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INTRODUCTION

The automotive industry relies heavily on simulation methods to validate designs,
processes, and optimization. There are several reasons for this fact: the computational
power is increasing exponentially, the simulation techniques are becoming more accurate,
and most importantly, the cost-benefit of using simulation has reached a high level. All
these factors have contributed to reducing the development cost, producing an optimal
process, and minimizing the time to reach the market.

The simulation accuracy achieved high maturity, mainly based on the improvement of the
constitutive model. This model allows for the calculation of stress based on other factors,
such as temperature, strain rate, and strain. Nowadays, there are plenty of constitutive
models that allow model-specific phenomena such as elastic plasticity, hyper-elasticity,
creep, and the Bauschinger effect. However, the accuracy of the outcome of these models
relies on the accuracy of the parameter feeding the equation.

To achieve good accuracy of the inputs for material model, it is needed to perform a
constitutive analysis of each material intended to be used in a design the consequently, as
input in a simulation model. This allowed us to understand the behavior of the material and,
therefore, to choose an adequate constitutive model. Then, the material parameters must be
determined, which is also known as material parameter identification. Finally, the
constitutive model can be used in the simulation model by feeding the determined
parameters.

In this study, an optimization framework was developed to determine the parameters for
the constitutive equation used in hot forging modeling. To test this framework, 38MnVS6
steel was used, and two commonly used constitutive models were used: Johnson-Cook and
the Hensel-Spittel models. The state-of-the-art regarding material behavior at high
temperatures, a type of model, and optimization techniques are provided in Chapter 2.
Subsequently, the material, methods and experimental description, along with the
constitutive analysis base on the Arrhenius-type equation is given in Chapter 3. Parameter
identification is demonstrated in Chapter 4, which also shows a new objective function
proposed in this study to reduce the number of iterations during the optimization procedure.
Finally, a conclusion and an outlook are provided in Chapter 5.



1. PROBLEM STATEMENT

1.1. Hypothesis
Introducing a logarithmic function into the objective function employed in the parameter
identification process for the constitutive equation commonly used to model the plastic
flow stress in hot metal forming applications has the potential to significantly improve the
optimization process. This is based on the well-known characteristic of logarithmic
functions, which exhibit rapid changes in the output for minimal input variations.

Based on this property of the logarithmic functions, we anticipate a substantial reduction in
the number of iterations required to achieve convergence for parameter identification. The
primary objective of this optimization is to minimize the error between the outcomes of the
constitutive equation and experimentally measured flow stress. Currently, the least-squares
method is the most widely used approach in this domain, making it an ideal benchmark for
comparison with the proposed function.

1.2. Objective
To develop a methodology framework based on the implementation of the logarithmic
function within the parameter identification process with the goal of improving the
accuracy and efficiency of modeling plastic flow stress in hot metal forming. As a result, a
procedure that can be easily implemented for industrial applications is expected, allowing a
reduction in the identification time for constitutive modeling.

1.3. Justification

Currently, the time frame for the Design and Development (D&D) of new products is
getting shorter and shorter. This mainstream has been supported by the integration of
advanced computer-aided design (CAD) software and computer-aided engineering (CAE)
software. Moreover, manufacturing systems, such as additive manufacturing, have
experienced significant improvements. Furthermore, new materials have been developed,
reaching yield limits over 1000 MPa, which has been a key part of the lightweight
strategies in the automotive industry: reducing mass by replacing material with other more
resistant materials, which gives similar or even better performance, and maintains a lower
mass.

The automotive industry extensively uses metal forming processes to manufacture vehicle
components. This is due to the metal forming ability to produce at a high rate while
maintaining a low piece cost. For instance, sheet metal forming processes are used to



produce body in white (BIW) parts, whereas the forging process is used to produce engine
and transmission parts, such as crankshafts, connecting roads, and gears. Regardless of the
material and function of the components, CAD and CAE usage is involved because of the
conceptualization, virtual design validation, and process design. This allows engineers to
significantly reduce the number of iterations required to complete and validate a design.

The output reliability of the CAE simulation, such as a Finite Element Analysis (FEA),
strongly depends on the quality of the inputs, that is, the geometry and its discretization
(mesh), boundary condition (loads and constraints), and constitutive models (and its
parameters). Therefore, it is necessary to have an accurate model if the design relies on the
results. This study focuses on generating an optimization framework that allows the
determination of parameters for a constitutive model and quickly and accurately estimates
its parameters. The main objective is to generate a framework intended to provide fast and
reliable constitutive parameters for industrial applications, such that the forging process can
be analyzed properly during the design stages or for troubleshooting during production.
Furthermore, product design can be optimized in addition to other aspects, such as process
optimization (material utilization) and tool life optimization.
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2. BACKGROUND AND STATE OF THE ART

Metal-forming applications have been widely used for the massive production of goods
since the Second Industrial Revolution. In metal-forming applications, material description
has been one of the most challenging aspects; several efforts have been made on this aspect
since the last century. Originally, metal-forming processes were developed through trial
and error, relying on experience. Numerical simulations have been applied to process
modeling as their capabilities to capture complex phenomena have been increasing rapidly
and are still in progress. Among the advances in numerical simulation, the constitutive
equation for material behavior description stands out. The complexity of the material
behavior is transferred to the mathematical formulation of these equations, which are later
solved by simulation. Therefore, material parameter identification for constitutive
equations is a central aspect of process modeling.

In this chapter, an introductory background is given, stating some basics of the metal
forming processes, including a central aspect of these processes, that is, the material
behavior and its characterization. Furthermore, a quick review of the optimization
techniques is provided to arrive at material parameter identification, the major topic
addressed in this work.

2.1. Metal forming processes

In modern manufacturing, there are two methods to classify processes based on material
deformation: property-driven and geometry-driven. Metal-forming techniques fall into the
geometry-driven category, which consists of transferring a geometry from a tool or die into
a workpiece called a blank (in sheet metal) or billet (in bulk-forming operations). The
initial geometries are generally simple, such as a sheet blank or a cylinder, and then
plastically deformed by the load applied by tools or dies to obtain the final shape, as shown
in Figure 1.

11
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Figure 1. Essential bulk and sheet-metal forming processes: (A) forging, (B) rolling, (C) extruding; (D) drawing; (E)
shearing; (F) stamping. [1].

Reprinted with permission from Elsevier.

For all processes, there are some input parameters and characteristics, such as material,
process routing, process window, tooling design, and equipment. After the process is
completed, there are specific outputs such as product geometry, microstructure, defects,
cost, and environmental impact [2]. The amount of production per year has increased in
recent years, even though some relocation has occurred, as reported by EUROFORGE [3].
These statistics show the increment in production volume per year; therefore, this involves
significant challenges from different standpoints, such as engineering, design, and logistics,
among the other domains involved in the supply chain.

To reduce the cost and time impact due to trials, process modeling is an advantageous
approach because it offers several capabilities, as Dixit [4] pointed out: (1) the required
deformation load, (2) energy consumption in the process, (3) stresses on the dies and tools,
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(4) defects in the process, (5) quality of the product, particularly in terms of dimensional
accuracy and surface integrity, (6) properties of the product, (7) stress, strain, strain rate,
and temperature distribution in the product as well as tooling, and (8) life assessment of the
tooling and machine. This information can be obtained from a process model, which is an
essential step before optimization is implemented. Recent challenges in bulk metal forming
are mainly driven by the necessity of improvements in precision forming, as pointed out by
Gronostajski et al. [5], which is more challenging because it is susceptible to the tool
geometry and billet size. Therefore, the accuracy of tool wear, material flow, and process
parameters is a central aspect to consider during the design and development of a product.

In forming simulations and obtaining accurate stress and strain fields, the FEA code
requires secure input data, such as geometry, mesh, nonlinear material behavior laws (also
known as constitutive equations), loading cases, and friction laws. [6]. All of these aspects
have a significant effect on the model outcome, and their correct determination is crucial
for proper modeling. For accurate inputs, two approaches are typically used in engineering,
as shown in Figure 2: The first is called Finite Element Model Updating (FEMU), where
parameters are changed until a good fit is obtained for one or more variables, such as load
and stain. The second approach is called the Virtual Field Method (VFM), which uses a
balance between the internal and external virtual work to fit the parameters. The following
subsection briefly introduces the constitutive equation commonly used in hot forging and
the process effect on material behavior, as well as friction and tribology at high
temperatures.

| Numerical I = Experimental Balalnce equation L
Simulation | ';-' Observations. Ememal vs ntemal
B Lt
E J! L 1 = Local(uer) P

= | Numerical g [-— [ruas "';‘"o‘(;":l"‘
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Figure 2. General methodologies for parameter identification: (a) Finite Element Model Updating (FEMU) and (b)
Virtual Field Method (VFM) [6].

Reproduced with permission from Springer.

2.2. Material behavior at high temperature

Metals deformed at high temperatures exhibit complex behavior; they are a mixture of
hardening and softening that occur simultaneously. However, depending on the

13



temperature and amount of deformation, either hardening or softening is dominant. In
general, when metals are deformed at elevated temperatures, they exhibit four stages, as
shown in Figure 3. In phase I, work hardening (WH) occurs, and its rate is higher than the
softening rate induced by dynamic recovery (DRV); therefore, the stress increases rapidly.
During stage II, known as the transition, there is competition among the effects of WH,
DRV, and dynamic recrystallization (DRX), where the stress still increases, although it
does slowly. During stage IlII, softening occurs, and the stress drops rapidly owing to DRX.
Finally, in stage IV, a steady state is reached owing to a balance between DRV and DRX

[7].

True Stress (MPa)

_E______________

H+DAV+DRX

-

S e

£ shishly

True Strain

tran rka

Figure 3. Typical flow stress curve at the elevated temperature [7].

Reproduced with permission from Elsevier.

These stages depend on the deformation temperature, strain rate, and chemical composition.
During dynamic recovery, the original grains became increasingly strained, but the sub-
boundaries remained equiaxed, as shown in Figure 4 (a). With further deformation, more
potential nuclei were activated and new recrystallized grains appeared [8], as shown in
Figure 4 (b).
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Figure 4. Evolution of microstructure during (a) hot deformation of a material showing recovery and (b) continuous [8].

Reproduced under Creative Common Attribution 3.0 International License
https://creativecommons.org/licenses/by/3.0/

There are four characteristic points of interest in a typical stress-strain response curve at
high temperature, as can be seen in Figure 5: g, is when the plastic deformation starts, o,
is the maximum (peak) stress value achieved ,and its corresponding peak strain value &,
then the stress decreases until the inflection point o; is observed at its corresponding
inflection stain &;; finally the steady state is achieve, dnoted by the pair (o, &).

|£|'.Gl'|

True Stress 6 [MPa]

True Strain € [-]

Figure 5 Typical high-temperature true stress-strain response under compression [9].

Reproduced under Creative Common Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/.
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Using a phenomenological standpoint, the metals flow stress o can be expressed as
function of temperature T, strain &, and strain rate &, as is expressed by Equation 1. In hot
forging of metals, when temperatures above the recrystallization point are used, the effect
of strain is negligible [2].

o=f(T,é) Equation I

Let us now consider 05Cr17Ni4Cu4ND steel deformed at high temperature and compressed
in the cylindrical test (also known as the upsetting test). When the temperature is constant
and the strain rate changes (but remains constant during the test), the effect is shown in
Figure 6 (a), where the flow stress increases with the strain rate. On the other hand, when
the strain rate was maintained constant and the test temperature changed (but remained
constant during the test), as shown in Figure 6 (b), the flow stress increased when the
deformation temperature decreased.

200 200 _ ;
(a) 1250°C (b) Pesksress  Strain-rate 0.1s
l"""'"""""--nn
1 o . i 'i--..'..‘..
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o , Proalk s o .-**"':“*'41. e
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'd/ [ ' MH“““AM
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Figure 6.Flow stress of 05Cr17Ni4Cu4Nb steel (a) at 1250 °C and (b) at 0.1 s~ [10].

Reproduced under Creative Common Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/.

2.3.0ptimizations methods
The complexity of a problem is driven by the number of variables required to properly
model it. This can lead to the existence of several local minima, and it is the user that needs
to evaluate the result. There are different methods suitable for each type of problem [11]:
simple search, gradient-based, and evolutionary. Furthermore, based on the type of search,
some authors distinguish between local, global, and hybrid searches [12]. In Figure 7, a
classification based on the type of search is given; nevertheless, this classification does not
account for all methods, nor is it mentioned in the discussion. Moreover, as pointed out by
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Wolpert and Macready [13], there is no ultimate optimization method that solves all
problems equally efficiently, and it is dangerous to evaluate an optimization method based
on a small sample of problems.

trust- line evolutionary
region search algorithms

systems

J | l l
oo ] [N (SR feona] [0 | [seme] [
[ fg

local search global search

Figure 7. Overview and classification of different optimization methods [12].

Reprinted with permission from Elsevier.

2.3.1. Simple searching methods
Simple search methods are also known as gradient-free or direct search methods. They are
based only on the evaluation of the objective function (OF), which makes them
computationally fast, easy to implement, and useful when the gradient is difficult to
calculate. However, these methods can easily fall into local minima, which also means that
they are highly sensitive to the starting point and user experience. There are different
algorithms for this method, including Rosenbrock, Simplex, and Powell.

To explain gradient-free methods, we can mention the Nelder-Mead [14] of the Simplex
Algorithm (NMSA), which finds a local minimum to an objective function (OF). For each
iteration, the algorithm performed four operations: reflection, expansion, contraction, and
similarity transformation. The first step was to change the worst point with a point reflected
through the centroid in the opposite direction. If this point is better than the current point,
the region is expanded along this line, as Figure 8 shows. However, if this reflected point
does not provide a better result, the region is contracted towards the best current point.

17
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Figure 8. Function level sets and application of the Nelder-Mead simplex algorithm [15].

Reproduced under Creative Common Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/.

2.3.2. Gradient-based techniques

The gradient-based algorithms converge rapidly around the final solution; therefore, they
offer a tremendous advantage in terms of speed. In addition to OF values, these methods
use gradient information (first-order) and Hessian (second-order). However, their
implementation is not straightforward because the derivative of the OF must be calculated
first. Furthermore, they can quickly reach a local minimum depending on the initial trial
point, which makes them user dependent. This is particularly relevant for multi-objective
optimization problems, where the objective function depends on several variables because
this type of problem has several local minimums [16].

Among the widely known gradient-based methods, Newton's method (second order) and
steepest descent method (first-order). Several modifications were made to improve these
methods. One of the most popular methods is the Levenberg-Marquardt method, which
modifies Newton’s method. A fundamental issue regarding optimization using second-
order gradient-based optimization methods, such as this one, is the initial guess for the set
of parameters; if it is not carefully chosen, the iterative method can lead to convergence
difficulties [11]. To address this issue, a first-order method can be used to determine the
starting point and then cascade with the second-order method [17].

18



2.3.3. Evolutionary methods

Evolutionary algorithms (EA) are inspired by nature and have demonstrated their capability
to obtain good solutions in complex problems. Among their advantages, we can mention
the lower possibility of falling into a local minimum, computational parallelization, and
ease of assessment because only the objective function information is needed, and their
ability to search in a broad space owing to its statistical operations [18]. Nevertheless, these
algorithms are known for the significant computational effort required to converge. Some
popular EAs include genetic, particle swarm, immune, artificial bee colony, and differential
evolution algorithms [19].

Let us select as an exemplifying EA: the logic is inspired by the genetic evolution that
considers that the next generation (solution) is better than the previous one. This is
achieved by passing the best of the current iterations to the next iteration and combining
them until the best solution is reached. Sometimes, a small random variation is introduced
(mutation), which accounts for a combination of a discarded value that, in combination
with a current value, may provide a good fit. To perform this operation properly, an
operator is required to transform the potential solution into a binary state [20].

2.4. Objective function

Optimization problems require an objective function (OF), which can be considered a
measurement of the optimization performance. It should be able to “guide” the
optimization problem to the final solution [21]. For material parameter identification, an
objective function should lead to a parameter set such that these parameters accurately
represent material behavior. Moreover, OF should be continuous and smooth when
gradient-based optimization algorithms are used, whereas other algorithms such as
evolutionary methods and artificial intelligence can handle noncontinuous functions. In
order to obtain reliable results from the parameter identification procedure, the objective
function should fulfill the following requirements [22]:

e Errors in the experimental data should not be accounted for by the OF. This can be
achieved by deleting experimental points of poor quality.

e For all points in a curve, each point should have an equal opportunity to be
optimized, regardless of the number of points per curve.

e If multi objectives are required, OG should deal with each one and provide equal
opportunity to be optimized.

e Different units or scales should not affect performance. Therefore, it is
recommended to transform it into a dimensionless scale.

e Continuity must be achieved to allow progressive evaluation during the process.
Therefore, an integer or discrete function should be avoided unless the nature of the
problem requires it.
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e The process should be independent of the user; therefore, weighting factors must be
avoided, or an automatic assignment procedure must be provided.

Many feasible solutions can exist when solving a problem, some of which are better than
others. When the problem involves few design variables, it could be effortless to assess
which solution is better; however, when several variables are involved or the problem is
multi-objective, this assessment becomes complex. For this reason, we must have a
criterion that quantifies each feasible design; this is accomplished by the objective function,
which serves as a criterion for determining the solution performance.

The optimization target can be minimizations (e.g., component weight, displacement, cost
among others) or maximization (e.g., fatigue resistance, stiffness, production rate,
eigenfrequencies, among others). This allows us to handle multiple objectives through the
same optimization, such as maximizing the component stiffness, while reducing the weight.
When multiple sub-objectives are pursued, it is common to have both minimization and
maximization targets. In these cases, maximization can be transformed into minimization
by taking the negative value of the function, as Equation 2:

f(maximum) = —f(minimum) Equation 2

2.5. Design variables and constraints.
The design variables are values that can be changed to optimize the solution; the variation
is typically performed between the upper and lower limits for each variable. These values
delimitate the quest region (also known as the design space) for each problem and
guarantee that the obtained result is meaningful; therefore, limits are determined by the
physics of the problem. For instance, if a fraction in a blend is a design variable, its value
can range from 0 to 100 %, and proper inequality can ensure the correct physical setup.

On the other hand, the constraints are binding the design variables among them or simply
establishing a boundary for a design variable such that multiple conditions can be applied
simultaneously to the design space. These mathematical relationships are expressed as
inequalities that, for instance, define an upper limit for mass or stress. After applying the
corresponding constraint, the design space is transformed into a feasible region, as Figure 9,
where the dashed lines represent the constraints, and points inside the region are feasible
solutions because they meet all conditions.
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Figure 9. Feasible region delimited by constrains [23].

Reprinted with permission from Elsevier.

2.6. Parameter identification

Material parameter identification is an ill-posed problem, and small errors in input data can
lead to a lack of accuracy [24]. This means that the solution achieved involves some
amount of uncertainty; therefore, an evaluation of the error must be provided in order to
offer a clear understanding of the limitations. The process of identifying a set of material
parameters for a constitutive equation is normally performed using an inverse approach,
where the objective function quantifies the gap between the experimental observations and
the calculated values, which is then minimized through an optimization procedure [25].

2.6.1. Problem statement

Let U denote the observed values in the experiment (for instance, a stress field), and let
denote the given data from U. Furthermore, to account for the possibility that incomplete
data from the experiment are available, we introduce the operator M, mapping € in the

measurements field U. Then, the problem can be stated as follows:

' i Equation 3
Find M = e for a given e € U quation

The objective is to solve the problem stated in Equation 3 in a backward calculation.
Nevertheless, it is well known that this problem does not have a direct solution [26];
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therefore, the backward calculation is replaced by an optimization strategy, minimizing the

gap between observation operator M and experimental observation e.

For material parameter identification, this is performed as a reverse engineering problem,
that is, a calculated response is fitted to its corresponding experiment. Let us consider the
stress stain response as an example, as Figure 10, where we show the experimental
measurements and the calculated (numerically) curves. The reverse engineering problem
consists of a gap reduction between the two curves. To achieve this, a function that
calculates the distance must be defined, which can be considered as the objective function;
therefore, the inverse problem can be solved by minimizing the function value.

Stress

u-Hlnurﬂ

g
UI*].

num
a;

g

<O & Experimental data

—Mumerical curve

Strain

Figure 10. Experimental vs. calculated stress [17].

Reprinted with permission from Elsevier.

2.6.2. Inverse problem posedness

Once the inverse problem is stated, its posedness must be considered, that is, the solution
must exist, be unique, and stable (continuous). Because different solutions can lead to
similar outputs for the same inverse problem, identification or model calibration using
reverse engineering is typically considered ill-posed [27]. For instance, two different sets of
parameters can produce the same stress-strain response in a constitutive equation.

Posedness has been studied for many types of applications, and material parameters are
well known. For example, Shrot and Baker [28] studied the uniqueness of the Johnson-
Cook (J-C) model; they found that the prediction of cutting forces and chip shape for
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different sets of parameters are indistinguishable; therefore, it is not possible to completely
eliminate the non-uniqueness. In the best cases, uniqueness has been achieved partially for
some parameters; for instance, Seupel et al. [29] were able to achieve it when using the
Gurson-Tvergaard-Needleman model (GTN) for the initial crack length and critical
porosity. This conclusion was supported by the findings of Zhang et al. investigation [30];
in their work, it was shown that low-sensitivity parameters can be accurately identified
when a subset of parameters that exhibits a low interaction effect is chosen, and this
mitigates the non-uniqueness of those parameters.

The final topic related to posedness is the stability of the solution values, which is also
known as sensitivity analysis and refers to the ability of the optimal solution to produce
stable values when small perturbations are introduced in the experimental data. For
instance, Mahnker and Stein [26] investigated the stability of numerical results for material
parameter identification using the eigenvalues of the Hessian of the least-squares functional.
It is also possible to study this sensitivity by introducing a small perturbation in a finite
element model [31] or artificially using stochastic methods [32].
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3. MATERIALS AND METHODS

In this section, the material used to conduct the investigations is defined, starting with its
chemical composition, followed by the test method conditions, and finally, the flow curves
obtained.

3.1. Material description:
38MnVS6 steel was selected for this study, and its chemical composition, determined by
spectrometry, is shown in Table 1. This steel is widely used in hot forging applications to
produce crankshafts and connecting roads, among other automotive components. The main
benefit of these types of steels is cost savings, because one of their important strength
increases is achieved by micro alloy additions (e.g., Al, Nb, Ti, and V) without quenching
and tempering [33].

Table 1. Chemical composition of 38MnVS6 steel (mt. % and Fe to balance).

C Si Mn P S Cr Ni Mo Cu Al

0.522  0.260 | 0.837  0.010 0.025  0.142  0.062 0.018 | 0.155 | 0.025

38MnVS6 steel has been widely investigated in the literature; for instance, Gu et. al. [34]
modeled the dynamic recrystallization (DRX) behavior based on a hot compression test and
found that DRX increases when the temperature and strain rate increase. Nalawade et al.
[35] investigated its behavior during the hot rolling processes, during the initial passes in a
blooming mill, as a function of three different pass schedules, roll groove depth, collar
taper angle and corner radius. Furthermore, Niu et al. [36] studied the fatigue and oxidation
characteristics of 38MnVS6 and 42CrMo4 and found that the latter possessed better fatigue
resistance and lower oxidation at high temperatures. Recently, Ercayhan and Saklakoglu
[37] investigated the effects of the forging temperature and cooling rate on the
metallurgical and mechanical properties. They found that, for this steel, the amount of
ferrite increased when the forging temperature decreased, which improved the toughness.

3.2. Experimental conditions:
Considering the compressive nature of the hot forming operation, the classical and well-
established uniaxial tension test cannot capture the material’s behavior. Therefore, the hot
compression test is needed since it represents the compressive nature of the process.
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Moreover, based on what is stablished in Equation 1, when it comes to implementation into
finite element simulation, we need to keep the stress as a function of strain, thus, in order to
achieve that, the stain rate and the temperature should be constant during the test. The
compression test allows for high speed (consequently high strain rates), even though it has
the inconvenient of the friction between the same and the compression anvils.an addition
drawback is the lack of standard for this test, which makes difficult result homologation
and comparison among testing laboratories and even among different equipment.

This study employed 38MnVS6 steel as the material, and its chemical composition was
determined by spectrometry, as detailed in Table 1. Plastic flow stress profiles were
acquired via cylindrical compression testing. Test specimens measuring 18 mm in height
and 10 mm in diameter were meticulously machined and polished. The experiment
employed a Bihr MDS 830 thermomechanical simulator from BAHR Thermoanalyse
GmbH (Hillhorst, Germany). This apparatus integrates an inductor heater and vacuum
chamber. The testing protocol involved heating the specimen at a rate of 2.5 K/s until it
reached the desired deformation temperature. Subsequently, a 5-minute hold period was
provided prior to initiating deformation, as illustrated in Figure 11. To manage and correct
the temperature deviations during testing and post-processing, an S-type thermocouple was
affixed to the center of the outer cylindrical surface of the specimen. The resultant sample
attained a final height of 6 mm, corresponding to a logarithmic (true) strain of roughly one
(100%). Deformation occurred at temperatures of 900, 1000, 1100, and 1200 °C, coupled
with deformation strain rates of 0.1, 1, 15, and 30 s '. The flow stress curves were
meticulously adjusted for temperature variations, friction, and strain-rate discrepancies.

Temperature [°C]

Test: Temperature: 900,1000,1100,1200 °C.
Stain rate: 0.1, 1, 15, 30 1/s.

2K/s .
Strain: up to 1.

Time [ms]

Figure 11. Experimental description of the hot compression test.
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3.3.Experimental apparatus and specimens

As it was shortly introduced in the previous section, the experimental apparatus used to
carry out these experiments was the thermomechanical simulator MDS 830 from BAHR
Thermoanalyse (now TA Instruments [38]), located at the TU Bergakademie Freiberg
(Germany), Institute for Metal Forming. This apparatus has 250 KN force capacity, capable
of performing uniaxial tension, compression, and torsion (by changing grippers). As for the
compression test, it can achieve strain rates going from 0.01 to 100 s™ while providing
energy to achieve up to 1400°C. These capabilities are enough to cover the wide range of
metal forming operation.

This equipment is enclosed by a vacuum chamber, preventing the oxidation of the sample
(carbon react with oxygen from the air), which eliminates the environmental variability.
Inside the chamber, the there are several components, as can be seen in Figure 12 (a),
including the grippers, an inductor coil, anvils, an actuator, and sensors. In Figure 12 (b), a
detailed view of the specimen mounted on the lower anvil is shown. The flow as follows: 1)
the thermocouple is welded to the cylindrical surface the specimen, ii) the specimen is
mounted on the lower anvil, iii) the chamber is closed and vacuum condition is achieved,
iv) the inductor heats up the specimen and give the holding time, v) the piston accelerate to
achieve appropriate velocity and reduce it while compressing.

(b)

Figure 12. Thermomechanical simulator MDS 830 [39].
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The thermocouple has two purposes: first, it is used as feedback for the proportional-
integrate-derivative (PID) control loop, ensuring the heating ration is maintained and held
during the homogenization time. Once the test starts, the duration is such small that there is
not chance to control temperature, however, the thermocouple provides the measurements
to estimate if the specimen is kept within an acceptable range; there are two options: the
temperature increases due to the mechanical work or, it decreases due to the radiation lost.

The strain rate is maintained constant by varying the velocity profile during the
compression based on Equation 4, where v is the instant velocity and 4 is the specimen’s
height at the same time. Therefore, the lower the height, the lower the compression velocity
is needed to maintain a constant strain rate. The velocity profile used is shown in Figure 13
for 15 and 30 s™'; we can see that the velocity is reduced while the test time progress (anvil
moves downwards and compress the sample). Temperature is also a central aspect for hot
compression test, the experimental values measured during the test are given in the
Appendix C. There we can see some small variation for the temperature, this is cause to the
loss due to radiation, and some increase due to conversion of deformation energy into
thermal energy.

Equation 4
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Figure 13. Velocity profile for compression.
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3.4. Experiment results

The flow curves obtained from the experiments described above are shown in Figure 14.
The results are arranged in four sub charts corresponding to each temperature, and different
strain rates are given for each temperature. Three repetitions were conducted for each
condition, and the average is shown. In these results, the effect explained above can be
observed: the higher the temperature, the lower the flow stress; therefore, less energy is
needed to achieve the same amount of deformation. Similarly, for each temperature, it is
shown that the higher the strain rate, the higher the flow stress, which is due to viscous
effects; therefore, more energy needs to be applied to deform the material when higher
strain rates are used.
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Figure 14. Experimental flow curve obtained for 38MnVS6 steel.
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3.5. Activation energy

The Zener-Hollomon parameter (Z) in combination with the Arrhenius equation was used
to determine the activation energy (Q), as follows:

Equation 5

Z=£'*e(RQTT) = f(0)

Where € is the strain rate, R is the universal constant of gases, T is the deformation
temperature, whereas f (o) is a stress function related to Z and the most commonly used
function are described in Equation 6 to Equation 8 [40].

f(O') = 1410'n1 Equation 6
f(O') = A, * exp(fo) Equation 7
f(o') = Aj [Sinh(aa)]” Equation 8

where A;, A, Az, ny,n, @, are temperature-independent material constants that can be
determined by applying multiple regression. In general, the power law described by
Equation 6 is suitable for low-stress values. Conversely, the exponential law shown in
Equation 7 is only suitable for high stresses. Finally, the hyperbolic sine given by Equation
8 can be used for a wide range of temperatures and strain rates. The material constants are
related by the following equation [41]:

ﬁ Equation 9

Now, by combining the Equation 5 and Equation 6 we obtain:}

. ( Q ) n Equation 10
Exe\RT) = Ajg™

Rearranging and taking the natural logarithm.

Equation 11

Iné =In4; +nyIno —
né=Ind, +nlno———
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At a constant temperature, Q remains constant and therefore, it is possible to obtain n,
from the applying regression. In this case, the highest strain value is considered, i.e., € = 1.
Because four different strain rates were considered during the experiment executions, a plot
of four points per temperature is shown in Figure 15, where dots represent the experimental
point and dashed lines represent their regression. The results for each temperature are listed
in Table 2, and the regression coefficient is given for each temperature. As can be seen, the
regression offers good approximation relevance; nevertheless, n; is not constant and
increases with temperature. Its average is considered in this study, although it shows a high
standard deviation of approximately 30 % of the average.

Table 2. The results of the linear regression used to determine n;.

T [K] n R’
1173 0.0471 | 0.823
1273 0.0849 | 0.991
1373 0.1025 | 0.979
1473 0.1430 | 0.956
Average | 0.0944

Std. Dev. | 0.0398

Plot for n1 calculation
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5.50

© —e—900
5 —e— 1000
1100
1200
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-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Ln(g)

Figure 15. Regression plot for n; calculation.

Similarly, by considering Equation 5 and Equation 7, at a constant temperature for each
strain rate value, we can obtain Figure 16, from these regressions a 3 coefficient for each
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temperature is obtained, and the average is considered as shown in Table 3 alongside the
regression coefficient.. Notably, in this case, the standard deviation was only 9 % of the
average value.

Q Equation 12

Iné =InA -
né =1In4, + fo R+T

It is interesting to note that both n; and B have regression coefficients that increase with
temperature; however, in the case of nj, this shows a greater variation based on its standard
deviation. The approach of taking the average is a simplified method for determining the
temperature-independent material constant over a wide range of temperatures and strain
rates.

Plot for B calculation
280.00

—8—900
© —8— 1000
1100
80700 1200
30.00
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Ln(¢)

Figure 16. Regression plot for f calculation.

Table 3. Results of linear regression to determine p.

T [K] p|R
1173 9.02 |0.792
1273 10.90 | 0.976
1373 9.39 |0.968
1473 9.7 0.901
Average 9.75

Std. Dev. 0.81
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Equation 8 can be used for a wide range of stresses and strains, and furthermore, based on
the intended application of hot forging, where the strains can reach large values, as can be
seen in Figure 14, and combining this with Equation 5:

. (L) . Equation 13
&% e\R<T) = A5[sinh(ao)]™
Taking the logarithm of both sides of Equation 13,
Equation 14

. Q .
Iné =InA - RT + n * In[sinh(ao)]

It can be inferred from Equation 14 that a at a particular strain value, the experimental data
yield to a parallel and linear relationship between sinh(ac) and Iné for a given
temperature value. And now, using the Equation 9, as well as the values determines for n,
and B, we can calculate «; its results and standard deviation are shown in Table 4. It is
noteworthy that the standard deviation reached 43 % of the average value, which might be
due to the high variations observed for n; value.

Table 4. Calculated values for a.

T [K] n; B a

1173 0.0471 | 9.02 0.00522
1273 0.0849 | 10.90 0.00779
1373 0.1025 |1 9.39 0.01092
1473 0.1430 | 9.7 0.01474
Aver 0.0944 | 9.75 0.00967
Std. Dev. | 0.0398 | 0.81 0.00411

The activation energy can be expressed as the slope of the different plots by taking the
partial derivative as follows:

Equation 15

0=R dlné } {6 In[sinh(ao)]
T

{0 In[sinh(ao)] } =R*N=x*K

/Ty J,
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To obtain the terms N and K, two plots were required, as shown in Figure 17 and Figure 18,
respectively. As before, the solid lines represent the experimental points, and the dashed
lines are obtained by means of linear regressions. A summary is given in Table 5: the
values of N and K are shown, as well as their averages and standard deviations, from which
it can be observed that the deviation achieves 14 % and 12 % of the average value,
respectively. These deviation values are significantly high when compared with the average
value, indicating that the variations across the temperature and strain rate are significant.
Nevertheless, when we look at the regression coefficient for each temperature and strain
rate value, we observe a good correlation value (above 94 %, except at 1173 K).

Table 5. Summary of activation energy calculated for each temperature and strain rate.

T [K] nl B o 1/n n S.R. k Q
1173 0.0471 9.02 0.00522 | 0.0918 10.89 0.1 9559.00 865.72
1273 0.0849 10.90 0.00779 | 0.1250 8.00 1 9261.00 615.97
1373 0.1025 9.39 0.01092 | 0.1286 7.78 15 7529.00 486.75
1473 0.1430 9.7 0.01474 | 0.1639 6.10 30 7720.00 391.61
Aver 0.0944 9.75 0.00967 8.1926 8517.25 590.01
StdDev | 0.0398 | 081 | 0.00411 1.9898 1040.94 | 20552
Plot for N calculation
2.00
.
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Figure 17. Linear regression to obtain N.
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Plot for K calculation
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Figure 18. Linear regression to obtain K.

A similar condition can be observed for the activation energy O, where the deviation was
35 % of the average value. Certainly, it is possible to obtain additional values of O, as can
be inferred from Equation 15, by combining each temperature with different strain rate
values. When 16 combinations are done, Q is calculated as the average value of 580
KJ/mol, which represents a drop of 2 % in the average obtained previously; however, the
standard deviation was reduced from 205 to 137 KJ/mol. A good approach to verify the
relationship described by the Z parameter is to combine Equation 5 and Equation 8, which
returns the following expression:

Z = A3 [sinh(aa)]" Equation 16

When the logarithm is taken from both sides of Equation 16, a linear plot must appear, as
shown in Figure 19, where a regression coefficient of R?* = 0.975 is obtained, which
confirms that the experimental results satisfy this mathematical relationship.
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Figure 19. Logarithms of Equation 16 confirming mathematical relationship.

This reduces the calculated standard deviation. Moreover, the values here shown
correspond to the stress exhibited at ¢ = 1, therefore, it makes sense to study the behavior
at the peak stress value, since as describe in the previous chapter, after the peak value, there
is a change from DRV to DRX. We consider a straightforward method to verify these
relationships by combining Equation 5 and Equation 8, as shown in Equation 16. A linear
equation must be obtained by taking the natural logarithm of both sides of the latter
equation.
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4. PARAMETER IDENTIFICATION FOR HOT FORGING APPLICATIONS

Based on the experimental results shown in Chapter 3, as well as the classical approach to
modeling this material’s behavior, we can conclude that the behavior is more complex at
elevated temperatures than at room temperature. This is due to the interaction between
temperature, strain rate, and strain, and their effects on the stress response, which leads to
the previously described stage during deformation: work hardening, softening, steady state,
accompanied by DRX and DRV. Therefore, a more sophisticated approach is required to
properly model material response. The approach considered in this chapter is to take a
constitutive equation suitable to describe the phenomenon, and then, by applying an
optimization strategy, the parameters are identified.

4.1. Constitutive equations
During Finite Element Analysis, a constitutive equation was used to compute the stress
based on the strain (among other variables). A constitutive equation can be described as a
mathematical relationship that correlates a dependent variable with a set of “independent”
variables [42]. Quotes were used because the independent variable may depend on other
variables or process parameters. There are two classical types of constitutive equations
[43]: phenomenological models and physically based models. Furthermore, owing to the
significant progress in artificial intelligence and machine learning algorithms, a new
category has recently appeared: models based on neuronal networks [44]. This study does
not consider the latter category.

A perfect constitutive equation should involve a limited set of material characteristics, the
identification of which requires only a minimal number of experiments. Simultaneously, it
should provide an accurate simulation of phenomena across a broad range of strains, strain
rates, and temperatures [45].

4.1.1. Physically based equations

These equations consider the physical characteristics of a material. These principles
encompass aspects related to thermodynamics, thermally driven motion of dislocations, and
mechanics of slip. In contrast to purely observational descriptions, these models provide a
precise characterization of the material behavior across a broad spectrum of loading
conditions by relying on certain physical assumptions and a greater number of material
constants. Therefore, their parameters always have physical meaning, describing the
attributes or properties of a material. For instance, Zamani et al. [46] proposed a model
based on the dislocation density, assuming the flow stress can be separated in two major
components, as follows:
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o=o0"+ oG Equation 17

where o” represents the stress required to overcome short-range obstacles through thermal
activation, while o; denotes the stress contribution arising from long-range interactions
within the dislocation substructure. The short-range stress component is expressed as
follows:

Equation 18

S

1
. k+T éref q
o' =16 1_IAf*G*b3ln<€'p>l

Where 7, Af are optimization factors, G is the shear modulus. K is the Boltzmann constant,
T is the temperature, b is the Burgers vector, & is the reference strain rate, €, is the
applied strain rate, whereas p and g characterize the shape of the energy barriers and have
the values of 0 <p<1land 0 <g<2.

Thermally induced stress typically pertains to the resistance encountered from short-
distance obstacles, including the interaction of closely positioned dislocations (known as
intersection slip), the Peierls stress in the case of BCC crystal structures, and the restraining
influence of solute atoms, whether they are interstitial or substitutional; these effects are
well explained by Yuan et al., [47]. This approach has been successfully used in finite
element models [48] and in metal cutting analysis [49].

4.1.2. Phenomenologically based equations

Phenomenological constitutive models provide a flow stress definition based on empirical
observations utilizing mathematical functions. Nevertheless, they lack a solid physical
foundation that aligns precisely with experimental findings. However, they have a
noteworthy ability to minimize the number of material constants and facilitate
straightforward calibration. Furthermore, owing to their empirical nature, these models are
typically limited in their application, mainly within specific strain rates and temperature
ranges, and exhibit restricted adaptability for specific materials.

Phenomenological models are widely used in metal-forming applications and several
models are available. For instance, Khan and Huang [50] proposed a viscoplastic model
that can predict aluminum behavior under large strain values; however, they only
considered low strain rates (10°-10* 1/s). In addition, one of the most widely used
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phenomenological models (in the author’s opinion, the most widely used) was proposed by
Johnson and Cook (J-C) [51], as shown in Equation 19.

£ T —T.\7 Equation 19
a=(aO+B£;})*<1+Clnf)*<1+ )
Er Tm - Tr

Where B and n are hardening coefficient and exponent, respectively, o, is the reference
stress, C is viscous coefficient., ¢ is the thermal exponent, 7 is the temperature, € and &, are
the strain rate and its reference value, respectively. Originally, the J-C model was proposed
to model high-velocity impact problems, and later, owing to its simplicity, it has been
extensively used in different fields, such as metal cutting [52]. Zhe et al. [53] used the J-C
model to predict the plastic strain in aluminum 6016-T6 alloy sheets under a low dynamic
strain rate (up to 100 s™); however, because the J-C model is not intended to be used under
a low strain rate, they implement4ed a quadratic function to improve the strain rate
sensitivity of the constant C. Another contribution to improving the softening prediction
above 400°C for the J-C model was performed by Priest et al., [54]. This was achieved by
making the parameters C and ¢ temperature-dependent; the intention was to give them
mathematically the ability to capture the nonlinearity due to the temperature.

One of the least-known constitutive models for integration into finite element codes is the
Hensel-Spittel (H-S) model [55]. The mathematical expression for the H-S model is
described by Equation 20, where temperature, strain, and strain are the phonological
variables represented as before, whereas 4 and m; are the parameters to be identified.

The H-S model has a significant advantage because it considers factors individually as well
as their interactions. However, this model has some shortcomings: its accuracy varies with
the number of parameters considered during the identification procedure [56]. This means
that not all parameters are required for every material intended to be fitted. Therefore, a
common approach is to run the identification procedure by assigning a zero value to some
parameters and taking the one that provides the best fit [57].

4.2. Problem statement
In this work, the J-C model, given by Equation 19, and the H-S model, given by Equation
20, are used to model the material behavior of 38MnVS6 steel, as shown in Figure 14. The
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problem can be defined as the search for a set of parameters such that the calculated floe
stress matches the experimental one. The topic now is how to identify a set of parameters
such that the calculated value matches the experimental value. There are several methods
as discussed before; however, in this work, attempts are made by using mathematical
regression for the J-C model and optimization strategies for both models selected.

The next topic to consider is the assessment of the accuracy of the obtained parameters.
There is a direct option when optimization is used, which consists of taking the final value
of the objective function, with the lowest value representing the best fit. In this study, two
measurement quantities are employed to assess the accuracy of the results, that is, the Root
Mean Square Error (RMSE), which is a frequently used measure of the differences between
values predicted by a model. In addition, the Average Absolute Relative Error (AAE),
which is a method of measuring the performance of a predictive model, was used. The
mathematical expressions are given by Equation 21 and Equation 22 respectively.

N
1 1 2 .
RMSE = MZ NZ(aexp — Ucal) Equation 21
1w 1w
)
AARE = —2—2 exp — Teal| 100 Equation 22
M £ 1N Oexp
J= l=

In both above equations, N represents the number of points for each curve (discretized with
145 points), and M represents the number of curves to be fitted (with corresponds to the
number of experimental conditions, i.e., 16 in this case). g, represents the experimental
flow stress and o,,; is the flow stress calculated by the constitutive equation. RMSE is a
measure of the absolute difference for each stress value at the same strain, giving the
minimum distance between them. AARE is also computed through a term-by-term
comparison of the relative error, thereby being an unbiased statistical parameter for
measuring the predictability of a model [58].

4.3. Optimization procedure
The procedure employed in this study is commonly known as the inverse problem, which
means that reverse engineering is utilized to determine or identify a set of parameters, such
as the distance between the experimental and calculated flow stress, which is minimized. A
graphical representation is shown in Figure 20, which shows the experimental points £/
and E2 as well as the calculated C/ and C2. The task is to reduce the distance between each
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pair, for example, (E1, C2), (E2, C2), ... (Ei, Ci); therefore, a fitness operator is required to
accomplish this task. The operator is commonly known as the objective function (OF), and
it measures all points across the curves and under all test conditions, returning a scalar
value.

The most common approach to optimization when it comes to a minimization process is the
least squares method (LSM), given by Equation 23. This is used as an objective function
and is minimized using a Genetic Algorithm (GA) in combination with a gradient-based
algorithm. Finally, a starting point must be selected such that an initial calculation is
accomplished, and the optimization algorithm starts to operate.
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Figure 20. Graphical representation of the inverse problem.

Equation 23

A genetic algorithm (GA) is used to identify the material parameters within the search area
defined by the upper and lower bounds. After the GA converges, the search area is reduced
around the solution obtained by the GA, and a gradient-based search is then performed.
Because the material parameters are based on phenomenological models, there is no
constraint for numerical values in the upper and lower bounds. Hence, bounds are chosen
such that the search area is as large as possible to keep the model returning the feasible
flow stress values. The GA 1is used first due to its capability avoiding local minimums,
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which allows them to explore a wide search region. Once this convergence is achieved, the
search area is reduced to facilitate the performance of a gradient-based algorithm.

A constitutive equation can be considered to have a unique solution when different starting
points converge to the same values. To verify the uniqueness of the solution, several
starting points were randomly generated within the search area, and the results were
compared. The bounds and some of the starting points used for both the H-S and J-C
equations are listed in Table 6Table 6. As discussed previously, for the sake of fitting,
some parameters were forced to be zero for the H-S equation. This depends on each
material, and for the one under investigation in this work, m3; and ms were made equal to
Zero.

Table 6. Bounds and starting points for both the H-S and the J-C equations.

) Bounds Starting point
Equation | Parameter
Lower | Upper 1 2 3 4
ml -1 0.5 -0.5 | -0.01 0.01 0.1
m2 -0.2 1.5 -0.1 0.01 0.2 0.6
H-S m4 -0.4 0.05] -0.25| -0.01 0.01 0.04
m5 -1 0.02 -0.4 | -0.01 | 0.002 0.1
m7 -5 2 -3 -0.5 0.01 0.2

m8 | -0.01 0.01 | -0.008 | -0.002 | 0.0005 | 0.007

A 10 | 122000 [ 1500 | 6000 | 9000 | 11000
B 0 250 36.3 11.5 120 203
J-C n -1 2 0.12 0.21| -0.10 1.85
C 0 2 0.22 0.53 1.90 1.12
q 0.01 1.5 0.73 0.11 1.20 | 0.01

Regarding the GA settings, an initial population of 200 individuals was established for the
H-S equation. For the J-C equation, there were 100 individuals. In GA, an individual refers
to a set of parameters or a chromosome, and each parameter is a gene. This setting is based
on the number of parameters that need to be identified, as well as trial and error. A higher
number of initial populations will involve a higher computation time; therefore, the
population was adjusted to achieve an accurate result while maintaining a reasonably fast
computation time. The optimization was performed employing the Altai HyperStudy® [59],
which allows for different optimization algorithms, including GA and gradient-based
algorithms.
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4.4. Development of an objective function

Simultaneous efforts were made to develop a new objective function based on the idea that
this function must be sensitive to small changes in input values. In other words, the larger
the change in the OF response, the easier it is for the optimization algorithm to find a path
conducting to a minimum. A new OF was proposed, inspired by the concept of “trues strain”
using logarithm, and the ideas expressed by Andrade et al. [22], a second objective
function is proposed in Equation 24. These concepts follow the idea of “true error," such as
"true strain,” and apply the natural logarithmic function.

Gexp Ocal

<[ =
z| =

Equation 24
OFZ = l

NI

j=1 i=1

Oexp

For the sake of comparison of both function’s performance, the same starting point and
bounds shown in Table 6 are used, as well as the minimization strategy described in the
previous section. Therefore, the only aspect that changes is the performance, which allows
us to make a fair comparison. In addition to the parameters to measure the fitness of the
solution, that is, the RMSE and AARE, we can also consider the number of iterations
performed before convergence is reached. Furthermore, we must consider the final value
that each function achieves.

4.5. Results validation and comparison

The first aspect considered for the comparison of results is the convergence speed, that is,
the number of iterations needed until the result is reached. It is expected that reaching
convergence requires different iterations depending on the starting point. Moreover,
because the H-S model has a higher number of parameters to be determined, convergence
is expected to require more iterations. Therefore, the H-S model was used to assess the
performances of both OF1 and OF2. As mentioned previously, several points were tried,
and four representatives of these points are shown in Figure 21. For points 1 and 2, it was
shown that OF2 reached faster convergence. For point 3, OF1 was faster than OF2, and for
point 4, the number of iterations required was the same.

To compare the performance based on time taken to calculate the required iteration, all
analysis were done using the laptop with 8 CPU: Intel(R) Core (TM) i17-6700HQ CPU @
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2.60GHz. The time consumed and the number of iterations carried out are sown in Table 7,
where the time consumed by the OF1 was used as reference to calculate the difference with
OF2. For the starting points 1 and 2, we observe a time saved of 28 and 24% respectively
when the OF2 is used. On the other hand, for the point 3, we observe that OF2 takes 2.6
times more than OF1; however, as it will be described later, this extra time is worth since
the error result from OF2 is approximately half when compared with OF1.

Table 7. Iteration and time to converge for both functions.

Starting point OF1 OF2 Time difference
time [min] | Iterations | time [min] | Iterations %
1 114 149 89 114 -28
2 72 90 58 70 -24
3 20 25 52 50 +260
4 19 25 20 25 -
OF —— 1 — 2
1 2
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5
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Figure 21. Results of the objective function convergence for the H-S model.

As expected, there were starting points that required few iterations to reach convergence
and there were points that required several iterations (approximately six times more
iterations). From these results, we can extract two facts: first, that the starting point
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significantly influences the convergence time, and second, that when the starting point is a
bad point, OF2 offers a significant advantage. Certainly, it is not possible to know
beforehand whether a starting point is a good or bad point; therefore, implementing a
function such that it provides a faster convergence is the worst case and is the best
optimization approach.

Finally, the parameters identified for the H-S model, when the OF1 and OF2 were used in
the optimization are shown in Table 8 and Table 9 respectively. Additionally, to assess the
quality of each solution, error measurements (AARE and RMSE) are provided on the
bottom side of each table for every set of parameters. The best result was obtained when
OF2 was used. It converged after 92 iterations, whereas the second-best result obtained
with OF1 was achieved after 149 iterations. Although the quality of the best solutions
obtained from each objective function is similar, there are some differences. For instance,
parameter m; shows a difference, whereas parameter mg has comparable values. This
behavior may indicate that the function has a flat zone, which causes the search algorithm
to become stuck around that area. Another fact that supports the existence of this flat zone
is that both answers have the same sign.

In contrast, the other results showed opposite signs for the same parameter compared to the
best answer. It is worth mentioning that starting points 3 and 4 gave the worst answer
quality for both objective functions. These values are entirely different regardless of the
quality of the results; however, the search algorithm converged quickly in these cases,
proving the minimum local existence. Thus, when the algorithm is stuck in a local
minimum or finds the global one, the proposed objective function based on "true error"
provides an advantage during the identification procedure. This advantage implies a shorter
computing time and better parameter set after identification.

Table 8. Parameter determined for H-S equation using OF I and their error.

Parameter Starting point
1 2 3 4
ml -5.25E-03 -4.41E-03 -3.16E-03  8.86E-03
m2 0.1618 0.1795 1.3581 0.5224
m4 4.23E-05 2.28E-05 5.78E-04 -1.51E-01
m5 3.30E-03  2.10E-03 -4.85E-03 -3.09E-01
m7 -2.717 -2.021 -0.241 1.679
m8 9.29E-05 9.40E-05 6.68E-05 1.17E-04
A 30851.34 15300.00 80698.27 50718.65
AARE-% 7.93 9.97 40.14 95.38
RMSE-[MPa] 9.60 12.64 47.63 117.52
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Table 9. Parameter determined for H-S equation using OF2 and their error.

Starting point
Parameter
1 2 3 4

ml -1.74E-03 -3.65E-03 -5.18E-03 -2.42E-02
m2 0.4868 0.2452 0.2535 0.2422
m4 7.20E-04 198E-04 1.89E-04 1.12E-04
m5 -4.95E-03 6.6E-04 1.76E-03 1.41E-03
m7 2.000 -1.194 -2.000 -1.625
m§ 1.14E-04 1.02E-04 9.18E-05 -8.39E-03
A 2793.37 8659.98 42028.59 24037.65

AARE-% 14.30 7.58 15.41 77.28
RMSE-[MPa] 17.63 9.26 20.49 99.80

Finally, the parameters for the J-C model were identified using OF2, as mentioned
previously. The results obtained are listed in Table 10 the results obtained for each starting
point are shown. Error measurements are also included on the bottom side for each point.
The J-C equation is straightforward compared to the H-S equation for identification
because it requires only four parameters to be determined. As expected, the results were
similar among them, and they exhibited identical quality. Thus, it can be concluded that the
J-C equation has an absolute minimum in the specified search area, and the algorithm
determines the minimum.

Table 10. Parameters identified for J-C equation.

Parameter Starting point
1 2 3 4

B 100.00 124.57 124.33 124.36
n 0.1205 0.1286 0.1320 0.1320
C 0.1926 0.1507 0.1525 0.1525
q 1.1417 0.9634 0.9700 0.9710

AARE-% 1391 13.16 13.17 13.17
RMSE [MPa] | 18.74 17.19 1735 17.35

4.6. Discussion of results
Although the AARE and RMSE factors provide a mathematical sense of the quality of the
parameters, it is also essential to assess the results graphically. In Figure 23 up to Figure 25,
the experimental and calculated results obtained for all experimental conditions are shown.
The J-C model shows a good correlation at low strains; however as due to its mathematical
formulation, it is not capable of catching the softening part, and continues showing a
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hardening behavior. We can observe that the J-C model tends to underpredict the stress
around the peak value and tends to overpredict on the steady state region.

On the other hand, it can be observed that the H-S equation predicts material behavior
better than the J-C equations. Overall, it can catch the hardening until the peak stress value
with good accuracy, then, the softening is also calculated; however, the model struggles to
accurately represent the steady state region. This is because the H-S equation considers the
factors for hardening and softening separately, whereas J-C does not. In addition, the H-S
equation includes a term that considers the interaction between the temperature and strain
rate.
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Figure 22. Experimental and calculated flow stresses for different strain rates at 900°C.
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Figure 23. Experimental and calculated flow stresses for different strain rates at 1000°C.
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Figure 24. Experimental and calculated flow stresses for different strain rates at 1100°C.
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Figure 25. Experimental and calculated flow stresses for different strain rates at 1200°C.

As mentioned before, J-C does not possess the mathematical ability to predict softening
properly, as it only considers these factors (temperature and strain rate) independently. It is
worth noting that both constitutive equations struggle with softening predictions. The most
common approach to overcome these difficulties is to consider the parameters as a function
of strain by fitting polynomials. However, this approach has two drawbacks: the first
increases the computational cost because the mathematical equation becomes more
complex than the original equation; the second drawback is that polynomials are suitable
for interpolation, but they perform poorly for extrapolations. Thus, modifying both
equations to improve the softening behavior prediction is a good field for future research.
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The regression coefficient for all experimental condition is shown in Table 11. The H-S
model shows a similar behavior over the entire range of experimental conditions,
particularly at high strain rates. On the other hand, the J-C model shows a better
performance at lower temperatures; this is since hardening is more pronounced at lower
temperatures, with minimum softening region. Overall, for all experimental conditions, the
H-S model has better correlation when compared with J-C model.
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Table 11. Regression coefficient for H-S and J-C model’s output.

RZ
Temperature [°C] Strin rate [1/s] H-S J-C

01 0.856 0.821
1 0.891 0.805
900 15 0.944 0.688
30 0.942 0.775
01 0.970 0.735
1 0.884 0.698
1000 15 0.963 0.615
30 0.980 0.681
01 0.908 0.692
1 0.934 0.715

11
00 15 0.958 0.544
30 0.976 0.686
0.1 0.941 0.659
1 0.865 0.512

12
00 15 0.945 0.572
30 0.968 0.701
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5. CONCLUSIONS AND OUTLOOK

The following conclusions were drawn from this study:

A successful and fast procedure for material parameter identification in industrial
applications is described and it depicted in Appendix A. This procedure saves
computational effort and time, providing reliable answers in a short time (in the order of
minutes). In contrast, the traditional approach for connecting the finite element model with
optimization algorithms involves nonlinear models. The latter approach is highly time-
consuming because several models must be solved, which increases exponentially with the
number of parameters.

A new objective function based on the true error was proposed for faster material
parameter identification. This new function was compared with another based on the
classical least square approach. It was found that the proposed function has a faster
performance, which means that it converges rapidly to the solution. Several starting points
were tried to assess the objective function performance.

The parameters for two commonly used constitutive equations in industrial applications
were identified: the Hensel-Spittel (H-S) equation and Johnson-Cook (J-C) equation. The
latter uses four parameters, and the former uses eight parameters. The H-S equation had
several local minima. In contrast, the J-C equations showed a convergence towards the
same minimum, which means that an absolute minimum exists. This is understandable
because H-S is much more complex, as long as it has twice the number of parameters than
J-C.

With the basis on the quality assessment done by using the AARE and the RMSE, the best
set of parameters for the H-S equation was obtained when OF2 and starting point 2 were
used (see Table 9). In contrast, the J-C equation showed the best quality at starting point 2
(Table 10). In the latter case, only this objective function was used because OF2 was
previously determined to have better performance. In addition, we can observe the H-S
model has a stable correlation across all experimental conditions, whereas the J-C model
decreases its performance when the temperature increases. This is due to the fact that
softening becomes more prominent with temperature, and the J-C model does not possess
the mathematical ability to catch this properly.

As a result of the analysis detailed in the first paper listed in Appendix B, and summarized
in Appendix D, it was possible to demonstrate that the results obtained by using the
Arbitrary Lagrangian and Eulerian (ALE) approach are as accurate as the ones obtained
when the classical Lagrangian is utilized. This opens the door to analysis that can consider
the generation of oxide scales in the material when forged at high temperature, as it was
shortly described in the last part of the Appendix D, where a simple ALE multi material
model is presented, showing the steel matrix and the three different oxides layers.
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In further steps, we may mention that it is necessary to determine a modification for the
constitutive equation. The aim of this modification is to provide them with the ability to
catch the softening produced by dynamic recrystallization (DRX). This ability is
convenient for metal forming simulations. Additionally, it is necessary to conduct more
experiments using the same material to assess the performance of the identified parameters
for interpolations and extrapolations. Moreover, the H-S equation needs to be integrated
into the LS-Dyna by developing a user subroutine.

Additionally, since the approach was confirmed to deliver accurate results as well as
capable to simulate multi material problems, another field of study is to develop methods
that allow to simulate problems with oxide scales. This will allow for a better frictional
characterization when reverse engineering is applied.
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Appendix A. Flowchart for the optimization framework.
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Appendix C: Experimental temperature during hot compression test.
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Figure C1: temperature for 900 °C and 15 s™.
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Figure C2: temperature for 1000°C and 30 5™
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Figure C4: temperature for 1100°C and 30 5™
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Nominal 1200°C and 15 1/s
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Figure C5: temperature for 1200°C and 15 5™
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Figure C6: temperature for 1200°C and 30 s™.
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Appendix D: Case of study on the Finite Element Model

As an application example, the identified parameters were used in a Finite Element Model
(FEM). For this study, two software packages were used for finite element modeling:
QForm (QuantorForm Ltd) [60] and LS-DYNA (Ansys) [61]. The former is a widely used
software in the metal forming industry designed for its specific purposes and already
integrates the H-S model. The latter is widely used software for general non-linear
purposes. In order to address the large deformation and the nonlinearities involved in the
present study, two approaches were used and compared, i.e., every software has its
approach: QForm uses the classical re-meshing technique, whereas in LS-Dyna the
Arbitrary Lagrangian-Eulerian approach was selected. In addition, for the sake of brief,
numerical simulations were carried out only for the strain rates of 15 and 30 s, which
correspond to 68 and 34 milliseconds in experiment duration, respectively. Even though
two different software packages were used, some aspects are similar for both, e.g., the
problem is non-linear, and thermos-mechanical coupled. A three-dimensional model using
solid elements is used. A quarter of symmetry was specified.

An overview of spatial discretization is given in Figure D1 a) for the QForm model and
Figure D1 b) for the LS-Dyna model. The QForm model uses 3D elements for the anvils,
whereas the LS-Dyna model used shell elements with thickness. In both cases the lower
tool is fixed and the upper one is assigned with the velocity profile described in Section 3.3.
in addition, the LS-Dyna requires a void volume which is capable to receive mass from the
original volume.

a) b)

Upper tool—__

o

— Lower tool

Void

Figure D1: Finite element models: (a) QForm and (b) LS-Dyna.
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The flow curves obtained from the experiments Section 3.4 are appropriately introduced in
the database for the LS-Dyna model. The plastic flow is given as a function of strain, strain
rate, and temperature. Whereas for the QForm model, in total, 8471 nodes with 40574
tetrahedron elements were used. The remeshing takes into account the deformation and
temperature changes as criteria for rebuilding the mesh. The maximum optimal element’s
size was determined as 1 mm. In contrast, the software algorithm chose the minimum size
automatically (although it is possible to set it).

Validation is then realized by comparing the calculated force vs. stroke curves measured
during the experiments and those calculated by the finite element models. This comparison
of the results shows a good agreement between the numerical with the experiments. Figure
D2 shows four selected cases for discussion. From cases a) and b) is clear that at the same
temperature, the strain rate slightly increases the force. Some discrepancies are evident at
the beginning of compression. A possible explanation is an inertial effect imposed at first
during the compression, as can be observed in cases ¢) and d); with the temperature rise,
the material workability increases, which means less force is required. Considering only the
strain rate is also clear that lower values, which imply lower velocities, lead to less
demanded power, and consequently, better equipment performance during compression.
On the other hand, numerical results do not exhibit this behavior. Numerical models are set
up with the ideal velocity profile to achieve a constant strain rate. This set up leads to
variation during a short time in the kinetic energy (but it does not affect applied force)
during the beginning of simulation. These differences may explain why there are some
discrepancies during the first part of the load stroke curves.

Experiment ®* LS-Dyna = Qform

a) 900°C-30 1/s b) 900°C-15 1/s
g0

% 401 / < 40/
H - B
201 201 ’
LR 5] g
01s : . : . : 1y : . :
0.0 248 a0 T7Ah 100 1245 i 4 3 12
Stroke, mm Stroke, mm
¢) 1100°C-15 1/s d) 1200°C-30 1/s
a0
301
< < 0] /
-g- 7 E- e
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Figure D2: Load vs. stroke results for selected cases.
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For comparison purposes, Figure D3 shows strain and stress contours, calculated at the
final compression stage by both QForm and LS-Dyna for the condition of 900 °C and 30
1/s. All cases exhibit the same response, characterized by the so-called dead metal zone
(the neighborhood to the contact zone), the shear bands (because of the metal folding over),
and finally, the hydrostatic area (at the center, with the highest strain concertation). In
Figure D3 a) and b), it is clear the strain output is similar from both software. However,
there are slight differences in the stress, as shown in Figure D3 c) and d). These differences
might be because the constitutive equation is not the same, as well as some differences in
the element type. However, the maximum and minimum stress values calculated by both
approaches are similar. Hence, it may be considered that both provided equivalent answers.

QForm LS-Dyna

Strain

Stress

Figure D3: Calculated strain and stress (effective) at the end of the compression.

Based on the above results, it can be proved that the ALE approach achieves the same
results as the classical Lagrangian approach. However, the classical Lagrangian approach is
not capable to model multi material analysis, i.e. processes where more than one material
exist inside a single element (like oxide scale formation), or where the material is from one
element to another (like dissimilar material welding). It is well known that when still is
heated, oxide scale appears with three different oxides: wustite, magnetite and hematite.

The oxide scale model in a simplified manner is shown in Figure D4 (left side), where the
main part is a steel matrix (green body), and three different layers are added to consider the
different oxides described before: yellow, brown, and red for wustite, magnetite and
hematite, respectively. The purpose of this simplified model is to prove the capabilities
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(without validation) of the ALE approach to model this problem. In this case, the stress
(GPa) is shown on the right-side picture, and it is simple to observe the discontinuity on the
stress field at the interfaces of the different oxide’s layers. The reason for this is because
each layer behaves differently.

Effective Stress (v-my)
0.190 _
017 _I
0.152 _
0,133 _
0.114 _
0.095 _
0.076 _
0.057 _
0.028 _

0.019 _
0.000 _

r

Figure D4. Multi-material FE model with the oxide scale.
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Appendix E. Case of study: friction assessment.

Since friction is one the major disadvantages of the cylindrical compression test, it must be
characterized carefully. To determine the friction as close to the actual forging process as
possible, ring test was carried out as follows: the standard designation is 38MnVS6, the
material's plastic flow was previously described in Chapter 3. The specimens were
machined from an as-received raw bar, giving the following dimensions 80:40:27 mm
(outer diameter, inner diameter, and height) to keep the geometry aspect ratio 6:3:2. The
samples were heated by induction and held for 30 seconds, then were compressed in a
hydraulic press with 10 MN in force capacity, shown in Figure E1. Table E1 shows the
experimental parameters and its levels.

Table E1. Experimental conditions and levels.

Level | Temperature [°C] | Tool speed [mm/s] | Deformation %
High 1200 150 80
Medium 1100 80 60
Low 900 20 40

Figure E1. 10 MN Servo hydraulic press.
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The friction is determined by reverse engineering, using a Finite Element Model,
performed in QForm. The RCT has originally expressed the hypothesis that the inner
diameter changes through the axial deformation depends only on friction. However,
nowadays, by using FE and more advanced measurement equipment, it is possible to state
more complex and realistic hypotheses; for instance, the load-stroke was measured during
the experiment, and since these data are output from the FE simulation as well, we can
compare the results.

Several friction values (m) were tried in numerical simulations to determine the best fit for
the whole dataset. Some of these values are shown in Figure E2 for different friction
factors as well as the heat conduction coefficients C (W/K*m”2), even though this former
was not measured during the experiment. The numerical results exhibit a closeness among
them, and the experimental results are scattered in small clusters. To obtain more insight on
this behavior, additional experiments were carried out in a servo-hydraulic press with 20
KN at the same temperatures, i.e., 900, 1100 and 1200°C but with speeds of 40, 90, and
140 mm/s.

For these additional experiments, small size rings (labeled as “small”’) were used: OD9:
ID4.5: H3 mm, to keep the same aspect ratio as the largest size rings. The tools used for
both experiments were manufactured using the same material and processes as the actual
hot forging operation. Both experiments with large and small size rings are plotted with the
numerical results in Figure E2.

1004 A ddh kdh o A L I 1R ]

Mumeric values
T84
m=0.5 C=40

— m=07 C=20
— m=0.7 C=30
a0
Fing size
*  |arge

& Small

[nner diameter reduction, %

244

DI 2IIZI 4ID EID
Height reduction, %

Figure E2. Numeric and experimental results (large and small sizes) for inner diameter
reduction.
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The friction factor was determined to be 0.7, and the coefficient of heat transfer was
established as 30 W/K*m?®. This former parameter was not measured directly from the
experiments, but it is a standard input parameter in FE simulation during the contact set-up.
It is notorious the difference between some experimental and numeric results; however, the
practical objective is to fit the best curve for most of the points. Another approach could be
to establish a fit separately per conditions, e.g., fit a friction coefficient for each
temperature and or velocity. This approach may be more accurate, but it is also more
complicated and expensive from the computational viewpoint. In addition, it requires that
computational codes are prepared to receive such kind of inputs.
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Appendix F. Calculated Stress Comparison against the Experimental.

This appendix shows the plot for all experimental conditions as follows: for each model
(H-S and J-C), the calculated stress is plotted against the experimental value (blue dots), in
addition, a linear regression is shown (red line). Since the stress values are calculated at the
same experimental strain, this means that the perfect output should be a perfect line, i.c.,
100 % correlation.
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Figure F1: Stress values predicted by H-S model at 900°C.
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Figure F3: Stress values predicted by H-S model at 1000°C.
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Figure F6: Stress values predicted by J-C model at 1100°C.
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Figure F7: Stress values predicted by H-S model at 1200°C.
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Figure F8: Stress values predicted by J-C model at 1200°C.
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