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Abstract

In this thesis, I study the high-order perturbative behavior of a QCD-like matrix model

called the twisted reduced principal chiral model using numerical stochastic perturbation the-

ory (NSPT). Recently, resurgence theory in mathematics has provided a way to extract non-

perturbative information, such as instantons and renormalons, from perturbation theory by rec-

ognizing the divergent perturbative series that carries non-perturbative effects in its asymptotic

behavior in some quantum mechanics and quantum field theories. Consequently, we could ex-

tract the non-perturbative component, provided we possess sufficiently high-order perturbative

coefficients. This task proves challenging using conventional methods such as Feynman dia-

grams, as the number of diagrams exhibits factorial divergence with a given perturbative order.

One way to alleviate this is called NSPT. Even though NSPT reduces the computational cost

from O(NPT !) to O(N2
PT ), where NPT represents the maximum truncated order in perturba-

tion calculation, it still requires considerable computational time to achieve it. In this thesis,

I developed a new algorithm called the Paterson-Stockmeyer (P-S) method to accelerate the

bottleneck of the NSPT simulation. Moreover, using the newly developed method combined

with large N factorization, I have investigated the high-order perturbative behavior of TRPCM

and observed a signal indicating the existence of renormalons in the numerical results. In con-

clusion, I extracted non-perturbative information using high-order calculations of perturbative

coefficients for this specific model. The same workflow can be applied to other complicated

theories, such as full QCD, which is our target, yielding similar results.
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1 Introduction

Quantum Chromodynamics (QCD) [1] is a gauge theory based on the SU(3) group and is

an asymptotically free theory, which means that the interactions between quarks become weak at

small distances. Due to asymptotic freedom, it is possible to carry out perturbative calculations in

the weak coupling regime. However, until 1974, most studies of QCD were limited to perturbation

theory.

In 1974, a breakthrough occurred with two famous papers that aimed to unravel the mysteries

of QCD, particularly quark confinement. One was by ’t Hooft, considering the large N (number of

colors) limit of QCD. The other was by Wilson, who discretized the continuum theory, establishing

the lattice method to enable non-perturbative studies of QCD.

The first paper, titled ”A planar diagram theory for strong interactions” [2] was written by

Gerard ’t Hooft. In this work, ’t Hooft considered a pure Yang-Mills model with the number of

colors, denoted as N , set to infinity, while keeping the coupling constant g equal to zero. Instead,

he held the newly defined ’t Hooft coupling, Ng2, as a constant. Using this approach, Feynman

diagrams could be organized in terms of a so-called 1/N expansion. In the large N limit, only

the leading term, which is independent of N , remains. This mathematical simplification motivated

many researchers in the field. Eguchi and Kawai investigated the large N limit of the SU(N) Yang-

Mills theory defined on the lattice. They pointed out that the elimination of space-time dependence

occurs, leading to matrix models referred to as the Eguchi-Kawai model or reduction [3]. Not only

is it mathematically elegant, but ignoring the space-time dependency in our numerical simulations

means that we can save a lot of computational resources in terms of memory and CPU time.

However, it didn’t last long. Okawa showed that the ZN symmetry is simultaneously breaking

in the weak coupling region numerically using Monte Carlo method [4]. Okawa and González-

Arroyo subsequently replaced the periodic boundary conditions (PBCs) with twisted boundary

conditions (TBCs), and the newly developed reduced model, named the twisted Eguchi-Kawai

(TEK) model, could reproduce all results in both the weak and strong coupling regions [5, 6].

In the second paper, titled ”Confinement of quarks” [7], Kenneth Wilson introduced a lattice
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regularization for QCD. This approach involved discretizing the continuum theory on a lattice and

provided a way to prove the confinement of quarks in the strong coupling limit. These studies

soon evolved and gave rise to what is now known as lattice field theory, leading to a significant

expansion of research into the properties of QCD in the strong interaction regime. Prior to these

developments, most research in this field relied on analytic methods. While elegant in terms of

mathematics, these methods had their limitations.

The use of numerical techniques, such as Markov Chain Monte Carlo (MCMC), for studying

statistical systems was already in existence. Kenneth Wilson and others adapted these techniques

to study lattice gauge theories in a non-perturbative manner. One pioneering work was done by

Michael Creutz [8], who used the Monte Carlo method to study U(1) [9] and SU(2) [10] pure

gauge theories, numerically demonstrating confinement of quarks in SU(3) pure gauge theoires [11].

Subsequently, numerous numerical algorithms were developed and successfully applied to lat-

tice QCD [12]. These algorithms include the Langevin algorithm [13], the Molecular Dynamics

method [14], and the Hybrid Monte Carlo method [15], whose origin is from the Langevin al-

gorithm. With the combined use of these algorithms and the increasing computational resources

available, studies in lattice QCD transformed into their present form, which involves a combination

of analytic calculations and increasingly large-scale numerical simulations. As these techniques

have advanced, lattice methods have become a highly accurate and essential source for calculations

within the standard model and for investigations beyond the standard model in the field of particle

physics [16, 17].

Using numerical methods in a non-perturbative manner has been instrumental in extracting

crucial information from QCD. However, perturbative information is still important, particularly

when studying high-order perturbation behavior [18, 19]. The traditional Feynman diagram-based

method can be a good choice for lower-order calculations, such as those involving one-loop or

two-loop diagrams.

However, when it comes to high-order calculations, the diagram-based approach becomes

computationally expensive. To calculate the perturbative coefficients at the n-th order, the number

of diagrams that need to be considered grows factorially, making it impractical for very high or-
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ders. This computational explosion makes it difficult to analytically verify results obtained through

physical intuition or heuristic arguments, especially when dealing with high-order behavior. As a

result, researchers often rely on numerical simulations and advanced computational techniques to

explore and understand the behavior of QCD, while seeking to find efficient methods for handling

high-order perturbative calculations.

Fortunately, an alternative approach to tackle this problem exists, known as Stochastic Quan-

tization and Numerical Stochastic Perturbation Theory [20, 21, 22]. In 1981, Parisi and Wu in-

troduced a novel method to formulate perturbative expansions for quantum field theory. They

achieved this by extending a d-dimensional field theory to a d + 1-dimensional one, introducing

an extra dimension denoted as t, and starting from the Langevin equation. As this extra dimension

t tends towards infinity, the non-equilibrium distribution converges to the equilibrium distribution,

ultimately reproducing the results of quantum field theory.

The perturbative version of this approach, known as stochastic perturbation theory, involves

expanding all variables in terms of the coupling constant and rearranging the Langevin equation

order by order. In 1993, Renzo and his collaborators further advanced stochastic perturbation

theory to the numerical stochastic perturbation theory (NSPT), applied to the lattice field theory, by

discretizing the additional dimension and implementing the Langevin equation on a computer [23].

This computational approach enabled the exploration of perturbative behavior in quantum field

theory. The significant advantage of NSPT over the diagram method is that the computational

complexity of computing an expansion up to order n is proportional to n2 and not to n!, which

allows for perturbation calculations to be performed to much higher orders.

The 4-dimensional QCD and its corresponding TEK model provide an excellent starting point

for studying various interesting features of physics in the real world. However, these models

are highly complex, and directly studying them in both numerical and analytical aspects poses

significant challenges. Fortunately, a simpler model known as the two-dimensional Principal Chiral

Model (PCM) is often considered a toy model for four-dimensional pure gauge theory because it

shares many interesting properties with it [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. These properties

include generating a mass gap [34] and asymptotic freedom.
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To study these properties, various perturbative and non-perturbative methods have been ap-

plied [33, 35]. One such method is the large N expansion in terms of ’t Hooft coupling, which

can be applied to both the PCM and gauge theories. It involves reorganizing the standard weak-

coupling expansion to obtain better behavior and simplify Feynman diagrams to explain the per-

turbative properties of the theories. The lattice method has also been applied to these models to

study non-perturbative properties. Combining the lattice method with the large N expansion is a

natural approach to understand the origin of these properties.

Exploring the lattice PCM at large N is an important step toward understanding four-dimensional

lattice gauge theories. Similar to four-dimensional lattice gauge theories, the two-dimensional

PCM has a reduced version called TRPCM short for twisted reduced principal chiral model [36,

37]. One advantage of TRPCM is that there’s no need to consider the model in several different

volumes and then perform the model in infinite volume using that data, once taking the large N

limit.

Studying the high-order perturbative behavior of TRPCM at the large N limit is an impor-

tant pursuit, as it is known that perturbation expansions are asymptotic in most quantum field

theories and quantum mechanics [38]. The large order behavior of these series could potentially

shed light on the non-perturbative effects of the corresponding theory. Renormalons [39, 40] and

their applications provide examples of how the asymptotic series are connected to non-perturbative

contributions, and these have been extensively studied in QCD and QCD-like theories.

Recent developments in resurgence theory [41, 42] have further connected asymptotic behav-

ior to non-perturbative objects, such as the complex saddle points of the action in certain models,

for example the two-dimensional 2D CPN sigma model [43, 44] and three-dimensional Chern-

Simons theory [45]. This has opened up new avenues for understanding the relationship between

perturbative and non-perturbative aspects of quantum field theories.

Investigating the high-order behavior of TRPCM in the large-N limit indeed holds the promise

of simplifying the perturbation series and revealing its connection to non-perturbative phenomena.

To extract non-perturbative effects from the perturbation series, understanding the behavior of co-

efficients as a function of the expansion order in terms of the coupling constant g at relatively
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high orders is of utmost importance. The specific order at which the perturbative series exhibits

divergent behavior depends on the observable being studied and the renormalization scheme of the

coupling. This complexity makes the task challenging, especially for models that are not analyti-

cally solvable, and highlights the necessity of employing numerical methods to make progress.

To achieve the goal of extracting non-perturbative information from the perturbative series,

we have implemented the NSPT method for TRPCM to study interesting properties, such as the

large N factorization and 1/N correction. This endeavor aims to provide valuable insights into

whether renormalons exist in the large N limit and how to extract non-perturbative information

from the perturbative series. Once successful, this workflow can be extended to apply to the TEK

model, potentially yielding valuable information that reflects real-world phenomena.

Meanwhile, certain studies aim to establish the presence of non-perturbative effects using

perturbation theory. A notable achievement, closely connected to our recent work, is credited

to Bruckmann and Puhr [46]. They conducted their investigation on the lattice for the PCM,

specifically focusing on this model with a restricted number of colors (ranging from 3 to 6) and

employing high-order calculations. Through the analysis of high-order perturbative coefficients,

they indirectly revealed signal of renormalons by monitoring the ratio of adjacent coefficients.

In contrast to their methodology, our emphasis lies in the examination of both the large N and

high-order behavior of the TRPCM, which is essentially equivalent to the SU(N = ∞) PCM in

the continuum limit. As mentioned earlier, the advantage of considering the large N limit extends

beyond its simplification in mathematical formulations; it also encompasses unique properties such

as large N factorization in numerical simulations. This approach enables us to investigate whether

the renormalons exist in the large N limit.

The contents of the thesis are organized as follows: In Section 2, we review the basic ideas

and important properties of the PCM and TRPCM. In Section 3, we provide an overview of Parisi-

Wu stochastic quantization applied to numerical calculations in lattice field theory, along with

its numerical application, NSPT. We also present some details about a new method we recently

developed, called the P-S method, which accelerates NSPT simulations. Section 4 is dedicated

to presenting numerical results from NSPT simulations of TRPCM and a benchmark of the P-S
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method. Finally, in Section 5, we offer a brief summary of the thesis and discuss potential future

research directions.
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2 Twisted Reduced Principal Chiral model

In this section, we will commence by reviewing some aspects of PCM in both continuum and

lattice formulations, as well as the physical observable of our interest. Due to the perturbation

series’ inherently asymptotic nature, we will also delve into examining the asymptotic behavior,

commonly referred to as renormalons, [40, 46, 47] within the PCM framework. In the final sub-

section, we will explore fundamental concepts in TRPCM.

2.1 Principal chiral model and lattice version

The SU(N) PCM is a quantum field theory with a Lagrangian density defined as follows

L =
1

g2
Tr
(
∂µU(x)∂µU

†(x)
)
, (1)

where the field variable U(x) belongs to the fundamental representation of the SU(N) group. In

a two-dimensional case, the theory exhibits asymptotic freedom and generates a mass gap, which

is similar to the 4-dimensional Yang-Mills theory. The theory maintains invariance under the

following transformation:

U(x) −→ Ω′U(x)Ω†, (2)

where Ω and Ω′ are SU(N) group matrices.

Since formulating the model on the lattice opens the door to a non-perturbative exploration of

its properties and other phenomena, in this context, the partition function is expressed as follows:

Z =

∫ ∏

n

dU(n) exp{−bN
∑

n

∑

µ

Tr(δµU(n)δµU
†(n))}, (3)

where δµU(n) = U(n+ µ̂)− U(n) represents the discretized derivative, n is the two dimensional

site index and µ̂ shows an unit vector in the µ direction. The parameter b = 1/(g2N) serves as the

inverse of the lattice ’t Hooft coupling.

The main observable in the lattice model is the internal energy (E) which can be expressed as
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follows

a2E =
1

2N
⟨
∑

µ,n

ReTr
[
δµU(n)δµU

†(n))
]
⟩, (4)

where a is the lattice spacing and the expectation value, denoted as ⟨· · · ⟩, is defined by considering

this path integral measure for an observable O[U ] as:

⟨O⟩ = 1

Z

∫

n

dU(n)O[U ]e−S[U ]. (5)

2.2 Renormalons in PCM

The internal energy defined in Eq. (4) can be represented in the following derivation form

a2E = 1− 1

4N2V

∂ logZ

∂b
, (6)

where V represents lattice volume. In order to establish a basis for understanding the renormalon

behavior in the internal energy, we can draw upon the large N expansion framework to show the

relation between the a, the resulting intrinsic scale ΛL, which has strong relation with the mass gap

and the coupling constant b through a two-loop renormalzation group relation

aΛL =
√
8πb exp(−8πb) (b→∞)

= (b/β0)
β1/β2

0 exp (−b/β0) , (7)

β0 =
1

8π
, β1 =

1

128π2
,

where β0 and β1 are the first and second expansion coefficients of beta-function. On the other hand,

combining operator product expansion (OPE) and Eq. (7) indicates the existence of exponentially

small non-perturbative term in the weak coupling expansion and then can lead to the high-order
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perturbative behavior of the internal energy as

a2E =
∞∑

n=0

E(n)b−n + ce−2b/β0 . (8)

The second term comes from the renormalization group behavior of a2 factor. From a non-

perturbative aspect, a2E is defined for 1/b, but the first term in the perturbation series is not con-

vergent series but a asymptotic series. To avoid the inconsistency between the non-perturbative

form and the perturbaitve one, the asymptotic series should behave as

E(n) n→∞∼
(
β0

2

)n

n!,
β0

2
=

1

16π
, (9)

which means that the perturbative coefficients become factorially divergent in the higher order case

which is about 50 order in the ’t Hooft coupling expansion and before that the coefficients will de-

crease gradually. In addition, since there is no alternative sign in Eq. (9), the Borel transformation

of the series will led a pole (singularity), named renormalons as it emerges from the renormaliza-

tion process, located on the real positive axis in the Borel plane, which gives a non-perturbative

ambiguity, indicating the existence of the second term. The definition of a2E should be unambigu-

ous, ensuring that any ambiguity arising from the perturbative series is eliminated by incorporating

the non-perturbative effects as anticipated by the renormalons arguments.

Even the typical expression of the internal energy has not been proven in TRPCM, but in some

quantum mechanical models or other simpler quantum field theory models the existence of typical

trans-series expansion of the main observable O has been proven using the resurgence theory as

O(b) ∼
∞∑

k=0

c(0,k)(b)
−k +

∞∑

n=1

(b)βne−nAb

∞∑

k=0

c(n,k)(b)
−k, (10)

where the first sum is the asymptotic series and the second term shows non-perturbative contri-

butions from the n-instantons or complex saddle points [42]. We hope the same thing happens

in PCM and TRPCM. In order to do that, one need to calculate the perturbative coefficients and
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re-sum the series using special method like Borel re-summation [48].

2.3 Twisted reduced principal chiral model

The twisted reduced principal chiral model is a single matrix model. In its large N limit, it is

suggested to be equivalent to the standard lattice version of the lattice PCM at infinite volume or

the PCM in continuum theory. This equivalence is realized by absorbing space-time dependency

into specific SU(N) matrices Γµ called twist matrix. The partition function therefore becomes

Z =

∫
dU exp{−bN

∑

µ

Tr(∆µU∆µU
†)}, (11)

δµU →∆µU ≡ ΓµUΓ†
µ − U.

In 2-dimensional case, the choice of Γµ is based on the ’t Hooft algebra and abides by the

following relation

Γ1Γ2 = exp{2πiK
N
}Γ2Γ1, (12)

where a hyperparameter K, called flux parameter, was introduced. K plays an important role

in realized with the equivalences between the reduced model and PCM at continuum limit. The

dependency of K flux parameter has been investigated in several works [37, 49, 50]. A minimal

choice, which means that holding K = 1 fixed as N becomes large, often leads to the breaking of

central symmetry in weak coupling region and spoils the equivalence of the large N limits of the

lattice chiral model and the corresponding TEK reduction [51]. To keep the equivalence, K should

be changed according to the following conditions given in [37] as

K

N
>Λ,

Mod(KK̄,N) = 1,

K̄

N
holds almost same for different N.

(13)
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One typical choice of (N,K) pair can be determined from the Fibonacci series with

K = Fn−2 = K̄, (14)

N = Fn, (15)

where n represents the n-th number in the Fibonacci series. This choice has been shown to be rea-

sonable in other models, and thus we follow this choice with (N,K) = (55, 21), (89, 34), (144, 55)

and (233, 89).

The internal energy in the reduced model can be modified using the Γµ as

E =
1

2N

∑

µ

ReTr
[
UΓµU

†Γ†
µ

]
. (16)

We have introduced the PCM and TRPCM along with some interesting properties of these

models. In the following sections, we will study both the large N and perturbative behavior of

the TRPCM using a numerical approach. Our primary goal is to explore the large N limit and the

high-order behavior to investigate the existence of renormalons. The renormalon behavior of PCM

has been demonstrated in Section 2.2, and TRPCM exhibits the same property in the large N limit.

One significant advantage of TRPCM over PCM is that, unlike PCM, there is no need to

consider double limits—the large N limit and the infinite volume limit. In TRPCM, when taking

the large N limit as N → ∞, the effective volume, which functionally depends on N (usually

N2 = L2 = V ), automatically becomes infinite. In contrast, in the lattice PCM case, to achieve the

infinite volume limit, one must simulate the model in a finite lattice volume and then extrapolate

to the infinite volume with the help of the renormalization group equations—a process that can be

quite complicated.

This simplification is not only appreciated in theoretical terms but also serves as a practical

alternative in numerical simulations, as it reduces memory usage and speeds up computations.

To illustrate, consider an example of a SU(233) TRPCM and the corresponding SU(233) PCM

defined on a 233 × 233 square lattice. The memory usage of PCM is approximately 105 times

larger than that of TRPCM. As we consider larger values of N , the difference becomes even more

14



remarkable.

For these reasons, in the next section, we will introduce the numerical method we will use to

study TRPCM and explain how to adapt the numerical method to be compatible with TRPCM.
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3 Stochastic quantization and Numerical Stochastic Perturba-

tion Theory

In the realm of theoretical physics, quantization serves as the pivotal bridge connecting clas-

sical physics with the enigmatic world of quantum physics. This process is often achieved through

various methodologies, with Canonical quantization and the path integral, introduced by the illus-

trious R. Feynman. However, in 1981, G. Parisi and Y.-S. Wu introduced an alternative method [20],

called Stochastic Quantization, for tackling this profound challenge. Their method set its founda-

tion on the Langevin equation describing the approach to equilibrium. What makes this approach

truly remarkable is its versatility, as it can be readily applied to a wide range of problems, spanning

from quantum mechanics to quantum field theories.

Moreover, when we introduce a perturbative expansion for field variables within this frame-

work, we obtain Stochastic Perturbation Theory (SPT). The solubility of the Langevin equation

on a computer and the remarkable advancements in computational capacity have allowed F. Renzo

and his collaborators to push the study further. They have developed the NSPT [52], a numerical

approach built on the top of SPT. This numerical adaptation empowers us to evaluate complex

perturbative calculations of various physical variables in a semi-automated fashion, leveraging the

computational power of modern technology.

Subsequent to these developments, a flurry of research has emerged, with a focus on utiliz-

ing NSPT to explore models that were previously uncharted territory where traditional Feynman

diagram-based methods can not achieve [46, 47, 52, 53, 54, 55, 56, 57, 58, 59]. Additionally, other

researchers have embarked on the mission of refining and extending algorithms to enhance the

efficiency and capabilities of this powerful approach [60, 61].

In this chapter, our thesis begins with an introduction to stochastic quantization and SPT. As

the NSPT is built on the top of stochastic quantization, we delve into the fundamental concepts

underpinning the NSPT algorithm. We will pay special attention to the molecular dynamics-based

NSPT and explore the intricacies of applying NSPT to the TRPCM, a model of particular our

interest. Lastly, we will show the latest algorithms we have developed to accelerate the NSPT
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simulations to improve efficiency and effectiveness.

3.1 Stochastic quantization and numerical stochastic perturbation theory

We consider a quantum field theory defined in Euclidean space. The partition function and

the expectation value of a physical observable, denoted as O(φ), can be expressed in the form of a

path integral as follows:

Z =

∫
dφ(x)e−S(φ,g), (17)

⟨O(φ)⟩ = 1

Z

∫
dφ(x)O(φ)e−S(φ,g), (18)

where
∫
dφ(x) represents the path integral measure, and S(φ, g) encompasses the field φ and the

coupling constant g, which signifies the system’s interaction.

We start with the Langevin equation to evaluate the evolution of the field non-perturbatively:

∂φ (x, t)

∂t
= −∂S (φ, g)

∂φ (x)

∣∣∣∣
φ(x)=φ(x,t)

+ η (x, t) , (19)

where the η is a set of independent Gaussian distributed noise for each lattice site x and Langevin

time t which satisfies
⟨η (x, t)⟩ = 0,

⟨η (x, t) η (x′, t′)⟩ = 2δ(x− x′)δ(t− t′).
(20)

The introduction of η(x, t) to the system imparts a stochastic nature to the process, rendering

the time-dependent variable φ(x, t) stochastic. This stochastic nature is implicit and is contingent

upon η(x, t). The estimation of the expectation value, as expressed in Eq. (18), proceeds as follows

lim
t→∞
⟨O(φ(x, t))⟩η = ⟨O(φ(x))⟩, (21)

where ⟨· · · ⟩η represents the statistical ensemble average concerning the stochastic variable φ(x, t)

generated through the solution of Equation (19). The non-perturbative expectation value is achieved

in the limit of infinite Langevin time.
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In this thesis, our objective is to perturbatively evaluate Eq (18) by expanding it in terms of

the coupling constant g. The traditional expansion of the coupling constant within the path integral

formulation introduces the well-known Feynman diagram method. However, as we move to high-

order expansions, the evaluation, both diagrammatically and algebraically, becomes increasingly

challenging.

To address this, we employ the NSPT method, which is formulated on top of the Langevin

equation (19) by expanding it with respect to g. Consequently, we will derive the perturbative

version of the Langevin equation.

As a prerequisite, we assume that the total action can be decomposed into two components:

a free action part, denoted as S0(φ), which is usually assumed to be a quadratic function of ϕ, and

an interaction action part, Sint(φ, g), which contains a polynomial of ϕ in terms of g. Additionally,

we expand the field variable φ(x, t) as a function of g, recognizing that its implicit dependence on

g stems from the solution of Eq. (19);

S (φ, g) = S0 + Sint, (22)

S0 =

∫
dxφ(x)∆(x, y)φ(y), (23)

φ (x, t) =
∞∑

n=0

gnφn(x, t). (24)

where ∆(x, y) shows the free part of the action and usually contains the kinetic and mass term.

By substituting Eq. (22) and Eq. (24) into Eq. (19) and organizing the terms according to their

respective orders of gn in Eq. (19), we derive the following set of differential equations;

∂φ0(x, t)

∂t
= − ∂S0

∂φ(x)

∣∣∣∣
φ(x)=φ0(x,t)

+ η(x, t) (25)

∂φn(x, t)

∂t
= − ∂S0

∂φ(x)

∣∣∣∣
φ(x)=φn(x,t)

+ In (φ0, . . . , φn−1) for n ≥ 1, (26)

where we have two types of differential equations. The first equation, denoted as Eq. (25), incor-

porates the Gaussian noise η(x, t), which is accountable for quantum fluctuations. The solution for
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this equation can be expressed as:

φ0 (x, t) =

∫ t

0

dτ

∫
dyG (x− y, t− τ) η (y, τ) , (27)

whihc implies that the solution φ0(x, t) also becomes a stochastic variable. In the second equation,

represented as Eq. (26), In(φ0, . . . , φn−1) can be derived by expanding the interaction action Sint

according to the expansion rule provided in Eq. (24). The term G(x − y, t − τ) corresponds to

Green’s function, which can be obtained from Eq. (25) by substituting φ with G(x− y, t− τ), as

follows:
∂G (x− y, t− τ)

∂t
+

∂S0

∂φ(x)

∣∣∣∣
φ(x,t)→G(x−y,t−τ)

= δ(x− y)δ(t− τ). (28)

It is important to note that In(φ0, . . . , φn−1) depends only on those fields for which the order

is less than n, which means that the simulation process can be truncated at any order we choose.

By numerically solving these hierarchical equations, specifically the hierarchical differential

equations (25) and (26), we can generate the statistical ensemble for (φ0(x, t), φ1(x, t), . . . , φn(x, t)).

These stochastic variables are then employed for evaluating observable.

The expectation value of any physical observable (O(ϕ(x, t))) associated with the variable

φ(x, t) can be expanded in a manner analogous to what we have employed for the variable φ;

⟨O⟩ =
〈∑

n=0

gnOn

〉
=
∑

n=0

cn(O)gn. (29)

On becomes a function of the stochastic variables (φ0(x, t), φ1(x, t), . . . , φn(x, t)), and cn(O) is

determined as follows:

cn(O) = lim
t→∞
⟨On(φ0(x, t), φ1(x, t), . . . , φn(x, t))⟩η. (30)

3.2 Simulation methods and its application to TRPCM

In this thesis, we employ a Hybrid Molecular Dynamics (HMD) approach within NSPT. The

HMD method has been employed to investigate a wide range of complicated and non-local systems
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in non-perturbative fashion. Significantly, its extension, the Hybrid Monte Carlo (HMC) method,

has garnered substantial significance due to its computational efficiency and enhanced ergodicity.

Applying HMD to NSPT is a natural means of enhancing the efficiency of NSPT. Further

advancements in NSPT beyond HMD have been explored in Ref. [61].

To naturally advance the development of HMD-based NSPT, we initiate with a non-perturbative

simulation of TRPCM. Beginning with the HMD simulation for TRPCM, the partition function for

the HMD-based Monte Carlo algorithm is derived from Eq. (11) by introducing a N ×N traceless

Hermitian matrix P conjugated to U as

Z =

∫
dU dP e−H[P,U ], (31)

H[P,U ] =
1

2
Tr
[
P 2
]
+ S[U ], (32)

where the variables P and U are stochastically generated to conform to the probability density

dU dP e−H[P,U ]/Z in the HMD algorithm. The Markov chain for the density is established by

treating H[P,U ] as a Hamiltonian and introducing a fictitious time t for the dynamic variables

P,U . The classical Hamiltonian equations for TRPCM are derived as

dU

dt
= iPU,

dP

dt
= F, (33)

F = ibN

(
V − 1

N
Tr [V ]

)
, V = UX − (UX)†, (34)

X =
∑

µ

[
Γ†
µU

†Γµ + ΓµU
†Γ†

µ

]
. (35)

The HMD algorithm employs a symplectic integration scheme to approximate the time evolu-

tion of the equation of motion (33). The variable P is periodically refreshed as a stochastic variable

from a Gaussian distribution exp[−Tr [P 2]/2] at each beginning of the trajectory that is defined

by a fixed time length period. The Markov Chain Monte Carlo sampling in the HMD algorithm

involves periodic sampling from the trajectory of P,U as a function of time t.

The HMD-based NSPT is derived by substituting the variables P,U into Eq. (33), incorpo-
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rating their perturbative expansion in terms of the coupling constant. For the ease of handling the

large N limit of the TRPCM, the ’t Hooft coupling, represented as λ ≡ b−1, functions as a natural

expansion parameter. We show the perturbative expansion for U and P which is delineated as

follows:

U =
∞∑

k=0

λk/2U (k), P = λ−1/2

∞∑

k=1

λk/2P (k), (36)

where U (0) = I and P (0) = 0 are initial conditions and imposed as the perturbative vacuum

and non-dynamical variable. The initial coefficient of P , denoted as P (1), acts as the source of

the stochastic process and is generated from a Gaussian distribution exp
[
−Tr

[(
P (1)

)2]
/2
]
. In

contrast, the higher-order coefficients, P (k) for k > 1, are reset to zero at the beginning of each

trajectory.

Since the force F initiates atO(λ−1), we shift the expansion of P by λ−1/2 and adjust the unit

of the fictitious time as

t = λ1/2t′. (37)

For the sake of simplicity, we will omit the prime symbol for the rescaled time unit hereafter.

The fundamental components of the symplectic time integration scheme are:

U (k)(t+ δt) =
[
eiPδt ⊛ U(t)

](k)
, (38)

P (k)(t+ δt) = P (k)(t) + F (k)δt, (39)

where δt represents the discretized time step. In Eqs. (38) and (39) , the integration time step of δt

can be chosen arbitrary, depending on the integration scheme being used. The symbol ⊛ indicates
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the polynomial convolution product for two matrix polynomials as

A =
∞∑

i=0

giA(i), B =
∞∑

i=0

giB(i), C =
∞∑

i=0

giC(i), (40)

C = AB → C(k) = (A⊛B)(k) =
k∑

l=0

A(l)B(k−l), (41)

where A(i), B(i), C(i) are matrix-valued coefficients of matrices A,B,C. Calculating the perturba-

tive expansion for the matrix exponential eiPδt in Eq.(38) is a crucial aspect of NSPT simulation.

This significance arises not only due to its intricate definition but also because, in our simulations,

we observe that nearly half of the computational time is dedicated to this calculation. Recognizing

this, we have devised a rapid algorithm for its computation[62] and provided a more detailed expla-

nation of the definition of eiPδt and the expedited computation of eiPδtin the subsequent subsection.

The perturbative expansion of the force F is obtained as follows:

F (k) = iN

(
V (k) − 1

N
Tr
[
V (k)

])
, V (k) = S(k) − S(k)† , (42)

S(k) = (U ⊛X)(k), X(k) =
∑

µ

[
Γ†
µU

(k)†Γµ + ΓµU
(k)†Γ†

µ

]
. (43)

It is worth noting that the HMD algorithm for NSPT has been observed to exhibit non-ergodic

behavior, as discussed in references such as Refs. [63, 64, 61, 65]. To address this non-ergodicity,

two remedies have been established. One approach involves systematically sampling all Fourier

modes of field variables by introducing random variations in the trajectory length, denoted as t,

between samples. Alternatively, one can adjust the trajectory length to be shorter, reaching a point

at which the HMD algorithm closely resembles the original Langevin algorithm. In this study, we

adopt a method that combines elements of both approaches.
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Algorithm 1: HMD algorithm for NSPT
Step 1: Set U (1) = I ,U (k) = P (k) = 0 for k = 2·
Step 2: Generate P (1) with Gaussian distribution as

P (1) =
N2−1∑

k=1

ηkT k (44)

η ∈ Normal(0,
√
2) (45)

Tr
[
TαT β

]
=

δα,β
2

(46)

where T k are in SU(N) Lie-algebra

Step 3: Randomize the fictitious times

N ∈ Binomial(Nmd − 1, 0.5) + 1

t = Nδt
(47)

Step 4: Integrate the EoM numerically for the t derived from the third step.

Step 5: Calculate observable and back to step 2

For the symplectic integrator in (38) and (39), we utilize the 4th-order Omelyan-Mryglod-

Folk (OMF) integrator as described in Refs. [61, 65]. This integrator is expected to introduce finite

integration errors proportional to δt4.

The randomized trajectory length by which the ergodicty of the evolution is improved, de-

noted as tr, is determined by:

tr = nrδt, δt = t/Nmd , (48)

where t represents a fixed length of trajectory, Nmd is an integer representing the number of time

steps, and nr is a random number with the binomial distribution nr ← B(1/2, 2(Nmd − 1)) + 1,

using the binomial distribution B(p, n). Consequently, the mean value of trajectory length is ⟨tr⟩ =
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t. All numerical results are computed at various Nmd values and extrapolated to Nmd → ∞
following the δt4 scaling before analyzing the N dependence.

The equation of motion evolves for the randomized trajectory length, and the stochastic vari-

ables U (k), k = 1, . . ., representing perturbative coefficients, are sampled as the Monte Carlo en-

semble. The observable is also perturbatively expanded in terms of λ, where the perturbative

coefficients are functions of U (k), k = 1, . . .. The detailed algorithms for implementing NSPT in

TRPCM, including the randomized trajectory length, can be found in Algorithm 1.

The internal energy density operator E in Eq. (16) is expanded as follows:

E =
∞∑

k=0

λk/2E(k), (49)

E(k) =
1

2N

∑

µ

ReTr
[(
UΓµ ⊛ U †Γ†

µ

)(k)]
. (50)

The expectation value of the coefficient,
〈
E(k)

〉
, is calculated as the statistical average within

the ensemble of U (k), k = 1, . . .. The perturbation series is truncated to a fixed order in the actual

numerical simulation. In this thesis, we will introduce two types of simulation using different set

of truncated order and N . More details, concerning the numerical simulation for achieving both

large N limit and high-order, will be argued in the next section.

3.3 Paterson-Stockmeyer method for matrix exponential

This subsection is based on our recent work and more details can be found in Ref. [62]. The

purpose of this subsection is to optimize HMD-based NSPT to achieve improved performance,

particularly for high-order calculations. To accomplish this, the initial step involves identifying the

most computationally intensive segment within the NSPT algorithm. Based on our estimation, this

lies in the computation of the matrix exponential appeard in Eq. (38).

We begin by introducing the concept of the matrix exponential. The input matrix, denoted as
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A, is expressed through expansion as follows:

EXP = exp(iA), A =

NPT∑

j=1

gjA(j), (51)

where NPT represents the upper limit of the expansion order, and g is a coupling constant. The

matrix exponential of A is formally defined as:

EXP = exp

(
i

NPT∑

j=1

gjA(j)

)
. (52)

In the framework of the NSPT formalism, our aim is to compute the perturbative series of

EXP , which emerges in Eq. (38), as illustrated by:

EXP =

NPT∑

j=0

gjEXP (j), (53)

where the initial term is EXP (0) = I (the identity matrix). The perturbation coefficient matrix

EXP (k) is a function of A(j) for j = 1, 2 . . . , NPT. The functional form can be evaluated by

expanding Eq. (52) in terms of g;

EXP = I +

NPT∑

j=1

gjEXP (j) = exp

(
i

NPT∑

k=1

gkA(k)

)
=

NPT∑

j=0

(i)j

j!

[
NPT∑

k=1

gkA(k)

]j
. (54)

We combine the Taylor series expansion of the matrix exponential with the coupling constant

expansion of the input matrix. Through the expansion of this double series, we obtain an initial

expression for each EXP (k) as a function of A(k) for k = 1, 2, . . . , NPT.

Various algorithms are available for calculating the matrix exponential. However, within the

NSPT framework, managing the intricate double expansion relationships presents a significant

challenge. To address this complexity, we introduce Horner’s method as an approach. The trun-
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cated form of Eq. (54) can be computed using the following expression:

EXP = I + c1A+ c2A
2 + c3A

3 + · · ·+ cNPTA
NPT

= I + c1A

(
I +

c2
c1
A

(
I +

c3
c2
A

(
I + · · ·+ cNPT−1

cNPT−2

A

(
I +

cNPT

cNPT−1

A

)
· · ·
)))

.
(55)

In the equation above, cj = ij

j!
. It is important to note that in the NSPT context, all operations

involving powers and matrix multiplications are executed in terms of perturbative convolution

of Eq. (41). The first line of Eq. (55) represents the naive approach to compute the truncated

matrix exponential, where the number of matrix-matrix multiplications of A is (NPT(NPT + 1)/2),

which is of the order of O(N2
PT) for the non-perturbative case. The NSPT version replaces all

matrix-matrix multiplications with convolution operations using the coupling constant expansion

of A, incurring a cost of O(N2
PT) for the naive convolution algorithm. Consequently, the total

computational complexity of the naive matrix exponential method in NSPT is O(N4
PT). On the

other hand, the second line demonstrates the application of Horner’s method, which significantly

reduces the computational complexity to O(N3
PT).

Since our goal in this study is to explore the high-order perturbative behavior of TRPCM

and extract information about the existence of renormalons, a reasonable choice for NPT is around

O(100). However, this presents a significant computational challenge. Although Horner’s method

reduces the computational complexity from O(N4
PT) to O(N3

PT), a faster algorithm would greatly

benefit our numerical simulations, and we will show the algorithm we recently employed called

Paterson-Stockmeyer (P-S) method.

Efficient polynomial evaluations involving matrices can be achieved through the P-S algo-

rithm. Current research efforts focus on further enhancing and refining this method within the

academic literature [66, 67, 68].

We initially present the P-S algorithm as applied to the truncated Taylor series described in

Eq. (54). Subsequently, we extend this methodology to encompass the NSPT variant, where the in-

put matrix itself takes the form of a perturbation series. Anticipated benefits include a reduction in

the number of matrix-matrix multiplications when evaluating the truncated Taylor series of the ma-

trix exponential or, equivalently, a matrix polynomial. This effectively reduces the computational
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overhead associated with convolution operations within the NSPT framework.

To streamline the computational process, we commence by partitioning the NPT terms within

the polynomial into groups. Each group consists of a matrix polynomial containing either s, δ, or

v terms.

EXP ≃ exp [iA]

= I + iA+
(i)2

2!
A2 +

(i)3

3!
A3 +

(i)4

4!
A4 + · · ·+ (i)NPT−1

(NPT − 1)!
ANPT−1 +

(i)NPT

NPT!
ANPT

= I + iA+
(i)2

2!
A2 + · · ·+ (i)s−1

(s− 1)!
As−1

+
(i)s

s!
As

[
I +

i(s!)

(s+ 1)!
A+

(i)2(s!)

(s+ 2)!
A2 + · · ·+ (i)s−1(s!)

(2s− 1)!
As−1

]

+
(i)2s

(2s)!
A2s

[
I +

i(2s)!

(2s+ 1)!
A+

(i)2(2s)!

(2s+ 2)!
A2 + · · ·+ (i)s−1(2s)!

(3s− 1)!
As−1

]
+ · · ·

+
(i)vs

(vs)!
Avs

[
I +

i(vs)!

(vs+ 1)!
A+

(i)2(vs)!

(vs+ 2)!
A2 + · · ·+ (i)NPT−vs(vs)!

NPT!
ANPT−vs

]

= Q0 + As [Q1 + As [Q2 + · · ·+ As [Qv−1 + AsQv] . . .]] , (56)

where NPT = sv + δ, with δ defined as the integer remainder when dividing NPT by s. We also

define:

Qv =
δ∑

k=0

csv+kA
k, Qi =

s−1∑

k=0

csi+kA
k, i = 0, 1, . . . , v − 1. (57)

Upon reorganization, it becomes evident that the powers of the matrix A appear repeatedly

during the computations in Eq. (56). With this observation in mind, if we can pre-compute these

matrix powers Ak and reuse them throughout the entire computation of Qj and Qv, we can antici-

pate a significant improvement in computational efficiency. This form contains three hyperparam-

eters (s, v, δ) that have not yet been determined. These parameters can be varied to optimize the

total count of matrix-matrix multiplications. To identify the optimal choices, we can establish the
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following relations, ignoring the remainder part δ,

NPT = sv, (58)

NOp = s− 2 + 1 + v, (59)

where NOp represents the total number of matrix-matrix multiplications in Eq. (56). The minimum

value for NOp is achieved when s =
√
NPT for a large constant NPT, and the optimal NOp is

NOp = 2
√
NPT. For non-zero δ, the optimal choice has been determined as [67]:

s = Floor
(√

NPT

)
, (60)

v ≡
⌊
NPT

s

⌋
= Floor

(
NPT

s

)
. (61)

To evaluate the computational cost of the P-S method within NSPT, it is important to note

that all matrix-matrix multiplications are replaced by convolution operations in terms of the cou-

pling constant expansion. In a convolution operation for the perturbation series truncated at NPT,

the number of matrix-matrix multiplications is N2
PT with the naive convolution operation. How-

ever, with the P-S method, the optimal number of matrix-matrix multiplications is approximately

2
√
NPT×N2

PT, which scales asO(N5/2
PT ). The expected improvement factor of the P-S method over

Horner’s method is O(N−0.5
PT ), and we will verify this in the following section. Additional details

and pseudo-code related to the P-S method is located in Algorithm 2 and Ref. [62].

In this section, we introduced NSPT and demonstrated how to integrate NSPT with TRPCM.

NSPT is a powerful tool that allows us to achieve high-order perturbative behavior, which tradi-

tional Feynman diagram-based methods struggle with. Utilizing NSPT enables us to investigate

the renormalon behavior directly. Despite the advantages NSPT provides, it remains computation-

ally intensive, particularly when aiming for very high-order calculations, such as NPT = O(100).
To address this challenge, we presented a new algorithm, the P-S method as above. This method

effectively reduces computational costs, enabling us to reach high-order calculations. I will show

more details about the efficiency of this algorithm in the following section, which is based on our

work in Ref. [62].

28



Algorithm 2: Paterson-Stockmeyer algorithm for matrix exponential for NSPT

1:s = Floor(
√
N); v = Floor(N/s); δ = mod(N, s)

2: P
(p)
1 := p(p) ( for p = 0, . . . , Nurunc )

3: for k = 2, . . . , s do

4: P
(p)
k := (P1 ∗ Pk−1)

(p) ( for p = 0, . . . , Ntrunc )

5: end for

6: for j = 0, . . . , v do

7: if j < v then

8: imax = s− 1

9: else if j == v&&δ ̸= 0 then

10: imax = δ

11:end if

12: if imax ̸= 0 then

13: Q̃
(p)
j :=

csj+imax

csj+imax−1
P

(p)
imax

( for p = 0, . . . , Ntrusc )

14: for i = imax − 1, 1,−1 do

15: Q
(p)
j :=

csj+i

csj+i−1

(
P

(p)
i +Q

(p)
j

)
(for p = 0, . . . , Ntrunc )

16: end for

17: Q̃(0)
j := I + Q̃

(0)
j

18: end if

19: end for

20: if δ == 0 then

21: E(p) = Q̃
(p)
v−1 +

csv
csv−s

P
(p)
s ( for p = 0, . . . , Nurunc )

22: else

23: E(p) = Q̃
(p)
v−1 +

csv
csv−s

(
Ps ∗ Q̃v

)(p)
(for p = 0, . . . , Ntrunc )

24: end if

25: for j = v − 2, 0,−1 do

26: E(p) = Q̃
(p)
j +

csj+s

csj
(Ps ∗ E)(p) ( for p = 0, . . . , Ntrunc )

27: end for
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4 Numerical results

In this section, we present our numerical results for the study of TRPCM using NSPT. In

Section 4.1, we provide details about the hyperparameters of the model and the HMD used in the

simulation. In Section 4.2, we present the large N results at the λ4 level and compare them to the

PCM in infinite volume. Large N field theories and matrix models exhibit an important property

known as large N factorization. Numerically demonstrating the existence of large N factorization

is crucial, especially when considering error estimates and the concept of a ”single simulation.”

Our primary goal is to investigate the high-order behavior and detect the signal of renormalons.

However, high-order calculations are time-consuming. We conducted a micro-benchmark to iden-

tify the most computationally intensive part of the simulation, which led to the optimization of the

matrix exponential calculation using the newly developed P-S method introduced in Section 3.3. In

Section 4.3, we demonstrate the efficiency of the P-S method compared to Horner’s method. In the

final subsection, using the newly developed P-S method, we calculate the high-order perturbative

coefficients of the internal energy and provide evidence of renormalons.

The numerical simulation in Section 4.2 is based on our work in Ref.[69], while Section4.3

is grounded in our work detailed in Ref.[62]. Finally, Section4.4, which primarily presents the

high-order behavior of TRPCM using the P-S method, was discussed at the 78th Annual Meeting

of the Physical Society of Japan (JPS) [70].

4.1 Numerical setup

The NSPT simulation is a powerful tool for handling perturbative calculations in TRPCM. As

two key hyperparameters, namely N and NPT , are set to significantly large values, the simulation

becomes computationally intensive. In each of the following subsections, specific objectives are

pursued. Therefore, selecting appropriate hyperparameters is crucial to ensure that the simulation

can be completed efficiently while serving its intended purpose.

In Section 4.2, our objective is to show that results for large N can be obtained using an

extrapolation method. To achieve this, we fix NPT = 4 in the ’t Hooft coupling expansion and
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select values for N ranging from small to intermediate. The flux parameter k for each choice of

N is determined using Eq.(13). Additional details are available in Table1. These parameters are

chosen to explore the large N factorization and statistical error of the perturbation coefficients,

aiming to validate whether the concept of a single simulation holds for a sufficiently large N .

N (L
a
)2 K K̄ K̄

N
Nmd Statistics

3 9 1 1 0.33

10 10 000 000

12 10 000 000

20 10 000 000

5 25 3 2 0.4

10 10 000 000

12 10 000 000

20 10 000 000

7 49 5 3 0.43

10 10 000 000

12 10 000 000

20 10 000 000

9 81 7 4 0.44

10 10 000 000

12 10 000 000

20 10 000 000

11 121 3 4 0.36

10 10 000 000

12 10 000 000

20 10 000 000

13 169 8 5 0.38

10 10 000 000

12 10 000 000

20 10 000 000

15 225 4 4 0.27

10 10 000 000

12 11 000 000

20 10 000 000

17 289 5 6 0.35

10 7 240 200

12 7 944 400
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20 4 684 000

19 361 11 7 0.37

10 9 000 000

12 8 435 100

20 6 435 800

21 441 8 8 0.38

10 2 036 200

12 3 084 400

20 2 411 300

Table 1: Simulation parameter for Section 4.2.

In Section 4.3, our aim is to demonstrate the computational efficiency of the P-S method. For

this purpose, we choose an intermediate value for N = 17, 55 that does not significantly sacrifice

program execution time, and we vary NPT = 10, 20, 40, 100, 200, 500, 1000 . This range is suitable

for establishing the presence of renormalons.

In the final subsection, we aim to confirm the existence of renormalons through both large N

and high-order results. To do so, we set NPT = 20 in the ’t Hooft coupling expansion, and the

choice of (N,K) pairs is based on the Fibonacci series in Eq. (15). The choice of setting NPT = 20

remains consistent with the work in Ref. [46], which has shown that for small choice N NPT = 20

is large enough to extract the signal of renormalons. Therefore, we have the same choice .Further

information regarding the statistics can be found in Table. 2

(N,K) Statistics

55,21 51

89,34 50

144,55 37

233,89 30

Table 2: Simulation parameter for Section 4.4.

Apart from the hyperparameter choices for TRPCM, we also need to consider other hyperpa-

rameters in the HMD-based NSPT simulation. The trajectory length t and the number of trajectory
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time steps Nmd need to be fine-tuned to satisfy the large N factorization property, which means that

the variance of the perturbative coefficients diminishes in the large N limit. In summary, we’ve

found that a trajectory length of t = 0.05 is sufficient for achieving large N factorization for the

first four-order coefficients, and we can use this choice in all the simulations mentioned above.

In contrast to non-perturbative simulations using Hybrid Monte Carlo, in the NSPT case, there

is no Metropolis test to eliminate the systematic error arising from finite size effects in discretized

fictitious time integration. For each value of N , we run the simulation with different settings,

such as Nmd = 10, 12, 20, and evaluate results without discretized errors using extrapolation.

Additionally, to mitigate autocorrelation among the samples, we sample every trajectory and group

every 100 trajectories into a bin. The statistical errors are estimated by Jackknife method.

For our numerical study, we utilized the subsystem A within the ITO supercomputer [71] at

Kyushu University. To fully leverage the available hardware resources, we employed the OpenMP

framework to parallelize both the program based on Horner’s method and the one based on the

P-S method. Additionally, for efficient matrix-matrix multiplication operations, we utilized the

ZGEMM function from the MKL library, provided by Intel. The version of the compiler, Intel

Fortran, is 19.0.4.243.

It’s noteworthy that the performance of ZGEMM decreases as the size of the matrix N de-

creases to a certain extent [72], particularly when N is smaller than 1000. In TRPCM or other

matrix-valued field theory cases where the problem size typically ranges from 100 to 1000, the

overhead incurred by multiple invocations of the ZGEMM function becomes noticeably substan-

tial. To address this issue, in Section 4.3 and 4.4, we employed the ZGEMM-BATCH subroutine,

effectively alleviating the overhead associated with frequent function calls. However, for the re-

sults presented in Section4.2, we implemented the ZGEMM subroutine from MKL.

4.2 Large N results with extrapolation: large N factorization and estima-

tion of error

In the large N limit, the first three-order results can be compared with the analytic ones of the

PCM on an infinite-volume lattice. More detailed results are available in Refs. [73, 74]. However,
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Figure 1: This figure provides an overview of the extrapolation process towards the vanishing

MD step size, where
[

t
Nmd

]4
= δt4 → 0. The figure displays our numerical results, which were

obtained from N = 21 up to the fourth order. To determine the perturbative coefficients at δt = 0,

a linear fitting procedure is employed by regressing the data against
[

t
Nmd

]4
.

as the analytic formula for the fourth-order coefficient of PCM is absent, a direct comparison

of the fourth-order coefficients between the TRPCM case and the PCM case is not feasible. To

gain insight into the behavior of
〈
E(4)

〉
in the large N limit, we turn to the results from NSPT

simulations of PCM conducted by Bruckmann and Puhr [46], with raw data available in Ref. [75].

Additionally, because their results are limited to smaller N , we, therefore, performed a separate

NSPT simulation for PCM with various volumes and extrapolated the results to infinite volume. A

detailed account of our NSPT simulation of PCM is provided in our main work’s paper [69]

In Fig. 1, we present an illustrative example of the extrapolation to a vanishing MD step
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N
〈
E(1)

〉 〈
E(2)

〉 〈
E(3)

〉 〈
E(4)

〉

3 -0.11112234(1477) -0.00328153(185) -0.00049017(43) -0.00010100(13)
5 -0.12000053(808) -0.00367717(110) -0.00052990(23) -0.00010180(6)
7 -0.12245450(527) -0.00379498(75) -0.00054004(16) -0.00010128(4)
9 -0.12345411(379) -0.00384602(56) -0.00054238(12) -0.00010108(3)

11 -0.12396632(289) -0.00386240(44) -0.00054371(9) -0.00009996(2)
13 -0.12425785(230) -0.00387216(36) -0.00054340(8) -0.00009976(2)
15 -0.12444483(188) -0.00388285(30) -0.00054445(6) -0.00009937(2)
17 -0.12456844(226) -0.00388773(37) -0.00054450(8) -0.00009915(2)
19 -0.12465177(166) -0.00389026(28) -0.00054433(6) -0.00009896(1)
21 -0.12471624(245) -0.00389380(41) -0.00054459(9) -0.00009891(2)

Table 3: Perturbative coefficients for the internal energy were obtained by extrapolating to vanish-
ing integration step size

size for the internal energy up to the fourth order, specifically for N = 21. To achieve this, we

utilized a 4th-order OMF integrator and performed a linear extrapolation with respect to δt4. This

linear dependence was consistently observed for other values of N under investigation, effectively

mitigating the systematic errors arising from the finite fictitious time step size. Consequently, the

numerical results we employ for further discussions are obtained at a vanishing MD step size and

are free from the systematic error.

The perturbative coefficients of the internal energy at vanishing MD step size for various val-

ues of N are provided in Table 3. Figure 2 depicts the N dependence of perturbative coefficients

of the internal energy up to the fourth order. The red dots represent the results obtained using TR-

PCM with NSPT, while the solid curves correspond to the analytic formula referenced in Ref.[73]

for PCM on an infinite volume lattice. We also list the first three order analytic expressions for the

PCM coefficients in an infinite volume, which are:

〈
E(1)

〉
= −N2 − 1

8N2
, (62)

〈
E(2)

〉
= −N2 − 1

8N2
× N2 − 2

32N2
, (63)

〈
E(3)

〉
= −N2 − 1

8N2

[
3N4 − 14N2 + 20

768N4
+

N4 − 4N2 + 12

64N4
Q1 +

N4 − 8N2 + 24

64N4
Q2

]
, (64)

where Q1 = 0.0958876 and Q2 = −0.0670 [73]. In the appendix of our primary work [69] in
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Figure 2: These figures display the dependence of perturbative coefficients of the internal energy
on the parameter N up to the fourth order. Solid lines are plotted to represent the equations from
Eq.(80) to Eq.(64) as a function of 1/N2.

which we have provided the analytic equations for the second-order coefficient of the TRPCM

concerning our specific values of N and K and a comparison between the numerical and analytic

results can be found. This inclusion demonstrates the complete consistency of the results obtained

through NSPT with these analytical values.

As observed in Fig. 2, the leading-order results (E(1)) coincide with those of the PCM, while

discrepancies arise for the second and third-order coefficients at finite N . Notably, the N depen-

dence of the TRPCM exhibits a milder slope compared to that of PCM, suggesting that the large

N limit can be efficiently approached using TRPCM. This effectiveness is further enhanced by

the reduced N dependence compared to PCM, where it is necessary to simulate the model with
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Figure 3: These figures provide a close-up view of the data presented in Fig. 2, focusing on the
limits as N approaches infinity.

different volumes and N .

In the TRPCM, the N dependence encompasses both finite N and finite volume corrections.

We conducted linear fits on NSPT data in terms of 1/N2, and the dashed and dotted lines in Fig. 3

represent the fitting results. Our focus on the leading finite N correction entails fitting the data with

N ≥ 11. The dashed and dotted lines illustrate the fit for N ≥ 11 and the fit excluding N ≤ 11,

respectively. The red triangle at 1/N2 → 0 corresponds to the large N extrapolation. The central

value is based on the dashed fit, and the error bar accounts for both statistical and systematic errors.

The difference between two fittings is used to estimate the systematic error for the extrapolation.

Table 4 presents the large N limit of the first four coefficients of the internal energy for the

TRPCM. The first three coefficients are consistent with the analytic results of the PCM in the large
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Order i of
〈
E(i)

〉
Analytic NSPT

1 -0.125 -0.12499981(234)(83)
2 -0.00390625 -0.00390558(38)(143)
3 -0.00054470 -0.000544953(82)(358)
4 N.A. -0.000098504(20)(172)

Table 4: Comparison between analytic and NSPT results for N →∞. The first error corresponds
to the statistical error, while the second error arises from the systematic errors in the fitting range.

N limit. For the fourth-order coefficient, additional calculations were performed involving pertur-

bative coefficients of the PCM at N = 11 and 19 for various volumes. These coefficients were

then used to perform the infinite volume limit (for details, refer to [69]). The 2-point extrapolation

of the PCM data aligns with that of the TRPCM in the large N limit. It is worth noting that the

slope of the TRPCM is still smaller than that of the PCM, indicating a smaller finite N correction.

The TRPCM is thus more efficient in reaching the large N limit than the PCM.

Beyond the leading order, finite N corrections become apparent [76]. The linear fitting results

obtained using N ≥ 11 are as follows

〈
E(1)

〉
= −0.12499981(248) + 0.12510(52)

N2
, (65)

〈
E(2)

〉
= −0.00390558(147) + 0.005320(82)

N2
, (66)

〈
E(3)

〉
= −0.000544953(367) + 0.000174(17)

N2
, (67)

〈
E(4)

〉
= −0.000098504(173) + −0.0001874(42)

N2
. (68)

The coefficients of the O(1/N2) term for
〈
E(2)

〉
and

〈
E(3)

〉
are smaller than those of PCM

(approximately 3/256 ≈ 0.01771875 for
〈
E(2)

〉
and 0.002525595 for

〈
E(3)

〉
).

Our results also suggest that the magnitude of the coefficient for the 1/N2 term is of the same

order as that of the constant term for each order. This observation enables us to further discuss

the idea of a single simulation. In this study, our goal is to evaluate coefficients at both high-order

and the large N limit. The concept of a single simulation, which aligns with the philosophy of

master field first presented by Witten [77], involves conducting a single simulation at a finite but

sufficiently large N value. This approach allows us to treat the results from finite N as if they
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were obtained in the infinite N limit. How to determine specific N value is based on the condition

that the magnitude of the finite N correction is smaller than the statistical error, ensuring reliable

results. At this point, the large N factorization property enters the game because the factorization

directly correlates with the statistical error.

In accordance with large N factorization, the expectation value of the product of single-trace

local operators at distinct lattice sites becomes the product of the individual expectation values of

the local operators plus some finite N correction which decreases as a function of f(1/N). As

taking the N = ∞ limit, the two local operators become independent. This property is crucial to

the single simulation and can be verifiable by examining the statistical variance of a local operator

in the TRPCM for example the internal energy.

On the other hand, the statistical error is directly linked to the variance and the number of in-

dependent samples obtained from MCMC. Taking the large N factorization into account, it results

in a decrease in variance as N increases. This implies a reduced requirement for the number of

independent samples needed to achieve a specific level of precision with NSPT for the perturbative

coefficients of the internal energy. A similar phenomenon occurs in the duality between classical

physics and quantum physics. As the Planck constant h approaches zero, fluctuations vanish, and

classical physics can be viewed as a classical approach to quantum physics.

The factorization property shows that the variance of the internal energy, Var [E], as N →∞
should behave

Var [E] =
〈
E2
〉
− ⟨E⟩2 →

N→∞
0. (69)

To ascertain whether the large N factorization occurs in the numerical simulation, we compute

the variance for the perturbation coefficient obtained from NSPT at each order.

Figure 4 and Table 5 illustrate the dependence of the variance on N . Figure 5 zooms in on

the behavior at the large N limit. The variance is still fitted using a linear function of 1/N2, as

follows:
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N Var[E(1)]× 104 Var[E(2)]× 106 Var[E(3)]× 107 Var[E(4)]× 108

3 0.2312(10) 0.3639(17) 0.1941(12) 0.1874(19)
5 0.06919(30) 0.12763(56) 0.05845(27) 0.04153(22)
7 0.02938(12) 0.06003(26) 0.02670(11) 0.017085(79)
9 0.015236(66) 0.03374(14) 0.014971(65) 0.009203(41)

11 0.008863(38) 0.020659(90) 0.009228(40) 0.005554(24)
13 0.005601(24) 0.013890(61) 0.006247(27) 0.003741(17)
15 0.003789(16) 0.009662(42) 0.004364(18) 0.002578(11)
17 0.002705(14) 0.007339(39) 0.003375(18) 0.002047(11)
19 0.001981(95) 0.005496(26) 0.002575(12) 0.0015712(75)
21 0.001510(12) 0.004325(33) 0.002064(15) 0.0012717(99)

Table 5: Variance of the perturbative coefficients for the internal energy after extrapolation to a
vanishing integration step size.

Order i of Var[E(i)] Var[E(i)]N→∞ a(i)

1 -0.786(45)(834)×10−7 0.11242(68)×10−3

2 -0.119(11)(111)×10−8 0.2612(17)×10−5

3 -0.403(54)(440)×10−10 0.11403(78)×10−6

4 -0.198(33)(282)×10−11 0.6693(47)×10−8

Table 6: Variance of the internal energy after extrapolating to infinite N

Var(E(k)) = Var(E(k))N→∞ +
a(k)

N2
. (70)

The dashed and dotted lines represent the fitting results with N ≥ 11 and with N ≥ 13 data,

respectively. It is evident that the variance approaches zero in the limit as N tends to infinity.

The red triangles at N = ∞ correspond to the results obtained without N = 11 data, and the

error bars include both statistical and systematic errors, calculated from the two fitting results. The

large N results are presented in Table 6, where the first and second errors denote the statistical

and systematic errors, respectively, and the fitting results for Var(E(k))N→∞ are nearly zero when

considering the error, which demonstrates the effectiveness of our simulation setup in preserving

the large N factorization.

These findings serve as a robust cross-check for the reliability of our NSPT results up to the

fourth order. Additionally, it is noteworthy that as the order k increases, the slope a(k) decreases.
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Figure 4: The N dependence of variance of perturbative coefficients of the internal energy up to
fourth order.

The statistical error is directly a function of both the variance and the number of statistical

(independent) samples, as follows: [78]

(
δE(k)

)2
=

Var(E(k))

Nsample

, (71)

where δE(k) is the statistical error of
〈
E(k)

〉
. The number of independent samples required to

achieve a fixed relative statistical error can be estimated as follows:

Nsample =
Var(E(k))

⟨E(k)⟩2

(〈
E(k)

〉

δE(k)

)2

. (72)
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Figure 5: Magnification of Fig. 4 to show the limits as N →∞.

Var(E(k)) and
〈
E(k)

〉
exhibit the following behavior, as taking the large N limit:

Var(E(k)) ≃ a(k)

N2
,
〈
E(k)

〉
≃
〈
E(k)

〉
∞ +

b(k)

N2
. (73)

Substituting Eq. (73) into Eq. (72), we have

Nsample ≃
1

N2

a(k)

⟨E(k)⟩2∞

(〈
E(k)

〉

δE(k)

)2

. (74)

If we fix the relative statistical error, the number of independent samples decreases as 1/N2,

in accordance with the well-known master field property of large N field theory [77]. With slight

modifications, the relative statistical error exhibits a linear decrease with increasing N at a fixed
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number of independent samples, as:

δE(k)

|⟨E(k)⟩| =
√
Var(E(k))√
Nsample

≃
√
a(k)

N
√
Nsample

. (75)

In this subsection, we have examined the finite N correction for each perturbative coefficient

of the internal energy. We can estimate the range of N values where the finite N correction is

significantly smaller than the statistical error. To estimate the number of statistics required for

a single simulation in the large N limit, we will combine two important properties of the large

N limit. In addition, it remains unknown that the k-dependence of a(k) and b(k) of Eq. (74). To

achieve this, we conducted first fitting on the ratio −
√
a(k)/

〈
E(k)

〉
∞ as a function of k, using the

data for k > 1. Our fitting results are displayed in Fig. 6, demonstrating a linear behavior as:

√
a(k)

|⟨E(k)⟩∞|
= 0.207k. (76)

When analyzing the finite N correction term,
∣∣b(k)/(N2

〈
E(k)

〉
)
∣∣, our initial observations

based on Eqs. (65) to (68) imply that |b(k)| ∼ |
〈
E(k)

〉
|, indicating that the finite N correction

behaves as 1/N2. However, from a Feynman diagrammatic perspective, there is a suggestion that

the finite N correction increases as k increases. Consequently, we list two functional forms that

describe how
∣∣∣∣

b(k)

⟨E(k)⟩∞

∣∣∣∣ exhibits order dependency as

∣∣∣∣
b(k)

⟨E(k)⟩∞

∣∣∣∣ = 1 or
∣∣∣∣

b(k)

⟨E(k)⟩∞

∣∣∣∣ = k. (77)

Based on these two assumptions, we will now assess the feasibility of a single simulation at a

higher order. In this analysis, we choose the order to be k = 20, allowing us to observe the renor-

malon behavior as documented in Ref. [46]. We set the relative error to δE(k=20)/
∣∣〈E(k=20)

〉∣∣ =
1%, striking a balance between computational time and the confidence of numerical results. As an

illustrative example, we will set the value of N to 100.

By utilizing Eqs. (74) and (76), we can calculate the number of independent samples required
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Figure 6: The k dependence of −
√
a(k)/

〈
E(k)

〉
∞.

to achieve any given statistical error for a given order k, as follows:

Nsample ≃
(
0.207k

N

)2
(〈

E(k)
〉

δE(k)

)2

. (78)

By substituting the given parameters, i.e., k = 20 and δE(k=20)/
∣∣〈E(k=20)

〉∣∣ = 1%, into this

equation, we obtain Nsample = 17. With Nsample = 17 for N = 100, we demonstrate the possibility

that the finite N correction is either comparable to or smaller than the statistical error for each

order below k = 20.

The upper panel in Fig.7 illustrates the k-dependence of the relative statistical error and the

finite N correction with N = 100. The blue circles represent the relative statistical error with
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Figure 7: The k dependence of relative statistical error and finite N correction. The number of
independent samples is determined by fixing the relative statistical error to be 1% at order k = 20.

Nsample = 17, set at 1% for k = 20. The upward and downward triangles represent the finite N

correction under the constant and linear assumptions, respectively, as given in Eq.(77). Both of

these finite N corrections are sufficiently smaller than the statistical error, affirming that we can

run a single simulation at N = 100 with Nsample = 17. This allows us to determine the perturbative

coefficients up to the 20th order. Using that numerical data, we will report how to extract the signal

of renormalons in the next subsection.

Conversely, as N decreases, the finite N correction increases to the point of becoming sta-

tistically visible. The panel below in Fig. 7 showcases the k-dependence of the relative statistical

45



Figure 8: This figure illustrates the thread dependency of computational wall time of the P-S
method-based matrix exponential in the NSPT case with N = 17.

error and the finite N correction with N = 50. The finite N correction, considering a linear de-

pendence, approaches the statistical error. For N values below 50, the finite N correction could

become statistically visible under the linear dependence assumption.

To reiterate, by setting the relative statistical error at a high-order coefficient and assuming

that the finite N corrections are dependent on k, it is plausible to reach the large N limit with

a single NSPT simulation at a sufficiently high N value. We will show the large N results with

high-order calculations obtained from the single simulation in Section 4.4.

46



4.3 Benchmarks of the P-S method

In this subsection, we will demonstrate the improvement in the computation of the matrix

exponential for NSPT by presenting benchmark results. This includes analyzing the maximum

acceleration benefits derived from using multi-core hardware, examining the time spent running

the BATCH-ZGEMM subroutine, and finally comparing the P-S method with Horner’s method to

validate the theoretical improvements calculated in Section 3.3.

In recent years, a shift in CPU architecture has been observed, transitioning from a focus on

increasing clock frequencies to the integration of a greater number of cores, thereby enhancing

computational capabilities. The pluralization of computation is now natively supported by both

hardware and software.

On the hardware side, pipelines within these instruments enable different operations to be

executed simultaneously, and single-instruction, multiple-data (SIMD) capabilities, facilitated by

wider registers and instruction set architectures, ensure the simultaneous processing of the same

operation on multiple data points. Together with SIMD, current CPU is equipped with multi-core

which also enables to execute independent operations or process in parallel.

From a software perspective, an increasing number of application programming interfaces

(APIs) have been developed, such as OpenMP [79] and OpenACC [80], to provide developers

with simple and flexible interfaces for creating parallel applications across different platforms to

make efficiently use of the SIMD and multi-core CPU.

To harness the full computational potential of these multiple cores with instrument level par-

allelization - SIMD, we initiated a benchmark to evaluate the parallelism of the P-S method. Our

investigation begins by applying a modified version of Amdahl’s Law, adapted as follows:

Twall = t0

[
(1− P ) +

P

num of threads

]
. (79)

In our notation, Twall represents the total wall time of the matrix exponential computed with

a number of parallel threads, t0 denotes the wall time when using a single thread, and P signifies

the proportion of operations that can be parallelized. We conducted a dedicated benchmark of the
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Figure 9: This figure illustrates the proportion of time spent on calling the ZGEMM subroutine in
relation to the entire matrix exponential program.

matrix exponential component within the P-S method-based NSPT program, employing various

thread counts.

Figure 8 illustrates the total wall time of the matrix exponential function using the P-S method

as a function of the number of OpenMP threads with N = 17. This wall time corresponds to

running the matrix exponential 100 times. By fitting a two-parameter model of Eq. (79) to our

observations, we found that approximately P = 80% of the task can be effectively parallelized.

This indicates that if we have infinite hardware’s capabilities, a potential speedup by a factor of

five will be achievable.

To investigate the source of the high level of parallelization, an additional numerical experi-

ment was conducted. In this experiment, we measured the amount of wall time spent during the
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execution of the ZGEMM-BATCH subroutine [72] and subsequently calculated the ratio between

this time and the total wall time of the matrix exponential program.

The results are plotted in Fig. 9. Our findings reveal that as the truncated order NPT increases,

the time spent on calling ZGEMM-BATCH also increases. This observation leads to the hypothesis

that as NPT →∞, the time spent in calling ZGEMM-BATCH becomes dominant.

It is noteworthy that ZGEMM-BATCH is a highly parallelized program, suggesting that a

significant portion of the observed high parallelization can be attributed to the optimized nature

of ZGEMM-BATCH. In specific case that the factorially divergent behavior in the perturbative

coefficients can be observed, where the problem size NPT typically ranges from 100 to 1000, ap-

proximately 80% of the execution time is devoted to calling ZGEMM-BATCH, showcasing its

remarkable efficiency.

Furthermore, as discussed earlier, the P-S method proves to be significantly more efficient

than Horner’s method. To substantiate this claim, we conducted a numerical experiment on the

improvement of adopting the new algorithm. In this specific unit test, we kept the matrix rank

fixed at N = 55 and configured the number of threads to be 1. The outcomes are presented in

Fig. 10.

The upper panel depicts the wall time of both algorithms as we vary the truncation order. As

NPT increases, the computation time for both algorithms also increases. However, the P-S method

consistently requires less time compared to Horner’s method. This implies that for larger values of

NPT, utilizing the P-S based method is more efficient, even in the NSPT case.

Moving to the panel below, we showcase the performance enhancement achieved by the new

algorithm which is the wall time ratio of the P-S to the Horner’s method. After performing a linear

regression analysis using all data points, we observe an exponent of approximately −0.42, which

is very close to the theoretically expected value of −0.5 estimated in Section 3.3. This indicates

significantly faster performance of the P-S method. In addition, we can perform linear regression

by excluding the first serval data points. We observe that as more data points are excluded, the

slope approaches the theoretical value of −0.5, indicating a significant runtime overhead when

NPT is small.
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Figure 10: These figures present a comparison between the P-S method and Horner’s method-based
matrix exponential with N = 17. The upper panel displays the wall time of the two algorithms,
while the down panel shows the ratio of the wall time of the P-S method to that of Horner’s method.

4.4 Large N results at a high-order: single simulation and renormalons

In the preceding subsections, we have demonstrated the large N factorization and the new

algorithm to improve the computational complexity in NSPT through the implementation of the

newly developed P-S method. Combining these consequences, we can perform high-order calcu-

lations at N → ∞ in a reasonable amount of time and examine the existence of renormalons. To

do that, we first focus on the perturbative coefficients of the internal energy up to λ20.

Figure 11 shows the perturbative coefficients ⟨E(n)⟩ up to λ20 for various values of N . It is
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Figure 11: The figure shows the perturbative coefficients up to λ20 in log-scale.

evident that even for different values of N , the perturbation coefficients do not exhibit significant

dependence on N for low-order terms, up to λ15. This outcome aligns with our previous assump-

tion that N = 55 is sufficient to perform a single simulation with our choice of number of samples,

and the results are considered to have reached the large N limit.

However, upon examining high-order terms, we observe variations in E(n) with increasing

N for the same order. One possible explanation for this behavior is that the volume dependence

(V = L2 = N2) is more pronounced in high-order instances than initially assumed. Utilizing our

high-order data, we performed a fitting procedure on Eq.(77) once more, revealing the exponential

dependency of order n. Further details are available in Fig.12.

Nonetheless, it is worth noting that as N increases, the value of E(n) converges towards a

specific value. This can be observed from the fact that the values of N = 144 and N = 233 in the
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Figure 12: The figure shows a fitting about the exponential order dependency of Eq.(77).

high-order cases are nearly identical. The next observable is the modified ratio, which is defined

as

rn =
⟨E(n)⟩
⟨nEn−1⟩ . (80)

In the large N limit the modified ratio theoretically converges as

lim
n→∞

r(n) =
1

16π
, (81)

from the renormalons argument discussed in Section 2.2. Using the perturbation coefficients ob-

tained from NSPT, we calculate the modified ratio, and the results are shown in Fig. 13.
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Figure 13: The figure shows the modified ratio defined in Eqs. (80). The horizontal line represents
1

16π
.

To verify the N dependence on the modified ratio, we can divide it into two parts for discus-

sion.

53



Figure 14: The figure shows the modified ratio defined in Eq. (80) without N = 233. The horizon-

tal line represents 1
16π

.

Let us start our analysis by turning our attention to Fig. 14 where results with N = 233 are

removed. In this figure, it is evident that the modified ratio maintains a consistent pattern across

various values of N in the lower-order region where n < 15. However, as we delve into the

high-order domain n ≥ 15 specifically, the N dependency becomes notably more pronounced.

We observe a discernible trend where the modified ratio for N = 55 and N = 89 decreases

as the order of the expansion increases for n > 15. Remarkably, the slope for N = 89 appears less

steep than that for N = 55, indicating a stronger dependency of perturbation coefficients on the

system’s volume or equally N , particularly in these high-order coefficients.

An intriguing phenomenon appears when N = 144 is considered. Here, we witness a conver-
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gence of the modified ratio toward a consistent value. Nevertheless, a critical question remains: Is

N = 144 sufficiently large to accommodate λ20 within a ”single simulation” ? To address this, we

must proceed with our next discussion.

Figure 15: The figure shows the modified ratio defined in Eqs. (80) for N = 144, 233. The

horizontal line represents 1
16π

.

In Fig. 15, we only show the modified ratio for N = 144 and N = 233 for comparison.

Similar to the results observed for the perturbation coefficients in Fig. 11, there is no significant

difference in the modified ratio between these two values of N for any order, which confirms that

N = 144 is indeed large enough to perform a ”single simulation” for the internal energy up to

λ20 order. For the high-order case (≥ λ15), we observe that the modified ratio oscillates around a

constant value of 1/(16π), indicating convergence to a universal value. This observation is in line
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with theoretically expected from renormalons argument in Eq. (81), suggesting the existence of

renormalons in the large N limit and providing evidence for the feasibility of a ”single simulation”

in the TRPCM case.
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5 Summary and outlook

Perturbation theory, which involves so many complicated calculations and field variable ex-

panded in terms of a small parameter, provides a straightforward approach to understanding many

physical systems from classical system to quantum system. However, the behavior of the per-

turbation series at high-order can be quite intricate since it may not converge but rather form an

asymptotic series. This phenomenon is already evident in relatively simple quantum mechanical

systems, such as the an-harmonic oscillator when expanded around trivial vacuum, and even in

regular ϕ4 non-Gaussian integrals , which serve as toy models for path integrals. The same things

happen in the realm of quantum field theories. The asymptotic nature of an expansion in powers

of g, the coupling constant, suggests an ambiguity, first pointed out by F. Dyson [81], and his ob-

servation tentatively leads to the conclusion that all the power-series expansions currently used in

quantum electrodynamics are divergent after the renormalization of mass and charge. While the

divergence does not restrict the accuracy of practical calculations that can be made with the theory,

it does raise important questions of principle concerning the nature of the physical concepts upon

which the theory is built. Subsequent studies have delved into the factorially growing perturbative

coefficients and their relation to mysterious non-perturbative effects.

Motivated by the aforementioned academic interests and the growing applications of resur-

gence theory, I conducted an investigation into the non-perturbative nature of TRPCM, employ-

ing tools such as NSPT, the large N limit and twisted reduction. Consequently, I successfully

discerned the anticipated behavior utilizing the perturbative coefficients of the internal energy.

Furthermore, I developed a new algorithm, called the P-S method, for computing the matrix ex-

ponential. Benchmark results demonstrate that the P-S method allows us to achieve higher speeds

than the commonly used Horner’s method, indicating its significance in high-order simulations.

For future studies, there are numerous alternatives to consider. From a physics perspective,

the TEK model shares many similarities with TRPCM since they both involve the large N limit,

large N factorization enabling us to perform the single simulation, and exhibit asymptotic freedom.

The TEK model, identical to the SU(N) pure Yang-Mills theory, has the potential to provide more
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comprehensive insights into physics compared to the TRPCM. For example, in the large N limit

of the full QCD theory, the fermion becomes decoupled from gluons and exhibits similar physical

properties as the TEK model.

However, from a computational perspective, the TEK model is more complicated because it

involves four dynamic field variable, whereas the TRPCM only deals with one. Furthermore, the

effective volume is different in two models, where L = N in the TRPCM while L =
√
N in the

TEK model. Given that, in TEK model, in order to perform the single simulation, larger N will be

required.

Additionally, to extract non-perturbative information from the numerical data of perturbation

coefficient in the asymptotically divergent region, one must develop a novel numerical resumma-

tion scheme. Traditional methods like Borel resummation are effective for total series but may not

be suitable for truncated series and analytic values. We have attempted to achieve this by employ-

ing specific special functions. While it worked well for the Gross-Witten-Wadia (GWW) model, it

encountered challenges when applied to our high-order numerical data.

The last challenge pertains to the numerical simulation, particularly the computational time.

As discussed in Section 4.3, the implementation of a new and more efficient algorithm has led to a

decrease in computational time. Another bottleneck in the NSPT program is associated with com-

puting the convolution of two perturbative series defined in Eq.(41). To address this, an alternative

has been developed [82], which is based on the first Fourier transformation convolution algorithm.

We anticipate that more effective algorithms will be developed in the future.
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A Internal energy in TRPCM

n this appendix, we will describe the analytical part of perturbative calculations in TRPCM

and compare some results to lattice PCM to demonstrate the equivalence of the two models, espe-

cially in the large N limit. This discussion is based on the private note provided by my collaborator,

Antonio González-Arroyo [83] and the textbook of my other collaborators [84].

We start with d (the space-time dimension) N ×N matrices Γµ that satisfy the twisted alge-

braic relation

ΓµΓν = e2πinµν/NΓνΓµ.

In two dimensions, nµν = Kϵµν , where k is an integer coprime with N and ϵµν is a anti-

symmetric tensor (ϵ12 = −ϵ21=1). As usual, we will also need its modular inverse integer K̄

satisfying KK̄ = 1 mod N . We can introduce the dual basis Γ̂(p) that satisfies

ΓµΓ̂(p)Γ
†
µ = eip

µ

Γ̂(p),

from matrix product of Γµ, where the 2-dimensional integer vectors p can take N2 values, and

the set of matrices with p ̸= 0 defines a basis for the SU(N) Lie algebra. In 2-dimensions,

p = (2πn1/N, 2πn2/N), where ni are integers modulo N . The components of p are denoted by

superscripts pµ = 2πnµ/N . We normalize the matrices as follows:

Tr
(
Γ̂(p)Γ̂†(p)

)
=

1

2
,

This defines the matrices up to multiplication by a phase. Moreover, we can also express

Γ̂(−p) = eiα(p)Γ̂†(p),

where α(p) depends on the chosen phases. For all calculations, one needs to compute traces of

products of the Γ̂(p). This defines vertex functions as follows:
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V (p1, p2, . . . ps) ≡ Tr
(
Γ̂ (p1) Γ̂ (p2) · · · Γ̂ (ps)

)
.

Typically, in a diagram, these vertex functions need to be computed by joining the momenta

in pairs with propagators. Planar diagrams are those in which these lines do not intersect. For our

calculation up to order λ2, we will require a planar vertex

V (p,−p, q,−q) = 1

4N
eiα(p)+iα(q),

and a non-planar one

V (p, q,−p,−q) = 1

4N
eiα(p)+iα(q) cos

(
Nk̄ (p1q2 − p2q1)

2π

)
.

A.1 The action in perturbation theory

The partition function of the twisted reduced principal chiral model is given by

Z =

∫
dU exp

{
N

g2

∑

µ

Pµ

}
,

where U is an SU(N) matrix and

Pµ =
1

N
Tr
(
UΓµU

†Γ†
µ

)
+

1

N
Tr
(
U †ΓµUΓ†

µ

)
,

which is real. This form is identical to and modified from Eq. (11) for convenience in perturbation

calculation. The minimum of the action, the perturbation vacuum,is attained for U = zI, where I

is the unit matrix multiplied by an element of the center z ∈ SU(N). It is worth noting that for

the vacuum solution, the integrand of the partition function becomes exp(2dN/g2). In perturbative

calculations, all values of z yield equal results, so we will set z = 1.

In the following contents, we will compute the action using perturbation theory and it is better

to divide the action into 3 parts

S = S0 + SI + SM
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where the S0 is the free part of the action which contains the kinetic term, the SI is the interaction

part and SM is from the Haar measure. Then we can expand U around the minimum action solution

by writing

U = e−igA,

where A is trace-less hermitian. We then expand the action as a power series in g. The quadratic

term in A is independent of g and defines the kinetic term

S0 =
∑

µ

Tr
(
A2

;µ

)
,

where we introduced the notation:

A;µ = ΓµAΓ
†
µ − A.

The remaining portion of the action contains positive powers of g2 and defines the interacting

part SI . The final step is to expand the matrix A in the basis Γ̂(p) as follows:

A =
′∑

p

Â(p)Γ̂(p),

where the primed summation indicates that the sum excludes p = 0. The coefficients Â(p) are, in

principle, complex. The kinetic term can be expressed in terms of them as follows

S0 =
1

2

∑

µ

∑

p

∣∣eipµ − 1
∣∣2 |Â(p)|2 = 1

2

∑

p

eiα(p)Â(p)Â(−p)
(
2
∑

µ

(1− cos (pµ))

)
,

and
∑

µ

(1− cos (pµ)) =
∑

µ

(2 sin (pµ)) =
∑

µ

(
P̃µ

2
)

This quadratic action defines a Gaussian measure
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Z0 =
′∏

p

(∫
dÂ(p)

)
e−S0 ,

and expectation values with respect to this measure are labelled by a subscript 0 :

⟨O⟩0 =
1

Z0

′∏

p

(∫
dÂ(p)

)
Oe−S0 .

Thus, with this measure we define the propagator as

⟨Â(p)Â(q)⟩0 = δ(p+ q)P(p)e−iα(p)

with

P(p) =
1

2
∑

µ (1− cos (pµ))
≡ 1

D(p)
.

Note that in the original partition function, one integrates over dU , the Haar measure of the

group, while in the Gaussian theory, one integrates over the coefficients Â(p). This change of

variables gives rise to a Jacobian that we express as follows:

dU = gN
2−1

′∏

p

(dÂ(p))e−SM ,

which defines the so-called measure action SM . This measure is, in fact, the square root of the

determinant of the metric tensor g corresponding to the SU(N) group:

ds2 =
′∑

p,q

g(p, q)dÂ(p)dÂ(q).

Thus the measure action is

e−SM =
√
det(g) = exp

{
1

2
Tr(log(g))

}
,

and the metric is given by

g(p, q) = 2Tr

(
∂U

∂Â(p)

∂U †

∂Â(q)

)
,
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where the unitary matrix is denoted as U = e−igA. Consequently, one also needs to expand the

measure as a power series in g. The formulas for this expansion can be found in the paper on

perturbative expansion on Wilson loops [85]. In leading order, one obtains:

SM =
λ

24

′∑

q

Â(q)Â(−q)eiα(q) +O
(
λ2
)
.

We have expressed the result in terms of the ’t Hooft coupling λ = g2N .

A.2 Computing the internal energy

As usual, the internal energy can be obtained by taking the derivative of the partition function

with respect to 1/g2, yielding the following:

E =
1

2d

〈∑

µ

Pµ

〉
=

1

2dN

∂ logZ

∂1/g2
.

Utilizing the results from the previous sections, we can rewrite the partition function as:

Z = gN
2−1

′∏

p

(∫
dÂ(p)

)
exp

{
2dN/g2 − S0 − SM − SI

}
.

where S0 and SM are obtained from previous subsections and SI will be introduced in the next

part. Now, perturbation theory involves expressing this formula in terms of the Gaussian partition

function:

Z = Z0g
N2−1e2dN/g2 ⟨exp {−SM − SI}⟩0 .

From here we conclude

E = 1− λ

4d

N2 − 1

N2
− λ2

2dN3

∂ log (⟨exp {−SM − SI}⟩0
∂g2

,

where the second term is actually as same as the λ level of internal energy of PCM in Eq. (62).
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A.3 Computation to order λ2

Both SM and SI start their expansion up to order g2, so at this order, we can simply write

⟨P⟩ = 1− λ

4d

N2 − 1

N2
+

λ2

2dN2

∂ ⟨(SM + SI)⟩0
∂λ

,

and keep only terms of order g2 in (SM + SI). First, we can compute the contribution of the

measure, which was given earlier up to this order

SM =
λ

24

′∑

q

Â(q)Â(−q)eiα(q).

Thus, the contribution to the internal energy is

λ2

48dN2

′∑

q

1

2
∑

µ (1− cos (qµ))
=

λ2

48d
X(d, L̂),

where we introduced the tadpole integral

X(d, L̂) =
1

N2

′∑

q

1

2
∑

µ (1− cos (qµ))

This integral diverges logarithmically as L̂ goes to infinity for d = 2. The next term arises from SI

up to order λ, and is given by the following expression:

λ

N

∑

µ

(
− 4

4!
Tr
(
A4
)
+

2

3!
Tr
(
AΓµA

3Γ†
µ + hc

)
− 2

4
Tr
(
A2ΓµA

2Γ†
µ

))
.

Expanding A in the basis Γ̂(p),the term in parenthesis becomes

∑

p1,p2,p3,p4

A (p1)A (p2)A (p3)A (p4)V (p1, p2, p3, p4)

(
−1

6
+

2

3
cos (pµ1)−

1

2
cos (pµ1 + pµ2)

)
.

Then we perform the contractions involved in ⟨A (p1)A (p2)A (p3)A (p4)⟩0. This decompo-
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sition consists of a planar part and a non-planar one. In the planar part, contractions occur among

contiguous A:

⟨A (p1)A (p2)⟩0 ⟨A (p3)A (p4)⟩0 + ⟨A (p4)A (p1)⟩0 ⟨A (p2)A (p3)⟩0 .

Combining this with the trace V one gets

1

4N

∑

p1

∑

p3

P (p1)P (p3) +
1

4N

∑

p1

∑

p2

P (p1)P (p3) .

Then putting together all the terms one gets

λ

4N2

∑

µ

′∑

p1

′∑

p2

(−1 + 4 cos (pµ1))

3D (p1)D (p2)
− 1 + cos (pµ1 + pµ2)

2D (p1)D (p2)

)
,

and writing the numerator in terms of Dµ(p) = 2 (1− cos (pµ)) we get

− λ

4N2

(
N2 − 1

)(N2X

6
+

N2 − 1

8d

)
.

Notice that the term involving the logarithmically divergent tadpole, − (N2−1)X
24N2 , partially can-

cels with the one coming from the measure, resulting in the following at order λ2:

E
(2)
planar =

1

2d

(
X

24N2
− 1

32d

(
1− 1

N2

)2
)
.

We see that this provides the correct leading term, but the correction involves a log(N)/N2

dependence. Let us now proceed to compute the non-planar part. We have

⟨A (p1)A (p3)⟩0 ⟨A (p2)A (p4)⟩0 V (p1, p2, p3, p4)Q (p1, p2) ,

where

Q (p1, p2) =
∑

µ

(
−1

6
+

2

3
cos (pµ1)−

1

2
cos (pµ1 + pµ2)

)
.
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Substituting the expression of the propagators, we obtain

δ (p1 + p3) δ (p2 + p4)P (p1)P (p2)V (p1, p2,−p1,−p2) e−iα(p1)−iα(p2Q (p1, p2) .

Finally collecting all the factors together we get the non-planar contribution (for d = 2 )

E
(2)
non-planar =

1

16N4

′∑

p

′∑

q

P(p)P(q)Q(p, q) cos

(
Nk̄ (p1q2 − p2q1)

2π

)
.

The non-planar part tends to zero as N −→ ∞, as explained in the proof of the volume

independence of the twisted reduced models. Furthermore, in the non-planar part, there appears to

be a term that cancels the contribution proportional to X from the planar part. This implies that

there would be no subleading log(N)/N2 term, as indicated by the calculation. Thus, the leading

correction goes like 1/N2, as shown by the numerical results. In summary, we have computed the

coefficient E(2) in perturbation theory, given by the sum

E(2) = E
(2)
planar + E

(2)
non-planar ,

which can be easily computed numerically.
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B An example of similarities between n-dimensional PCM and

2n-dimensional gauge theory

In this study, our primary aim is to investigate the perturbative behavior of gauge theories

describing the interaction among quarks and gluons in the real world. However, due to the many

similarities between gauge theories and PCM, we can extract valuable information from this toy

model. In this appendix, we aim to introduce, as the title suggests, the similarities between n-

dimensional PCM and 2n gauge theory. More detailed information can be found in Ref. [27].

PCM is a unitary matrix model defined on the lattice. Similarly, gauge theory is also a matrix

model defined on the lattice. Understanding the connection between these two models will provide

additional insights into one model through the lens of the other. In Table 7, we list the relations

betweenn-d PCM and 2n-d gauge theories.

n-d PCM 2n gauge theories

site link

link plaquette

mass gap string tension

two-point function Wilson loop

Table 7: Similarities between PCM and gauge theories.

To illustrate that, here, we consider a 1-d lattice PCM whose action can be defined as

SPCM = −2Nβ
∑

x,µ

ReTr
[
UxU

†
x+µ

]
, β =

1

Ng2
. (82)

In addition, the 2-d gauge theory is built upon the dynamical variable Ux,µ, defined as the link

variable and the Wilson lattice action is SGauge = −β∑x

∑
µ,v = Tr(UµUvU

†
µU

†
v ). However, in

the 2-d case, various techniques can be employed to simplify the model for analysis, such as fixing
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the gauge as

Ux,0 = I, (83)

where I denotes the identity matrix, corresponding to the lattice version of the temporal gauge

A0 = 0 and Ux,0 = eigA0 . Upon substituting this expression into the definition of the 2-D plaquette,

one can obtain

Tr
(
Ux,0Ux+0,1U

†
x+1,0U

†
x,1

)
→ TrUx+0,1U

†
x,1, (84)

and therefore the action of 2-d gauge theory becomes

S = −βN
∑

i

Tr
(
UiU

†
i+1 + U †

i Ui+1

)
, (85)

which is identical to Eq. (82) after re-scaling the coupling constant, even though the definition of

the dynamical variable U differs between the two cases.
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[39] Cihan Pazarbaşı and Dieter Van Den Bleeken. Renormalons in quantum mechanics. JHEP,

08:096, 2019.

[40] M. Beneke. Renormalons. Phys. Rept., 317:1–142, 1999.

[41] Gerald V. Dunne and Mithat Unsal. Uniform WKB, Multi-instantons, and Resurgent Trans-

Series. Phys. Rev. D, 89(10):105009, 2014.

[42] Daniele Dorigoni. An Introduction to Resurgence, Trans-Series and Alien Calculus. Annals

Phys., 409:167914, 2019.
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