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Abstract

This dissertation discusses how to use testing and verification methods to en-

hance the reliability of systems incorporating neural networks. Specifically, this

dissertation aims to investigate: 1) How to employ Testing-based methods to

identify potential errors that may arise during the training process of neural

networks. 2) How to combine testing and verification methods to improve the

reliability of trained neural network models. 3) How to use a combination of

testing and verification to explore the interpretability of trained neural net-

works. Particularly, three approaches are proposed to answer the above three

questions. We will introduce them successively.

A Testing-based method to assess the GPU-memory consumption.

During the training process of neural network models, a large amount of GPU

computing resources is required, but it is difficult for developers to accurately

calculate the GPU resources that the model may consume before running, which

brings great inconvenience to the development of neural network-based systems.

This is particularly important especially in today’s cloud-based model training.

Therefore, it is very important to estimate the GPU memory resources that

the neural network model may use in a certain computing framework. Existing

work has focused on static analysis methods to assess GPU memory consump-

tion, highly coupled with the framework, and lack of research on low-coupled

GPU memory consumption of the framework. In this article, we propose the

Testing-Based Estimation Method (TBEM), which is a Testing-based method

for estimating the memory usage of the neural network model. First, TBEM

generates enough neural network models using an orthogonal array testing strat-

egy and a classical neural network design pattern. Then, TBEM generates neu-

ral network model tested in a real environment to obtain the real-time GPU

memory usage values corresponding to the model. After obtaining the data of

different models and corresponding GPU usage values, the data is analyzed by

regression.

A method utilizing Testing-Based Formal Verification for simpli-

fying and verifying neural networks. Although the security of neural net-

works can be enhanced by verification, verifying neural networks is an NP-hard

problem, making the application of verification algorithms to large scale neural
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networks a challenging task. For this reason, we propose NNTBFV, a framework

that utilizes the principles of Testing-Based Formal Verification (TBFV) to sim-

plify neural networks and verify the simplified networks. Unlike conventional

neural network pruning techniques, this approach is based on specifications,

with the goal of deriving approximate execution paths under given precondi-

tions. To mitigate the potential issue of unverifiable conditions due to overly

broad preconditions, we also propose a precondition partition method. Em-

pirical evidence shows that as the range of preconditions narrows, the size of

the execution paths also reduces accordingly. The execution path generated by

NNTBFV is still a neural network, so it can be verified by verification tools.

In response to the results from the verification tool, we provide a theoretical

method for analysis.

We evaluate the effectiveness of NNTBFV on the ACAS Xu model project,

choosing Verification-based and Random-based neural network simplification al-

gorithms as the baselines for NNTBFV. Experiment results show that NNTBFV

can effectively approximate the baseline in terms of simplification capability, and

it surpasses the efficiency of the Random-based method.

An approach to provide localized interpretation of neural networks

using the principle of Testing-Based Formal Verification. Although neu-

ral networks have been widely used in many fields such as NLP (natural lan-

guage processing), image processing and even MMML (Multi-modal Machine

Learning), their weak interpretability and poor reliability have been criticized

by many users for a long time. Specifically, there are two aspects. One is that

neural networks are difficult to be verified. The reason is that the architecture

of neural networks is based on experience, and the parameter are constructed

by back-propagation of the training data. It is difficult to give a formal spec-

ification like traditional software, and the verification of neural networks is an

NP-hard problem, which makes it difficult to achieve complete verification of

the large models. The other is that neural networks are difficult to be explained,

that is, it is difficult for us to figure out what features the result of neural net-

work reasoning is based on. For instance, although a neural network correctly

recognizes the cat in the picture, we can not determine whether the neural net-

work correctly recognizes the cat through its features or the watermark in the
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picture.

These three aspects of research all revolve around the theme of enhancing

the reliability of neural network-based systems. They focus on improving the re-

liability of neural networks during the training process, the reliability of trained

neural networks, and their interpretability, respectively. Additionally, applying

the theory of TBFV to neural networks also provides theoretical support for

generating formal local interpretations of neural networks in the future.
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Chapter 1

Introduction

1.1 Background

The development of artificial intelligence (AI) algorithms in recent years has

far exceeded people’s expectations and imagination, showing no signs of slow-

ing down. Among these AI algorithms, neural networks are considered the

quintessence of the AI field due to their exceptional performance, and their

application is expanding into increasingly diverse areas. In the field of ma-

chine vision, neural networks have been pivotal in research branches like image

classification, object detection, image generation, and video analysis. These

algorithms have been progressively implemented in safety-critical systems such

as facial recognition and autonomous driving. In the field of natural language

processing, neural networks are also widely used in machine translation, speech

recognition, and even in Question and Answer systems (Q&A systems) [1]. Al-

though neural networks have made a big splash in the field of AI such as machine

vision and natural language processing, the accompanying reliability problems

have also intensified. For example, in the field of automated driving [46, 88],

automated driving systems sometimes misjudge traffic signs, route planning er-

rors, and even traffic behavior predicting lost objects. In Q&A systems, there

are Jailbreak operations that make the Q&A system say answers that jeopar-

dize the society. Such a series of problems will greatly interfere with the normal

use of AI products, lose trust in AI products, and in serious cases, even bring

personal safety hazards to users. The root of these problems comes from the

fact that the construction process of neural network model is experience-driven

1
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(hyper-parameter setting), data-dependent (relying on the quality of training

data) and no fixed rules to guide the network structure and other factors, re-

sulting in neural network algorithms generally have adversarial example, formal

verification difficulties, poor explanatory and other problems.

In addition, compared to small-scale models, large-scale neural networks [15]

show better performance in a variety of tasks such as classification, prediction,

and data generation, which has led to the increasing size of today’s neural

networks, with the current most complex natural language Large Language

Model (LLM) even having 175 billion parameters [10]. However, while large-

scale models bring stronger learning ability and better generalization ability,

they also make it more and more difficult to guarantee the reliability of the

models. Therefore, how to improve the construction quality of neural networks

as well as how to improve the reliability and interpretability of neural networks

becomes an urgent problem.

1.2 Motivation

Testing and verification are two important means to ensure the quality of tradi-

tional software. Typically, in the design and development of traditional software,

programmers implement specific instructions and rules by writing code. After

testing and verifying these instructions and rules, the software is released to the

public. Due to the clear logic and rules of traditional software, testing and verifi-

cation can effectively ensure its reliability. In contrast, the development process

of systems based on neural networks is largely driven by experience and data,

with rules and their interpretability not as clear as in traditional software. This

makes the application of traditional software testing and verification methods

to ensure the quality of neural network-based systems somewhat inappropri-

ate. Our total motivation is to alleviate the situation where software testing

and verification methods are not applicable in neural network-based systems

and to enhance the reliability and stability of neural network-based systems.

In this article, we focus on two types of issues, both of which arise from the

characteristics of neural networks. However, the difference is that the first type

of issue may arise during the model training process, specifically how to

avoid GPU Out of Memory (OOM) errors during neural network training. This
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issue can be extended to the question of “how to assess GPU memory consump-

tion before training neural networks.” The second type of issue may occur after

model training. This specific issue is addressed by exploring how to accelerate

the formal verification of neural networks, and how testing and verification can

provide explanations for neural network behaviors. The motivation for each of

these two problems will be described below.

The first issue: Neural network-based software systems often need to call a

series of computing frameworks during operation. Especially when the invoked

framework contains closed source software. GPU usage is a typical scenario

involving calls across multiple frameworks. Utilizing GPUs to accelerate the

construction and inference of neural networks requires the use of multiple com-

ponents within a system, among which closed-source projects like CUDA are

powerful tools for accelerating computations. However, improper use of GPUs

can lead to issues such as GPU OOM, incorrect data parallelism on GPUs,

and calling unsupported operations on CUDA tensors, among other errors [32].

Of these, GPU OOM is one of the most significant topics. To avoid GPU

OOM issues during the training of neural networks, it is essential to estimate

as accurately as possible the GPU memory consumption of the network before

training begins. This not only prevents errors during training and speeds up the

construction of neural networks, but also aids in making informed decisions re-

garding hardware and software purchases for systems based on neural networks.

Typically, the training of neural networks is carried out either through cloud

services or by building hardware systems, both of which involve considerations

of computational resource procurement. Estimating GPU memory usage can

help in reducing the over-purchase of computational power.

The second issue: For pre-trained neural networks or trained neural net-

works, how to ensure their reliability is an important research direction. Since

neural networks are experience-driven and data-driven, although they have good

results on unknown data, they also bring problems such as difficult to test [65]

and verification [44], and poor interpretability [3,77]. These problems are inten-

sified with the arrival of large models. Testing of neural networks is a powerful

tool to ensure their reliability. The approach of generating adversarial exam-

ples [104] and performing adversarial training is a typical test-based way to en-
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sure the reliability of neural networks. However, the test-based approach does

not formally guarantee that the adversarial example are not included in a given

input interval. Neural network formal verification algorithms can overcome the

shortcomings of test-based approaches to some extent by guaranteeing that the

neural network is reliable within a given formal specification. Unfortunately,

the neural network verification problem itself is an NP-hard problem, so neural

network formal verification algorithms are mostly used on top of smaller mod-

els. In addition, the poor interpretability of neural networks leads to the fact

that the formal specification of neural networks is difficult to give in some cases.

In the scenario of large-scale neural networks, the interpretability of the model

also affects the user’s trust in the model. To alleviate the above problems, we

try the theory of testing-based formal verification applied to neural networks to

accelerate the verification and interpretability of neural networks.

1.3 Current Challenges

Based on the categorization in section 1.2, we also divided the current challenge

into two parts: how to ensure the reliability of model training and how to ensure

the reliability of the trained model.

In terms of ensuring the reliability of the model during training, we

mainly focus on how to evaluate the GPU usage before model training. Thereby

preventing GPU OOM during model training caused by unreasonable hyperpa-

rameter settings. Current research results are mostly based on static analysis,

which analyzes the GPU usage of neural network frameworks in computing com-

putation graphs to estimate the GPU usage of neural network models during

training. This idea is usually used in the field of GPU memory optimization.

Although it can effectively estimate the GPU memory usage, the method relies

heavily on the static analysis of the neural network computation framework.

When there is an upgrade or memory optimization of the neural network frame-

work, there is still a need for an expert to re-analyze the framework. Moreover,

some neural network frameworks invoke tools with closed-source software, which

makes it even more difficult for experts to analyze the framework.

In terms of ensuring the reliability of the trained model, We have

focused on how the principles of testing-based formal verification can be utilized
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to accelerate the verification of neural networks as well as to give explanations

of neural network models. While neural network models are getting larger and

larger, their verification is becoming more and more difficult. Since the neural

network verification problem is an NP-hard problem, the acceleration of hard-

ware can alleviate the verification bottleneck of the verification algorithm, but

it still has limitations. Therefore, it is imperative to propose algorithms to

accelerate the verification of neural networks. While debugging a model, un-

derstanding its behavior is crucial. Current research on the interpretability of

neural networks is typically based on heuristic algorithms. Formalizing local

explanations for neural network models is a research topic that needs to be

explored.

1.4 Summary of the Research

Neural Network 
Framework

Test 
Cases
Test 

Cases
Test 

Results
Test 

ResultsRRRR

Prediction modeltraining data training data

Chapter 2 Testing-based enhancement of NN reliability

Figure 1.1: Overview of major work on the first issue

This doctoral dissertation has investigated how to use testing and verification

methods in software engineering to alleviate the reliability problem of neural

networks. Three main areas of work have been accomplished to address the two

aspects mentioned above. They correspond to Chapters 2 to 4 of this paper,

respectively.

In chapter 2, for the first issue in section 1.2, we propose a test-based ap-

proach to evaluate the GPU storage space that the model may use before the

model is trained, referred to as TBEM. since the core idea of TBEM is the

idea of black-box testing. This allows the approach to avoid static analysis that
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is completely program-dependent, alleviating the first challenge in section 1.3.

We propose to construct a prediction model to help developers predict GPU

memory utilization. The inputs of the prediction model are the parameters and

hyperparameters of the neural network to be evaluated, such as the number of

neural network layers, the number of neurons in each layer, the batch size, etc.

The output is the GPU memory utilization of the neural network model to be

evaluated. The output is the GPU memory utilization of the neural network

model to be evaluated. The training data of the predictive model is obtained

by testing method. Fig.1.1 summarizes the core idea of TBEM.

Neural network model

Chapter 4 Explaining Neural Networks Using TBFV

Chapter 3 Enhancing Neural Networks reliability using TBFV

Precondition Postcondition

Figure 1.2: Overview of major work on the second issue

In chapter 3 , regarding the second research gap described in section 1.2,

We propose NNTBFV, a method to simplify and verify neural networks using

the TBFV. NNTBFV attempts to combine the methodology of testing with the

methodology of verification to utilize testing to accelerate the verification of

neural networks, thus alleviating the computational challenges associated with

the verification of neural network models. First, the method generates test cases

that meet the precondition in the formal specification, then, the neural network

executes all the test cases and performs neural network pruning. Finally, the
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pruned neural network is verified. The core idea of this work is to accelerate

the verification of neural network models by reducing the size of neurons. In

addition, a theoretical method DeepTBFV is introduced in Chapter 4, which

is used to give an explanation of the neural network and thus enhance the

reliability of the neural network. Unlike NNTBFV, DeepTBFV utilizes the

principle of testing-based formal specification to derive the precondition of the

neural network from the post-condition.If the neural network does not have an

artificially given precondition, then we take the result derived from the post-

condition as the local explanation of the neural network model. post-condition

as the local interpretation of the neural network model. Fig.1.2 intuitively shows

the difference between the two efforts of NNTBFV and DeepTBFV.
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Chapter 2

A Testing-Based Approach
to Enhance the Neural
Network Reliability of the
Training

2.1 Introduction

2.1.1 Background and Motivation

In recent years, with the improvement of computer performance and the con-

tinuous accumulation of data, the research and engineering implementation of

artificial intelligence algorithms have made rapid progress. Among them, deep

learning module is the most applied and implemented system in artificial in-

telligence system. It is widely used in many scenes, such as image recognition,

speech recognition, recommendation system and so on. Although the accuracy

and breadth of artificial intelligence system are improving year by year, the

hardware cost and time cost of constructing neural network system are also

increasing year by year. In 2020, the Gpt-3 model [19] published by Open Ar-

tificial Intelligence has 175 billion parameters, and the cost of network training

is as high as 12 million US dollars. The high cost of model training is a com-

mon phenomenon of the neural network system. Facing such a high cost of

model training, how to estimate the amount of memory that a deep learning

model will occupy and ensure that the model does not out of memory during

the training phase has become an important issue. This error is caused by the

9
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fact that developers cannot accurately estimate the size of the video memory

occupied by the model before the model runs, so they cannot find the upper and

lower limits of the super parameters suitable for their own development envi-

ronment. According to relevant research literature, among all program failures

of deep learning jobs, out of memory(OOM) account for 9.1% (including GPU

and CPU) [106], and often occur in training process [32], which makes all the

previous efforts of ongoing model training wasted. This not only wastes GPU

computing resources, but also affects the development progress of engineers.

Therefore, the memory consumption of different deep learning models and var-

ious deep learning libraries becomes particularly important. In terms of deep

learning model and memory consumption, many researchers have made great

contributions and provided corresponding solutions from different angles. The

main methods include memory exchange, memory sharing, recalculation, and

compressed neural network, etc. these methods reduce the use of memory in

the training process of deep learning model by analyzing the calculation graph

model and using the technologies such as liveness analysis in static analysis or

dynamic memory sharing and memory exchange. But their technology is usually

used to make the built model input a larger batch size in the current hardware

environment. Not to evaluate that the built model will cause memory overflow

in a certain environment before model training.

2.1.2 Challenges and Proposed Methods

In terms of deep learning framework and memory consumption, Gao et al. [23]

proposed the method of using static analysis and calculation diagram and resi-

dent buffer to predict the memory utilization before model training.

Although the above methods have made effective solutions, there are still

the following problems in the memory consumption evaluation of deep learning

model:

• Deep learning library (e.g., TensorFlow, Pytoch) [28] generally contains

two main functions, automatic differentiation, and GPU acceleration. Au-

tomatic differentiation is usually implemented by deep learning library,

while GPU accelerated process is usually implemented by calling multiple

NVIDIA components(e.g., CUDA, cudnn), it is difficult to achieve static
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analysis for the cooperative calls of multiple non-open-source components.

Because the components called by the framework are in the closed source

state, users cannot carry out common memory analysis methods such as

context analysis. It also makes the deep learning library a black box for

users.

• Each framework of deep learning is iterating rapidly in months, and new

deep learning frameworks emerge one after another. The method of static

analysis requires experts to analyze the framework. Therefore, the static

analysis method undoubtedly increases the labor cost and time cost of

evaluating the memory consumption of the deep learning model [70].

To solve the above problems, this paper proposes a method based on the

combination of static analysis and dynamic test modeling analysis [40] [99].

Firstly, using the method of static analysis, the calculation graph of neural

network is statically analyzed to pre-estimate the memory that may be

consumed by the model. Then the pre-estimated model is run in the

deep learning framework to obtain the real value of the model under the

framework. Finally, Polynomial regression [93] is used to analyze the gap

between the memory consumption estimated by static analysis and that

of the real model, to deduce the possible memory consumption of the deep

learning framework under different models.

2.2 Priliminary

In this section, we introduce three preliminaries used in TBEM, which are or-

thogonal array testing strategy, regression algorithm, and formal specification.

The relationship between the above concepts and TBEM will be discussed in

the overview section.

2.2.1 Orthogonal array

Orthogonal array generation method(OAGM), also known as Taguchi method,

is a technology to generate orthogonal array(OA). The shape of the test case

table depends on the number of factors and levels in the test [40].

Definition 1. An Orthogonal array can be defined as OA(n, f, l, s), where:
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• n is the number of rows of an orthogonal array. In an orthogonal array,

n is known as runs.

• f indicates how many parameters (factors) need to be tested. In an or-

thogonal array, f is known as factors.

• l represents the value range of each parameter. In an orthogonal array, l

is known as levels.

• s represents the strength of the orthogonal array. Let the orthogonal

array be an n × f matrix A. In any n × s sub-matrix in A, There are

w = l · d possible d-tuple rows, each of which appears the same number of

times.

In Definition 1, factors correspond to hyperparameters in the deep learning

framework that we need to test. Levels represent the range within which hyper-

parameters can be set. The number of runs is usually determined by strength.

The relationship between specific parameters is as follows

• Orthogonal arrays are usually written as the following pattern:

Lruns(levels
factors)

• The value of runs is equal to levelsstrength when the levels of each factor

are equal.

• When the number of levels in each factor of the orthogonal array is

different, runs is equal to the product of the number of levels in the last

strength column of the orthogonal array.

2.2.2 Polynomial regression

Definition 2. we have a polynomial equation of degree n represented as:

yi = δ0 + δ1xi + δ2x
2
i + · · ·+ δnx

n
i + ε (i = 1, 2, . . . ,m) (2.1)

can be expressed in matrix form in terms of a design matrix X, a response

vector �y, a parameter vector �δ and a vector �ε of random errors. The i-th row of

X and �y will contain the x and y value for the i-th data sample, then the model

can be written as a system of linear equations:

�y = X�δ + �ε (2.2)
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where �y = [y1, y2, · · · yn] and the vector of estimated polynomial regression

coefficients is:

�δ = (XTX)−1XT�y (2.3)

assuming m < n which is required for the matrix to be invertible, then since

X is a Vandermonde matrix, the invertibility condition is guaranteed to hold if

all the xi values are distinct. This is the unique least-squares solution.

2.2.3 Formal specification

In order to select test cases generated by TBEM, ensure that the final test cases

generated can be recognized by the neural network framework. We need to

investigate and summarize some neural network formal specifications. SOFL

(Structured Object-Oriented Formal Language) as one of the Formal Engineer-

ing Methods for industrial software development [50]. In this paper, we use

SOFL to write the formal specification of neural network. The reason is that

the formal specification written by SOFL is easier for developers to understand

and implement than the written by formal methods. In SOFL, the operation of

Input = set of nat = [W1 ,H1 ,D1]

Output = set of nat = [W2,H2,D2]

Hyperparameter = set of nat = [K,F,S,P]

process ShapeVerify(Input ,Output ,Hyperparameter:set) y:bool

pre forall[x:set] | x>0

post W2=(W1-F+2P)/S+1 and H2=(H1-F+2P)/S+1 and D2=K and

y = true or W2 <>(W1 -F+2P)/S+1 or H2 <>(H1 -F+2P)/S+1 or

D2<>K and y = false

end_process

Listing 2.1: A formal specification of neural networks using SOFL

filtering test cases that do not conform to the specification can be represented

by process, where process and end process is a pair of keywords used to mark

the beginning and end of the process. pre is a keyword indicating the start of

the precondition of the process, and the keyword post indicates the start of

the postcondition. Record a process as S, and then record pre-condition and

post-condition as Spre and Spost respectively. If the input variable of a process

S meets Spre, according to the specification, the output variable defined based

on the input variable must meet Spost after S. Then we can have the following
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definitions:

Definition 3. Let Spost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) · · · ∨ (Cn ∧ Dn) where each

Ci(i ∈ {1, . . . , n}) is a predicate called a guard condition that contains no out-

put variable and each Di(i ∈ {1, . . . , n}) is another predicate called defining

condition that defines the output variables.

Listing 2.1 shows a formal specification for convolutional neural network

code using SOFL. ShapeV erify is a process that used to verify the dimensional

relationship between tensors in neural network. It has pre-condition Spre :=

true and post-condition Spost := ((W2 = (W1−F +2P )/S+1)∧ (H2 = (H1−
F+2P )/S+1)∧D2 = K∧y = true)∨((W2 <> (W1−F+2P )/S+1)∨(H2 <>

(H1 − F + 2P )/S + 1) ∨ (D2 <> K) ∧ y = false). Then, we can write the

post-condition in the form of Definition 3:

G1 := ((W2 = (W1−F+2P )/S+1)∧(H2 = (H1−F+2P )/S+1)∧D2 = K

D1 := y = true

G2 := ((W2 <> (W1− F + 2P )/S + 1)∨ (H2 <> (H1− F + 2P )/S + 1)∨
(D2 <> K))

D1 := y = false

According to the above definition, we will collect the specifications of differ-

ent neural network models and express them using SOFL. Finally, the specifica-

tion described in SOFL is accurately transformed into Python code to remove

the test cases that do not meet the specification. The details about the syntax

of SOFL can be found in the publication by Liu [50].

2.3 Problem formulation and Overview

In this chapter, we first formulate the problem [49] and the proposed method.

Then, an overview of TBEM is given.

2.3.1 Formalization of problem

In order to more clearly describe the problem that we solve and the methods

to be proposed. We formalize the deep learning framework and the operation

process of graph model in the framework.
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• Formalization of model operation process in deep learning framework [79].

Let’s define set API as

I = {Ai}ni=1 = {A1, A2, . . . , An} (2.4)

Where Ai is the existing API in the neural network framework, and n is

the number of I. At the same time, The set of hyper-parameters to be set

for each I is defined as

HPAi
= {pjAi

}nj=1 = {p1Ai
, p2Ai

, . . . , pnAi
} (2.5)

Where pjAi
is the specific hyper-parameter to be set in each I. Ai is the

element in set API and j is the number of all Hyper-parameters of the I.

For example,
n∑

i=1

|HPAi
| (2.6)

can represent the types of all settable hyper-parameters in the framework.

• Formal specification for deep learning model in framework [16]. Next, we

describe the form of the model in the framework based on the definition

of the deep learning framework. Given a set of I, We do a finite Cartesian

product
K︷ ︸︸ ︷

I × I × · · · × I (2.7)

denoted as IK and

IK = {< A1, A2, . . . , An > |Ai ∈ I, 1 ≤ i ≤ K} (2.8)

Then, the model in the deep learning framework can be defined as

model ∈ I∗ =
∞⋃

K=1

IK (2.9)

2.3.2 Formalization of method

Because in the DL framework, the model usually runs in the form of calculation

graph, so we mark the calculation graph [12] set as G. Let CG : model → G

represents the mapping between the model and the calculation graph, for a given

input m ∈ model, there will be a corresponding calculation garaph g ∈ G.
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Figure 2.1: Overview

Meanwhile, let GU be the set of interger means the size of the GPU −
memory consumed by the model, for each m ∈ model, a corresponding GPU −
memory usage can be obtained by running the model or static analysis for the

graph [95]. Let GV : model → GU be a function of GU for the model. Through

the investigation of previous studies, it can be seen that the static analysis of

the calculation graph can roughly estimate the usage of the GPU −memory of

the model at run time. Therefore, let SGV : graph → GU be a function of GU

for the model. There will be a certain gap between the GU obtained by static

analysis of the model and the GU obtained by running the model. This gap can

be defined as

Gap(model) = GV (model)− SGV (CG(model)) (2.10)

It is critical to define the relationship between Gap(model) and model. Not

only can it be used to get a more accurate model GPU −memory usage, but it

can also be used to evaluate the execution efficiency of the DL framework [69].

In order to find the specific mathematical form of Gap(model), we propose

a data fitting method based on OAGM. First, a certain scale of deep learning

model is generated through the orthogonal array test strategy, which is used

as a test case to test the GU value (Test Oracle) of the DL framework at

runtime. Next, use the regression algorithm to find the relationship between

test case and test oracle, that is, to obtain GV (model). However, if we want

to know Gap(model), we still need to know the specific value of SGV . This

paper adopts the method of static analysis of the computational graph, and
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evaluates the specific value of SGV (CG(model)) [106]through the analysis of

the tensor scale. Fig. 2.1 shows an overview of how TBEM works. The process

is divided into test phase and data analysis phase. The test phase includes the

generation of test cases and the collection of test data. In the data analysis

phase, polynomial regression is used to solve the relationship between different

hyperparameters of the neural network and GPU usage.

In the test phase, we need to automatically generate test cases. We believe

that there are two principles for the generated test cases: (1) The number of

generated test cases can be executed in a limited time. For example, suppose

we select 10 Super parameters of neural network, and each super parameter has

3 values. The full test of such a neural network model will produce 59049 (310)

test cases. Such a test scale may not be completed in a limited time. (2) Test

cases need to be evenly distributed in the test space as much as possible, which

can make the conclusion of polynomial regression more accurate.

In order to overcome the above difficulties, we propose a test case genera-

tion algorithm based on OAGM. Firstly, the structure of many classical neural

network models is defined by string formatting. Then, the OAGM strategy is

used to deform the layers of the classical neural network template to produce a

sufficient number of neural network structures. Finally, using OAGM again, the

super parameters corresponding to the neural network structure are generated,

and the initial test cases are obtained.However, the test cases generated in this

way can not guarantee that they all meet the requirements of neural network

framework. The main problem is that the shape of tensor may be inconsistent.

Therefore, we implement a filter to remove the non-conforming test cases, so as

to get the final test cases that can be run.

After the test is complete, we can get the corresponding GPU usage for

different test cases. Then, how to use the data and solve the mapping relation-

ship between test cases and GPU usage is an important issue. We propose a

polynomial regression solution, which abstracts test cases into a hyperparamet-

ric vector and establishes a mapping relationship between the hyperparametric

vector and the GPU usage. This process enables TBEM to infer the GPU usage

of different neural network models. Finally, we make an empirical study on the

reasoning ability of TBEM, which proves the validity of TBEM.
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2.4 Approach

In this section, we first introduce what OAGM is and how to use OAGM to gen-

erate test cases that can test the DL framework, and then analyze the feasibility

of test cases generated based on OAGM and the ability of the generated test

cases and test oracle to be applied to regression analysis feasibility. Finally, the

regression model and static analysis model used in this method are introduced.

2.4.1 Test case generation based OAGM

The purpose of testing is to find out how much GPU − memory is consumed

by different models running under a certain framework. But there are many

hyperparameters e.g., batch size [67].in the deep learning algorithm, and not all

hyperparameter changes will have a huge impact on the GPU −memory. The

static analysis of the deep learning calculation graph can filter out the APIs

that have a greater impact on the memory consumption.

Observatios and motivations about API screening: GPU’s advantage lies in

parallel computing. In the process of training deep learning models, there are a

large number of operators that need to be calculated in parallel. For example,

feature mapping in forward propagation, gradient mapping in back propaga-

tion, etc. Therefore, we have screened APIs related to convolution operation,

pool operation, and Batch Normalization that will generate a large number of

parallel calculations. In each API, the input scale and output scale of each layer

of neurons can be set, and different parameters correspond to different memory

usage. In addition, the depth in deep learning is also a major factor in consum-

ing memory. Therefore, in the test, models with different depths and different

structures will be tested orthogonally [48]. Corresponding to the memory con-

sumed by different models. Because the memory consumption of the underlying

framework will not decrease with the increase of the influencing parameters in

the model, that is, the direction of data change is known, and only the rate

of change is unknown. Therefore, the data obtained by the orthogonal test is

sufficient for multivariate polynomia regression analysis.

Let’s take the VGG network as a example. Suppose that through the static

analysis [72] of the neural network model, three representative hyperparameters

are selected, namely Batch-size, Depth and Number of convolutional layers [56].
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Test Number Batch size Depth Number of convolutional layers

Case1 4 11 8

Case2 8 13 10

Case3 16 16 13

Case4 32 19 16

Table 2.1: Orthogonal test example of VGG network

These three hyperparameters constitute the factors in the orthogonal array. As

shown in Table 2.1. In an orthogonal array, the range of values for each factor

is called levels. Table 2.1 shows an orthogonal array with a factor of 3 and

levels of 4. If a comprehensive experimental method is used for testing, up to

34 tests are required. And the number of tests increases exponentially with the

value of levels. However, using orthogonal experiments to generate orthogonal

arrays requires only 42 tests. In other words, when the levels become very large,

a comprehensive test is impossible. Therefore, this article uses the OAGM to

generate test cases [14]. Testing the deep learning framework and record the

test oracle corresponding to each test case.
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Figure 2.2: Relationship between the number of neural network layers and GPU
utilization
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2.4.2 Polynomial regression

we got a lot of pairs of test case and test Oracle, where test case is marked as

model and test Oracle is marked as GU . Because the model is generated by

transforming parameters. therefore, model can be denoted as model(hyperpara

meter1, . . . , hyperparametern) and The hyperparameters are derived from the

static analysis calculation graph.

Next, we use polynomial regression to find the relationship between hyper-

parameters and GU , which is equivalent to finding a way to solve GV (model).

Furthermore, SGV (model) is known. We have also found a way to solve

Gap(model).

2.5 Case Study

1 from tensorflow import keras

2 from tensorflow.keras import layers , models , Input

3 from tensorflow.keras.models import Model

4 from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

Dense , Flatten , Dropout

5

6 def VGG16(classes , input_shape):

7 input = Input(shape=input_shape)

8 # 1st block

9 x = Conv2D (64, 3, activation=’relu’)(input)

10 x = Conv2D (64, 3, activation=’relu’)(x)

11 x = MaxPooling2D (2, strides =(2,2))(x)

12 # 2nd block

13 x = Conv2D (128, 3, activation=’relu’)(x)

14 x = Conv2D (128, 3, activation=’relu’)(x)

15 x = MaxPooling2D (2, strides =(2,2))(x)

16 # 3rd block

17 ...

18 # full connection

19 x = Flatten ()(x)

20 x = Dense (4096 , activation=’relu’)(x)

21 x = Dense (4096 , activation=’relu’)(x)

22 output_tensor = Dense(classes , activation=’softmax ’)(x)

23

24 model = Model(input , output)

25 return model

Listing 2.2: VGG 16 model

To clarify the role of regression in this algorithm, we give an example of

univariate polynomial regression in this subsection. From the method of static
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analysis, the number of layers of deep learning is directly related to the con-

sumption of computing resources. The function of univariate polynomial re-

gression is to analyze the tested data and get the mathematical expression of

the relationship between the number of deep learning layers and the computing

resources.Finally, it is worthwhile to estimate the display memory consumption

of various neural networks by using the regression results.

Visual Geometry Group(VGG) [83] is a classical neural network model. List-

ing 2.2 shows the implementation of the VGG16 model in the TensorFlow frame-

work. In order to test the memory usage of training in the TensorFlow frame-

work for in-depth learning models of different layers, and to ensure that the

model is true and effective as possible.We mutated the VGG16 model.Because

case study is the reason, the convolution layer parameters (filters, kernel size,

padding, strides operations, etc.) and pool layer parameters (pool size, strides,

padding, data format, etc.) appearing in the model are set as uniform param-

eters when mutating VGG16, excluding the effect of Hyperparameters other

than the number of layers on explicit memory consumption in the deep learning

model above. Fig. 2.2 shows the relationship between the number of neural

network layers and GPU usage (MB).

2.6 Related Work

2.6.1 GPU-memory estimation

So far, most of the research on memory management of DL accelerator-GPU

focuses on how to optimize the use of GPU memory during model training.

For example, Rhu et al. [73] proposed vDNN to formulate a memory swapping

strategy between main memory and GPU memory by analyzing the computa-

tion graph, to reduce the footprint of GPU memory in the process of training.

Gradient checkpoint [12] uses the idea of recomputation to implement an al-

gorithm for training n layer network, which only consumes O(
√
n) memory.

SuperNeurons [95] and Capuchin [69] both combine memory sharing, memory

swapping and recomputation techniques to varying degrees to further improve

the optimization of GPU memory management in DL model training. However,

unlike our work, these studies usually focus on how to optimize memory usage

during DL model training. Rather than estimating how much GPU memory
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may be consumed by the model itself when the model is not trained.

DNNMem [23] is the most relevant work with TBEM. TBEM and DNNMem

have a common purpose, that is, the GPU memory that may be consumed by the

DL model is estimated before the DL model is executed. However, the TBEM

method is based on the regression model generated from test data to evaluate

the DL model. It is essentially different from DNNMem, which evaluates the

GPU memory consumption of the DL model through the static analysis of the

computation graph. Different working principles make TBEM overcome the

following problems of static analysis methods in the following aspects: 1) the

version update speed of each component of deep learning framework is fast, and

the update cost of tools developed based on static analysis principle is large; 2)

The dependency of deep learning framework is complex, and some components

cannot be completely statically analyzed.

2.6.2 Testing of DL framework

In recent years, with the increasing demand for the stability of DL framework,

the research on automatic test DL framework has gradually attracted the at-

tention of researchers. Cradle [70] detects the inconsistency between the im-

plementation of the same neural network model in multiple DL frameworks,

determines that there may be errors in the inconsistent framework by using

the way that the minority obeys the majority, and puts forward the relevant

algorithm to locate the wrong location. Gao.et.al. [28] Proposed another DL

framework testing method called Audee, which is different from cradle’s prac-

tice of using existing DNNS as test cases. Audee tried to generate test cases

by using search algorithm, and improved the bug type detection range and bug

location accuracy.

For algorithms without multiple implementations, that is, when cross refer-

encing cannot be used for Test Oracle comparison, Murphy et al. [60, 61] Tried

to test the machine learning framework with the method of geometric relations,

but the framework here is not a neural network framework.

The above methods mainly focus on how to detect the bugs in the frame-

work. Although TBEM also needs to generate test cases for the framework to

run, on the contrary, TBEM is correct based on the framework. We record
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the feedback given by the framework to prevent GPU memory overflow due to

hyperparameter setting errors in neural network code implementation.

2.7 Summary

In this article, we propose a testing-based method to evaluate the memory usage

of the DL framework. This method is different from the previous static analysis

method. The possible errors of the static analysis method can be corrected

through testing, and the possible GPU-memory usage of the deep learning model

can be better evaluated before the deep learning model is running.

At present, it is only a theoretical framework. In the future, this method

will be used to automatically generate a large number of test cases to test the

mainstream DL framework, so as to prove the effectiveness of this method [45].



24 CHAPTER 2. THE NN RELIABILITY OF THE TRAINING



Chapter 3

Enhancing neural networks
reliability using
Testing-Based Formal
Verification

3.1 Introduction

3.1.1 Background and Motivation

In recent years, neural networks have been increasingly used in security-critical

systems, such as autonomous driving [25], financial payments [31], and even

aviation scheduling systems [26]. At the same time, neural networks have also

been shown to be potentially vulnerable to elaborate adversarial examples (AEs)

[104]. The neural network verification algorithm [9] can use the given formal

specification to verify the neural network. Unfortunately, the neural network

verification problem has been proved to be NP-hard [36], and large scale neural

networks are constantly being released. That makes it a greater challenge to

ensure the reliability of neural networks.

Generally, when engineers are faced with complex tasks, they tend to build

large scale model, such as more complex structures or more neurons in the

model [92]. The reason is that larger scale models are usually more expres-

sive [22]. Recently, large scale neural networks, such as ChatGPT [63], Mid-

journey [64], etc., have all showcased their strong capabilities in reasoning and

generation. While larger models bring benefits, they also create the disadvan-

25
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tage of poor interpretability and difficulty to verification. For instance, when

we want to verify the properties of the model, since the verification algorithm

is usually NP-hard, many redundant models will inevitably lead to time out.

To alleviate the security problems caused by large scale neural networks, in

terms of testing, several AEs generation algorithms have been proposed by the

security community and are widely used in industry. These methods enhance

the reliability of neural networks to some extent [24, 38, 57]. At the same time,

some pruning algorithms have tried to scale down the neural network size by

means of testing with as little impact on accuracy as possible [27]. After all,

smaller neural networks can be better deployed to obtain more efficient forward

inference capabilities [8,30]. However, the above algorithms do not explore how

to guarantee the reliability of the neural network under the formal specification.

Meanwhile, formal verification algorithms for neural networks are also contin-

uously proposed by the formal verification community. This kind of algorithm

has achieved success in small neural networks. To extend the verification al-

gorithm to large neural networks, some studies have proposed using hardware

such as GPUs [98] or parallel computing [102] to speed up the verification of

neural networks. The efficiency of neural network verification is improved by

distributed computing. However, at present, the speed of hardware accelerating

the verification of neural network is far less than the expansion of the scale of

neural network.

3.1.2 Challenges and Proposed Methods

3.1.2.1 The Challenge of Neural Networks Verification

The development of neural networks verification research has benefited from a

large number of traditional software verification techniques, such as constraint

solving and reachability analysis [55]. The verification process usually requires

Boolean Satisfiability Problem (SAT) Encoding, Linear Programming (LP) En-

coding or Mixed-Integer Linear Programming (MILP) Encoding of the neural

networks. Although there are a large number of techniques to enhance the

coding efficiency, streamline the constraint size, and speed up the process of

constraint solving. However, the verification of neural networks is still an NP-

hard problem [36]. As the size of neural networks continues to increase, the
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verification efficiency decreases substantially.

3.1.2.2 The Challenge of Neural Network Pruning

Currently, how to design the structure of deep neural network for different ap-

plication scenarios is still an unsolved problem. Due to the lack of this design

specification, the redundancy of neural network is widespread. Redundancy may

improve the accuracy of neural network to a certain extent, but in most cases,

it can only increase the training cost and reasoning cost of the network, which

becomes particularly obvious in application scenarios such as edge computing,

embedded systems. To overcome the redundancy of neural network structure,

pruning has become an essential technology for neural network training and

deployment. Neural network pruning contains two technical challenges. The

first is how to create rules to locate which neurons, or which weights should

be pruned. The second is how to ensure that the pruned neural network is

equivalent or similar to the original neural network.

Existing neural network pruning algorithms often use a large number of test

cases to test the trained neural network, and then prune the neural network

according to the rules of neuron activation or weight size. Then, the pruned

neural network is trained again. To achieve the same or even better effect on

some test data sets. When given the formal specification of the input and output

for a neural network model, the ensuing challenge is that the pruning algorithm

must generate a model as similar as possible to the original (unpruned) model

within the formal specification.

If we want the accuracy of the pruned neural network to be completely

consistent with the original network, the execution path of the neural network

for each test case in the input space should be known. However, the sample size

of the input space to be tested to obtain the execution path is huge. Taking the

FCNN as an example, it is assumed that the number of neurons in the input

layer is n and the input space of each neuron is m. Then it takes mn test cases

to obtain the neural network execution path corresponding to the input space

through the test method. Even if we quantify the neural network input, that is,

m is represented by int8, mn tests may still be an impossible task, and worse,

n may also become larger with the development of training data (For example,
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clearer training picture data is used in computer vision).

3.1.2.3 Proposed Methods

TBFV is a test-based approach to obtain the pre-condition of execution paths

and verify that paths satisfy the given specification by analyzing the constraints

of execution paths. In this paper, we propose a testing-based formal verification

method for neural networks, named NNTBFV, which is used to Simplifying and

verifying neural networks using the formal specification. NNTBFV consists of

two phases: neural networks simplification phase, and neural networks verifica-

tion phase.

Simplification phase. Unlike the previous method mentioned above, we

generate test cases in order to find as many inactive neurons as possible under

the formal specification and use structured pruning to remove the inactive neu-

rons. The purpose of this is to reduce the size of the neural network as much

as possible under the formal specification and to accelerate the verification of

the neural network. Specifically, for a given formal specification S for a neural

network which contains a formal definition of the pre-condition PR and the

post-condition PO. We are gradually generating a series of input values consis-

tent with specifications to activate more neurons in the neural network. Here,

we cannot guarantee the activation of all neurons that should be activated. The

gradient ascending algorithm can approach the real activation number of neu-

rons as much as possible. For instance, a fully connected 2 × 8 × 8 × 2 four

layer neural network N with 16 neurons containing ReLU activation function.

Assuming that 12 neurons of the neural network N must be activated for S,

there are 4 neurons that cannot be activated in any case. Our algorithm is to

find out as much as possible which of the 12 neurons can be activated by gener-

ating test cases, and prune the neurons that can not be activated structurally.

Additionally, to prevent the intervals defined by PR from being too large, the

original PR space is partitioned into several sub pre-condition. We constructed

a set equivalent to the original PR using the Cartesian product, named PRP .

Hence, verifying all elements in PRP means verifying the original pre-condition.

Verification phase. The simplified neural network is formally verified by

the neural network verification algorithm. Upon completion of the verification,
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if the simplified neural network accurately represents its sub-domains without

any counterexamples, we ascertain the execution path to be reliable. On the

other hand, if counterexamples emerge, we utilize them as training data and

subsequently fine-tune the neural network to further enhance its reliability. Fur-

thermore, it’s important to note that our method remains unaffected regardless

of the underlying verification tool being utilized. Any verification tool can be

integrated with our method.

To evaluate the effectiveness of NNTBFV, we developed a PyTorch-based

prototype that adheres to a set of formal specifications, enabling the activation

of a maximal number of neurons within the neural network. To facilitate the

comparison with the baseline methods, we use the ACAS Xu model [36] as our

baseline model, with specific details referred to in the section 3.5. Additionally,

as the model refined by NNTBFV is built on PyTorch, it effortlessly integrates

with any neural network verifiers compatible with the PyTorch output format.

Although we have not yet found any work that is completely similar to the pur-

pose of NNTBFV, in order to evaluate the effectiveness of NNTBFV, We adopt

the “Pruning and Slicing Neural Networks using Formal Verification” method-

ology from Lahav et al [39] as our baseline. This is a verification-based method

for judging redundant neurons, which we will refer to as the ‘verification-based

method’ in the following sections. The experiment results demonstrate that

NNTBFV can effectively approximate the results of verification-based method,

and since NNTBFV is a testing-based algorithm, it can be more easily computed

in parallel and avoid the time out that may occur in the verification-based ap-

proach.

Overall, this paper mainly makes the following contributions:

• We develop the first TBFV for neural networks, named NNTBFV. It can

identify a class of redundant neurons whose removal has a little impact on

the output of the whole network. The main contribution of this technology

is to enhance the scalability of neural network verification by reducing the

scale of neural networks under the formal specifications.

• We implemente a prototype to evaluate the effectiveness of NNTBFV. The

experimental results show that NNTBFV can activate as many neurons

in the neural network as possible within a given formal specification, ap-
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proximating the baseline and compared to the random-based method. As

the granularity of the partition increases, the activation rate of neurons

decreases.

• we outline the theoretical methods for verifying neural networks and an-

alyzing verification results based on the pre-condition of the execution

path.

The rest of the chapter is organized as follows. In Section 3.2, we provide

NNTBFV with the necessary preliminary. The overview and detail of NNTBFV

are given in Section 3.3. A case study is shown in Section 3.4. We evaluate the

effect of NNTBFV in Section 3.5, followed by a discussion of related work in

Section 3.6. Finally, a conclusion and future work are placed in Section 3.7.

3.2 Priliminary

3.2.1 Neural Network

A neural network’s structure typically comprises multiple layers of intercon-

nected nodes, often referred to as “neurons”. It’s worth noting that neurons

within the same layer usually lack direct interconnections. Each neuron pro-

cesses incoming inputs, performs calculations, and yields outputs. These out-

puts then serve as the inputs for the succeeding layer of neurons. The infor-

mation flows from the input layer, through one or more hidden layers, and

ultimately to the output layer, thereby establishing a sophisticated network for

information processing.

In a fully connected neural network (FCNN) with t layers, l1 represents the

input layer of the neural network and lt represents the output layer of the neural

network, then the neural network can be formally represented as a nonlinear

function f : l1 → lt, where l1 ⊆ R
m and lt ⊆ R

n, m represents the number of

input neurons and n represents the number of output neurons. Except for l1,

the input of each neuron in the neural network can be represented as

ni
j = wi

1j · oi−1
1 + wi

2j · oi−1
2 + · · ·+ wi

sj · oi−1
s + bij (3.1)

where ni
j denotes the jth neuron in the li, and s denotes the number of neurons

in the li−1 layer. oi−1
1 is the output of the 1th neuron in layer li−1 and wi

1j is
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the weight of oi−1
1 to the jth neuron in the li. The meaning of oi−1

k and wi
kj is

similar to that of oi−1
1 and wi

1j , where k ∈ 2 . . . s. We consider the FCNN with

Rectified linear Unit (ReLU) as the activation function. The output of each

neuron in the neural network can be denoted as :

oij = ReLU(ni
j) = max(ni

j , 0) (3.2)

Furthermore, let the number of neurons in layer i be u. We can express the

operation of the FCNN hidden layer in the form of matrix product, as follows,

⎛
⎜⎜⎜⎜⎜⎜⎝

oi1

oi2
...

oiu

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ReLU(ni
1)

ReLU(ni
2)

...

ReLU(ni
u)

⎞
⎟⎟⎟⎟⎟⎟⎠

= ReLU

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

wi
11 wi

12 . . . wi
1s

wi
21 wi

22 . . . wi
2s

...
...

. . .
...

wi
u1 wi

u2 . . . wi
us

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

oi−1
1

oi−1
2

...

oi−1
s

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

bi1

bi2
...

biu

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.3)

FCNN is the basic idea of many neural networks, and the fully connected

layer can be converted into convolution layers by a simple transformation [53],

and the verification theory of FCNN using ReLU function is most intensively

studied because of its functional properties being easy to verify.

3.2.2 Testing-Based Formal Verification

The testing-based formal verification [43, 47] is proposed to ensure the correct-

ness of all traversed program paths in traditional software. The first step of

TBFV is to generate a test case (Tc) based on the test condition in the formal

specification. The second step is to obtain a traversed program path by execut-

ing the Tc on program P , where the path contains a series of conditions. The

third step is to verify the reliability of the path under the formal specification

by using symbolic execution or Hoare logic [71].

3.2.3 Neuron Coverage

Neuron coverage [68] is the proportion of neurons activated in the neural network

to the total number of neurons when the neural network runs a test suite. It is

a derivative of the traditional software testing concept of statement coverage in

neural networks. Specific definitions are as follows:

NC(T, x) =
|{n|∀x ∈ T ,ACout(n, x) ≥ t}|

|N | (3.4)
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where the set N = {n1, n2, . . . , ns} represents all neurons in the neural network

and |N | = s. T = {x1, x2, . . . , xk} represents a test suite for a neuron network

and k is the number of test cases. ACout(n, xi) is the output of neuron n given

the input test case xi. t is the threshold value for determining whether a neuron

is activated, usually t = 0.

3.2.4 Gradient Ascent

Definition 4. If f(x1, x2, . . . , xn) has a partial derivative at point p(x1, x2, . . . ,

xn) with respect to all independent variables, then the vector (fx1
(p), fx2

(p), . . . ,

fxn
(p)) is the gradient of the function f at the point p, denoted as:

∇f (p) = (fx1(p), fx2(p), . . . , fxn(p)) . (3.5)

Since the directional derivative can be expressed as

fl (p) = ∇f (p) · l = |∇f (p)| · cos θ (3.6)

where l is the direction vector, θ is the angle between gradient vector and l. If

θ = 0, the the direction of the gradient is the same as the direction of l, and the

value of fl(p) is maximum. Then the direction of the gradient of f at point p is

the direction in which the value of f grows fastest. In general, gradient ascent

is used to solve for the extreme value of a function in a certain space.

3.2.5 Verification of Neural Networks

Deep neural network is a mapping in a high-dimensional space, which can be

formally expressed as f : Rm → R
n. If there is a set of constraints φ which is

the pre-condition of f on R
m, and existence a set of constraints ϕ which is the

post condition of f on R
n. Then, the problem of neural network verification is

transformed into proving that ∀x ∈ R
m : φ(x) → ϕ(f(x)) is satisfied or not.

3.2.6 Cartesian product

Definition 5. the Cartesian product of two sets A and B, denoted A × B, is

the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set

theory, that is A×B = {(a, b) | a ∈ A ∧ b ∈ B}



3.3. THEORETICAL METHOD 33

Formal 
specification

Test suite

Precondition 
partition Generate 

Testcase
and 

Simplify

Verify
and

Fine-
tune

Partition and Pruning Verification and Fine-tune

Figure 3.1: An overview of NNTBFV

3.3 Theoretical Method

To solve the above challenges, we have introduced NNTBFV. Section 3.3.1

presents an overview of NNTBFV. There are details about how to use test

cases to prune in section 3.3.2. Then, section 3.3.3 describes the process of

formal verification and retraining of neural networks in detail.

3.3.1 Overview

The overview of NNTBFV is described in Fig. 3.1. The proposed method

includes two phases: simplification of neural networks and verification of neural

networks. The neural network studied is trained models in which trainable

parameters are fixed.

Simplification phase. The formal specification of the neural network

model and the test suite need to be prepared. The test suite can be randomly

generated based on formal specification or using existing training data and test-

ing data. When the range of pre-conditions in the formal specification is large,

the pre-condition partition can be used to obtain a smaller execution path. All

samples in the test suite are fed into the neural network, and each sample gen-

erates one execution path. We merge all the execution paths to generate the

initial path. The initial path is used as input to NNTBFV to generate the ex-



34 CHAPTER 3. ENHANCING NNS RELIABILITY USING TBFV

ecution path corresponding to each execution path. Next, we can use gradient

ascent to activate as many neurons as possible under pre-condition.

Verification phase, NNTBFV verifies that each execution path satisfies

the formal specification. If the verification result is unsatisfied, the stability of

the execution path on the interval is guaranteed. If it is satisfied, we will look

for the counterexample of the execution path and retrain the execution path on

the formal specification. In the following chapters, the technical details of each

step will be described in detail.

Table 3.1: Definitions of common symbols in this paper.

Symbol Significance

PRi = [ rli, rui ] Constraints on the i-th neuron in the input layer of the
neural network

PR = {PR1, PR2, . . . , PRn} The set of constraints of all neurons in the input layer of
the neural network

PRp = {PRp
1 , PRp

2 , . . . , PRp
n} The set of interval partition of each interval Di

Ts = {(x1, y1), . . . , (xt, yt)} Initial test suite.

TsI = {x1, x2, . . . , xt} A set of inputs in a training dataset.

TsO = {y1, y2, . . . , yt} A set of outputs in a training dataset.

PRP The set PRP is defined as an pre-condition partition

3.3.2 Simplification of Neural Networks

3.3.2.1 Mathematical Formulation of Pre-condition Partition

Here, we need to make an assumption, that is, all the training data sets are

consistent with the formal specification. This assumption is reasonable because

data that obviously does not conform to the formal specification should not

be trained by the neural network. The trained neural network model (NN)

obtains the weight from the training data set, and verifies the validity of the

weight in the test data set. After that, the execution path of the neural network

corresponding to each sample is determined.

To explain the pre-condition partition for neural networks, we first provide

a general form of formal specification.
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process The neural network
pre -condition PR1 ∧ PR2 · · · ∧ PRm

post -condition PO1 ∧ PO2 · · · ∧ POn

end_process

Listing 3.1: Formal Specification illustration

In Listing.1, the pre-condition can be represented by the conjunction of all

constraints of neurons in the input layer. The post-condition can be represented

by the conjunction of constraints on the output layer. Further, we can define

the partition of constraint for each neuron.

Definition 6. partition of neuron constraint

Let’s partition an constraint PRi into a set of disjoint partitions PRp
i = {PR1

i ,

PR2
i , . . . , PRs

i } where each PRj
i = [rlji , ruj

i ] is a sub constraint of PRi. Then

the constraint PRi can be expressed as PR1
i ∨ PR2

i , · · · ∨ PRs
i .

In the input layer of NN , the constraint of each neuron corresponds to the

element in PR. For example, if the number of neurons in the input layer is

m, then |PR| = m. According to definition 6, each constraint in PR can be

divided. We divide each element PRi in PR into s sub constraints, where s is

the hyperparameter, which needs to be set artificially. The purpose is to prune

the neural network more efficiently. In addition, we can rewrite the formal

specification in Listing 3.1 to the form of Listing 3.2 according to definition 6.

Definition 7. pre− condition partition

If the interval partition is performed on each element of the set PR, then the

set PRp = {PRp
1, PRp

2, . . . , PRp
n} can be obtained. We can constructe a set

PRP = PRp
1×PRp

2 · · ·×PRp
n by Cartesian product. The set PRP is defined

as an pre-condition partition.

We perform partition using definition 7 on the pre-condition of NN , de-

note as PRP . From the definition of formal specification, we can get: ∀xi ∈
TsI , ∃prp ∈ PRP s.t. xi ∈ prp. That is, there is a function f : TsI → PRP

process The neural network
pre -condition (PR1

1 ∨ PR2
1, . . . ,∨PRs

1) ∧
(PR1

2 ∨ PR2
2, . . . ,∨PRs

2) ∧
...
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(PR1
m ∨ PR2

m, . . . ,∨PRs
m)

post -condition PO1 ∧ PO2 · · · ∧ POn

end_process

Listing 3.2: Formal Specification Illustration

Fig. 3.2 is a case study of test case partition for input space of neural

network. Let the input layer ofNN have three neurons and |PRp
i | = 2 where i =

1, 2, 3, then the pre-condition partition of NN can be represented as a cube

C in three dimensional space. The length, width and height of the cube are

|PR1|, |PR2| and |PR3| respectively. The set composed of all sub cubes is set

PRP . Firstly, the pre-condition is partitioned by definition 7, as shown in sub

Fig.3.2(a). The sub cubes in cube C are elements in PRP . Secondly, each

element in TsI is mapped to different sub cubes, as shown in sub Fig.3.2(b).

(a) Pre-condition Partition (b) Mapping of test suite

Figure 3.2: Test case segmentation for input space of neural network

The above is a mathematical description of pre-condition partition. It is

worth noting that the number of pre-condition partitions is decided manually,

i.e., when we cannot verify the pre-condition due to its too large range, we

can find the corresponding smaller execution paths by means of pre-condition

Partitions.

3.3.2.2 Identify Execution Paths

The execution path of pre-condition on a neural network must be a sub graph

of the whole neural network. When we feed a test case from Ts into the neural

network, we can obtain the execution path of that test case. We merge the exe-
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Figure 3.3: Execution path generation on pre-condition

cution paths of all test cases in pre-condition on together, which is the execution

path on pre-condition.

To calculate the execution path for each test case, we need to record the

behavior of each neuron. The calculation process is shown in Equation 3.7,

⎛
⎜⎜⎜⎜⎜⎜⎝

assert(oi1 > h)

assert(oi2 > h)
...

assert(oiu > h)

⎞
⎟⎟⎟⎟⎟⎟⎠

= assert

⎛
⎜⎜⎜⎜⎜⎜⎝

ReLU(ni
1)

ReLU(ni
2)

...

ReLU(ni
u)

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.7)

The meaning of the symbols in the equation is the same as in Preliminary.

3.2.1. By asserting the output values of the neurons in each hidden layer of the

neural network, a boolean vector recording the state of each neuron’s activation

is finally saved for each hidden layer. We denote this Boolean vector as AS(ts),

indicating that the Boolean vector is about the test case ts. If we provide a

Ts3.1 that meets the pre-condition, then the corresponding boolean vector for

this set of test cases is AS(Ts) = AS(tc1)∨AS(tc2) · · ·AS(tct), where |Ts| = t.

To explain this process more clearly, we take the neural network in Fig. 3.3

as an example. We set the activation threshold to 0. The formal representation
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of Hidden Layer 1 is as follows,⎛
⎜⎜⎜⎜⎜⎜⎝

o21

o22

o23

o24

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ReLU(n2
1)

ReLU(n2
2)

ReLU(n2
3)

ReLU(n2
4)

⎞
⎟⎟⎟⎟⎟⎟⎠

= ReLU

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

w11 w12

w21 w22

w31 w32

w41 w42

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝o11

o12

⎞
⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

b21

b22

b23

b24

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.8)

the formal representation of Hidden Layer 2 is as follows,

⎛
⎜⎜⎜⎜⎜⎜⎝

o31

o32

o33

o34

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ReLU(n3
1)

ReLU(n3
2)

ReLU(n3
3)

ReLU(n3
4)

⎞
⎟⎟⎟⎟⎟⎟⎠

= ReLU

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

o21

o22

o23

o24

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

b31

b32

b33

b34

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.9)

The green node indicates the execution path of the first test case. Then the

execution path of the AS(tc1) can be calculated as,

AS(tc1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

assert(o21 > 0) = True, assert(o22 > 0) = False,

assert(o23 > 0) = True, assert(o24 > 0) = False,

assert(o31 > 0) = False, assert(o32 > 0) = True,

assert(o33 > 0) = True, assert(o34 > 0) = False

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.10)

Similarly, the blue node indicates the execution path of the first test case.

AS(tc2) =
(
False, T rue, False, False, True, False, False, False

)
(3.11)

Finally, we perform a disjunction operation on the execution paths of two

test cases to obtain the overall execution path as fellow.

AS(ts1, ts2) = AS(tc1) ∨AS(tc2)

= (True, True, True, False, T rue, True, True, False)
(3.12)

3.3.2.3 Generating Test Cases

In order to minimize the impact of pruning on the accuracy of the neural network

and make the pruned neural network more suitable for verification. We used

the gradient ascent algorithm to generate test cases. In this context, the symbol

conventions are consistent with the preliminaries. Assuming that the result of

assert(oij > h) is False, we can define the objective function 3.13,

X∗ = argmax
X

ni
j(X;W ;B) (3.13)
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where X are the input vectors, and W and B represent the set of weight vectors

and the set of biases, respectively. By employing the computation method in

the preliminary 3.2.4, we can calculate the gradient of the objective function

with respect to X. Finally, we employ formula X = X + α · ∇Xni
j to generate

test cases that satisfy the pre-condition constraint, by setting an appropriate

learning rate α.

3.3.2.4 Network Pruning and Pre-condition Execution Path Gener-
ation

If the execution path of the neural network is recorded as computational graphs

G = 〈V,E〉, then, the execution path of a pre-condition is the sub graph Gp =

〈Vp, Ep〉. where Vp ⊂ V , Ep ⊂ E. The points in set Vp are the activated neurons,

and the edges in Ep are the edges connected to Vp. Therefore, the process of

neural network pruning is the process of deleting points in Vs = V − Vp and

edges in Es = E − Ep in G.

Algorithm 1: NNTBFV

Input: Its // Initial test suite

1 nn // Neural networks to be pruned

2 pre− condition
3 postcondition
4 count // number of iterations

Output: Execution Path
5 for test case in Its do
6 nn(test case)
7 Neuron statement = AS(test case)

8 for neuron state in Neuron statement do
9 if neuron state is False then

10 while loop ≤ count do
11 test case = Generate(neuron)
12 if test case satisfies pre− condition AND nn(test case)

satisfies postcondition then
13 Neuron statement = AS(test case)
14 loop+ = 1

15 else
16 loop+ = 1

17 Execution Path = Pruning(Neuron statement)
18 return sub neural network

The specific details of generating the execution path for Pre condition are
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shown inAlgorithm 1, we first feed the initial test suite into the neural network

that should be pruned. The activation of each neuron is recorded during the

stage of performing the test as shown in line 7 of algorithm 1. In lines 8 to 11 of

the algorithm 1, we find the neuron that is not activated in the neural network,

and use the output value of the inactive neuron as the dependent variable and

the input value of the neural network as the independent variable to perform

the gradient ascent calculation and generate the test case. As in line 12 to 16, if

the test case is found to satisfy the formal specification within a certain number

of iterations, the neuron is successfully activated, otherwise, the neuron will be

pruned. Finally, when the number of iterations of the algorithm 1 reaches the

given count, the algorithm stops and returns subneuralnetwork in line 17 and

18.

3.3.3 Verification of Neural Networks

In this chapter, we formally outline the theoretical methods for verifying neural

networks and analyzing verification results based on the PR of the execution

path. The process of converting an execution path into constraints for coun-

terexample resolution is beyond the scope of this paper, as mature research and

tools already exist [36, 81, 97,102] for this purpose1.

Let the set PRP contain w elements, then PRP = prp1, prp2, · · · , prpw and

each element is in and each element is the Disjunctive Normal Form (DNF).

The following constraints can be obtained:

⎛
⎜⎜⎜⎜⎜⎜⎝

¬prp1 ∧ constraints(path1) ∧ PO

¬prp2 ∧ constraints(path2) ∧ PO
...

¬prpw ∧ constraints(pathw) ∧ PO

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.14)

Where constraints refers to the process of encoding paths into constraints

through the neural network verification tool. pathi is the execution path of

prpi in the neural network, obtained by Algorithm 1. If no counterexamples

exist in the ¬prpi ∧ constraints(pathi)∧ PO, the pathi is proved to be reliable

for its precondition. Conversely, if counterexamples exist, the counterexamples

can be collected for fine-tune.

1https://github.com/dlshriver/dnnv
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At this point, we have comprehensively demonstrated how to simplify and

verify neural networks. However, we did not delve into the fine-tuning based on

counterexamples. The reason is that fine-tuning of neural networks based on

counterexamples is a separate topic in itself. Therefore, we will treat this part

as future work.

3.4 Case Study

We use a three-layer FCNN to explain the work flow of the algorithm and deduce

its effectiveness. It is a trained neural network, named FN . In FN , the weight

tensor from the input layer to the hidden layer is denoted as A, and the weight

tensor from the hidden layer to the output layer is denoted as B.

Figure 3.4: Network structure of FN

A =

⎛
⎝

h1 h2 h3 h4

1 −1 1 −1 i1

−1 1 −1 1 i2

⎞
⎠ B =

⎛
⎝
h1 h2 h3 h4

1 1 1 1 o1

1 1 1 1 o2

⎞
⎠ (3.15)

where i1,2, h1,2,3,4 and o1,2 represents the marker of neurons in the input layer,

hidden layer and output layer, respectively. The network structure of FN can

be graphically represented as Fig.3.4.

We formally specify the interval property of neural network using SOFL. It

is given in the Listing 3.3.

process FN(i1:real ,i2:real) o1,o2:real
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pre 2 ≤ i1 ≤ 4 and 2 ≤ i2 ≤ 4
post 6 ≤ o1 ≤ 8 and 6 ≤ o2 ≤ 8
end_process

Listing 3.3: The interval property of FN using SOFL

For the pre-conditions of the FN , PR1 and PR2 are divided into PRp
1 =

{PR1
1, PR2

1} and PRp
2 = {PR1

2, PR2
2} by definition 1, where PR1

1 = [2, 3),

PR2
1 = [3, 4] and PR1

2 = [2, 3), PR2
2 = [3, 4]. The set PRP is the Cartesian

product of PRp
1 and PRp

2. According to definition 2, we can get:

PRP ={PR1 = {PR1
1, PR1

2}, PR2 = {D1
1, D

2
2},

PR3 = {PR2
1, PR1

2}, PR4 = {PR2
1, PR2

2}}
(3.16)

The value interval is substituted into ISS, which can be expressed as:

prp1 = {[2, 3), [2, 3)} prp2 = {[2, 3), [3, 4]} (3.17)

prp3 = {[3, 4], [2, 3)} prp4 = {[3, 4], [3, 4]} (3.18)

Next, we assign two test cases to each pre-condition. See Tab 3.2 for details.

If a neuron in FN is activated during the forward propagation of both test

cases, the neuron is marked with green. Red indicates that the neuron is not

activated in both test cases. If one test case activates the neuron and the other

test case does not activate the neuron, it is indicated in yellow.

Table 3.2: Test case corresponding to each prp

PRP Test case

prp1 = {[2, 3), [2, 3)}
i1 = 2.0 i2 = 2.5

i1 = 2.5 i2 = 2.0

prp2 = {[2, 3), [3, 4]}
i1 = 2.0 i2 = 3.0

i1 = 2.5 i2 = 4.0

prp3 = {[3, 4], [2, 3)}
i1 = 3.0 i2 = 2.0

i1 = 4.0 i2 = 2.5

prp4 = {[3, 4], [3, 4]}
i1 = 3.0 i2 = 4.0

i1 = 4.0 i2 = 3.0

Fig.3.5 is the execution path of test cases in prp2 and prp3, where the red

neurons are inactive neurons. When the neural network pruning is performed,
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Figure 3.5: Execution paths on prp2 and prp3

Figure 3.6: Execution paths on prp1 and prp4

the neuron and its connected edges will be deleted. Since the test case execution

paths in prp2 and prp3 are the same, no neurons marked as yellow appear.

The difference is that in prp1 and prp4, as shown in Fig.3.6, the execution

paths of the two test cases are different, and the neurons activate in different

states when different test cases are executed, and we mark this class of neurons

as yellow. Unlike the inactive neurons, such neurons will be retained in the

pruning of FN .

Finally, we will verify each execution path. This step is usually given to the

neural network verification tool. Specifically, we perform symbolic execution on

FN , and then on prp2, o1 = 2x, o2 = 2x, on prp3, the output is o1 = 2y, o2 = 2y.

FN is reliable on prp2 and prp3. However, when input1 = 2, input2 = 2 is

executed on FN , the result is output1 = 4 ≤ 6 and output2 = 4 ≤ 6. Therefore,

we consider output1 = 4 ≤ 6 and output2 = 4 ≤ 6 as a counterexample. The

counterexample is made into a training set and the sub network is retrained.
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3.5 Evaluation

We use the implementation of the concept of NNTBFV to test the ACAS Xu

system. This test is mainly aimed at evaluating the following research questions

(RQs):

• RQ1: Can NNTBFV activate as many neurons as possible under the for-

mal specification? How does it compare with verification-based pruning?

• RQ2: Does the simplification effect of NNTBFV change with the parti-

tioning of the pre-condition?

In addition, we conducted theoretical and empirical analyses to answer RQ3.

• RQ3: Is the time complexity of neural network verification using NNTBFV

better than that of verification conducted solely using neural network ver-

ification tools?

3.5.1 Baseline Models and Experiment Setup

3.5.1.1 Baseline models:ACAS Xu

ACAS Xu is a variant of Airborne Collision Avoidance System X for unmanned

aircraft. Its purpose is to avoid collisions between aircraft and unmanned air-

craft. The Model contains 45 ReLU-based FCNNs. Each neural network has

8 layers: an input layer with 5 neurons, an output layer with 5 neurons, and

6 hidden layers, each with 50 neurons. The input of the neural network can

be recorded as a vector X = (ρ, θ, ψ, vown, vintr). Fig.3.7 shows the significance

of each variable in the horizontal scenario. The meaning and units of each

dimension of X are:

• ρ : The distance between ownship and the intruder, unit is feet.

• θ : The angle between ownship heading direction and intruder, measured

counterclockwise, unit is radians.

• ψ : The heading angle of intruder relative to the heading direction of

ownship, measured counterclockwise, unit is radians.

• vown, vintr : Flight speed of each aircraft, unit is feet per second



3.5. EVALUATION 45

Figure 3.7: Geometry for horizontal scenarios of ACAS Xu Model

The output of the ACAS Xu model includes 5 scenarios, namely Clear of

Conflict (COC), weak right, strong right, weak left, or strong left. It is a

navigation suggestion for ownship. We record the states output by the ACAS

Xu model as a set:

Y = [COC,weakright, strongright, weakleft, strongleft]

Due to the navigation suggestions for ownship, not only the characteristics in X

need to be considered, it is related to the time until loss of vertical separation

T = [0, 1, 5, 10, 20, 40, 60, 80, 100] and Y of the previous moment. ACAS Xu

has 45 neural networks (let Cartesian product M = Y × T , then |M | = 45),

each neural network can be denoted as Nij , where i represents the i-th element

of Y , j represents the j-th element of T , for instance, Neural network No.N24

represents the previous action as weakright and time = 10.

3.5.1.2 Experiment Setup

All experiments are conducted on a windows 10 computer, equipped with a Intel

i9-11900, 32GB of memory and a Nvidia RTX3090 24G graphics card.

3.5.2 Baseline Methods

To compare the performance of our proposed method, we selected two baseline

methods, as follows:

• Verification-based pruning: A neural network pruning method based en-

tirely on formal verification, which only needs to generate corresponding

queries for the specification.
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• Random-based pruning: Generate test cases that conform to the pre-

condition in the formal specification in a uniformly distributed manner,

and perform neural network pruning with the execution of the test cases.

The Verification-based method is the most rigorous pruning method among

all the baselines, and can accurately identify whether there will be activation of

each neuron under a given formal specification. Therefore, we use this method

as our main baseline method, thereby demonstrating that the NNTBFV is a

good approximation to the Verification-based method in a limited time. The

Uniform distribution based method is a pruning algorithm without adding a

search strategy. The effectiveness of the NNTBFV is explored by comparing it

with the Uniform distribution based method.

3.5.3 Results

3.5.3.1 Answer to RQ1

Figure 3.8: Comparison of neuron coverage

We iteratively generated test cases conforming to the formal specification

and executed them on 45 ACAS Xu networks. The x-axis of Fig.3.8 represents

the number of iterations to generate test cases and the y-axis represents the

neuron coverage in Preliminary3.2.3 in ACAS Xu networks. The proportion is

the average activation value of the neural network obtained after testing the
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ACAS Xu networks system 10 times using NNTBFV.

The blue horizontal line in the figure indicates that the neurons identified by

the Verification-based method for ACAS Xu networks under the formal speci-

fication that will definitely activate account for 95.8% of all neurons in ACAS

Xu networks, i.e., even if 4.2% of the neurons in the ACAS Xu networks are

removed, the model still conforms to the given formal specification. We use

this method as our baseline. The yellow line represents the effectiveness of the

method in NNTBFV. From the graph, it can be seen that as the number of

iterations increases, the pruning method in NNTBFV can better approximate

the baseline and outperform the removal rate of redundant neurons in the neural

network by randomly generating test cases. After 30000 iterations, NNTBFV

can ultimately activate 90.67% of neurons in ACAS Xu under formal speci-

fication. The method of relying on randomly generated test cases for neural

network pruning can only activate 81.67% of neurons in ACAS Xu after 30000

iterations.

From the above comparion, NNTBFV can approximate the baseline for a

given formal specification. This means that our method can activate as many

neurons as possible under the formal specification. And NNTBFV has a higher

recognition of neuronal activation rate and is more stable than Random-based

method.

3.5.3.2 Answer to RQ2

In order to explore the relationship between pre-condition partition and neu-

ron coverage, demonstrate the effectiveness of using pre-condition partition to

reduce the size of neural networks in a larger proportion. we tested the neuron

coverage corresponding to different pre condition partition levels, as shown in

Fig 3.9. The horizontal axis represents the partition level for a given pre con-

dition, and the vertical axis represents the change in ACAS Xu model neuron

coverage in Preliminary 3.2.3 as the partition level increases.

We choose the formal specification φ1 as the pre-condition to be split, and

the model Nij as the neural network model under test.

The limiting case for pre-condition partition is the neuronal coverage of a

single test case in the forward propagation of a given neural network. Therefore,
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we use the neural network coverage of a single test case as the baseline for

forward-propagating pre-condition partition.

Figure 3.9: Comparison of pre-condition partition

3.5.3.3 Answer to RQ3

In order to answer the time complexity of evaluating NNTBFV and thereby

answer RQ3, we introduce the following lemma.

Lemma 1 (See [36]). Neural network verification is an NP-hard problem, and

a 3-SAT problem can be reduced to a neural network verification problem.

From Lemma 1, we know that the time complexity of the neural network

verification algorithm is greater than the time complexity of the 3-SAT algo-

rithm. We only need to show that the time complexity of NNTBFV is superior

to the time complexity of the 3-SAT algorithm! Therefore, in the theoretical

derivation, we directly take the time complexity of the 3-SAT solving algorithm

as the time complexity of the verification algorithm.

In Figure 3.10, we use the horizontal axis to represent the scale of the neural

network to be verified, and the vertical axis to represent the time complexity of

the algorithm. It is known that the time complexity of the current 3-SAT solving

algorithm is O(1.3n) marked as blue line. The Time complexity of NNTBFV



3.5. EVALUATION 49

simplified neural network is marked as red line, and its Time complexity is

O(n2).

Figure 3.10: Comparison of Time Complexity

When the scale of the neural network is x2, the time spent using the verifi-

cation algorithm to verify the neural network is t2, while the time spent using

NNTBFV to verify the neural network is the sum of the time t3 required to

simplify the network from scale x2 to x1 and the time t1 required to verify the

neural network of scale x1. Therefore, we only need to prove that t2 > t1 + t3

(or t2− t1 > t3) to demonstrate that the time complexity of NNTBFV is better

to that of the verification algorithm.

Assuming that NNTBFV can remove k% neurons, as the scale of the verifi-

cation problem increases, there must be O(k%1.3n) > O(n2).

3.5.4 Threats to Validity

The primary threats to the validity of our experiments stem from two sources:

the selected benchmark project, and the inherent randomness associated with

a test-based algorithm.

Although we used the well-known ACAS Xu model as our benchmark project

in order to ensure the reliability and comparability of the experimental results,
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the training data of this project are not publicly available, only the weight

and bias of the model are published, so there is a possible threat to the validity

when reproducing the Pytorch version of the network. In addition, although our

experiments present results as the average of multiple solutions, the test-based

algorithm is still somewhat stochastic.

3.5.5 Discussion

Our paper discusses the problem of how to obtain the corresponding execution

path by a test-based approach given a specification. It is experimentally con-

firmed that the NNTBFV can effectively approximate the true execution path

of the neural network for a given formal specification.

As the NNTBFV yields approximate solutions, it effectively addresses the

frequent timeouts encountered by verification-based algorithms when verifying

large scale models. Moreover, our algorithm is better suited for parallel comput-

ing due to its test-based nature, enabling algorithm acceleration through cluster

computing.

We propose an algorithm to partition the pre-condition in the formal spec-

ification and find that the size of the execution path neuron corresponding to

that execution path decreases as the refinement level increases. This is intuitive.

This is because the limit of the refinement level is the execution path of a single

test case. As the refinement level increases, the number of activated neurons

in the neural network tends to decrease. However, the relationship between

different division strategies and neuron coverage is not discussed in this paper

and left for future work.

The above analysis shows that NNTBFV can alleviate the difficulties of large

scale model verification. Due to the size of the model, it is not possible to verify

the entire model, and if a portion of the inputs require high reliability, we can

restrict the input intervals of those that require high reliability to a small range,

and then use NNTBFV to obtain a convenient execution path for verification.

3.6 Related Work

The application of traditional testing techniques and traditional verification

techniques to enhance the reliability of neural networks are two separate direc-
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tions. Since NNTBFV is derived from traditional TBFV and combines both

techniques, we briefly review the existing work on testing and verification2 in

deep learning, as well as recent advances in TBFV.

Currently, the research of neural network testing mainly focuses on how to

attack and defend, that is, how to generate adversarial example and how to pre-

vent being attacked by it. Search-based methods such as FGSM, IGSM [24,38]

attack neural networks by searching for adversarial examples. Subsequently,

deepfool, JSMA [57, 66] etc. have made different degrees of improvement in

search efficiency and approach. In the area of neural network defense test-

ing, the field is inspired by traditional software testing methods and proposes

the criterion of neuron coverage [68]. Other works that use neuron coverage

in different dimensions to improve the robustness of neural networks include

DeepGauge [86], DeepConcolic [86] etc.

In terms of neural network verification, many scholars have proposed differ-

ent algorithms for neural network verification. Each algorithm tries to reduce

the output range of neural network as much as possible from the perspectives of

reachability, optimization and search. Optimization-based neural network ver-

ification usually transforms the neural network into a constraint solving prob-

lem, such as NSVerify [51], MIPVerify [89]. Reluplex [36] and Planet [18] et

al. studied in combining search and optimization like to improve the accuracy

and efficiency of verification. In addition, methods that combine search with

Reachability include Neurify [97] etc.

Unlike the above work, we want to combine testing and verification to pro-

vide a method to verify and enhance the reliability of neural networks under a

formal specification. Similar to this in traditional software engineering research

are TBFV [47], TBFV-SE [96] etc.

3.7 Summary

NNTBFV is proposed as a method for implifying and verifying neural networks.

In NNTBFV, testing-based neural network pruning are introduced for reducing

the neural network neurons that need to be verified. Our case studies and

experiments have largely confirmed the feasibility of NNTBFV.

2https://github.com/stanleybak/vnncomp2023/
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In the further work, we will focus on two main themes. The first is fine-tuning

of neural networks based on counterexamples, specifically, how to effectively

fine-tune execution paths. The second theme is the precise functional relation-

ship between the neuron coverage and the scale of precondition partition, and

whether this relationship is related to the stability of the neural network.



Chapter 4

A Theoretical Approach:
Locally Interpreting Neural
Networks using
Testing-Based Formal
Verification

4.1 Introduction

4.1.1 Background and Motivation

When a neural network model has a corresponding formal specification, the

neural network verification algorithm can give the model to satisfy the corre-

sponding formal specification or not within a certain period of time. If the

verification result can not be provided within the specified time frame, the ver-

ification algorithm can also notify the engineers that the verification problem

has timedout. Engineers can further address the timeout issue encountered

during verification by adopting neural network pruning or enhancing computer

performance, among other methods.

The premise of applying these methods is that we provide the formal specifi-

cation of the model to be verified, including both the precondition and postcon-

dition. The verification process is similar to that of traditional software, where

the formal specification and the neural network model are jointly transformed

into an SMT (Satisfiability Modulo Theories) problem through formal methods.

However, unlike traditional software, there are many neural network models in

53
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reality for which it is difficult to provide corresponding formal specifications.

This challenge arises because neural network models are trained on data, rather

than being constructed based on rules like traditional software. This also leads

to disadvantages such as weak interpretability and opaque decision-making pro-

cesses in neural network models, which are particularly evident in fields such as

image recognition and Natural language processing.

The training process of a neural network involves searching through a train-

ing dataset, which can be represented as a set of (case, result) pairs, to obtain

a model that maps the input space to the output space. This model is then

used to infer many cases that it has not seen before. Due to the complexity and

diversity of the training data, the greatest challenge lies in formally defining

and providing the precondition.Fortunately, in the application domain of neural

networks, especially in classification tasks, we can relatively easily define the

output range of each neuron in the output layer (in the field of formal methods,

this definition of output range is also known as providing the postcondition).

Therefore, how to deduce, based on the postcondition of the neural network

as well as the model’s own parameters and structure, which features in the

potential input space will lead the neural network model’s output to conform

to the postcondition is a question worth investigating. At the same time, this

issue is exactly equivalent to the study of neural network interpretability. That

is, research on how to use neural network verification algorithms to enhance

the reliability of neural network models without a precondition is equivalent

to research on how to use these algorithms to explain the behavior of neural

networks.

More generally speaking, if we view the training of neural networks as an

induction process (i.e., inferring the model from the case and result), then ex-

plaining neural network models can be seen as an abduction process (i.e., in-

ferring the precondition from the model and a result). Through the abduction

process, feature importance or saliency maps can be generated for neural net-

work models to highlight the inputs that are most influential for a given output.

This can be applied in many scenarios.

In software engineering, developers can use the feature importance or saliency

maps explained from neural networks to verify whether the network meets the
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users’ needs. Furthermore, they can use these insights to test and verify neural

network models, thereby enhancing the reliability of the neural network models

post-deployment.

Researchers can use neural network explainability to understand the behav-

ior of AI and design better neural network structures. Data scientists can even

leverage neural network explainability to comprehend AI model decision-making

processes. For example, clinicians can review AI diagnostic results through

saliency maps.

Overall, the application of neural network explainability is very broad and

is increasingly attracting the attention of researchers.

4.1.2 Challenges and Proposed Methods

Although neural network interpretability has a wide range of applications in

many fields, there are still numerous challenges that exist.

Challenge One: How to address the phenomenon of model satu-

ration that occurs in Testing-based approaches (In the field of neu-

ral network interpretability, the methods are known as perturbation-

based approach) and Gradient-based approaches. These methods typ-

ically view the neural network model as a black box, applying perturbation

strategies to the model’s inputs to generate appropriate test cases and observ-

ing the impact of these test cases on the model’s predictions. Although these

test-based methods are relatively easy to understand, the quality of their ex-

planations highly depends on the choice of perturbation strategy. Moreover,

these test-based explanation algorithms may be affected by model saturation,

where the model’s output no longer changes in response to input perturbations,

leading to a decrease in interpretability.

Unlike testing-based methods, which require the generation of a large number

of test cases through perturbations, gradient-based approaches determine the

impact of features on the model’s behavior by utilizing the gradients of the model

with respect to its input features. Theoretically, it is believed that the larger the

gradient value of a feature, the greater its influence on the model’s behavior, and

vice versa. The feature importance derived from these methods takes advantage

of the model properties to some extent, enhancing interpretability. However,
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model saturation can lead to vanishing gradients, which in turn may lead to

misleading interpretations by gradient-based methods. For instance, in a cat

image classification model, if the saliency map shows a very uniform distribution

of gradients across pixels, it indicates that no particular pixels are important.

However, in reality, features such as the cat’s ears and eyes are critical for the

classification decision.

Challenge Two: How to view neural network models as white

boxes and to intuitively explain them from a formal methods per-

spective. Current research on neural network interpretability often regards the

model itself as a black box, explaining the behavior of the neural networks by

the characteristics displayed during the execution of test cases. Although these

algorithms provide explanations that are easy to understand, the heuristic na-

ture of treating the models as black boxes means that the explanations provided

by the algorithms cannot guarantee correctness and conciseness. Some methods

of abductive explanations have been proposed by the formal methods commu-

nity and are considered useful. However, for those utilizing interpretability, it

is generally desired that the explanatory algorithms provide explanations of the

model that are more intuitive and easier to understand. Furthermore, meth-

ods based solely on formal verification, since they rely on the neural network

verifier to provide answers, require the establishment of a strategy for querying

the neural network verifier in order to obtain explanations of the model. The

difficulty lies in the fact that the neural network verifier itself requires substan-

tial computational power, and the formal verification of neural networks has

been proven to be an NP-hard problem, making explanation methods based on

formal verification difficult to apply to large-scale models.

Although there is some research on heuristic algorithms and approximation

methods to obtain approximate results of model explanations, which has played

a certain accelerating effect, those improved methods only alleviate the short-

comings of methods based on formal verification.

To derive explanations from neural network models that can contribute to

the enhancement of neural network reliability, and to mitigate the challenges

faced by existing explanatory algorithms to some extent, we propose a theoret-

ical approach. That is, utilizing testing-based formal verification to interpret
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the behavior of neural networks.

In this chapter, we propose an algorithm to derive the precondition of a

pre-trained neural network from its post-condition, named DeepTBFV. The

precondition can be used to verify and explain the behavior of the neural network

and assist developers to increase the reliability of the neural network. Firstly, we

forward propagate a test case on a neural network, and generate the execution

path of the test case. Secondly, we propose a technique to encode the execution

path as a multivariate linear inequality system, and since the activation state

of neurons is fixed in the execution path, the linear constraints generated by

the execution path do not need to introduce the relaxation variables. Finally,

we use the classification results obtained from this test case to define the post-

condition of the test case and derive the precondition in reverse. The process

of defining the post-condition is based on an assumption that will be described

in the subsection 4.3.4.

4.2 Preliminary

4.2.1 Floyd-Hoare Logic

Floyd Hoare Logic [71], also known as Hoare Logic, represents predicate logic

and a set of axioms in the form of Hoare triples, and then defines the semantics

of the programming language. The specific form of Hoare triples is as follows:

{pre} c {post} (4.1)

where c is a specific program code, pre indicates the preconditions in the pro-

gram, which describes the program state before executing c, and post indicates

the post condition in the program, which describes the program state after ex-

ecuting c. Such a Hoare Logic triple indicates that if an input of the program

c meets its pre, the output of c should meets post after executing program c.

Otherwise, program c must have errors.

To formalize the program, Hoare Logic defines inference rules [35] for each

of grammar clauses. In the inference process of the neural network model, there

is no iteration. Therefore, when using Hoare logic to deduce the preconditions

of a neural network model from its postconditions, we only need to consider the

rules of assignment, condition and sequence in Hoare logic. The detailed rules
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are as follows.

Assign {Q(E/x)} x := E {Q} (4.2)

Assignment statement rule is to perform the assignment statement x := E on

all x in the precondition {Q(E/x)}, that is, to replace all x in the precondition

with E to obtain the post condition {Q}.

If
{P ∧ S}c1{Q} {P ∧ ¬S}c2{Q}

{P}if{s}{c1}else{c2}{Q} (4.3)

The rule for conditional statements is used to formally describe the expression

of conditional statements in Hoare logic, particularly in TBFV. When the exe-

cution path of the program is fixed, the rule for conditional statements can be

expressed as:

{S ∧Q} S {Q} (4.4)

4.2.2 Symbolic Execution

The basic idea of symbolic execution is to use symbols to replace the concrete

input values required for program execution, and to symbolically simulate the

execution of each instruction of the program, to form corresponding symbolic

expressions for the execution paths of the program, i.e., symbolic execution

generates a series of constraints on the execution paths of the program.

Symbolic execution can be divided into static and dynamic symbolic execu-

tion [5, 37, 62], depending on whether the source program is executed or not.

Static symbolic execution does not execute the source program. Instead, it first

uses static analysis to determine the program’s execution paths. Then, a solver

is used to determine if these paths are reachable. Finally, it outputs all the

reachable paths of the program. On the other hand, dynamic symbolic execu-

tion [13] records the execution paths of the program while it is actually running

and outputs these paths as a set of constraint conditions. In this chapter, we

apply the concept of dynamic symbolic execution to fully connected neural net-

works.
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Figure 4.1: Execution path generation

4.3 Theoretical Method

4.3.1 Formal Local Interpretation and Overview

In this chapter, our focus is on the local interpretability in classification tasks

of fully connected neural networks. The task can be formally represented as

a four-element tuple 〈F,D,N,C〉. Here, F = {f1, f2, . . . , fm} is denoted as

the set of neurons in the input layer (also referred to as features). The set

D = {d1, d2, . . . , dm} is denoted as the input space of each neuron in F and

C = {c1, c2, . . . , cn} means a set of classes. N is the neural network model,

which can be donated as a map N : F = {d1 × d2 × · · · × dm} → C.

Typically, given a s ∈ F , we can compute its category c ∈ C, that is, N(v) =

c, but we do not know which parts of s have played a decisive role in determining

the computation result as c. When the s is executed in N , its execution path

p, being a set of constraints generated by symbolic execution, is deterministic.

Then, there exists the set of intervals T = ([tl1, t
u
1 ], [t

l
2, t

u
2 ], . . . [t

l
m, tum]), if s ∈

T = [tl1, t
u
1 ] × [tl2, t

u
2 ] × · · · × [tlm, tum] and ∀x ∈ T , N(s) = N(x). We then

consider the set T as a formal interpretation of N under the path p. Since T

is constrained to the execution path p of the sample s in N , it is referred to as

the local interpretation of s.
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In order to realize the above mentioned formal local interpretation, DeepTBFV

is mainly divided into two phases, in the first phase, the neural network model

executes the instance to be interpreted, and obtains the execution path of the

instance in the model, i.e., a series of constraints on the execution path. As

shown in Fig. 4.1, this process is similar to dynamic symbolic execution to

generate path constraints. In the second phase, we artificially set the output

into the range of neurons, i.e., we give the post condition of the neural network

model. next, as shown in Fig. 4.1, DeepTBFV generate the path constraints

based on the post condition and the path via Hall logic. constraints to derive

a set of constraints on the neurons in the input layer. We consider this set of

constraints as the formal local interpretation of the instance under the specified

neural network model.

4.3.2 Testing-based neural network execution path gener-
ation

The execution of a test case by the neural network means that the test case is

used as the input for forward propagation. In the process of forward propaga-

tion, the state of each neuron is fixed. That is, we consider a neuron ni in a

neural network (NN) to be activated for the test case if its output is greater

than a threshold value. Conversely, if ni is less than the threshold, then the

neuron ni is not activated. We record the activation state of each neuron when

the neural network forward propagate for the test case.

Formally, we define all neurons in the neural network as the set neurons.

Then, the neurons activated in the neural network can be defined as the set

ActiveN = {n | n ∈ neurons ∧ Out(n) > θ}, where θ is the threshold in

neurons and out(n) records the output value of neuron. Similarly, the inactive

neurons in the neural network can be defined as the set InactiveN = {n | n ∈
neurons ∧ Out(n) ≤ θ}. As shown in Fig. 4.2, in the forward propagation of

neural networks, we use blue for the neurons activated in the test case and red

for the inactive neurons. Then, the process of assigning activation states to the

neuron in neurons through the test cases is called execution path generation.
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Figure 4.2: Execution path generation

4.3.3 Formal modeling of neural network paths

Since the state of activation of each neuron is fixed, we can convert the state of

each neuron into a multiple linear inequality. LetNeuroni
j = {xi−1

1 , xi−1
2 , · · ·xi−1

n }
is the set of inputs of the j-th neuron in the i-th layer of the neural network. If

the activation function of Neuron is ReLU and is activated by the test case, the

activation state of the neuron can be modeled as follows,

If : Neuroni
j ∈ ActiveN

Then : Out(Neuroni
j) = wi−1

1 · xi−1
1 · · ·+ wi−1

n · xi−1
n > 0

Similarly, if the neuron is not activated by the test case, then the activation

state of the neuron can be modeled as follows,

If : Neuroni
j ∈ InactiveN

Then : Out(Neuroni
j) = wi−1

1 · xi−1
1 · · ·+ wi−1

n · xi−1
n ≤ 0

According to the above rules, we can model the process of forward propa-

gation of test cases in the neural network into a system of multivariate linear

inequalities. Algorithm 2 specifically describes how to model the execution path

of the neural network.
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Algorithm 2: Formal modeling of the neural network pathes

Input: Neurons ; ActiveN ; InactiveN
// List of linear constraints corresponding to neural

networks

Output: Constraint
1 Constraint = list()
2 for neuron in Neurons do
3 if neuron in ActiveN then
4 Constraint.append(Out(neuron) > 0) else
5 Constraint.append(Out(neuron) ≤ 0)

6 return Constraint

4.3.4 Deriving Preconditions from Post-conditions

When the state of each neuron in the neural network is fixed, we only need to

carry out the Floyd-Hoare Logic assignment statement for the constraints of

each neuron. This means that the constraints of each neuron are replaced by

variables through the assignment statement. The constraints of each neuron we

can get only include the input of the neural network.

Specifically, let Inp = {x1, x2, · · ·xn}, Inp ∈ Rn as the input of the neural

network and Out = {y1, y2, · · · ym}, Out ∈ Rm as the output of the neural

network. Moreover, We record the replacement expression of the j-th neuron

in the i-th layer as f i
j . Then the constraint corresponding to neurons can be

denoted as

f i
j(x1, x2, · · ·xn) ≤ 0 (4.5)

or

f i
j(x1, x2, · · ·xn) > 0 (4.6)

The constraints of the output layer of the neural network are different from

those of the middle layer. It should conform to the user-defined post-conditions.

Here, the constraints of neurons in the output layer can be denoted as,

αj ≤ yj(x1, x2, · · ·xn) ≤ βj (4.7)

Where yj(x1, x2, · · ·xn) is a multivariate linear polynomial and j represents

the j-th output of the output layer. The interval Oj = [αj , βj ] means the

post-condition of yj .
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In addition, we also propose a method to construct post-conditions for the

path generated by test cases. If the test case activates a neuron in the output

layer, it means that the output value of the activated neuron is greater than that

of other inactive neurons. Therefore, we can formally record this statement as

yaj > yini , where i ∈ {1, 2 · · ·m}\{j}, a represents activated neuron, in represents

inactive neurons. The activated neurons are marked as j. Since the output value

of a neuron has an upper and lower limit, such as INT8 quantization of a neural

network, the output values of neurons are quantized to [−128, 127]. Therefore,

we can also give the upper and lower limits of the output value of neurons in

the output layer. Let the upper and lower bounds of the output layer neurons

be [l, u], where the l denotes upper bound, and u denotes lower bound. Then,

∀yi ∈ Out, ∃ αi ≤ yi ≤ βi (4.8)

where i ∈ {1, 2, · · ·m}, and m is the number of output layer.

4.4 Case Study

-1 2 -2 -1 1 1

1 -1
1 1

2 0.5

1x 2x

1h 2h 3h

1y 2y

1 2

15 7y 23 5y

Figure 4.3: Example showing how to execute DeepTBFV

In this section, we use a three-layer neural network to show how DeepTBFV
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works and to demonstrate its effectiveness. Consider a ReLU-based neural net-

work G. The structure and weights of this network are shown in Fig 4.3. With-

out loss of generality, we can assume that bias = 0 for each neuron in G. We

denote the neurons of the input layer, the neurons of the hidden layer and the

neurons of the output layer as {x1, x2}, {h1, h2, h3}, {y1, y2} respectively.

To execute DeepTBFV for G, all the steps are given in sequence as follows:

Step 1: Select the test case of interest as input to the neural network, suppose

we use x1 = 1, x2 = 2 as the test case.

Step 2: Record the activation of each neuron in the hidden layer of the neural

network,

h1 = ReLU(−x1 + 2x2 = 3) ∈ ActiveN

h2 = ReLU(−2x1 − x2 = 0) ∈ InactiveN

h3 = ReLU(x1 + x2 = 3) ∈ ActiveN

Step 3: Generate neural network middle layer constraints,

h1 = −x1 + 2x2 > 0

h2 = 2x1 − x2 ≤ 0

h3 = x1 + x2 > 0

Step 4: Generate output layer constraints, here we assume that the output

layer has constraints,

5 < y1 = h1 − h2 + h3 < 7

3 < y1 = h1 + 2h2 + 0.5h3 < 5

Step 5: Through Floyd-Hoare Logic, the system of inequality equations for

each neuron in the input layer is derived backwards,

2x1 − x2 ≤ 0

−x1 + 2x2 > 0

−x1 − x2 < 0
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3 < −0.5x1 + 2.5x2 < 5

5 < 3x2 < 7

4.5 Related Work

As neural network technology is progressively applied in an increasing number

of fields, the issue of its interpretability has also gradually become a hot topic of

research. In this section, we will categorize and summarize the research achieve-

ments related to the interpretability of neural networks. Given that our work is

an attempt to provide local interpretation for neural network models, we will,

after an overview of the research outcomes, discuss in detail the progress related

to local interpretation methods for neural networks, as well as their theoreti-

cal contributions and the challenges they face. Finally, we will summarize the

differences between DeepTBFV and existing research. Due to the overlapping

definitions of interpretability (focusing on the ‘what and why’) and explainabil-

ity (focusing on the ‘how’) [3,77,90] in academia, the terms interpretability and

explainability will be used interchangeably in the literature.

Taxonomy and Overview: Based on the purpose of neural network ex-

plainability algorithms, they can generally be divided into two types of methods:

global interpretation and local interpretation [42]. The purpose of global inter-

pretation approaches is to gain a comprehensive understanding of the behavior of

neural networks by seeking explanations across the entire input domain, through

analysis of the neural network model’s training data, architecture, and weights.

Common methods involve using tree-based models [2,78,100,101] or rule-based

models [11, 41, 59, 87, 91] to approximate a trained neural network model and

then interpreting the decision-making process of the neural network model. The

method of using interpretable models to approximate a neural network model

can provide a global interpretation, but it is also limited by the scale of the

model being interpreted. When faced with large-scale neural network models,

global interpretation methods will become difficult to understand due to an ex-

cess of features (such as decision trees with very great depth). Additionally,

this method will also consume a considerable amount of computational power.

In contrast, local interpretation methods focus on understanding why the neu-

ral network model makes a particular prediction or classification for a single
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instance. Because local interpretation approaches do not require interpreting

the entire neural network model, they have the advantages of lower computa-

tional power consumption and ease of implementation. Additionally, there are

also some methods that can utilize local interpretation to understand neural

network models globally [33]. Our work primarily focuses on how to generate

local interpretations for neural network models, so we will next elaborate on

and compare work related to local interpretations or explanations.

Local Interpretation:In the field of local interpretation of neural net-

works, it can generally be divided into test-based methods and model-based

methods. Among them, research on testing-based methods ignores the internal

working mechanisms of the neural network model, relying instead on generat-

ing test case strategies to quantitatively analyze the impact of changes in input

data on the model. The methods based on testing can be further divided into

perturbation-based methods and adversarial-based methods, with the main dif-

ference being the strategy used to generate test cases. Preturbation-based meth-

ods [20,21,75,103,105] mainly obtain a test suite by masking different areas of

the model’s input data. Then, using the forward propagation of the neural net-

work model, the different test cases in the test suite are evaluated. This process

allows for the analysis of which parts of the input data have a significant impact

on the output of the neural network model. The idea of perturbation testing is

embodied in the ZFNet [105] by Zeiler and Fergus. However, ZFnet, due to its

relatively simple strategy in generating test cases, can lead to incorrect interpre-

tations in some situations. This has led to subsequent research [20,21,103] that

aims to improve the test case generation strategy of ZFnet. Local Interpretable

Model-Agnostic Explanations(LIME) [75] and its improved algorithms [52, 74]

extends the concept of ZFnet from being model-specific to model-agnostic. Al-

though perturbation-based methods are lightweight and easy to understand,

they encounter issues with the poor generalization [24, 104] of neural network

models. In some cases, this can lead to the failure of perturbation-based al-

gorithms in interpreting neural network models. For this reason, a series of

adversarial-based methods [58,76,94] have been proposed. The core idea of this

type of algorithm is to use a strategy for generating adversarial examples to cre-

ate test data, and then use the generated test cases to explore the behavior of
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the model. Since the test data used are adversarial examples, it can effectively

enhance the robustness of the interpretation of the neural network model.

Model-based methods, though sometimes employing strategies for generat-

ing test cases, differ from testing-based methods [7, 29, 105]. The model-based

approach emphasizes the use of the neural network model’s internal information,

such as structure, weights, and biases. They provide explanations for the model

through techniques like gradient computation, class activation mapping, and

formal modeling. In general, model-based approaches can be subdivided into

three types: gradient-based methods, methods based on neuronal states, and

methods based on formal verification. The core idea of gradient-based [17, 85]

methods is to treat the trained neural network model as a function and calculate

the gradient of each independent variable in the input layer at a given point (the

instance that needs to be interpreted). If the independent variable has a large

gradient, it is considered that this feature has a significant impact on the output

of the neural network model, and vice versa. This idea was first applied in the

field of machine vision [82]. Subsequently, springenberg et al. [84] proposed a

different processing strategy for gradients. Another method that similarly mod-

ifies the processing strategy for gradients is the deconvnet [54]. Although these

gradient-based methods can utilize the intrinsic information within neural net-

works to some extent to obtain model interpretations, their reliance on gradients

means that when faced with the problem of gradient vanishing, these methods

may fail to provide interpretations of the model, or even yield incorrect expla-

nations. Neuron state-based methods can avoid the issue of gradient vanishing

that comes with solving gradients. Typically, neurons in a neural network have

only two states: activated or not activated. The core idea of neuron state-based

methods is to analyze the activation states of neurons when executing different

test cases. DeepLIFT [80], a representative algorithm of this concept, assigns

scores by comparing the activation of neurons to their reference activations and

evaluating the differences. Similar work includes LRP [4] and and its improved

variants. Furthermore, there are some interpretive strategies that use class acti-

vation mapping to explain neural networks, which have also yielded satisfactory

explanatory results. These algorithms though overcome the problem of inaccu-

rate model interpretation brought about by the vanishing gradient. However,
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most of them are heuristic algorithms with the disadvantage of weak theoretical

basis. The activation state of neurons intuitively represents the properties of

the neural network. Tt is still unknown what kind of neuron activation state

represents the specific characteristics of the neural network model. For example,

does a high neuron activation rate necessarily mean that the neural network is

robust? There is still no definite answer to this question.

Formal interpretation: Unlike heuristic-based neural network interpreta-

tion algorithms, since the formal interpretation [7, 29, 34] is typically based on

a neural network verifier, it can endow the explanation with formal guarantees.

Formal interpretations are very useful, but they still face two challenges. The

first challenge is that the objects to be verified need to be set up manually and

the human involvement may affect the interpretation given by the algorithm [6].

The second challenge is that the generation of existing Formal interpretations

frequently invokes the neural network verifier which need cost a lot of arithmetic

power. In contrast, DeepTBFV does not need to call the neural network verifier;

we fix the execution paths in the neural network, which eliminates the need to

utilize the neural network verifier to estimate the output range of each neuron.

In addition, DeepTBFV’s scheme of directly utilizing the constraint solver also

reduces manual intervention in the algorithm.

4.6 Summary

We propose DeepTBFV, a test-based approach to generate execution paths for

a test case in a neural network and derive the precondition of the input to the

neural network backwards by means of a custom post-condition. To our best

knowledge, we are the first to apply the idea of TBFV to the field of verification

and interpretation of neural networks.

Although we utilize the principle of TBFV to give the formal local inter-

pretation of the neural network model, these interpretations exist in the form

of linear constraints. However, DeepTBFV still has potential shortcomings.

Firstly, the formal local interpretation in the form of linear constraints cannot

be intuitively understood by users, and further parsing is needed to generate the

importance of features. Second, the setting of post condition is an important

factor that affects the effectiveness of interpretation, and there is no theoretical
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method to set the post condition.

In future work, we will focus on the following two parts:

• How to automatically generate post conditions suitable for DeepTBFV

based on the output results of the instance is an unresolved issue.

• How to analyze the constraints generated by DeepTBFV so that the con-

straint results can help people intuitively understand the behavior of the

neural network model.
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Chapter 5

Conclusion

The main research objective of this dissertation is how to improve the reliability

of neural network based systems by both means of testing and verification. Due

to the characteristics of neural networks, such as data-driven, empirical con-

struction, and poor interpretability, many errors or adversarial examples can

occur in the process of constructing neural networks, making the construction

of neural network-based systems interrupted or even failed. These issues, based

on the construction process of neural networks, can be divided into reliability

risks that arise during model training and reliability risks that occur after model

training. Over the years, significant progress has been made in the areas of test-

ing and verification of neural network models, respectively. However, research

is still relatively scant on how to ensure the reliability of models during the

training process and how to combine testing and verification to guarantee the

reliability of models.

To be more specific, we explore three problems in two areas: reliability

assurance during model training and reliability assurance after training, one of

which belongs to reliability assurance during model training and two of which

belong to reliability assurance after model training. In response to these three

specific issues, this dissertation achieves the following innovative results:

In Chapter 2, this dissertation proposes a test-based method for assessing

GPU memory usage, aimed at enhancing the reliability of model training. It

generates training data that can be used to train a model for predicting GPU

memory usage through testing methods, and uses the trained GPU memory

usage prediction model to assess the potential GPU memory consumption of

71
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the neural network model to be trained. Ultimately, this aims to avoid the

problem of OOM during the training process of the neural network model. The

case study indicate that this method can identify the functional relationship

between GPU memory consumption and specified features.

In chapter 3, this dissertation introduces a method that leverages the con-

cept of TBFV to accelerate neural network verification, aiming to improve the

reliability of the model post-training. First, test cases are generated under a

given formal specification and the execution paths of the neural network un-

der the corresponding specification are recorded. Finally, the size of the neural

network is reduced by pruning to achieve the purpose of accelerating the veri-

fication of the neural network. Experiments and theoretical analysis show that

the test-based method can effectively identify the inactive neurons in the neural

network, and the reduction of the neural network size can effectively improve

the verification speed of the neural network.

In Chapter 4, this dissertation proposes a theoretical framework using the

principles of TBFV to explain neural network behavior, aiming to enhance the

local interpretability of the trained model. Firstly, the execution path of the

sample being interpreted in the neural network is recorded. Then, this execution

path is transformed into linear constraints, and the constraints for each neuron

in the input layer of the neural network model are solved. Finally, we propose

a theoretical framework for interpreting the neural network model using these

constraints. A case study shows that this theoretical method has the capability

to interpret neural network models.

Although this dissertat contributes to the reliability of neural network-based

systems, these methods still have limitations and threats. In Chapter 2, the

prediction results of TBEM are influenced by the selected GPU memory usage

features, which is also the main aspect threatening TBEM. Secondly, the pre-

trained neural networks and the post-training neural networks mentioned in

Chapters 3 and 4 are fully connected neural networks. Although fully connected

layers can be converted into various neural network layer structures such as

convolutional layers, this does not guarantee that the methods proposed in

Chapters 3 and 4 are applicable to convolutional neural networks, recurrent

neural networks, or even graph neural networks. This limits the scalability of
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NNTBFV and DeepTBFV.

Based on the contributions and limitations of the above descriptions, we

believe that the methods of testing and verification in traditional software can

still be adapted to achieve improved reliability of neural network-based systems.

There are many issues that need to be further refined and researched in future

work. In terms of ensuring reliability during the training process of the neural

network model, although test-based methods have many advantages of black-

box testing, further improving the accuracy of predicting GPU memory usage

still requires additional integration of static analysis of the operational mecha-

nisms of the neural network framework. In terms of ensuring the reliability of

the trained model, the idea of combining testing and verification methods has

a lot of research space and value in guaranteeing the reliability of pre-trained

models or trained neural networks. First, testing has the disadvantages of not

being able to prove that the system is completely bug-free, limited coverage,

etc., which happen to be the advantages of formal verification. Similarly, for-

mal verification has the disadvantages of ignoring user requirements and relying

on formal specification, which are the advantages of testing. Therefore, how to

better combine the advantages of testing and verification to improve the relia-

bility and interpretability of neural network-based systems before deployment

is a future research direction. For example, how to determine the order of alter-

nation between testing and verification, that is, whether to test first then verify,

or to verify first then test.

To sum up, we believe that testing and verification can enhance the relia-

bility of neural network-based systems and in particular, combining testing and

verification can efficiently ensure the reliability and interpretability of neural

network algorithms. In future research, the combination of testing and verifica-

tion also brings new possibilities for lightweight, interpretable neural networks.





Appendix

Formal Specification of The ACAS Xu Using SOFL

We use Structured Object-Oriented Formal Language (SOFL) to define the

formal specification of ACAS Xu. On the one hand, SOFL is a familiar formal

language, and on the other hand, the three-step specification provided by SOFL

is well suited to describe the formal specification for neural network verification1.

In SOFL, a process represents a transformation from input to output and can

describe any Operation in the programming language. Its functional behavior

can be defined by a formal specification with pre-conditions and post-conditions.

Let NN denote a neural network, then we use pre and post to denote the pre-

condition and post-condition of the neural network, respectively. Furthermore,

We can describe the neural network verification problem as follows: if the input

of the NN satisfies the constraints in pre, then the output of the NN should

satisfy the constraints in post. In section 3.5.1.1, we introduce the 45 neural

networks of ACAS Xu. In the following, each formal specification, corresponds

to a different neural network in ACAS Xu.

process Nij , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 9
pre 55047.691 ≤ ρ ≤ 60760 and 1145 ≤ vown ≤ 1200 and 0 ≤ vint ≤ 60
post COC ≤ 1500
end_process

Formal Specification : φ1

process Nij , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 9 except N42 and N53

pre 55047.691 ≤ ρ ≤ 60760 and 1145 ≤ vown ≤ 1200 and 0 ≤ vint ≤ 60
post COC is not the maximal score.

end_process

Formal Specification : φ2

process Nij , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 9 except N17 and N18 and N19

1http://www.vnnlib.org/
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pre 1500 ≤ ρ ≤ 1800 and −0.06 ≤ θ ≤ 0.06 and ψ ≥ 3.10 and

1200 ≥ vown ≥ 980 and 1200 ≥ vintr ≥ 960
post COC is not the minimal score.

end_process

Formal Specification : φ3

process Nij , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 9 except N17 and N18 and N19

pre 1500 ≤ ρ ≤ 1800 and −0.06 ≤ θ ≤ 0.06 and ψ = 0 and

1200 ≥ vown ≥ 1000 and 700 ≤ vintr ≤ 800
post COC is not the minimal score.

end_process

Formal Specification : φ4

process N11

pre 250 ≤ ρ ≤ 400 and 0.2 ≤ θ ≤ 0.4 and

−3.141592 ≤ ψ ≤ −3.141592 + 0.005 and 100 ≤ vown ≤ 400 and

0 ≤ vintr ≤ 400
post strongright is the minimal score

end_process

Formal Specification : φ5

process N11

pre 12000 ≤ ρ ≤ 62000 and

(0.7 ≤ θ ≤ 3.141592 or −3.141592 ≤ θ ≤ −07) and

−3.141592 ≤ ψ ≤ −3.141592 + 0.005 and

100 ≤ vown ≤ 1200 and

0 ≤ vintr ≤ 1200
post COC is the minimal score

end_process

Formal Specification : φ6

process N19

pre 0 ≤ ρ ≤ 60760 and

−3.141592 ≤ θ ≤ 3.141592 and −3.141592 ≤ ψ ≤ 3.141592 and

100 ≤ vown ≤ 1200 and 0 ≤ vintr ≤ 1200
post strongright and strongleft are never the minimal scores.

end_process

Formal Specification : φ7

process N29

pre 0 ≤ ρ ≤ 60760 and −3.141592 ≤ θ ≤ −075× 3.141592 and

−0.1 ≤ ψ ≤ 0.1 and 600 ≤ vown ≤ 1200 and 600 ≤ vintr ≤ 1200
post weakleft is minimal or COC is minimal

end_process

Formal Specification : φ8

process N33



pre 2000 ≤ ρ ≤ 7000 and 0.7 ≤ θ ≤ 3.141592 and

−3.141592 ≤ ψ ≤ −3.141592 + 0.01 and 900 ≤ vown ≤ 1200 and

600 ≤ vintr ≤ 1200
post strongleft is minimal

end_process

Formal Specification : φ9

process N45

pre 36000 ≤ ρ ≤ 60760 and 0.7 ≤ θ ≤ 3.141592 and

−3.141592 ≤ ψ ≤ −3.141592 + 0.01 and 900 ≤ vown ≤ 1200 and

600 ≤ vintr ≤ 1200
post COC is minimal

end_process

Formal Specification : φ10
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