
Modeling and Detecting Security Vulnerabilities with Static Analysis

By

WANG PINGYAN

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Informatics and Data Science

HIROSHIMA UNIVERSITY

2024

© 2024 Wang Pingyan

iii

Abstract

Security vulnerabilities in software can be exploited by attackers to launch malicious

attacks, which in turn can cause security failures. Static analysis is a widely used technique

for vulnerability discovery in both academia and industry. While many existing static

analysis approaches have been proved to be effective, there remain some challenging open

problems. This dissertation focuses on two important problems. The first problem is how

to perform analysis on incomplete programs and obtain real-time analysis results during

program development, which enables vulnerability detection at an early stage. Another

interesting problem is that automated static analysis alone tends to miss some complex and

subtle vulnerabilities, thus requiring the incorporation of certain manual security expertise

to augment its capabilities.

To enable real-time analysis on incomplete programs, we first present a general framework

used in a paradigm known as Human-Machine Pair Programming. The framework

employs attack trees to model a given class of vulnerabilities and then crafts patterns for

each individual vulnerability. The programmer will be alarmed during coding when

patterns match potentially vulnerable code. To identify specifically taint-style

vulnerabilities in Human-Machine Pair Programming, we further present two pointer-

analysis-based approaches, namely exhaustive pointer analysis and demand-driven pointer

analysis. Both the approaches support an incremental pointer analysis and provide points-

to information for vulnerability discovery during program development. Our experiment

results show that the proposed approaches can detect all the potential vulnerabilities in

Securibench Micro with low false positives.

To benefit from both manual audits and automated static analysis, we propose vulnerability

nets, a graphical code representation for modeling source code. With a combination of Petri

nets, data dependence graphs, and control flow graphs, vulnerability nets explicitly

describe the key information of a given program and provide a graphical view for analysts

to perform auditing. Our evaluation shows that the proposed approach outperforms the tool

SonarQube in generating fewer false negatives when tested in Securibench Micro.

iv

v

Acknowledgments

First and foremost, I would like to thank my advisor Shaoying Liu. This thesis would have

been impossible without your continuous support and mentoring throughout my PhD in

Hiroshima University. I am so grateful for all your valuable comments, suggestions, and

encouragement over the last several years.

I would also like to express my gratitude to the committee members of this thesis, Tadashi

Dohi, Koji Eguchi, and Jianjun Zhao, for their valuable comments and suggestions. Your

feedback has significantly improved the quality of this thesis.

My sincere thanks go to Ai Liu for making substantial insightful comments on my research.

I would also like to extend my grateful thanks to every member of Dependable Systems

Laboratory for always giving me a hand whenever I need any help. I truly enjoyed the time

when we discussed various research problems and exchanged our ideas during group

seminars.

Finally, my special thanks go to my family and friends.

This work was supported by JST SPRING (Grant Number JPMJSP2132) and ROIS NII

Open Collaborative Research 2021-(21FS02).

vi

vii

Table of Contents

Abstract .. iii

Acknowledgments..v

List of Figures .. xi

List of Tables ... xiii

1 Introduction...1
1.1 Vulnerability Discovery ...2

1.1.1 What Are Vulnerabilities? ..2

1.1.2 Vulnerability Discovery Approaches..3

1.2 The Problems..4

1.3 Contributions ..5

1.4 Organization of the Thesis ...6

2 Vulnerability Discovery in Human-Machine Pair Programming: A Framework.......7
2.1 Human-Machine Pair Programming ..8

2.2 Attack Trees ...9

2.3 The Framework ..11

2.3.1 Pattern Preparation..12

2.3.1.1 Identifying attack goals...12

2.3.1.2 Generating attack trees..13

2.3.1.3 Constructing vulnerability-matching patterns.................15

2.3.2 Pattern Application ...18

2.3.2.1 Detecting vulnerable code...18

2.3.2.2 Reporting warnings...19

2.3.2.3 Fixing the code..19

2.4 Case Study..20

2.4.1 Modeling SQLIAs...20

2.4.1.1 Identifying the attack goal ..20

2.4.1.2 Generating attack trees..21

viii

2.4.1.3 Constructing vulnerability-matching patterns.................22

2.4.2 Detecting SQLIAs...25

2.4.2.1 Detecting Vulnerable Code...25

2.4.2.2 Reporting Warnings ..25

2.4.2.3 Fixing the Code...25

2.5 Discussion ..26

2.6 Related Work..26

3 Vulnerability Discovery in Human-Machine Pair Programming: Using Pointer
Analysis..28

3.1 Background ..29

3.1.1 Taint Analysis ...29

3.1.2 Pointer Analysis ..30

3.2 Proposed Approaches ...30

3.2.1 Motivating Example..30

3.2.2 Exhaustive Pointer Analysis ...32

3.2.2.1 Human-Machine Pair Programming fashion32

3.2.2.2 Flow sensitivity...33

3.2.2.3 Conservative approximation ...34

3.2.2.4 Pointer propagation rules ..36

3.2.3 Demand-Driven Pointer Analysis ...37

3.2.4 Difference and Equivalence..39

3.3 Evaluation...41

3.3.1 Experiment..41

3.3.1.1 Preliminaries ...41

3.3.1.2 Implementation ...42

3.3.2 Results and Discussion ...43

3.3.3 Case Study ..45

3.4 Discussion ..47

3.5 Related Work..48

4 Vulnerability Nets for Vulnerability Discovery ...50

ix

4.1 Definitions ..51

4.1.1 Petri Nets...51

4.1.2 Vulnerability Nets ...52

4.1.3 Vulnerability Nets with Colored Tokens ..56

4.2 Modeling and Detecting Vulnerabilities ..57

4.2.1 Data Dependence Graphs..58

4.2.2 Control Flow Graphs...59

4.2.3 Building Vulnerability Nets..60

4.2.4 Algorithms ..63

4.3 Evaluation...65

4.3.1 Experiments ..65

4.3.1.1 Preliminaries ...65

4.3.1.2 Implementation ...66

4.3.2 Results...67

4.3.3 Comparison with SonarQube..68

4.3.4 Case Study ..69

4.4 Discussion ..72

4.5 Related Work..74

5 Conclusion and Outlook ...76
5.1 Summary of Results ...76

5.2 Future Work ...76

6 Bibliography ...78

A Source Code Containing LDAP Injection...88

B Copyright Documentation...92

x

xi

List of Figures

Figure 2.1. SCM framework [34]. ..8

Figure 2.2. Example of an attack tree. ..10

Figure 2.3. Overview of the proposed framework..12

Figure 2.4. Generation of an attack tree..13

Figure 2.5. Process of pattern construction...16

Figure 2.6. Examples of false negatives and false positives...18

Figure 2.7. Example of warning report. ..19

Figure 2.8. Interaction between the programmer and computer.20

Figure 2.9. Attack tree against SQL injection...22

Figure 2.10. Illustrative code fragment...22

Figure 2.11. Detection for vulnerable code. ...25

Figure 2.12. Warning report for the illustrative code. ..25

Figure 3.1. Motivating code example. ..31

Figure 3.2. Overview of our approach. ...32

Figure 3.3. Code example adapted from Figure 3.1. ..34

Figure 3.4. Demand-driven pointer analysis of the code example in Figure 3.1.38

Figure 3.5. Code snippet of Inter1 from Securibench Micro..44

Figure 3.6. Code snippet from Apache Druid 0.17.0 illustrating LDAP injection.46

Figure 4.1. (a) Textual representation of a vulnerability net; (b) Graphical representation

of Figure 4.1 (a). ..53

Figure 4.2. The next state of Figure 4.1. ...55

Figure 4.3. (a) Execution of a standard Petri net; (b) Execution of a vulnerability net. ...56

xii

Figure 4.4. Execution of a vulnerability net with colored tokens.57

Figure 4.5. Example of a taint-style vulnerability in Java. ...58

Figure 4.6. (a) DDG for the code in Figure 4.5; (b) CFG for the code in Figure 4.5.59

Figure 4.7. Example code adapted from Figure 4.5..60

Figure 4.8. (a) Vulnerability net for the code in Figure 4.5; (b) Vulnerability net with

sanitization identification for the code in Figure 4.7. ..61

Figure 4.9. Datalog program implementing Algorithm 4.2. ...67

Figure 4.10. Code fragment adapted from a real-world case..69

Figure 4.11. Vulnerability net for the code in Figure 4.10. ..70

Figure A.1. Source code of the authentication module in Apache Druid 0.17.0.91

xiii

List of Tables

Table 1.1. A summary of commonly used vulnerability discovery methods.3

Table 2.1. Symbols used in our attack-tree analysis. ..9

Table 3.1. Pointer propagation rules. ..36

Table 3.2. Vulnerability types within the programs for our experiments.42

Table 3.3. Analysis example. ..43

Table 3.4. Experiment results. ..43

Table 4.1. Experiment results. ..67

Table 4.2. Comparison between SonarQube and our approach..68

1

1 Introduction

As computer systems play an increasingly important role in our lives, there is growing

concern over the security of software. Security vulnerabilities in software can be exploited

by attackers to launch malicious attacks, which in turn can cause security failures.

Numerous security breaches in the past have shown that even a single vulnerability can

lead to a catastrophic failure (e.g., [1, 2]). Probably the most notorious example in the last

decade is the Heartbleed vulnerability [2], which is found in the popular OpenSSL

cryptographic software library in 2014. Heartbleed allowed attackers to remotely read

sensitive memory from an estimated 24-55% of popular HTTPS sites [3]. Surprisingly, the

flaw itself is simple: a single missing bound check enables any attacker-specified length of

a user-supplied message. A more recent example is that a vulnerability in Twitter's systems

caused substantial account information leakages in 2022 [4]. All these breaches have

demonstrated the leading role of vulnerabilities in security. Therefore, a natural strategy to

enhance software security is to identify and eliminate the potential vulnerabilities in code.

There are various ways of identifying vulnerabilities, ranging from dynamic analysis (e.g.,

fuzz testing [5]) to formal methods (e.g., model checking [6]). Of these techniques, static

analysis is arguably the most common and effective one [7]. Static program analysis refers

to an analysis method that analyzes a program without executing it, as opposed to dynamic

program analysis such as unit testing. Many static analysis techniques (e.g., data flow

analysis) are derived from compiler technologies. These techniques can be encapsulated in

automated tools, freeing developers from manual code review. A considerable number of

existing static analysis tools (e.g., [8-12]) have proved to be effective in vulnerability

detection in practice. However, many problems remain unsolved and the research in this

field still has received considerable attention in recent years [13-15]. In this thesis, we will

discuss our solutions to two important problems in the field.

Before we dive into more details, in the rest of this chapter, we first provide some basic

background about vulnerability discovery. Then we describe the problems discussed in this

thesis, followed by a summary of our contributions and the organization of this thesis.

2

1.1 Vulnerability Discovery

1.1.1 What Are Vulnerabilities?

According to CVE [16], a vulnerability is defined as “a weakness in the computational

logic (e.g., code) found in software and hardware components that, when exploited, results

in a negative impact to confidentiality, integrity, availability.” Confidentiality refers to a

security policy that protects information from unauthorized access, while integrity is a

security policy that ensures the trustworthiness and completeness of data, and availability

is another policy that guarantees that data are accessible when needed. In this work, we

focus exclusively on the code vulnerabilities in software. We use the terms vulnerability,

security-related bug, and security flaw interchangeably throughout this thesis.

Many defects in code are not regarded as vulnerabilities because they are security

unrelated. To design methods specifically for vulnerability discovery, it is important for us

to first understand the features that all vulnerabilities (or a specific class of vulnerabilities)

have in common. The work in [17] summaries three key characteristics of vulnerable code:

sensitive operation, attacker control, and insufficient validation. To offer a more

comprehensive view, we add several other characteristics to the list and provide a brief

description of each one in the following.

Sensitive operation. Sensitive operations may include protected functionality

invocations, personal data handling, authentication, buffer copying, and memory

allocation.

Attacker control. It means the code allows an attacker to influence the behavior of

the application through attacker-controlled input or other ways.

Improper input validation. Input validation refers to the action of verifying that

the input data are correct and safe or adhere to certain criteria. Failure to provide

proper validation on user-supplied input may allow an attacker to gain control over

the system through carefully crafted input.

3

Improper input sanitization. Input sanitization refers to the action of cleaning the

input data to prevent dangerous input from being processed. Failure to properly

sanitize user-supplied input can lead to problems such as SQL injections.

Information leakages. Responses from the application, such as error messages,

may reveal sensitive information and thus can be exploited by an attacker.

Use of vulnerable components. Using vulnerable libraries or other software

components can result in the inheritance of their security risks.

1.1.2 Vulnerability Discovery Approaches

Vulnerability discovery is so important for software security that it has been discussed in

the literature for decades [18]. There is a large body of work on this topic in the literature.

For comparison, we have summarized and categorized some commonly used techniques

for vulnerability discovery in Table 1.1. Note that this table is not intended to be

comprehensive, but rather to provide a brief overview of the existing techniques and to

indicate the category to which our research belongs. The work in this thesis falls primarily

into the category of automated static analysis, though it also involves manual code review.

Table 1.1. A summary of commonly used vulnerability discovery methods.

Methods & Techniques Description

Manual Code
Review Manual audits (e.g., [19]) Identify the code manually to find

vulnerabilities.

Automated
Static Analysis

Rule/pattern-based analysis
(e.g., [10])

Use a set of predefined rules or
patterns to find vulnerabilities in
code.

Data flow analysis (e.g., [20]) Track the flow of data through the
program to find vulnerabilities.

Taint analysis (e.g., [21])

Monitor how the untrusted sources
propagate through the program and
introduce security risks in some
points.

Abstract interpretation (e.g.,
[22])

Use abstract representations of
program behavior to analyze
possible code paths.

4

Methods & Techniques Description

Dynamic
Analysis

Fuzz testing (e.g., [5])
Provide random data as input to the
program to find vulnerabilities that
occur during execution.

Penetration Testing (e.g., [23]) Simulate real-world attacks to
identify vulnerabilities.

Formal
Methods Model checking (e.g., [6])

Explore all possible states of a
program to verify properties and
detect vulnerabilities.

Machine
Learning-Based Pattern recognition (e.g., [24]) Identify patterns associated with

known vulnerabilities.

Hybrid
Approaches

Combination of two or more
different methods (e.g.,

symbolic execution [25])

Combine elements of multiple
analysis methods.

1.2 The Problems

Static analysis can be used in multiple phases of the software development lifecycle.

Intuitively, performing static analysis in the coding phase is generally efficient because it

allows the programmer to review and fix the vulnerable code in a timely manner. However,

during the coding phase, the program is generally incomplete and some key information

might be missing, which can lead to imprecise analysis and thus introduce false negatives

or positives. In particular, false positives are one of the primary reasons that discourage

developers from using a static analysis tool [13]. Therefore, it is important for us to study

the problem of enabling analysis on incomplete programs while keeping the false positives

low. Unfortunately, work in this branch is not extensively presented. For example, as one

of the fundamental techniques used in static analysis, pointer analysis generally requires

whole-program availability [26], which indicates that most pointer analysis approaches

cannot be applied directly to incomplete program.

Another interesting problem is that static analysis tools will always fail to uncover some

subtle vulnerabilities (i.e., false negatives), or may produce substantial false alarms (i.e.,

5

false positives), due to the difficulty of obtaining soundness and completeness. For

example, buffer overflows [27], one of the most notorious vulnerabilities, still cannot be

fully addressed by using automated tools alone. Instead, significant security expertise is

often involved during detection of buffer overflows [28]. To alleviate the problem, some

researchers (e.g., [29, 30]) have considered incorporating the analyst’s security knowledge

(e.g., manual audits) into a tool during the detection process. Still, the exploration in this

research branch is inadequate. For example, little work has been done on graphical

representations of source code for supporting manual audits (e.g., [19]).

To summarize, this thesis focuses on two important problems: (1) how to perform analysis

on incomplete programs and obtain real-time analysis results during program development,

thereby allowing the developer to remove security risks at an early stage; (2) how to benefit

from both manual audits and automated static analysis, thereby aiding the developer (or

the security analyst) in finding some complex or subtle vulnerabilities.

Interestingly, while the two problems are seemingly unrelated at first glance, addressing

one is likely to significantly alleviate another. For example, real-time analysis results can

help the developer find some vulnerabilities earlier before they turn to complex later. On

the other hand, manual audits can also facilitate the analysis of incomplete programs.

1.3 Contributions

The main contributions of this thesis include:

We describe a pattern-based framework for timely vulnerability discovery in

Human-Machine Pair Programming. In this framework, we describe in detail how

patterns are created based on attack-tree analysis and how patterns are applied to

real-time vulnerability detection in the coding phase.

We present two pointer analysis approaches, exhaustive pointer analysis and

demand-driven pointer analysis, to identify taint-style vulnerabilities in Human-

Machine Pair Programming. Both the approaches support an incremental pointer

6

analysis and provide points-to information for vulnerability discovery during

program development.

We put forward vulnerability nets, a novel graphical code representation for

modeling and detecting vulnerabilities in source code. Vulnerability nets support

both automated analysis and manual audits.

We present evaluation of the proposed approaches by conducting experiments on

Securibench Micro and/or real-world case studies. Our evaluation demonstrates the

effectiveness of our approaches. For example, our vulnerability net approach

outperforms the existing tool SonarQube in generating fewer false negatives when

tested in Securibench Micro.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe a pattern-based

framework for vulnerability discovery in Human-Machine Pair Programming. In Chapter

3, we further present two pointer analysis approaches for identifying taint-style

vulnerabilities in Human-Machine Pair Programming. In Chapter 4, we discuss

vulnerability nets, a graphical code representation for modeling and detecting

vulnerabilities in source code. Chapter 5 concludes this thesis and presents future work.

7

2 Vulnerability Discovery in Human-Machine Pair
Programming: A Framework1

Security vulnerabilities can be found in different phases of a software lifecycle and

exploited by attackers to launch attacks against software-based systems. Although system

administrators can install patches after being attacked, systems have been compromised

and attackers probably have achieved their goals. For this reason, the traditional penetrate-

and-patch approach might not be considered as an effective strategy in many scenarios. For

most software-based systems, especially security-critical systems, it is important to detect

and tackle the security problems at an early stage since adverse impact can increase rapidly

with time. Researchers have explored many approaches for mitigating security problems

during different development phases, including requirement phase [31], coding phase [32]

and testing phase [33]. Intuitively, identifying the security-related problems in the coding

phase is generally efficient because it allows the programmer to review and fix the

vulnerable code in a timely manner. Some static analysis techniques are proposed to fulfill

this goal. Human-Machine Pair Programming [34] is one such technique that advocates a

compiler-like mechanism for bug detection, during which the computer (machine)

constantly runs a check to find bugs according to certain rules when the programmer

(human) is coding.

Attack trees [8] are considered as a popular method to describe the sequence of events that

can result in a specific attack. In an attack tree, an attack goal will be decomposed into

a set of relatively simple sub-goals and each sub-goal will be further decomposed into

smaller sub-goals if possible. The smallest sub-goals, i.e., the leaf nodes of the tree, denote

the smallest attack actions that can cause the attack goal to occur. In this chapter, we

present an attack trees-based approach in Human-Machine Pair Programming [35].

Specifically, we first create an attack tree to model a specific attack goal , which will be

decomposed into a set of smallest attacks that are easier for analysis. Subsequently, we

1 This chapter is adapted from our work in [35].

8

perform vulnerability analysis for each leaf node of an attack tree and craft corresponding

patterns. Finally, we apply the patterns to perform real-time vulnerability discovery during

coding.

2.1 Human-Machine Pair Programming

Human-Machine Pair Programming (HMPP) [34] is a paradigm characterized by the

feature that the programmer (human) creates algorithms and data structures for a program

while the computer (machine) monitors the coding process to find bugs and predict future

contents. While HMPP supports both Software Construction Monitoring (SCM) and

Software Construction Predicting (SCP), the scope of this thesis only involves the former.

Figure 2.1 shows the general process of SCM. Let CV_S be the current version of software

under construction. Firstly, a syntactical analysis for CV_S is conducted, which can help

extract useful code information, such as variable declarations, function definitions, control

structures, and the relationships between program elements. Then, the extracted

information together with a property-related knowledge base (equipped with knowledge

such as secure development conventions and common faults) will form a set of specific

properties of interest , , …, . Finally, these properties will be examined to identify

if there are any violations. A violation indicates the presence of a potential bug in the

program. As CV_S is continuously changed during coding phase, the analysis also

continuously proceeds and yields new results.

Figure 2.1. SCM framework [34].

Syntactical
Analysis

Form
Properties

Check
Properties

CV_S
knowledge

base

faults

code
information

properties

9

2.2 Attack Trees

An attack tree [36] is comprised of AND- and OR-decompositions. An AND-

decomposition can be decomposed as a set of attack sub-goals, all of which must be

achieved for the attack to succeed, while an OR-decomposition can be decomposed as a

set of attack sub-goals, any one of which is achieved is sufficient for the attack to succeed

[37].

While both a graphical representation and a textual representation can be used to represent

an attack tree, we use the former for readability. The graphical symbols of attact trees are

often borrowed from those of fault trees [38, 39], as shown in Table 2.1. Note that the very

same symbol in a fault tree and an attack tree can have different meanings. For example,

while circles represent basic events in a fault tree, they represent atomic attacks in an attack

tree.

Table 2.1. Symbols used in our attack-tree analysis.

Symbols Fault Trees [39] Our work

Basic event Atomic attack

Intermediate event Attack goal/sub-goal

AND AND

OR OR

In our attack-tree analysis, the root node, intermediate nodes, and leaf nodes in an attack

tree represent the attack goal, sub-goals, and atomic attacks, respectively (see Figure 2.2).

Formally, an attack tree is defined as follows.

Definition 2.1. An attack tree is a tree structure for modeling an

arbitrary attack, where is the attack goal (root node), is a set of sub-goals

(intermediate nodes), is a set of atomic attacks (leaf nodes), and

is a function assigning properties to each node where is the set of property values.

10

Throughout the thesis we use the term attack scenario (also known as intrusion scenario

[37]) to describe a smallest combination of atomic attacks that can cause the attack goal to

occur, which is similar to a minimal cut set in fault-tree analysis [39]. Figure 2.2 provides

a simple example to describe the decomposition of an attack goal. In this tree, for example,

to achieve the attack goal , either sub-goal or should be achieved first; similarly,

to achieve the sub-goal , both atomic attack and need to be fulfilled. Therefore,

there are three attack scenarios in this tree, i.e., three different ways to achieve : ,

and .

Attack goal G0

Atomic
attack A1

Atomic
attack A2

Sub-goal G1 Sub-goal G2

Atomic
attack A3

Atomic
attack A4

Figure 2.2. Example of an attack tree.

To generate an attack tree, the analyst should think from the perspective of the attacker

(instead of the defender) with infinite resources, knowledge, and skill [40]. This could take

considerable effort and time because the analyst needs to take account of all possible atomic

attacks against the attack goal. Fortunately, attack trees are reusable. For example, once the

PGP attack tree has been completed, anyone can use it in any situation that involves PGP

[36].

Once all the nodes of an attack tree have been generated, the analyst can assign property

values to each of them. The property values contain security information such as the

11

severity of the attack and the probability of occurrence, thus allowing people to better

evaluate the attack. We will elaborate on that in Section 2.3.1.

2.3 The Framework

In this section, we present the main idea of our approach.

Figure 2.3 shows the general overview of the proposed framework, which can be

decomposed into two phases: pattern preparation phase (shown as orange shaded boxes)

and pattern application phase (shown as blue shaded boxes). In Figure 2.3, we use D, C,

and P to represent the designer, computer, and programmer, respectively. A designer in

this context is a security analyst responsible for designing patterns for vulnerabilities of

interest.

The designer models attack goals by creating attack trees and constructing vulnerability-

matching patterns, all of which will be stored in a vulnerability knowledge base. The

computer, armed with a tool and the vulnerability knowledge base, detects vulnerable code

during the program construction. The programmer interacts with the computer by

constructing the program and fixing the vulnerable code. Moreover, the programmer might

give useful feedback on the attack trees and patterns to make improvements to the

vulnerability knowledge base. In our approach, there is no need for the programmer to

possess much security expertise and to manually perform security analysis while coding

because the manual work, including creating attack trees and constructing patterns, has

been done by the designer in the pattern preparation phase. On the other hand, despite the

fact that the manual work may require considerable time and effort from the designer, it is

fortunately reusable, which means once the work has been done it can be reused by any

other designer such that different designers do not need to repeat the process of pattern

preparation for the same vulnerability.

12

Figure 2.3. Overview of the proposed framework.

2.3.1 Pattern Preparation

This stage includes three activities: identifying attack goals, generating attack trees, and

constructing vulnerability-matching patterns.

2.3.1.1 Identifying attack goals

In the activity of identifying an attack goal, the attack goal and the target system will be

defined. Generally, the designer would select attack goals from common attacks occurred

in the past or based on specific security requirements/specification. For example, the

designer may refer to the common attacks listed in security-related databases, such as

National Vulnerability Database (NVD) [41] and Common Weakness Enumeration (CWE)

[42]. On the other hand, a designer from an enterprise may pay close attention to those

attacks that can potentially compromise the systems of the enterprise.

Vulnerability
Knowledge Base

[D]: Identify the attack
goal

[D]: Generate an attack
tree

[D]: Construct
vulnerability-matching

patterns

[P/C]: Detect vulnerable
code while coding[C]: Report warnings[P]: Fix the code

Pattern Preparation

Pattern Application

13

2.3.1.2 Generating attack trees

In the activity of generating an attack tree, the attack goal will be decomposed as a set of

sub-goals and atomic attacks, as shown in Figure 2.4.

Figure 2.4. Generation of an attack tree.

In order to reflect the characteristics of each attack scenario, we use two property values,

security level and risk level, to show the severity of the scenario and the probability of

occurrence. That is, , where is the set of security-level

values, the set of risk-level values and the set of property values (see Definition

2.1).

Commonly, we would first assign the two property values to each atomic attack. To assign

security level, we can use qualitative severity rankings of a set of values, such as {Low,

Medium, High, Undefined}. As shown in Figure 2.4, , , and are used to

represent Low, Medium, High, and Undefined security level, respectively. That is,

. The assessment criterion is mainly based on the severity of the

attack, which can be measured by security metrics such as confidentiality impact, integrity

Attack goal G0

Atomic
attack A1

Hs Mr

Atomic
attack A2

Ms Hr

Sub-goal G1

Ms Mr
Sub-goal G2

Atomic
attack A3

Ls Ur

Atomic
attack A4

Us Lr

Hs = High Security Level
Hr = High Risk Level
Ms = Medium Security Level
Mr = Medium Risk Level
Ls = Low Security Level
Lr = Low Risk Level
Us = Undefined Security Level
Ur = Undefined Risk Level

14

impact, and availability impact [43]. A successful attack against confidentiality, for

example, may allow an unauthorized attacker to access the sensitive data of a system.

Similarly, , , and are used to represent Low, Medium, High, and Undefined risk

level, respectively (see Figure 2.4), such that . The assessment

criterion is based on the probability of occurrence of each atomic attack. The following

provides a basic risk assessing method for roughly calculating the risk level.

Risk identification: An attack is normally launched by the attacker who exploits

certain vulnerability, but in some extreme cases it may be caused by system failures

or user’s unintentional manipulation. Therefore, there are two types of risk: hostile

risk and random risk. To identify the type of risk can help the analyst choose an

appropriate assessing method. When considering a hostile risk, for example, we

should think mainly from the perspective of the attacker (instead of the defender).

Required resources calculation: Consider performing the analysis for a hostile risk.

We should analyze what resources are required for an attacker to exploit the

vulnerability. The resources may include money, time, raw materials, knowledge,

and skill. It is obvious that the more resources are required for an attack, the lower

likelihood that the attacker will launch the attack.

Expected benefits calculation: In this step, we will analyze what expected benefits

an attacker can gain from a successful attack, by which attacker’s motivation and

expected returns can be learned. The more benefits are expected to gain from an

attack, the greater likelihood that the attacker will launch the attack.

To calculate the risk level of a given atomic attack, we perform a cost-benefit analysis [44,

45] based on the resources and benefits mentioned above. For example, if an attack is

expected to bring substantial benefits but to consume only a few resources, there would be

high likelihood that the attack will occur, i.e., the risk level will be considered as .

Once property values have been assigned to atomic attacks, we can then calculate the

values for attack scenarios. There are two types of scenarios: AND-decompositions and

OR-decompositions. For scenarios of OR-decompositions, we can directly use the property

15

values of each atomic attack. In Figure 2.4, for example, since the attack scenario is

the atomic attack itself, they share the same property values, i.e.,

. For scenarios of AND-decompositions, on the other hand, we need to take account

of the values of both and when calculating the property values. A quick way to

perform the calculations is to choose the minimal value between the two, for example,

. Accordingly, the property values of attack scenario in Figure

2.4 are and (i.e.,), as indicated in the higher-level node . Note

that there is no need to show the values in because its lower-level nodes are OR-

decompositions and cannot merge together simplistically.

However, the calculating method for scenarios of AND-decompositions mentioned above

is overly simplistic especially when the attack scenario contains multiple atomic attacks.

In the case of independent atomic attacks, a more accurate way is to calculate the product

of probabilities of them.

2.3.1.3 Constructing vulnerability-matching patterns

In the activity of constructing vulnerability-matching patterns, patterns will be built for

detecting vulnerable code during the process of vulnerability matching. Formally, a

vulnerability matching is defined as follows.

Definition 2.2. A vulnerability matching is a function that maps patterns to

vulnerable code, where is a set of patterns, is the power set, and is the set of

vulnerable code fragments.

Note that a code fragment mentioned in this thesis can simply be an expression, a statement,

or a block of programs. The construction of the patterns relies on the analysis of atomic

attacks, which can be launched based on the exploitation of certain vulnerabilities.

Therefore, the major concern is how to relate an atomic attack in an attack tree to a

vulnerability in a code fragment.

Let denote a set of vulnerabilities that can lead to the same atomic attack (i.e., the

atomic attack is caused by any one vulnerability). For example, if the atomic

16

attack is caused by a method in Java, then any code fragments that call this

method, such as and , will be treated as potential vulnerabilities.

A vulnerability-matching pattern, or simply pattern, is formally defined as follows.

Definition 2.3. A vulnerability-matching pattern is a pattern that can be used to

match a set of code fragments , each of which contains a vulnerability .

Figure 2.5 shows the process of pattern construction. Given an atomic attack , we

extract a set of features which indicate is caused by a specific type of vulnerability,

from which we conclude the vulnerability set that relates to . Based on the set , we

construct the pattern using some certain techniques such as regular expressions [46, 47]

and taint analysis [21]. The technique chosen to construct the pattern depends on the type

of vulnerability. For example, regular expressions are efficient for matching vulnerabilities

that consist lexical structure of constructs such as identifiers, constants, keywords, and

white space, but they are unlikely to deal with nested structures [47].

Figure 2.5. Process of pattern construction.

Once the pattern is obtained, the designer would typically pay attention to the fact that

whether it can reduce false negatives and false positives. False negatives mean that the

pattern fails to match the real vulnerability while false positives mean that the pattern

reports false alarms. Our approach is expected to achieve relatively low false negatives and

positives because the original attack goal has been decomposed as a set of relatively simple

and fine-grained atomic attacks that are easier to model. We formally define the false

negative and positive as follows.

Atomic attack a Vulnerability V Pattern p

Attack tree Features F Certain
techniques

17

Definition 2.4. Let be the set of code fragments that a pattern should match in

theory and let be the set of code fragments that the pattern does match in practice. If

there exists a code fragment that the pattern fails to match, then a false

negative occurs. If there exists a code fragment that the pattern does match,

then a false positive occurs.

To clarify the idea, Examples 2.1 and 2.2 use regular expressions to illustrate false

negatives and false positives, respectively.

Example 2.1. Consider the code snippet in Figure 2.6 (a). Let us use a regular-expression

pattern to match any method following fw.. If a pattern fw[\w.]+\(.+\) is used, then

a false negative occurs due to the fact that it fails to match the method fw.close() in

this code, as shown in Figure 2.6 (b).

Example 2.2. Consider the code snippet in Figure 2.6 (a). Let us use a regular-expression

pattern to match any method following fw.. If a pattern fw[\w.]+.+ is used, then a

false positive occurs due to the fact that it mismatches the filename fw.txt, which is not

a method, as shown in Figure 2.6 (c).

(a) Code sample.

18

(b) False negatives.

(c) False positives.

Figure 2.6. Examples of false negatives and false positives.

After constructing the patterns, the designer should also work out a countermeasure against

each corresponding vulnerability at this stage, so that the programmer can take it as a code

fix suggestion. Ideally, the countermeasure is also expected to provide a secure code

example, thus allowing the programmer to adopt it directly.

2.3.2 Pattern Application

This stage includes three activities: detecting vulnerable code, reporting warnings, and

fixing the code.

2.3.2.1 Detecting vulnerable code

In the activity of detecting vulnerable code, particular code that contains the vulnerabilities

will be automatically detected while the program is under construction. The detection will

be performed by the computer based on the patterns constructed in the pattern preparation

phase. In practice, the patterns will be stored in a vulnerability knowledge base, which can

be read by a tool. We assume such a knowledge base and tool already exist when discussing

pattern application. The vulnerable code will be captured in real time once it triggers the

corresponding pattern, which is similar to searching specific strings using Unix grep.

19

2.3.2.2 Reporting warnings

In the activity of reporting warnings, the programmer will be informed of what and where

the vulnerability is, and how to fix it. The warning report should include the location of the

vulnerability, security and risk level information, and countermeasures. The security and

risk level have been discussed in the pattern preparation phase. The countermeasures

should also be prepared in the pattern preparation phase, and they will serve as suggestions

for the programmer. Figure 2.7 shows an example of warning report. Also, the computer

will give the programmer access to the attack trees and patterns for more details about the

warnings.

Warning(s): The code contains sensitive information
Location: Line 20-30
Possible attack(s): SQL injection
Security level: High
Risk level: High
Countermeasure(s): Do not contain any sensitive information

Figure 2.7. Example of warning report.

2.3.2.3 Fixing the code

In the activity of fixing the code, the programmer can promptly examine and fix the

vulnerable code according to the warnings provided by the computer. The programmer can

also decide to dismiss the warnings if a false positive is found. Moreover, if the

programmer is interested in viewing the attack trees and patterns, he/she can check them

in the vulnerability knowledge base and give feedback. For example, if there is a false

positive caused by an inaccurate pattern, the programmer can dismiss the warning and

report the problem to the computer such that the computer may update the vulnerability

knowledge base by revising the pattern.

Figure 2.8 shows the interaction between the programmer and computer during pattern

application phase.

20

Programmer Computer

Report warningsAccept the warnings and
fix the code

or dismiss the warnings

or get access to attack trees
or patterns

Display attack trees or
patterns

Report errors in attack trees
or patterns

Update vulnerability
knowledge base

Detect codeWrite code

Figure 2.8. Interaction between the programmer and computer.

2.4 Case Study

In this section, we will illustrate the proposed framework in a case study.

We focus on a common security issue called SQL injection attacks (SQLIAs), which is

mainly caused by insecure code or lack of input validation. As one of the Most Dangerous

Software Weaknesses listed in the 2020 Common Weakness Enumeration (CWE) [42],

SQLIAs can pose a serious threat to many web applications. Suppose the target system in

our analysis is a web-based stock exchange trading system. This system allows customers

and companies to register, buy or sell stocks.

Based on the proposed framework, we describes the entire process for modeling and

detecting SQLIAs from pattern preparation to pattern application. The steps given below

correspond to the ones described in the preceding section.

2.4.1 Modeling SQLIAs

2.4.1.1 Identifying the attack goal

We select the SQLIAs as the attack goal and the web-based stock exchange trading system

as the target system.

21

2.4.1.2 Generating attack trees

We generate the attack tree against SQLIAs, as shown in Figure 2.9. Note that a complete

attack tree of SQLIAs could be much more complicated as it involves many different types

of attacks and countless variations [48, 49]. For the sake of illustration, we omit some

details and generate a simplified, incomplete version.

Once the nodes of the attack tree have been generated, we calculate the property values of

security level and risk level for each atomic attack and attack scenario in the tree. As an

example, the following uses the assessing methods described in Section 2.3.1 to illustrate

how to calculate the security and risk level for the atomic attack Construct Malicious

Values, i.e., node of Figure 2.9, which is also an attack scenario .

For security level of node , we assess it based on the security metrics. Since such a

successful attack can easily bypass the authentication (see next step for detailed

discussion), the confidentiality will be violated. Moreover, integrity and availability will

be violated because the attacker might modify or delete customers’ data via launching this

type of attack [48]. Therefore, we would assign the value to indicate the security level

of this threat.

For risk level of node , we first identify that this type of risk is a hostile risk. Second,

we analyze what resources are required to perform this atomic attack. Since this type of

SQL injection is common and easy to perform (see next step), it does not involve many

resources such as considerable time or money. All resources the attacker needs are a

computer and some basic security knowledge. Finally, the expected benefits are good

enough for the attacker to risk because this type of attack allows the attacker to gain much

information from the database. For example, some customers’ stock trading information

stored in the system will be revealed. Based on this cost-benefit analysis, we would

consider the risk level of this atomic attack as .

As discussed, the atomic attack and the attack scenario share the same

property values and , i.e., .

22

SQLIAs

1.1.1 Construct
Malicious Values

Hs Hr

...

1. Tautology Query
Attack

2. Logically Incorrect
Query Attack

2.1.1 Exploit Error
Messages

Hs Mr

3. Union Query Attack

...

4. Piggy-Backed Query
Attack

...

...

...2.1 Exploit Improper
SQL Exception

1.1 Exploit Vulnerable
SQL Commands

Hs = High Security Level
Hr = High Risk Level
Mr = Medium Risk Level

Figure 2.9. Attack tree against SQL injection.

2.4.1.3 Constructing vulnerability-matching patterns

In this step, we use an example to show how to construct a pattern based on certain

techniques, including regular expressions and taint analysis.

Consider that we want to construct a pattern for capturing vulnerabilities related to the

attack scenario in Figure 2.9. For illustration, we take an example of the code

fragment in Figure 2.10.

Figure 2.10. Illustrative code fragment.

23

The code in Figure 2.10 is susceptible to because it creates SQL statements by using

string concatenation [50] and the attacker can thus dynamically construct and execute a

malicious SQL query. For example, the attacker can enter the string abc' OR 1 = 1 -

- for the name input field and the query becomes:

SELECT * FROM customer WHERE name = 'abc' OR 1 = 1 --' AND

pwd = ' ';

The comment operator -- makes the pwd input field irrelevant. Since 1 = 1 is always true,

the WHERE clause will always evaluate to true. In other words, the WHERE clause will

be transformed into a tautology and the attacker can finally bypass the authentication even

if he/she does not know what the name or password is.

a) Regular-expression-based pattern: Based on the analysis above, we extract a set of key

features from the query: keywords such as SELECT, concatenation (using single

quotes), and semicolon. Accordingly, a regular-expression-based pattern for this type of

vulnerability might be created as follows:

(\w+\s*=\s*)+"SELECT\s\S+\sFROM\s\S+\sWHERE\s\S+\s*=\s*'[^;

]*

The following is a more readable way to describe it:

(\w+\s*=\s*)+ /* variable name and equal sign */

"SELECT /* matches ”, followed by SELECT */

\s\S+\s /* whitespace, anything not whitespace, and whitespace */

FROM /* keyword FROM */

\s\S+\s /* whitespace, anything not whitespace, and whitespace */

WHERE /* keyword WHERE */

24

\s\S+\s* /* whitespace, anything not whitespace, and 0 or more whitespace */

=\s* /* matches =, followed by 0 or more whitespace */

'[^;]* /* matches ’, followed by anything not ; */

b) Taint-analysis-based pattern: In this example, the input variables name and password

are considered tainted [21] because they are returned from a method

(called the source) that gets unchecked input. The tainted variables name and password are

passed to the variable query on line 6 and finally on line 8. Since the original

source data are untrusted, the call to the method (called the sink) on line 8 is

potentially unsafe. In this case, the key features that we extract for constructing a pattern

should contain the source method (), the sink method () and the

data-propagation information. Accordingly, the taint-analysis-based pattern can be

formulated as { , data propagation, }, where data propagation

gives information about whether the tainted data from can be passed to

.

Compared with regular expressions, taint analysis is more effective and precise to detect

SQL injections because the data-propagation analysis generally involves pointer analysis,

which clearly shows what a variable may refer to [51]. For illustration, the rest of the case

study will only show the case of using a regular-expression pattern.

Finally, after constructing a pattern, we should work out a countermeasure against the

attack scenario at this stage so that the programmer can take it as a code fix suggestion. For

example, using parameterized queries [50] instead of string concatenation to build queries

is one possible solution to avoid this type of SQL injection.

25

2.4.2 Detecting SQLIAs

2.4.2.1 Detecting Vulnerable Code

As shown in Figure 2.11, line 6-7 is the corresponding vulnerable code captured by the

regular-expression pattern indicated at the bottom of the figure.

Figure 2.11. Detection for vulnerable code.

2.4.2.2 Reporting Warnings

The warnings include the location of vulnerable code, the type of possible attack, security

and risk level information, and countermeasures, as shown in Figure 2.12. The location is

revealed in step 4 while the security and risk level have been discussed in step 2

respectively. The countermeasure, as mentioned in step 3, is also given.

Warning(s): The SQL query uses string concatenation
Location: Line 6-7
Possible attack(s): SQL injection
Security level: High
Risk level: High
Countermeasure(s): Consider using parameterized queries

Figure 2.12. Warning report for the illustrative code.

2.4.2.3 Fixing the Code

Finally, the programmer can examine and fix the code according to the warning report. For

example, the programmer might accept the suggestion and use a parameterized query as

follows:

26

query = "SELECT * FROM customer WHERE name = ? AND pwd = ?";

This query uses question marks as placeholders, which can help avoid SQL injection. For

example, if the attacker tries to enter abc' OR 1 = 1 -- for the name input field, the

entire input will be inserted into the name field as a name and no SQL injection will occur

[50].

2.5 Discussion

The framework discussed in this chapter attempts to give a generic way of modeling

vulnerabilities. We use attack trees to model a given class of vulnerabilities and then crafts

patterns for each individual vulnerability. However, one significant weakness is that such

pattern construction may require substantial preliminary work especially when we need to

do so from scratch. Therefore, it may not be practical when used to model some

vulnerabilities that require significant pattern preparation.

In addition, the patterns discussed in this chapter are mainly syntax-based, such as regular

expressions-based. Loosely speaking, syntax-based analysis is efficient but may not be

precise enough since it does not explore the behavior of the code. By contrast, semantic-

based analysis is generally less efficient but more precise. Semantic-based analyses, such

as taint analysis and pointer analysis, have been mentioned in this chapter, but not

extensively discussed yet. In Chapter 3 we will study thoroughly how to perform such

semantic-based analyses in Human-Machine Pair Programming.

Finally, as a first step towards vulnerability discovery in Human-Machine Pair

Programming, it lacks a more concrete evaluation of the framework.

2.6 Related Work

Static analysis is a popular method for uncovering security-related bugs during software

development [52]. Static analysis techniques can be employed to statically examine the

source code of a program without executing it [32]. In the following we discuss some

closely related work, i.e., pattern-based static analysis approaches. Basic lexical analysis is

27

adopted by practical tools such as ITS4 [10] for identifying security vulnerabilities in C

and C++ code. The tool ITS4 breaks the source code into a set of lexical tokens and then

matches vulnerable functions from a database. Larochelle and Evans [30, 53] use

annotations to syntactically perform static analysis for detecting buffer overflow

vulnerabilities. The annotations can be exploited to check whether the code is consistent

with certain properties. Yamaguchi et al. [29] merge abstract syntax tree, control flow

graphs and program dependence graphs into a joint data structure, in which analysts craft

certain rules, known as traversals, to facilitate vulnerability auditing. While these

approaches are effective and promising, they provide little discussion on analysis of

incomplete programs during coding phase.

Another branch of research is to perform bug detection during coding phase. It is beneficial

yet challenging. Compilers set a good example for us in the sense of real-time error

detection, but the errors they report, such as syntax errors and semantic errors [47], are

different from the security vulnerabilities discussed in this thesis. Human-Machine Pair

Programming [34] aims to provide a compiler-like way to statically find bugs in the coding

phase. Though the work in [34] discusses how to find semantic faults that are not detected

by compilers, it does not discuss a way for vulnerability discovery. Following this strategy,

our work in this chapter presents a generic framework specifically designed for

vulnerability discovery in Human-Machine Pair Programming.

28

3 Vulnerability Discovery in Human-Machine Pair
Programming: Using Pointer Analysis2

In Chapter 2, we have described a framework for vulnerability discovery in Human-

Machine Pair Programming. As discussed, the framework intends to provide a general idea

but may not be readily used under certain circumstances. This chapter will delve deeper

into the problem of vulnerability discovery in Human-Machine Pair Programming.

As mentioned previously, static analysis is one of the predominant techniques for

vulnerability discovery. One of the fundamental methods used in static analysis is pointer

analysis, which models heap objects and computes what a pointer variable or expression

can refer to [26]. Such pointer information can be used to facilitate the detection of various

types of bugs. For example, Use-After-Free vulnerabilities, one of the leading weaknesses

in NVD database [41], can be detected by pointer-analysis-based approaches [54].

Moreover, taint analysis [21], a technique often closely associated with pointer analysis,

supports the detection of taint-style vulnerabilities [18], such as buffer overflow

vulnerabilities [27], command injection vulnerabilities [55], and cross-site scripting (XSS)

vulnerabilities [56].

Generally, pointer analyses are performed on complete programs, since analysis of partial

programs may be imprecise and can thus introduce a considerable number of false positives

and negatives. Nonetheless, analyzing incomplete programs can be beneficial and has been

attractive to researchers (e.g., [57, 58]). The major benefit is that one can obtain the analysis

results of a program fragment of interest even if the whole program is unavailable. The

nature of such analysis enables early vulnerability detection during program development.

Ideally, it can be used to support real-time detection during coding, analogous to how a

compiler reports errors during compilation.

2 This chapter is adapted from our work in [59] and [60].

29

In this chapter, we will discuss a combination of taint and pointer analyses in HMPP

specifically for identifying taint-style vulnerabilities [59, 60].

3.1 Background

This section briefly introduces the concepts of taint analysis and pointer analysis, both of

which will be incorporated into our approaches in this chapter.

3.1.1 Taint Analysis

In taint analysis [21, 61], a tainted value refers to a value derived from untrusted external

input such as a command-line argument or a returned value from a procedure call. An

original program location (such as a call to a method in Java) that receives tainted values

is called a source, while a sink is another program location that should not receive tainted

values. A security flaw can be introduced when a tainted value reaches a sink from a source

via an execution path. For example, in a web application an SQL Injection may occur if a

source method accepts attacker-controlled input (i.e., tainted data) and the input is directly

incorporated into an SQL query executed by a sink method. Such a taint-style vulnerability

is also referred to as a leak since it can cause sensitive information leakage.

To further illustrate, consider the following simple Java code as an example:

; // variable is tainted

[…]

; // Is this a leak?

In this example, the variable accepts a tainted value from the source method. What we

care about is whether the tainted value would be eventually passed to the sink method and

result in a leak. In essence, performing taint analysis of this example is to confirm whether

is tainted due to its potential connection to variable in the omitted code […] above. For

instance, may be an alias of .

30

3.1.2 Pointer Analysis

Most taint analysis approaches are based on data-flow analysis or pointer analysis. In fact,

some researchers have unified taint analysis and pointer analysis under certain

circumstances [51, 62]. Pointer analysis [26, 63], also known as points-to analysis [64, 65],

is to statically compute the possible objects that each program variable or expression may

point to. In addition, alias (or aliasing) analysis [66], often used as a synonym for pointer

analysis, aims to determine whether two variables are aliased by observing if they may

point to the same object.

The points-to information allows security analysts to observe whether certain sensitive

program locations may receive unexpected values and introduce security risks. For

example, a pointer analysis of the above code example (Section 3.1.1) can compute points-

to results to answer the query “may the variable point to a tainted object?”. (A query in

this work is a request for the points-to information of a particular variable.) Specifically, if

and the known taint point to the same object, which implies is an alias of , then

is also tainted. Consequently, the call to may cause a leak because the tainted

value reaches a sink.

3.2 Proposed Approaches

3.2.1 Motivating Example

Consider a Java code fragment in Figure 3.1. To spot taint-style vulnerabilities, our analysis

objective is to confirm whether the tainted data from the source method (line 6) may be

passed into the sink methods (lines 5 and 7).

31

Figure 3.1. Motivating code example.

A typical pointer analysis (e.g., Andersen-style analysis [29]) of this code might show

points-to relations as follows:

The symbol simply means “points to”. We use to denote an object created at the

allocation site . In this example, represents an object created at line 2, namely .

We can see that the variables and are aliases of each other because they point to the

same object , which also implies is an alias of , both of which are denoted by

. The same observation applies to the variables and . Since the details of the source

(line 6) are unclear and unimportant in the code fragment, we use to denote

the taint object pointed by the return value.

The above points-to results and the taint information together are sufficient to uncover the

security flaws. As is a taint pointed by , any would be

recognized as a leak. Consequently, two leaks are reported at lines 5 and 7, respectively.

1 void main() {

2 a = new A();

3 b = a;

4 c = new C();

5 sink(b.f);

6 a.f = source();

7 sink(b.f);

8 d = c;

9 […]

10 }

32

However, it is not hard to notice that the leak reported at line 5 is a false alarm as is

not tainted until line 6 is executed. This is a common drawback of many pointer analysis

approaches (e.g., [51, 64]) as they typically treat all statements as a set and ignore the

statement order.

Another limitation of the analysis is that the points-to results of the variables and in

this code are irrelevant to the vulnerability analysis, thus causing extra computation.

Furthermore, this analysis does not support vulnerability discovery in real time, i.e.,

identify the flaw immediately when it appears in the code during coding. We will discuss

all these issues in the subsequent subsections.

3.2.2 Exhaustive Pointer Analysis

3.2.2.1 Human-Machine Pair Programming fashion

Figure 3.2 shows the overview of our approach. The pointer analysis plays the role of the

syntactical analysis in HMPP (see Figure 2.1 in Chapter 2 for comparison), and the taint

information serves as the knowledge base. The core idea is to perform pointer analysis on

the ever-changing CV_S.

Figure 3.2. Overview of our approach.

To perform pointer analysis in such an HMPP fashion, it requires us to compute points-to

results in an incremental fashion, i.e., start from the computation of the first line of code

and then incrementally add new results as coding progresses. Meanwhile, we immediately

combine the points-to information with necessary taint information to find potential

vulnerabilities, without concerning with the succeeding code. For example, when the

Pointer
Analysis

Form
Properties

Check
Properties

CV_S
taint

information

vulnerabilities

points-to
relations

properties

33

programmer completes the coding at line 7 in the motivating example (Figure 3.1), our

approach should immediately report a leak there and need not wait for more code to come

out because the flaw has been determined at that point. As a result, vulnerabilities can, in

principle, be discovered in real time, allowing the programmer to cope with them during

program development.

3.2.2.2 Flow sensitivity

Since our objective is to perform vulnerability discovery in the coding phase, we cannot

tolerate too many spurious alarms. (Otherwise, programmers would be overwhelmed by

the alarms and unable to concentrate on programming.) To this end, flow sensitivity is

introduced for better precision. Instead of lumping all the statements together as a set, a

flow-sensitive analysis takes into account the control flow and analyzes statements in order.

In the context of HMPP, it means to perform a pointer analysis on statements in order and

in an incremental manner as coding proceeds. To illustrate, consider again the code in

Figure 3.1. A flow-sensitive analysis of this code example in HMPP is performed as

follows (note that we input the code line by line and compute the points-to results

incrementally):

line 2:

line 3:

line 4:

line 5: \

line 6:

line 7: \

…

The symbol \ means that a points-to relation is not involved or unknown at that point. As

the results are computed, we feed the taint information to detect vulnerabilities at the same

time:

…

34

line 5:

line 6:

line 7:

…

Unlike the analysis in Section 3.2.1, since the statement order is provided here, we can

clearly see that only the call to at line 7 will trigger a leak alarm. Thus, the

false alarm at line 5 is eliminated. More importantly, in this analysis the leak at line 7 can

be immediately identified prior to the input of succeeding statements (i.e., need not

consider line 8, line 9, …), indicating a real-time discovery.

3.2.2.3 Conservative approximation

Since static analysis is, in general, undecidable [30], we discuss how to make a

conservative approximation in our approach. Consider the code fragment given in Figure

3.3, which is adapted from Figure 3.1. Though the two code fragments have equivalent

functionality, an additional difficulty may arise when analyzing the code in Figure 3.3.

That is, suppose the programmer has completed the first six lines of code but the

method (lines 8-11) has not been constructed, can we discover the leak at line 6?

Figure 3.3. Code example adapted from Figure 3.1.

1 void main() {

2 a = new A();

3 b = a;

4 sink(b.f);

5 a.f = foo(p);

6 sink(b.f);

7 }

8 Object foo(Object q) {

9 q = source();

10 return q;

11 }

①

 ②

35

We address this problem by making a conservative approximation: if a method may

introduce taints, then we consider it as a source. For example, though the body of the

method is unknown at line 5, the programmer should have realized whether the

method would accept tainted values according to requirements or other information (e.g.,

whether it may accept user-supplied input). Once the method is marked as a source at

line 5, then the leak at line 6 can be discovered immediately even though the succeeding

code, i.e., lines 7-11, is still under construction.

More formally, we use a placeholder procedure to denote an unknown procedure,

which can be a procedure that has not been created, or a procedure from an external module

whose source is unavailable. Similarly, an unknown variable can be denoted by a

placeholder variable . Such representations enable us to conceptually treat an

analyzed code fragment as a complete program. The placeholder will be treated as a

variable, so its points-to information will be computed and used during our analysis. For

example, when the method at line 5 of Figure 3.3 is unknown, we denote the statement

as , and the points-to results can be yielded as:

line 5:

line 5:

For illustration, we use a function to

define the taint status of an arbitrary variable . In this example, since is

unknown, it is safe to denote its taint status as , and therefore

. However, unknown taint status may not be helpful in

vulnerability analysis. Hence, we try to further determine the taint status of any unknown

or ; for instance, here can be marked as tainted if it may involve tainted

values and marked as untainted otherwise.

Depending on demand, we can make an optimistic or pessimistic assumption about the

unknown or . Making an optimistic assumption is to “optimistically” regard

the missing code as untainted whenever possible, which can typically lead to fewer false

positives but more false negatives, whereas a pessimistic assumption tends to yield fewer

36

false negatives but more false positives. In this work, we choose to make a pessimistic

assumption because in many cases missing a leak is more undesirable than producing a

false alarm.

3.2.2.4 Pointer propagation rules

We proceed by giving deduction rules for handling pointer analysis in the coding phase.

There are several different ways of computing points-to relations, such as using Datalog-

based rules [26] or rules for pointer assignment graphs [64]. Table 3.1 gives our rules

adapted from the work in [64].

Table 3.1. Pointer propagation rules.

Instruction Edge Rule

Alloc i: a = new C oi → a oi → a
i: {oi} pt(a)

Assign j: a = b b → a
b → a

{oi} pt(b)
j: {oi} pt(a)

Store k: a.f = b b → a.f
b → a.f

{oi} pt(a)
{oj} pt(b)

k: {oj} pt(oi.f)

Load l: a = b.f b.f → a
b.f → a

{oi} pt(b)
{oj} pt(oi.f)
l: {oj} pt(a)

Call m: a = b.f(p1, p2, …, pn)

p1 → methq1
p2 → methq2

…
pn → methqn
methret → a

{oi} pt(b)
meth = dispatch(oi, f)

{ou} pt(pj), 1 ≤ j ≤ n
{ov} pt(methret)

m: {ou} pt(methqj), 1 ≤ j ≤ n
{oi} pt(meththis)

{ov} pt(a)

In Java, there are usually five kinds of pointer-related instructions, namely Alloc

(allocations), Assign (assignments), Load (field loads), Store (field stores), and Call

(method calls). The arrow symbol → is the edge that reflects the pointer flow in a pointer

assignment graph. denotes the points-to set of . The operator “ ” means

37

either “ ” or “ ”; for example, denotes that either or

will be computed. This allows us to determine an exact points-to relation whenever

possible; for example, if we can be sure that can only points to at a certain point, then

we denote the relation as , and as otherwise.

The upper part of a deduction rule is the hypothesis (or premise), and the lower part is the

conclusion. The first four rules are relatively straightforward and similar to those described

in [26], with a major difference that we try to determine the exact object pointed by a

pointer at a particular program location. For example, the Alloc rule states that if we create

an object and assign it to the variable , denoted by the edge , then we can

conclude that . In contrast, in [26] (and other subset-based pointer

analysis solutions), the deduction conclusion is in the form of , i.e., add to the

points-to set of . We make such changes in the rules in order for a more precise analysis

in HMPP.

The rule of Call may be less intuitive, so we illustrate it by taking the code in Figure 3.3 as

an example. The statement at line 5 invokes a method. According to the

Call rule in Table 3.1, we first resolve the method in question with the assistance of its

method signature, and then relate the arguments to the parameters, i.e., add an edge from

to (edge). There is also an edge from to (edge) since is the variable

that receives a return value. Finally, the points-to relations propagate along the edges. In

this example, after the propagation the points-to results will show us that since

is pointed by the return variable (lines 9-10), it is also pointed by (or more precisely,

).

3.2.3 Demand-Driven Pointer Analysis

Though the exhaustive pointer analysis described above can successfully yield the expected

results, it is often too costly since it computes the points-to information for all program

variables, including irrelevant ones. For example, the points-to computation of the

variables and in Figure 3.1 is irrelevant and thus incurs extra overhead. A solution to

this issue is to employ the demand-driven pointer analysis [67, 68], which computes only

38

the results that may contribute to answering a particular query. In the example in Figure

3.1, the information of and is not necessary for answering the query “is at line 7

tainted?”, so we can exclude it from the computation.

Figure 3.4 shows how a demand-driven pointer analysis can be performed in an HMPP

fashion.

Figure 3.4. Demand-driven pointer analysis of the code example in Figure 3.1.

The analysis starts from a sink, rather than from the first line of code. For the sink at line

5, we search backward and notice that no source is involved in preceding statements, so

the is not tainted. Similarly, to answer the query “is at line 7 tainted?”, we search

backward for a source, as shown in step . Then in step , we trace the variable to

line 2. Step indicates that we perform a pointer analysis forward for all the statements

involved (and its aliases) based on the pointer propagation rules in Table 3.1. The points-

to results are as follows:

line 2:

line 3:

line 6:

1 void main() {

2 a = new A();

3 b = a;

4 c = new C();

5 sink(b.f);

6 a.f = source();

7 sink(b.f);

8 d = c;

9 […]

10 }

 ①

 ②

 ③

39

As explained in Section 3.2.1, the results indicate the presence of a leak at line 7. Note that

the variables and are not involved in this on-demand points-to analysis, thus avoiding

unnecessary computation. The idea is formalized in Algorithm 3.1.

Algorithm 3.1 Demand-driven Analysis.

INPUT: A source program under construction and an ordered n-tuple

OUTPUT: Points-to relations

1: foreach sink statement in do

2: search backward for the source;

3: foreach source statement do

4: Trace backward for all statements involved , , , or their aliases;

5: add to ;

6: Track the propagation of forward between the source and the sink;

7: if (any variable is tainted by the propagation of)

8: add the involved statements to S;

9: foreach statement do

10: apply pointer propagation rules and compute points-to results

In the algorithm, the ordered statements in our analysis will be kept in an ordered n-tuple,

as opposed to a set, since it can represent ordered collections. Note that the order of

statements in the tuple should be consistent with that in the program , i.e., if a statement

precedes another statement in , then also precedes in , where .

3.2.4 Difference and Equivalence

The exhaustive pointer analysis is performed in an incremental fashion and the analysis

results are accumulated as the coding process progresses, making the response time for a

vulnerability short. The drawback of this approach is that it may incur extra computation

of irrelevant variables. In contrast, the demand-driven approach eliminates the irrelevant

computation, at the expense of a relatively delayed response time as the on-demand

analysis does not start until a sink appears in the code.

40

Despite the difference stated, we emphasize that the two approaches are equivalent in the

sense that they compute identical necessary results for a particular query. As shown

previously, to answer the query “is at line 7 tainted?”, both approaches compute the

same necessary points-to relations, although the exhaustive approach computes extra

irrelevant information. A more formal description of the equivalence is provided as

follows.

Let be the set of pointer variables and let be the set of abstract objects in a program .

The entire points-to relations of our exhaustive approach can be encoded by a mapping

, where is the power set of . Similarly, let be the set of pointer

variables involved in our demand-driven approach and let be the set of abstract objects,

where and . Then we can encode its points-to relations by a mapping

, where . Compared with the demand-driven

approach, the exhaustive approach computes extra points-to results for the variables in

, which are, however, irrelevant information in our vulnerability analysis. Given a

specific version of program, let us suppose that is an arbitrary points-to relation

contributed to vulnerability analysis. We need to show that the exhaustive approach

computes if and only if the demand-driven approach computes [31].

Lemma 1. If the exhaustive approach computes , then the demand-driven approach

computes .

Proof. Since and variables in do not affect points-to

results of , the demand-driven approach computes the same results for as the exhaustive

approach does, i.e., also points to . □

Lemma 2. If the demand-driven approach computes , then the exhaustive approach

computes .

Proof. According to proof by contraposition, this is equivalent to prove that “if the

exhaustive approach does not compute , then the demand-driven approach does not

compute ”. Since the demand-driven’s points-to results are a subset of the

41

exhaustive’s, the demand-driven approach will not compute when the exhaustive

approach does not. Thus, the lemma is true. □

Combining Lemma 1 and 2 we can prove Theorem 1.

Theorem 1. The exhaustive approach computes if and only if the demand-driven

approach computes .

Therefore, our two approaches are equivalent in the context of our vulnerability analysis.

3.3 Evaluation

In this section, we present an evaluation of our two approaches on a security benchmark,

followed by a discussion of our experiment results and a real-world case study.

3.3.1 Experiment

3.3.1.1 Preliminaries

The benchmark we used is Securibench Micro [69], which includes a series of small test

cases that are susceptible to a variety of vulnerabilities such as SQL injections and cross-

site scripting vulnerabilities. A total of 62 source programs for our experiment are available

in three folders of Securibench Micro, including basic (containing various basic

vulnerabilities), aliasing (containing aliasing-related vulnerabilities), and inter (containing

vulnerabilities in interprocedural cases). The vulnerability types within these programs are

categorized and summarized in Table 3.2. Note that in these programs, many XSS

vulnerabilities are accompanied by information disclosure vulnerabilities, and both types

of vulnerabilities are caused by the same source-sink propagation paths. To avoid duplicate

counting, the information disclosure vulnerabilities have been excluded from our analysis.

To begin, we predefined a list of sources, sinks, and entry points for the test cases. For

example, is a typical source in these test cases as it accepts user-supplied

input, while is a typical sink as it can directly process tainted data and might

produce unexpected results.

42

Table 3.2. Vulnerability types within the programs for our experiments.

Vulnerability
types Description #

XSS
Occurs when user-supplied input is not properly
handled, resulting in injection of malicious scripts into
web pages.

77

SQL Injection
Occurs when user-supplied input is not properly
handled, allowing malicious SQL statements to be
manipulated by a database.

6

Path Traversal
Occurs when user-supplied input is not properly
handled, enabling attackers to access files or directories
outside of the designated scope.

4

Open Redirect Occurs when a web application redirects users to a
specified URL without properly handling the target. 1

Null Pointer
Dereference

Occurs when a null pointer is dereferenced, typically
causing a crash or exit. 1

Information
Disclosure

Occurs when an application unintentionally reveals
sensitive information to unauthorized users. -

Total 89

3.3.1.2 Implementation

We followed the steps in each of our approaches to analyze the test cases. To simulate the

real process of spotting vulnerabilities during coding, we manually analyzed the code line

by line as if we were the programmer who was writing the code line by line. Moreover, we

followed the common programming principles when pretending to be the programmer; for

example, as mentioned in Section 3.2.3, when the programmer just creates the statement at

line 5 of Figure 3.3, the method probably has not yet been constructed, so our analysis

at that point has no knowledge of ’s details (lines 9-12).

Table 3.3 shows an example of our analysis for a test case in the folder basic. While the

leak location is the program location where a sink occurs and causes a leak, the reported

location is where we identify and report the leak. The two locations are identical implies

43

that the vulnerability can be found immediately, and knowledge of succeeding code is not

required.

Table 3.3. Analysis example.

Programs Correct
Warnings

Missed
Warnings

False
Warnings

Leak
Location

Reported
Location

Basic1 1 0 0 Line 39 Line 39

3.3.2 Results and Discussion

Our two approaches have obtained the same experiment results, as summarized in Table

3.4. We reported 98 warnings in total, including 89 real vulnerabilities and 9 false alarms.

Table 3.4. Experiment results.

Programs Correct
Warnings

Missed
Warnings

False
Warnings

basic 61 0 0

aliasing 12 0 0

inter 16 0 9

Total 89 0 9

On the one hand, we did not miss any vulnerabilities in the test cases. In particular, every

vulnerability was reported immediately once it appeared in code, obviating the need for

succeeding code. This demonstrates that our approaches support (near) real-time detection.

On the other hand, our approaches yielded some false alarms, all of which occurred in the

interprocedural-related test cases. The reason for this problem is that when analyzing an

incomplete program, we often have little knowledge of an invoked procedure but to make

a conservative assumption. As an example, consider the code snippet of Inter1 in Figure

3.5. In line 4 we may regard as a taint in the absence of the details of the id method

(lines 9-11), and consequently report a false alarm at line 7.

44

Figure 3.5. Code snippet of Inter1 from Securibench Micro.

The number of such false alarms depends on the precision of our conservative

approximation. Making an optimistic or pessimistic assumption about the missing code can

make a difference to the analysis, as discussed in Section 3.2.2. Fortunately, the problem

can be mitigated when the invoked procedures become available. For example, as coding

proceeds and more details of the invoked procedures are revealed, we can gradually obtain

more precise points-to results and eliminate the false alarms. In the above code example,

our approaches will not report the false alarm in the presence of the id method (lines 9-11).

In fact, our approaches can eventually gain the same precision as a whole-program pointer

analysis approach when the coding process is completed. (To compare with a whole-

program solution in this sense, our approaches should also be augmented with capabilities

such as context sensitivity, as mentioned in Section 3.4.)

Overall, our evaluation shows that our approaches can successfully detect a variety of

vulnerabilities in an HMPP fashion, though false alarms may arise when handling

procedure calls. The false alarms may be automatically corrected as coding and analysis

proceed incrementally.

1 protected void doGet(HttpServletRequest req, HttpServletResponse

resp) throws IOException {

2 String s1 = req.getParameter(FIELD_NAME);

3 String s2 = id(s1);

4 String s3 = id("abc");

5 PrintWriter writer = resp.getWriter();

6 writer.println(s2); /* BAD */

7 writer.println(s3); /* OK */

8 }

9 private String id(String string) {

10 return string;

11 }

45

3.3.3 Case Study

Since the test cases in Securibench Micro are intentionally vulnerable, our experiment

above may provide little demonstration of the practical effectiveness of our approaches in

real-world cases. In addition, those test cases contain mainly the necessary instructions that

contribute to the potential vulnerabilities and few irrelevant instructions are included, thus

making it difficult for us to showcase how our demand-driven approach computes less

points-to relations than our exhaustive approach does. To alleviate these limitations, we

present an in-depth, real-world case study in this subsection.

This case study discusses a security flaw known as LDAP (Lightweight Directory Access

Protocol) injection (CVE-2020-1958), which was first discovered in Apache Druid 0.17.0

[70]. Apache Druid is a real-time analytics database that supports fast queries on large data

sets. When enabling LDAP authentication in Apache Druid 0.17.0, unintended

consequences can arise.

Figure 3.6 shows the potentially vulnerable code snippet extracted from Apache Druid

0.17.0. The security flaw lies in line 12, where the user-supplied input, username, is used

without properly sanitized or validated. The LDAP user search filter handles searching

using a template “(&(uid=%s)(memberof=cn=users,dc=example,dc=org))”, which is

implemented in ldapConfig.getUserSearch() (line 12); if the user supplies

“user)(uid=*))(|(uid=*” as the username, the search filter will become

“(&(uid=user)(uid=*))(|(uid=*)(memberof=cn=users,dc=example,dc=org))”, which in

turn will be treated as two separate filters, namely “(&(uid=user)(uid=*))” and

“(|(uid=*)(memberof=cn=users,dc=example,dc=org))”. Only the first filter of the two

will be executed and that will allow a malicious attacker to gain unauthorized access [71].

Moreover, it can cause information disclosure when the attacker supplies a set of carefully

crafted queries and observes the corresponding responses from the system.

46

Figure 3.6. Code snippet from Apache Druid 0.17.0 illustrating LDAP injection.

We next discuss how our approaches are used to detect the flaw in question. Since

username is user-supplied input and can be inserted into the string created by

, username is recognized as a source and

a sink. Our approaches compute points-to results for

username and check if it may still point to a tainted object when it reaches the sink (line

10). Since Figure 3.6 shows only a small code snippet, we provide an extended version in

Appendix. We perform analyses on the extended version and summarize the key points as

follows:

1 public AuthenticationResult validateCredentials(String

authenticatorName, String authorizerName, String username,
char[] password){

2 SearchResult userResult;

3 […] //omitted code

4 userResult = getLdapUserObject(this.ldapConfig, dirContext,

username);
5 }

6 […]

7 SearchResult getLdapUserObject(BasicAuthLDAPConfig ldapConfig,

DirContext context, String username){
8 try {

9 SearchControls sc = new SearchControls();

10 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);

11 sc.setReturningAttributes(new String[]

{ldapConfig.getUserAttribute(), "memberOf" });

12 NamingEnumeration<SearchResult> results =

context.search(ldapConfig.getBaseDn(),

StringUtils.format(ldapConfig.getUserSearch(), username), sc);
13 }

14 }

47

Parameter username in line 30 is the entry that receives potentially tainted user-

supplied input. Since no sanitization or input validation for username is included in

the code, its received value can be eventually passed into

in line 64. The following two points-to relations

can reflect this process (is tainted):

line 30:

line 64:

To discover the LDAP vulnerability in the code in Appendix, our exhaustive

approach performs points-to computation on 42 statements, while our demand-

driven approach performs on 10. The statements involved are indicated in the

appendix.

Overall, the case study demonstrates that while both the proposed approaches can discover

the LDAP injection in Apache Druid 0.17.0, the demand-driven approach performs less

computation than the exhaustive approach does.

3.4 Discussion

Although we have extensively discussed the proposed approaches in preceding sections,

this work does not cover every technical issue and may have simplified the description of

some problems. In the following we discuss several important limitations.

Firstly, it may be considered as a big limitation of our approaches that a programmer may

make extensive modifications to his/her code in the coding phase and accordingly the

points-to results need to be recomputed many times, thus incurring substantial overhead.

We would argue that since most medium-sized or large programs are built from small

modules, we can perform analysis of each module separately and reuse analysis results

whenever possible. Such a mechanism obviates the need for recomputing the points-to

results of most statements when a change is made to the code. We would also argue that

the potential overhead is a worthwhile trade-off as it enables us to discover and fix

vulnerabilities at an early stage, rather than to address the problems at a much higher price

48

later. In fact, a similar trade-off exists in compilers, where certain types of errors (such as

type mismatches) are constantly detected and reported during compilation.

Secondly, this work omits the discussion of how to handle issues such as context sensitivity

[26] and access paths [61], both of which are critical for a pointer analysis approach to gain

precision and scale to large programs. For example, while access paths in a real-world

program have an arbitrary length in the form of , e.g., , the case discussed

in this work only involves the form . We will discuss these issues in our future work.

Thirdly, the approaches in this work ignore the identification of sanitization when

performing a taint analysis. Sanitization is a solution to a potential taint-style vulnerability,

in which the taint is removed from a tainted value. For example, sanitization can be

performed by replacing tainted values with untainted ones, or simply by terminating the

potentially insecure paths of execution. Failure to recognize the presence of sanitization in

a program can cause an analysis to produce false alarms. The very same limitation applies

to our approaches in this work, although it does not manifest itself in our evaluation results.

To be applied to more sophisticated programs, our approaches need to accommodate the

sanitization identification in the future.

3.5 Related Work

As discussed previously, to perform bug detection during programming is beneficial yet

challenging. Similar work [34, 35, 47] in this direction has its own limitations (to avoid

duplicate discussion, see Section 2.6 in Chapter 2). To make improvements in the research

branch Human-Machine Pair Programming, we adopt a different strategy in the work in

this chapter. To the best of our knowledge, this work is the first attempt to perform pointer

analysis for vulnerability discovery during coding. In addition, some commercial static

analysis tools also support analysis of incomplete programs [72, 73]. For example,

SonarQube [9] is a popular static analysis tool that supports real-time bug detection based

on a predefined ruleset. It is designed for identifying a wide range of bugs and not

specifically for security-related bugs. As commercial tools, however, the underlying

technologies are often not (fully) public, though techniques such as data-flow analysis and

49

symbolic execution are believed to be adopted [73]. It may also be worth noting that

although defensive programming (e.g., [74]) also aims to avoid possible bugs at the stage

of coding (by using guard statements or assertions), it is a technique that falls outside the

category of static analysis as it will only report bugs at run time.

Another branch of related work is on taint and pointer analyses. We discuss some most

closely related work in the following. Heintze and Tardieu [67] introduce a demand-driven

pointer analysis for C that computes only the necessary points-to information for a

particular query using certain deduction rules. Sridharan et al. [68] extend the demand-

driven pointer analysis to Java and show that their approach can greatly improve the

precision. Livshits and Lam [21] present a taint analysis approach for finding taint-style

security vulnerabilities in Java applications. Their approach handles taint analysis in Java

code by means of a pointer analysis. For Android applications, Arzt et al. [61] present

FlowDroid, a context, flow, field, and object-sensitive taint analysis approach, which

reduces both false positives and negatives. Due to the close relationship between taint

analysis and pointer analysis, Grech and Smaragdakis [51] suggest a unification of them,

in which points-to algorithms are effectively used to implement taint analysis. In contrast

to the above approaches (and most other pointer-analysis-based approaches) that require

whole-program availability [8], there exist approaches that specifically target the analysis

of incomplete programs. Rountev et al. [58] propose two frameworks for fragment analyses

based on existing whole-program analyses. Rountev and Ryder [75] discuss a worst-case

analysis and a summary-based analysis to analyze library modules and client modules

separately. While our work in this chapter is inspired by all these approaches, our emphasis

is on analysis of incomplete programs during coding, which implies that analysis targets

are changing over time. For this purpose, we employ an incremental pointer analysis that

can keep track of the coding process and produce (near) real-time analysis results.

50

4 Vulnerability Nets for Vulnerability Discovery3

In Chapters 2 and 3, we have explored the approaches suitable for Human-Machine Pair

Programming. Those approaches can be further implemented as automated tools.

Automated static analysis tools can encapsulate certain security knowledge for

vulnerability discovery, thereby freeing developers from manually spotting security flaws

during software development. However, due to the difficulty of obtaining soundness and

completeness, tools will always fail to uncover some subtle vulnerabilities (i.e., false

negatives), or may produce substantial false alarms (i.e., false positives). For example,

buffer overflows [27], one of the most notorious vulnerabilities, still cannot be fully

addressed by using automated tools alone. Instead, significant security expertise is often

involved during detection of buffer overflows [28].

Manual audits are a complementary (not alternative) method to automated tools. In the

process of auditing, an analyst manually examines the given code, based on his/her

expertise, to find vulnerabilities that escape from detection of tools. To aid analysts in

auditing manually, some researchers analyze source code using techniques such as fault

trees [19, 76], in which certain crucial information of code is made explicit. However,

manual audits are tedious, error prone, and costly, so it is normally impractical to manually

audit an entire program, though auditing a few critical code fragments is possible.

To benefit from both the static analysis tools and manual audits, work in this area (e.g.,

[29, 30]) has considered incorporating the analyst’s security knowledge into a tool during

the detection process. The knowledge (such as annotations [77]) provided by security

auditors can guide the detection for vulnerabilities. To make contributions in this branch

of research, this chapter presents a novel representation of source code, called a

vulnerability net [78, 79], which is in the form of a Petri net structure.

3 This chapter is adapted from our work in [78] and [79].

51

Petri nets are a mathematical representation widely used for modeling and analyzing

various types of systems, ranging from chemical systems to computer systems [80]. A

program, the analysis target of this thesis, can be viewed as a system, where the statements

within the program correspond to the components of the system. Therefore, Petri nets have

the potential to model a program. To tailor Petri nets specifically for program analysis, we

propose vulnerability nets in this chapter. While preserving the core principles of standard

Petri nets, vulnerability nets introduce some novel features and incorporate data

dependence graphs and control flow graphs, aiming at representing source code and

modeling the flow of information within it. The combination explicitly describes the key

information of a given program and provides a good view for analysts to perform auditing.

Like standard Petri nets, vulnerability nets are executable, thus allowing analysts to

conveniently track the data of interest to examine if any path execution may cause a

security issue. By supplying a vulnerability net with necessary taint information (such as

sources and sinks), the net can be executed to identify potential taint-style vulnerabilities,

which include various types of security flaws, such as buffer overflows [27, 81], injection

vulnerabilities [48, 55], and cross-site scripting (XSS) vulnerabilities [20, 56].

4.1 Definitions

For comparison purpose, in this section we start with the definition of traditional Petri nets.

Then, vulnerability nets are formally defined. Most of the notation and terminologies in

our discussions are taken or adapted from the work in [80, 82].

4.1.1 Petri Nets

A Petri net is defined by its places, transitions, input function, output function, and

marking.

Definition 4.1. A Petri net is a five-tuple, , where

is a finite set of places, .

is a finite set of transitions, . .

is the input function, a mapping from transitions to bags of places.

52

is the output function, a mapping from transitions to bags of places.

is the marking of the net, a mapping from the set of places to , where is

the set of nonnegative integers.

4.1.2 Vulnerability Nets

A vulnerability net is in the form of a Petri net, with some special properties. We formally

define it as follows.

Definition 4.2. A vulnerability net is a five-tuple, , where

is a finite set of places, .

is a finite set of guarded transitions, . .

is the input function, a mapping from transitions to sets of places. is the

power set of .

is the output function, a mapping from transitions to sets of places.

is the marking of the net, a mapping from the set of places to the set .

The marking function implies that each place holds a number, 0 or 1. By convention, the

element that a place holds is called a token. That is, each place in a vulnerability net holds

zero or one token. The reason why we restrict the number of tokens in a place to only 0 or

1 is that 0 represents the absence and 1 represents the presence of a specific value in our

vulnerability analysis. (A detailed discussion of the representations appears in Section 4.2.)

The marking function shows the number and distribution of tokens in a vulnerability net.

We use , … to represent each specific marking for places in a net. For example,

is the marking for the place , and means holds one token. By

contrast, the marking of an entire vulnerability net is denoted by , where

. In the rest of this work, a marking refers to a marking of an

entire net, unless stated otherwise. When a vulnerability net executes, its marking may

change as the number of tokens in each place may change. The conditional expressions in

guarded transitions are the Boolean expressions used to constrain the change in the number

of tokens.

53

An example of a vulnerability net is shown in Figure 4.1 (a). The net is composed of five

places and three guarded transitions (henceforth transitions). The initial marking of the net

states that the place and each initially contain a token, while other

places do not contain any. The links between places and transitions are revealed by the

input and output functions. For example, indicates that and are the

input places of the transition ; indicates that is the output place of the

transition . A transition (e.g.,) with an expression indicates that its Boolean value

depends on the evaluation of the expression (e.g., in), while other transitions

(such as and) without any explicit expression are assigned the value true as a default.

(a)

(b)

Figure 4.1. (a) Textual representation of a vulnerability net; (b) Graphical representation

of Figure 4.1 (a).

We can also use a graphical representation to represent a vulnerability net for a better

readability. A vulnerability net graph for Figure 4.1 (a) is shown in Figure 4.1 (b), where

●

●

54

places, transitions, and tokens are denoted by circles, bars, and small dots, respectively.

Directed arcs are used to connect places with transitions.

Vulnerability nets are executed by firing transitions. A transition is ready for firing if it is

enabled. As formally defined in Definition 4.3, a transition is enabled if all of the

following three conditions hold: 1) each of the ’s input places contains a token, 2) there

exists an output place of that does not contain any token, and 3) the conditional

expression of evaluates to true.

Definition 4.3. A transition in a vulnerability net is enabled if

1. ,

2. , and

3. the conditional expression of evaluates to true.

For example, the transition in Figure 4.1 is enabled according to the definition.

However, is not enabled since , one of the ’s input places, does not contain a token.

In the case of , we notice that its conditional expression always evaluates to

false because the place will never hold two tokens (in fact, none of the places in a

vulnerability net can hold two or more tokens, according to the function in Definition

4.2), so is not enabled.

When a transition fires during the execution of a vulnerability net, tokens propagate from

its input places to output places, i.e., new tokens are assigned to output places while tokens

in input places are retained. We use state to describe the change. Every state of a

vulnerability net is defined by a marking; for example, the initial state is defined by initial

marking . The state space of a vulnerability net with places is the set of all markings,

i.e., , where is the set of . Definition 4.4 defines a next-state function for

calculating how a state can change after firing a transition.

55

Definition 4.4. The next-state function for a vulnerability net

and transition is defined if and only if is enabled. If is

defined, then , where

(1)

According to (1), we can calculate the next-state result of in Figure 4.1. As discussed

previously, of the three transitions only is enabled, so that we have the next state

. The result suggests that a token has propagated to . Figure 4.2

shows the change. After the change, since no transition is enabled, the execution must halt

and is in fact the final state of the net.

Figure 4.2. The next state of Figure 4.1.

One may notice that a vulnerability net executes differently from a standard Petri net. As a

simple example, Figure 4.3 shows the distinct results of executing two nets that look

initially identical. In Figure 4.3 (a), the initial Petri net fires to flow a token from to

and then the execution halts since no transition is enabled anymore. In contrast, the

initial vulnerability net of Figure 4.3 (b) fires to propagate a token to and then the

execution halts. More distinctions between vulnerability nets and standard Petri nets can

be revealed by their own definitions. In Section 4.2 we will see how the special properties

of vulnerability nets can benefit vulnerability analysis.

●

●●

56

(a)

(b)

Figure 4.3. (a) Execution of a standard Petri net; (b) Execution of a vulnerability net.

4.1.3 Vulnerability Nets with Colored Tokens

Colored tokens are used to augment the expressiveness of a vulnerability net. A

vulnerability net with colored tokens also meets the definitions given in Section 4.1.2 as

long as we consider each kind of colored token separately. We formally give a definition

as follows.

Definition 4.5. A vulnerability net with colored tokens is a vulnerability net structure

, where is a finite set of markings , , where each

is the marking for a kind of token with a unique color in a graphical representation.

Figure 4.4 shows an example. Initially, while and each contain one kind of token,

holds two. During the execution of the net, the various kinds of tokens propagate

independently of each other. Therefore, all kinds of colored tokens can propagate to ,

with the exception of the green token as requires two green inputs but only one (i.e., the

green token in) is available. The initial state of the vulnerability net can be denoted by

, , and , where , , and represent

the initial markings for black, green, and red tokens, respectively. The finial state of the

net is , , and .

●●

●● ●

57

Figure 4.4. Execution of a vulnerability net with colored tokens.

4.2 Modeling and Detecting Vulnerabilities

In this section, we start by discussing the characteristics of taint-style vulnerabilities and

giving a simple code example. Then we briefly introduce data dependence graphs and

control flow graphs, followed by a description of the incorporation of them into

vulnerability nets for vulnerability-discovery purposes. Finally, algorithms for

vulnerability nets generation and vulnerability discovery are described.

The class of security weaknesses this chapter focuses on is taint-style vulnerabilities,

including several critical vulnerabilities such as buffer overflows, injection vulnerabilities,

and cross-site scripting vulnerabilities. In taint analysis, a tainted value is derived from

external, untrusted input such as command-line arguments or results returned from function

calls. While a source is the original program location (such as a function or method) that

accepts tainted values, a sink is the program location that should not receive tainted values.

A security weakness may exist when a tainted value from a source reaches a sink through

an execution path. Sanitization is a step to remove the taint from a value, thereby

eliminating the potential security risk. To perform sanitization, we could either replace the

tainted value by an untainted value or terminate the path of execution when a tainted value

is detected.

For illustration, consider a simple taint-style vulnerability shown in Figure 4.5. In this Java

code, accepts a tainted value returned from a source function and passes it to when the

●●●

●

●

●●●

●

●

●●●

58

if-condition is met. Then is sanitized, and finally a sink function receiving as an

argument is called.

Figure 4.5. Example of a taint-style vulnerability in Java.

4.2.1 Data Dependence Graphs

Data dependence graphs (DDGs) are a program representation that can explicitly represent

data dependences among statements and predicates [83]. A data dependence is present

when two statements cannot be switched without changing any variable’s value. For

example, in Figure 4.5, S3 depends on S1 as S1 must be executed first in order for ’s value

to be properly used in S3. Figure 4.6 (a) shows the DDG for the example code in Figure

4.5.

In our approach, the use of DDGs makes data dependences explicit and visible, which

enables analysts to find taint-style vulnerabilities more easily. For example, Figure 4.6 (a)

explicitly shows that the tainted value originated from the source will eventually be passed

to the sink, resulting in a leak.

void foo() {

S1: int x = source();

S2: if (x > 100) {

S3: int y = x;

S4: sanitize(x);

S5: sink(y);

 }

}

59

Figure 4.6. (a) DDG for the code in Figure 4.5; (b) CFG for the code in Figure 4.5.

4.2.2 Control Flow Graphs

Control flow graphs (CFGs) are another commonly used representation that can explicitly

show the execution order of statements and the flow of control determined by conditional

expressions [47]. In a CFG, statements and predicates are denoted by nodes, and the flow

of control is indicated by directed edges. Figure 4.6 (b) shows the CFG for the code sample

in Figure 4.5.

The use of CFGs in our approach is important, since DDGs alone often do not suffice to

ensure the existence of a vulnerability. For example, if we exchange the order of S3 and S4

in Figure 4.5 (as shown in Figure 4.7), while the data dependence graph may remain

unchanged (depending on what the sanitization is), the code is no longer flawed because

’s value has been sanitized before being passed to and . That is, using a DDG

alone in this case could yield a spurious alarm. To remedy the situation, we leverage a CFG

as it can make explicit whether the sanitization for a tainted value is already executed prior

to using the value. Furthermore, control-flow information is also essential in the detection

of many other types of vulnerabilities, such as use-after-free vulnerabilities.

entry int x = source ()

if (x > 100)

int y = x

sanitize(x)

sink(y) exit

true

false

int x = source ()

if (x > 100) sanitize(x)

int y = x

sink (y)

x x
x

y

(a) (b)

60

Figure 4.7. Example code adapted from Figure 4.5.

4.2.3 Building Vulnerability Nets

When using a vulnerability net to represent source code, places denote statements (or

predicates), while transitions denote Boolean expressions that are used to control the

propagation of tokens. A token models the existence of a tainted value, and different

colored tokens represent different tainted values. Markings in a vulnerability net are used

to show the number and position of tainted values. In the context of representing source

code, the initial marking of a vulnerability net is the state after all sources have been

assigned corresponding tokens. Once a vulnerability net is initialized, we examine whether

the tokens can propagate across places by computing the changes in the markings of the

net. If a token can propagate to a sensitive place, i.e., a tainted value can be passed into a

sensitive sink, then there potentially exists a vulnerability in the program.

As an example, consider a simple Java code fragment “a = source1(); b =

source2(); sink(a, b);”. For this code, we can use places , , and to denote

each statement, respectively. Also, we use two distinct colored tokens (let us say, a black

token and a red token) to represent the values of and , respectively. Initially, holds

one black token while and do not hold any black token. The initial marking for the

black token is . Similarly, the initial marking for the red token is

. After is passed into , which indicates that the black token propagates

from to , the marking for the black token changes to ; similarly, the

void foo() {

S1: int x = source();

S2: if (x > 100) {

S3: sanitize(x);

S4: int y = x;

S5: sink(y);

 }

}

61

marking for the red token changes to after is passed into .

Whether a token can propagate from one place to another is dependent on the

corresponding transition(s). We provide more details below after DDGs and CFGs are

introduced.

Since DDGs and CFGs can provide essential information for security analysis, we

incorporate them into vulnerability nets when representing source code. For brevity, the

combination is also referred to as a vulnerability net. To build such a net, a DDG serves as

a skeleton on which we gradually add CFG information (CFG edges and conditional

expressions). Specifically, the DDG nodes are replaced by places, the DDG edges are

replaced by transitions, and the conditional expressions from the CFG are assigned to

corresponding transitions. To clarify the idea, consider again the code example shown in

Figure 4.5. We combine its DDG and CFG, both given in Figure 4.6, and produce a

vulnerability net, as indicated in Figure 4.8 (a).

Figure 4.8. (a) Vulnerability net for the code in Figure 4.5; (b) Vulnerability net with

sanitization identification for the code in Figure 4.7.

int x = source ()

if (x > 100) sanitize (x)

int y = x

sink (y)

x
x

y

true

x

int x = source ()

if (x > 100)

sanitize (x)

int y = x

sink (y)

x
x

y

true

x

(a) (b)

Directed arc
CFG edge

●●

62

In this example net, since the statement (denoted by) contains a

source method, a token is placed in to represent a tainted value originated from there

and the initial marking of the net is . In the following we analyze how

the marking changes during the execution of the net.

First, we can see that is immediately enabled, resulting in the next state

. Transitions and are conditionally enabled as the condition

may hold. To make conservative (or safe) approximations [47, 84], when we

cannot determine whether a condition of a transition will be met, we will consider the worst

case, i.e., the condition will be met, and the token can be propagated through the transition

successfully. After firing the two transitions, the marking changes to . Finally,

is enabled and will fire to yield the marking , which indicates that the token

can propagate across all places, including the sink function (i.e.,). Therefore, the final

execution result suggests the existence of a taint-style vulnerability since the tainted value

from the source can reach the sink.

To reduce the risk of taint-style vulnerabilities, programmers may sanitize the tainted

values before using them. In this situation, false positives may arise if we do not realize the

presence of sanitization. For example, as discussed in Section 4.2.2, exchanging the order

of S3 and S4 in Figure 4.5 will eliminate the vulnerability, so we should not report an alarm

in that case. Therefore, it is crucial to perform sanitization identification when spotting

taint-style vulnerabilities. To this end, necessary sanitization information can be

accommodated in the transitions of a vulnerability net. As an example, Figure 4.8 (b) shows

the vulnerability net with sanitization identification for the code in Figure 4.7. (Let us

assume the sanitization used in Figure 4.7 is to terminate the path of execution.)

In Figure 4.8 (b), each transition adds a Boolean predicate for the

corresponding variable var, which will return a true or false value by evaluating whether

the variable var is sanitized. It returns true if var is not sanitized and false otherwise. It is

worth noting that such predicates are added and evaluated by hand in this work, but they

can be done in an automatic manner in practice as well. For example, since sanitization

63

within a program can be identified through taint-specification mining techniques (e.g., [85,

86]), a predicate can be automatically evaluated to false if the corresponding

variable is sanitized; otherwise, it is evaluated to true by default.

To illustrate how the sanitization can help, we simulate the execution of the net in Figure

4.8 (b) as follows. The initial marking is as we assign a token to .

Since is not sanitized at , the evaluates to true, making enabled and thus

allowing the token to be propagated to . The propagation leads to the next state

. Similarly, could be enabled when , so we have

. However, the situation of is different. The CFG edges in the net show that

prior to the propagation path through , must have been sanitized in .

Consequently, the at evaluates to false, making not enabled and thus

preventing the token in from propagating forward to . Furthermore, cannot be

enabled either as never receives a token. In summary, there is no further change in the

state, i.e., the final state of the net is , which implies that no taint-

style vulnerability is present in this code as no tainted value reaches the sink function (i.e.,

). As a result, no false alarms will be reported in this net.

4.2.4 Algorithms

In the previous subsection we illustrate how a vulnerability net is constructed and used for

vulnerability discovery. To formalize the ideas, algorithms are described in this subsection.

The process of generating a vulnerability net is formalized in Algorithm 4.1. Each step can

be completed in an automatic manner, though security analysts may manually add

information to a net for performance enhancement. At line 1, the merger between a control

flow graph and a data dependence graph is the union of their nodes and edges. Lines 2

through 7 transform the merger graph to a vulnerability net. The assignments of conditional

expressions to transitions are based on the Boolean expressions given in the control flow

graph (e.g., the in Figure 4.8 (a)) or given by security analysts (e.g., the

in Figure 4.8 (b)).

64

Algorithm 4.1: Generation of a vulnerability net

INPUT: A source program and its DDG and CFG

OUTPUT: A vulnerability net

1: Merge CFG and DDG;

2: for each statement s (or predicate) in DDG do

3: replace s by a place ;

4: for each DDG edge e do

5: replace e by a transition and directed arcs connected to places;

6: for each transition do

7: assign conditional expressions;

The algorithm for detecting taint-style vulnerabilities in a vulnerability net is described in

Algorithm 4.2. We start by providing a vulnerability net and specifying the sources and

sinks. A source-sink pair is a two-tuple , where the source through the sink

is a propagation path that may cause a security flaw. The quantities of sources and sinks in

a vulnerability net are arbitrary.

Algorithm 4.2: Vulnerabilities discovery

INPUT: A vulnerability net and a set of source-sink pairs

, and

OUTPUT: Taint-style vulnerabilities

1: Generate the set of initial markings ;

2: Execute the vulnerability net and generate the set of final markings

;

3: for each in do

4: if then

5: flag as a vulnerability;

In line 1 of Algorithm 4.2, the set of initial markings is generated according to the

location of the source places, i.e., for all , where is the set

65

of places. Recall that when represented in a graph, different sources are denoted by tokens

with different colors (see Section 4.1.3).

Lines 2 through 5 of Algorithm 4.2 state that the vulnerability net is then executed,

followed by the generation of the set of final markings, which in turn are used to iteratively

examine the markings of all the source-sink pairs. If the markings of a source-sink pair are

both 1, meaning a source and its sink each contains a token, then a vulnerability is detected.

4.3 Evaluation

In this section, we present an evaluation of our approach by conducting a set of small-scale

experiments on Securibench Micro [69], followed by a comparison with SonarQube [9].

Moreover, we present a case study to illustrate the use of our approach in a real-world case.

4.3.1 Experiments

4.3.1.1 Preliminaries

As mentioned in Chapter 3, Securibench Micro [69] is comprised of a series of small Java

test cases, which encompass a variety of vulnerabilities such as SQL injection

vulnerabilities and XSS vulnerabilities. The code for our experiments appears in three

directories of Securibench Micro, namely basic (containing various basic vulnerabilities),

aliasing (containing aliasing-related vulnerabilities), and inter (containing vulnerabilities

in interprocedural cases), with a total of 62 source programs. The vulnerabilities in these

programs have been summarized in Table 3.2 in Chapter 3.

We preprocessed the source programs prior to analyses, since many of them contain

procedure invocations, but our approach supports only intraprocedural analysis. The

preliminary processing transformed each program into a single procedure using procedure

inlining, i.e., replacing an invocation by the body of the invoked procedure. We found that

two programs, Inter13 and Inter14 in inter, are not suitable for inlining because the loops

in them can heavily expand the code size, so we omitted the analyses of them.

66

We also manually predefined a list of sources, sinks, source-sink pairs, sanitizers, and entry

points for the test cases. (When analyzing large-scale programs, such taint information can

be automatically obtained using taint-specification mining techniques [85, 86].) For

example, one typical source is the method as it accepts attacker-supplied

input, while is a typical sink as it might process tainted data and produce

unexpected results. The (,) is a typical source-sink pair in the test

cases of our experiments.

4.3.1.2 Implementation

In principle, a vulnerability net itself is executable, but since an automated tool for our

approach has not yet been available, we partially implemented our approach as a Datalog

program. Specifically, Figure 4.9 shows a Soufflé-style Datalog implementation of

Algorithm 4.2. In the program, lines 2 and 7 accept vulnerability net edges and source-sink

pairs as input, respectively, which in turn serve as facts for computation under certain rules

(lines 4, 5, and 9). Line 4 states that a token can be propagated from the place to if

there is a vulnerability net edge connecting from to and the Boolean expression in the

transition evaluates as true, denoted by “1” in . In line 5, the token is

propagated across the entire net as long as two places in the net satisfy the condition in line

4. Finally, line 9 computes insecure source-sink pairs, which are output as discovered

vulnerabilities at line 10. (Note that the concepts of Datalog are beyond the scope of this

thesis; see [47, 87] for discussions about Datalog or Soufflé.)

67

Figure 4.9. Datalog program implementing Algorithm 4.2.

4.3.2 Results

After examining the test cases, we summarize the results in Table 4.1.

Table 4.1. Experiment results.

Programs Correct
Warnings

Missed
Warnings

False
Warnings

Inter13 and
Inter14 0 2 0

Remaining 60
programs 87 0 0

Total 87 2 0

The 62 source programs contain a total of 89 vulnerabilities. As mentioned in Section 4.3.1,

we did not analyze Inter13 and Inter14 due to the failure to inline procedures in them, so

we missed the discovery of two vulnerabilities. For the remaining 60 programs, our

1 .decl VNEdge(from: symbol, to: symbol, boolean: number)

2 .input VNEdge

3 .decl Reachable(from: symbol, to: symbol)

4 Reachable(x, y) :- VNEdge(x, y, 1).

5 Reachable(x, y) :- VNEdge(x, z, 1), Reachable(z, y).

6 .decl SrcSink(src: symbol, sink: symbol)

7 .input SrcSink

8 .decl BugFound(src: symbol, sink: symbol)

9 BugFound(x, y) :- Reachable(x, y), SrcSink(x, y).

10 .output BugFound

68

approach has correctly discovered 87 vulnerabilities without any false negatives or

positives. That is, our approach reported 97.8% (87/89) of vulnerabilities in the test cases.

The results show that our approach can detect various taint-style vulnerabilities in source

code, though the intraprocedural analysis hurts performance to some extent. We discuss a

solution to this issue in Section 4.4.

4.3.3 Comparison with SonarQube

As a popular static analysis tool, SonarQube [9] can serve as a good baseline for measuring

the performance of our approach. The version of SonarQube we used is the Community

Edition 10.2.1.78527. We first converted the target programs from Securibench Micro into

a Maven project for the purpose of analysis and then performed analysis through

SonarQube. After an analysis report was generated, we examined if there were any false

positives or negatives. Table 4.2 summarizes the analysis results.

Table 4.2. Comparison between SonarQube and our approach.

Approaches Correct
Warnings

Missed
Warnings

False
Warnings

SonarQube 71 18 0

Our Approach 87 2 0

As shown in the table, while both approaches did not generate any false positives, our

approach yielded less false negatives compared with SonarQube. One possible explanation

is that the rulesets in SonarQube are not tailored specifically to taint-style vulnerabilities.

Instead, SonarQube is intended for detecting a broader range of bugs, including security

vulnerabilities and other types of bugs. Indeed, in this analysis it also reported some other

bugs associated with reliability or maintainability, which fall outside the scope of our

vulnerability analysis. Note that since SonarQube supports user-customized configuration,

its performance can be improved if we configure its rulesets properly.

69

If we compare the two approaches from the perspective of severity of the missed

vulnerabilities, we can see that our approach suffers less harm as it missed two XSS

vulnerabilities, while SonarQube missed multiple XSS and SQL vulnerabilities.

Overall, the comparison has shown that our approach outperforms SonarQube when

performing vulnerability discovery on Securibench Micro.

4.3.4 Case Study

While the experiment allows us to study the performance of our method in test cases, the

details are difficult to present comprehensibly within a limited space. For this reason, we

further present a case study to illustrate how our approach is used in detail to help the reader

understand our method better.

Figure 4.10. Code fragment adapted from a real-world case.

1 void main() {

2 […]

3 a = new A();

4 b = a.g;

5 x = a.g;

6 sink1(b.f);

7 w = source1();

8 x.f = w;

9 p = source2();

10 […]

11 if (p == isTaint) {

12 isSecure(p);

13 } else {

14 sink2(p);

15 }

16 sink1(b.f);

17 }

70

Figure 4.11. Vulnerability net for the code in Figure 4.10.

Figure 4.10 is the code adapted from an abstract code fragment, which is abstracted from

a real-world case [61]. For brevity, the type information of each variable is omitted in the

code. The ellipses that appear in lines 2 and 10 represent some code omitted. The code

fragment contains two source-sink pairs, namely and .

To identify the potential taint-style vulnerabilities that exist in this code, we want to

examine whether a tainted value from a source (e.g.,) may reach its paired sink

(e.g.,).

Our analysis begins by generating the vulnerability net (see Algorithm 4.1), as shown in

Figure 4.11. Note that we assume the DDG can resolve aliasing [21, 22], thereby allowing

the dependences to be generated accurately. For example, in the code given in Figure 4.10,

since the variable (line 4) and (line 5) are aliases of each other, and are

●●

●

true

false

a = new A()

x = a.g

b = a.g

sink1(b.f)

w = source1()

x.f = w

p = source2()

if (p == isTaint)

isSecure(p)

sink2(p)

sink1(b.f)

71

aliased. Accordingly, (i.e.,) in Figure 4.11 is connected to (i.e.,

).

Then we proceed to analyze the net. As described in Figure 4.9, the input for our analysis

includes vulnerability net edges and source-sink pairs. The vulnerability net edges of

Figure 4.11 are represented as follows.

p1 p2 1

p1 p3 1

p2 p4 1

p5 p6 1

p6 p11 1

p7 p8 1

p7 p9 1

p7 p10 0

It is often not hard to determine the Boolean values, but if sanitization is present, it may

require the CFG information and analysts’ expertise. In this example, transitions (from

to) and (from to) need attention. We notice that the expression

in can be true, so “1” is assigned to the edge

. By contrast, the expression in , i.e., ,

is different; the sub-condition is the sanitization of , while another sub-

condition states that no sanitization of exists. That is,

is a contradiction and is always false, so “0” is assigned to the edge

.

We next input the source-sink pairs:

p5 p4

p5 p11

p7 p10

72

Finally, we run the Datalog program to process the input data and output the following

results:

p5 p11

Therefore, a vulnerability is reported, while and are not

regarded as vulnerabilities. Alternatively, we can also obtain the same results if we

manually analyze the changes in state of the vulnerability net. The initial markings of the

net are (for the black token) and

(for the red token). After running the net, we will eventually

obtain the corresponding final markings and

and yield a vulnerability . For brevity, we omit the

detailed discussion here.

In presenting the case study we emphasize that our approach reduces false negatives and

positives because:

Vulnerability nets support aliasing analysis. The use of DDG enables our approach

to handle aliasing issues, so we can recognize that and are aliased in Figure

4.11. Consequently, the vulnerability can be correctly detected.

Vulnerability nets are flow-sensitive. From the vulnerability net in Figure 4.11 we

can see that the token in may propagate to , but never propagate to even

though and represent an identical statement (i.e.,). Thus, a

spurious vulnerability will not be reported.

Sanitization is recognized in vulnerability nets. Since the sanitization in of the net in

Figure 4.11 is recognized, is proved to not enabled and thus the token in cannot

propagate to . That is, will not be incorrectly considered as a vulnerability.

4.4 Discussion

Our evaluation demonstrates the capability of our approach for uncovering taint-style

vulnerabilities in source code. However, several limitations arise if we apply our approach

73

to more sophisticated programs in the real world. Firstly, our approach is intended only for

detecting taint-style vulnerabilities, so it is unclear if similar ideas can be applied to

discovery of other types of vulnerabilities.

Secondly, the approach discussed in this chapter involves only intraprocedural analysis,

since a data dependence graph or a control flow graph are built on a single procedure. As

mentioned in Section 4.3, although procedure inlining can make our intraprocedural

analysis, in effect, interprocedural analysis, it has certain inherent limitations. Fortunately,

our approach can be extended for interprocedural analysis if system dependence graphs

[88] and interprocedural control flow graphs are introduced.

Thirdly, our approach omits the discussion of input validation, just as many other taint

analysis approaches do (e.g., [61]). Input validation is often adopted as a complement to

sanitization since sanitization alone may not be sufficient to handle external input

comprehensively. False alarms can arise when input validation is not successfully

recognized. There are many approaches (e.g., [89-91]) in the literature that have shown

how to identify input validation and how this can greatly reduce false positives during taint

analysis.

Lastly, this work lacks a tool to support the proposed approach, thus restricting our

evaluation to small-scale experiments. We discuss some basic ideas about the

implementation of vulnerability nets in the following, which can serve as a starting point

for developing a tool:

Visualization. This component defines graphical representations of the elements

in a vulnerability net. For example, places are represented by circles. The

component should display a vulnerability net in a structured manner.

Transformation. This component defines how the statements in a program are

mapped to vulnerability net constructs. Techniques such as rule-based mapping can

be used to guide the transformation process and ensure that the generated

vulnerability net can accurately represent the program’s characteristics.

74

Simulation. This component handles the firing of transitions based on the current

markings and firing rules defined in the vulnerability net. It should allow the user

to specify the initial marking, track token movements, and observe the changes in

the marking. To visualize the simulation process, the Simulation component should

be integrated with the Visualization component.

Analysis. This component performs vulnerability analysis based on the simulation

data from the Simulation component. It may include various analyses, such as

reachability analysis and taint analysis. Analysis results are generated in this

component.

4.5 Related Work

Although purely manual audits are rarely used in practice, some interesting work has been

done in this direction. Leveson et al. [19, 76] present a method using software fault trees

to perform safety analysis at the source code level. The analysis is expressed in a tree form,

which starts with determining a fault of interest, followed by a backward analysis to find

the set of possible causes. This kind of method relies heavily on the analyst’s expertise,

making it unlikely to achieve full automation. Similar work (e.g., [92, 93]) has also been

presented in this branch of research. A major similarity between these approaches and ours

is that we both use a graphical node to explicitly represent a statement or predicate in source

code, which can assist analysts in auditing the code manually. However, our approach

discussed in this chapter can not only facilitate manual audits, but also support automated

static analysis.

In comparison to manual audits, automated static analysis is much more popular for

vulnerability discovery. We discuss the work most related to ours in the following. Arzt et

al. [61] present FlowDroid, a taint analysis approach for Android applications, which

claims to be fully context, flow, field and object-sensitive, thus reducing both false

negatives and false positives. There are also other approaches performing taint analysis on

Android, such as AmanDroid [94] and DroidSafe [95]. To further detect complex and

subtle vulnerabilities, some approaches incorporate expert knowledge into the process of

75

vulnerability discovery. Livshits and Lam [21] suggest a taint analysis method using user-

provided specifications to find security vulnerabilities in Java applications. Yamaguchi et

al. [29] merge abstract syntax tree, control flow graphs and program dependence graphs

into a joint data structure, in which analysts craft certain rules, known as traversals, to

facilitate vulnerability auditing. While all these approaches and ours are similar in the sense

that we all detect taint-style vulnerabilities based on taint analysis, a clear distinction is that

our approach provides a graphical view during the analysis process, which provides

analysts with more intuitive information.

It may also be worth mentioning the static analysis approaches focusing on incomplete

programs. These approaches, as we have discussed in Chapters 2 and 3, enable analysis in

the coding phase, making it possible to perform vulnerability discovery in real time. Our

vulnerability net approach also supports such kind of idea since a vulnerability net can be

generated from the start of coding and incrementally expanded as coding proceeds.

76

5 Conclusion and Outlook

In this chapter, we conclude the main findings of this thesis and present future work.

5.1 Summary of Results

We present a general framework for timely vulnerability discovery in Human-

Machine Pair Programming. The framework is expected to be applicable to model

a range of vulnerabilities. We illustrate its feasibility through a case study.

We present two pointer analysis approaches, exhaustive pointer analysis and

demand-driven pointer analysis, to identify taint-style vulnerabilities in Human-

Machine Pair Programming. Both the approaches support an incremental pointer

analysis and provide points-to information for vulnerability discovery during

program development. Our evaluation includes experiments on Securibench Micro

and a real-world case study: LDAP Injection in Apache Druid 0.17.0.

We put forward vulnerability nets, a novel graphical code representation for

modeling and detecting vulnerabilities in source code. Vulnerability nets support

both automated analysis and manual audits. To demonstrate the effectiveness, we

have also tested the approach on Securibench Micro.

5.2 Future Work

The work in this thesis is expected to lay the foundation for developing more advanced and

intelligent static analysis approaches in the future. Some of the interesting future research

topics in this branch may include:

Incorporating AI-based methods to improve some aspects of this work. For

example, as mentioned in Section 4.3.1, some AI-based methods can greatly

improve the identification of taint information (such as taint sources and sinks) in

large-scale programs.

To reduce false positives in our vulnerability net approach, we need to obtain more

precise information from a program, so it is essential to represent finer grained

77

elements of a program (e.g., variables’ values or types) in a vulnerability net. To

this end, it might be necessary to incorporate techniques such as abstract syntax

trees (ASTs) in our vulnerability nets.

Our pointer analysis and vulnerability net approaches focus exclusively on taint-

style vulnerabilities. It might be worth exploring if similar ideas can be applied to

the detection of other types of vulnerabilities.

78

6 Bibliography

[1] H. Moore, "Security flaws in universal plug and play: Unplug. don’t play,"

Rapid7, Ltd, vol. 8, 2013.

[2] CVE-2014-0160. "The Heartbleed Bug." https://heartbleed.com/. (accessed

November 2023).

[3] Z. Durumeric et al., "The matter of heartbleed," In Proceedings of the 2014

conference on internet measurement conference, 2014, pp. 475-488.

[4] Twitter Privacy Center. https://privacy.twitter.com/en/blog/2022/an-issue-

affecting-some-anonymous-accounts. (accessed November 2023).

[5] P. Godefroid, M. Y. Levin, and D. A. Molnar, "Automated whitebox fuzz

testing," In NDSS, 2008, vol. 8, pp. 151-166.

[6] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[7] K. Goseva-Popstojanova and J. Tyo, "Experience report: security vulnerability

profiles of mission critical software: empirical analysis of security related bug

reports," In 2017 IEEE 28th International Symposium on Software Reliability

Engineering (ISSRE), 2017, pp. 152-163.

[8] FindBugs - Find Bugs in Java Programs. https://findbugs.sourceforge.net/.

(accessed January 2023).

[9] SonarQube. https://www.sonarsource.com/products/sonarqube/ (accessed

November 2023).

[10] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, "ITS4: A static vulnerability

scanner for C and C++ code," In Proceedings 16th Annual Computer Security

Applications Conference (ACSAC'00), 2000, pp. 257-267.

79

[11] ESLint. https://eslint.org/ (accessed November 2023).

[12] Coverity Static Application Security Testing (SAST).

https://www.synopsys.com/software-integrity/security-testing/static-analysis-

sast.html. (accessed November 2023).

[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, "Why don't software

developers use static analysis tools to find bugs?," In 2013 35th International

Conference on Software Engineering (ICSE), 2013, pp. 672-681.

[14] Y. Pan, X. Ge, C. Fang, and Y. Fan, "A systematic literature review of android

malware detection using static analysis," IEEE Access, vol. 8, pp. 116363-

116379, 2020.

[15] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan, "Lessons

from building static analysis tools at google," Communications of the ACM, vol.

61, no. 4, pp. 58-66, 2018.

[16] CVE Numbering Authority (CNA) Rules.

https://www.cve.org/ResourcesSupport/AllResources/CNARules. (accessed

November 2023).

[17] F. Yamaguchi, "Pattern-Based Vulnerability Discovery," 2015.

[18] B. Chess and J. West, Secure Programming With Static Analysis. Pearson

Education, 2007.

[19] N. G. Leveson, S. S. Cha, and T. J. Shimeall, "Safety verification of ada programs

using software fault trees," IEEE software, vol. 8, no. 4, p. 48, 1991.

[20] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A static analysis tool for detecting

web application vulnerabilities," In 2006 IEEE Symposium on Security and

Privacy (S&P'06), 2006, pp. 6-pp.

80

[21] V. B. Livshits and M. S. Lam, "Finding Security Vulnerabilities in Java

Applications with Static Analysis," In USENIX security symposium, 2005, vol. 14,

pp. 18-18.

[22] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints," In

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, 1977, pp. 238-252.

[23] B. Arkin, S. Stender, and G. McGraw, "Software penetration testing," IEEE

Security & Privacy, vol. 3, no. 1, pp. 84-87, 2005.

[24] S. M. Ghaffarian and H. R. Shahriari, "Software vulnerability analysis and

discovery using machine-learning and data-mining techniques: A survey," ACM

Computing Surveys (CSUR), vol. 50, no. 4, pp. 1-36, 2017.

[25] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, "A survey of

symbolic execution techniques," ACM Computing Surveys (CSUR), vol. 51, no. 3,

pp. 1-39, 2018.

[26] Y. Smaragdakis and G. Balatsouras, "Pointer analysis," Foundations and Trends

in Programming Languages, vol. 2, no. 1, pp. 1-69, 2015.

[27] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, "Buffer overflows:

Attacks and defenses for the vulnerability of the decade," In Proceedings DARPA

Information Survivability Conference and Exposition (DISCEX'00), 2000, vol. 2,

pp. 119-129.

[28] S. Heelan, "Vulnerability detection systems: Think cyborg, not robot," IEEE

Security & Privacy, vol. 9, no. 3, pp. 74-77, 2011.

[29] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, "Modeling and discovering

vulnerabilities with code property graphs," In 2014 IEEE Symposium on Security

and Privacy, 2014, pp. 590-604.

81

[30] D. Larochelle and D. Evans, "Statically detecting likely buffer overflow

vulnerabilities," In 10th USENIX Security Symposium (USENIX Security 01),

2001, pp. 177-190.

[31] G. Sindre and A. L. Opdahl, "Eliciting security requirements with misuse cases,"

Requirements engineering, vol. 10, pp. 34-44, 2005.

[32] B. Chess and G. McGraw, "Static analysis for security," IEEE security & privacy,

vol. 2, no. 6, pp. 76-79, 2004.

[33] B. Potter and G. McGraw, "Software security testing," IEEE Security & Privacy,

vol. 2, no. 5, pp. 81-85, 2004.

[34] S. Liu, "Software Construction Monitoring and Predicting for Human-Machine

Pair Programming," In Structured Object-Oriented Formal Language and

Method: 8th International Workshop, SOFL+ MSVL 2018, 2018, pp. 3-20.

[35] P. Wang, S. Liu, A. Liu, and F. Zaidi, "A Framework for Modeling and Detecting

Security Vulnerabilities in Human-Machine Pair Programming," Journal of

Internet Technology, vol. 23, no. 5, pp. 1129-1138, 2022.

[36] B. Schneier, "Attack trees," Dr. Dobb’s journal, vol. 24, no. 12, pp. 21-29, 1999.

[37] A. P. Moore, R. J. Ellison, and R. C. Linger, "Attack modeling for information

security and survivability," Technical Note CMU/SEI-2001-TN-001, 2001.

[38] H. S. Lallie, K. Debattista, and J. Bal, "A review of attack graph and attack tree

visual syntax in cyber security," Computer Science Review, vol. 35, p. 100219,

2020.

[39] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault tree

handbook. Nuclear Regulatory Commission Washington DC, 1981.

82

[40] P. A. Khand, "System level security modeling using attack trees," In 2nd

International Conference on Computer, Control and Communication, 2009, pp. 1-

6.

[41] National Vulnerability Database. https://nvd.nist.gov/. (accessed January 2023).

[42] Common Weakness Enumeration. https://cwe.mitre.org/data/. (accessed

November 2023).

[43] Common Vulnerability Scoring System (CVSS). https://www.first.org/cvss/.

(accessed November 2023).

[44] T. R. Ingoldsby, "Attack tree-based threat risk analysis," Amenaza Technologies

Limited, pp. 3-9, 2010.

[45] D. Vose, Risk analysis: a quantitative guide. John Wiley & Sons, 2008.

[46] J. E. F. Friedl, Mastering regular expressions. O'Reilly Media, Inc., 2006.

[47] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,

techniques, & tools. Pearson Education India, 2007.

[48] W. G. Halfond, J. Viegas, and A. Orso, "A classification of SQL-injection attacks

and countermeasures," In Proceedings of the IEEE international symposium on

secure software engineering, 2006, vol. 1, pp. 13-15.

[49] J. Wang, R. C. W. Phan, J. N. Whitley, and D. J. Parish, "Augmented attack tree

modeling of SQL injection attacks," In 2nd IEEE International Conference on

Information Management and Engineering, 2010, pp. 182-186.

[50] M. Howard and D. LeBlanc, Writing secure code. Pearson Education, 2003.

[51] N. Grech and Y. Smaragdakis, "P/taint: Unified points-to and taint analysis,"

Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp.

1-28, 2017.

83

[52] J. Wilander and M. Kamkar, "A comparison of publicly available tools for static

intrusion prevention," In 7th Nordic Workshop on Secure IT Systems, 2002, p. 68.

[53] D. Evans and D. Larochelle, "Improving security using extensible lightweight

static analysis," IEEE software, vol. 19, no. 1, pp. 42-51, 2002.

[54] H. Yan, Y. Sui, S. Chen, and J. Xue, "Spatio-temporal context reduction: A

pointer-analysis-based static approach for detecting use-after-free vulnerabilities,"

In Proceedings of the 40th International Conference on Software Engineering,

2018, pp. 327-337.

[55] Z. Su and G. Wassermann, "The essence of command injection attacks in web

applications," Acm Sigplan Notices, vol. 41, no. 1, pp. 372-382, 2006.

[56] S. Gupta and B. B. Gupta, "Cross-Site Scripting (XSS) attacks and defense

mechanisms: classification and state-of-the-art," International Journal of System

Assurance Engineering and Management, vol. 8, no. 1, pp. 512-530, 2017.

[57] B. Dagenais and L. Hendren, "Enabling static analysis for partial java programs,"

In Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented

programming systems languages and applications, 2008, pp. 313-328.

[58] A. Rountev, B. G. Ryder, and W. Landi, "Data-flow analysis of program

fragments," ACM SIGSOFT Software Engineering Notes, vol. 24, no. 6, pp. 235-

252, 1999.

[59] P. Wang and S. Liu, "Detecting Security Vulnerabilities in Human-Machine Pair

Programming with Pointer Analysis," In 27th International Conference on

Engineering of Complex Computer Systems (ICECCS 2023), 2023, pp. 152-156.

[60] W. Pingyan and L. Shaoying, "Towards Pointer-Analysis-Based Vulnerability

Discovery in Human-Machine Pair Programming," International Journal of

Software Engineering and Knowledge Engineering, In Press. 2024.

84

[61] S. Arzt et al., "Flowdroid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps," Acm Sigplan Notices, vol. 49, no.

6, pp. 259-269, 2014.

[62] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, "TAJ: effective

taint analysis of web applications," ACM Sigplan Notices, vol. 44, no. 6, pp. 87-

97, 2009.

[63] N. Dor, M. Rodeh, and M. Sagiv, "Detecting memory errors via static pointer

analysis (preliminary experience)," ACM SIGPLAN Notices, vol. 33, no. 7, pp.

27-34, 1998.

[64] O. Lhoták and L. Hendren, "Scaling Java points-to analysis using Spark," In

Compiler Construction: 12th International Conference, 2003, pp. 153-169.

[65] B. Steensgaard, "Points-to analysis in almost linear time," In Proceedings of the

23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, 1996, pp. 32-41.

[66] W. Landi and B. G. Ryder, "A safe approximate algorithm for interprocedural

aliasing," ACM SIGPLAN Notices, vol. 27, no. 7, pp. 235-248, 1992.

[67] N. Heintze and O. Tardieu, "Demand-driven pointer analysis," ACM SIGPLAN

Notices, vol. 36, no. 5, pp. 24-34, 2001.

[68] M. Sridharan, D. Gopan, L. Shan, and R. Bodík, "Demand-driven points-to

analysis for Java," ACM SIGPLAN Notices, vol. 40, no. 10, pp. 59-76, 2005.

[69] Securibench Micro. https://github.com/too4words/securibench-micro. (accessed

January 2023).

[70] Apache Druid 0.17.0. https://github.com/apache/druid/tree/druid-0.17.0 (accessed

November 2023).

85

[71] LDAP Injection in Apache Druid. https://ggolawski.github.io/2020/08/06/cve-

2020-1958-ldap-injection-druid.html. (accessed November 2023).

[72] P. Emanuelsson and U. Nilsson, "A comparative study of industrial static analysis

tools," Electronic notes in theoretical computer science, vol. 217, pp. 5-21, 2008.

[73] N. Imtiaz, B. Murphy, and L. Williams, "How do developers act on static analysis

alerts? an empirical study of coverity usage," In IEEE 30th International

Symposium on Software Reliability Engineering (ISSRE), 2019, pp. 323-333.

[74] J. K. Teto, R. Bearden, and D. C.-T. Lo, "The impact of defensive programming

on i/o cybersecurity attacks," In Proceedings of the 2017 ACM Southeast

Regional Conference, 2017, pp. 102-111.

[75] A. Rountev and B. G. Ryder, "Points-to and side-effect analyses for programs

built with precompiled libraries," In International Conference on Compiler

Construction, 2001, pp. 20-36.

[76] N. G. Leveson and P. R. Harvey, "Analyzing software safety," IEEE Transactions

on Software Engineering, no. 5, pp. 569-579, 1983.

[77] J. Vanegue and S. K. Lahiri, "Towards practical reactive security audit using

extended static checkers," In IEEE Symposium on Security and Privacy, 2013, pp.

33-47.

[78] P. Wang, S. Liu, A. Liu, and W. Jiang, "Detecting Security Vulnerabilities with

Vulnerability Nets," Journal of Systems and Software, vol. 208, p. 111902, 2024.

[79] P. Wang, S. Liu, A. Liu, and W. Jiang, "Detecting Security Vulnerabilities with

Vulnerability Nets," in IEEE 22nd International Conference on Software Quality,

Reliability, and Security Companion (QRS-C), 2022, pp. 375-383.

[80] J. L. Peterson, Petri net theory and the modeling of systems. Englewood Cliffs,

N.J.: Prentice-Hall, 1981.

86

[81] M. Zitser, R. Lippmann, and T. Leek, "Testing static analysis tools using

exploitable buffer overflows from open source code," In Proceedings of the 12th

ACM SIGSOFT twelfth international symposium on Foundations of software

engineering, 2004, pp. 97-106.

[82] N. G. Leveson and J. L. Stolzy, "Safety analysis using Petri nets," IEEE

Transactions on software engineering, no. 3, pp. 386-397, 1987.

[83] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program dependence graph

and its use in optimization," ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 9, no. 3, pp. 319-349, 1987.

[84] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis.

Springer Science & Business Media, 2004.

[85] L. Clapp, S. Anand, and A. Aiken, "Modelgen: mining explicit information flow

specifications from concrete executions," In Proceedings of the 2015

International Symposium on Software Testing and Analysis, 2015, pp. 129-140.

[86] V. Chibotaru, B. Bichsel, V. Raychev, and M. Vechev, "Scalable taint

specification inference with big code," In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2019, pp.

760-774.

[87] Soufflé: A Datalog Synthesis Tool for Static Analysis. https://souffle-

lang.github.io/. (accessed January 2023).

[88] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing using dependence

graphs," ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 12, no. 1, pp. 26-60, 1990.

[89] I. Medeiros, N. Neves, and M. Correia, "Detecting and removing web application

vulnerabilities with static analysis and data mining," IEEE Transactions on

Reliability, vol. 65, no. 1, pp. 54-69, 2015.

87

[90] A. Figueiredo, T. Lide, D. Matos, and M. Correia, "MERLIN: multi-language

web vulnerability detection," In IEEE 19th International Symposium on Network

Computing and Applications (NCA), 2020, pp. 1-9.

[91] I. Medeiros, N. Neves, and M. Correia, "Statically detecting vulnerabilities by

processing programming languages as natural languages," IEEE Transactions on

Reliability, vol. 71, no. 2, pp. 1033-1056, 2022.

[92] S.-Y. Min, Y.-K. Jang, S.-D. Cha, Y.-R. Kwon, and D.-H. Bae, "Safety

verification of Ada95 programs using software fault trees," In 18th International

Conference on Computer Safety, Reliability and Security (SAFECOMP’99), 1999,

pp. 226-238.

[93] Y. Oh, J. Yoo, S. Cha, and H. S. Son, "Software safety analysis of function block

diagrams using fault trees," Reliability Engineering & System Safety, vol. 88, no.

3, pp. 215-228, 2005.

[94] F. Wei, S. Roy, X. Ou, and Robby, "Amandroid: A precise and general inter-

component data flow analysis framework for security vetting of android apps,"

ACM Transactions on Privacy and Security (TOPS), vol. 21, no. 3, pp. 1-32,

2018.

[95] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard,

"Information flow analysis of android applications in droidsafe," In 22nd Annual

Network and Distributed System Security Symposium, 2015, vol. 15, no. 201, p.

110.

88

A Source Code Containing LDAP Injection

The source code provided below is from an authentication module

(LDAPCredentialsValidator.java) in Apache Druid 0.17.0 [70], with some lines of code

removed due to space restrictions. We have highlighted the statements that are directly

involved in our pointer analyses. The statements in red are considered necessary for

computation in our exhaustive pointer analysis, and the underlined statements are the ones

necessary for our demand-driven analysis. (Note that we treat “String username” in line 30

as a statement and the entry source for the sake of discussion.).

1 package org.apache.druid.security.basic.authentication.validator;

2 import …

3 public class LDAPCredentialsValidator implements

 CredentialsValidator {

4 private static final Logger LOG = new

 Logger(LDAPCredentialsValidator.class);

5 private static final ReentrantLock LOCK = new ReentrantLock();

6 private final LruBlockCache cache;

7 private final BasicAuthLDAPConfig ldapConfig;

8 public LDAPCredentialsValidator(…){

9 this.ldapConfig = new BasicAuthLDAPConfig(…);

10 this.cache = new LruBlockCache(…);}

11 Properties bindProperties(BasicAuthLDAPConfig ldapConfig){

12 Properties properties = commonProperties(ldapConfig);

13 properties.put(Context.SECURITY_PRINCIPAL,

 ldapConfig.getBindUser());

14 properties.put(Context.SECURITY_CREDENTIALS,

 ldapConfig.getBindPassword().getPassword());

15 return properties;}

16 Properties userProperties(BasicAuthLDAPConfig ldapConfig,

LdapName

 userDn, char[] password){

17 Properties properties = commonProperties(ldapConfig);

18 properties.put(Context.SECURITY_PRINCIPAL, userDn.toString());

89

19 properties.put(Context.SECURITY_CREDENTIALS,

 String.valueOf(password));

20 return properties;}

21 Properties commonProperties(BasicAuthLDAPConfig ldapConfig){

22 Properties properties = new Properties();

23 properties.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.ldap.LdapCtxFactory");

24 properties.put(Context.PROVIDER_URL, ldapConfig.getUrl());

25 properties.put(Context.SECURITY_AUTHENTICATION, "simple");

26 if

(StringUtils.toLowerCase(ldapConfig.getUrl()).startsWith("ldaps:/

/")) {

27 properties.put(Context.SECURITY_PROTOCOL, "ssl");

28 properties.put("java.naming.ldap.factory.socket",

 BasicSecuritySSLSocketFactory.class.getName());}

29 return properties;}

30 public AuthenticationResult validateCredentials(String

 authenticatorName, String authorizerName, String username,

char[]

 password) {

31 SearchResult userResult;

32 LdapName userDn;

33 Map<String, Object> contextMap = new HashMap<>();

34 LdapUserPrincipal principal = this.cache.getOrExpire(username);

35 if (principal != null && principal.hasSameCredentials(password))

{

36 contextMap.put(BasicAuthUtils.SEARCH_RESULT_CONTEXT_KEY,

 principal.getSearchResult());

37 return new AuthenticationResult(username, authorizerName,

 authenticatorName, contextMap);

38 } else {

39 try {InitialDirContext dirContext = new

 InitialDirContext(bindProperties(this.ldapConfig));

40 try {userResult = getLdapUserObject(this.ldapConfig,

 dirContext, username);

41 if (userResult == null) {

90

42 LOG.debug("User not found: %s", username);

43 return null;}

44 userDn = new LdapName(userResult.getNameInNamespace());}

45 finally {

46 try {dirContext.close();}

47 catch (Exception ignored) {// ignored}}}

48 catch (NamingException e) {

49 LOG.error(e, "Exception during user lookup");

50 return null;}

51 if (!validatePassword(this.ldapConfig, userDn, password)) {

52 LOG.debug("Password incorrect for LDAP user %s", username);

53 throw new BasicSecurityAuthenticationException("User LDAP

 authentication failed username[%s].", userDn.toString());}

54 byte[] salt = BasicAuthUtils.generateSalt();

55 byte[] hash = BasicAuthUtils.hashPassword(password, salt,

 this.ldapConfig.getCredentialIterations());

56 LdapUserPrincipal newPrincipal = new

LdapUserPrincipal(username,

 new BasicAuthenticatorCredentials(salt, hash,

 this.ldapConfig.getCredentialIterations()), userResult);

57 this.cache.put(username, newPrincipal);

58 contextMap.put(BasicAuthUtils.SEARCH_RESULT_CONTEXT_KEY,

 userResult);

59 return new AuthenticationResult(username, authorizerName,

 authenticatorName, contextMap);}}

60 SearchResult getLdapUserObject(BasicAuthLDAPConfig ldapConfig,

DirContext context, String username){

61 try {SearchControls sc = new SearchControls();

62 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);

63 sc.setReturningAttributes(new String[]

 {ldapConfig.getUserAttribute(), "memberOf" });

64 NamingEnumeration<SearchResult> results =

 context.search(ldapConfig.getBaseDn(),

 StringUtils.format(ldapConfig.getUserSearch(), username),

sc);

65 try {if (!results.hasMore()) {

91

66 return null;}

67 return results.next();}

68 finally {results.close();}}

69 catch (NamingException e) {

70 LOG.debug(e, "Unable to find user '%s'", username);

71 return null;}}

72 boolean validatePassword(BasicAuthLDAPConfig ldapConfig, LdapName

userDn, char[] password) {

73 InitialDirContext context = null;

74 try {context = new InitialDirContext(userProperties(ldapConfig,

userDn, password));

75 return true;}

76 catch (AuthenticationException e) {

77 return false;}

78 catch (NamingException e) {

79 LOG.error(e, "Exception during LDAP authentication

username[%s]", userDn.toString());

80 return false;}

81 finally {

82 try {if (context != null) {

83 context.close();}}

84 catch (Exception ignored) {

85 LOG.warn("Exception closing LDAP context");}}}

Figure A.1. Source code of the authentication module in Apache Druid 0.17.0.

92

B Copyright Documentation

This thesis is extended from our published papers. Chapter 2 is adapted from [35],

Chapter 3 is adapted from [59, 60], and Chapter 4 is adapted from [78, 79].

