0.594 ± 0.012 0.720 ± 0.016 0.933 ± 0.014
35 0.971 ± 0.011 0.359 ± 0.011 0.825 ± 0.016 0.900 ± 0.015
45 0.968 ± 0.011 0.025 ± 0.011 0.903 ± 0.016 0.903 ± 0.016

The generated photon pairs are strongly correlated for HV polarization, but for PM
polarization which depends on the perfection of the interferometer. Thus, while CX is
affected by the imperfection status of the optical components, it is also affected by the
imperfection of the interferometer for WE, so that local coherence is not fully converted

to non-local coherence. This feature is also evident in
√

C2
X + W2

E in TAB. 3.4. Originally,

the value of
√

C2
X + W2

E is expected to be constant regardless of the value of ϕS, but it

differs by a maximum of about 0.08. For ϕS = 0◦, the value of
√

C2
X + W2

E is large because

the interferometer imperfections do not take effect, but for ϕS = 45◦,
√

C2
X + W2

E is small
because interferometer imperfections take effect the most. It is clear that the CX and WE
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FIGURE 3.7: Degree of local polarization in HV basis against experimental
parameter ϕS. The local polarization is given by Eq. 3.9. Blue dots show
P(xA = +; xB = +) + P(xA = +; xB = −) − P(xA = −; xB = +) −
P(xA = −; xB = −), yellow dots show P(xA = +; xB = +) − P(xA =
+; xB = −) + P(xA = −; xB = +) − P(xA = −; xB = −) and green
dots show their average. This result indicates that system A and B are

symmetric.

have a trade-off relation. This is the evidence that the degree of entanglement can be
controlled by varying ϕS.
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FIGURE 3.8: Trade-off relation between CX and WE in all range of ϕS. X is
a polarization physical property composed of HV polarization, VX shows
the interferometer visibility given by Eq. (3.1), CX is the local polarization
given by Eq. (3.9) and WE is the entanglement witness represented as Eq.

(6.62).
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Chapter 4

Experimental results for the upper
bound of the Bell’s inequality
violation

4.1 Measurement visibility of the complementary polarizations

Since a joint measurement of two complementary physical properties contains errors in
the measurement outcome, it is necessary to quantitatively evaluate how precisely the
measurement was performed. Since Eq. (2.1) is independent of the initial state, arbitrary
initial state is allowed to evaluate the measurement visibility for a physical property. Ξ
takes two values because it is a polarization in the free space. In the first experiment,
we prepared an eigenstate state where ξ = +1 as an initial state. Since the photon pairs
produced by the entanglement source has strong negative correlation, choosing the polar-
ization corresponding to ξ = −1 in one system means that the eigenstate corresponding
to ξ = +1 can be prepared in the other system. This manipulation of the quantum state
of one particle of the entanglement by selecting the quantum state of the other particle
is called quantum steering1. In order to describe the experimental evaluation method of
Eq. (2.1) in more detail, let us explain the process of deriving the ⟨ξ⟩joint and the ⟨Ξ̂⟩precise.
When the polarization corresponding to ξ = +1 is prepared on the system A side, the
polarization corresponding to ξ = −1 is measured on the system B side. Thereafter, the
polarization corresponding to ξ = −1 will continue to be measured in system B until the
end of the evaluation of the VΞ. Under this situation, the ⟨Ξ̂⟩precise is given by

⟨Ξ̂⟩precise = P(ξA = +1|ξB = −1)− P(ξA = −1|ξB = −1)

=
P(+, ·;−, ·)− P(−, ·;−, ·)
P(+, ·;−, ·) + P(−, ·;−, ·) , (4.1)

where, let ξ⊥ be the complementary polarization physical property measured together
with ξ, a center dot indicates that no distinction is made between the different values of
ξ or ξ⊥ for this physical property. For example, P(ξA, ξ⊥A ; ξB, ξ⊥B ) = P(·,+;−, ·) means
the joint probability such that the value of ξA is not considered, ξ⊥A = +1, ξB = −1 and
the value of ξ⊥B is not , the measurement outcome in system A to the left of ";" and the

1Quantum steering is a concept originally introduced for clustering quantum entanglement. The impli-
cation is that the quantum states of one system have such strong non-local correlations that measurements
made on the other system can be used to infer the quantum state of the other system. It was proposed by
Schrödinger[65, 66] and later developed by H. M. Wiseman, S. J. Jones, and A. C. Doherty[67].
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FIGURE 4.1: On the Bloch sphere (see Appendix I), two complementary
polarization physical properties that are (a) jointly measured in system A,
and (b) measured in system B. Red arrows are POVM elements selected in
system A. The blue arrows indicate the POVM elements selected in system
B. θJ is the joint measurement parameter, and in this experiment the param-
eter values are always the same for systems A and B. x = +1 corresponds
to H polarization, x = −1 to V polarization, y = +1 to P polarization, and
y = −1 to M polarization. x′ and y′ are polarization physical properties

that lie exactly in between them.

measurement outcome in system B to the right of ";". Regarding the ⟨Ξ⟩joint, considered

⟨Ξ⟩joint = P(ξA = +1, ξ⊥A = +1|ξB = −1) + P(ξA = +1, ξ⊥A = −1|ξB = −1)

− P(ξA = −1, ξ⊥A = +1|ξB = −1)− P(ξA = −1, ξ⊥A = −1|ξB = −1)

=
P(+,+;−, ·) + P(+,−;−, ·)− P(−,+;−, ·)− P(−,−;−, ·)
P(+,+;−, ·) + P(+,−;−, ·) + P(−,+;−, ·) + P(−,−;−, ·) , (4.2)

where, for example, P(ξA, ξ⊥A ; ξB, ξ⊥B ) = P(−,+;−, ·) means the joint probability such
that ξA = −1, ξ⊥A = +1, ξB = −1 and the value of ξ⊥B is not considered.

Actual angle of polarization physical properties are defined as shown in TAB. 4.1. The

TABLE 4.1: Correspondence between measured polarization physical
quantities and actual polarization angles, where X, Y, X′ and Y′ are four
different polarization physical quantities and ± represents the measured
result ±1. The angle in real space represents the rotation angle when the
light is viewed from the approaching direction, with H polarization as the

reference and counterclockwise as the positive direction.

Physical property Value Angle in real space[deg]
X̂ (+,−) (0◦, 90◦)
Ŷ (+,−) (45◦, 135◦)
X̂′ (+,−) (22.5◦, 112.5◦)
Ŷ′ (+,−) (67.5◦, 157.5◦)

X̂ is the polarization physical property with H and V polarization in the measurement
outcomes, the Ŷ is the polarization physical property with P and M in the measurement
outcomes, and the X̂′, Ŷ′ is the polarization physical property exactly in between the X̂′

and the Ŷ′. Setting a joint measurement of the X̂, Ŷ in system A and X̂′, Ŷ′ in system B,
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the relation between polarization physical properties and joint measurement parameters
is shown in FIG. 4.1. Note that FIG. 4.1 is displayed in the Bloch sphere, not in real space.
There are four polarizations to be measured, one in each of the four directions between
the two polarization physical properties measured in each system, corresponding to the
four joint measurement outcomes of (xA, yA) or (xB, yB).

To evaluate the performance of the joint measurements, we derive the measurement
visibility for two polarization physical properties, the XA and the YA for system A and
the X′

B and the Y′
B for system B. Using the raw data in TAB. 3.1 and Eq. (4.1), ⟨Ξ̂⟩precise for

the four polarization physical properties of XA, YA, X′
B, and Y′

B become

⟨XA⟩precise = 0.980 ± 0.005 (4.3)
⟨YA⟩precise = 0.967 ± 0.005 (4.4)
⟨X′

B⟩precise = 0.975 ± 0.005 (4.5)
⟨Y′

B⟩precise = 0.975 ± 0.005. (4.6)

These values agree with the results of Eqs. (3.2) - (3.5) within the error margin. The raw
data for the joint measurement for the initial condition with ξ = +1 is shown in TAB.
4.2 and TAB. 4.3. In the both case of θ = 0◦ and θ = 90◦, there are two measurement

TABLE 4.2: Raw data of the joint measurement of XA and YA. The label
of the joint outcomes follow the form of N(XA, YA; XB, YB). Note that X, Y
and X′, Y′ are totally different polarization. "·" means that the value of the
corresponding polarization is not considered. All values are measured for

10 seconds.

θJ[deg] N(+,+;−, ·) N(−,−;−, ·) N(+,−;−, ·) N(−,+;−, ·)
0 69424 806 69424 806

10 69954 803 67873 1920
20 68667 1866 66187 3900
30 66806 4016 63672 6890
40 63845 6759 59595 10878
45 59130 10713 59315 9807
50 59836 10711 55013 15393
60 55245 15231 49979 20553
70 49713 20991 44246 26213
80 44133 26338 38088 32392
90 38672 32446 32446 38672

θJ[deg] N(+,+; ·,−) N(−,−; ·,−) N(+,−; ·,−) N(−,+; ·,−)
0 31692 36206 31692 36206

10 37053 30964 26339 42451
20 42826 25472 20388 47723
30 48446 19556 15570 53071
40 53169 14908 10961 57011
45 59244 11033 11635 57952
50 57705 10705 7149 61292
60 60724 6941 4256 64260
70 64428 3926 2347 65707
80 66564 2239 1182 66870
90 67571 1113 1113 67571

outcomes that have the same coincidence counts. This means that the joint measurement
is sensitive to only one of the two polarizations, which means that the measurements are
equivalent to the precise measurements. Results in TAB. 4.2 and TAB.4.3 can provide
the average obtained in the joint measurements of XA and YA or X′

B and Y′
B as shown

in TAB. 4.4. Therefore, the measurement visibilities of the four polarizations XA, YA, X′
B
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TABLE 4.3: Raw data of the joint measurement of X′
B and Y′

B. The label
of the joint outcomes follow the form of N(X′

A, Y′
A; X′

B, Y′
B). Note that X, Y

and X′, Y′ are totally different polarization. "·" means that the value of the
corresponding polarization is not considered. All values are measured for

10 seconds.

θJ[deg] N(−, ·;+,+) N(−, ·;−,−) N(−, ·;+,−) N(−, ·;−,+)
0 67938 931 67938 931

10 68686 868 66942 1961
20 67599 1902 65355 4049
30 65248 3786 61856 6957
40 61972 6860 58994 10810
45 59909 11082 59835 10639
50 59249 10382 53563 15331
60 54667 15158 48456 20381
70 49799 19745 43022 26410
80 44101 26143 37293 31795
90 38246 31296 31296 38246

θ[deg] N(·,−;+,+) N(·,−;−,−) N(·,−;+,−) N(·,−;−,+)
0 31717 36771 31717 36771

10 37509 31234 26249 42817
20 43618 25110 20796 47902
30 48973 20300 15664 53861
40 54105 14910 11147 57768
45 61237 9781 12578 57406
50 58717 10510 7190 62051
60 62623 6584 4331 65051
70 65060 3874 2182 67817
80 67703 1729 1048 68633
90 68228 952 952 68228

TABLE 4.4: Results of the joint measurement when an eigenstate is pre-
pared in which the eigenvalue of a physical property is +1.

θJ [deg] ⟨XA⟩joint ⟨YA⟩joint ⟨X′
B⟩joint ⟨Y′

B⟩joint
0 0.977 ± 0.004 0.0000 ± 0.0027 0.973 ± 0.004 0.0000 ± 0.0027
10 0.961 ± 0.004 0.1623 ± 0.0027 0.959 ± 0.004 0.1658 ± 0.0027
20 0.918 ± 0.004 0.3276 ± 0.0028 0.914 ± 0.004 0.3319 ± 0.0028
30 0.8457 ± 0.0035 0.4859 ± 0.0030 0.8441 ± 0.0035 0.4818 ± 0.0030
40 0.7500 ± 0.0033 0.6197 ± 0.0032 0.7451 ± 0.0033 0.6222 ± 0.0032
45 0.7047 ± 0.0033 0.6759 ± 0.0032 0.6929 ± 0.0032 0.6829 ± 0.0032
50 0.6296 ± 0.0031 0.7391 ± 0.0034 0.6288 ± 0.0032 0.7443 ± 0.0034
60 0.4925 ± 0.0030 0.8356 ± 0.0035 0.4874 ± 0.0030 0.8425 ± 0.0035
70 0.3312 ± 0.0028 0.908 ± 0.004 0.3358 ± 0.0028 0.913 ± 0.004
80 0.1667 ± 0.0027 0.950 ± 0.004 0.1683 ± 0.0027 0.960 ± 0.004
90 0.0000 ± 0.0027 0.968 ± 0.004 0.0000 ± 0.0027 0.972 ± 0.004
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0

(a) (b)

FIGURE 4.2: Measurement visibilities of (a)XA and YA, (b)X′
B and Y′

B
against the joint measurement parameter, θJ . At θJ = 0◦, the XA and the
X′

B are measured precisely, at θJ = 90◦,the YA and the Y′
B are measured

precisely, and at θJ = 45◦, all four polarization physical properties are
measured with the same accuracy.

and Y′
B are obtained from Eqs. (2.1), (4.3) - (4.6), TAB. 4.4 as shown in FIG. 4.2 and TAB.

4.5. It can be seen that a clear trade-off relation between the measurement visibilities of

TABLE 4.5: Numerical results of the measurement visibility of
XA, YA, X′

B, Y′
B.

θJ [deg] VXA VYA VX′
B

VY′
B

0 0.997 ± 0.007 0.0000 ± 0.0028 0.992 ± 0.007 0.0000 ± 0.0028
10 0.981 ± 0.007 0.1678 ± 0.0030 0.978 ± 0.007 0.1714 ± 0.0030
20 0.936 ± 0.006 0.3387 ± 0.0035 0.933 ± 0.006 0.3432 ± 0.0035
30 0.863 ± 0.006 0.502 ± 0.004 0.861 ± 0.006 0.498 ± 0.004
40 0.765 ± 0.005 0.641 ± 0.005 0.760 ± 0.005 0.643 ± 0.005
45 0.719 ± 0.005 0.699 ± 0.005 0.707 ± 0.005 0.706 ± 0.005
50 0.642 ± 0.005 0.764 ± 0.005 0.641 ± 0.005 0.770 ± 0.005
60 0.502 ± 0.004 0.864 ± 0.006 0.497 ± 0.004 0.871 ± 0.006
70 0.3379 ± 0.0034 0.939 ± 0.006 0.3425 ± 0.0034 0.944 ± 0.006
80 0.1700 ± 0.0029 0.982 ± 0.007 0.1717 ± 0.0029 0.993 ± 0.007
90 0.0000 ± 0.0027 1.000 ± 0.007 0.0000 ± 0.0027 1.005 ± 0.007

the complementary physical properties is manifested in both systems A and B. To clarify
the relation between the complementary polarization in each system, FIG. 4.3 is a graph
with the measurement visibilities assigned to the horizontal and vertical axes. It can be
seen that all data points are on arcs of radius one. This means that it is not possible to
perform joint measurements beyond this uncertainty limit. These results certainly show
the measurement uncertainty limit as shown in Eq. (2.12). If the measurement visibilities
depended on the initial state, the experimental values would not have ridden on a circle
of radius one, as shown in FIG. 4.3 because the initial state is not a pure state, as shown
in Eqs. (3.2)-(3.5).

4.2 Joint statistical distributions of the complementary polariza-
tions

The experiment to verify Bell’s inequality using joint measurements are accomplished
by joint measurements of the complementary relations the XA and the YA, or the X′

B
and the Y′

B. By changing the joint measurement parameter θJ , one can change which of
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(a) (b)

FIGURE 4.3: Trade-off relation between the measurement visibilities of
complementary polarization (a) between XA and YA; (b) between X′

B and
Y′

B. The blue dots represent experimental values and the red curve repre-
sents an arc whose radius is 1.

the complementary polarizations is measured more accurately. The joint measurement
parameters set for systems A and B are strictly independent, but in this experiment they
are varied so that they always have the same value. The condition that one of the four
outcomes is selected at random is achieved by unifying the measurement time interval
of the four outcomes.

FIG. 4.4 shows the results of the joint statistical distribution obtained in the exper-
iment. The joint statistical distribution of the θJ = 45◦ case is the most easily under-
standable because the four polarization physical properties are measured with the same
accuracy. The most interesting feature is that the counts of the eight measurements with
b = +2 are almost identical, and the counts of the eight measurements with b = −2 are
almost identical as well. This means that the joint statistical distribution depends only on
the value of B̂. The situation in which all four polarization physical properties are mea-
sured with the same accuracy is the same as in a conventional Bell’s inequality verifica-
tion using only precise measurements (see Appendix J). One more thing that can be said
about the shape of the joint statistical distribution is that the counts of the measurement
outcomes corresponding to b = +2 are not very close to zero. This suggests that even
lower counts for the measurement outcomes where b = +2 could lead to more stronger
quantum correlations, so the experimental data cannot conclude whether the Cirel’son
bound is a realistic upper limit for Bell’s inequality. Therefore, joint measurements with
the same measurement uncertainty for all polarizations are insufficient to provide exper-
imentally innovative facts about the upper bound of Bell’s inequality, and there is a need
to survey in detail the results for different balances of measurement uncertainty among
the complementary polarizations.

Centered at θJ = 45◦, the closer θJ = 0◦, the more accurately XAand X′
B are measured,

and the closer θJ = 90◦, the more accurately YA and Y′
B are measured. The case of θJ = 0◦

is equivalent to a precise measurement for XA and X′
B, and has no sensitivity to YA and

Y′
B. As evidence of this, the counts of the measurement outcomes that would invert the

values of XA or X′
B are different, but the counts that would invert the results of YA or Y′

B
are the same. Conversely, the case θJ = 90◦ is equivalent to a precise measurement of YA
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𝜽𝑱 = 𝟎° 𝜽𝑱 = 𝟏𝟎° 𝜽𝑱 = 𝟐𝟎°

𝜽𝑱 = 𝟑𝟎° 𝜽𝑱 = 𝟒𝟎° 𝜽𝑱 = 𝟒𝟓°

1

𝜽𝑱 = 𝟓𝟎° 𝜽𝑱 = 𝟔𝟎°

𝜽𝑱 = 𝟖𝟎° 𝜽𝑱 = 𝟗𝟎°

𝜽𝑱 = 𝟕𝟎°

(+,+) (+,−) (−,+) (−,−)

(+,+)

(+,−)

(−,+)

(−,−)

(𝑥𝐴, 𝑦𝐴)

(𝑥
′ 𝐵
,𝑦
′ 𝐵
)

FIGURE 4.4: Joint statistical distributions obtained in the experiment to
investigate Bell’s inequality with the joint measurements. All counts are
measured for 10 seconds. Orange represents outcomes of b = +2 and
green represents ones of b = −2. The 3D plots and the positions of the
outcomes correspond, and the arrangement of the sixteen measurement

outcomes follows the joint statistical distribution presented in FIG. 2.2.
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FIGURE 4.5: Four non-local correlations against the joint measurement pa-
rameter θJ .

and Y′
B and has no sensitivity at all to XA and X′

B, as evidenced by the nearly identical
counts of measurement outcomes that would invert the values of XA or X′

B.
The most noteworthy point when looking over all the joint statistical distributions is

the measurement outcomes at two points, θJ = 20◦ and 70◦, where the counts are sig-
nificantly lower. It is important to note that the joint measurement is a measurement
including measurement uncertainties in the measurement outcomes, and the fact that
the counts are approaching zero despite the measurement uncertainty suggests that the
quantum correlation is maximal. A detailed discussion of the behavior of the joint sta-
tistical distributions and the significant decrease of the counts in the specific outcomes
when the joint measurement parameters are changed will be presented in Chapter 6.

4.3 Local and Non-local correlations of the maximally entangled
photons

The various correlations that photon pairs have can be examined by deriving the joint
probability distribution from the joint statistical distributions obtained in the experiment.
To obtain the joint probability distributions, the counts from all sixteen measurements
are added together and the sixteen counts are divided. The four Bell correlations are
described according to the notation shown in FIG. 2.2 as given by

⟨XAX′
B⟩ = P(+, ·;+, ·)− P(+, ·;−, ·)− P(−, ·;+, ·) + P(−, ·;−, ·) (4.7)

⟨XAY′
B⟩ = P(+, ·; ·,+)− P(+, ·; ·,−)− P(−, ·; ·,+) + P(−, ·; ·,−) (4.8)

⟨YAX′
B⟩ = P(·,+;+, ·)− P(·,+;−, ·)− P(·,−;+, ·) + P(·,−;−, ·) (4.9)

⟨YAY′
B⟩ = P(·,+; ·,+)− P(·,+; ·,−)− P(·,−; ·,+) + P(·,−; ·,−). (4.10)

The four non-local correlations given by these equations are evaluated and shown graph-
ically in FIG. 4.5.

At θJ = 0◦, since only XA and X′
B are measured accurately and the sensitivity is zero

for YA and Y′
B, the values of the three non-local correlations other than ⟨XAX′

B⟩ are zero.
Similarly, at θJ = 90◦, only YA and Y′

B are measured, so the values of correlations other
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FIGURE 4.6: Local correlations against the joint measurement parameter.
Blue dots show the local correlation of the complementary polarizations in

system A, yellow dots show the one in system B.

than ⟨YAY′
B⟩ are zero. If any one of the four non-local correlations in the Bell’s inequality

is measured accurately, the other three non-local correlations will be zero. As the joint
measurement parameter approaches 45◦, the other three non-local correlations that had
zero values begin to increase or decrease. θJ = 45◦, the sensitivity of the measurement to
the four polarization physical properties is the same, so the magnitudes of the four corre-
lations are approximately the same, but the magnitude of their average value is smaller
than the average value obtained by the precise measurement results(see Appendix B).
How the measurement errors are related to the values of these correlations will be dis-
cussed in Chapter 6.

⟨B⟩ can be evaluated by the sum or difference of the four correlations, or from the
probability P(b = +2) and the probability P(b = −2). The values of the four non-
local correlations and the average value of B derived from them are summarized in TAB.
4.6. The ⟨B⟩ does not exceed 2, which is not surprising since it is the average value

TABLE 4.6: Results of the joint measurement when an eigenstate is pre-
pared in which the eigenvalue of a physical quantity is +1.

θJ [deg] ⟨XAX′
B⟩ ⟨XAY′

B⟩ ⟨YAX′
B⟩ ⟨YAY′

B⟩ ⟨B⟩
0 −0.7080 ± 0.0014 0.0016 ± 0.0014 −0.0009 ± 0.0014 −0.0005 ± 0.0014 −0.7110 ± 0.0028
10 −0.6936 ± 0.0014 0.1168 ± 0.0014 −0.1078 ± 0.0014 −0.0240 ± 0.0014 −0.9422 ± 0.0028
20 −0.6252 ± 0.0014 0.2181 ± 0.0014 −0.2160 ± 0.0014 −0.0809 ± 0.0014 −1.1402 ± 0.0028
30 −0.5392 ± 0.0014 0.2898 ± 0.0014 −0.2902 ± 0.0014 −0.1742 ± 0.0014 −1.2934 ± 0.0028
40 −0.4174 ± 0.0014 0.3374 ± 0.0014 −0.3322 ± 0.0014 −0.2828 ± 0.0014 −1.3698 ± 0.0028
45 −0.3603 ± 0.0014 0.3422 ± 0.0014 −0.3332 ± 0.0014 −0.3426 ± 0.0014 −1.3782 ± 0.0028
50 −0.3008 ± 0.0014 0.3302 ± 0.0014 −0.3267 ± 0.0014 −0.4087 ± 0.0014 −1.3664 ± 0.0028
60 −0.1771 ± 0.0014 0.2933 ± 0.0014 −0.2944 ± 0.0014 −0.5161 ± 0.0014 −1.2809 ± 0.0028
70 −0.0849 ± 0.0014 0.2133 ± 0.0014 −0.2137 ± 0.0014 −0.6173 ± 0.0014 −1.1292 ± 0.0028
80 −0.0188 ± 0.0014 0.1186 ± 0.0014 −0.1169 ± 0.0014 −0.6722 ± 0.0014 −0.9265 ± 0.0028
90 0.0007 ± 0.0014 −0.0017 ± 0.0014 −0.0015 ± 0.0014 −0.7004 ± 0.0014 −0.6996 ± 0.0028

of b = ±2. Introducing an uncertainty limited joint measurement of complementary
physical properties does not cause the Bell’s inequality violation.

Since the joint statistical distribution obtained in the experiment contains information
on all four polarizations, we can also obtain local correlations as shown in FIG. 4.6. It
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is certain that the local correlations have values less than 0.01 for all values of the θJ . It
is interesting that it is an opposite relation where the non-local correlation shows large
values while the local correlation is small. The meaning of these behavior will also be
discussed in Chapter 6.
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Chapter 5

Experimental results for the quantum
state preparation by adaptive input
state control

5.1 Optimization of ϕM

Quantum correlations describe the relation between different measurement contexts, re-
lated by quantum coherence. The optimization of the ϕM exploits exactly such quantum
correlations. Eq. (2.17) and Eq. (2.18) are satisfied in the experiment for the optimization
of the ϕM. Since the quantum states of the photon pairs produced by the entanglement
source are symmetric with respect to the exchange between systems A and B, if one of the
two conditions is satisfied, the other is automatically satisfied ideally. Therefore, we de-
termine the ϕM so that the detection frequency of the two measurement outcomes (0; 0)
and (0; 1) is the same as explained in Subsec. 2.2.2.

The ϕM can be controlled by HWP2 in FIG. 3.4 and is the angle of rotation from H
polarization of the local linear polarization. Thus, ϕM = 0◦ is equivalent to H polarization
and ϕM = 45◦ is equivalent to P polarization; the angle of the ϕM always represents the
eigenstate |0⟩ of f = −1, which can be used as a reference for the eigenstates of F̂ and Ŵ.
To maintain symmetry between systems 1 and 2, the set angles of HWP2 for systems A
and B are adjusted so that they are always the same. If the ϕS is fixed to a certain value
and then the ϕM is rotated, the ϕM will appear such that the detection frequency of (0; 0)
and (0; 1) is the same. To accurately determine such a ϕM, we obtain three counts in each
neighborhood of the ϕM such that N(0; 0) ≈ N(0; 1). Since the difference between the
three ϕM is small, we assume that the rate of change of (0; 0) and (0; 1) relative to the ϕM
is constant and fit each with a linear function. Fitting each of them with a linear function,
the intersection of the fitting results of (0; 0) and (0; 1) should give the optimal ϕM for a
particular ϕS.

As an example, FIG. 5.1 shows a graph evaluating the optimal ϕM when ϕS = 22.5◦

is fixed. The fitting lines for the two data points (0; 0) and (0; 1) intersect at ϕM = 31.4◦,
which exactly represents the optimal ϕM for ϕS = 22.5◦. Such an analysis was performed
for nine points, ϕS = 0, 10, 17.5, 20, 22.5, 25, 27.5, 35, 45[deg], and the results of evaluating
the optimal ϕM for each ϕS are shown in TAB. 5.1. The optimal ϕM are shown on the
order of 0.1 because the resolution of HWP2 is roughly 0.2◦.

Whether P(0; a) and P(a; 0) are really small values can be checked according to the
optimal ϕM shown in TAB. 5.1 by actually evaluating these probabilities. The results of
the probabilities are presented in Sec. 5.3.
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1FIGURE 5.1: Variation of (0; 0) and (0; 1) and optimal ϕM results when
ϕS = 22.5◦ is fixed. The blue and yellow data points are the counts per
10[s] of (0; 0) and (0; 1), respectively, and the blue and yellow lines are the
results of linear fitting to the respective data points; since the resolution of
the HWP2 setting angle for setting ϕM is ≈ 0.2◦, the optimal ϕM value is

shown to the first decimal place.

TABLE 5.1: Results of optimal ϕM against each ϕS. These results are mea-
surement results, and also setting value of the ϕM. This is the reason why

they are shown without errors.

ϕS[deg] ϕM[deg]
0 46.3

10 38.8
17.5 33.7
20 32.7

22.5 31.3
25 30.5

27.5 29.5
35 26.7
45 22.2
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5.2 Optimization of ϕS

The optimization of ϕS is achieved by measuring (1; 1) in the range 0◦ ≤ ϕS ≤ 45◦ and
finding the ϕS such that its probability is minimized. Since we evaluated the optimal
ϕM for nine ϕS as shown in TAB. 5.1, it is possible to predict what linear polarizations
f = 0, 1 and w = a, b correspond to at each point. TAB. 5.2 shows the raw data of the
counts obtained in the experiment.

TABLE 5.2: Absolute counts with respect to ( fA; fB), ( fA; wB), (wA; fB) and
(wA, wB) for each ϕS. All counts were obtained from a 10-second measure-

ment.

ϕS[deg] N(0; 0) N(0; 1) N(1; 0) N(1; 1) N(0; a) N(0; b) N(1; a) N(1; b)
0 3431 2989 3484 3354 88 5933 81 6119
10 3201 3377 3556 954 88 6510 564 4120

17.5 3527 3560 3979 231 125 7071 1442 2727
20 3496 3465 3993 155 113 7114 1782 2299

22.5 3688 3638 3661 172 118 7240 2159 1862
25 3624 3573 3967 240 145 7293 2492 1635

27.5 3952 3917 3977 285 136 7723 2990 1440
35 3631 3609 3803 1002 163 7020 4105 584
45 3565 3394 3408 3513 136 6444 6401 114

ϕS[deg] N(a; 0) N(a; 1) N(b; 0) N(b; 1) N(a; a) N(a; b) N(b; a) N(b; b)
0 36 38 6223 5824 40 38 95 12072

10 95 417 6453 3788 304 144 292 10224
17.5 79 1353 7323 2519 752 608 774 9123
20 79 1616 7264 2237 959 756 870 8649

22.5 71 2086 7501 1748 1148 959 1098 8196
25 98 2380 7434 1511 1357 1112 1210 7791

27.5 97 2850 7842 1359 1586 1357 1579 7697
35 106 4083 7199 671 2153 1964 2037 5691
45 123 6317 6107 144 3430 3370 3318 3483

1

(a) (b)

FIGURE 5.2: (a) Values of P(1;1) for nine ϕS. (b) Fitting results with
quadratic functions for five points near ϕS = 22.5◦.
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P(1; 1) was evaluated based on the relation given by

P(1; 1) =
N(1; 1)

N(0; 0) + N(0; 1) + N(1; 0) + N(1; 1)
. (5.1)

FIG. 5.1(a) shows that the ϕS such that P(1; 1) is a minimum is near the middle of the
product state and the maximally entanglement state. Judging only from the measured
values, the minimum value of P(1; 1) is P(1; 1) = 0.0140 ± 0.0011 at ϕS = 20◦. One way
to determine the optimal ϕS in this situation was to fit the five data points near the center
with a quadratic function. The minimum value of P(1; 1) indicated by the fitting results
was P(1; 1) = 0.0151 ± 0.0016 at ϕS = 21.4◦ as shown in FIG. 5.1 (b). If the measurement
outcomes were completely random, the probability would be 0.25, so the deviation from
the ideal situation is

0.25 − (0.0151 ± 0.0016)
0.25

= 0.940 ± 0.006. (5.2)

This value is consistent with the value of
√

C2
X + W2

E in TAB. 3.4 at ϕS = 20◦, 22.5◦. The
optimal ϕM corresponding to this point was not evaluated experimentally, but can be
evaluated by the method described in Sec. 5.1.

5.3 Probabilities in several measurement context

TAB. 5.2 can provide sixteen joint probabilities obtained from a total of four eigenstate
combinations of F̂ and Ŵ All joint probabilities should reflect the contextual correlation
of the initial states. Therefore, in this section, we discuss the relation between the dif-
ferent measurement contexts and their consistency with the assumed three deterministic
conditions.

1FIGURE 5.3: Probability measured using {0, 1}-basis in systems A and B.
ϕS = 0◦ represents the product state and ϕS = 45◦ the maximum entangled

state.

Since the {0, 1}-basis was only used to prepare the quantum state satisfying the three
conditions shown in Eqs. (2.17)-(2.19), the imperfections of the experimental setup is
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easily understandable in the results using the {0, 1}-basis for both system A and B. FIG.
5.3 shows the results for P( fA; fB). Since the optimal ϕM such that N(0; 0) ≈ N(0; 1) is
satisfied was found, P(0; 0) and P(0; 1) agree within the margin of error except for two
points at ϕS = 0◦, 10◦. Although there is naturally a possibility that there was some
human error with respect to the two points of ϕS = 0, 10[deg], it can be seen that P(0; 0)
and P(0; 1) are in good agreement, at least in the neighborhood of ϕS where P(1; 1) is the
minimum value. On the other hand, just because P(0; 0) and P(0; 1) agree does not mean
that P(0; 0) and P(1; 0) agree; the nine data points show no systematic trend as to whether
P(0; 0) and P(1; 0) agree, which may be caused by some systematic errors. One of the
most suspicious causes is the calibration method of HWP1 in FIG. 3.4. HWP1 defines
ϕS = 45◦ as the angle at which the ratio of transmitted to reflected light intensity at DPBS
is the same. The phase difference that HWP1 gives to the pump light is not exactly π, so
the systematic error is largest when ϕS = 0◦. To reduce this discrepancy between P(0; 0)
and P(1; 0), an adjustment method without using the assumption that system A and B
are symmetrical is desirable. The true benefit of AISC can only be realized when idealistic
assumptions can be completely removed from the total manipulations.

1FIGURE 5.4: Probability measured using {0, 1}-basis in one system, using
{a, b}-basis in the other system. ϕS = 0◦ represents the product state and

ϕS = 45◦ the maximum entangled state.

FIG. 5.4 shows the probability results when one of the systems uses the {0, 1}-basis
and the other uses the {a, b}-basis. The most important thing is that the two probability
values, P(0; a) and P(a; 0), are extremely small. This indicates that it is possible to achieve
P(0; a) ≈ P(a; 0) ≈ 0, causing a destructive interference effect by means of an adjust-
ment method such that N(0; 0) ≈ N(0; 1). While in the past, one would have to reconcile
statistics obtained in different measurement contexts to confirm the existence of quantum
correlations, this result shows that one can control for quantum correlations using only
results obtained in one measurement context, provided that only the relation between
the contexts is known. This fact provides an important clue for the experimental study of
quantum contextuality. TAB. 5.3 presents numerical data for P(0; a) and P(a; 0). Interest-
ingly, P(a; 0) is lower than P(0; a). Since ϕM was determined so that N(0; 0) ≈ N(0; 1),
one would intuitively expect P(0; a) to be smaller than P(a; 0). A discussion of under
what conditions this could happen is given in Chapter 6. Another interesting point is
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that the results for P(1; a) or P(a; 1) and P(1; b) or P(b; 1) do not coincide at ϕS = 22.5◦. A
visual reading from the graph suggests that the results of P(1; a) or P(a; 1) and P(1; b) or
P(b; 1) have an intersection between ϕS = 20◦ and ϕS = 22.5◦. This is consistent with the
result in FIG. 5.2 that the optimal ϕS value was slightly biased toward the product state.

TABLE 5.3: Numerical results of P(0; a) and P(a; 0) for nine ϕS.

ϕS[deg] P(0; a) P(a; 0)
0 0.0072 ± 0.0008 0.0030 ± 0.0005
10 0.0078 ± 0.0008 0.0088 ± 0.0009

17.5 0.0110 ± 0.0010 0.0070 ± 0.0008
20 0.0100 ± 0.0009 0.0071 ± 0.0008

22.5 0.0104 ± 0.0010 0.0062 ± 0.0007
25 0.0125 ± 0.0010 0.0086 ± 0.0009

27.5 0.0111 ± 0.0010 0.0080 ± 0.0008
35 0.0137 ± 0.0011 0.0088 ± 0.0009
45 0.0104 ± 0.0009 0.0097 ± 0.0009

1FIGURE 5.5: (a) Values of P(1; 1) for nine ϕS. (b) Fitting results with
quadratic functions for five points near ϕS = 22.5◦.

FIG. 5.5 shows the results of probabilities measured using the {a, b}-basis for both
systems A and B. The fact that all but P(b; b) appear to show the same probabilities can
be understood from the results of FIG. 5.4. Since (b; b) can be considered to be the result
of constructive interference between (b; 0) and (b; 1), P(b; b) can be considered to be the
sum of P(b; 0) and P(b; 1). TAB. 5.2 shows that when ϕS = 0◦, the sum of the counts
of (b; 0) and (b; 1) is indeed equal to the count of (b; b). However, this way of thinking
appears to break down significantly at ϕS = 45◦. At ϕS = 45◦, the sum of the counts
of (b; 0) and (b; 1) does not equal the count of (b; b). Interference is strongest only when
two waves that can interfere are present with equal strength. Since the counts of (b; 1)
are not large enough to interfere, (b; b) is eventually detected at a frequency about the
average of (b; 0) and (b; 1). Since the counts of (a; 1) and (b; 0) are almost equal in terms
of counts, constructive interference would result in a large frequency of detection, but
when the {a, b} basis is used in both system A and B, there is no interference because it is
possible to distinguish (a; 1) and (b; 0) with 100% accuracy. In the end, the (a; 1) and (b; 0)
counts are equally distributed among the four measurement outcomes in the (a, b) basis.
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(a; a) is the result of destructive interference between (a, 0) and (a; 1), and (a; b) is the
result of constructive interference between (a; 0) and (a; 1), while (a; 0) is barely detected
in all ϕS. As a result, (a; 0) and (a; 1) can hardly interfere, so the results of destructive
and constructive interference are the almost same. For the same reason, the interference
between (a; 0) and (b; 0) has almost the same destructive and constructive interference
results. This is the reason why P(a; a) ≈ P(a; b) ≈ P(b; a) is satisfied in FIG. 5.5.
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Chapter 6

Discussion and consideration

6.1 On the joint probability distributions resulting in Bell’s in-
equality violation observed from the joint measurements

In Chapter 4, we presented the features of the joint measurements and the joint statisti-
cal distribution obtained in the experiment to verify Bell’s inequality, which introduced
the joint measurements. we first discuss what physics can be read from the directly ob-
tained joint statistical distributions. Since the experimentally controlled parameters are
those that determine the balance of measurement errors of the complementary polar-
ization physical properties, some relation should be found between the measurement
outcomes and the counts. We then evaluate the flipping probabilities of the four physical
properties using the spin-flip model (see Appendix E) based on the results of measure-
ment visibilities, and discuss how the intrinsic joint probability distribution, which is a
joint probability distribution excluding measurement errors, takes shape and how the ex-
pected values of the physical properties change, and we find an experimental evidence
that the Cirel’son bound is an upper bound on the EPR correlation. We also discuss the
consistency of quantum mechanics with experimental results.

6.1.1 Relation between the joint statistical distributions and the measurement
visibilities

In this subsection, we discuss the relation between the measurement visibilities shown
in Sec. 4.1 and the joint statistical distribution shown in Sec. 4.2. The change in the
joint statistical distribution with changes in the joint measurement parameters can be
illustrated by the competitive process between the four Bell correlations in FIG. 4.5.

Let’s look at the process between θJ = 0◦ and θJ = 20◦. The rate of change of
⟨XAY′

B⟩ and ⟨YAY′
B⟩ is roughly ±0.2, while the rate of change of ⟨XAX′

B⟩ and ⟨YAY′
B⟩

have a rate of change of about ±0.1, roughly only half. Therefore, for the period be-
tween θJ = 0◦ and θJ = 20◦, ⟨XAY′

B⟩ and ⟨YAX′
B⟩ are the dominant factors that determine

the changes in the joint statistical distribution. In FIG. 4.4, looking at the distribution
of θJ = 20◦ with respect to the distribution of θJ = 0◦, the counts of the two measure-
ment outcomes (+,+;+,−) and (−,−;−,+) are extremely reduced. What these two
measurement outcomes have in common is that xAx′B = +1, xAy′B = −1, yAx′B = +1
and yAy′B = −1. Looking at the two Bell correlations that have a particularly dominant
influence, the ⟨XAY′

B⟩ increases and ⟨YAX′
B⟩ decreases.The increase in Bell correlation

means that the counts of measurement outcomes with +1 increases, and the counts of
measurement outcomes with −1 decreases. Conversely, a decrease in Bell correlation
gives the opposite result. From these things, an increase in ⟨XAY′

B⟩ decreases the count
of measurement outcomes with xAy′B = −1, and a decrease in ⟨YAX′

B⟩ decreases the
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count of measurement outcomes with yAx′B = +1. Thus, the counts of the two mea-
surement outcomes, (+,+;+,−) and (−,−;−,+), decrease because the two Bell corre-
lations, which have a dominant influence, both have a decreasing effect. Conversely, if
we look for the measurement outcomes with a large increase in counts, the two outcomes
(+,−;+,+) and (−,+;−,−) would fall into this category. Since both of these measure-
ments have xAy′B = +1 and yAx′B = −1, they have opposite values to the (+,+;+,−)
and (−,−;−,+) cases. This means that the two dominant Bell correlations influence the
counts to increase, so the counts for (+,−;+,+) and (−,+;−,−) increased significantly.

Next, let’s look at the process between θJ = 20◦ and θJ = 45◦. As can be seen in
FIG. 4.5 and TAB. 4.6, the magnitude of the rate of change of ⟨XAX′

B⟩ and ⟨YAY′
B⟩ in this

interval is larger than that of ⟨XAY′
B⟩ and ⟨YAX′

B⟩, so the influence of ⟨XAX′
B⟩ and ⟨YAY′

B⟩
becomes dominant. Looking at the joint probability distribution of θJ = 20◦ as a standard,
there are two measurement outcomes with a large decrease in counts, (−,+;+,+) and
(+,−;−,−). Both outcomes commonly satisfy xAx′B = −1 and yAy′B = +1. Between
θJ = 20◦ and θJ = 45◦, ⟨XAX′

B⟩ increases and ⟨YAY′
B⟩ is decreasing, so the count of

outcomes that result in xAx′B = −1 is decreasing, and the count of outcomes that result in
yAy′B = +1 is also decreasing. Because the dominant influences ⟨XAX′

B⟩ and ⟨YAY′
B⟩ both

influence the counts to decrease, the counts of (−,+;+,+) and (+,−;−,−) are greatly
decreased.

By thinking in the same way, the behavior of all other outcomes in the range θJ = 45◦

to θJ = 90◦ is also consistent with the measurement results of the four Bell correlations.
The measurement outcomes with extremely low counts can also be seen in (−,+;+,+)
and (+,−;−,−) at θJ = 70◦. The four measurement outcomes with extremely low counts
are discussed in more detail in the other section below.

Strictly speaking, the changes in the counts of the sixteen measurement outcomes
are not determined solely by the influence of the two dominant Bell correlations, but
must take into account the influence of the other two Bell correlations. The change in the
counts of the sixteen measurement outcomes is determined by the competitive process of
changes in the four Bell correlations.

The variation in the four Bell correlations themselves can be explained by the mea-
surement visibility. As shown in FIG. 4.3, there is a clear trade-off between the measure-
ment visibility given by

VXA = VX′
B
= cos θJ (6.1)

VYA = VY′
B
= sin θJ . (6.2)

Since the measurement visibility depends only on the measurement device, the measure-
ment visibility of system A and B independently affect the Bell correlation. Therefore,
⟨XAX′

B⟩ ∝ cos θJ
2, ⟨XAY′

B⟩ = −⟨YAX′
B⟩ ∝ sin θJ cos θJ , ⟨YAY′

B⟩ ∝ sin θJ
2. Since cos θJ

2 and
sin θJ

2 eventually change in the same way as cos 2θJ , the magnitude of the rate of change
of ⟨XAX′

B⟩ and ⟨YAY′
B⟩ is the same, the one of ⟨XAY′

B⟩ and ⟨YAX′
B⟩ is the same. Further-

more, when changing from θJ = 0◦ to θJ = 90◦, the measurement visibility for XA and
X′

B continues to decrease, while the measurement visibility for YA and Y′
B continues to

increase. This is the reason why the absolute value of the ⟨XAX′
B⟩ shows monotonically

decreasing and the absolute value of the ⟨YAY′
B⟩ monotonically increasing. On the other

hand, ⟨XAY′
B⟩ and ⟨YAX′

B⟩ are proportional to sin 2θJ and therefore have extreme values
at the point θJ = 45◦.

Thus, it can be seen that the joint statistical distribution, the change in the four Bell
correlations, and the measurement visibility are closely related.
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6.1.2 Flipping probability of the four polarization physical properties

The relation between the joint probabilities obtained by joint measurements, including
measurement error, and the joint probabilities without the influence of measurement er-
ror can be related using measurement visibility (see Appendix E). The relation between
the flipping probability of a physical property in a two-level system and the measurement
visibility for that physical property is given by

PΞ f lip =
1
2
(1 − VΞ) , (6.3)

where Ξ = XA, YA, X′
B, Y′

B is the physical property, VΞ is the measurement visibility of Ξ,
which is defined by Eq. (2.1), PΞ f lip is the flipping probability of Ξ. Using Eq. (6.3) and
the experimental results for the measurement visibility shown in TAB. 4.5, the flipping
probabilities for the four physical properties are evaluated as shown in TAB. 6.1. The

TABLE 6.1: Numerical results of the flipping probability of XA, YA, X′
B, Y′

B.

θJ[deg] PXAflip PYAflip PX′
Bflip PY′

Bflip
0 0.0017 ± 0.0033 0.5000 ± 0.0014 0.0038 ± 0.0033 0.5000 ± 0.0014

10 0.0097 ± 0.0033 0.4161 ± 0.0015 0.0108 ± 0.0033 0.4143 ± 0.0015
20 0.0318 ± 0.0031 0.3306 ± 0.0017 0.0337 ± 0.0031 0.3284 ± 0.0017
30 0.0687 ± 0.0029 0.2488 ± 0.0021 0.0695 ± 0.0029 0.2509 ± 0.0021
40 0.1175 ± 0.0027 0.1796 ± 0.0024 0.1200 ± 0.0027 0.1784 ± 0.0024
45 0.1406 ± 0.0026 0.1506 ± 0.0025 0.1466 ± 0.0025 0.1470 ± 0.0025
50 0.1789 ± 0.0024 0.1179 ± 0.0027 0.1793 ± 0.0024 0.1152 ± 0.0027
60 0.2488 ± 0.0020 0.0680 ± 0.0030 0.2514 ± 0.0020 0.0645 ± 0.0030
70 0.3311 ± 0.0017 0.0306 ± 0.0032 0.3287 ± 0.0017 0.0281 ± 0.0032
80 0.4150 ± 0.0015 0.0089 ± 0.0033 0.4141 ± 0.0015 0.0037 ± 0.0033
90 0.5000 ± 0.0014 −0.0002 ± 0.0033 0.5000 ± 0.0014 −0.0027 ± 0.0034

flipping probabilities of XA and X′
B are identical, and the flipping probabilities of YA and

Y′
B are identical. As shown in FIG. 4.1, this is a natural result since the joint measure-

ment parameters used in systems A and B are common. At θJ = 0◦ and θ = 90◦, two
of the four physical properties have a flipping probability of 0 and the other two have
a flipping probability of 0.5. A flipping probability of 0 means that the measurement
results are almost never inverted, which means that the statistics obtained in the joint
measurement are almost identical to those obtained in the precise measurement. On the
other hand, a flipping probability of 0.5 means that half of the time the measurement re-
sults are inverted, which means that the results obtained are completely random. Thus,
the measurement visibility and the flipping probability are well consistent in a physical
meaning.

6.1.3 Relation between the flipping probability of B and the joint probability
distribution

In FIG. 4.4, the joint statistical distribution at θJ = 45◦ depends only on the value of
b. Therefore, let us define the probability of a measurement outcome with b = +2 as
p(b = +2) and the probability of a measurement outcome with b = −2 as p(b = −2),
where the expression given by

8p(b = +2) + 8p(b = −2) = 1 (6.4)



46 Chapter 6. Discussion and consideration

is hold. Since θJ = 45◦ means that the four polarization properties were measured
with the same uncertainty, an intrinsic joint probability distribution, which is a distri-
bution excluding measurement errors, has the same form as the experimentally obtained
joint probability distribution, characterized by only two probabilities pint(b = +2) and
pint(b = −2). Since the value of the B takes only two values of b = ±2, the bit-flip model
(see Appendix E) results in the relations given by

p(b = +2) = (1 − PB f lip) · pint(b = +2) + PB f lip · pint(b = −2) (6.5)
p(b = −2) = PB f lip · pint(b = +2) + (1 − PB f lip) · pint(b = −2), (6.6)

where PB f lip is a flipping probability of the b. In general, it is natural to assume that the
flipping probability varies depending on the results of each of the sixteen measurement
outcomes, but in the case of θJ = 45◦, it can be described by just one value because
the measurements for the four polarization physical properties are made with the same
accuracy. From this, applying operator B̂ to the expression for the measurement visibility
defined in Eq. (2.1), Eq. (E.3) provides

PB f lip =
1
2

(
1 −

⟨B⟩joint

⟨B⟩precise

)
. (6.7)

As shown in TAB. 4.6, the mean value for θJ = 45◦ is ⟨B⟩joint = −1.3782 ± 0.0028, so
assuming ⟨B⟩precise is Cirel’son bound results in pB f lip = 0.2565 ± 0.0005. Assuming the
intrinsic joint probability distributions, the average of the B and a normalization condi-
tion are given by

2 · 8pint(b = +2)− 2 · 8pint(b = −2) = ⟨B⟩precise (6.8)
8pint(b = +2) + 8pint(b = −2) = 1. (6.9)

Using Eq. (6.8) and Eq. (6.9), the relation between an intrinsic joint probability and the
average of B is given by

pint(b = ±2) =
1
16

(1 ±
⟨B⟩precise

2
). (6.10)

A probability evaluated from experiments is definitely equal or greater than zero, thus,
Eq. (6.5) gives

pB f lip ≥
⟨B⟩precise + 2

2⟨B⟩precise
. (6.11)

The reason for using Eq. (6.5) rather than Eq. (6.6) is that the probability of a measure-
ment result with b = +2 has a value closer to zero. Eq. (6.11) shows that if there is
a lower bound of the flipping probability for the value of B, it is possible to find the
upper bound of the violation of Bell’s inequality. Deviating from θJ = 45◦, the values
of B are the same, but the probabilities are different due to the different measurement
uncertainties for the four physical properties. This shows that, in general, PB f lip(m) de-
pends on the measurement outcomes, so let us denote PB f lip(m), where m is the specific
measurement outcome, in the following. The flipping probability of the B value of an in-
dividual measurement outcome obtained in an experiment can be derived by considering
the simultaneous flipping probabilities of the four polarization physical properties. For
example, the measurement outcome (+,+;+,+) has b = +2 and the measurement out-
come (+,−;+,+) has b = −2. If xA, x′B and y′B are not flipped and only yA is flipped, the
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photon pair that should have been measured as (+,+;+,+) is detected as (+,−;+,+).
This would be considered as an error in the value of B. Thus, for example, when evalu-
ating PB f lip(+,+;+,+), the probability that (+,+;+,+) would be detected as the result
of eight other measurement outcomes with b = −2 is calculated. The concrete expression
is given by

pB f lip(±,±;±,±) =
1

16
(1 + VXA)(1 − VYA)(1 + VX′

B
)(1 + VY′

B
)

+
1

16
(1 − VXA)(1 − VYA)(1 + VX′

B
)(1 + VY′

B
)

+
1

16
(1 − VXA)(1 + VYA)(1 + VX′

B
)(1 − VY′

B
)

+
1

16
(1 − VXA)(1 − VYA)(1 + VX′

B
)(1 − VY′

B
)

+
1

16
(1 + VXA)(1 + VYA)(1 − VX′

B
)(1 + VY′

B
)

+
1

16
(1 + VXA)(1 − VYA)(1 − VX′

B
)(1 + VY′

B
)

+
1

16
(1 + VXA)(1 + VYA)(1 − VX′

B
)(1 − VY′

B
)

+
1

16
(1 − VXA)(1 + VYA)(1 − VX′

B
)(1 − VY′

B
)

=
1
4
(2 − VXA(VX′

B
− VY′

B
)− VYA(VX′

B
+ VY′

B
)). (6.12)

The flipping probabilities which the other outcomes have are similarly given by

pB f lip(±,∓;±,±) =
1
4
(2 + VXA(VX′

B
− VY′

B
)− VYA(VX′

B
+ VY′

B
)) (6.13)

pB f lip(∓,±;±,±) =
1
4
(2 + VXA(VX′

B
− VY′

B
)− VYA(VX′

B
+ VY′

B
)) (6.14)

pB f lip(∓,∓;±,±) =
1
4
(2 − VXA(VX′

B
− VY′

B
)− VYA(VX′

B
+ VY′

B
)) (6.15)

pB f lip(±,±;±,∓) =
1
4
(2 − VXA(VX′

B
+ VY′

B
)− VYA(VX′

B
− VY′

B
)) (6.16)

pB f lip(±,∓;±,∓) =
1
4
(2 − VXA(VX′

B
+ VY′

B
) + VYA(VX′

B
− VY′

B
)) (6.17)

pB f lip(∓,±;±,∓) =
1
4
(2 − VXA(VX′

B
+ VY′

B
) + VYA(VX′

B
− VY′

B
)) (6.18)

pB f lip(∓,∓;±,∓) =
1
4
(2 − VXA(VX′

B
+ VY′

B
)− VYA(VX′

B
− VY′

B
)). (6.19)

These flipping probabilities are shown in FIG. 6.1 and the numerical data in TAB. 6.2.
The eight flipping probabilities of (±,∓;±,±), (∓,±;±,±), (±,±;±,∓), (∓,∓;±,∓)
depend on the θJ , while the flipping probabilities for the other eight measurements are
nearly constant. FIG. 4.4 shows that the diagonal and anti-diagonal components are al-
most unchanged with respect to θJ . On the other hand, the other components are chang-
ing. These dependencies are manifested in the changes in the flipping probability of B.
The most noteworthy of these are Eq. (6.14) and Eq. (6.16). These four results are the
ones that show extremely low counts at θJ = 20◦ and θJ = 70◦, since the flipping proba-
bility of B is the smallest among all the results. Eq. (6.11) can tell us the relation between
these four low probabilities and the ⟨B⟩precise. The lowest flipping probability in TAB.
6.2 is 0.1473 ± 0.0028 that (±,∓;±,±) and (∓,±;±,±) have at θJ = 70◦. Substituting
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FIGURE 6.1: Value of flipping probability of B against the joint measure-
ment parameter θJ .

TABLE 6.2: Numerical results of the flipping probability of B that the six-
teen outcomes have.

θJ[deg] PBflip(±,±;±,±) PBflip(±,∓;±,±) PBflip(∓,±;±,±) PBflip(∓,∓;±,±)
0 0.2527 ± 0.0025 0.7473 ± 0.0025 0.7473 ± 0.0025 0.2527 ± 0.0025

10 0.2540 ± 0.0024 0.6496 ± 0.0024 0.6496 ± 0.0024 0.2540 ± 0.0024
20 0.2540 ± 0.0023 0.5300 ± 0.0023 0.5300 ± 0.0023 0.2540 ± 0.0023
30 0.2510 ± 0.0023 0.4076 ± 0.0023 0.4076 ± 0.0023 0.2510 ± 0.0023
40 0.2529 ± 0.0025 0.2975 ± 0.0025 0.2975 ± 0.0025 0.2529 ± 0.0025
45 0.2530 ± 0.0025 0.2533 ± 0.0025 0.2533 ± 0.0025 0.2530 ± 0.0025
50 0.2510 ± 0.0026 0.2099 ± 0.0026 0.2099 ± 0.0026 0.2510 ± 0.0026
60 0.2514 ± 0.0027 0.1575 ± 0.0027 0.1575 ± 0.0027 0.2514 ± 0.0027
70 0.2489 ± 0.0028 0.1473 ± 0.0028 0.1473 ± 0.0028 0.2489 ± 0.0028
80 0.2490 ± 0.0027 0.1792 ± 0.0027 0.1792 ± 0.0027 0.2490 ± 0.0027
90 0.2485 ± 0.0026 0.2485 ± 0.0026 0.2485 ± 0.0026 0.2485 ± 0.0026

θJ[deg] PBflip(±,±;±,∓) PBflip(±,∓;±,∓) PBflip(∓,±;±,∓) PBflip(∓,∓;±,∓)
0 0.2527 ± 0.0025 0.2527 ± 0.0025 0.2527 ± 0.0025 0.2527 ± 0.0025

10 0.1843 ± 0.0027 0.2520 ± 0.0027 0.2520 ± 0.0027 0.1843 ± 0.0027
20 0.1514 ± 0.0028 0.2512 ± 0.0028 0.2512 ± 0.0028 0.1514 ± 0.0028
30 0.1613 ± 0.0029 0.2524 ± 0.0029 0.2524 ± 0.0029 0.1613 ± 0.0029
40 0.2129 ± 0.0029 0.2503 ± 0.0029 0.2503 ± 0.0029 0.2129 ± 0.0029
45 0.2460 ± 0.0028 0.2462 ± 0.0028 0.2462 ± 0.0028 0.2460 ± 0.0028
50 0.2980 ± 0.0028 0.2490 ± 0.0028 0.2490 ± 0.0028 0.2980 ± 0.0028
60 0.4089 ± 0.0027 0.2474 ± 0.0027 0.2474 ± 0.0027 0.4089 ± 0.0027
70 0.5325 ± 0.0026 0.2502 ± 0.0026 0.2502 ± 0.0026 0.5325 ± 0.0026
80 0.6521 ± 0.0026 0.2489 ± 0.0026 0.2489 ± 0.0026 0.6521 ± 0.0026
90 0.7515 ± 0.0026 0.2485 ± 0.0026 0.2485 ± 0.0026 0.7515 ± 0.0026
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0.1473 ± 0.0028 for PB f lip in Eq. (6.11), the upper bound of the absolute value of ⟨B⟩precise
is given by

|⟨B⟩precise| ≤ 2.835 ± 0.023. (6.20)

This result is consistent with Cirel’son bound 2
√

2 ≈ 2.8284. The lowest flipping proba-
bility of B̂ should be determined by the measurement uncertainty limit, so that the maxi-
mal EPR correlation is limited by the measurement uncertainty.

To examine in more detail the measurement outcomes with small probabilities ob-
tained by the joint measurement, we consider the relation between the probability ob-
tained in the experiments and the flipping probability of B. Substituting Eq. (6.10) into
Eq. (6.5), the linear relation between p(b = +2) and PB f lip(m) is given by

p(b = +2) =
1
16

(
−⟨B⟩precisePB f lip(m) +

2 + ⟨B⟩precise

2

)
. (6.21)

Using the flipping probabilities of B shown in TAB. 6.2 and the joint probabilities ob-
tained from FIG. 4.4, FIG. 6.2 shows the relation between the experimentally obtained
probabilities and PB f lip(m) for the four measurement outcomes that showed extremely
low counts in FIG. 4.4. All data points ride approximately on a straight line, and the
result of linear fitting is

p(b = +2) =
1

16

(
(2.7526 ± 0.0020)PB f lip(m) +

2 − (2.7526 ± 0.0020)
2

)
, (6.22)

where ⟨B⟩precise = −2.7526 ± 0.0020. The ratio between the fitting result of ⟨B⟩precise and
Cirel’son bound is given by

2.7526 ± 0.0020
2
√

2
= 0.9732 ± 0.0007. (6.23)

Note that this result is not obtained from the joint probabilities of probability distribu-
tions obtained at just one θJ , but by averaging the joint probabilities obtained at different
θJ . The result in Eq. (6.1) is consistent with the interferometer visibilities shown in Eqs.
(3.2)-(3.5). By extrapolation of the straight line obtained by fitting, the probability of a
joint measurement such that PB f lip(m) is zero is

pint(b = +2) = −0.02352 ± 0.00006 (6.24)

Thus, negative probabilities naturally appear as a result of the violation of Bell’s inequal-
ity. In conventional experiments to verify Bell’s inequality, only positive probabilities ap-
peared because only one of the complementary physical properties was measured. The
uncertainty limited joint measurement prevented the joint probabilities obtained in the
actual experiment from being negative by providing the measurement with just enough
uncertainty to barely hide the negative probabilities. If quantum correlations existed to
the extent that the Cirel’son bound was exceeded, this would mean that the probabili-
ties obtained in the actual experiment would be negative. This implies that the Cirel’son
bound is the upper limit of Bell correlation.

6.1.4 Reconstruction of the intrinsic joint probabilities in one system

As stated in the definition for measurement visibility in Eq. (2.1), measurement visibility
describes the relation between statistics with measurement error and statistics without
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1

FIGURE 6.2: (∓,±;±,±), (±,±;±,∓) for the flipping probability of B for
each of the four measurements. The values on the horizontal axis are ob-
tained by substituting Eq. (6.1) and Eq. (6.2) into Eq. (6.14) and Eq. (6.16),
while the probabilities on the vertical axis are the joint probabilities de-
rived from FIG. 4.4. Different PB f lip(m) corresponds to different θJ . The

fitting results were performed for all data points.

measurement error. Furthermore, since the measurement visibility is independent be-
tween system A and B, it is possible to reconstruct statistics without measurement error
for either system A or B. By examining the effects of measurement error in System A and
System B in this stepwise manner, we can examine in detail the relation between measure-
ment visibility and statistics. In this subsection, we eliminate the effect of measurement
error from the statistical distribution obtained for system A.

The measurement visibility defined by Eq. (2.1) provides

Pint(+,+; x′B, y′B) + Pint(+,−; x′B, y′B)− Pint(−,+; x′B, y′B)− Pint(−,−; x′B, y′B)

=
1

VXA

(
P(+,+; x′B, y′B) + P(+,−; x′B, y′B)− P(−,+; x′B, y′B)− P(−,−; x′B, y′B)

)
(6.25)

Pint(+,+; x′B, y′B)− Pint(+,−; x′B, y′B) + Pint(−,+; x′B, y′B)− Pint(−,−; x′B, y′B)

=
1

VYA

(
P(+,+; x′B, y′B)− P(+,−; x′B, y′B) + P(−,+; x′B, y′B)− P(−,−; x′B, y′B)

)
, (6.26)

where Pint is an intrinsic probability, which has no measurement errors. As shown in
FIG. 4.6, the magnitude of the correlations of the complementary polarizations are less
than 0.005, so they are very tiny values at least, so that they can be ignored. A correla-
tion which the intrinsic joint probability distribution gives can be also regarded as zero
because measurement uncertainty evenly increases or decreases the probability of the
measurement outcomes; therefore, the correlation is given by

Pint(+,+; x′B, y′B)− Pint(+,−; x′B, y′B)− Pint(−,+; x′B, y′B) + Pint(−,−; x′B, y′B)
= 0. (6.27)
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The normalization condition for the probability of system A provides

Pint(+,+; x′B, y′B) + Pint(+,−; x′B, y′B) + Pint(−,+; x′B, y′B) + Pint(−,−; x′B, y′B)
= P(+,+; x′B, y′B) + P(+,−; x′B, y′B) + P(−,+; x′B, y′B) + P(−,−; x′B, y′B). (6.28)

Summarized form of Eqs. (6.25)-(6.28) is given by
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1




Pint(+,+; x′B, y′B)
Pint(+,−; x′B, y′B)
Pint(−,+; x′B, y′B)
Pint(−,−; x′B, y′B)



=


1

VXA

1
VXA

− 1
VXA

− 1
VXA

1
VYA

− 1
VYA

1
VYA

− 1
VYA

0 0 0 0
1 1 1 1




P(+,+; x′B, y′B)
P(+,−; x′B, y′B)
P(−,+; x′B, y′B)
P(−,−; x′B, y′B)

 (6.29)

The inverse of the 4 × 4 matrix on the left side, acting on both sides from the left, gives
Pint(+,+; x′B, y′B)
Pint(+,−; x′B, y′B)
Pint(−,+; x′B, y′B)
Pint(−,−; x′B, y′B)



=
1
4


1

VXA
+ 1

VYA
+ 1 1

VXA
− 1

VYA
+ 1 − 1

VXA
+ 1

VYA
+ 1 − 1

VXA
− 1

VYA
+ 1

1
VXA

− 1
VYA

+ 1 1
VXA

+ 1
VYA

+ 1 − 1
VXA

− 1
VYA

+ 1 − 1
VXA

+ 1
VYA

+ 1

− 1
VXA

+ 1
VYA

+ 1 − 1
VXA

− 1
VYA

+ 1 1
VXA

+ 1
VYA

+ 1 1
VXA

− 1
VYA

+ 1

− 1
VXA

− 1
VYA

+ 1 − 1
VXA

+ 1
VYA

+ 1 1
VXA

− 1
VYA

+ 1 1
VXA

+ 1
VYA

+ 1



·


P(+,+; x′B, y′B)
P(+,−; x′B, y′B)
P(−,+; x′B, y′B)
P(−,−; x′B, y′B)

 (6.30)

By applying the 4 × 4 reconstruction matrix in the right hand side of Eq. (6.30) to the
four joint probabilities composed of the combinations of x′B and y′B, the joint probabil-
ity distribution of the four physical properties eliminating the influence of measurement
uncertainty only from system A as shown in FIG. 6.3. Note that Eq. (6.25) cannot be
reconstructed for the two cases θJ = 0◦ and θJ = 90◦ because the equations are valid
only when the measurement visibility has a non-zero value. The most prominent feature
is that negative probabilities are appeared in all joint probability distributions except for
θJ = 45◦. The measurement outcomes with measurement errors approach a random re-
sult in the counts. Since there are a total of sixteen measurement outcomes in this case, the
probability of a completely random measurement result is 1/16 = 0.0625. Conversely,
the probability of no measurement errors means that the absolute value of the difference
from 1/16 is larger than the probability of one with a measurement uncertainty. For ex-
ample, looking at the probability distribution for θJ = 10◦ in FIG. 4.4, the number of
(+,+;+,+) and (+,+;+,−) counts was not so large compared to the other measure-
ment outcomes. The elimination of the measurement error from system A means that
the probability changes so that the counts decreases further. The fact that the probabil-
ity of some measurement outcomes goes down means that the probability of some other
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𝜽𝑱 = 𝟏𝟎° 𝜽𝑱 = 𝟐𝟎° 𝜽𝑱 = 𝟑𝟎°

𝜽𝑱 = 𝟒𝟎° 𝜽𝑱 = 𝟒𝟓° 𝜽𝑱 = 𝟓𝟎°

𝜽𝑱 = 𝟔𝟎° 𝜽𝑱 = 𝟖𝟎°𝜽𝑱 = 𝟕𝟎°

FIGURE 6.3: Reconstructed joint probability distribution by eliminating
the measurement uncertainties from system A. Note that these probability

distributions still have the measurement uncertainties in system B.
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measurement outcomes increases to satisfy the condition that the sum of the probabili-
ties is one. Thus, the probabilities of measurement outcomes whose probabilities were
originally greater than 1/16 will increase.

How did the negative probabilities come about in the first place? Since this is the
result of eliminating the measurement errors, the cause is undoubtedly the quantum na-
ture of the local system. Since the measurement uncertainty is derived from the relation
between local complementary polarization physical properties, the negative probability
is manifested by the quantum nature hidden in the uncertainty principle. However, the
joint measurement assumes that the two complementary polarization physical properties
both take only eigenvalues. Therefore, it is possible that the negative probability could be
avoided by using a different theory in which the values of the physical properties could
also take values other than eigenvalues.

Let us consider whether the joint probability distribution in FIG. 6.3 is a probability
distribution that removes the measurement errors from system A. Removing the mea-
surement errors from system A means that the two physical properties XA and YA are
measured precisely. Conversely, since the measurement error remains in the measure-
ment outcomes obtained from system B, some characteristics should appear in the X′

B
and Y′

B outcomes. For example, for θJ = 10◦, X′
B is measured almost precisely, but

is almost ambiguous with respect to Y′
B. This feature can be seen, for example, in the

two measurements (+,+;+,+) and (+,+;+,−). These probabilities do not change
with respect to the reversal of y′B. This means that the y′B has no effect on the shape
of the joint probability distribution. Similar characteristics appear in (+,+;−,+) and
(+,+;−,−) or (−,−;−,+) and (−,−;−,−). Why are the probabilities for (+,−;+,+)
and (+,−;+,−) not identical, even though only the value of y′B is inverted? As you can
see from the colors, (+,−;+,+) has b = −2, while (+,−;+,−) has b = +2. If the initial
state is a singlet state, the measurement result with b = −2 must be larger, since ⟨B⟩ < 0.
Thus, a situation that the probabilities of two measurement outcomes with only the value
of y′B reversed are different can happen.

6.1.5 Reconstruction of the intrinsic joint probabilities in both systems

In subsec. 6.1.4, the measurement errors in system A are only eliminated. In this sub-
section, we also eliminate the measurement errors in system B and reconstruct the com-
pletely intrinsic joint probability distribution. Considering as in subsec. 6.1.4, the rela-
tion between the intrinsic joint probability in system B and the joint probability obtained
through the joint measurement is given by 

Pint(xA, yA;+,+)
Pint(xA, yA;+,−)
Pint(xA, yA;−,+)
Pint(xA, yA;−,−)



=
1
4



1
VX′

B

+ 1
VY′B

+ 1 1
VX′

B

− 1
VY′B

+ 1 − 1
VX′

B

+ 1
VY′B

+ 1 − 1
VX′

B

− 1
VY′B

+ 1
1

VX′
B

− 1
VY′B

+ 1 1
VX′

B

+ 1
VY′B

+ 1 − 1
VX′

B

− 1
VY′B

+ 1 − 1
VX′

B

+ 1
VY′B

+ 1

− 1
VX′

B

+ 1
VY′B

+ 1 − 1
VX′

B

− 1
VY′B

+ 1 1
VX′

B

+ 1
VY′B

+ 1 1
VX′

B

− 1
VY′B

+ 1

− 1
VX′

B

− 1
VY′B

+ 1 − 1
VX′

B

+ 1
VY′B

+ 1 1
VX′

B

− 1
VY′B

+ 1 1
VX′

B

+ 1
VY′B

+ 1



·


P(xA, yA;+,+)
P(xA, yA;+,−)
P(xA, yA;−,+)
P(xA, yA;−,−)

 (6.31)
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By applying the 4 × 4 reconstruction matrix in the right hand side of Eq. (6.31) to the
four joint probabilities distinguished by the four values of the physical properties XA and
YA measured in system A, one can reconstruct the joint probability distribution without
measurement error shown in FIG. 6.4.

The most noticeable feature is that the shape of the joint probability distribution ap-
pears to remain unchanged regardless of the value of θJ . Originally, the joint measure-
ment parameter θJ was intended to control the balance of measurement accuracy between
complementary polarization physical properties. All joint probability distributions in
FIG. 6.4 should be independent of the value of the joint measurement parameter, since
the measurement error has been eliminated from both systems. Therefore, returning a
constant joint probability distribution for all θJ is consistent with the physical meaning of
measurement uncertainty.

Second, the probabilities of all measurement outcomes with b = +2 are negative;
since there are only two possible values of B, b = ±2, the fact that P(b = +2) is negative
means that Bell’s inequality is violated. This is consistent with the experimental fact that
Bell’s inequality is violated in the experiment to verify Bell’s inequality using only precise
measurements.

A third feature is that the probabilities of the eight measurements with b = +2 are
almost identical, and the probabilities of the eight measurements with b = −2 are al-
most identical. Although they are truly in agreement, since they are not in agreement
within the margin of error, let us discuss their consistency with the Cirel’son bound. If
the relation between the four Bell correlations were to reach the Cirel’son bound, then
⟨B⟩ = −2

√
2. The value of P(b = ±2) such that Cirel’son bound is given can be derived

from the two relations given by.

2P(b = +2)− 2P(b = −2) = −2
√

2 (6.32)
P(b = +2) + P(b = −2) = 1. (6.33)

Eq. (6.32) is a relation giving Cirel’son bound, Eq. (6.33) is a condition that the sum of
the all probabilities is 1. Solving the simultaneous equations of Eq. (6.32) and Eq. (6.33)
results in

P(b = ±2) =
1
2

(
1 ∓

√
2
)

. (6.34)

The signs are in the same order of the double sign. Assuming that these two probabilities
are each equally distributed over the eight joint probabilities, the sixteen joint probabili-
ties take

1
8

P(b = +2) =
1
16

(1 −
√

2) ≈ −0.00259 (6.35)

1
8

P(b = −2) =
1
16

(1 +
√

2) ≈ 0.1509. (6.36)

A comparison with the probabilities in FIG. 6.4 shows that more of them do not match
within the margin of error, but they do match, at least with respect to the first digit.

6.1.6 Estimation of the initial state

As shown in Eqs. (3.2)-(3.5), the initial state that are prepared experimentally always con-
tain imperfections. As a result of these imperfections, systematic errors occur, as shown
in FIG. 4.6. In order to discuss what causes this systematic error, let us predict an initial
state that can explain the experimental results. If the initial state is a perfect pure state,
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𝜽𝑱 = 𝟏𝟎° 𝜽𝑱 = 𝟐𝟎° 𝜽𝑱 = 𝟑𝟎°

𝜽𝑱 = 𝟒𝟎° 𝜽𝑱 = 𝟒𝟓° 𝜽𝑱 = 𝟓𝟎°

𝜽𝑱 = 𝟔𝟎° 𝜽𝑱 = 𝟖𝟎°𝜽𝑱 = 𝟕𝟎°

FIGURE 6.4: Reconstructed joint probability distribution by eliminating
the measurement uncertainties from system A and B.
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the density matrix is given by

ρ̂singlet =
1√
2
(|H; V⟩ − |V; H⟩) · h.c.

=
1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 . (6.37)

A photon pair that loses coherence is no longer in a superposition. Taking this situation
into account, the quantum state is given by

ρ̂0 = αρ̂pure + (1 − α)ρ̂mix, (6.38)

where α is the percentage of pure states in the total. The specific forms of the terms with
and without coherence are given by

ρ̂pure =


0 0 0 0
0 cos2 γ − sin γ cos γ 0
0 − sin γ cos γ sin2 γ 0
0 0 0 0

 (6.39)

ρ̂mix =


0 0 0 0
0 cos2 γ 0 0
0 0 sin2 γ 0
0 0 0 0

 , (6.40)

where the γ is a parameter that determines the ratio of negative to positive correlation.
Furthermore, even if there was no loss of coherence, the imperfections of the optical
components in the experimental setup could generate positively correlated photon pairs.
Given this situation, the term with coherence could be modified as

ρ̂pure =

(
Eiϕ
√

2
sin γ |H; H⟩+ 1√

2
cos γ |H; V⟩ − 1√

2
cos γ |V; H⟩+ Eiϕ

√
2

sin γ |V; V⟩
)
· h.c.

=


1
2 sin2 γ 1

4 eiϕ sin 2γ − 1
4 eiϕ sin 2γ 1

2 sin2 γ
1
4 e−iϕ sin 2γ 1

2 cos2 γ − 1
2 cos2 γ 1

4 e−iϕ sin 2γ

− 1
4 e−iϕ sin 2γ − 1

2 cos2 γ 1
2 cos2 γ − 1

4 e−iϕ sin 2γ
1
2 sin2 γ 1

4 eiϕ sin 2γ − 1
4 eiϕ sin 2γ 1

2 sin2 γ

 , (6.41)

where the ϕ is a parameter that also takes into account the inclusion of phase differences.
The final predicted initial state eventually becomes

ρ̂ =


1
2 α sin2 γ 1

4 αeiϕ sin 2γ − 1
4 αeiϕ sin 2γ 1

2 α sin2 γ
1
4 αe−iϕ sin 2γ − 1

2 (α − 2) cos2 γ − 1
2 α cos2 γ 1

4 αe−iϕ sin 2γ

− 1
4 αe−iϕ sin 2γ − 1

2 α cos2 γ 1
4 α(3 cos 2γ − 1) + sin2 γ − 1

4 αe−iϕ sin 2γ
1
2 α sin2 γ 1

4 αeiϕ sin 2γ − 1
4 αeiϕ sin 2γ 1

2 α sin2 γ

 .(6.42)

The next items that need to be considered are the POVM elements in systems A and
B. The POVM elements described in Eq. (2.11) are the results obtained under the as-
sumption that the average value of the local correlation of the complementary physical
properties is zero. Writing it as a general form without such an assumption, the POVM
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elements in system A and B are given by

ÊA(+,+) =
1
4
(

ÎA + VXA X̂A + VYAŶA + CX̂AŶA
)

(6.43)

ÊA(+,−) =
1
4
(

ÎA + VXA X̂A − VYAŶA − CX̂AŶA
)

(6.44)

ÊA(−,+) =
1
4
(

ÎA − VXA X̂A + VYAŶA − CX̂AŶA
)

(6.45)

ÊA(−,−) =
1
4
(

ÎA − VXA X̂A − VYAŶA + CX̂AŶA
)

(6.46)

ÊB(+,+) =
1
4

(
ÎB + VX′

B
X̂′B + VY′

B
Ŷ′B + CX̂′BŶ′B

)
(6.47)

ÊB(+,−) =
1
4

(
ÎB + VX′

B
X̂′B − VY′

B
Ŷ′B − CX̂′BŶ′B

)
(6.48)

ÊB(−,+) =
1
4

(
ÎB − VX′

B
X̂′B + VY′

B
Ŷ′B − CX̂′BŶ′B

)
(6.49)

ÊB(−,−) =
1
4

(
ÎB − VX′

B
X̂′B − VY′

B
Ŷ′B + CX̂′BŶ′B

)
, (6.50)

where C is the ratio of the average value obtained by the joint measurement to the average
value obtained by the precise measurement. It is known from previous studies that this
ratio is generally pure imaginary number[68]. Using Eqs. (6.42)-(6.50), average value of
the local correlation becomes

⟨X̂AŶA⟩joint = Tr
[
ρ̂ ·
((

ÊA(+,+)− ÊA(+,−)− ÊA(−,+) + ÊA(−,−)
)
⊗ ÎB

)]
= iαβC sin ϕ sin 2γ (6.51)

⟨X̂′BŶ′B⟩joint = Tr
[
ρ̂ ·
(

ÎA ⊗
(
ÊB(+,+)− ÊB(+,−)− ÊB(−,+) + ÊB(−,−)

))]
= −iαβC sin ϕ sin 2γ. (6.52)

If C is pure imaginary number, these averages can take non-zero values; otherwise, they
will be zero or complex. As a specific form of C, we assume a specific relation given by

C = iVXA VYA = iVX′
B
VY′

B
, (6.53)

where i is imaginary unit. The rationale for writing such a measurement visibility for
correlations between complementary polarization physical properties is highly intuitive.

FIG.6.5 shows the predicted values and experimental values of local correlation of
complementary polarizations shown in FIG. 4.6. The three parameters for determining
the predicted values α, γ, and ϕ were chosen such that the prediction of the local correla-
tions are consistent with the experimental values. The α is the ratio of photon pairs with
coherence to the total, and since this value should appear in the experimental values as
the interferometric visibility, it is set to the same value as in Eq. (3.2). The γ = 0.2◦ re-
sults in cos 0.2◦ = 0.999988 as a probability. This number is consistent with the extinction
ratio of G.T. used for polarization selection within FIG. 3.1. Intuitively, the value of γ
seems to be determined by the extinction ratio of the DHWP in the interferometer, but if
either one of the photon pairs is mistakenly transmitted or reflected by the DHWP, the
DHWP cannot be a factor in mistakenly measuring positive correlations, since they are
not measured as a coincidence count. It is therefore natural that the value γ = 0.2◦ is
consistent with the extinction ratio of GT. Finally, for ϕ = 5◦ to occur, there must be a
phase difference somewhere. Most suspicious is the DHWP in the interferometer. The
retardance corresponding to ϕ = 5◦ is 5/360 = 0.01389, which is the value that generally
occurs when the wavelength of the photon pairs deviates from the design wavelength
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FIGURE 6.5: Experimental and predicted values of local correlations of
complementary physical properties. The specific values of the parameters

in Eq. (6.51) and Eq. (6.52) are α = 0.98, γ = 0.2◦, and ϕ = 5◦.

by 1 − 2[nm] in the case of HWP specifications. Since the wavelength of the pump light
actually used is 404.5[nm], the wavelength of the photon pair produced is 809[nm], not
810[nm]; therefore, a retardance can well occur. It is not clear as to the basis on which
the measurement visibility can be written as in Eq. (6.53). Since the predicted and exper-
imental values do not perfectly match, there is no guarantee that the assumptions that
can be written in Eq. (6.53) are correct. There will be room for further discussion on this
issue.

1

FIGURE 6.6: Experimental and predicted values of the four Bell correla-
tions. The values of the parameters to be substituted into Eqs. (6.54)-(6.57)

are α = 0.98, γ = 0.2◦, and ϕ = 5◦.
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Using Eqs. (6.42)-(6.50), the predicted values of the four Bell correlations are given by
the following equations.

⟨X̂AX̂′B⟩joint =
β cos2 θ(α cos ϕ sin 2γ + α(− cos 2γ) + α − 1)√

2
(6.54)

⟨X̂AŶ′B⟩joint =
β sin 2θ(α cos ϕ sin 2γ + α cos 2γ − α + 1)

2
√

2
(6.55)

⟨ŶAX̂′B⟩joint = −αβ sin 2θ(cos ϕ sin 2γ + cos 2γ)

2
√

2
(6.56)

⟨ŶAŶ′B⟩joint =
αβ sin2 θ(cos ϕ sin 2γ − cos 2γ)√

2
(6.57)

FIG. 6.6 shows simultaneously the predicted values and the experimental values shown
in FIG. 4.5 when α = 0.98, γ = 0.2◦, and ϕ = 5◦ are substituted into Eqs. (6.54)-(6.57).
The experimental and predicted values agree very well. Thus, the experimental values
of the correlations can be explained by assuming Eq. (6.42).

6.1.7 Evaluation of the properties of the estimated quantum state

There are many indicators for quantum states, such as purity, fidelity, and, in the case
of many-body systems, negativity and entanglement-witness. Originally, quantum state
tomography is used to evaluate experimentally obtained quantum states, but in this sec-
tion, these indicators are evaluated for the predicted quantum states described in subsec.
6.1.6.

Purity is a measure of how close a quantum state is to a pure state, which is given by

P (ρ̂) = Tr[ρ̂2], (6.58)

where ρ̂ is a density matrix. The purity takes the value 1/d ≤ P ≤ 1 when the degree of
freedom of the physical system is d. The closer to 1/d, the closer the quantum state is to
the mixed state, and the closer to 1, the closer to the pure state. Evaluating the purity of
Eq. (6.42) and substituting the values α = 0.98, γ = 0.2◦, and ϕ = 5◦ for the parameters
described in Subsec. 6.1.6, the result is 0.9804. This value is consistent with the result of
measurement visibility in Eq. (3.2).

Fidelity is a measure of the distance between two different quantum states and is
defined as

F (ρ̂1, ρ̂2) =

(
Tr
[√√

ρ̂1ρ̂2
√

ρ̂1

])2

, (6.59)

where ρ̂1 and ρ̂2 represent two different quantum states. At first glance, fidelity appears
to be asymmetric between ρ̂1 and ρ̂2, but in fact it is symmetric, so exchanging ρ̂1 and
ρ̂2 does not change the value. From an experimental point of view, it is used to quantify
how close a quantum state experimentally realized by a particular quantum operation is
to the quantum state that would be expected to be realized by an ideal operation. Fidelity
takes a value between 0 and 1, with the closer to 0 indicating that ρ̂1 and ρ̂2 are quantum
states that do not resemble each other, and the closer to 1 indicating that ρ̂1 and ρ̂2 are
similar to each other. The fidelity derived from the density matrix of Eq. (6.37) and the
density matrix of Eq. (6.42) substituting α = 0.98, γ = 0.2◦, and ϕ = 5◦ was 0.9900. This
result shows that our quantum operation is very close to the ideal operation.
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Negativity represents a measure of the existence of an entanglement and is defined as

N (ρ̂) =

∣∣∣∣ρ̂TA
∣∣∣∣− 1
2

, (6.60)

where ρ̂TA is the density matrix with partial transpose only for subsystem A and
∣∣∣∣ρ̂TA

∣∣∣∣
is the trace norm. The trace norm is defined as∣∣∣∣∣∣ρ̂TA

∣∣∣∣∣∣ = Tr
[√

(ρ̂TA)†ρ̂TA

]
(6.61)

Negativity is an indicator to distinguish whether a quantum state is separable or entan-
gled, and can be determined as separable if the negativity is zero, and entangled if it is
positive. The negativity evaluated for the density matrix substituting α = 0.98, γ = 0.2◦,
and ϕ = 5◦ into Eq. (6.42) is 0.489979. Although the value obtained by evaluating the
negativity provides some assurance as to how strongly the property is manifested as
quantum entanglement, it cannot be used as a quantitative degree to evaluate the degree
of entanglement.

A quantitative indicator of the degree of entanglement is the entanglement witness.
The specific expression of the entanglement witness changes its form depending on what
kind of quantum state of the physical system it is. For a two-qubit system, as in this
experiment, the entanglement witness may be described as

W(ρ̂) = −Tr
[(

X̂A ⊗ X̂A
)

ρ̂
]
− Tr

[(
ŶA ⊗ ŶA

)
ρ̂
]
− 1, (6.62)

Eq. (6.62) takes values between 0 and 1, with the closer to 0, the closer to the product
state, and the closer to 1, the closer to the maximum entanglement state. Evaluating Eq.
(6.62) for a density matrix substituting α = 0.98, γ = 0.2◦, and ϕ = 5◦ into Eq. (6.42)
yields 0.9800.

Although there are other quantitative measures of the distance between two quantum
states and of entanglement, a simple and practical measure for experimental evaluation
would be desirable.

6.1.8 Relation between the measurement uncertainties and the Bell correla-
tions

As shown in FIG. 6.3 and FIG. 6.4, the joint probability distributions depend on whether
there are the measurement uncertainties in the measurements, which means that the
mean values evaluated from the different joint probability distributions also differ. In
this subsection, we discuss how the Bell correlations and the mean value of B shown
in FIG. 4.5 and TAB. 4.6 are affected by the measurement uncertainty. We also discuss
whether the initial conditions described by Eq. (6.42) are valid for these averages.

The predicted value when the measurement error is eliminated is achieved by using
the POVM elements with the measurement visibility within Eqs. (6.43)-(6.50) set to 1.
The POVM elements describing the joint measurement without errors of complementary
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physical properties is given by

ÊA(+,+) =
1
4
(

ÎA + X̂A + ŶA + iX̂AŶA
)

(6.63)

ÊA(+,−) =
1
4
(

ÎA + X̂A − ŶA − iX̂AŶA
)

(6.64)

ÊA(−,+) =
1
4
(

ÎA − X̂A + ŶA − iX̂AŶA
)

(6.65)

ÊA(−,−) =
1
4
(

ÎA − X̂A − ŶA + iX̂AŶA
)

(6.66)

ÊB(+,+) =
1
4
(

ÎB + X̂′B + Ŷ′B + iX̂′BŶ′B
)

(6.67)

ÊB(+,−) =
1
4
(

ÎB + X̂′B − Ŷ′B − iX̂′BŶ′B
)

(6.68)

ÊB(−,+) =
1
4
(

ÎB − X̂′B + Ŷ′B − iX̂′BŶ′B
)

(6.69)

ÊB(−,−) =
1
4
(

ÎB − X̂′B − Ŷ′B + iX̂′BŶ′B
)

, (6.70)

where i is imaginary unit, coming from Eq. (6.53). FIG. 6.3 shows the experimentally
obtained joint probability distributions, eliminating the measurement errors for system
A. The predicted values of these joint probability distributions can be derived by using
Eqs. (6.63)-(6.66) for system A and Eqs. (6.47)-(6.50) for system B. The joint probabil-
ity distribution shown in FIG. 6.4, which is experimentally obtained by eliminating the
measurement errors for both system A and system B, can be calculated by using Eqs.
(6.63)-(6.70) for the predictions of this joint probability distribution.

1

FIGURE 6.7: Predictions of the four Bell correlations derived using Eqs.
(6.42), (6.63)-(6.66), and Eqs.(6.47)-(6.50), and experimental values derived
from the results in FIG. 6.3. As described in the subsec. 6.1.6, the parameter

values are set such that α = 0.98, γ = 0.2◦, and ϕ = 5◦.

FIG. 6.7 compares the results of the four Bell correlations evaluated from FIG. 6.3 and
their respective predictions, while TAB. 6.3 shows the numerical data for the experimen-
tal values of the four Bell correlations. While ⟨XAX′

B⟩ and ⟨YAX′
B⟩ show nearly identical

values, ⟨XAY′
B⟩ and ⟨YAY′

B⟩ are symmetrical about the axis of θJ . The former shows a
monotonically decreasing, while the latter shows a monotonically increasing. ⟨XAX′

B⟩
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TABLE 6.3: Numerical results of the four Bell correlations in FIG. 6.7.

θJ[deg] ⟨XAX′
B⟩ ⟨XAY′

B⟩ ⟨YAX′
B⟩ ⟨YAY′

B⟩
10 −0.704 ± 0.014 0.118 ± 0.014 −0.643 ± 0.014 −0.143 ± 0.014
20 −0.664 ± 0.004 0.232 ± 0.004 −0.638 ± 0.004 −0.239 ± 0.004
30 −0.6218 ± 0.0023 0.3341 ± 0.0023 −0.5779 ± 0.0023 −0.3470 ± 0.0023
40 −0.5428 ± 0.0018 0.4388 ± 0.0018 −0.5187 ± 0.0018 −0.4415 ± 0.0018
45 −0.5010 ± 0.0024 0.4759 ± 0.0024 −0.4775 ± 0.0024 −0.4910 ± 0.0024
50 −0.4660 ± 0.0018 0.5114 ± 0.0018 −0.4277 ± 0.0018 −0.5350 ± 0.0018
60 −0.3507 ± 0.0023 0.5808 ± 0.0023 −0.3409 ± 0.0023 −0.5977 ± 0.0023
70 −0.250 ± 0.004 0.628 ± 0.004 −0.228 ± 0.004 −0.658 ± 0.004
80 −0.110 ± 0.015 0.694 ± 0.015 −0.119 ± 0.015 −0.685 ± 0.015

and ⟨YAX′
B⟩ are two correlations involving X′

B, and ⟨XAY′
B⟩ and ⟨YAY′

B⟩ are correlations
that includeY′

B, so these increasing and decreasing trends are consistent with the changes
in measurement visibility in System B. When the measurement error is also included in
system A, the changes are complex, as seen in FIG. 4.5, but FIG. 6.7 clearly shows that
they depend only on the measurement uncertainty in system B. This means that the joint
probability distribution shown in FIG. 6.3 does not include the measurement error in the
measurement of system A. Although there are positive and negative values, the change in
the Bell correlation is exactly what is shown in FIG. 4.2(b), which represents the change in
measurement visibility. A closer look reveals that ⟨YAX′

B⟩ is slightly higher than ⟨XAX′
B⟩.

This fine-tuned trend can also be seen in the predicted values, and in this sense, Eq. (6.42)
is a good model.

1

FIGURE 6.8: The predicted values of the four Bell correlations derived us-
ing Eq. (6.42), Eqs. (6.63)-(6.70), and the experimental values derived from
the joint probability distribution in FIG. 6.4. As described in the subsec.
6.1.6, the parameter values are set such that α = 0.98, γ = 0.2◦, and ϕ = 5◦.

FIG. 6.8 shows a comparison of the experimental values of the four Bell correlations
derived from FIG. 6.4 with those derived from Eq. (6.42) and Eqs. (6.63)-(6.70). The
most prominent feature is that all four Bell correlations are constant, independent of θJ .
This is not surprising since the joint probability distributions shown in FIG. 6.4 also have
almost the same shape regardless of θJ . This result means that the measurement error
has been completely removed from both system A and B. Furthermore, it can be seen
that the closer one approaches θJ = 0◦ or θJ = 90◦, the larger the error range becomes.
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TABLE 6.4: Numerical results of the four Bell correlations in FIG. 6.8.

θJ[deg] ⟨XAX′
B⟩ ⟨XAY′

B⟩ ⟨YAX′
B⟩ ⟨YAY′

B⟩
10 −0.71 ± 0.04 0.69 ± 0.04 −0.65 ± 0.04 −0.84 ± 0.04
20 −0.707 ± 0.007 0.679 ± 0.007 −0.679 ± 0.007 −0.700 ± 0.007
30 −0.7163 ± 0.0033 0.6742 ± 0.0033 −0.6658 ± 0.0033 −0.7001 ± 0.0033
40 −0.7085 ± 0.0023 0.6855 ± 0.0023 −0.6770 ± 0.0023 −0.6898 ± 0.0023
45 −0.7053 ± 0.0034 0.6794 ± 0.0034 −0.6722 ± 0.0034 −0.7010 ± 0.0034
50 −0.7207 ± 0.0023 0.6679 ± 0.0023 −0.6616 ± 0.0023 −0.6987 ± 0.0023
60 −0.6997 ± 0.0033 0.6702 ± 0.0033 −0.6802 ± 0.0033 −0.6896 ± 0.0033
70 −0.724 ± 0.008 0.669 ± 0.008 −0.660 ± 0.008 −0.701 ± 0.008
80 −0.64 ± 0.05 0.70 ± 0.05 −0.69 ± 0.05 −0.69 ± 0.05

1

FIGURE 6.9: Mean values of B with and without measurement uncertainty.
⟨B⟩1 is the average value obtained directly from FIG. 4.4, ⟨B⟩2 is the aver-
age value obtained from (6.3), and ⟨B⟩3 is the average value obtained from
FIG. 6.4. The values of the parameters used to derive the predictions are

α = 0.98, γ = 0.2◦, and ϕ = 5◦.

This is a remnant of the fact that the magnitude of the measurement error for XA, X′
B or

YA, Y′
B increases as θJ = 0◦ or θJ = 90◦. Since the experimental values shown in FIG.

6.8 were reconstructed from data obtained by joint measurements, the influence of θJ
remains with respect to the error range. The fact that only ⟨XAY′

B⟩ has a positive value is
consistent with FIG. 4.5 and FIG. 6.7.

FIG. 6.9 shows the change in the mean value of B with and without the measurement
error. The ⟨B⟩1 is the mean value obtained directly from FIG. 4.4, so the magnitude of
the mean is less than 2 and Bell’s inequality cannot be violated. The smallest value at
θJ = 45◦ is because the sum or difference of the four Bell correlations is the largest,
and the four Bell correlations are the largest for the four physical properties because the
measurement uncertainties are the same at θJ = 45◦. This trend is the same for the
average value of ⟨B⟩2, when only the measurement error for system A is eliminated.
The difference between ⟨B⟩1 and ⟨B⟩2 is 0.575 ± 0.006 at θJ = 45◦, 0.666 ± 0.028 at θJ =
10◦, and 0.682 ± 0.028 at θJ = 80◦. It can be seen that the larger the difference between
the visibility of the measurements of the two complementary physical properties, the
larger the difference of the mean of B is. As can be seen in FIG. 4.2, the rate of change
in the measurement visibility is greater closer to θJ = 0◦ and θJ = 90◦, so the more
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TABLE 6.5: Numerical results of the four Bell correlations in FIG. 6.9.

θJ[deg] ⟨B⟩1 ⟨B⟩2 ⟨B⟩3
10 −0.9422 ± 0.0028 −1.608 ± 0.028 −2.90 ± 0.09
20 −1.1402 ± 0.0028 −1.773 ± 0.008 −2.764 ± 0.015
30 −1.2934 ± 0.0028 −1.881 ± 0.005 −2.756 ± 0.007
40 −1.3698 ± 0.0028 −1.942 ± 0.004 −2.761 ± 0.005
45 −1.3782 ± 0.0028 −1.945 ± 0.005 −2.758 ± 0.007
50 −1.3664 ± 0.0028 −1.940 ± 0.004 −2.749 ± 0.005
60 −1.2809 ± 0.0028 −1.870 ± 0.005 −2.740 ± 0.007
70 −1.1292 ± 0.0028 −1.763 ± 0.008 −2.753 ± 0.015
80 −0.9265 ± 0.0028 −1.608 ± 0.029 −2.72 ± 0.09

susceptible to measurement uncertainty. Since the only difference between ⟨B⟩1 and ⟨B⟩2
is whether or not the measurement in system A includes the measurement error, the joint
probabilities at θJ = 10◦, 80◦ compared to the joint probability at θJ = 45◦ probabilities
are closer to a random result, resulting in an average of B approaching zero. Surprisingly,
the results for ⟨B⟩2 do not violate Bell’s inequality for all θJ . As seen in FIG. 6.3, there are
some measurement outcomes whose probabilities are negative in the joint probability
distribution, but for Bell’s inequality to be violated, P(b = +2) or P(b = −2) must be
negative. It is possible that Bell’s inequality cannot be violated even if the probability of
some measurement outcomes become negative. Furthermore, an interesting comparison
between ⟨B⟩2 and ⟨B⟩3 can be made. TAB. 6.6 shows the ratios of ⟨B⟩1 to ⟨B⟩2 and of ⟨B⟩2
to ⟨B⟩3. Except for the case of θJ = 10◦, the two ratios agree within statistical error. This
means that the effects of measurement uncertainties in the measurements of system A
and system B are not only equivalent, but completely independent.

TABLE 6.6: Ratio of ⟨B⟩1 and ⟨B⟩2 to θJ and ratio of ⟨B⟩2 and ⟨B⟩3.

θJ[deg] ⟨B⟩1/⟨B⟩2 ⟨B⟩2/⟨B⟩3
10 0.586 ± 0.010 0.555 ± 0.020
20 0.6432 ± 0.0033 0.641 ± 0.004
30 0.6877 ± 0.0022 0.6823 ± 0.0023
40 0.7055 ± 0.0019 0.7033 ± 0.0018
45 0.7085 ± 0.0023 0.7054 ± 0.0025
50 0.7043 ± 0.0020 0.7058 ± 0.0018
60 0.6849 ± 0.0022 0.6826 ± 0.0023
70 0.6403 ± 0.0034 0.641 ± 0.005
80 0.576 ± 0.011 0.591 ± 0.023

6.2 Adaptive and operation input state control using different
measurement contexts

In Chapter 5, we demonstrated and presented a method for operationally imposing spe-
cific physical conditions on an entanglement source with variable degrees of entangle-
ment; the purpose of the second experiment was to demonstrate a method for experi-
mentally optimizing quantum correlations with input states, adaptive input state con-
trol, is to show that input state can be prepared such that they induce a paradox. In this
section, the relation between the performance of the entanglement source and the four
different contextual probabilities is discussed, as well as a discussion of the sources of er-
ror in the experimental results. The relation between the non-contextual inequality valid
for non-contextual logic and the experimental results will be clarified to show that the



6.2. Adaptive and operation input state control using different measurement contexts65

AISC demonstrated in this study is effective enough for the operational definition of an
input state control that can lead to quantum contextuality.

6.2.1 Estimation of the input state and the evaluation of its properties

In order to show from which quantum state the experimental results presented in Chap-
ter 5 are derived, let us confirm how close the quantum state gotten from the Sagnac
interferometer is to the one described by Eq. (2.32). If the quantum state described by Eq.
(2.32) is ideally realized, the description of the density matrix using correlations is given
by

ρ̂pure = (cos ϕS |H; H⟩ − sin ϕS |V; V⟩) h.c.. (6.71)

How this density matrix can be described using correlations can be found by checking
the components using the three polarization physical properties and the identity operator
with dimension two, and the description of the density matrix using correlation is given
by

ρ̂initial =
1
4
(

Î ⊗ Î + CX Î ⊗ X̂ + CXX̂ ⊗ Î + VXX̂ ⊗ X̂ + VYŶ ⊗ Ŷ − VYẐ ⊗ Ẑ
)

=


1
4 (2VX + CX + 1) 0 0 CY

2
0 1−CX

4 0 0
0 0 1−CX

4 0
CY
2 0 0 1

4 (−2VX + CX + 1)

 (6.72)

where CX = cos 2ϕS, VX = 1, VY = − sin 2ϕS are hold if the initial state is completely
pure state. This is the case with the least experimental imperfection, and to account for
experimental imperfection, we assume that the value of the correlations and the local
polarization are

CX = (0.968 ± 0.013) cos 2ϕS (6.73)
VX = (0.968 ± 0.013) (6.74)
VY = (−0.935 ± 0.011) sin 2ϕS (6.75)

where (0.968 ± 0.013) and (−0.935 ± 0.011) correspond to Eq. (3.6) and Eq. (3.7), respec-
tively. Eq. (6.74) and Eq.(3.6) are equivalent when ϕS = 45◦, and Eq. (6.75) and Eq. (3.7)
are also equivalent. A good reason for considering Eq. (6.73) and Eq. (6.74) identical
when ϕS = 0◦ is the equality of CX and VX in FIG. 3.8. Since photon pairs generated by
nonlinear crystals are strongly correlated to the HV basis, changing the degree of entan-
glement does not change the magnitude of the correlation; the magnitude of local polar-
ization represented by CX should reflect the magnitude of polarization in the HV basis
that the photon pairs have, so it is natural that the values are equal within the margin of
error.

FIG. 6.10 shows the experimental values shown in FIG. 3.8 and the predictions de-
rived from Eqs. (6.73)-(6.75) and Eq. (3.8). The range that the predicted values have
reflects the statistical error that Eqs. (6.73)-(6.75) have. In Eqs. (6.73)-(6.75), two curves
are drawn, one with a positive sign of standard deviation and the other with a negative
sign, and the region between the two curves is colored. Almost all points are explained
with respect to VX and WE, but for CX, in the range of high degree of entanglement. We
can see that there is a discrepancy between the experimental and predicted values. One
possible cause could be the systematic error of the ϕS setting, which is assumed to be
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1

FIGURE 6.10: Experimental and predicted values for CX , VX , and WE. The
horizontal axis is ϕS[deg], which represents the degree of entanglement,
with ϕS = 0◦ representing the product state and ϕS = 45◦ the end state.
The predictions have some range because they reflect the range of statisti-

cal errors that Eqs. (6.73)-(6.75) have.

minimum at 0◦ and maximum at 45◦ because ϕS is a setting value, but systematic errors
due to imperfections in HWP1 in FIG. 3.4 and differences in the actual wavelength of the
pump light could cause the actual setting angle to be larger than the ideal setting angle.
The angle may be larger than the ideal setting angle. Assuming that the experimental
data points were shifted overall in the direction of smaller ϕS, CX, VX, and CX would all
fall within the range of predicted values.

Let us evaluate the various indices for the quantum state as shown in Subsec. 6.1.7
for the density matrix substituting Eqs. (6.73)-(6.75) into Eq. (6.72). TAB. 6.7 shows the
results for purity defined by Eq. (6.58), fidelity defined by Eq. (6.59), and negativity
defined by Eq. (6.60).

TABLE 6.7: Results of purity, fidelity, and negativity for the density matrix
estimated from the experimental results. For a density matrix in Eq. (6.58)
and Eq. (6.60) and for ρ2 in Eq. (6.59), the density matrix in Eq. (6.72)
is substituted for VX , CX , and VY derived from TAB. 3.3, and for ρ1 in
Eq. (6.59), VX = 1, VY = −sin2ϕS, and the density matrix substituting

CX = cos 2ϕS was used.

ϕS[deg] P F N
0 0.967 ± 0.014 0.992 ± 0.006 0.006 ± 0.005

10 0.959 ± 0.015 0.9896 ± 0.0031 0.153 ± 0.005
17.5 0.941 ± 0.014 0.9847 ± 0.0029 0.257 ± 0.005
20 0.947 ± 0.014 0.9862 ± 0.0028 0.291 ± 0.005

22.5 0.927 ± 0.014 0.9809 ± 0.0028 0.312 ± 0.005
25 0.927 ± 0.014 0.9805 ± 0.0028 0.335 ± 0.005

27.5 0.941 ± 0.013 0.9844 ± 0.0027 0.366 ± 0.005
35 0.915 ± 0.013 0.9775 ± 0.0028 0.420 ± 0.005
45 0.922 ± 0.014 0.9796 ± 0.0034 0.460 ± 0.005
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The purity results tend to become slightly smaller as the degree of entanglement in-
creases. Since the purity represents how close the quantum state is to the pure state, a
decrease in the pure state means a decrease in quantum coherence. Such a tendency is

also shown in
√

C2
X + W2

E in TAB. 3.4, and the cause of the lowering is also considered to
be the same. In other words, as the degree of entanglement increases, the degree of agree-
ment between the two paths inside the interferometer becomes more important, and this
imperfection shows up as a slight decreasing trend. Fidelity also has a decreasing trend,
but is higher than 0.95 for all ϕS. Negativity is a measure of whether a quantum state is
in an entangled state, and the further away from zero its magnitude is, the more strongly
entangled it is, which means that it has an increasing trend.

6.2.2 Relation between P(0; a), P(a; 0) and the correlations

This subsection discusses the relation between the two probabilities P(0; a), P(a; 0) ap-
pearing in Eq. (2.25) and the three indices shown in FIG. 3.8. The unitary transformation
in Eq. (2.33) and Eq. (2.34) is performed by the two HWP2s in FIG. 3.4. Since a HWP
is optical elements that convert any linearly polarized light into other linearly polarized
light, the relation between horizontal and vertical polarization and {0, 1} polarization
can be given by

|0⟩ = cos ϕM |H⟩ − sin ϕM |V⟩ (6.76)
|1⟩ = sin ϕM |H⟩+ cos ϕM |V⟩ . (6.77)

Since the relation between the {0, 1} basis and the {a, b} basis is Eq. (2.29) and Eq. (2.30),
from Eqs. (6.76), (6.77) and (6.72), the value of P(0; a) + P(a; 0) becomes

P(0; a) + P(a; 0) = ⟨0| ⊗ ⟨a| ρ̂initial |0⟩ ⊗ |a⟩+ ⟨a| ⊗ ⟨0| ρ̂initial |a⟩ ⊗ |0⟩
= 1

2 (1 + CX(cos 2ϕM − sin 2ϕM)

+(VY − VX) sin 2ϕM cos 2ϕM). (6.78)

The results in TAB. 5.1 show that the range of set values of ϕM is roughly 40◦ < 2ϕM <
100◦, so cos 2ϕM − sin 2ϕM < 0 always holds. Taking this into account, Eq. (6.78) becomes

P(0; a) + P(a; 0) =
1
2

(
VX − VY

2
t2 − CXt + 1 − VX − VY

2

)
=

1
2

(
VX − VY

2

(
t − CX

1 + WE

)2

+
1 − WE

2 − CX
2

2(1 + WE)

)
, (6.79)

where t =
√

1 − 2 sin 2ϕM cos 2ϕM and Eq. (3.8) is used in the middle. Regarding Eq.
(6.79) as quadratic function with respect to t, the minimum value of P(0; a) + P(a; 0) is
given by

P(0; a) + P(a; 0) =
1 − WE

2 − CX
2

4(1 + WE)
(6.80)

when t = CX/(1 + WE). To check whether the relation given by Eq. (6.80) can explain
the actual experimental results, we consider Eq. (6.80) as a function of ϕS and substitute
Eqs. (6.73)-(6.75). By moving (0.969 ± 0.013) and (0.935 ± 0.011) independently within
the error, we can derive the maximum and minimum values of Eq. (6.80) at a particular
ϕS.
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1

FIGURE 6.11: Comparison of experimental and predicted values for
P(0; a) + P(a; 0). "Exp" is derived from the raw data shown in TAB. 5.2.
"Predi" is the range of values that could change due to statistical errors

when Eqs. (6.73)-(6.75) are substituted into Eq. (6.80).

FIG. 6.11 shows the P(0; a) + P(a; 0) shown in FIG. 5.4 and the predictions derived
from Eq. (6.80). At first glance, the range of fluctuations propagating from (0.969± 0.013)
and (0.935 ± 0.011) appears to be large, but in terms of probability it is about ±0.5%. As
ϕS increases, the experimental values appear to increase slightly, and the predictions also
explain such a trend. Eq. (6.80) is obtained by minimizing Eq. (6.78). This mathematical
condition is roughly corresponding to the operation such that N(0; 0) ≈ N(0; 1) is hold
as explained in Sec. 5.1.

6.2.3 Relation between P(1; 1) and the correlations

In this subsection, we discuss the relation between P(1; 1) and the three indices shown in
FIG. 3.8. Using Eq. (6.72) and Eq. (6.77), the predicted value of P(1; 1) is given by

P(1; 1) =
1
8
(2 + VX + VY − 4CX cos 2ϕM + (VX − VY) cos 4ϕM) . (6.81)

As in Subsec. 6.2.2, substituting t =
√

1 − 2 sin 2ϕM cos 2ϕM and transforming the equa-
tion, noting that 40◦ < 2ϕM < 100◦, we obtain

P(1; 1) =
1
8

(
2 + VX + VY − 2CX

(√
2 − t2 − t

)
+ (VX − VY)

√
2t2 − t4

)
. (6.82)

Using the condition that P(0; a) + P(a; 0) is minimized, t = CX/(1 + WE), which was
derived in Subsec. 6.2.2, Eq. (6.82) becomes

P(1; 1) =
1
4

1 +
VX + VY

2
+

CX
2

1 + WE
− CX

2

√
2 − CX

2

(1 + WE)2

 . (6.83)
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1

FIGURE 6.12: Comparison of experimental and predicted values of P(1; 1).
The "Exp" is identical to that shown in FIG. 5.5, and the "Predi" is the value
described by Eq. (6.83), with possible regions of variation in the range of

(0.969 ± 0.013) and (0.935 ± 0.011).

Substitute Eqs. (6.73)-(6.75), considering Eq. (6.83) as a function of ϕS. By moving
(0.968 ± 0.013) and (0.935 ± 0.011) independently within the error, we can derive the
maximum and minimum values of Eq. (6.83) at a particular ϕS.

FIG. 6.12 shows the experimental values of P(1; 1) shown in FIG. 5.3 and the predic-
tions derived from Eq. (6.83). Because Eqs. (6.73)-(6.75) contain errors, the predictions
have a certain range. For the three points ϕS = 10◦, 27.5◦, and 35◦, the experimental and
predicted values do not agree. This indicates that we need to consider systematic errors
such that the predictions are biased toward regions where ϕS is large overall. The density
matrix described by Eq. (6.72) ignores the presence of correlations that have a value of
zero, but in a real experiment there should be more or less influence. In FIG. 6.10, it seems
that the effect of such correlations could be ignored, but in FIG. 5.3, the effect of such cor-
relations was significant. The minimum of the experimental values is within the range
of the predicted values. This indicates that the minimum value of the probability can be
well explained by the magnitude of the correlation that the entangled photon pairs have.

6.2.4 Relation between P(a; a) and the correlations

As in Subsec. 6.2.2 and Subsec. 6.2.3, the relation between P(a; a) and correlation is
discussed. Using Eq. (6.72) and Eqs. (2.29), (6.76), and (6.77), the predicted value of
P(a; a) is

P(a; a) =
1
8
(2 + VX + VY − 4CX sin 2ϕM − (VX − VY) cos 4ϕM) . (6.84)

As in Subsec. 6.2.2, substituting t =
√

1 − 2 sin 2ϕM cos 2ϕM and transforming the equa-
tion, noting that 40◦ < 2ϕM < 100◦, we obtain

P(a; a) =
1
8

(
2 + VX + VY − 2CX

(√
2 − t2 + t

)
+ (VX − VY)t

√
2 − t2

)
. (6.85)
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FIGURE 6.13: Comparison of experimental and predicted values of P(a; a).
"Exp" represents the experimental value of P(a; a) derived from TAB. 5.2,
and "Predi" represents the predicted value of P(a; a) that can be taken when

Eqs. (6.73)-(6.75) are substituted into Eq. (6.86).

Using the condition that P(0; a) + P(a; 0) is minimal, t = CX/(VX − VY), and Eq. (3.8),
Eq. (6.85) becomes

P(a; a) =
1
4

1 +
VX + VY

2
− CX

2

1 + WE
− CX

2

√
2 − CX

2

(1 + WE)2

 . (6.86)

Substituting Eqs. (6.73)-(6.75) for Eq. (6.86) as a function of ϕS If (0.968 ± 0.013) and
(0.935 ± 0.011) can vary in value independently within the error range, then the maxi-
mum and minimum values that P(a; a) has for a particular ϕS are the errors of P(a; a)
derived by error propagation.

FIG. 6.13 shows the experimental values of P(a; a) shown in FIG. 5.5 and the predic-
tions derived from Eq. (6.86). Since all the experimental values are within the range of
the predictions, the density matrix described by Eq. (6.72) is sufficient to understand the
situation. In the range where ϕS is small, the error range is larger in the region where the
rate of change of P(a; a) is small. This trend is also observed in the FIG. 6.12. On the other
hand, in the region where ϕS is large, there is a large error range and a small error range,
even though the rate of change is almost unchanged. This means that the rate of change
of P(a; a) is smaller when (0.969 ± 0.013) and (0.935 ± 0.011) are allowed to vary freely;
since it is not the rate of change relative to ϕS, it does not appear in the graph for ϕS.

6.2.5 Contrast of the four contextual probabilities

The purpose of the second experiment is to operationally define the initial state such
that it exhibits quantum context dependence. How strongly it exhibits quantum context
dependence can be determined by how strongly it violates the non-contextual inequality
described by Eq. (2.20). The three deterministic conditions imposed on the initial state,
Eqs. (2.17)-(2.19), have systematic errors of 1 − 2%, as shown in FIG. 5.3 and FIG. 5.4. It
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FIGURE 6.14: Comparison of experimental and predicted values of the
contrast function. The horizontal axis is ϕS, which represents the degree
of entanglement, and the vertical axis is the contrast function defined by

Eq. (6.87).

would be useful to have a quantitative indicator that is sensitive to such small systematic
errors to see how strongly the quantum context dependence is manifested. As such a
quantitative indicator, we define the following contrast function.

K :=
P(a; a)− P(0; a)− P(a; 0)− P(1; 1)
P(a; a) + P(0; a) + P(a; 0) + P(1; 1)

. (6.87)

As can be seen from Eq. (2.20), it is consistent with non-contextual logic when K ≤ 0, and
quantum context dependence is manifested when K > 0. K = −1 is achieved only when
P(a; a) = 0, and K = 0 is achieved when P(0; a) + P(a; 0) + P(a; a) = P(a; a), K = 1 is
valid only when P(0; a) + P(a; 0) + P(a; a) = 0.

The predicted value of the contrast function can be obtained by adding Eqs. (6.80),
(6.83), and (6.86) to Eq. (6.87), which yields the equation given by

K =
1 + C2

X − W2
E

C2
X − 2(2 + VY)(1 − WE) + CX

√
2(1 + WE)2 − C2

X

. (6.88)

Eqs. (6.73)-(6.75) are adopted here as the specific forms of CX, VX, and VY. The experimen-
tal values of the contrast function are obtained by substituting the experimental values
shown in FIGs. 5.3 - 5.5 into Eq. (6.87).

FIG. 6.14 compares the experimental and predicted values of the contrast function
expressed in Eq. (6.87), and TAB. 6.8 shows the specific values of the experimental values
of the contrast function. The maximum value of the experimental value is roughly 0.5,
which is the same at four points ϕS = 20◦, 22.5◦, 25◦, and 27.5◦. The range of degrees of
entanglement where the non-contextual logic breaks down is wide, with non-contextual
inequality breaking observed at least from ϕS = 17.5◦ to ϕS = 35◦. Interestingly, no
non-contextual inequality breaking is observed at the maximum entanglement state of
ϕS = 45◦. Considering the relationship between FIG. 6.15 and FIG. 3.8, we can see that
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TABLE 6.8: Numerical results for the contrast function. The contrast func-
tion is defined by Eq. (6.87) and all experimental values are derived from

the numerical data in TAB. 5.2.

ϕS[deg] K
0 −0.975 ± 0.026
10 −0.575 ± 0.031

17.5 0.269 ± 0.031
20 0.467 ± 0.032

22.5 0.518 ± 0.030
25 0.475 ± 0.027

27.5 0.506 ± 0.026
35 0.265 ± 0.019
45 −0.040 ± 0.013

the breaking is largely observed where there are two types of correlations: non-local
quantum correlations, expressed in terms of entanglement witness, and local correlations,
expressed in terms of degree of local polarization If the three deterministic conditions
were perfectly prepared, the value of K would be 1, so the fact that it is reduced to 0.5
by systematic errors of less than 5% indicates that the contrast function is a sensitive
indicator to systematic errors.

Although the predicted value of the contrast function is able to explain the tendency
for the value of K to remain constant around its maximum value, it can be seen that at
two points, ϕS = 10◦ and ϕS = 35◦, the experimental and predicted values are out of
phase; at points slightly larger than ϕS = 10◦ the range of change in the predicted value
is smaller. The points (0.968 ± 0.013) and (0.935 ± 0.011) in Eqs. (6.73)-(6.75) represent
the maximum value of coherence exhibited by the interferometer, so we can see that they
are points that change little with respect to the change in coherence. Conversely, near
ϕS = 22.5◦, the maximum value of K is sensitive to changes in coherence because the
change in K is large relative to the change in coherence.

6.2.6 Bell correlations in the consistency paradox

As shown in Eq. (2.25), the non-contextual inequality and Bell’s inequality are mathemat-
ically equivalent. Therefore, it may be interesting to evaluate the experimental values of
the four Bell correlations included in Eq. (2.25). We define the physical properties F̂ and
Ŵ as

F̂ = |1⟩ ⟨1| − |0⟩ ⟨0| (6.89)
Ŵ = |b⟩ ⟨b| − |a⟩ ⟨a| . (6.90)

From these two equations, the four Bell correlations are given by

⟨FF⟩ = P(1; 1) + P(0; 0)− P(0; 1)− P(1; 0) (6.91)
⟨FW⟩ = P(1; b) + P(0; a)− P(0; b)− P(1; a) (6.92)
⟨WF⟩ = P(b; 1) + P(a; 0)− P(a; 1)− P(b; 0) (6.93)
⟨WW⟩ = P(b; b) + P(a; a)− P(a; b)− P(b; a). (6.94)

These four Bell correlations can be evaluated using the counts in TAB. 5.2. The predictions
corresponding to each Bell correlation can be evaluated by using Eq. (6.72) and Eq. (6.89)
and Eq. (6.90), where the {0, 1}-basis is given by Eq. (6.76) and Eq. (6.77) and the {a, b}
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FIGURE 6.15: Experimental and predicted values of Bell correlation in
the consistency paradox; "Exp" can be evaluated from the counts in
TAB. 5.2; "Predi" represents the predicted values, substituting CX =

0.968 cos 2ϕS,VX = 0.968,VY = −0.935 sin 2ϕS in Eqs. (6.99)-(6.102).

basis by Eq. (2.29) and Eq. (2.30). The four Bell correlations are given by

⟨F̂F̂⟩ =
1
2
((VX − VY) cos 4ϕM + VY + VX) (6.95)

⟨F̂Ŵ⟩ =
1
2
(VY − VX) sin 4ϕM (6.96)

⟨ŴF̂⟩ =
1
2
(VY − VX) sin 4ϕM (6.97)

⟨ŴŴ⟩ =
1
2
((VY − VX) cos 4ϕM + VY + VX). (6.98)

Using the same procedure as discussed in Subsec. 6.2.3, these four Bell correlations are
expressed using CX, VX, and VY like

⟨F̂F̂⟩ =
1
2

−CX

√
2 −

C2
X

(VY − VX)2 + VY + VX

 (6.99)

⟨F̂Ŵ⟩ =
1
2
(VY − VX)

(
1 − C2

X
(VY − VX)2

)
(6.100)

⟨ŴF̂⟩ =
1
2
(VY − VX)

(
1 − C2

X
(VY − VX)2

)
(6.101)

⟨ŴŴ⟩ =
1
2

CX

√
2 −

C2
X

(VY − VX)2 + VY + VX

 . (6.102)

FIG. 6.15 compares the experimental values evaluated from Eqs. (6.91)-(6.94) with the
predictions obtained by substituting CX = 0.968 cos 2ϕS,VX = 0.968,VY = −0.935 sin 2ϕS
in Eqs. (6.99)-(6.102). One interesting feature is that even though there was a strong
positive correlation between WA and WB in the product state with ϕS = 0◦, a strong neg-
ative correlation between FA and WB was created in the maximum entangle state with
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1
FIGURE 6.16: EPR correlation whose definition is given by Eq. (6.103)."
Exp" is the experimental value evaluated using Eqs. (6.91)-(6.94), and
"Predi" is the prediction obtained by substituting CX = 0.968 cos 2ϕS,VX =

0.968,VY = −0.935 sin 2ϕS in Eqs. (6.99)-(6.102).

ϕS = 45◦. The product state and the maximum entangle state have in common that the
correlations between certain physical properties become larger, but usually the correla-
tions between the same or different physical properties are maintained. On the other
hand, the result that FIG. 6.15 shows is that when ϕS = 0◦, there is correlation between
the same physical property F̂, yet when ϕS = 45◦, there is correlation between different
physical properties F̂ and Ŵ. As the degree of entanglement changes, it means that the
relation between physical properties with strong non-local correlations is also changing.
Another interesting feature is the behavior of ⟨FF⟩. Why does only ⟨FF⟩ have an extreme
value while the other three Bell correlations show monotonic variation? The reason is
clear in FIG. 5.3. Even though the values of P(0; 0), P(0; 1) and P(1; 0) are almost identi-
cal, the value of P(1; 1) approaches 0 at the midpoint of the value of ϕS. This quantum
interference causes an imbalance between the positive and negative correlations, and the
extreme value of ⟨FF⟩ is created at the point where P(1; 1) is minimal.

Using the four Bell correlations, EPR correlation can be defined by

⟨B⟩ = ⟨FF⟩+ ⟨FW⟩+ ⟨WF⟩ − ⟨WW⟩ (6.103)

FIG. 6.16 shows the experimental and predicted values of EPR correlation. The minimal
value of the predicted value is ⟨B⟩ = −2.3221 at ϕS = 28.342◦. The quantum mechanical
upper bound of EPR correlation is Cirel’son bound, 2

√
2 ≈ 2.828, so that the experimen-

tal result seems to be far from the maximal EPR correlation, however the important point
here is that the ⟨B⟩ is maximal where it is not a maximal entangled state. Such experi-
mental results have also been reported by earlier research[54], but the physical properties
they defined are not maximally complementary. Observing a violation of Bell’s inequality
that becomes extreme value in a place that is complementary and yet not in a maximally
entangled state seems to be the first result in the world.
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Chapter 7

Conclusion

7.1 Experiment to explore the cause of the upper bound of Bell’s
inequality

In the first experiment, to explore the upper bound of the CHSH-type Bell’s inequality,
we introduced a joint measurement, which is described as POVM measurement, subject
to measurement uncertainty restrictions, to a Bell’s inequality verification experiment to
evaluate the joint statistical distribution of four polarization physical properties. First,
to evaluate the performance of the joint measurement, the joint measurements were per-
formed for eigenstates with a value of +1 for the polarization physical properties, and the
measurement visibilities were evaluated. By varying the joint measurement parameter
θJ , the balance of measurement accuracy for the two complementary physical properties
can be continuously changed. For some specific θJ , we independently evaluated the mea-
surement visibility in systems A and B and confirmed that both satisfy the measurement
uncertainty limits. We then obtained the joint statistical distribution for a specific joint
measurement parameter that can be changed independently in the two measurement
systems. The Bell correlations derived from that joint probability distributions varied de-
pending on the value of θJ , and the statistics of a particular measurement outcome in the
joint statistical distribution obtained at a particular θJ showed extremely low counts that
were not observed from the joint statistical distribution when only precise measurements
were used. This is the first discovery in the world of the fact that joint measurements
show such extremely low counts despite the inclusion of measurement error. By focus-
ing on the measurement outcomes showing this specific outcomes with extremely low
counts and considering the relation between the intrinsic joint probability distribution,
which is a distribution excluding the measurement errors, and the joint probability dis-
tribution evaluated from the experiment, the specific outcomes with low counts need to
be further reduced to explain the Cirel’son bounds, and the probabilities need to be neg-
ative when there is no measurement uncertainty and only eigenvalues of the physical
property are allowed. Furthermore, the value of B defined by the four Bell correlations
takes a value of either ±2 for all sixteen possible measurement outcomes, and the error
with respect to the value of B that each measurement outcome contains can be evaluated
independently. Plotting the relation between the flip probability of B with respect to the
measurement outcomes with extremely low counts and the experimentally obtained joint
probabilities, we find that there is a lower bound on the error probability of B. If we as-
sume that the flip probability of B exceeds that lower bound, it means not only that the
probability obtained in the experiment must be negative, but also that the magnitude of
EPR correlation exceeds the Cirel’son bound.

Using the spin-flip model, the measurement errors can be eliminated independently
from the measurement outcomes in system A and in system B. The joint probability dis-
tribution without the measurement error exhibits negative probabilities, consistent with
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the behavior of Bell correlations and measurement uncertainty limits. Furthermore, the
marginal probabilities derived from the joint probability distribution are consistent with
the joint probability distribution obtained by the precise measurement and can also ex-
plain the value of the Bell correlations.

The initial state, assumed to be a mixed state, is consistent with the results obtained
from the experimentally obtained joint probability distributions and faithfully reflects
the experimental imperfections. On the other hand, the behavior of the local correlation
between the two complementary polarization physical properties is not completely ex-
plained, and there were data points where the predicted and experimental values seemed
to be out of phase. However, there is a trend that seems to reflect the behavior of the ex-
perimental values, and since the correlation between the complementary polarization
properties must be complex in order for such a trend to appear, the fact that the corre-
lation obtained by the joint measurement takes a non-zero value indirectly indicates the
existence of a pure imaginary correlation.

From the above, the upper bound of Bell’s inequality, giving the Cirl’son bound, is
caused by the local measurement uncertainty limit which gives a lower bound for the
error, so that the probability that can be obtained experimentally is not negative. In other
words, the upper bound of the quantum correlation is caused by the uncertainty relation
between two complementary physical properties, and the non-locality of the entangle-
ment is not intrinsically related to the violation of Bell’s inequality[69].

7.2 Experiment to demonstrate the adaptive input state control

Based on the thought experiment proposed by Frauchiger and Renner, we introduced
the concept of adaptive input state control(AISC) to demonstrate that quantum states
can be prepared operationally such that quantum contextuality appears. In conventional
input state preparation in basic research on quantum mechanics, the goal is to reproduce
the quantum state described theoretically as faithfully as possible. However, not only
is the quantum state itself physically poorly understood, but also there is always a gap
between the unrealistic situation assumed in theory and the imperfection that always
accompanies actual experiments, making it difficult to experimentally explore the quan-
tum contextuality. AISC can be one way to overcome this situation. In a previous study,
it was shown that the quantum state required in the thought experiment proposed by
Frauchiger and Renner can be uniquely defined as a set of three specific deterministic
conditions. It should be possible to prepare an input state based on physical properties
by simultaneously adding the three deterministic conditions to the quantum state.

In the thought experiment proposed by Frauchiger and Renner, certain suitable entan-
gled states are assumed. In order to experimentally impose the physical conditions on the
quantum state, it is necessary to prepare a degree of entanglement variable entanglement
source in order to determine the optimal degree of entanglement. In our experiments,
we prepared entangled photon pairs of polarization with variable degrees of entangle-
ment, and to confirm whether the degree of entanglement is indeed controllable, three
indices of interferometric visibility, degree of local polarization, and entanglement wit-
ness were evaluated while changing the power ratio of pump beam between two paths
in the Sagnac interferometer. The results showed that the correlation in {H, V}-basis
was not affected by the overlap of the Sagnac interferometers, and there is a trade-off
between the degree local polarization and entanglement witness, and that the degree of
entanglement can be controlled as an experimental parameter.

To impose two of the three physical conditions on the quantum state, the identical
local polarization rotation was applied to the two physical system each, and the rotation



7.2. Experiment to demonstrate the adaptive input state control 77

angle, ϕM, was set so that the counts of two particular measurement outcomes are the
same. The two measurement outcomes whose counts should be equal can be determined
from the local relation between the different measurement contexts. Two of the three
physical conditions can be achieved simultaneously due to the symmetry of the physical
system. Since symmetry is inherently an unrealistic factor, operations should be imple-
mented that can be achieved without taking symmetry into account, but this is one of
the issues to be addressed in the future. For the remaining one physical condition, we
evaluated the probability of that physical condition for the experimentally evaluated ϕM
while varying the degree of entanglement and searched for the degree of entanglement,
ϕS, that would approach the most ideal value.

AISC resulted in errors of < 2% for the three physical conditions, and the values
were found to be consistent with the magnitude of coherence given by the square root
of the sum of the squares of the local degree of polarization and the entanglement wit-
ness. Therefore, by fine-tuning the interferometer, increasing the coherence of the state,
and implementing a method of determining parameters that is independent of the sym-
metry of the physical system, it would be possible to achieve physical conditions that
are more accurately free of systematic errors. To see how well the ideal physical con-
ditions are achieved, we defined a contrast function with four probabilities for different
measurement contexts that constitute a non-contextual inequality. The contrast function
K represents that the statistical distribution is consistent with the non-contextual logic
when K ≤ 0, while K > 0 means that the statistical distribution is inconsistent with the
non-contextual logic and quantum contextuality is manifested. In actual measurements,
K < 0 was achieved over the range of weak entanglement and maximally entangled
state, but K > 0 was achieved over a wide range from the point where the local degree of
polarization and entanglement are included in just the right balance to the maximum en-
tanglement state. The maximum value of K obtained experimentally is about 0.5, which
is half of the maximum value of 1 that K can achieve. However, we were able to prepare
input states in which quantum contextuality appeared over a wide range, demonstrating
that it is possible to prepare input states operationally with AISC.

We were unable to identify a density matrix that would be roughly consistent with
all experimental results. The assumed density matrix is composed of the degree of corre-
lation/local polarization evaluated by the measurements, but ignores phase differences
between potentially existing quantum states. Although we did not perform a rigorous
quantum state estimation because it is not in line with the purpose of the second ex-
periment, a rigorous evaluation of the statistical errors that non-local correlations and
degrees of local polarization have allowed us to quantitatively evaluate at which degree
of entanglement the experimentally obtained probabilities fluctuate more. Depending on
the degree of entanglement, the measurement outcomes were found to have both sensi-
tive and insensitive points to changes in coherence and to have a complex dependence
on the correlation. A precise examination of the multiple interference terms by which the
probability of the measurement result is affected may provide new insights into quantum
contextuality and quantum correlations.

In summary, it is possible to operationally define input states that exhibit quantum
features, and to explore quantum properties experimentally, independent of experiments
to verify quantum mechanics. It will be important to conduct experiments with as few
elements as possible that we assume and postulate in order to understand the complex
quantum world as well as possible[70].
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Appendix A

EPR paradox

The EPR paradox originates from a thought experiment proposed by A. Einstein, B.
Podolsky, and N. Rozen in 1935[1]. Here is an overview of their argument, using as
few mathematical formulas as possible. In the abstract of the EPR paper, they state:

A sufficient condition for the reality of a physical property is the possibility of predict-
ing it with certainty, without disturbing the system.

In other words, the following two conditions are sufficient conditions for the reality of
physical property Â.

(a) A value of the physical property Â can be obtained with probability one.

(b) The system is not disturbed.

Furthermore, the uncertainty principle precludes simultaneous precise measurement of
the complementary physical properties, so that they state:

In quantum mechanics in the case of two physical quantities described by non-commuting
operators, the knowledge of one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in quantum mechanics is not
complete or (2) these two quantities cannot have simultaneous reality.

Writing their conclusion first, if the uncertainty principle is correct, it implies (1), not
(2). The details of the basis on which we can conclude this are explained below. EPR be-
lieved that every theory must describe the relation between objective reality and physical
concepts. This can be seen in:

Whatever the meaning assigned to the term complete, the following requirement for
a complete theory seems to be a necessary one : every element of the physical reality
must have a counterpart in the physical theory. We shall call this the condition of
completeness.

Let us introduce two physical systems, I and II, and consider their composite system, and
they assume

(i) The two systems can interact from the time t = 0 to t = T.

(ii) The quantum state of the composite system before t = 0 were known.

To rephrase these two conditions, (i) guarantees that after t = T, there is no causal relation
between I and II, and (ii) is a necessary condition for assuming a maximally entangled
state of position and momentum in the later discussion. Assigning a particle and an anti-
particle generated by pair creation to systems I and II, the initial state is known, so that
the momentum conservation law allows the measurement of the position/momentum
of the particle to know the position/momentum of the anti-particle, which means that
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the position/momentum of the anti-particle can satisfies the condition of realism, and if
the momentum of the particles is measured, the momentum of the antiparticle satisfies
the condition for the reality of a physical property (a) and (b). At times later than t =
T, a measurement on the particle should not affect the anti-particle, so measuring the
position/momentum on the particle and the momentum/position on the anti-particle
can satisfy the simultaneous reality of complementary physical properties. This means
that the uncertainty principle does not deduce (a). EPR said:

Thus the negation of (a) leads to the negation of the only other alternative (b). We are
thus forced to conclude that the quantum-mechanical description of physical reality
given by wave functions is not complete.

Furthermore, EPR anticipates the counterargument that only simultaneous measurements
can claim simultaneous reality, arguing that:

Indeed, one would not arrive at our conclusion if one insisted that two or more physi-
cal quantities can be regarded as simultaneous elements of reality only when they can
be simultaneously measured or predicted. On this point of view, since either one or
the other, but not both simultaneously, of the quantities P and Q can be predicted,
they are not simultaneously real. This makes the reality of P and Q depend upon the
process of measurement carried out on the first system, which does not disturb the
second system in any way. No reasonable definition of reality could be expected to
permit this.

And finally, EPR concluded the paper with:

While we have thus shown that the wave function does not provide a complete de-
scription of the physical reality, we left open the question of whether or not such a
description exists. We believe, however, that such a theory is possible.
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Cirel’son bound

The Cirel’son bound is an upper bound on the quantum mechanical correlations in Bell’s
inequality violation. Here, instead of quoting the original paper exactly, I give a simpli-
fied proof for deriving the Cirel’son bound.

The quantum state of a two-level system can be generally described as follows.

|ψ⟩ = cos θ |H⟩+ eiϕ sin θ |V⟩ , (B.1)

where |H⟩ represents the horizontal polarization state, |V⟩ represents the vertical polar-
ization state, θ is the angle of linear polarization when counterclockwise is positive from
horizontal polarization, and ϕ is the phase difference that the vertical polarization com-
ponent has relative to horizontal polarization. Although described in terms of photon
polarization in line with this paper, |H⟩ and |V⟩ are just labels, so they can be freely re-
placed by any physical property in the two-level system. The quantum state orthogonal
to Eq. (B.1) is given by

|ψ⊥⟩ = e−iϕ sin θ |H⟩+ cos θ |V⟩ . (B.2)

Assuming a situation that one photon of an entangled photon pair is measured in
system A and the other photon is measured in system B, two polarization physical prop-
erties, Â1 and Â2, are measured in system A and two polarization physical properties,
B̂1 and B̂2, are measured in system B. The correlation between one polarization physical
property in system A and one in system B can be written as

⟨Âi B̂j⟩ =
2

∑
i,j=1

aibjP(ai, bj), (B.3)

where ai and bj are the values of the corresponding polarization physical properties; ac-
cording to Born’s rule, the joint probability on the right-hand side is equal to the square of
the probability amplitude. To determine the probability amplitude, a quantum state and
a measurement basis must be defined. As an input state, I assume a maximally entangled
states with negative correlation, which is given by

|ψ0⟩ =
1√
2
(|H⟩A ⊗ |V⟩B − |V⟩A ⊗ |H⟩B), (B.4)

where the subscript denotes the system being measured. A measurement result with a
value of +1 and a value of −1 is defined as

|+1⟩ = cos θ |H⟩+ eiϕ sin θ |V⟩ (B.5)
|−1⟩ = e−iϕ sin θ |H⟩+ cos θ |V⟩ . (B.6)
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FIGURE B.1: Relation among the measured four polarization physical
properties.

Depending on the combination of the two outcomes of the physical property measured
in system A and the two outcomes of the physical property measured in system B, four
different measurement outcomes are assumed. The two joint probabilities such that the
value of the correlation is 1 are given by

P(ai = +1, bj = +1) =
1
2

sin2[θ′ − θ] (B.7)

P(ai = −1, bj = −1) =
1
2

sin2[θ − θ′], (B.8)

where θ is the angle of polarization measured in system A and θ′ is the angle of polariza-
tion measured in system B. Substituting these two equations for Eq. (B.7), the non-local
correlation is given by

⟨Âi B̂j⟩ = P(aibj = 1)− P(aibj = −1)
= 2P(aibj = 1)− 1
= P(ai = +1, bj = +1) + P(ai = −1, bj = −1)− 1

= 2 sin2[θ − θ′]− 1. (B.9)

This appears in the angular difference in the linearly polarized physical properties mea-
sured in system A and B.

Next, we define the specific polarization states of the four polarization physical prop-
erties to be measured. Assuming that the relationship between the four linearly polarized
physical properties to be measured can be written in terms of a single parameter θ0, as
in FIG. B.1, the relationship between the four Bell correlations is given by Eq. (B.9) as
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FIGURE B.2: Result of plotting θ0 against Eq. (B.10). The blue curve repre-
sents the result of Eq. (B.10), the red line represents ±2.

follows.

⟨B̂⟩ = ⟨Â1B̂1⟩ − ⟨Â1B̂2⟩+ ⟨Â2B̂1⟩+ ⟨Â2B̂2⟩
= 2 sin2[−θ0]− (2 sin2[−3θ0]− 1) + 2 sin2[2θ0 − θ0]− 1 + 2 sin2[2θ0 − 3θ0]− 1
= cos 6θ − 3 cos 2θ (B.10)

FIG. B.10 plots the results of Eq. (B.10). It can be seen that for some θ0, Bell’s inequality is
violated and the maximum or minimum value is ±2

√
2, the Cirel’son bound.
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Appendix C

PR-box

The notion of PR-box is based on the S. Popesch and D. Rohrlich paper[36], and PR stands
for the initial of their names. They regarded quantum non-locality and relativistic causal-
ity as axioms. Referring the main text of their paper,

Relativistic causality is well defined, but quantum nonlocality appears in both non-
local correlations and the AB effect.

And also they say

We discuss nonlocality with reference to nonlocal correlations, and without consid-
ering equation of motion. We apply our two axioms simply by asking which theories
give rise to non-local correlations, in the sense of Bell’s theorem, while preserving
causality.

The quantum non-locality they mean is a little vague, however the relativistic causality
is defined by

P(xA = ±1) = P(xA = ±1; x′B = +1) + P(xA = ±1; x′B = −1)
= P(xA = ±1; y′B = +1) + P(xA = ±1; y′B = −1), (C.1)

where the lower case letters show the physical system, the x, x′ and y′ are the values of
physical properties X̂, X̂′ and Ŷ′ in two level system. The situation is the same as Bell’s
inequality test. Eq. (C.1) means that an outcome of a physical property measured in
system A is independent of an outcome of physical property measured in the system B.
Joint probability distribution always must satisfy this condition.

FIG. C.1 shows maximally achievable EPR correlation that Popescu and Rohrlich sug-
gested. The joint probability distribution shown in FIG. C.1 results in

⟨X̂AX̂′B⟩+ ⟨X̂AŶ′B⟩+ ⟨ŶAX̂′B⟩ − ⟨ŶAŶ′B⟩ = 4. (C.2)

This result is larger than Cirel’son bound, 2
√

2, which is the quantum mechanical upper
bound of the EPR correlations. Thus, it is possible to construct a joint probability distri-
bution that satisfies the condition of the relativistic causality but exceeds the maximum
quantum mechanical EPR correlation.

As a concrete illustration of the EPR correlation such that exceeds Cirel’son bound.
FIG. C.2 shows a superquantum correlation function proposed by Popescu and Rohrlich,
which is determined by an angle between two spin physical properties of two level sys-
tem, one is measured in system A and the other is measured in system B. Rotational
symmetry of the correlation function means that it satisfy the relativistic causality. With
Ŷ as the reference, let us assume that X̂′ is the spin with π/12 rotation, X̂ is the spin
with π/6 rotation, and Ŷ′ is the spin with π/4 rotation. Calculating the EPR correlations
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FIGURE C.1: Four kind of joint probability distribution in Bell’s inequality
experiment, which can achieve EPR correlation 4. (a) X̂A measured in sys-
tem A and X̂′B measured in system B (b) X̂A measured in system A and
Ŷ′B measured in system B (c) ŶA measured in system A and X̂′B measured
in system B (d) ŶA measured in system A and Ŷ′B measured in system B.
These joint probability distributions satisfy the condition of the relativistic

causality shown in FIG. C.1.

according to the superquantum correlation function shown in FIG. C.2, we obtain

E(X̂A, X̂′B) + E(X̂A, Ŷ′B) + E(ŶA, X̂′B)− E(ŶA, Ŷ′B)

= E
(

π
12

)
+ E

(
π
12

)
+ E

(
π
12

)
− E

(
π
4

)
= 4. (C.3)

About the superquantum correlation function, Popescu and Rohrlich saied

Of course, the correlation function E(θ) is contrived, but it illustrates how a correla-
tion function could satisfy relativistic causality and still violate the CHSH inequality
with the maximal value 4.

And then, they concluded their paper

Our analysis shows that stronger violations would not conflict with relativity theory.
We emphasize that an experiment could test for such violations, which would disprove
quantum mechanics without reference to any model.

The superquantum correlation function introduced are physically unclear in many re-
spects. This ambiguous meaning of the function is considered a "black box" and is called
a PR-box.
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FIGURE C.2: Superquantum correlation function Popescu and Rhorlich
proposed in their paper. θ is an angle between two spin vectors, one is
measured in system A and the other is measured in system B. The vertical

axis shows the value of correlation of the two spin physical properties.
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POVM measurement

When considering the measurement of any physical property, whether that property is
classical or quantum, it can be understood through the concept of the J. V. Neumann’s
indirect measurement model[71]. In general, measurements are classified into two cat-
egories: direct measurement and indirect measurement. Indirect measurements encom-
pass direct measurements because direct measurements are a special case of indirect mea-
surements. Direct measurement refers to a measurement in which the physical property
to be measured is obtained by comparing a reference physical property with the same
dimensions. As an example, a situation such as using a ruler to measure the length of
an object is classified as a direct measurement. On the other hand, indirect measurement
refers to a measurement in which the measured value is obtained indirectly using a re-
lational equation between different physical properties. As an example, measuring the
speed of a car using a speed gun is an indirect measurement. The wavelength of the
microwaves hitting the car changes due to the Doppler effect. The speed of the car is
calculated from the amount of that change of the wavelength. It can be seen that both di-
rect and indirect measurements require two physical systems: the object to be measured
and the measuring instrument. They are called a system and a probe, respectively. Con-
ventional quantum mechanics assumes only measurements in which the values of phys-
ical property of the system corresponds one-to-one to the values of physical property of
the probe. Such a measurement is mathematically called a projection valued measure
measurement(PVM measurement). The positive operator valued measure measurement
(POVM measurement) generalizes the PVM measurement by giving up a one-to-one cor-
respondence between the values of physical properties of the system and the probe. To
formulate the indirect measurement model, let the density matrix of the system be ρ̂S, the
density matrix of the probe be ρ̂P, and the unitary operator representing time evolution
be Û. The density matrix of the composite system after time evolution is given by

ρ̂ = Ûρ̂S ⊗ ρ̂PÛ†. (D.1)

The unitary time evolution of the composite system causes the interaction between the
system and the probe, and information from the system is transferred to the probe. Thus,
information about the system can be obtained from the information obtained by measur-
ing the probe. Let {|ϕm⟩} be the complete orthonormal basis of one of the probe, and the
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probability of obtaining a measurement result m in one of them is given by

P(m) = Tr [ρ̂ |ϕm⟩ ⟨ϕm|]
= TrS [TrP [|ϕm⟩ ⟨ϕm| ρ̂]]

= TrS

[
∑

j
pj ⟨ϕm|Û|ψj⟩ ρ̂S ⟨ψj|Û†|ϕm⟩

]

= TrS

[
∑

j
pj M̂mjρ̂S M̂†

mj

]
= TrS

[
Êmρ̂S

]
, (D.2)

where, TrP[ ] means a partial trace defined by

TrP[ρ̂] := ∑
i

(
⟨i| ⊗ ÎP

)
ρ̂
(
|i⟩ ⊗ ÎP

)
. (D.3)

The {|i⟩} is a complete orthogonal basis of the probe, and the following relation was used
in the process.

ρ̂P = ∑
j

pj |ψj⟩ ⟨ψj| (D.4)

M̂mj = ⟨ϕm|Û|ψj⟩ (D.5)

Êm = ∑
j

pj M̂†
mj M̂mj, (D.6)

where Eq. (D.4) is the general expression of a density matrix, Eq. (D.5) is a Kraus operator,
Eq. (D.6) is a POVM element of the measurement outcome m. At first glance, ⟨ϕm|Û|ψj⟩
seems to be a constant rather than an operator, but the unitary transformation acts on the
composite system, whereas |ϕm⟩ and |ψj⟩ are the basis vectors of the probe, so the degrees
of freedom do not equal 1. Looking at Eq. (D.6), Êm clearly satisfies positivity given by

⟨Ψ|Êm|Ψ⟩ ≥ 0, (D.7)

This positivity means an experimentally obtained probability is always positive. Further-
more, the sum of the all POVM elements is

∑
j

Êj = ∑
m,j

pj ⟨ψj|Û†|ϕm⟩ ⟨ϕm|Û|ψj⟩

= Î. (D.8)

This result shows that the sum of the probabilities of all measurement outcomes is 1. On
the other hand, Eq. (D.5) and Eq. (D.6) says orthogonality is generally false. TAB. D.1
shows the difference of conditions between PVM and POVM measurements. PVM and

TABLE D.1: Comparison of the conditions between PVM and POVM mea-
surement. P̂i is projection operator defined by |ϕm⟩ ⟨ϕm|, Êm is a POVM

element. δmn is Kronecker delta.

Conditions PVM measurement POVM measurement
Completeness ∑m P̂m = Î ∑m Êm = Î

Positivity ⟨Ψ|P̂m|Ψ⟩ ≥ 0 ⟨Ψ|Êm|Ψ⟩ ≥ 0
Orthogonality P̂m P̂n = δmn Î Êm Ên ̸= δmn Î
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POVM measurements differ in the actual orthogonal conditions. This condition physi-
cally indicates whether the measurement outcomes of the system and the probe corre-
spond one-to-one. If the measurement outcomes do not correspond one-to-one, it means
that one does not know to which value of the physical property of the system corre-
sponds to the measurement outcomes obtained in the POVM measurement. This is the
reason why it is believed that POVM measurement can not manifest the value of physical
properties of system.
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Appendix E

Bit flip model

How much more error is contained in either of the two physical properties measured by
the joint measurement can be varied continuously by changing the joint measurement
parameter θJ . To illustrate it, I assign a specific polarization to the two complementary
polarization physical properties as shown in FIG. E.1. Let X̂ be the physical property with
H (+1) and V (-1) polarization in the measurement result and Ŷ be the physical property
with P (+1) and M (-1) linear polarization. Defining the angle from the physical property
X̂ as θJ , it is possible to control how accurately one measures either X̂ or Ŷ by changing
the value 0◦ ≤ θJ ≤ 90◦. The extent to which the statistics obtained through the joint
measurements contain errors can be quantitatively evaluated by introducing the flipping
probability of polarization, Pf lip.

1

𝜃𝐽

𝜃𝐽

𝑥 = +1𝑥 = −1

𝑦 = +1

𝑦 = −1

1

2

3

4

FIGURE E.1: Relation between two complementary polarization physical
property in Bloch sphere. The x, y are the value of X̂, Ŷ. The θJ is the
joint measurement parameter. Arrows labeled with i(i = 1, 2, 3, 4) are the
four measurement outcomes in the joint measurements explained in Sub-

sec. 2.1.1.

FIG. E.2 shows the change in the statistical distribution before and after the measure-
ment. Writing "statistical distribution before the measurement" may involve complex
realist arguments, but at the time of considering the dynamics of polarization flipping, it
is natural to be concerned about the relation between the two statistical distributions be-
fore and after the flipping. The number of counts Nint that would have been obtained by
a precise measurement actually approaches a random result because the measurement
contains errors; the probability of a measurement outcome that was x = +1 being de-
tected as x = −1 and the probability of a measurement outcome that was x = −1 being
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detected as x = +1 are both commonly Pf lip. Assuming that both probabilities can be
described by Pf lip, the following relationship holds.

フリッピング確率の説明

1

+1−1

𝑁𝑖𝑛𝑡(−1)

𝑁𝑖𝑛𝑡(+1)

+1−1

𝑁(−1)

𝑁(+1)Measurement

𝑥 𝑥

Count Count

FIGURE E.2: Change in the statistical distribution of the polarization phys-
ical property X̂ due to performing a measurement with errors, where Nint
is the number of counts that would have been obtained by a precise mea-
surement and N is the number of counts obtained by a measurement with

errors.

N(+1) = (1 − Pf lip)Nint(+1) + Pf lipNint(−1) (E.1)
N(−1) = Pf lipNint(+1) + (1 − Pf lip)Nint(−1), (E.2)

where Pf lip is a probability that a measurement outcome flips, 1 − Pf lip is a probability
that a measurement outcome does not flip. Using Eq. (2.1), Eq. (E.1) and Eq. (E.2), the
relation between the measurement visibility and the flipping probability is given by

VX = 1 − 2Pf lip. (E.3)

Since the measurement visibility is greater or equal to zero and less or equal to one, the
flipping probability satisfies 0 ≤ Pf lip ≤ 0.5.
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Three-box paradox

The three-box paradox was proposed by Aharonov and Vaidman in 1991. Here is an
overview of the paradox.

As an initial state, let us assume a quantum state given by

|ψi⟩ =
1√
3
(|A⟩+ |B⟩+ |C⟩) . (F.1)

Eq. (F.1) represents a quantum state in which there are three boxes, A, B, and C, and
a particle is contained somewhere in these three boxes with equal probability. Let us
choose a final state given by

⟨ψ f | =
1√
3
(⟨A|+ ⟨B| − ⟨C|) . (F.2)

An intermediate measurement is performed for the quantum state shown in Eq. (F.1). If
we measure box A and find no particles, we obtain the quantum state that no particles
were found in box A. If one measure box A and find no particles, one obtain the quantum
state that no particles were found in box A, which is given by

(
Î − |A⟩ ⟨A|

)
|ψi⟩ →

1√
2
(|B⟩+ |C⟩) . (F.3)

Since Eq. (F.2) and Eq. (F.3) are orthogonal, it follows that if no measurement was made
in box A, then no particle is ultimately detected.

Next, if an intermediate measurement is made in Box B in the same way, the quantum
state after the intermediate measurement is given by

(
Î − |B⟩ ⟨B|

)
|ψi⟩ →

1√
2
(|A⟩+ |C⟩) . (F.4)

The quantum state in Eq. (F.4) is also orthogonal to the final state in Eq. (F.2), which
means that if no particles are measured in box B, then no particles are measured in the
other two boxes. Putting these results together, the next two arguments hold.

• If no particles are measured in box A, then no particles will ultimately be detected.

• If no particles are measured in Box B, then no particles will ultimately be detected.

It follows that if a proposition is true, then its counterpart is also true, so

• If a particle is eventually detected, it is measured in box A.

• If a particle is eventually detected, it is measured in box B.
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are valid. The three-box paradox poses the problem that if these two propositions hold
simultaneously, then there is more than one particle, and this problem becomes a para-
dox.
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GHZ paradox

The GHZ paradox is one of the thought experiments used to verify Bell’s theorem, which
has the feature of being able to confirm the truth of local realism without using statistics
such as averages or correlations[48]. Here is a brief description of the GHZ paradox. A
quantum state, named GHZ state, is given by

|ψ⟩GHZ =
1√
2
(|↑↑↑⟩ − |↓↓↓⟩) . (G.1)

The three particle is observed by A, B and C. The direction of the spin measured by
these three observers is perpendicular to the direction of motion of the particles. The two
spin physical properties, X̂ and Ŷ, are measured by the three observers. The A, B and C
perform the following four kinds of measurements.

(i) A measures X̂, B and C measure Ŷ

(ii) B measures X̂, A and C measure Ŷ

(iii) C measures X̂, A and B measure Ŷ

(iv) A, B and C measure X̂

Assuming that the ↑̂ and the |↓⟩ are eigenstates of the spin of Z axis, the X̂ and the Ŷ can
be described as

X̂ =

(
0 1
1 0

)
(G.2)

Ŷ =

(
0 −i
i 0

)
. (G.3)

Under the quantum state of Eq. (G.1), the four measurements corresponding to (i)-(iv)
are described as

X̂AŶBŶC |ψ⟩GHZ = +1 |ψ⟩GHZ (G.4)
ŶAX̂BŶC |ψ⟩GHZ = +1 |ψ⟩GHZ (G.5)
ŶAŶBX̂C |ψ⟩GHZ = +1 |ψ⟩GHZ (G.6)

X̂AX̂BX̂C |ψ⟩GHZ = −1 |ψ⟩GHZ . (G.7)

Thinking these situations from the point of view of local realism, an inconsistency is
provided. Assuming that the three observers already know the results of the three mea-
surements (i)-(iii), for example, in the situation of (i), A can predict the value of X̂A from
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the results of ŶB and ŶC. Thinking the similar situations, (i)-(iii) results in

xAyByC = +1 (G.8)
yAxByC = +1 (G.9)
yAyBxC = +1, (G.10)

where the lower case letters are the values of physical properties represented by upper-
case letters. The product of these three expressions are given by

xAxBxCy2
Ay2

By2
C = 1. (G.11)

The square of y is definitely 1, so that the relation among three x is given by

xAxBxC = 1. (G.12)

This result is contradict with the prediction of quantum mechanics shown in Eq. (G.7).
Experimental verification agreed with the prediction of quantum mechanics[55].
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Hardy’s paradox

Hardy’s paradox is based on the paper written by L. Hardy in 1992[72]. The original
motivation of the paper was to show a contradiction between quantum mechanics and
local realism without using an inequality in a 2× 2 level system. FIG. H.1 shows the setup
of the thought experiment of the Hardy’s paradox. The setup of the thought experiment
consists of two Mach-Zehnder interferometers, with an electron and a positron incident
on each interferometer simultaneously. If each interferometer were independent, the two
paths of each interferometer would be adjusted so that the the electron and the positron
are always detected at detector C±. If the two interferometers are aligned as shown in
FIG. H.1, the electron and positron have a probability 1/4 of annihilating each other at
point P. The γ-rays produced are not detected. The BS1± make a quantum state given by

|e±⟩ → 1√
2

(
i |u±⟩+ |v±⟩

)
, (H.1)

where |u±⟩ and |v±⟩ are the path physical properties of electrons and positrons. The
BS2± make a quantum state given by

|u±⟩ → 1√
2

(
|C±⟩+ i |D±⟩

)
|v±⟩ → 1√

2

(
i |C±⟩+ |D±⟩

)
, (H.2)

where |D±⟩ and |C±⟩ means the detection of the electron and positron. If the BS2± are
removed, then the quantum state becomes

|u±⟩ → |C±⟩
|v±⟩ → |D±⟩ . (H.3)

The quantum state immediately after passing through BS1± is

|e+⟩ |e−⟩ → 1
2
(
i |u+⟩+ |v−⟩

) (
i |u−⟩+ |v−⟩

)
. (H.4)

After passing through point P, this quantum state becomes

1√
3

(
|v+⟩ |v−⟩+ i |v+⟩ |u−⟩+ i |u+⟩ |v−⟩

)
. (H.5)

From here, we consider four different situations as follows.

(i) Both the BS2± are placed.

(ii) The BS2+ is placed but the BS2− is removed.
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FIGURE H.1: Thought experiment of Hardy’s paradox. The |e±⟩ is the
quantum state showing the existence of the electron and positron, the |u±⟩
and |v±⟩ are the path physical properties, the |D±⟩ and |C±⟩ means the

detection of the particles.

(iii) The BS2− is placed but the BS2+ is removed,

(iv) Both the BS2± are removed.

Each case leads to the quantum states given by

(i) ⇒ 1√
12

(
−3 |C+⟩ |C−⟩+ i |C+⟩ |D−⟩+ i |D+⟩ |C−⟩ − |D+⟩ |D−⟩

)
(H.6)

(ii) ⇒ 1√
6

(
− |C+⟩ |C−⟩+ i2 |C+⟩ |D−⟩+ i |D+⟩ |C−⟩

)
(H.7)

(iii) ⇒ 1√
6

(
− |C+⟩ |C−⟩+ i |C+⟩ |D−⟩+ i2 |D+⟩ |C−⟩

)
(H.8)

(iv) ⇒ 1√
3

(
i |C+⟩ |D−⟩+ i |D+⟩ |C−⟩+ |D+⟩ |D−⟩

)
. (H.9)

If local realism is correct, it should be possible to consider all four of these quantum
states to be true simultaneously, since the measurement outcome in one system does not
depend on the measurement outcome in the other system, and the values are considered
to be determined before the measurement is made. Eq. (H.9) predicts the simultaneous



Appendix H. Hardy’s paradox 101

detection at |C±⟩, P(C+; C−) = 0. Eq. (H.8) says that if P(D−) = 1 then P(C+) =
1, and Eq. (H.7) says that if P(D+) = 1 then P(C−) = 1. Now, let is consider the
experiment for which P(D+; D−) = 1. Eq. (H.6) implies that P(D+; D−) = 1/12, so that
the simultaneous detection at D± is predicted even in quantum mechanics. Simultaneous
reality of Eq. (H.7) and Eq. (H.8) requires P(C+; C−) = 1 however this result contradict
with the prediction of Eq. (H.7), P(C+; C−) = 0. This is the contradiction in Hardy’s
paradox.
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Bloch sphere

A Bloch sphere is a tool used to visually identify the quantum state of a two-level phys-
ical system. the Bloch sphere is highly practical not only for basic research in quantum
mechanics using two-level physical systems, but also for visual understanding of the
quantum state of a qubit in the recent field of quantum information technology. In this
section, we will explain the fundamentals necessary to understand the quantum states of
two-level systems using the Bloch sphere. The quantum pure state of a two-level physical
system is generally described as

|ψ⟩ = cos
θ

2
|↑⟩+ eiϕ sin

θ

2
|↓⟩ , (I.1)

where the θ is a parameter that determines the ratio between the |↑⟩ and the |↓⟩, and
the ϕ is the phase difference of the |↓⟩ relative to the |↑⟩, i is imaginary unit. If |↑⟩ is
an eigenstate with eigenvalue +1 and |↓⟩ is an eigenstate with eigenvalue −1, then the
physical property defined by the basis of {|↑⟩ , |↓⟩} is described by the Pauli operator
σ̂Z. Similarly, the physical property with {(|↑⟩+ |↓⟩)/2, (|↑⟩ − |↓⟩)/2} as an eigenstate
corresponds to σ̂X and the physical property with {(|↑⟩+ i |↓⟩)/2, (|↑⟩ − i |↓⟩)/2} as an
eigenstate corresponds to σ̂Y, where (|↑⟩+ |↓⟩)/2 and (|↑⟩+ i |↓⟩)/2 are eigenstates be-
longing to eigenvalue +1, and (|↑⟩ − |↓⟩)/2 and (|↑⟩ − i |↓⟩)/2 are eigenstates belonging
to eigenvalue −1. Using Eq. (I.1), the expectation values of these three physical proper-
ties are given by

⟨ψ| σ̂Z |ψ⟩ = cos θ (I.2)
⟨ψ| σ̂X |ψ⟩ = sin θ cos ϕ (I.3)
⟨ψ| σ̂Y |ψ⟩ = sin θ sin ϕ. (I.4)

As can be seen from Eqs. (I.2)-(I.4), once the two parameters θ and ϕ are determined, one
point on the sphere of radius 1 is uniquely determined. This sphere is called Bloch sphere
as shown in FIG. I.1. Each of the three axes corresponds to the expected value of three
physical properties, one quantum state is determined by the expectation of three physical
properties. If the quantum state is a pure state, the Bloch vector points to a point on the
Bloch sphere, and the relation among the three expectation values are given by

⟨ψ| σ̂Z |ψ⟩2 + ⟨ψ| σ̂X |ψ⟩2 + ⟨ψ| σ̂Y |ψ⟩2 = 1. (I.5)

If the quantum state is a mixed state, the length of the Bloch vector is less than 1. Since
a mixed state is a statistical superposition of some pure states, it can be described using
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FIGURE I.1: Bloch sphere and a quantum state. The red arrow shows the
expectation value of σ̂Z, the blue arrow is the expectation value of σ̂X and
the green arrow is corresponding to the one of σ̂Y. A quantum state de-
scribed by ρ̂ is corresponding to one arrow whose starting point is the ori-

gin in the Bloch sphere. This black arrow is called Bloch vector.

Eq. (I.1) as

ρ̂ = ∑
i

pi |ψi⟩ ⟨ψi|

=

(
∑i pi cos2 θi ∑i e−iϕi pi cos θi sin θi

∑i eiϕi pi cos θi sin θi ∑i pi sin2 θi
,
)

(I.6)

where |ψi⟩ = cos θi
2 |↑⟩+ eiϕi sin θi

2 |↓⟩, pi is classical statistical ratio of a pure state labeled
with i in the total quantum state. Under this mixed state, the expected values of the three
physical quantities are given by

⟨σ̂Z⟩ = Tr [ρ̂σ̂Z] = ∑
i

pi ⟨ψi| σ̂Z |ψi⟩ (I.7)

⟨σ̂X⟩ = Tr [ρ̂σ̂X] = ∑
i

pi ⟨ψi| σ̂X |ψi⟩ (I.8)

⟨σ̂Y⟩ = Tr [ρ̂σ̂Y] = ∑
i

pi ⟨ψi| σ̂Y |ψi⟩ . (I.9)

Therefore, the Bloch vector representing the mixed state can be understood as a weighted
addition to the Bloch vector representing the all pure states. Since Bloch space is a convex
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space, the weighted addition of Bloch vectors representing pure states always points to
the interior of the Bloch sphere. A quantum state such that all expectations are zero is
called a maximally mixed state. A quantum time evolution described by unitary trans-
formation implies a rotation of the Bloch vector around an axis.
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Appendix J

Verification of the Bell’s inequality
violation

Prior to the first experiment, we conducted an experiment to verify Bell’s inequality with
precise measurements using an experimental setup shown in FIG. 3.1. In this Appendix,
I describe the results of the verification. Two polarization physical properties, X̂A and
ŶA, are measured in system A, and two polarization physical properties, X̂′B and Ŷ′B, in
system B. FIG. J.1 shows the joint statistical distributions obtained in the experiment. In
the case of precise measurements, 2× 2 = 4 independent joint statistical distributions are
evaluated because one of the two polarization physical properties is measured randomly.
In each joint statistical distribution, the probabilities are normalized and the four joint
probability distributions result in the four Bell correlations given by

⟨X̂AX̂′B⟩ = −0.634 ± 0.003 (J.1)
⟨X̂AŶ′B⟩ = 0.811 ± 0.004 (J.2)
⟨X̂AX̂′B⟩ = −0.735 ± 0.004 (J.3)
⟨X̂AX̂′B⟩ = −0.511 ± 0.003. (J.4)

Eqs. (J.1)-(J.4) provides the average of B̂ defined by Eq. (2.14),

⟨B̂⟩ = −2.691 ± 0.007 (J.5)

This is roughly a 98σ violation compared to ⟨B̂⟩ = −2. Similar to the results confirmed
by numerous experiments, Bell’s inequality was confirmed to be violated. Since the re-
lation among all four physical properties are normally equal, the four Bell correlations
should show the same value, but there are differences among the correlation values due
to imperfections in the initial state and the setting angles of polarization selection. It is
believed that this uneven result could be alleviated by adjusting the interferometer and
determining the setting angle of polarization selection more precisely.
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𝑥𝐴 = +1 𝑥𝐴 = −1

𝑥′𝐵 = +1 11413 49579

𝑥′𝐵 = −1 48971 10630

𝑥𝐴 = +1 𝑥𝐴 = −1

𝑦′𝐵 = +1 52016 7795

𝑦′𝐵 = −1 3581 56793

𝑦𝐴 = +1 𝑦𝐴 = −1

𝑥′𝐵 = +1 8030 53404

𝑥′𝐵 = −1 52206 8128

𝑦𝐴 = +1 𝑦𝐴 = −1

𝑦′𝐵 = +1 11494 48215

𝑦′𝐵 = −1 42967 17989

(a) (b)

(c) (d)

FIGURE J.1: Experimental results of statistical distributions obtained in an
experiment to verify Bell’s inequality using precision measurements. All
values were obtained from a 10-second measurement. (a) X̂A was mea-
sured in system A and X̂′B in system B. (b)X̂A was measured in system A
and Ŷ′B in system B. (c) ŶA was measured in system A and X̂′B in system

B. (d) ŶA was measured in system A and Ŷ′B in system B.



109

Appendix K

Derivation of Bell’s inequalities

This appendix gives the derivation of two types of historically important Bell inequalities.
The first is the inequality given by Bell himself in 1964[3], and the second is a CHSH-type
inequality[7].

K.1 Original Bell’s inequality

Bell assumed the following situation. Two observers, Alice and Bob, measure the spin of
entangled 1/2 spin particles. The three spin to be measured are Â, B̂ and Ĉ. When one of
the three physical properties is measured, the value obtained is ±1, so that the value of
the spin obtained by Alice or Bob is given by

SA,B(X̂, λ) = ±1, (K.1)

where the A, B are the label of the two observers, the X̂ is one of the three spin physical
properties, the λ is a hidden variable. Eq. (K.1) assumes locality, viz, the value of spin
doesn’t depend the other value of spin. Assuming hidden variables or pre-assigning spin
values implies an assumption of reality. If one assumes initial conditions such that the
spin values measured by Alice and Bob are always opposite, the relation between the two
spin values is given by

SA(X̂, λ) = −SB(X̂, λ). (K.2)

Let us define the correlation of non-local spin physical properties given by

C(X̂A; X̂B) :=
∫

SA(X̂1, λ)SB(X̂2, λ)dλ, (K.3)

where the X̂A and the X̂B are spin physical properties measured by Alice and Bob,
∫

dλ =
1 is hold. Even if we assume a situation where the hidden variables are unevenly dis-
tributed, we can easily generalize an argument. Given the difference between the two
types of correlations,

C(Â; B̂)− C(Â; Ĉ) =
∫

SA(Â, λ)SB(B̂, λ)− SA(Â, λ)SB(Ĉ, λ)dλ

= −
∫

SA(Â, λ)SA(B̂, λ)
(
1 − SA(B̂, λ)SA(Ĉ, λ)

)
dλ, (K.4)

where Eq. (K.2) and SA(B̂, λ)2 = 1 were used during the transformation of the equation.
Absolute value of the SA(Â, λ)SA(B̂, λ) is definitely less than +1, so that the relation
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between left hand side and right hand side is given by

|C(Â; B̂)− C(Â; Ĉ)| ≤
∣∣∣∣∫ 1 − SA(B̂, λ)SA(Ĉ, λ)dλ

∣∣∣∣
= |1 + C(B̂; Ĉ)|, (K.5)

due to Eq. (K.2). The 1 + C(B̂; Ĉ) is definitely positive, so that the Bell’s inequality is
given by

|C(Â; B̂)− C(Â; Ĉ)| ≤ 1 + C(B̂; Ĉ). (K.6)

Suppose Â and B̂ are orthogonal spin physical properties and Ĉ is a physical property
exactly between the two spins, the three correlations in the inequality become

C(Â; B̂) = 0 (K.7)

C(Â; Ĉ) = − 1√
2

(K.8)

C(B̂; Ĉ) = − 1√
2

, (K.9)

thus, Eq. (K.6) is violated in quantum mechanics.

K.2 CHSH-type Bell’s inequality

The assumed physical situation is the same as the derivation of Bell’s inequality above.
Alice measures X̂A and B̂. Bob measures X̂′B and Ŷ′B. The value of these four spin
physical properties are xA, yA, x′B and y′B, and they can take +1 or −1. The assumption of
reality allows us to assign the value of these four spin physical properties simultaneously,
so that we can consider the relation given by

b := xA(x′B − y′B) + yA(x′B + y′B). (K.10)

No matter how the values of the four spins are assigned, the absolute value of b cannot
exceed 2 because x′B − y′B or x′B + y′B become 0. This value of b is defined for just one pair
of particles, but if we consider the mean value of b in the population, the mean value of b
must satisfy the inequality given by

−2 ≤ ⟨X̂AX̂′B⟩ − ⟨X̂AŶ′B⟩+ ⟨ŶAX̂′B⟩+ ⟨ŶAŶ′B⟩ ≤ 2. (K.11)

This is just CHSH-type Bell’s inequality.
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Appendix L

Semiconductor laser

Laser is an acronym for light Amplification by Stimulated Emission of Radiation, and
originally meant amplifier. Therefore, when one simply say "laser", it means laser device,
and the light produced by a laser device is called laser light. This section does not go into
the historical background of laser or their applied use, but rather explains the minimum
necessary to understand the semiconductor lasers used in our experiment. The elements
necessary to realize a laser are the inverted distribution and the optical resonator. These
will be explained, followed by an explanation of how the semiconductor laser achieves
these conditions.

L.1 Inverted distribution

There are only three types of light-matter interactions that occur within matter: absorp-
tion, induced emission, and spontaneous emission. An electron absorbing a photon and
having an energy of E1 transitions to a state having an energy of E2. The relation between
these two energy levels is given by

h̄ω = E2 − E1, (L.1)

where h̄ is the Dirac constant and ω is the angular frequency of light; Eq. (L.1) is called
the Bohr’s frequency condition. The energy of light incident on a material is reduced
by the energy of the absorbed photons; an electron with energy E2 can be shaken by an
oscillating electromagnetic wave and return to the E1 energy level again, or it can return
to the E1 energy level without interaction with light. The former is induced emission and
the latter is spontaneous emission. After induced emission occurs, the energy of the light
increases by the energy of the photons emitted when the energy level of the electrons falls.
The probability of photon absorption and induced emission occurring is characterized by
the fact that they are proportional to the intensity of the light incident on the material. For
a population of photons, the above three phenomena occur simultaneously. The model
for dealing with these phenomena simultaneously is given by

pemi = A + Bρω (L.2)
pabs = Bρω, (L.3)

where ρω is energy density of light with angular frequency ω, A is called the natural
emission coefficient and B is called the induced emission coefficient. If the number of
electrons at the energy level of E1 is N1 and the number of electrons at the energy level of
E2 is N2, the energy of absorbed light per unit time is given by

Iabs = h̄ωN1 pabs = h̄ωN2Bρω. (L.4)
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FIGURE L.1: Energy level diagram for inverted distribution. When elec-
trons are excited from the E1 level to the E3 level, some fall directly to the
E1 level, but some relax to the E2 level; if a material is used that stays in
the E2 level for a long time, the number of electrons in E2 is larger than the
number in E1, and an inverted distribution is realized between E1 and E2.

The energy of light emitted per unit time is given by

Iemi = h̄ωN2 pemi = h̄ωN2 (A + Bρω) . (L.5)

When matter is in thermal equilibrium, Eq. (L.4) and Eq. (L.5) should be equal because
absorption and emission of light apparently do not occur. This relation provides

ρther =
A
B
· N2

N1 − N2
, (L.6)

where ρther is energy density of radiation when in thermal equilibrium. The relation
between the number of electrons occupying different energy levels when a substance
and light are in thermal equilibrium is given by the Boltzmann factor as

N2 = N1e−
h̄ω

kBT , (L.7)

where kB is Boltzmann’s constant and T is the temperature of the substance. Substituting
Eq. (L.7) for Eq. (L.6) yields

ρther =
A
B
· 1

e
h̄ω

kBT − 1
. (L.8)

Considering the case where light with an angular frequency of ω is incident on a material
in thermal equilibrium, Eqs. (L.4), (L.5), and (L.8) provide the net absorbed light energy
given by

∆ρ = h̄ωB(ρω − ρther)(N1 − N2). (L.9)

If light with an energy higher than the thermal radiation emitted by a material in thermal
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FIGURE L.2: Principle of laser oscillation. An inverted distribution
medium of length Lsub and gain constant the G is placed in an optical res-
onator. The R is the reflectance of the mirror and the Lcav is the length of

the optical resonator. Red arrows show laser light.

equilibrium is incident on the material, the light should be absorbed. Under this condi-
tion, ρther < ρω is satisfied. Eq. (L.7) shows that the number of electrons in higher energy
level is never larger than the one of in lower energy level. However, if one can somehow
create a situation where the number of electrons at the energy level of E2 is greater than
the number of electrons at the energy level of E1, then Eq.(L.9) will be negative and the
energy of the light will be amplified. Such a situation is called an inverted distribution.
Until 1960, when lasers were actually realized, it was thought to be impossible to achieve
an inverted distribution.

If only two energy levels are used to amplify light, it is not possible to create an in-
verted distribution. This is because induced emission occurs with the same probability
of absorbing light, and N2 and N1 will soon become the same. Therefore, to amplify light,
three or more levels are used, as shown in FIG. L.1. The world’s first laser was realized
using rubies as the inverted distribution medium. Rubies have a long lifetime (roughly
3[ms]) for electrons to remain in E2 and have a broad absorption spectrum but a narrow
fluorescence spectrum, making them suitable for realizing lasers.

L.2 Optical resonator

Simply achieving an inverted distribution not only does not efficiently amplify the light,
but also does not provide the monochromatic, directional, and other properties of laser
light. To solve these problems, an optical resonator is necessary. FIG. L.2 shows the
principle of laser oscillation. The inverted distribution medium is sandwiched between
mirrors with reflectance R. During one passage of light through this inverted distribution
medium, the intensity of the light is multiplied by eGLsub . Even if R were less than 1,
the light intensity would continue to increase because the light is amplified each time
it passes through the inverted distribution medium. To be amplified, ReGLSub > 1 is
necessary. Since the gain constant is proportional to the difference between the number
of electrons in E2 and the number of electrons in E1, the light is amplified to some extent
and the number of electrons in E2 decreases to satisfy ReGLsub = 1, at which point the light
is not amplified any further.



114 Appendix L. Semiconductor laser
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Transition
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FIGURE L.3: Energy band diagram of a double heterostructure, where A
represents the n-type clad layer, B represents the active layer, and C rep-
resents the p-type clad layer. n-type clad layers contain many electrons,
while p-type clad layers contain many holes. The band-junction energy of
the active layer is smaller than that of the p- and n-type semiconductors,
allowing electrons and holes to accumulate more efficiently. The transi-

tions of electrons produced in this active layer generate photons.

The light amplified in an optical resonator is limited to only that which has a resonant
frequency which satisfy a condition given by

ωres =
nπc
Lcav

, (L.10)

where ωres is resonance angular frequency, n ∈ N, c is the speed of light. This condition
is derived from the fact that the length of the optical resonator is equal to the product of
half the wavelength of the light and a natural number.

L.3 Semiconductor laser

A semiconductor laser is a laser that uses light emission from a semiconductor. This sec-
tion describes how semiconductor lasers achieve an inverted distribution and an optical
resonator. In Sec. L.1, we assumed electrons taking discrete energy levels, but energy
levels in semiconductors can be considered to take on nearly continuous values. How-
ever, due to the periodicity of the crystal, it is not possible to take an energy level in a
certain region. This region is called the forbidden band. The energy band below the for-
bidden band is called the valence band, and the energy band above the forbidden band
is called the conduction band. Electrons in the conduction band can move freely and
thus contribute to electrical conduction, while electrons in the valence band can move
only within a localized area and thus do not contribute to electrical conduction. When
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electrons in the conduction band transition to the valence band, it emits photon corre-
sponding to the band gap energy of the forbidden band. Semiconductor lasers use this
radiation. Even if electrons are present in the conduction band, they cannot transition
to the valence band if there is no seat for the electrons to move to the valance band. A
p-n junction is used to create a situation where there are electrons in the conduction band
and a seat for the transfer of electrons, or so-called holes, in the valence band. By doping
semiconductors with impurity elements, it is possible to create n-type semiconductors,
which have electrons in the conduction band, and p-type semiconductors, which have
holes in the valence band. Which type of semiconductor is created depends on the va-
lence electron number of the doped element. When a p-type and n-type semiconductors
are p-n junctioned and a positive voltage is applied to the p-type semiconductor, an elec-
tron in the conduction band of the n-type semiconductor transitions to the position of a
hole in the p-type semiconductor, thus emitting a single photon. In order for laser oscil-
lation to occur, the probability of an electron in the conduction band must be greater than
the probability of an electron in the valence band, namely an inverted distribution must
be achieved. A mere p-n junction requires a large current density (100kA/cm2) and could
not efficiently achieve an inverted distribution. Therefore, a double heterostructure was
considered, as shown in FIG. L.3. The active layer inserted between the p-type and the n-
type clad layer has a smaller band gap energy than them. Therefore, electrons and holes
are accumulated efficiently in the active layer, and electron transitions occur in the active
layer. The double heterostructure can create an inverted distribution more efficient than
a p-n junction.

In general, the band gap energy and the refractive index are in the trade-off relation.
Therefore, the refractive index of the active layer is greater than that of the p-type and
n-type clad layers. This fact means that light repeatedly undergoes total reflection within
the active layer and light is confined within the active layer. FIG. L.3 is written as if the
generated photons propagate through the p-type clad layer, but in reality they propagate
through the active layer. The optical resonator necessary for laser oscillation is realized
by the cleavage plane of the crystals in the active layer. The two facing cleavage planes
act as mirrors to amplify the laser light in the active layer. This is the principle of a
semiconductor laser.
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Appendix M

Single mode fiber

Optical fiber is an optics that enables long-distance transmission of light, and single-
mode fiber is a type of optical fiber. The only physical phenomenon used to transmit
light is total reflection of light. As shown in FIG. M.1, when light is incident from a
medium with a large refractive index into a medium with a small refractive index, light
incident at an angle greater than a certain angle of incidence, which is given by θ =
arcsin n2/n1, is totally reflected and propagates through the medium called the core of
the optical fiber. Thus, the refractive index of the core is designed to be greater than
that of the cladding, but the difference between them is roughly on the order of 10−3,
then n1 − n2 ≪ 1. Single mode fiber means an optical fiber whose core diameter is
about 10 times or less than the wavelength of the light propagating inside. Typically, the
core diameter of a single-mode fiber is about 9 − 10[µm], the diameter of the cladding is
defined by international standards to be 125[µm]. As can be seen from the structure of
the optical fiber, it is convenient to solve Maxwell’s equations in a cylindrical coordinate
system to predict the electromagnetic field inside the optical fiber. Considering that the
materials inside the optical fiber are all dielectric, Maxwell’s equation is given by

∇⃗ × E⃗(⃗r, t) = −∂tB⃗(⃗r, t) (M.1)
∇⃗ · D⃗(⃗r, t) = 0 (M.2)

∇⃗ × H⃗(⃗r, t) = ∂tD⃗(⃗r, t) (M.3)
∇⃗ · B⃗(⃗r, t) = 0, (M.4)

where ∂t is equivalent to ∂/∂t, r⃗ is position. These four equations derive wave equation
given by (

∆ − n2k2
0

ω2 ∂2
t

) [
E⃗ (⃗r, t)
H⃗ (⃗r, t)

]
= 0, (M.5)

where n is the refractive index distribution shown in FIG. M.1, k0 is the magnitude of
wave number vector in air, ω is angular frequency of incident electromagnetic wave.
Considering the propagation of light in the z-axis direction, if we assume that the mag-
nitude of the electromagnetic field depends only on the distance from the central axis of
the optical fiber r and the angle of rotation ϕ, the shape of the electromagnetic field can
be expressed by [

E⃗ (⃗r, t)
H⃗ (⃗r, t)

]
=

[
E⃗ (r, ϕ)

H⃗ (r, ϕ)

]
ei(kzz−ωt), (M.6)

where kz is z-component of the wave number vector. Representing Eq. (M.1) and Eq.
(M.3) in cylindrical coordinate system and substituting Eq. (M.6) for Eq. (M.1) and Eq.
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FIGURE M.1: Schematic of an optical fiber and the refractive index distri-
bution. n1 is the refractive index of the core with radius a, n2 is the refrac-
tive index of the cladding with radius b. n0 is the refractive index of air,

which is approximately equal to that of a vacuum.

(M.3), the six equations are given by

iωεEr = ikzHϕ −
1
r

∂ϕHz (M.7)

iωεEϕ = −ikzHr + ∂r Hz (M.8)

iωεEz =
1
r

∂ϕHr −
1
r

∂rrHϕ (M.9)

iωµHr = −ikzEϕ +
1
r

∂ϕEz (M.10)

iωµHϕ = ikzEr − ∂rEz (M.11)

iωµHz = −1
r

∂ϕEr +
1
r

∂rrEϕ, (M.12)

where where ε is the dielectric constant and µ is the magnetic permeability. The wave
equation for the z-component is not different from its form in the Cartesian coordinate
system and can be solved easily. In other words, finding Ez and HZ is not so complicated.
Considering that the z-component is used to express the components of r and ϕ, Eq. (M.5)
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- (M.6) leads to expressions given by

Er =
ikz

ω2εµ − k2
z

(
∂rEz +

ωµ

kz

1
r

∂ϕHz

)
(M.13)

Eϕ =
ikz

ω2εµ − k2
z

(
1
r

∂ϕEz −
ωµ

kz
∂r Hz

)
(M.14)

Hr =
ikz

ω2εµ − k2
z

(
∂r Hz −

ωµ

kz

1
r

∂ϕEz

)
(M.15)

Hϕ =
ikz

ω2εµ − k2
z

(
1
r

∂ϕHz +
ωµ

kz
∂rEz

)
. (M.16)

In other words, all components of the electromagnetic field can be derived by obtaining
the z-component of the electromagnetic field from these relations. Using the Laplacian in
cylindrical coordinates, the z-component of Eq. M.5 becomes(

∂2
r +

1
r

∂r +
1
r2 ∂2

ϕ +
(
k2 − k2

z
)) [Ez

Hz

]
= 0. (M.17)

Since this equation is in a form in which the method of separation of variables can be
used, the z-component of the electromagnetic field are given by[

Ez
Hz

]
=

[
Ez0(r)
Hz0(r)

]
e±ilϕ, (M.18)

where U(r) is the magnitude of Ez or Hz. Since the electromagnetic field should be a
single-values function, l must be a natural number or 0. Substituting this relation for Eq.
(M.17), the equation for r is given by

d2
r +

1
r

dr +

(
k2 − k2

z −
l2

r2

) [
Ez0(r)
Hz0(r)

]
= 0. (M.19)

This equation is the Bessel equation and there are two cases given by[
Ez0(r)
Hz0(r)

]
=

{
c1 Jl(hr) + c2Yl(hr) (k2 − k2

z > 0)
c1 Il(qr) + c2Kl(qr) (k2 − k2

z < 0)
(M.20)

where c1 and c2 are constant, jl is Bessel functions of the first kind of order l, Yl is Bessel
functions of the second kind of order l, Il is Modified Bessel functions of the first kind
of order l, Kl is Bessel functions of the first kind of order l, h and q are defined by h ≡√

k2 − k2
z =

√
n2

1k2
0 − k2

z, q ≡
√

k2
z − k2 =

√
k2

z − n2
2k2

0, respectively. The four types of
Bessel functions have the form given by

Jl (x) ≡
∞

∑
m=0

(−1)m

m!Γ (m + l + 1)

( x
2

)2m+l
(M.21)

Yl (x) ≡ lim
n→l

Jn (x) cos nπ − J−n(x)
sin nπ

(M.22)

Il (x) ≡
∞

∑
m=0

1
m!Γ (m + l + 1)

( x
2

)2m+l
(M.23)

Kl (x) ≡ lim
n→l

π

2
I−n (x)− In (x)

sin nπ
, (M.24)
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where Γ(z) is gamma function defined by

Γ (z) ≡ lim
n→∞

nzn!
∏n

m→0 (z + m)
. (M.25)

The coefficients within Eq. (M.20) can be determined from physical intuition and bound-
ary conditions at the core-cladding boundary.

The electromagnetic field inside the core should have an oscillating form, and it is Jl
and Yl that exhibit such behavior. Thus, k2 − k2

z > 0 is satisfied inside the core. In the
limit where r is 0, Yl(hr) diverges. Since the electromagnetic field must take a finite value,
c2 must be zero for the effect of Yl(hr) to disappear. Therefore, when r < a is satisfied,
the z-component of the electromagnetic field inside the core is as follows

Ez (r, t) = AJl (hr) ei(kzz−ωt±lϕ) (M.26)

Hz (r, t) = BJl (hr) ei(kzz−ωt±lϕ), (M.27)

A, B are arbitrary constants. Substituting these relations into Eq. (M.13)-(M.16), all com-
ponents of the electromagnetic field can be determined as follows.

Er =
ikz

h2

(
Ahdhr Jl (hr)± iωµl

kzr
BJl (hr)

)
ei(kzz−ωt±lϕ) (M.28)

Eϕ =
ikz

h2

(
± il

r
AJe (hr)− ωµ

kz
Bhdhr Jl(hr)

)
ei(kzz−ωt±lϕ) (M.29)

Hr = − ikz

h2

(
Bhdhr Jl (hr)∓ inε1l

kzr
AJl(hr)

)
ei(kzz−ωt±lϕ) (M.30)

Hϕ = − ikz

h2

(
± il

r
BJl (hr) +

ωε1

kz
Ahdhr Jl (hr)

)
ei(kzz−ωt±lϕ), (M.31)

where h ≡
√

k2 − k2
z =

√
n2

1k2
0 − k2

z, dhr = d/d(hr), ε1 = ε0n2
1.

Next, let us consider the electromagnetic field in the cladding. At the boundary be-
tween the core and the cladding(r = a), the direction of ϕ of the electromagnetic field
must be continuous. This is a requirement obtained from Maxwell’s equations. The
electromagnetic field seeps into the cladding as evanescent light, but its amplitude is
immediately attenuated. It is the modified Bessel function, Il(qr) and Kl(qr), that can
describe such behavior. However, Il(qr) diverges in the limit where r is infinite. In order
for the electromagnetic field not to diverge, c1 in Eq. (M.20) must be zero. Eventually, the
electromagnetic waves at the cladding (r > a) are given by

Ez (r, t) = CKl(qr)ei(kzz−ωt±lϕ) (M.32)

Hz (r, t) = DKl(qr)ei(kzz−ωt±lϕ), (M.33)
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where C, D are arbitrary constants. Substituting these relations into Eq. (M.13)-(M.16),
all components of the electromagnetic field can be given by

Er = − ikz

q2

(
CkdqrKl (qr)± iωµl

kzr
DKl (qr)

)
ei(kzz−ωt±lϕ) (M.34)

Eϕ = − ikz

q2

(
± il

r
CKl (qr)− ωµ

kz
DqdqrKl(qr)

)
ei(kzz−ωt±lϕ) (M.35)

Hr =
ikz

q2

(
DqdqrKl (qr)∓ inε2l

kzr
CKl(qr)

)
ei(kzz−ωt±lϕ) (M.36)

Hϕ =
ikz

q2

(
± il

r
DKl (qr) +

ωε2

kz
CqdqrKl (qr)

)
ei(kzz−ωt±lϕ), (M.37)

where q ≡
√

k2
z − k2 =

√
k2

z − n2
2k2

0, dqr = d/d(qr), ε2 = ε0n2
2.

Since the components of the electromagnetic field horizontal to the core-cladding
boundary must be continuous, the Eϕ, Ez, Hϕ and Hz must be continuous at r = a. This
requirement results in the simultaneous equations given by

Jl(ha) 0 −Kl(qa) 0
± ikz l

ah2 Jl(ha) −ωµ
h dha Jl(ha) ± ikz l

aq2 Kl(qa) −ωµ
q dqaKl(qa)

0 Jl(ha) 0 −Kl(qa)
ωε1

h dha Jl(ha) ± ikz l
ah2 Jl(ha) ωε2

q dqaKl(qa) ± ikz l
aq2 Kl(qa)




A
B
C
D

 = 0. (M.38)

In order for the equation to be satisfied without the arbitrary counts from A to D being
zero, the condition that the determinant of the four times four matrix on the left-hand
side be zero is satisfied by

ε0

(
dah Jl(ah)
ahJl(ha)

+
daqKl(aq)
aqKl(aq

)(
n2

1dah Jl(ah)
ahJl(ah)

+
n2

2daqKl(aq)
aqKl(aq)

)

= l2

(
±
(

1
ah

)2

±
(

1
aq

)2
)2

k2
z. (M.39)

By solving this equation, the z-component of the wavenumber vector can be obtained.
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Appendix N

Polarization beam splitter

A polarizing beam splitter (PBS) is an optical element used to separate the horizontal
(H) and vertical (V) components of incident light. To understand the principle and opti-
cal properties of PBS, it is necessary to understand the behavior of light at the interface
between two media with different refractive indices and the thin film technology that ex-
ploits these properties. This appendix will explain the minimum knowledge required to
understand the principles of PBS.

N.1 Boundary conditions and relation between electric and mag-
netic fields

In this section, the boundary conditions that the electric and magnetic fields must satisfy
at the boundary surfaces with different refractive indices and the relation between the
electric and magnetic fields are derived from Maxwell’s equations. Maxwell’s equations
in dielectric are given by Eqs. (M.1)-(M.4). Considering a single mode plane wave, Eq.
(M.1) the relation between the magnitude of the electric and magnetic fields, which is
given by

|E⃗| =
√

µ

ε
|H⃗|, (N.1)

where |E⃗|, |H⃗| is the magnitude of the electric and magnetic field, µ is a magnetic perme-
ability, ε is a dielectric constant. Eq. (N.1) is often used to simplify the description of the
electromagnetic field at the boundary.

Next, let us derive the boundary conditions for the electric field. Integrating Eq. (M.1)
in the region shown in FIG. N.1 and applying Stokes’ theorem, we obtain∫

l
E⃗ · d⃗l = −

∫
S

∂tB⃗ · d⃗s. (N.2)

1

𝑛1

𝑛2

𝑑ℎ
𝑑𝑙

FIGURE N.1: A virtual micro-rectangle on the boundary surface of a
medium with different refractive indices, where dh is the micro-height and

dl is the micro-width.
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In the limit dh → 0, the area of the rectangle in FIG. N.1 is zero, so the value on the right
side of Eq. (N.2) is zero. Since only the components of the electric field parallel to the
edge of length dl are relevant to the calculation of the left-hand integral, Eq. N.2 becomes

−E1tdl + E2tdl = 0
E1t = E2t, (N.3)

where E1t is the component of the electric field in a medium with refractive index n1,
parallel to the boundary plane, and E2t is the component of the electric field in a medium
with refractive index n2, parallel to the boundary plane. Therefore, at the boundary sur-
face of a medium with different refractive indices, the components of the electric field
parallel to the boundary surface become continuous.

Next, let us derive the boundary conditions of the magnetic field. Integrating Eq.
(M.3) in the region shown in FIG. N.1, and applying Stokes’ theorem, the following rela-
tional equation is derived ∫

l
H⃗ · d⃗l =

∫
S

∂tD⃗ · d⃗s. (N.4)

By following the same procedure as when the boundary conditions for the electric field
was derived, the boundary condition of the magnetic field is given by

H1tds − H2tdl = 0
H1t = H2t, (N.5)

where H1t is the component of the magnetic field in a medium with refractive index
n1, parallel to the boundary plane, and B2t is the component of the magnetic field in a
medium with refractive index n2, parallel to the boundary plane. Thus, under conditions
where there is no current density at the boundary, the components of the magnetic field
parallel to the boundary plane must be continuous.

N.2 Fresnel equations and Brewster angle

The physical phenomena necessary to understand thin film technology are summarized
in Fresnel equations. Fresnel equations describe the reflectance and transmittance of light
at the interface between two media with different refractive indices. FIG. N.2 shows
an electromagnetic wave incident from a medium with a refractive index of n1 into a
medium with a refractive index of n2. The plane containing the incident and reflected
electroagnetic wave is called the entrance plane. Polarization perpendicular to the en-
trance plane is called s-polarization, and parallel polarization is called p-polarization1.
The polarization of an electromagnetic wave is usually defined as the orientation of os-
cillation of the electric field because near the wavelength region of light, the electric field
has a greater effect on the electrons that consist of the medium than the magnetic field. In
FIG. N.2, we assume a situation where the polarization of the incoming electromagnetic
wave is s-polarized, i.e., the oscillation orientation of the electric field is perpendicular to
the incident plane, but let us consider the case of p-polarized wave later.

If the incident electromagnetic wave is s-polarized, the electric field is always oscillat-
ing perpendicular to the entrance plane and is therefore always parallel to the boundary

1The names p-polarization and s-polarization have come from the German words "parallel" and
"senkrecht", meaning "parallel" and "perpendicular".
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𝑥

𝑦

𝜃𝑟

𝜃𝑡

𝜃𝑖

𝐸𝑖 𝐸𝑟

𝐻𝑡

𝐻𝑖 𝐻𝑟

𝐸𝑡

𝑧

𝑛1

𝑛2

FIGURE N.2: The relation among incident, reflected, and transmitted light
at the interface between two media with different refractive indices. In this
figure, the electric field is assumed to oscillate perpendicular to the inci-
dent plane. The direction of oscillation of the magnetic field perpendicular
to the electric field is parallel to the plane of incidence, where θi, θr, and θt

are the angle of incidence, reflection, and refraction, respectively.

of the medium, viz, Eq. (N.3) requires

Ei + Er = Et. (N.6)

On the other hand, Eq. (N.5) requires that the components of the magnetic field oscillat-
ing parallel to the boundary plane be continuous, so the incident, reflected, and refracted
angles must be considered in the situation shown in FIG. N.2, i.e., Eq. (N.1) and Eq. (N.5)
requires

Ei

√
ε1

µ1
cos θi − Er

√
ε1

µ1
cos θr = Et

√
ε2

µ2
cos θt. (N.7)

In general dielectric materials, the permeability, which expresses the ease of magnetiza-
tion, is almost the same as the permeability value in a vacuum. Therefore, if µ0 ≈ µ1 ≈ µ2
holds, the boundary condition becomes

Ein1 cos θi − Ern1 cos θr = Etn2 cos θt, (N.8)

where the relations √
ε j = nj

√
ε0, nj =

√
ε jµj/

√
ε0µ0(j = 1, 2) were considered. Solving

the simultaneous equations of Eq. (N.6) and Eq. (N.8), the amplitude reflectance and
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amplitude transmittance are given by

rs :=
Er

Ei
=

n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
(N.9)

ts :=
Et

Ei
=

2n1 cos θi

n1 cos θi + n2 cos θt
, (N.10)

where θi = θr was used because of Snell’s law.
In the situation shown in FIG. N.2, the amplitude reflectance and transmittance can

be derived in the same way when the incident polarization is p-polarization, and they
are given by

rp :=
Er

Ei
=

n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
(N.11)

tp :=
Et

Ei
=

2n1 cos θi

n2 cos θi + n1 cos θt
, (N.12)

where θi = θr was used because of Snell’s law as well.
Looking at the form of the Eqs. (N.9)-(N.12), the only situations in which the value

is likely to be zero are Eq. (N.12) and Eq. (eqn:appendix amplitude reflectance for p-
polarization) , but the only situation in which Eq. (N.9) is zero is when n1 = n2. On
the other hand, Eq. (N.11) can be zero when the incidence angle satisfies a specific angle
given by

θB = arctan
n2

n1
. (N.13)

This angle is called Brewster angle, and in this case, the sum of the reflection angle and
the refraction angle is 90◦.

N.3 Reflectance and Transmittance of the light intensity

The Fresnel equation gives the amplitude reflectance and amplitude transmittance, but
it is useful to derive the equations for reflectance and transmittance, since most experi-
mental cases measure the intensity or energy of electromagnetic waves. In this section,
the Fresnel equation gives the transmittance and reflectance of the intensity.

The intensity of an electromagnetic wave propagating in a medium with a refractive
index of n is given by

I =
ε0nc

2
|E⃗|2, (N.14)

where ε is dielectric constant in vacuum, c is speed of light in vacuum, n is refractive
index in the medium. The intensity of the electromagnetic wave is proportional to the
square of the electric field, but not equal to the square of the electric field. Note that the
refractive index must be taken into account to determine the transmission and reflection
coefficients.

As shown in FIG. N.2, the incident and reflected light are in a medium with the same
refractive index. Therefore, the reflectance for s-polarized and p-polarized light is equal
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1

𝑛1

𝑛2

𝑆′

𝑆
𝜃𝑖

𝜃𝑡
𝑆′′

FIGURE N.3: An electromagnetic wave with cross-section area S incident
on a medium with refractive index n1 into a medium with refractive index
n2. the area at the boundary between the two media is S′. θi is the angle
of incidence and θt is the angle of refraction. S′′ is the cross-section area of

transmitted light.

to the square of Eq. (N.9) and Eq. (N.11). Thus, they are given by

Rs :=
Ir

Ii

= r2
s

=

(
η1s − η2s

η1s + η2s

)2

(N.15)

Rp = r2
p

=

(
η1p − η2p

η1p + η2p

)2

, (N.16)

where η1s = n1 cos θi, η2s = n2 cos θt, η1p = n1/ cos θi and η2p = n2/ cos θt hold. By using
Snell’s law, the reflectance can be summarized in these simple form.

When determining transmittance, the derivation of transmittance is slightly more
complicated because the incident and transmitted light propagate in media with different
refractive indices. The sum of reflectance and transmittance must be one because of the
law of conservation of energy. To obtain the energy per unit time from the intensity, the
area through which the electromagnetic wave passes must be multiplied to the intensity.
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As shown in FIG. N.3, consider the situation where an electromagnetic wave is incident
from a medium with a refractive index of n1 to a medium with a refractive index of n2.
The cross-section area of the incident light is S. Assuming that the light is cleanly circu-
lar, the cross-section area S can be written as S = πr2, using an appropriate radius r. The
area S′ on the boundary surface becomes an ellipse, with the minor axis remaining r, but
the major axis changing to r′ given by

r′ =
r

cos θi
. (N.17)

Therefore, the cross-section area of transmitted light is also an ellipse whose cross-section
area is given by

S′′ = πr2 cos θt

cos θi
. (N.18)

Finally, the transmittance for s-polarized and p-polarized light are given by

Ts :=
It

Ii

= |ts|2
n2 cos θt

n1 cos θi

=
4η1sη2s

(η1s + η2s)
2 (N.19)

Tp = |tp|2
n2 cos θt

n1 cos θi

=
4η1pη2p(

η1p + η2p
)2 , (N.20)

where η1s = n1 cos θi, η2s = n2 cos θt, η1p = n1/ cos θi and η2p = n2/ cos θt hold.

N.4 Characteristic matrix

A characteristic matrix is a tool used to predict the optical properties by dielectric multi-
layers. Understanding the reflection and transmittance of electromagnetic waves by the
characteristic matrix let us understand what phenomena are occurring inside the PBS. To
understand the interaction of light with multi-layers, let us first discuss the interaction
of light with monolayers. Before proceeding to the discussion, the concept of optical
admittance should be introduced. Optical admittance is defined as

Y :=
|H⃗|
|E⃗|

=

√
ε

µ
, (N.21)

where Eq. (N.1) was used for the last transformation. The unit of optical admittance is the
reciprocal of ohm, which represents resistance, and is called siemens. Optical admittance
is useful in describing the optical properties of a material.

Consider the situation shown in FIG. N.4, where electromagnetic waves are incident
on a monolayer film. The situation of oblique incidence will be discussed later because it
is accomplished by simply replacing certain letters in the vertical incidence results. The
boundary conditions for the electric field, Eq. (N.3), at the boundary surfaces a and b are
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FIGURE N.4: A situation in which an electromagnetic wave is incident per-
pendicularly from a medium with a refractive index of n0 to a thin film
with a refractive index of n and reaches a substrate with a refractive index
of nm. Vector of + and − define two directions. a and b are labels of bound-
ary surfaces. Y is optical admittance, d is the width of thin film. Arrows
near the electric field indicate the propagation direction of electromagnetic
wave, not the direction of oscillation of the electric field. The direction of
oscillation of the magnetic field is perpendicular to the direction of electro-

magnetic oscillation.

given by

Ea ≡ E0a+ + E0a− = E+
a + E−

a (N.22)
Eb ≡ E+

b + E−
b . (N.23)

Similarly, the boundary condition for the magnetic field, Eq. (N.5) requires the relation
given by

Ha ≡ Y0E+
0a − Y0E−

0a = YE+
a − YE−

a (N.24)
Hb ≡ YE+

b − YE−
b , (N.25)

where Eq. (N.21) was used. The electromagnetic fields at the boundary surfaces a and b
should be linked by a phase difference characterized by the thickness d of the thin film.
They are given by

E+
a = E+

b eiδ (N.26)

E−
a = E−

b e−iδ, (N.27)

where δ means the phase difference. Using these two relations, the simultaneous equa-
tions of Eqs. (N.22)-(N.25) provides(

Ea
Ha

)
=

(
cos δ i sin δ

Y
iY sin δ cos δ

)(
Eb
Hb

)
, (N.28)
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where Y can be represented as Y = n
√

ε0/
√

µ0 ≈ n · 0.002654417 too. The matrix on the
right-hand side is called the characteristic matrix and is defined as

M ≡
(

cos δ i sin δ
Y

iY sin δ cos δ

)
≡
(

m11 im12
im21 m22

)
. (N.29)

The characteristic matrix describes the physical interactions of the thin films. Within the
actual thin film, some of the light will travel back and forth between the boundary sur-
faces a and b, but all of their contributions will be included in this matrix. The character-
istic matrix in the absence of absorption has the property that the determinant becomes
one.

Let us consider how the characteristic matrix represented by Eq. (N.29) relates to the
reflectance and refractive index. Since both incident and reflected light exist in a medium
with a refractive index of n0, the reflectance is simply obtained by squaring the ratio of
the electric field, which is given by

R =
|E−

0a|2

|E+
0a|2

=
(n0m11 − nmm22)

2 + (n0nmm12 − m21)
2

(n0m11 + nmm22)
2 + (n0nmm12 + m21)

2 . (N.30)

The transmittance is determined by the ratio of the electric field propagating through
a medium with a refractive index of n0 to that propagating through a medium with a
refractive index of nm. The transmittance can be calculated using the electric field in
the n medium instead of the electric field in the nm medium since the electric field is
continuous before and after the boundary surface b. Noting that the intensity of light
depends on the refractive index as shown in Eq. (N.14), the transmittance is given by

T =
nm

n0
· |Eb|2

|E+
0a|2

=
4n0nm

(n0m11 + nmm22)
2 + (n0nmm12 + m21)

2 . (N.31)

When light is incident vertically to the boundary surface, the reflectance and transmit-
tance are independent of the polarization of the incident light, as seen in Eq. (N.30) and
Eq. (N.31).

Consider the case where light is incident from an oblique angle. In such situations, re-
flectance and transmittance depend on the polarization state of the incoming light. A gen-
eralization to the case where light enters the thin film from an oblique angle is achieved
by replacing the refractive index in Eq. (N.30) and Eq. (N.31) with a gradient admittance
given by

η0s ≡ n0 cos θi (N.32)

η0p ≡ n0

cos θi
(N.33)

ηs ≡ n cos θ (N.34)

ηp ≡ n
cos θ

(N.35)

ηms ≡ nm cos θt (N.36)

ηmp ≡ nm

cos θt
, (N.37)
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FIGURE N.5: Schematic diagram of the concept of expansion into a multi-
layer membrane. First, the incident light enters the thin film of the char-
acteristic matrix M1, then interacts with the thin film of the characteristic
matrix M2. Finally, some of the light reaches the substrate with a gradient

admittance of ηm.

where the θi is an incidence angle, the θ is the refraction angle to θi, the θt is the refraction
angle to θ when the θ is regarded as the incidence angle to the substrate. The "s" and "p"
in the subscripts must be distinguished according to the polarization or component of
the incident light. In addition to these substitutions, the phase difference δ in Eq. (N.29)
is written as

δ = nk0d cos θ, (N.38)

where the k0 is the wave number in the incident medium, the n is refractive index in the
thin film, the d is the thickness of the thin film.

Next, consider the case where light is incident on the multi-layer. The extension to the
multi-layer case is accomplished simply by sequential multiplication of the characteristic
matrices. As shown in FIG. N.5, the incident light interacts continuously with the thin
film whose characteristic matrix is M1 to the thin film of ML. The multi-layer interaction
is described as the multiplication of the characteristic matrix of each thin film. The overall
characteristics matrix can be given by

M = M1 · M2 · · · MJ · · · ML =

(
m11 im12
im21 m22

)
. (N.39)

As can be seen from Eq. (N.28), the order of multiplication should be noted because
the characteristic matrix acts on the electric field near the final boundary surface. Since
Eq. (N.39) has exactly the same form as Eq. (N.29), the reflectance and transmittance in
multi-layers are described in the same form as Eq. (N.30) and Eq. (N.31). The physical
phenomena occurring inside a multilayer film are complex because they include multiple
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p-polarized light

s-polarized light

Dielectric 
multi-layer
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FIGURE N.6: Schematic diagram of the structure of PBS. Dielectric multi-
layers and glue are applied to the oblique side of the right-angle prism.
The p-polarized component of the incident light is transmitted and the s-

polarized component is reflected.

reflections, but a characteristic matrix can be used to represent such complex physical
phenomena in a simple manner.

N.5 Structure of a PBS

There are two types of PBS: plate type and cube type. The cube type used in this experi-
ment is explained in this appendix. As shown in FIG. N.6, the cube-shaped PBS consists
of a dielectric multi-layer film and adhesive applied to the oblique side of a right-angle
prism and laminated to the other right-angle prism. Dielectric multi-layer have a struc-
ture consisting of alternating layers with a high refractive index nH and layers with a low
refractive index nL. PBS is an optical element that separates s-polarized and p-polarized
components, so that it is necessary to create a situation where the p-polarized component
does not interact with the dielectric multi-layer film and the s-polarized component is re-
flected. Using the Brewster angle shown in Eq. (N.13), the transmission of p-polarized
light can be made almost 100%, so the relation between the refractive index nH of the one
layer with low refractive index and the refractive index nH of one layer with the high
refractive index is given by

tan θH =
nL

nH
, (N.40)

where θH is the angle of incidence of light when it enters the layer with low refractive
index from the layer with high refractive index. If the refractive index of a right angle
prism is n0 and the angle of incidence of the prism on the slope is 45◦, so Snell’s law
provides

sin θH =
n0√
2nH

. (N.41)
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Combining the above two equations, the relation between the three refractive indices is
given by

n2
0 =

2n2
Hn2

L
n2

H + n2
L

. (N.42)

If the right-angle prism and dielectric multilayer film satisfy this relation, the transmit-
tance for p-polarized light approaches 100%. The high reflectance for s-polarized light is
determined by the number of layers in the dielectric multilayer. The greater the number
of layers, the higher the reflectance, but the more expensive PBS becomes.
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Appendix O

Wave Plate

A waveplate is an optical component to give a specific phase difference to any orthogonal
component in a plane perpendicular to the wavenumber vector of the transmitted elec-
tromagnetic wave. The physical principles and mathematical description of waveplates
are explained in this appendix. Birefringence is a property of an anisotropic crystal such
that the refractive index perceived by an electromagnetic wave differs depending on the
direction of vibration of the electromagnetic wave incident on the crystal. When the re-
fractive indices perceived by an electromagnetic waves parallel to the three orthogonal
axes of a crystal are different no matter how the three-dimensional Cartesian coordinates
are defined, the crystal is called a biaxial crystal. On the other hand, an uniaxial crystal
is a crystal which has a three-dimensional Cartesian coordinates such that the two of the
three components of an electromagnetic wave perceives the same refractive index. Let
the two axes that have the same refractive index be axes A and B, and the remaining one
axis be axis C, the oscillation component perpendicular to the plane formed by the axis C
and the wavenumber vector is called ordinary light and the oscillation component paral-
lel to the plane is called extraordinary light. When the angle between the axis C and the
wavenumber vector is θ, the refractive index perceived by ordinary light is independent
of θ, while the refractive index perceived by extraordinary light depends on θ because
ordinary light is always parallel to the AB plane. When we consider the plane perpendic-
ular to the wavenumber vector, which is created by the two orthogonal S-axis and F-axis,
we can give an appropriate phase difference between the component of electromagnetic
wave parallel to the S-axis and the component of electromagnetic wave parallel to the F-
axis by designing the crystal well. FIG. O.1 shows the relation between the Slow (S-axis)
and Fast (F-axis) axes for horizontally and vertically polarized light. nS, nF are the refrac-
tive indices of the components of electromagnetic waves parallel to the Slow, Fast axes,
and the phase differences immediately before and after the incident on the waveplate
are nS |⃗k|L, nF |⃗k|L. This means that there will be a phase difference between the S-axis
component and the F-axis component given by

ϕ = (nS − nF)|⃗k|L, (O.1)

where, L is the thickness of the waveplate, and nS > nF is hold because the phase velocity
of the S-axis component is smaller than that of the F-axis component. As shown in FIG.
O.1, consider the situation where a photon with H polarization component AHin and
V polarization component AVin enters a waveplate such that the S-axis is tilted by θS
with respect to the H polarization. The polarization state of a photon immediately after
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𝜃𝑆

Slow axis
Fast axis

𝑘

H

V

FIGURE O.1: Relation between the Slow and Fast axes with respect to the
{H, V}-basis. θS is the angle between the direction of H polarization and
the Slow axis, and k⃗ is the wavenumber vector of the electromagnetic wave

incident on the waveplate.

passing through the waveplate is given by (
AHout
AVout

)
=(

cos θS − sin θS
sin θS cos θS

)(
e−i ϕ

2 0
0 ei ϕ

2

)(
cos θS sin θS
− sin θS cos θS

)(
AHin
AVin

)

=

(
e−i ϕ

2
(
cos2 θS + eiϕ sin2 θS

)
−i sin ϕ

2 sin 2θS

−i sin ϕ
2 sin 2θS e−i ϕ

2
(
sin2 θS + eiϕ cos2 θS

) ) (O.2)

The first matrix in the right hand side acting on the polarization state of the incident pho-
ton is a rotation matrix that gives the transformation from the {H, V}-basis to the {S, F}-
basis; the second matrix gives the phase difference between the S and F axes, described
by Eq. (O.2); the third matrix is a rotation matrix that transforms from the {S, F}-basis to
the {H, V}-basis.

A half-wavelength plate is a wavelength plate designed so that ϕ = nπ (n ∈ Z).
Substituting ϕ = π into Eq. (O.2), the unitary operator for a half waveplate is given by

ÛHWP =

(
cos 2θS sin 2θS
sin 2θS − cos 2θS

)
. (O.3)

By changing the direction of the S-axis θS, any linear polarization can be converted to an-
other arbitrary linear polarization. if we consider the conversion of polarization visually
using the Bloch sphere, the unitary transformation by the half waveplate can be thought
of as a π rotation when the vector representing the direction of the S-axis is considered to
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be a right-handed screw.
Technically, there are three main types for waveplates, depending on how ϕ = (2n +

1)π (n = 0 or n ∈ N) is realized.

• True zero order half waveplate: A waveplate designed so that ϕ = π. Quartz and
mica, which are commonly used as materials for waveplates, are very easily dam-
aged and difficult to handle because the thickness of the waveplate is several tens
of micrometers. However, since the expansion of the waveplate due to tempera-
ture and the incident angle dependence of the waveplate are small, the polarization
state can be manipulated most accurately.

• Multi order half waveplates: Waveplates with thicker waveplates by setting ϕ =
(2n + 1)π (n ∈ N) for better technical handling. Although this improves the tech-
nical tractability, temperature dependence and incident angle dependence appear,
so the temperature and incident angle must be precisely controlled.

• Zero order half waveplates: Waveplates designed to reduce the disadvantages of
Multi order waveplates. By combining two multi-order half waveplates so that
their optical axes of the crystals are orthogonal, the change in phase difference due
to temperature change is canceled out. However, the incident angle dependence
still remains.

A quarter-wave plate, designed as ϕ = π/2, is also often used. Substituting ϕ = π/2
into Eq. (O.2), the unitary operator of a quarter-wave plate becomes

ÛQWP =
1√
2

(
i + cos 2θS sin 2θS

sin 2θS i − cos 2θS

)
, (O.4)

where a global phase is properly chosen. A quarter-wave plate is used to generate or
measure a circular polarization, and if we consider the transformation of polarization
visually using a Bloch sphere, the unitary transformation by a quarter waveplate can be
thought of as a π/2 rotation when the vector representing the direction of the S-axis is
considered to be a right-handed screw.

For most optical experiments, a half-wave plate and a quarter-wave plate are suffi-
cient to create or measure arbitrary polarization states. To illustrate this generality, con-
sider the polarization state on the Bloch sphere as represented by the black arrow in FIG.
O.2. The colored plane is the plane containing the Bloch vector representing the polariza-
tion state and the axis (green arrow) representing the expected value of RL polarization.
As shown in FIG. O.3, if the S-axis of the QWP is directed to the intersection of this plane
and the plane containing the red and blue arrows, the polarization state is converted to
the linear polarization(thin black arrow). Next, as shown in FIG. O.4, if the S-axis of a
HWP is directed to the orientation between the Bloch vector converted in FIG. O.3 and
the Bloch vector representing H polarization, the polarization state is converted to H
polarization. The series of processes from FIG. O.2 to FIG. O.4 are quantum operations
performed when one wants to measure a certain polarization state, and conversely, when
one wants to prepare a certain polarization state by considering the reverse process.
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1

FIGURE O.2: Specific polarization state on the Bloch sphere (black arrows).
The red arrow represents the expected value of HV polarization, the blue
arrow represents the expected value of PM polarization, and the green ar-
row represents the expected value of RL polarization. The colored plane
is the plane containing the Bloch vector representing the polarization state
and the axis representing the expected value of RL polarization (green ar-

row).



Appendix O. Wave Plate 139

1

FIGURE O.3: Relation between a given polarization state (dark black ar-
rows) and the polarization state after transformation by the QWP(thin
black arrow). The yellow arrow represents the direction of the S-axis of
the QWP, the black dashed arrow represents the unitary transformation of

the QWP.



140 Appendix O. Wave Plate

1

FIGURE O.4: Relation between a given polarization state (black arrows)
and the polarization state after conversion by HWP. The yellow arrows
represent the orientation of the S-axis of the HWP, and the black dashed
arrows represent the unitary transformation of the HWP; the polarization
state after transformation by the HWP is consistent with the H polarization

state.
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Dichroic mirror

A dichroic mirror is a mirror that has high reflectivity for a specific wavelength range of
light and high transmittance for other wavelength ranges. The wavelength region that is
transmitted is called the transmission band and the wavelength region that is reflected
is called the reflection band. The dichroic mirror is realized by the dielectric multi-layer
technology described in Sec. N.4. This appendix describes the conditions necessary to
form dielectric multi-layer realizing dichroic mirrors.

P.1 Symmetric multi-layer system

A symmetric multi-layer system is a multi-layer such that the composition of the multi-
layer is symmetric when viewed from the center film of the multi-layer. For example, in
the situation shown in FIG. N.5, a multi-layer that is in the situation of M1 · M2 · · · Mj · · ·
M2M1 can be regarded as a symmetric multi-layer system. The two most basic symmetric
multi-layer systems are (H/2, L, H/2)s and (L/2, H, L/2)s, where the H means a layer
with a high refractive index, L means a layer with a low refractive index, and 1/2 means
half the thickness of the layer, s means how many times the same structure is repeated.
The dichroic mirror used in the experiment reflects light with short wavelengths and
transmits light with longer wavelengths, the same as a short-pass filter(SPF) in the ab-
sence of absorption. The (L/2, H, L/2)s is important to realize a SPF. If the characteristic
matrix shown in Eq. (N.29) of the thin film at both ends is MA and the characteristic ma-
trix of the thin film in the center is MB, the whole characteristic matrix of the multi-layer
is given by(

cos δA
i sin δA

Y
iY sin δA cos δA

)(
cos δB

i sin δB
Y

iY sin δB cos δB

)(
cos δA

i sin δA
Y

iY sin δA cos δA

)
=

(
m11 im12
im21 m22

)
, (P.1)

where

m11 = m12 = cos 2δA cos δB − 1
2

(
nB

nA
+

nA

nB

)
sin 2δA sin δB

m12 =
1

2n2
AnBY0

(
cos δA cos δB(n2

An2
B + 4nAnB sin δB)− (n2

A − n2
B) sin δB

)
m21 =

Y0

2nB

(
cos δA cos δB(n2

An2
B + 4nAnB sin δB) + (n2

A − n2
B) sin δB

)
, (P.2)

where nA, B are the refractive index in the layer A, B, Y0 is the optical admittance in
vacuum, Since Eq. (P.1) has the same form as Eq. (N.29), the multi-layer film can be



142 Appendix P. Dichroic mirror

regarded as a monolayer film. Therefore, YE and δE in the

m11 = m22 = cos δE

m12 =
sin δE

YE
m21 = YE sin δE. (P.3)

are called equivalent admittance and equivalent phase thickness. When |m11| > 1, YE and
δE become imaginary numbers, and the wavelength region satisfying this condition is the
reflection. In other words, reflectance becomes high. On the other hand, when |m11| < 1,
YE and δE are real numbers, and this wavelength region becomes a transmission band.
The m11 = −1 corresponds to the edge of the transmission and reflection bands.

P.2 Transmittance in a reflection band and transmission band

If the multi-layer is stacked s times with an equivalent phase thickness of (λ0/8, λ0/4, λ0/8)s

where λ0 is the wavelength in incident medium, the Eq. (N.31) becomes

T =
16η0ηm(

ηH
ηL

)2s
(
(η0 + ηm)2 +

(
η0ηm
ηA

− ηA

)2
) , (P.4)

where ηA is the gradient admittance of the non-centered medium, ηH is the gradient
admittance of the higher medium, ηL is the gradient admittance of the lower refractive
index, η0 is the gradient admittance of the incident medium, and ηm is the gradient ad-
mittance of the base. If the number of layers s is sufficiently large,(

ηH

ηL

)s

≫
(

ηL

ηH

)s

(P.5)

holds. Once all gradient admittances are determined, the number of layers can be deter-
mined to achieve desirable transmittance.

The approximation shown in Eq. (P.5) is still valid for the estimation of the transmit-
tance in a transmission band. In the transmission band, the equivalent admittance and
equivalent phase thickness are real numbers, the Eq. (N.31) becomes

T =
4E2η0ηm

(E2 + η0ηm)
2 . (P.6)

If one wants to create a SPF, it should be based on (L/2, H, L/2)s to create a SPF with
good performance.
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Glan-Taylor prism

The Glan-Taylor prism (GT) is an optical element for extracting only one linearly polar-
ized light component. GT takes out one linearly polarized component using a completely
different principle than the PBS described in Appendix N. GT has a structure similar to
the PBS shown in FIG. N.6, but glue and dielectric multilayer film are not used. The
layer between the two right angle prisms is filled with air. Since the refractive index in
air is almost the same as that of a vacuum, it can be regarded as a vacuum. The physical
properties that are the principles of GT are birefringence, as described in Appendix O,
and total reflection, as described in Appendix N. Birefringence is the property that the re-
fractive index perceived by electromagnetic waves differs depending on the direction in
which electromagnetic wave vibrates. The different refractive index means that the total
reflection angle given by θ = arcsin n2/n1 differs depending on the direction of vibration.
If the angle of the slope of the right angle prism is adjusted so that the p-polarized com-
ponent is transmitted and the s-polarized component is totally reflected, the p-polarized
component can be extracted with a high extinction ratio which is approximately 105 : 1.
The transmittance of GT is about 95% at best, and the remaining p-polarized component
is contained in the reflected light. Therefore, it is mostly used when pure linearly polar-
ized light is desired to be prepared. Since the reflected light contains both s and p po-
larization, GT is not suitable for applications that separate two orthogonal components,
such as PBS.
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Appendix R

Band pass filter

A band-pass filter (BPF) is an optical element that transmits only light of a certain wave-
length. If the wavelength band of light to be transmitted is wide, a dielectric multi-layer
film alone is sufficient to achieve the purpose but for narrow bandwidths, BPFs are real-
ized based on a completely different principle. A common method is to create a Fabry-
Perot resonator by making a thin metal film with high reflectivity inside the filter. This
appendix describes the physical principles and features of narrow band BPF realization.
As shown in FIG. R.1, the BPF consists of two multi-layers A and B and a spacer layer
between them. As explained in Sec. N.4, the multi-layers can be mathematically treated
as a single thin film. Thus, multi-layer A and multi-layer B work as a coupled mirror with
high reflectivity. The layer corresponding to the interior of the Fabry-Perot resonator is
called spacer layer. Predicting transmittance based on the method described in Sec. N.4
yields

T =
TATB(

1 −
√

RARB
)2

 1

1 + F sin2
[

ϕA + ϕB

2
− 2πnd

λ

]
 , (R.1)

where RA, TA, RB and TB are the reflectance and transmittance of multi-layers A and B, d
is the thickness of the spacer layer, λ is the wave length in vacuum, and ϕA and ϕB are
the phase differences between the amplitude reflectance of multi-layers A and B. In other
words, they have the relation given by

RA = |rA|eiϕA · |rA|e−iϕA

RB = |rB|eiϕB · |rB|e−iϕB (R.2)

F shows finesse given by

F =
4
√

RARB(
1 −

√
RARB

)2 . (R.3)

Finesse is the sharpness of the narrow band of transmitted light.
The central wavelength of the transmission band can be derived as the wavelength

such that the sine argument in Eq. (R.1) is an integer multiple of π, which is obtained as

λ =
2nd

m +
ϕA + ϕB

2π

(m ∈ Z). (R.4)

Thus, this result means that some transmission bands centered on wavelengths corre-
sponding to different integer m appear.
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FIGURE R.1: A model of multi-layers to realize narrow band BPF. It con-
sists of two multi-layers A and B composed of a dielectric and a thin metal
film, and a spacer layer sandwiched between them. n0 is the refractive in-
dex of the medium into which light is incident, nm is the refractive index

of the substrate, and n is the refractive index of the spacer layer.

Next, let’s discuss the half-width of the transmission band. The half-width is the
width of the wavelength such that the transmittance is half of the maximum value, which
is given by

T =
1
2

Tmax. (R.5)

Let ϕ be the argument of the sine in Eq. (R.1). Assuming that the half-width of transmit-
tance when this ϕ is taken on the horizontal axis is from ϕ = ϕc − ε to ϕ = ϕc + ε, the Eq.
(R.5) becomes

ε = arcsin

√
1
F

. (R.6)

Therefore, when phase is considered as the abscissa, the half-width becomes

∆ϕ = 2ε = 2 arcsin
[

1
F

]
. (R.7)

The half-width, with wavelength as the abscissa, is obtained by differentiating

ϕ =
ϕA + ϕB

2
− 2πnd

λ
(R.8)

and substituting Eq. (eqn:appendix bpf half-value of phase), which results in

∆λ =
λ2

πnd
arcsin

[
1
F

]
. (R.9)
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This result indicates that to narrow the full width at half maximum (FWHM) of the trans-
mission band, either the thickness of the SPACER layer must be increased or the reflec-
tivity of the mirrors that make up the Fabry-Perot resonator must be increased.
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Appendix S

Single photon counting module

The single photon counting module (SPCM) is a single photon detector using the prop-
erty of an avalanche photodiode. This appendix explains the principle of an avalanche
photodiode. To understand avalanche photodiodes, it is necessary to review the prin-
ciples of ordinary photodiodes. As shown in FIG. S.1, applying a positive voltage to
a p-n junctioned p-type semiconductor is called forward bias, while applying a posi-
tive voltage to an n-type semiconductor is called reverse bias. A p-n junction diode to
which a forward bias is applied continues to emit light and allow current to flow because
electron-hole pairs are generated at the p-n junction. This property is used as an LED. On
the other hand, a p-n junction diode to which a reverse bias is applied does not produce
an electron-hole pair at the p-n junction, so no current flows, but current flows only when
the p-n junction diode absorbs light. This is the basic principle of photodiode operation.

An avalanche photodiode is a photodiode with a large reverse bias voltage applied to
a p-n junction diode. When light strikes the p-n junction diode to which a large reverse
bias voltage is applied, the generated electron-hole pairs gain large acceleration. When
the accelerated charged particle collides with another electron, it may transition to the
conduction band, depending on the kinetic energy gained by the colliding electron. The
transition of an electron to the conduction band means that a new electron-hole pair is
created, and the created charged particle is accelerated and collides with another elec-
tron. This sequence of events causes a large current to flow in the p-n junction diode.
This phenomenon is called electron avalanche multiplication. Therefore, when a certain
voltage is applied, the current multiplication factor increases significantly. A photodiode
in this state is an avalanche photodiode.

Avalanche photodiodes require fairly uniform formation of the p-n junction because
the multiplication factor changes rapidly with a small change in the applied voltage.
This is a major difference from ordinary photodiodes. When light of high intensity hits
an avalanche photodiode, the electrical circuit is damaged by the large current flowing
through the circuit. Therefore, when counting photon using avalanche photodiodes,
great care must be taken to eliminate unwanted background and to prevent the signal
from becoming too intense.
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FIGURE S.1: Forward and reverse bias voltages applied to the p-n junction.
(a) A p-n junction diode with a forward bias voltage applied. This diode
works as a light emitting diode (LED) (b) p-n junction diode with reverse

bias voltage applied. This diode works as a photodiode.
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Appendix T

Spontaneous parametric down
conversion

This appendix describes the physical phenomena that produces the two-photon neces-
sary to generate polarization entanglement. That physical phenomenon is called sponta-
neous parametric down conversion (SPDC) and is widely used in experimental studies
of quantum information science and quantum mechanical foundations. SPDC was pre-
dicted theoretically in the early 1960s[73–75] and first demonstrated in 1967[76]. SPDC is
classified as a second-order nonlinear optical phenomenon related to polarization. The
beginning of this appendix describes the properties of materials that can cause second-
order nonlinear optical effects, followed by a description of the interaction between ma-
terials and light.

T.1 Crystals which can cause nonlinear optical effect

When an electromagnetic wave strikes a material, it causes the charged particles that
make up the material to vibrate. The total bias in the charge distribution caused by this
vibration is called polarization and is given by

Pj = ε0

(
∑

k
χ
(1)
jk Ek + ∑

k,l
χ
(2)
jkl EkEl + · · ·

)
{j, k, l} = {x, y, z}, (T.1)

where ε0 is the dielectric constant of the vacuum, χ(1) is the linear dielectric susceptibility,
χ(2) is the second-order nonlinear dielectric susceptibility, and E is the electric field of the
incident electromagnetic wave, x, y, z are the coordinates of the position. The nonlinear
dielectric susceptibility is very small compared to the linear dielectric susceptibility, but
as the electric field increases, the nonlinear term becomes non-negligible because it takes
effect as a power of the electric field. This Physically means that the frequency of the
charged particle no longer matches the frequency of the electromagnetic wave. Ignoring
nonlinear terms of third order or higher, the nonlinear polarization is given by

P(NL)
j ≡ ε0 ∑

k,l
χ
(2)
jkl EkEl . (T.2)

The second-order nonlinear dielectric susceptibility is a third rank tensor, so it typically
has twenty seven independent elements, but consideration of physical requirements re-
duces the number of independent elements. If the substance has space-reversal symme-
try, the sign of the nonlinear dielectric susceptibility should not be inverted with respect
to the inversion of the coordinates, but the direction of the polarization and electric field
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should be inverted, so that Eq. (T.2) becomes

−P(NL)
j = ε0 ∑

k,l
χ
(2)
jkl (−Ek)(−El) = ε0 ∑

k,l
χ
(2)
jkl EkEl . (T.3)

To resolve the contradiction between this equation and Eq. (T.2), the second-order nonlin-
ear dielectric susceptibility must be zero. Conversely, for second-order nonlinear optical
effects to appear, the material must have no space-reversal symmetry. Materials with-
out inversion symmetry are empirically known to have piezoelectricity1. To simplify the
situation, if one define coordinates such that k and l are indistinguishable, χ

(2)
jkl = χ

(2)
jlk

holds, so there are eighteen independent elements. Thus, the relation between nonlinear
polarization and voltage is given by
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 , (T.4)

where kl = {xx, yy, zz, yz, zx, xy} = {1, 2, 3, 4, 5, 6}. It is customary to show a third rank
tensor as a second rank tensor in this way. In general, the second-order nonlinear dielec-
tric susceptibility has permutation symmetry, so the following relation holds

χ
(2)
jkl = χ

(2)
klj = χ

(2)
l jk . (T.5)

This means that there is no difference between the x, y and z axes if they are fixed to
the right-hand system. Furthermore, if there is no absorption or dispersion of light, the
second dielectric susceptibility also satisfies Kleinman’s symmetry condition given by

χ
(2)
jkl = χ

(2)
kjl = χ

(2)
jlk . (T.6)

The number of independent elements can be reduced by applying permutation symme-
try and Kleinman’s symmetry condition.

T.2 Electromagnetic waves propagating in nonlinear crystals

When nonlinear polarization is taken into account, an electric flux density is given by

D⃗ = ε0E⃗ + P⃗

= ε0

(
1 + χ(1)

)
E⃗ + P⃗(NL)

= εE⃗ + p⃗(NL), (T.7)

where ε is dielectric constant in a matter. A term representing nonlinear polarization is
added to the wave equation, which is given by

∆E − µ0ε∂2
t E = µ0∂2

t P (NL) . (T.8)

1The property of a voltage produced when pressure is applied.
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If a ferromagnetic material is not assumed, the magnetic permeability in the material may
be regarded as the magnetic permeability in a vacuum. Considering the possibility of
attenuation of electromagnetic waves as they propagate through the material, the electric
field and polarization can be given by

E (z, t) = A(z)ei(k′z−ωt) (T.9)

P(NL)(z, t) = P(NL)
0 ei(kz−ωt). (T.10)

where k′ is the wavenumber of the electric field and k is the wavenumber of the polariza-
tion. Since the direction of propagation of the electric field and polarization are generally
different, situations with different wavenumbers should be assumed. Substituting Eq.
(T.9) and Eq. (eqn:appendix spdc polarization) into Eq. (T.8) and applying slowly vary-
ing amplitude (SVA) approximation expressed in∣∣d2

z A (z)
∣∣≪ |kdz A (z)| , (T.11)

where dz means d/dz, Eq. (T.8) becomes

dz A (z) =
iµ0ω2

2k′
P(NL)

0 (z)ei(k−k′)z. (T.12)

SVA approximation represents a situation where the amplitude hardly changes at lengths
of about a wavelength. When light of two different frequencies, ω1 and ω2, are present
in the matter, the nonlinear polarization can be given by

P(NL)
0j (z, t) = ε0 ∑

k,l
χ
(2)
jkl Ek (ω1) El (ω2) . (T.13)

It can be seen that there can be polarizations in the matter that oscillate at angular fre-
quencies corresponding to the sum or difference of ω1 and ω2 in the matter. Considering
the situation where ω1 = ω2 ≡ ω holds and the polarization of the electromagnetic
wave incident on the matter has only j component, which means linear polarization ,the
nonlinear polarization shown in Eq. (T.13) takes the form given by

P(NL)
0j (z, t) = ε0 ∑

k
χ
(2)
jkk A2

j (z) ei(2k1z−2ωt), (T.14)

where Aj(z) is the amplitude of the incident electromagnetic wave, k1 is the wavenum-
ber, and ω is the angular frequency. This nonlinear polarization induces electromagnetic
waves with a frequency of 2ω, so that the new electric field can cause in the matter, which
is given by

E2j (z, t) = A2j (z) ei(k2z−2ωt), (T.15)

Here, the subscript "2" is a label to distinguish between the incident electric field and the
electric field generated inside the matter. The wave equation that this electric field must
satisfy can be derived as in Eq. (T.12) as

dz A2 (z) =
i2µ0ω2

k2
P(NL)

0 (z)ei(∆k)z, (T.16)
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where P(NL)
0 (z) and ∆k are given by

P(NL)
0 (z) = ε0 ∑

k
χ
(2)
jkk A2

1k (T.17)

∆k = 2k − k2. (T.18)

Assuming that the intensity of the incident electromagnetic wave is sufficiently large and
that the decrease in intensity when propagated over a distance z is negligible, the ampli-
tude of the incident electromagnetic wave can be regarded as having no dependence on
z. Integrating Eq. (T.16) from z = 0 to z = z′ gives

A2j(z)− A2j(0) =
∫ z′

0
i
2µ0ω2

k2
P(NL)

0 (z) ei∆kzdz (T.19)

= i
2ω2

k2c2 ∑
k

χ
(2)
jkk A2

1k

∫ z′

0

2
∆k

sin

[
∆k
2

z

]
ei ∆kz

2 dz (T.20)

= i
2ω2

k2c2 ∑
k

χ
(2)
jkk A2

1k

sin

[
∆k
2

z′
]

∆k
2

ei ∆k
2 z′ , (T.21)

where c is the speed of light. If the coordinates are set so that the electromagnetic wave is
incident on the material at the point z = 0, then A2j(0) = 0 because there is no nonlinear
polarization at the point z = 0. Thus, the intensity of electromagnetic waves with an
angular frequency of 2ω is

I2j ∝

sin2

[
∆k
2

z′
]

(
∆k
2

)2 . (T.22)

This result implies that the intensity of electromagnetic waves with a doubled angular
frequency of the incident beam generated inside a nonlinear crystal oscillates with a pe-
riod of π/∆k called coherent length.

The propagation of electromagnetic waves in nonlinear crystals discussed so far has
described the transformation of electromagnetic waves with an angular frequency of ω
into electromagnetic waves with an angular frequency of 2ω. Such a phenomenon is
called second harmonic generation (SHG); SPDC can be understood as the inverse pro-
cess of SHG. That is, an electromagnetic wave with an angular frequency of 2ω is injected
into a nonlinear crystal, which generates light with an angular frequency of ω. However,
the critical difference between SPDC and SHG is that SPDC requires spontaneous emis-
sion of light during the parametric fermentation process. Hence, light of various wave-
lengths will be produced in the nonlinear crystal while satisfying the energy conservation
law.

There are three different types of SPDC. In type-0 SPDC, the pump photon and the
converted two photons, the signal photon and idler photon, are all in the same polar-
ization state; in type-1 SPDC, the signal and idler photon are in the same polarization
state, but the pump photon is orthogonal. In type-2 SPDC, either the signal photon or the
idler photon will be in the same polarization state as the pump photon, but the other is
orthogonal.
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Appendix U

Phase matching

This appendix illustrates phase matching. Phase matching is a physical requirement that
must be met in order to efficiently extract electromagnetic waves generated by nonlinear
optical effects. First, normal phase matching will be explained, followed by the current
mainstream quasi phase matching.

In Appendix T, the intensity of the electromagnetic wave generated in the nonlinear
crystal at an angular frequency different from that of the incident electromagnetic wave
is proportional to the function expressed by Eq. (T.22). This is a periodic function such
that the electromagnetic wave has the same intensity every time it travels by π/∆k. How-
ever, if the situation is realized such that ∆k = 0, the magnitude of the intensity would
be proportional to a quadratic function. Phase matching is to define the relation between
the incident electromagnetic wave and the nonlinear crystal so that ∆k = 0 is realized,
and the condition that ∆k = 0 is called the phase matching condition. At first glance it
seems impossible to achieve phase matching conditions because, in general, the greater
the angular frequency, the greater the difference in the refractive index perceived by the
light, which causes it to propagate with different phase speeds. However, by using the
birefringence described at the beginning of Appendix O, it is possible to achieve phase
matching conditions, as shown in FIG. U.1. The use of birefringence to satisfy phase
matching conditions is called angular phase matching. Once the angular phase matching
is achieved, the light generated inside the nonlinear crystal increases in proportion to the
quadratic function, but the crystal length cannot be increased because the ordinary and
extra-ordinary light propagate in non-parallel directions. The angle between the Poynt-
ing vectors of ordinary and extra-ordinary light is called the walk-off angle. For ordinary
light, the normal vector of the wavefront and the direction of the Poynting vector are par-
allel, but it is not true for extra-ordinary light. This is the cause of birefringence. A phase
matching method called quasi-phase matching was devised to solve this problem. As
shown in FIG. U.2, quasi-phase matching is a phase matching method that increases the
intensity of down converted light by using a crystal in which the direction of the crystal’s
nonlinear susceptibility is reversed at the length where the down converted light begins
to decrease. Quasi-phase matching has the disadvantage that the polarization reversal
period and crystal temperature must be optimized according to the wavelength of the
pump light used in the experiment, but in principle the length of the crystal can be as
long as desired, since there is no need to worry about walk-off. At first glance, FIG. U.2
seems to suggest that quasi-phase matching is less efficient than angular phase matching,
which is correct when the same material is used as the nonlinear crystal. In fact, crystals
with larger nonlinear optical constants can be selected because one does not have to pay
attention to the angle at which the pump light is incident on the crystal. to achieve angu-
lar phase matching.
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FIGURE U.1: Geometric relation between the phase matching angle and
the refractive index distribution such that angular phase matching is satis-
fied. The A, B, and C axes make Cartesian coordinate defined in a uniaxial
crystal. This Cartesian coordinate is defined so that polarization compo-
nents parallel to the A and B axes perceive the same refractive index but
polarization components parallel to the C axis perceive different refractive
indices. n(ω)

0 is the refractive index for electromagnetic waves with an an-

gular frequency of ω, and n(2ω)
e is the refractive index for electromagnetic

waves with an angular frequency of 2ω. The distance from the center of
the coordinates to the circle or ellipse corresponds to the value of the re-
fractive index. The subscripts "o" and "e" correspond to ordinary and extra-
ordinary light, where ordinary light has an oscillating component parallel
to the AB plane and extra-ordinary light oscillates in a direction perpen-
dicular to both the wavenumber vector and ordinary light. It can be seen
that when the electromagnetic wave propagates at an angle θPM deviating
from the C axis, the values of the refractive index perceived by ordinary
light and extra-ordinary light are equal. Such an angle is called the phase

matching angle.



Appendix U. Phase matching 157

1

EM wave

(a)

(b)

(c)

Periodically poled crystal

𝜋

Δ𝑘

2𝜋

Δ𝑘

FIGURE U.2: Intensity changes of light generated in a nonlinear crystal
in the case of (a) non-phase matching, (b) quasi phase matching and (c)
angular phase matching. If the phase matching condition is not achieved,
the intensity of the light produced inside the crystal will start to decrease as
the pump light propagates π/∆k. If a crystal is used in which the direction
of polarization reverses when the light propagates for a decreasing length,
the intensity of the generated light will continue to increase. Such a crystal

is called a periodically poled crystal.
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Appendix V

Gaussian beam

A Gaussian beam is a beam in which the transverse modes of electromagnetic waves
propagating through space has Gaussian distribution. In this appendix, a theoretical
description of Gaussian beams will be explained. The wave equation that holds in free
space is given by (

∆ − εµ∂2
t
)

E (⃗r, t) = 0, (V.1)

where ε is the dielectric constant of the space, µ is the magnetic permeability and ∂t means
∂/∂t. If the time dependence of the electric field is described as e−iωt, the equation above
can be described (

∆ + k2)U (r, z) = 0, (V.2)

where k = nω/c is the wavenumber parallel to the z-axis, c is speed of light in vacuum,
ω is angular frequency, n is the refractive index in the medium, E (⃗r, t) = U(r, z)e−iωt

holds, and the coordinate system is assumed to be a cylindrical coordinate system, which
means r =

√
x2 + y2 holds. Let us assume that the electric field in the wave equation

above has the form of

U (r, z) = exp
[
−i
(

P(z) +
k

2q(z)
r2
)]

eikz, (V.3)

where P(z) and q(z) are complex functions that depend on z. Substituting this expres-
sion for the electric field into Eq. (V.2) and assuming slowly varying amplitude (SVA)
approximation given by

|d2
zU(r, z)| ≪ |kdzU(r, z)|, (V.4)

where dz means d/dz, we obtain((
1

q(z)

)2

+ dz

(
1

q(z)

))
k2r2 − 2

(
dz p(z) +

i
q(z)

)
k = 0. (V.5)

The SVA approximation represented by Eq. (V.4) represents a situation where the ampli-
tude hardly changes at lengths of about a wavelength. For Eq. (V.5) to hold, the contents
of the two brackets should be zero, so solving the two equations given by(

1
q(z)

)2

+ dz

(
1

q(z)

)
= 0 (V.6)

dzP(z) +
i

q(z)
= 0 (V.7)
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is necessary. The solutions to these two equations have the form given by

P(z) = −i ln
[

1 +
z
q0

]
(V.8)

q(z) = z + q0, (V.9)

where q0 is some complex constant. To find out what value this complex constant takes,
substituting these two results into Eq. (V.3) results in

U(r, z) =
1

1 +
z
q0

exp
[
−i

k
2 (z + q0)

t2
]

eikz. (V.10)

In general, q0 can be written as α + iβ, because q0 is a complex constant. But as can be
seen in this equation, α represents a parallel shift of position, so the physical situation is
invariant even if α is regarded as zero. Therefore, transforming Eq. (V.10) by regarding
q0 as izR, we obtain

U(r, z) =
ω0

ω
exp

[
− r2

ω2(z)
+

k
2R(z)

]
ei(kz+η(z)), (V.11)

where ω(z), R(z) and η(z) are given by

ω(z) = ω0

√
1 +

(
z

zR

)2

(V.12)

R(z) = z
(

1 +
z2

R
z2

)
(V.13)

η(z) = arctan
[

z
zR

]
. (V.14)

Therefore, the final form of the electric field is given by

E(r, z, t) = E0
ω0

ω
exp

[
− r2

ω2(z)
+

k
2R(z)

]
ei(kz+η(z)−ωt), (V.15)

where E0 is the magnitude of the electric field at z = 0. A beam in which the electric
field of electromagnetic waves propagating through space is represented in this equation
is called a fundamental Gaussian beam. The "fundamental" means that the amplitude of
the electric field has no angular dependence around the z-axis, and of course there are
modes that have angular dependence.

To understand the geometry of the fundamental Gaussian beam, the relationship be-
tween the key parameters and the physical situation will be explained. As shown in
FIG. V.1, the fundamental Gaussian beam has an intensity distribution in the form of a
Gaussian function around the z-axis, the intensity is greatest on the z-axis. As Eq. (V.15)
shows, the distance from the z-axis at which the intensity is 1/e2 times of its maximum
value represents the beam radius ω(z) shown in Eq. (V.12). The distance at which the
beam radius is twice the root of the minimum beam radius ω0 is called the Rayleigh
length, which is defined as

zR :=
nπω2

0
λ

, (V.16)
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FIGURE V.1: The envelope of the fundamental Gaussian beam propagating
in the z-axis direction in space. ω0 is the beam radius at the beam waist, zR

is the Rayleigh length, and θ is the beam spread angle.

where n is the refractive index in a space, λ is the wave length in vacuum. Rayleigh
length is a measure of how close the Gaussian beam is to a parallel beam. Eq. (V.13)
shows the radius of curvature of the beam’s wavefronts at z. It can be seen that the
radius of curvature is infinite at z = 0. At this point, the fundamental Gaussian beam
is a perfectly parallel ray. η(z) in Eq. (V.14) is the Gouy phase at z, an extra phase term
attributable to the phase velocity of light.





163

Appendix W

Construction of polarization
entangled photon paris source

This appendix describes the procedure for generating entanglement photon pairs of po-
larized light. This appendix will focus on what to watch out for. Experimental techniques
and specific methods will be described in Appendix Y. The procedure can be broadly di-
vided into the following steps.

1. Determination of the dimensions of the entire experimental setup.

2. Shaping of the spatial modes of the light emitted from the optical fiber.

3. Fixing the position of the optical elements and checking the photon pair generation.

4. Fine tuning of the interferometer.

The following sections describe what adjustments are made in each of these steps.

W.1 Determination of the dimensions of the entire experimental
setup

First of all, it is important to make sure that all necessary optical components can be
placed on the optical table and that they can be fixed. FIG. W.1 is a photograph of the
actual experimental setup corresponding to FIG. 3.4. The optical components in the pic-
ture are not yet fixed, but just placed. After tentatively placing them in this manner, it
is important to roughly know the distance between the optical components. Of partic-
ular importance will be the distance from the three fiber couplers to the DPBS and the
distance from the DPBS to the PPKTP. The smaller the size of the Sagnac interferometer,
the better, because it provides greater precision and stability in the adjustment of the two
mirrors. The setup we made roughly had 200[mm] from FC2,3 to DPBS, 250[mm] from
FC1 to DPBS, 125[mm] from DPBS to PPKTP, where the location of the FCs was defined
as the rough location of the optical fiber’s exit, and for DPBS and PPKTP, the location
of the center of them were defined as their location. Knowing how much the distance
from the three fiber couplers to the DPBS can be varied is very important for shaping the
spatial modes explained in the next section.

W.2 Shaping of the spatial modes of the light emitted from the
optical fiber

The smaller the diameter of the pump light that should be realized inside the PPKTP, the
more efficient the generation of photon pairs will be, but the adjustment will be more
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1
FIGURE W.1: Photo of presetting of all optics. This setup is corresponding
to the one shown in FIG. 3.4. There are no HWP2 and GT in front of the

FC1 and FC2.

difficult because the spatial modes will deviate from parallel rays. Therefore, the trans-
verse diameter of the pump light should be large enough to fit well inside the PPKTP. The
position of the beam waist of the pump light is adjusted so that it is just at the center of
the PPKTP. This is to maximize the efficiency of photon pair generation and to to achieve
spatial mode matching. Spatial mode matching is to unify the spatial modes of the pump
light emitted from FC1 and the light emitted from FC2 and FC3. Quantitatively, spatial
mode matching refers to unifying the Rayleigh lengths described by Eq. (V.16). Since the
wavelength of the photon pair that is finally detected is equal to twice the wavelength
of the pump light, the wavelength of the light emitted from FC2 and FC3 is twice the
wavelength of the light emitted from FC1. This relation is given by

nπω2
R

2λ
=

nπω2
B

λ

ωR =
√

2ωB, (W.1)
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FIGURE W.2: Results of spacial mode matching. The horizontal axis is
defined as the position of the PPKTP at z = 0, with the upstream side
being negative and the downstream side being positive. The vertical axis
represents the beam radius at position z. The beam radius is defined as
the distance that is 1/e2 times the maximum beam intensity. All points are
experimental data and curves are the result of fitting to experimental data.
The experimental data are given as the average of the cross-section of the
intensity distribution in the direction of horizontal polarization and in the

direction of vertical polarization.

where n is the refractive index in a medium, λ is wave length of pump beam, ωB is the
minimum beam radius for light with a wavelength of 810[nm] and ωR is the minimum
beam radius for light with a wavelength of 405[nm] in our experiment. Plus, the 810[nm]
laser beam emitted from FC2 and FC3 and the 405[nm] laser beam emitted from FC1 must
create a beam waist at the center of the PPKTP simultaneously. If the distance from each
FC to the center of the PPKTP and the beam radius to be realized are known, the focal
length of the built-in collimation lens of the FCs is uniquely determined. In principle,
this can be determined by ray tracing, but the FCs we used was not designed to measure
the distance between the optical fibers and the collimation lens, so we had to prepare
several collimation lenses with different focal lengths and repeat trial and error to find
the optimum collimation lens. In the stage of actually emitting the beam from the FC2,3,
optical components such as BPF and LPF should be included in the FCs. The radius of the
beam is usually measured by a beam profiler. Care must be taken to ensure that the beam
is perpendicular to the beam profiler. In other words, the optical axis of the laser beam
emitted from the FCs is parallel to the optical table and the optical axis passes through
the center of the collimation lens in the FCs before the laser beam radius is measured.

FIG. W.2 shows the results of the mode matching. The fitting function is given by

ω(z) = ω0

√
1 + α(z − z0)2, (W.2)

where ω0, α and z0 are fitting parameters, α is corresponding to

α =
M4

z2
R

. (W.3)
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M2 is called beam quality factor which means how ideal the beam represents a pledge to
the basic Gaussian beam, zR is Rayleigh length introduced in Eq. (V.16). FIG. W.2 shows
that the minimum beam radius of the pump beam emitted from FC1 is roughly 90[µm],
and the minimum beam radius of the beams emitted from FC2 and 3 is roughly 125[µm],
so the conditions of Eq. (W.1) are satisfied. Plus, The PPKTP has the dimensions of 1
[mm] × 1[mm] × 1[cm], so the full intensity of the pump light can be incident inside the
PPKTP.

W.3 Fixing the position of the optical components and checking
the photon pair generation

Before arranging the optical components that make up the experimental setup, it must
be confirmed that the optical axes of the 405[nm] laser beam emitted from FC1 and the
810[nm] laser beams emitted from FC2,3 are parallel to the optical table and that the op-
tical axis passes through the center of the collimation lens. After checking them, the FC
should not be touched until all optical components are fixed (See Appendix Y for adjust-
ment method). When FC1 is regarded as the upstream side and FC2,3 as the downstream
side, the optical components, shown in FIG. 3.4, should be aligned from the upstream
side.

The GT immediately after FC1 translates the optical axis slightly in the transverse
direction, but even after the translation, there is no problem if the GT is fixed so that the
transmitted light passes through the same transverse position at two different points. It is
also important to check that the GT is fixed horizontally to the holder using a level gauge
because the GT immediately after FC1 defines the direction of horizontal polarization of
the pump beam.

Although the HWP hardly changes the optical axis of the transmitted light, care must
be taken to ensure that the beam enters perpendicular to the HWP because of the in-
cident angle dependence, as explained in Appendix O. Since the HWP hardly changes
the optical axis of the transmitted light, it is difficult to fix the position of the HWP with
reference to the transmitted light. Fix the beam so that it enters as perpendicularly as
possible by visual measurement from the top of HWP. If it is necessary to fix the position
strictly, it can be adjusted by using an IR viewer and looking at the surface reflected light
of the HWP. The HWP1 and DHWP should be calibrated at this stage. See Appendix Y
for specific configuration methods.

The position and angle of the DM is fixed so that the reflected light of the beam emit-
ted from FC2 and the transmitted light of the pump beam emitted from FC1 have the
same optical axis. At this time, GT and HWP2 should not be placed immediately after
FC2 (See Appendix Y for a method to check whether the optical axes have the same opti-
cal axis). Although the use of an X stage simplifies adjustment, we did not use an X stage
because it increases the overall height of the optical axis in the experimental setup.

When determining the angle of the DPBS, the reflected light should be referenced
because the rate of change of the optical axis of the transmitted light is small in relation
to the change of the angle of the DPBS, the accuracy of the adjustment will be poor.
Therefore, the reflected light of the beam emitted from FC1 and the transmitted light
of the beam emitted from FC3 should be referenced to fix the position of the DPBS so
that their optical axes are aligned. At this time, GT and HWP2 should not be placed
immediately after FC3. Since the actual DPBS is not a perfect cube, the optical axis of the
transmitted light of the beam from FC1 may not be horizontal to the optical table, but this
is not a concern here because the final adjustment is made by the two mirrors that make
up the Sagnac interferometer.
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Silver mirrors are used for the two mirrors that make up the Sagnac interferometer
because high reflectivity is guaranteed for both pump light and down-converted photon
pairs. First, the two mirrors are adjusted so that their reflective surfaces are perpendicular
to the optical table. The condition to be achieved in the adjustment of the two metal mir-
rors is that the clockwise and counterclockwise optical paths are perfectly aligned. There
is no need to place DHWP at this time (See Appendix Y for the adjustment method). The
degree of congruence of the paths has a dominant influence on the final interferometric
clarity.

Adjustment of the PPKTP position is done by eye. Fix the position so that the pump
light coming from both the counterclockwise and clockwise paths enter the PPKTP si-
multaneously.

Normally, connecting FC2 and FC3 to two SPCM at this stage, photon pairs should be
detectable. To determine whether photon pairs can be detected, our can observe the delay
curve, as shown in FIG. 3.6. Since the photon pair generation efficiency of PPKTP highly
depends on the temperature of the crystal, it is important to know which temperature
setting will maximize the number of photon pair counts.

W.4 Fine tuning of the interferometer

This section describes how to do fine tuning of Sangnac interferometer to prepare for
maximally entangled states. The 810[nm] light is injected from FC3 and the GT and
HWP2 are fixed so that the optical axis passes through their center. Since the GT trans-
lates the optical axis, it is better to fix the GT as close as possible to the exit of FC3 to
make it easier to detect photon pairs. The GT near FC3 and DPBS can be used to calibrate
the two HWP2 in advance. After calibrating two HWP2, one should be transferred near
FC2, and GT should be placed in the same manner in front of FC2. Plus, DHWP should
also be placed in Sagnac interferometer such that DHWP transform H polarizations into
V polarizations.

Adjust HWP1 so that the pump light becomes P polarization, connect FC2 and FC3 to
two SPCMs respectively, and fine-tune FC2 and FC3 so that their respective single counts
are maximized. At this time, the coincident counts should be increased along with the
single counts. Be careful not to change the distance between the optical fiber and the
collimation lens for the adjustment.

Fine adjustment of the two silver mirrors is needed to improve the agreement between
the two optical paths in the Sagnac interferometer. As Figure of merit, the interferometer
visibility is used, which is defined by

V :=
N(+;−) + N(−;+)− N(+;+)− N(−;−)

N(+;−) + N(−;+) + N(+;+) + N(−;−)
, (W.4)

where + and − corresponds to the two measurement outcomes which consist of a mea-
surement basis. N(+;−) is the coincidence count such that SPCM1 detects the polariza-
tion corresponding to + and SPCM2 detects the polarization corresponding to − simul-
taneously. In this time, + is defined as corresponding to the P polarization state and −
to the M polarization state because the photon pairs produced by PPKTP are in the H
and V polarization states, the coherence can be most strongly measured by observing the
visibility in the PM basis. After that, the angle of the two mirrors is moved slightly while
measuring the interferometer visibility in PM basis. If the interferometer clarity value
improves, the direction in which the mirrors were tilted is known to be correct. Once the
adjustment of tht two mirrors have been completed, the DHWP and HWP1 should also
be fine-tuned because they will also affect the interferometer visibility.
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Appendix X

Hanbury Brown-Twiss experiment

The Hanbury Brown-Twiss experiment demonstrated that light is a population of pho-
tons[77]. Strictly speaking, the experiments conducted by J. F. Clauser, P. Grangier, G.
Roger and A. Aspect were conclusive evidence[78, 79]. Although It is possible to cite
and explain the results of these researches, we will report the results of a similar experi-
ment conducted in our laboratory. As shown in FIG. X.1, the experimental setup is quite
simple. Light incident on the Non-polarization Beam Splitter (NPBS) enters FC1 with
50% and FC2 with 50%. The output to the PC is the counts output by each of SPCM1 and
SPCM2 and their coincident counts. If a photon is split by the NPBS, then the coincidence
count should be zero. Therefore, the ratio of single photon defined as

RS := 1 − NC

N1 + N2 − NC
(X.1)

should be zero. However, this equation does not take into account the case where a
photon in a multiphoton state is detected by only one of the two detectors. The following
sections report two results when weak coherent light is used as the light source and when
photon pairs generated by SPDC are used as the light source.

X.1 Ratio of single photon with weak coherent light

First, we will explain how to prepare the weak coherent light of the light source. In
preparation for using an attenuated laser source, the upper limit of the intensity of the
source is estimated by calculation. The counting limit of the SPCM is approximately
106[1/s], so that the intensity limit calculated from the wavelength of the laser source to
be used, 808 [nm], is given by

106 × hν ≈ 2.469 × 10−13[W]. (X.2)

The intensity of the laser light immediately after emission was 38.48[mW]. By passing
this laser beam through four ND filters whose transmittance was measured beforehand,
the intensity of the laser beam immediately after transmission through the ND filters can
be estimated as

38.48 × 10−3 × 1.835 × 10−12 = 7.061 × 10−14[W] (X.3)

This power is sufficiently smaller than the result for Eq. (X.2). To eliminate background
effects, measurements shall be taken in both situations, with and without the laser switched
on, and the counts with the laser switched on shall be subtracted from the counts with-
out the laser switched on, and the result shall be used to calculate the anti-correlation
parameter.
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FIGURE X.1: Schematic of the experimental setup for evaluating the ratio
of single photon; light incident on the NPBS enters FC1 with a 50% prob-
ability and FC2 with a 50% probability. What is done in signal processing
is the same as what is described in Subsec. 3.1.1. N1,2 are the number of
photon counts measured in SPCM1,2, and NC is the number of coincidence

counts.

TABLE X.1: Experimental results with weak coherent light. The measure-
ment time was 100 seconds, and measurements were taken both with and

without the laser turned on.

Labelo f counts Laser On[1/100s] Laser Off[1/100s]
N1 5882677 64397
N2 5613249 756422
NC 23240 506

TAB. X.1 shows the experimental results of them. The results shown in TAB. X.1 and
Eq. (X.1) provides

RS = 0.997866 ± 0.000014. (X.4)

This result indicates that the weak coherent light is mostly a population of single photons.

X.2 Ratio of single photon with down-converted photons

Of the two photons produced by SPDC, one can be used as signal photon and the other
as reference photon, so a high percentage of single photons is expected. As shown in FIG.
X.2, when using SPDC photon pairs, one of the photons can be used as a reference photon,
which significantly reduces background. N1 represents the coincidence of SPCM1 and
SPCM3, N2 represents the coincidence of SPCM2 and SPCM3, and NC represents the
coincidence of N1 and N2.
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FIGURE X.2: Experimental setup for measuring the ratio of single photons
using a down-converted photon pair as a source. The symbol ⊗ means that
the output is a coincidence counts. Thus, N1 represents the coincidence of
SPCM1 and SPCM3, N2 represents the coincidence of SPCM2 and SPCM3,
and NC represents the coincidence of N1 and N2. FC3 corresponds to FC2
in FIG. 3.4. Signal photon PS uses photons incident on FC1 in FIG. 3.4.
When detecting single photons, GT and HWP2 immediately before FC1

and FC2 in FIG. 3.4 were removed.

The results of the experiment are shown in TAB. X.2. This result and Eq. (X.1) pro-
vides

RS = 0.99824 ± 0.00007. (X.5)

The difference between Eq. (X.4) and Eq. (X.5) are less than 1%, however, the photon
pairs produced by SPDC are guaranteed to be closer to single photons.

TABLE X.2: Experimental results with down-converted photons. The mea-
surement time was 100 seconds.

Labelo f counts Counts[1/100s]
N1 186526
N2 175904
NC 656
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Appendix Y

Technical know-how for the optical
experiment

This appendix describes specific coordination techniques to achieve the physical condi-
tions required for the experimental setup. The experimental setup is a set of numerous
adjustments. Understanding what to look for and what to optimize will lead to a true
understanding of the characteristics of the experimental setup.

Y.1 Adjustment of an optical axis

The optical axis is a hypothetical axis through the center of the beam. Proper adjustment
of the optical axis is very important for accurate observation of photon interference phe-
nomena. There are three tools used to adjust the optical axis. FIG. Y.1(a) measures the
height of the optical axis from the optical table. By using this height ruler to measure the
height of the optical axis at two different points, it is possible to determine whether the
optical axis is parallel to the optical table. The two different points should be as far apart
as possible to increase the accuracy of the measurement. FIG. Y.1(b) is used to measure
the position of transverse direction of the optical axis. The distance between the two dif-
ferent screw holes on the optical table and the thickness of the rod are precisely defined,
so the position of the ruler is highly reproducible. By placing this "torii" at two different
points on the optical axis, it is possible to measure how much the optical axis has moved
laterally. The third tool is a digital microscope. This is a tool used to accurately read
the position of the optical axis reflected on a ruler. A digital microscope can magnify the
surface of a ruler. In recent years, it could be replaced by a smartphone.

In sec. W.3, on the adjustment of DC, if the reflected light coming from FC2 and
transmitted light coming from FC1 hit the same position on the two kinds of ruler at
the different two points, it means that those two light have the same optical axis. There
could be situations where there is no space for a "torii" or where it is not possible to
install a "torii" at two different points. In such cases, the method of using two pinholes
is useful. This is exactly the method used to align the two silver mirrors in the Sagnac
interferometer. Two pinholes are placed on the input and output sides of the DPBS as
shown in FIG. Y.2. The tilt of the two mirrors is adjusted so that the intensity of light
transmitted through pinhole 1 is the same as the intensity of light transmitted through
pinhole 2. Of course, the reflectance of the two silver mirrors is not 100%, so this must
be taken into account. If the counterclockwise and clockwise optical paths are perfectly
matched, the same situation should be realized for both the 405[nm] beam put in from
FC1 and the 810[nm] beam from FC3.
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1

(a) (b)

FIGURE Y.1: (a)Height ruler for an optical axis. (b) Transverse ruler for an
optical axis.

Y.2 Calibration of a HWP

Calibration of a HWP requires two polarizing plates and a HWP. Polarizing plate can
be substituted with PBS or GT. From the upstream side, the polarizing plate, HWP, and
polarizing plate are placed in this order. It is useful to set the two polarizing plates in
such an orientation that they transmit light of the same polarization. The orientation in
which the HWP is installed must be defined so that it is uniquely determined. Since
there is always a memory attached to the holder of the HWP, it is convenient to install
the HWP so that the light enters the HWP from the opposite side of the side where the
memory is written, so that counterclockwise is the positive direction of rotation. For
accurate calibration, it is recommended to use an auto-rotating stage for the HWP holder
and to select two polarizing plates with a high extinction ratio. Rotating the HWP while
measuring the intensity of the beam behind the second polarizing plate will provide the
data needed to calibrate. It is convenient for the calibration to use the fitting function
given by

I = I0(V sin θ − θ0 + 1), (Y.1)

where the fitting parameters are I0, V, and θ0, where A is the offset, V is the visibility, and
θ0 is the phase translation. The angle of maximal intensity means that the slow axis of the
HWP is aligned with the direction of polarization of the two polarizing plates. It should
be noted that the set angle and the angle of polarization realized by the HWP differ by a
factor of 2.
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1

Pinhole 1

Pinhole 2

Silver mirror 1

Silver mirror 2

FIGURE Y.2: Schematic of optical axis adjustment using two pinholes in
the Sagnac interferometer.

Y.3 Adjustment of a collimation lens

Usually, collimation lenses are used to create parallel beams, however this section de-
scribes a method to extend this application to achieve a Gaussian beam with the required
longitudinal modes. If the distance between the exit of the optical fiber and the collima-
tion lens can be measured, the focal length of the lens can be determined theoretically
by ray tracing, but if it cannot be measured, it must be determined operationally. For the
fundamental Gaussian beam, once the position of the beam waist and the minimum beam
radius are determined, the propagation before and after the beam waist is uniquely de-
termined. Another feature is that it is plane symmetric with respect to the cross-section
at the position of the beam waist. This feature can be used to create a beam waist at a
specific location. The height of the optical axis of the beam from the optical table and the
lateral position of the beam can be achieved by using the method described in Sec. Y.1.
The following procedure is used to optimize the adjustment of the longitudinal mode.
Measure the beam radius at a location 5[cm] before and after the position of the beam
waist. Adjust the distance between the edge of the optical fiber and the collimation lens
so that the beam radii at the two points before and after the beam waist are the same.
Once the two beam radii are the same, one can measure the beam radii at several other
points and perform the fitting as explained in Sec. W.2.

Y.4 Measurement of polarization physical properties

This section gives tips for accurately measuring photon polarization physical properties.
The measurement of polarization needs a polarizing plate or a combination of PBS and
HWP. PBS can be replaced by a crystal polarizer using total reflection. The combination of
HWP and a polarizing plate can also be used to measure polarization, but in this case the
polarizing plate must not be rotated. Whichever method is used, the higher the extinction
ratio, the better it is able to distinguish between different polarization.

The use of polarizing plate alone has the advantages of requiring less space and being
effective for lasers with a wide spectral band of wavelengths, but it has the disadvantage
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that the optical axis of the transmitted beam through the polarizing plate changes de-
pending on the angle of the polarizing plate. Therefore, it is not recommended for use
in setups where light propagating in free space is coupled with an optical fiber. The use
of an HWP in combination with a polarizer has the advantage that the optical axis of the
transmitted light hardly changes when the selected polarization is changed, but it has
the disadvantage that it requires a relatively large space and is effective only for light at
the design wavelength of the HWP. However, it requires a relatively large space and is
effective only for light at the design wavelength of the HWP. In situations where light
includes different bands of some wave length, it may be necessary to use a BPF to select
necessary signal. When using a power meter as a measuring instrument, it is better to
install the power meter some distance away from the polarizer. Scattered light generated
inside the polarizer will be mixed into the power meter and can become background.
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Appendix Z

Data analysis and rest

This section introduce the knowledge required for statistical analysis of experimental
data and the applications/websites that are useful for research in general.

Z.1 Errors that experimental data includes

Z.1.1 Residuals, deviations and errors

The purpose of obtaining experimental data is to understand the true nature. However,
experimental data are invariably subject to complex physical influences that we do not
anticipate. This manifests itself numerically as error. We believe that the physical prop-
erty associated with the object being measured has a true mean before conducting an
experiment. This true mean can be determined by making exactly the same independent
measurement an infinite number of times in exactly the same physical situation. This is
called the central limit theorem. The central limit theorem is based on the two assump-
tion; each measurement is independent and the random variables follow exactly the same
distribution. Why do we need to make an infinite number of measurements? It is because
the experimental data contain statistical errors. The cause of statistical error is the inher-
ent fluctuation of nature. This fluctuation does not disappear even if the temperature of
the system reaches absolute zero, and cannot be avoided in principle, but if the num-
ber of measurements is infinite, the error in the average value will disappear. In actual
experiments, the number of measurements is finite, and the obtained average value is
called the sample mean. The difference between the sample mean and the measurement
outcome of each measurement is called the residual. When the number of measurements
is infinite, the mean value is precisely called the population mean, and the difference
between the population mean and the measurement outcome of each and every mea-
surement is called the deviation. The reason why it is necessary to use different names
for the true mean and the population mean is that there is an error called systematic er-
ror, which is different from statistical error. Systematic errors can have various causes,
such as an unintentional error by the observer or unexpected physical effects. Systematic
errors disrupt the assumption that random variables follow exactly the same distribu-
tion, so that the sample mean and the true mean no longer agree. The difference between
the true value and the measurement outcome of each measurement is the error, which is
the inherent meaning of "error". By the way, should we distinguish between the terms
"true value" and "true mean"? Quantitatively, the true value and the true mean should
be exactly the same number, but the biggest difference is that the true mean requires an
infinite number of measurements, while the true value may be obtained by chance with
a finite number of measurements. It is possible that if one were to make an infinite num-
ber of measurements, some of those measurements would have yielded measurement
outcomes consistent with the true mean.
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Z.1.2 Propagation of errors

The physical property we want to know is not always the value directly obtained ex-
perimentally. It is often expressed by a combination of several independent observables.
For example, the volume of a rectangular body is expressed as the product of its length,
width, and height. In general, all observable are functions of multiple directly obtain-
able physical properties as variables. Since directly observed physical properties always
contain errors, it is important to consider how they relate to errors in physical properties
expressed as functions. Let’s first consider univariate functions and then extend to mul-
tivariate functions. Suppose that a physical property z is a function of a directly obtained
property x, then

z = f (x)., (Z.1)

where we assume that the function f (x) is differentiable with respect to x any number
of times. If xi (i = 1, 2..., n) is the result of n times measurements of x, then Eq. (Z.1)
becomes

zi = f (xi)

= f (Xn + ∆xi)

= f (Xn) + ∆xidx f (Xn) +
∆x2

i
2

d2
x f (Xn) + · · · (Z.2)

where Xn is the mean value of x, ∆x is the deviation of x, and dx is the differential operator
with respect to x. Thus, the average value of z is given by

Zn =
1
n

n

∑
i=1

zi

= f (Xn) +
σ2

x
2

d2
x f (Xn) , (Z.3)

where σx is the standard deviation of x. From Eq. (Z.2) and Eq. (Z.3), the variance
becomes

σ2
z =

1
n

n

∑
i=1

(zi − Zn)
2

≈
n

∑
i=1

∆x2
i

n
(dx f (Xn))

2

= σ2
x (dx f (Xn))

2 , (Z.4)

where in the first equality, it was assumed that (dx f (Xn))
2 is much greater than the other

terms.
Such an analysis can be easily extended to multivariate functions. If the physical

property z is a function of the directly obtained physical properties α, β, γ · · · , then the
variance of the physical property z is

σ2
z = σ2

α (∂α f (α, β, r, . . .))2 + σ2
β

(
∂β f (α, β, r, . . .)

)2
+ · · · , (Z.5)

where partial denotes the partial derivative with respect to the subscript. This equation
is called the error propagation formula.

Using error propagation formulas for actual experimental data may seem tedious, but
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"Around" function in Mathematica deals with it easily. For example, assuming a rectangle
with length, width, and height of 5[cm], 7[cm], and 10[cm], respectively, and that each side
has a standard deviation of 5%, the standard deviation of the volume derived by error
propagation Shown in Eq. (Z.5) can be calculated as shown in List. Z.1.

LISTING Z.1: Example of error propagation in volume

1 In[1]:= Quantity[Around[5, 5*0.05] , "Centimeters"]*
2 Quantity[Around[7, 7*0.05] , "Centimeters"]*
3 Quantity[Around [10, 10*0.05] , "Centimeters"]
4
5 Out [1]= (350. ± 30.)cm3

The calculation results show that the volume of the rectangle is 350[cm3] with a standard
deviation of 30[cm3].

Z.2 Poisson distribution

There are three distributions that are particularly important for understanding the scatter
of values of physical properties, and they are called the Bernoulli1, Gaussian, and Pois-
son distributions. In this section, Poisson distribution, which is of greater relevance to
experiments in which particles are measured, is explained.

If the probability of an event occurring during a certain time ∆t is p, the probability of
the event not occurring is 1 − p. If some finite time T is divided into n equal parts, each
interval corresponding to ∆t, then the probability that an event will occur r times during
time T is given by

P (r; n, p) =
n!

r! (n − r)!
pr (1 − p)n−r , (Z.6)

where r is random variable, n, p are parameters. This distribution is called Bernoulli
distribution. The argument so far has only one flaw. It does not take into account the
possibility that the event may occur more than once during the interval ∆t. To avoid
having to consider this situation, it would be solved by assuming that the probability p
of the event occurring is sufficiently small and n is sufficiently large. It should be possible
to ignore the probability of the event occurring more than once during ∆t. As can be seen
from this situation, the probability p of the event occurring and the number of divisions
n would be inversely proportional, which is given by

p =
λ

n
, (Z.7)

where λ is the proportionality coefficient. Assuming that n is sufficiently large, Eq. (Z.6)
can be transformed as

log P (t; n, p) = r log
p

1 − p
+ n log (1 − p) + log n! − log (n − r)! − log r!

≈ r log λ − t log
[

1 − λ

n

]
− n log

[
1 − r

n

]
− r + r log

[
1 − r

n

]
+ n log

[
1 − λ

n

]
− 1

2
log
[
1 − r

n

]
− log r! (Z.8)

1Also called binomial distribution
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Here, Stirling’s approximation was used, the approximation is given by

n! ≈
√

2πn
(n

e

)n
. (Z.9)

If we expand the logarithmic function around λ/n or r/n and take the limit of n → ∞,
the equation ends up with

lim
n→∞

P (r; n, p) → log P (r; λ)

= −λ + r log λ − log r!

P(r; λ) =
λre−λ

r!
. (Z.10)

As is well known, both the mean and variance of the Poisson distribution are λ as shown
in

⟨r⟩ =
∞

∑
r=0

rP(r; λ) = λ (Z.11)

σ2
r =

∞

∑
r=0

(r − ⟨r⟩)2P(r; λ) = λ. (Z.12)

Finally, let us list the differences between the Poisson and Gaussian distributions.

1. The random variables of the Poisson distribution are non-negative integers, while
those of the Gaussian distribution are real numbers. Therefore, the Poisson distri-
bution is discrete, while the Gaussian distribution is continuous.

2. With respect to the mean value, the Poisson distribution is asymmetric, while the
Gaussian distribution is symmetric. The Poisson distribution can be considered
symmetric as the value of λ increases.

3. Poisson distribution has only one parameter λ, and once λ is determined, the shape
of the distribution is determined.

Z.3 Frequently used functions and knowledge of Mathematica
to analysis the experimental data

In this section, we present some features of Mathematica and tidbits that we frequently
used to analyze experimental data. Let’s divide it into subsections according to the type
of object to be analyzed. First, as it pertains to notebook editing in general, the following
is a list of frequently used shortcut keys.

• "Alt" + Number key : Change to a different format depending on the number key.
The number keys used in particular are 1, 2, 7 and 9. 1 and 2 were used to indicate
a break in the analysis, 7 was used to enter long sentences, and 9 was used to return
to the normal input format.

• "Alt" + "/" : Selected sections and letters can be commented out. It is also possible
to comment out multiple selected cells on the right, and the same shortcut key can
be used to undo the comment out.

• "Ctrl" + "2" : Enter the square root.

• "Ctrl" + "6" : Enter superscripts or exponents.
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• "Ctrl" + "-" : Enter subscripts.

• "Ctrl" + "/" : Enter fractions

Z.3.1 Analytical calculations

This subsection presents frequently used shortcut keys, functions and useful knowledge
for analytical calculations.

• FullSimplify [ ] : A well-known and useful function that also allows you to add
conditions to variables, as shown in List. Z.2. The shortcut key to enter ∈ is "Esc" +
"elem" + "Esc".

• N[Expr] : Give the numerical value of "Expr".

• D[Expr] : Differentiate "Expr".

• Series[Expr] : Series expansion of "Expr".

• NonlinearModelFit[ ], FindFit[ ] : Both are functions for fitting to data, but for-
mer gives detailed statistical information such as residuals and confidence inter-
vals for the population, but may not allow for fitting. FindFit[ ], on the other
hand, does not compute detailed information, but allows for simple fitting. List.
Z.3 shows an example of fitting for the calibration of HWP.

• Solve[Equa] : Solve the equation "Equa".

• Manipulate[ ] : Variables inside [ ] can be moved within a specified range. It can
be used for both analytical calculations and graphics.

LISTING Z.2: Conditional calculation using FullSimplity function

1 In[1]:= FullSimplify [(a + I*b)*Conjugate [(a - I*b)]]
2
3 Out [1]= (a + I b) (Conjugate[a] + I Conjugate[b])
4
5 In[2]:= FullSimplify [(a + I*b)*
6 Conjugate [(a - I*b)], {a, b} ∈ Reals]
7
8 Out [2]= (a + I b)^2

LISTING Z.3: Example of fitting for the calibration of HWP

1 Define a list of angles.
2
3 In[1]:= angle = Table [10*a, {a, 0, 19, 1}]
4
5 Out [1]= {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,

130, 140, 150, 160, \
6 170, 180, 190}
7
8 Next , the intensity for the set angle of HWP0 is transferred from

the experimental notes.
9

10 In[2]:= HWP0power = {10.05 , 7.748, 4.196 , 1.184, 0.04935 , 1.389 ,
4.581, 8.025 , 10.23,

11 10.08, 7.682 , 4.153, 1.131, 0.05146 , 1.3930 , 4.54, 8.044,
10.16, 9.9};
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12
13 Create a list of errors for each strength value
14
15 In[2]:= HWP0err = {0.002 , 0.0006 , 0.0008 , 0.0002 , 0.00004 ,

0.00007 , 0.000008 , 0.0012 ,
16 0.002, 0.0008 , 0.0012 , 0.0004 , 0.0003 , 0.00003 , 0.0002 , 0.002,

0.001,
17 0.001, 0.003};
18
19 Next , define the list for fitting.
20
21 In[3]:= HWP0list = Table [{angle[[i]], HWP0power [[i]]}, {i, 1,

19}]
22
23 Out [3]= {{0, 10.05} , {10, 7.748} , {20, 4.196} , {30, 1.184} , {40,

0.04935} , {50,
24 1.389} , {60, 4.581} , {70, 8.025} , {80, 10.23} , {90, 10.08} ,

{100,
25 7.682} , {110, 4.153} , {120, 1.131} , {130, 0.05146} , {140,

1.393} , {150,
26 4.54}, {160, 8.044} , {170, 10.16} , {180, 9.9}}
27
28 Define the fitting function.
29
30 In[4]:= model = p1*Sin[p2 (θ - p3) Degree] + p4;
31
32 Create a list of weights first for fitting
33
34 In[5]:= weight = Table [1/ HWP0err [[i]]^2, {i, 1, 19}]
35
36 Out [5]= {250000. , 2.77778*10^6 , 1.5625*10^6 , 2.5*10^7 , 6.25*10^8 ,

2.04082*10^8 ,
37 1.5625*10^10 , 694444. , 250000. , 1.5625*10^6 , 694444. , 6.25*10^6 ,
38 1.11111*10^7 , 1.11111*10^9 , 2.5*10^7 , 250000. , 1.*10^6 , 1.*10^6 ,

111111.}
39
40 The Manipulate function is used to find out how the initial

values of parameters should be defined.
41
42 In[6]:= Manipulate[
43 Show[ListPlot[HWP0list , Frame -> True , GridLines -> Automatic],
44 Plot[p1*Sin[p2 (θ - p3) Degree] + p4, {θ, 0, 180}]] , {p1, 0,
45 10, 0.1}, {p2 , 0, 5, 0.1}, {p3 , 0, 180, 1}, {p4, 0, 10, 0.1}]
46
47 Out [6]= Manipulate[Show[ListPlot[HWP0list , Frame -> True ,

GridLines -> Automatic],
48 Plot[p1*Sin[(p2*(θ - p3))*Degree] + p4, {θ, 0, 180}]] , {p1, \
49 0, 10, 0.1},
50 {p2 , 0, 5, 0.1}, {p3 , 0, 180, 1}, {p4 , 0, 10, 0.1}]
51
52 The results of the Manipulate function above give some idea of

the range of parameters.
53
54 In[7]:= nlm = NonlinearModelFit[
55 HWP0list , {model , {5 < p1 < 5.5, 3.9 < p2 < 4.1, 55 < p3 < 65,
56 5 < p4 < 6}}, {p1 , p2, p3, p4}, θ, Weights -> weight ];
57
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58 The fitting parameters obtained are as follows
59
60 In[8]:= fit = nlm["BestFitParameters"]
61
62 Out [8]= {p1 -> 5.25468 , p2 -> 4.003, p3 -> 61.9668 , p4 ->

5.30063}
63
64 Parameter errors are as follows
65
66 In[9]:= nlm["ParameterTable"]
67
68 Out [9]= \!\(\*
69 StyleBox[
70 TagBox[GridBox [{
71 {"\<\"\"\>", "\<\"Estimate\"\>", "\<\"Standard Error\"\>", \
72 "\<\"t−Statistic\"\>", "\<\"P−Value\"\>"},
73 {"p1", "5.25467850531482 ‘", "0.009588899897451238 ‘", "

547.9959704982979 ‘",
74 "1.110535298910244 ‘*^ -33"},
75 {"p2", "4.003001501108563 ‘", "0.0027187195848814008 ‘", "

1472.3848400434376 ‘",
76 "4.045802678183333 ‘*^ -40"},
77 {"p3", "61.96678501614212 ‘", "0.023395305312575537 ‘", "

2648.6846052328924 ‘",
78 "6.0518158219651 ‘*^ -44"},
79 {"p4", "5.300634167764399 ‘", "0.009781093711607288 ‘", "

541.9265292872209 ‘",
80 "1.3124513583315877 ‘*^ -33"}
81 },
82 AutoDelete ->False ,
83 GridBoxAlignment ->{"Columns" -> {{Left}}, "Rows" -> {{ Automatic

}}},
84 GridBoxDividers ->{"ColumnsIndexed" -> {2 -> GrayLevel [0.7]} ,
85 "RowsIndexed" -> {2 -> GrayLevel [0.7]}} ,
86 GridBoxItemSize ->{"Columns" -> {{ Automatic}}, "Rows" -> {{

Automatic }}},
87 GridBoxSpacings ->{"ColumnsIndexed" -> {2 -> 1}, "RowsIndexed" ->

{2 -> 0.75}}] ,
88 "Grid"], "DialogStyle",
89 StripOnInput ->False ]\)
90
91 In [10]:= 5.300634167764399 ‘ +
92 5.25467850531482 ‘ Sin [0.06986555615661987 ‘ ( -61.96678501614212 ‘

+ θ)]
93
94 Out [10]= 5.30063 + 5.25468 Sin [0.0698656 ( -61.9668 + θ)]
95
96 Find out at what setting angle the desired polarization state can

be obtained.
97
98 In [11]:= Solve [0.06986555615661987 ‘ ( -61.96678501614212 ‘ + θ) ==

+1 π/2]
99

100 Out [11]= {{θ -> 84.4499}}
101
102 At this angle , it means that the SloW axis is oriented in the

direction of H polarization.
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103
104 In [12]:= Solve [0.06986555615661987 ‘ ( -61.96678501614212 ‘ + θ) ==

+3 π/2]
105
106 Out [12]= {{θ -> 129.416}}
107
108 At this angle , the Slow axis is oriented toward D polarization.
109
110 In [13]:= N[(129.4161726631935 ‘ + 84.4499142318259 ‘) /2]
111
112 Out [13]= 106.933
113
114 At this angle , the Slow axis is halfway between H and D

polarization.
115
116 In [14]:= Solve [0.06986555615661987 ‘ ( -61.96678501614212 ‘ + θ) ==

+5 π/2]
117
118 Out [14]= {{θ -> 174.382}}
119
120 In [15]:= N[(129.4161726631935 ‘ + 174.38243109456107 ‘) /2]
121
122 Out [15]= 151.899
123
124 At this angle , the Slow axis is halfway between VD and V

polarization.

Z.3.2 Algebraic calculations

This subsection presents frequently used shortcut keys, functions and useful knowledge
for algebraic calculations.

• "Ctrl" + "Enter" : Add a row. After entering the parentheses and bringing the cur-
sor inside them, this shortcut key can be used to enter a two-dimensional column
vector.

• "Ctrl" + "," : Add a column. After entering the parentheses and bringing the cursor
inside them, this shortcut key can be used to enter a two-dimensional row vector.

• "Esc" + "c" + "*" + "Esc" : Enter the symbol for Kronecker product. Since the symbol
for Kronecker product alone does not function as a Kronecker product, it is best to
define the symbol as follows. "a_ ⊗ b_:=KroneckerProduct[a, b]". One example is
shown in List. Z.4

• Transpose[M] : Gives the transpose matrix of the matrix M. It can also transform
row vectors and column vectors.

• ConjugateTranspose[M] : Gives the conjugate transpose matrix of the matrix M.

• Eigenvalues[M] : Gives the eigenvalues of the square matrix M.

• Eigenvectors[M] : Gives a list of eigenvectors of a square matrix M.

• Tr[L] : Give the trace of a matrix or tensor list.

• Det[M] : Give the determinant of the square matrix M.
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• Flatten[T] : Make the tensor T a one-dimensional vector.

• Partition[ ] : Split elements in a list into multiple sub-lists.

• Length[L] : Give the number of elements in list L.

• Table[Rule] : Give a list according to certain rules.

LISTING Z.4: Example of Kronecker product

1 In[1]:= a_⊗ b_ := KroneckerProduct[a, b]

2 MatrixForm
[(

1 0
0 −1

)
⊗
(

0 1
1 0

)]
3
4 Out [1]// MatrixForm=

5


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0



Z.3.3 Illustration of tables and graphs

This subsection presents functions that were frequently used when creating graphs.

• Plot[ ] : Function used to graph theoretical equations. List. Z.5 is the code that
was entered when outputting FIG. C.2.

• ListPlot[ ] : Function used primarily to graph experimental data.

• Graphics3D[ ] : Function used to create 3D graphics, where List. Z.6 is the input
code to obtain FIG. 4.4.

• Manipulate[ ] : Introduced in Subsec. Z.3.1 , this function is used when you want
to vary parameters while viewing a graph.

• Plot3D[ ] : This function is used when you want to see how a bivariate function
changes. List. Z.7 is an example.

LISTING Z.5: Input code to get FIG. C.2

1 Show[Plot[1, {θ, 0, π/6}, Frame -> True ,
2 FrameStyle -> Directive[Black , Bold , 16],
3 FrameLabel -> {"θ", "E(θ)"},
4 PlotRange -> {{0, π + 0.1}, {-1.1, 1.1}} ,
5 Epilog -> {Black , Dashed , Line [{{π/6, 0}, {π/6, 1}}],
6 Black , Dashed , Line [{{π/4, 0}, {π/4, -1}}],
7 Black , Dashed , Line [{{π/3, 0}, {π/3, -1}}],
8 Black , Dashed , Line [{{(2 π)/3, 0}, {(2 π)/3, 1}}],
9 Black , Dashed , Line [{{(3 π)/4, 0}, {(3 π)/4, 1}}],

10 Black , Dashed , Line [{{(5 π)/6, 0}, {(5 π)/6,
-1}}]}],

11 Plot[(-1 - 1)/(π/4 - π/6) (θ - π/6) +
12 1, {θ, π/6, π/4}],
13 Plot[-1, {θ, π/4, π/3}],
14 Plot [(1 + 1)/((2 π)/3 - π/3) (θ - (2 π)/3) +
15 1, {θ, π/3, (2 π)/3}],
16 Plot[1, {θ, (2 π)/3, (3 π)/4}],
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17 Plot[(-1 - 1)/((5 π)/6 - (3 π)/4) (θ - (3 π)/4) +
18 1, {θ, (3 π)/4, (5 π)/6}],
19 Plot[-1, {θ, (5 π)/6, π}]]

LISTING Z.6: Input code to get FIG. 4.4

1 jointraw = {{{9850 , 10064, 60444, 60540} , {10101 , 10146 , 60977,
2 61003} , {58608 , 58662, 10380, 10277} , {58637 , 58553 , 10399,
3 10391}} , {{9965 , 18996, 51685 , 61401} , {3461 , 9824, 62244,
4 67861} , {65233 , 59868, 9948, 3692} , {58803 , 49972 , 19977,
5 10438}} , {{10204 , 30914, 40239 , 61936} , {745, 10280, 61836 ,
6 71854} , {68780 , 59444, 10366, 878}, {59168 , 38590 , 32255,
7 10863}} , {{9909 , 42681, 28316 , 63076} , {2147 , 10353, 62096 ,
8 71901} , {67385 , 60101, 10028, 2198} , {59566 , 27170 , 43509,
9 10787}} , {{10228 , 54292, 17255 , 62126} , {7318 , 11089, 62893 ,

10 67235} , {62552 , 59623, 10159, 7015} , {59489 , 15787 , 55548,
11 11615}} , {{10822 , 59071, 12350 , 60926} , {11039 , 10422, 61610 ,
12 61017} , {59539 , 59761, 10001, 11242} , {58932 , 11627 , 58160,
13 10658}} , {{9689 , 61277, 8218, 60337} , {15970 , 10380, 61445,
14 55728} , {52558 , 58280, 9918, 15741} , {58524 , 7745, 61340,
15 10706}} , {{10028 , 67052, 2729, 59680} , {27475 , 11414, 60841 ,
16 45665} , {42702 , 58382, 10012, 25765} , {60357 , 2286, 68914,
17 11903}} , {{9133 , 66314, 1140, 58864} , {38520 , 11200, 59769,
18 33036} , {28456 , 56836, 9189, 37430} , {57940 , 1448, 67816,
19 11331}} , {{9541 , 64078, 3416, 57526} , {48724 , 11453, 58856,
20 21336} , {18266 , 56498, 9368, 47904} , {57707 , 4460, 65092,
21 11630}} , {{9204 , 57982, 9588, 57595} , {58521 , 11220, 58268,
22 10862} , {9419 , 57580, 9620, 57425} , {58333 , 10987 , 58205,

10822}}};
23
24 G1 = Manipulate[
25 Graphics3D [{{Green ,
26 Cuboid [{0, 0, 0}, {1, 1, 1/30000* jointraw [[i, 4, 1]]}]} , {Orange ,
27 Cuboid [{2, 0, 0}, {3, 1, 1/30000* jointraw [[i, 4, 2]]}], {Green ,
28 Cuboid [{4, 0, 0}, {5, 1, 1/30000* jointraw [[i, 4, 3]]}]}} , {

Orange ,
29 Cuboid [{6, 0, 0}, {7, 1, 1/30000* jointraw [[i, 4, 4]]}]} , {Green ,
30 Cuboid [{0, 2, 0}, {1, 3, 1/30000* jointraw [[i, 3, 1]]}]} , {Green ,
31 Cuboid [{2, 2, 0}, {3, 3, 1/30000* jointraw [[i, 3, 2]]}]} , {Orange ,
32 Cuboid [{4, 2, 0}, {5, 3, 1/30000* jointraw [[i, 3, 3]]}]} , {Orange ,
33 Cuboid [{6, 2, 0}, {7, 3, 1/30000* jointraw [[i, 3, 4]]}]} , {Orange ,
34 Cuboid [{0, 4, 0}, {1, 5, 1/30000* jointraw [[i, 2, 1]]}]} , {Orange ,
35 Cuboid [{2, 4, 0}, {3, 5, 1/30000* jointraw [[i, 2, 2]]}]} , {Green ,
36 Cuboid [{4, 4, 0}, {5, 5, 1/30000* jointraw [[i, 2, 3]]}]} , {Green ,
37 Cuboid [{6, 4, 0}, {7, 5, 1/30000* jointraw [[i, 2, 4]]}]} , {Orange ,
38 Cuboid [{0, 6, 0}, {1, 7, 1/30000* jointraw [[i, 1, 1]]}]} , {Green ,
39 Cuboid [{2, 6, 0}, {3, 7, 1/30000* jointraw [[i, 1, 2]]}]} , {Orange ,
40 Cuboid [{4, 6, 0}, {5, 7, 1/30000* jointraw [[i, 1, 3]]}]} , {Green ,
41 Cuboid [{6, 6, 0}, {7, 7, 1/30000* jointraw [[i, 1, 4]]}]} , {Black ,
42 Opacity [0.5] , InfinitePlane [{{0, 0, 0}, {1, 0, 0}, {0, 1, 0}}]} ,
43 Inset[Grid[jointraw [[i]], Frame -> All ,
44 Background -> {None ,
45 None , {{1, 1} -> Orange , {1, 2} -> Green , {2, 1} -> Orange ,

{2, 3} ->
46 Green , {3, 2} -> Green , {3, 4} -> Orange , {4, 3} -> Green ,

{4, 4} ->
47 Orange , {1, 3} -> Orange , {1, 4} -> Green , {2, 2} ->
48 Orange , {2, 4} -> Green , {3, 1} -> Green , {3, 3} ->
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49 Orange , {4, 1} -> Green , {4, 2} -> Orange}},
50 ItemStyle -> {Automatic ,
51 Automatic , {{1, 1} -> Directive[Bold , FontSize -> 16], {1, 2}

->
52 Directive[Bold , FontSize -> 16], {2, 1} ->
53 Directive[Bold , FontSize -> 16], {2, 3} ->
54 Directive[Bold , FontSize -> 16], {3, 2} ->
55 Directive[Bold , FontSize -> 16], {3, 4} ->
56 Directive[Bold , FontSize -> 16], {4, 3} ->
57 Directive[Bold , FontSize -> 16], {4, 4} ->
58 Directive[Bold , FontSize -> 16], {1, 3} ->
59 Directive[Bold , FontSize -> 16], {1, 4} ->
60 Directive[Bold , FontSize -> 16], {2, 2} ->
61 Directive[Bold , FontSize -> 16], {2, 4} ->
62 Directive[Bold , FontSize -> 16], {3, 1} ->
63 Directive[Bold , FontSize -> 16], {3, 3} ->
64 Directive[Bold , FontSize -> 16], {4, 1} ->
65 Directive[Bold , FontSize -> 16], {4, 2} ->
66 Directive[Bold , FontSize -> 16]}}] , {3, 0, -5}]}, Boxed ->

False ,
67 PlotRange -> {{0, 7}, {0, 7}, {-5, 5}}], {i, 1, 11, 1}]

LISTING Z.7: Example to use Plot3D function

1 Manipulate[
2 Plot3D [1/(2 π*σx*σy) E^(-(x^2/(2 σx)))*
3 E^(-(y^2/(2 σy))), {x, -10, 10}, {y, -10, 10},
4 AxesLabel -> {"x", "y", "P(x,y;σx,σy)"},
5 AxesStyle -> Directive[Black , Bold , 16],
6 ColorFunction -> Function [{x, y, z}, Hue [.65 (1 - z)]],
7 PlotRange -> {{-5, 5}, {-5, 5}, {0, 0.15}}] , {σx, 1, 10,
8 1}, {σy, 1, 10, 1}]

Z.3.4 Useful websites, applications and tools

In this subsection, websites, apps, and tools that have been helpful in overall research
activities will be presented.

• Visual Studio Code (VS code) : Editor for programming and writing LaTeX. In re-
cent years, Overleaf (https://www.overleaf.com/), which enables writing LaTeX
in the cloud, has become popular, but the advantages of using a local editor are its
multi-cursor feature, and although it is rarely a problem these days, it is convenient
to be able to program and write LaTeX even in no Internet environment.

• Blender : If you know how to use it, you can not only create beautiful 3D graphics,
but also perform simple physics simulations. It is also possible to create beautiful
optical illustrations.

• Google Scholar (https://scholar.google.com/) : Tools to search for references. By
entering the title of an article, you can obtain Citation. Naturally, work must be
done to verify that the output results are correct.

• Whiteboard Fox (https://r9.whiteboardfox.com/) : Online whiteboards are easy
for anyone to use. You can discuss with colleagues in remote locations while talking
on the phone. Multiple people can write on it at the same time, and the written
content can be saved as an image.
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• SPDCalc (https://spdcalc.org/) : Various simulations related to SPDC can be per-
formed.

• MyScript (https://webdemo.myscript.com/) : Mathematical expressions written
on the screen can be output in LaTeX or MathML format, which is useful for writing
in LaTeX or creating documents using Microsoft Word, as it allows you to quickly
write mathematical expressions. If the PC you are using does not support a touch
screen, you can purchase an external pen tablets to easily write mathematical ex-
pressions on the screen.

• DeepL (https://www.deepl.com/en/translator) : A translation site that is said to
have the highest translation accuracy.

• Irasutoya (https://www.irasutoya.com/) : If certain rules are adhered to, illustra-
tions may be used free of charge. This was useful when creating presentation slides.
It is quite famous in Japan.

• ChatGPT (https://chat.openai.com/auth/login) : A website that answers all kinds
of questions. Of course, it is dangerous to believe the output as it is. You can use the
website in various ways, such as regarding them as a discussion partner, or asking
for references related to the keywords you want to look up.

• Bluetooth and Wireless Keyboards : This is useful when typing quickly on a smart-
phone or tablet device. With Overleaf, you can edit LaTeX from a tablet device, and
with MyScript, you will have no trouble entering mathematical expressions.

• Quick Access Toolbar : The Quick Access Toolbar is one of the features in Microsoft
Office products. It is useful when creating slides for a presentation because it elim-
inates the need to switch between different tabs.

• Multi Button Mouse : Assigning a variety of shortcut keys to many buttons in-
creases the efficiency of desk work.

• Custom Office Templates : You can create templates for your own use in Word and
PowerPoint. This is convenient because it eliminates the need to change the settings
of every document and slide.
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