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Alternating links and cubed complexes
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Abstract

An alternating link is a link that is represented by a diagram in which the cross-
ings alternate under and over as one travels along each component of the link.
Alternating links have various interesting properties. In particular, J. Greene
and J. Howie independently gave an intrinsic characterization of alternating
links, as an answer to R. H. Fox’s problem, “What is an alternating knot?”

On the other hand, a cubed complex is a CW-complex obtained from a
disjoint union of cubes by identifying the faces through Euclidean isometries.
Cubed complexes play important roles in 3-manifold theory. In particular, it
was proved by I. Aitchison that the exterior of a prime alternating link admits
a natural non-positively curved cubed decomposition.

In this paper, we study alternating links from the view point of cubed com-
plexes. This thesis consists of two parts. In the first part, we give a characteri-
zation of alternating link exteriors in terms of cubed complexes. In the second
part, we give a rigorous proof to a result, announced by I. Agol in 2001, concern-
ing two-parabolic-generator subgroups of hyperbolic alternating link groups. We
also give a generalization of Agol’s result to two-parabolic-generator subgroups
of hyperbolic 3-manifold groups.

The content of the first part of the thesis was published in Journal of Knot
Theory and Its Ramifications in vol. 27 (2018), published by World Scientific
Publishing, and the second part will appear in Hiroshima Mathematical Journal,
published by the Department of Mathematics, Hiroshima University.
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Chapter 1

A characterization of
alternating link exteriors in
terms of cubed complexes

1.1 Introduction

Recently, Greene [23] and Howie [27], independently, established intrinsic char-
acterizations of alternating links in terms of a pair of spanning surfaces, an-
swering an old question of R. H. Fox. These results can be regarded as charac-
terizations of alternating link exteriors which have marked meridians (see [27,
Theorem 3.2]).

The purpose of this paper is to give a characterization of alternating link
exteriors from the viewpoint of cubed complexes. Our starting point is a cubical
decomposition of alternating link exteriors, which is originally due to Aitchison,
and is used by Thurston [50], Yokota [53, 54], Agol [3], Adams [2] and Sakuma-
Yokota [45]. Thus we call it the Aitchison complex. The Aitchison complex for
an alternating link is actually a mapping cylinder of the natural map from the
boundary of the exterior of the alternating link onto the Dehn complex. For a
detailed description and historical background, see [45].

In this paper, we introduce the concepts of a signed BW squared-complex
(or an SBW squared-complex, for short) and a signed BW cubed-complex (or
an SBW cubed-complex, for short), and give a combinatorial description of the
Dehn complex and the Aitchison complex as an SBW squared-complex and an
SBW cubed-complex, respectively. The main theorem gives a necessary and
sufficient condition for a given SBW cubed-complex to be isomorphic to the
Aitchison complex of some alternating link exterior (Theorem 1.4.1). This im-
plies a characterization of alternating link exteriors in terms of cubed complexes
(Corollary 1.4.2).

This paper is organized as follows. In Section 1.2, we give an intuitive
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description of the Aitchison complex and the Dehn complex following [50, 53].
In Section 1.3, we introduce the SBW squared-complex and the SBW cubed-
complex, and describe the Dehn complex and the Aitchison complex in terms
of the SBW squared-complex and the SBW cubed-complex, respectively. In
Section 1.4, we prove the main theorem.

1.2 An intuitive description of the Aitchison com-
plexes and the Dehn complexes for alternat-
ing links

In this section, we give an intuitive description of the Aitchison complexes and
the Dehn complexes following [50, 53]. For detailed description, see [45].

Let Γ ⊂ S2 be a connected alternating link diagram and L ⊂ S3 the alternat-
ing link represented by Γ. We pick two points P+ and P− in the components of
S3\S2 one by one. These points are regarded to lie above and below S2, respec-
tively. Identify S3 \ {P+, P−} with S2 ×R, and assume the following. The dia-
gram Γ is regarded as a 4-valent graph in S2×{0}, L ⊂ Γ×[−1, 1] ⊂ S2×[−1, 1],
and L intersects S2×{0} transversely in 2n points, where n is the crossing num-
ber of Γ.

For each vertex x of Γ, consider a square s in S2 = S2 × {0} which forms
a relative regular neighborhood of x in (S2,Γ) such that the four vertices of
s lie in the four germs of edges around x. Let x+ and x− be the points of L
which lie above and below x, respectively. Consider the two pyramids, ∆±, in
S3 which are obtained as the joins x± ∗ s. We may assume ∆± ∩ L = {x±},
∆+∩∆− = s. Note that ∆+∪∆− is an octahedron which contains the crossing
arc of L determined by x (see Figure 1.1(b)). Let {∆±

1 , . . . ,∆
±
n } be the set of

2n pyramids in S3 located around the vertices of Γ.
Pick an edge e of the graph Γ, and let x1 and x2 be the vertices of Γ joined by

e, such that the arc ẽ = L∩(e×[−1, 1]) in L joins x+1 and x−2 (see Figure 1.1(a)).
Let ai be the vertex of si contained in e (i = 1, 2). Let R be one of the two
regions of Γ in S2 whose boundary contains the edge e, and let bi be the vertex
of si such that the edge aibi of si is contained in R.

Let w = ẽ ∩ S2 be the “middle point” of ẽ, and consider the vertical line
segments wP+ and wP−. Then we have the following relative isotopies in (S3, L)
(see Figure 1.1(b)).

1. The edges x+1 a1 and x+1 b1 of the pyramid ∆+
1 are isotopic to the vertical

line segments wP− and wP+, respectively.

2. The edges x−2 a2 and x−2 b2 of the pyramid ∆−
2 are isotopic to the vertical

line segments wP+ and wP−, respectively.

3. The edge a1b1 of s1 is isotopic to an almost vertical line segment which
starts P−, passes through a point in the interior of R and reaches P+.
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(a)

(b)

Figure 1.1
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4. The edge b2a2 of s2 is isotopic to an almost vertical line segment which
starts P−, passes through a point in the interior of R and reaches P+.

These isotopies determine an isotopy (and so a homeomorphism) from the
face x+1 a1b1 of ∆+

1 onto the face x−2 b2a2 of ∆−
2 . In this way, we obtain a

paring of faces of the octahedra {∆+
i ∪ ∆−

i }i and a homeomorphism between
the faces in each pair. Let O±

i be the cubes obtained from the pyramids ∆±
i by

chopping off a small regular neighborhoods of x±i . Then the above pairing and
homeomorphisms determine a gluing information for the cubes {O±

i }i. Let A(Γ)
be the resulting cubed complex and D(Γ) the subcomplex of A(Γ) obtained by
gluing the squares {∆+

i ∩∆−
i }i. Then we have the following.

Proposition 1.2.1. For a connected alternating diagram Γ, A(Γ) gives a cubi-
cal decomposition of the exterior E(L) of the link L represented by Γ. Moreover,
there is a deformation retraction of A(Γ) onto D(Γ), and so, D(Γ) is a spine of
E(L).

We callA(Γ) the Aitchison complex of Γ. The subcomplex D(Γ) is isotopic to
the Dehn complex of the diagram Γ, which is the two-dimensional cell complex
defined as follows (see [16, 17, 55]). The 0-cells are P+ and P−, and the 1-
cells are in one-to-one correspondence with the regions of the diagram; each
1-cell γi is a path going from P+ to P− and passing through a region Ri. The
2-cells are in one-to-one correspondence with the vertices of the diagram; for
each vertex x, the 2-cell has a boundary of form γix(1)

γ−1
ix(2)

γix(3)
γ−1
ix(4)

, where

Rix(1)
, Rix(2)

, Rix(3)
, Rix(4)

are the regions of Γ that is located around x in this

counterclockwise order, and γ−1 is the inverse path of γ.

1.3 Signed BW complexes

In this section, we introduce the concept of a signed BW squared-complex and
that of a signed BW cubed-complex, and then describe the Dehn complexes and
the Aitchison complexes for alternating links by using these concepts.

By a signed BW square (or an SBW-square, for short), we mean the square
s := [0, 1]2 with the following information:

1. The vertices (0, 0) and (1, 1) are endowed with the sign −, and the vertices
(0, 1) and (1, 0) are endowed with the sign +.

2. The horizontal edges I × {0} and I × {1} are endowed with the color B
(Black), and the vertical edges {0} × I and {1} × I are endowed with the
color W (White).

For an SBW-square s, we assume that each edge of s is oriented so that the
initial point and the terminal point have the sign − and +, respectively. Now
consider a set S = {s1, . . . , sn} of n copies of the SBW-square, and let V+(S)
and V−(S), respectively, be the sets of positive vertices and negative vertices of
the SBW-squares in S.
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Figure 1.2

For each bijection φ : V+(S) → V−(S), we construct a squared complex (i.e.
two-dimensional cubed complex), C2(S, φ), as follows. Let EB(S) and EW (S),
respectively, be the set of the black edges and the white edges of the SBW-
squares in S. Then φ induces a bijection ΦB : EB(S) → EB(S) as follows. For
a black edge e ∈ EB(S), let v be the positive vertex which forms the terminal
point of e. Then ΦB(e) is defined to be the unique black edge whose initial vertex
is φ(v) (see Figure 1.2). Similarly, φ induces a bijection ΦW : EW (S) → EW (S),
such that ΦW (e), for e ∈ EW (S), is the unique white edge whose initial vertex
is the image of the terminal vertex of e by φ. Thus we obtain a bijection
Φ := ΦB t ΦW from E(S) := EB(S) t EW (S) to itself. For each e ∈ E(S), let
fe : e → Φ(e) be the unique orientation-preserving linear homeomorphism. We
regard the family {fe : e → Φ(e)}e∈E(S) as a gluing information for the SBW-
squares S = {s1, . . . , sn}, and denote the resulting squared complex by C2(S, φ).
We call it the signed BW squared-complex (or the SBW squared-complex, for
short) determined by the bijection φ : V+(S) → V−(S).

Remark 1.3.1. A signed BW squared-complex is a special case of a VH-
complex introduced by Wise [55], which is defined to be a squared complex
whose edges are partitioned into two classes V (vertical) and H (horizontal).
Motivated by black/white checkerboard surfaces, we use W and B, instead of V
and H.

For the SBW squared-complex C2(S, φ), we define the associated SBW cubed-
complex, C3(S, φ), as follows. For the set S = {s1, . . . , sn} of the SBW-
squares, consider the set of the “upper SBW-cubes” {si × [0, 1]}ni=1 and the
“lower SBW-cubes” {si × [−1, 0]}ni=1. Consider also the set of “upper side-
faces” F+ := {e × [0, 1]}e∈E(S) and the set of “lower side-faces” F− := {e ×
[−1, 0]}e∈E(S). Then the bijection Φ: E(S) → E(S) induces the bijection

Φ̂ : F− → F+ defined by Φ̂(e×[−1, 0]) = Φ(e)×[0, 1]. Moreover, the linear home-

omorphism fe : e → Φ(e) induces the linear homeomorphism f̂e : e × [−1, 0] →
Φ(e) × [0, 1] defined by f̂e(x, t) = (fe(x),−t). By gluing the side-faces of
the cubes {e × [−1, 0] ∪ e × [0, 1]}e∈E(S) by the family of homeomorphisms

{f̂e : e × [−1, 0] → Φ(e) × [0, 1]}e∈E(S), we obtain a three-dimensional cubed
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Figure 1.3 Figure 1.4

complex. We denote it by C3(S, φ), and call it the signed BW cubed-complex
(or the SBW cubed-complex, for short) determined by φ. It should be noted
that C2(S, φ) is a subcomplex of C3(S, φ), and there is a natural deformation
retraction of C3(S, φ) onto C2(S, φ).

For an alternating link L ⊂ S3 represented by a connected alternating di-
agram Γ ⊂ S2, the Dehn complex D(Γ) and the Aitchison complex A(Γ) are
identified with the SBW squared-complex C2(S, φ) and the SBW cubed-complex
C3(S, φ), respectively, where S and φ are defined as follows. Consider the
checkerboard coloring of (S2,Γ) such that the associated black surface for L
has a positive half-twist at each crossing (see Figure 1.3). Let {x1, . . . , xn}
be the vertex set of Γ and let S = {s1, . . . , sn} be the set of SBW-squares as
illustrated in Figure 1.4. To be precise,

1. si is a square in S2 which forms a relative regular neighborhood of xi in
(S2,Γ), and the vertices of si are contained in Γ.

2. Each vertex of si has the sign + or − according to whether it lies in an
underpass or an overpass.

3. Each edge of si is colored B or W according to whether it lies in a black
region or a white region.

Observe that Γ \
∪n

i=1 int(si) is a disjoint union of arcs and that the boundary
of each of which consists of a vertex in V+(S) and a vertex in V−(S). This
determines a bijection φ : V+(S) → V−(S). Then the following proposition is
obvious from the construction of the Aitchison complex.

Proposition 1.3.2. Under the above setting, the SBW squared-complex C2(S, φ)
and the SBW cubed-complex C3(S, φ) are isomorphic to the Dehn complex D(Γ)
and the Aitchison complex A(Γ), respectively.

1.4 Main results

Proposition 1.3.2 shows that the Aitchison complex A(Γ) of a connected alter-
nating diagram Γ can be described as the SBW cubed-complex C3(S, φ). In this
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section, we prove Theorem 1.4.1, which gives a characterization of the Aitchison
complexes of connected alternating diagrams among the SBW cubed-complexes.

Let S = {s1, . . . , sn} be a set of SBW-squares, and let φ : V+(S) → V−(S)
be a bijection, where V±(S) are the sets of positive and negative vertices of
the SBW-squares in S. Let Φ = ΦB t ΦW be the bijection from E(S) =
EB(S) t EW (S) to itself determined by φ.

Theorem 1.4.1. Under the above setting, the SBW cubed-complex C3(S, φ) is
isomorphic to the Aitchison complex A(Γ) of a connected alternating diagram
Γ, if and only if the bijection Φ satisfies

|E(S)/〈Φ〉| = |S|+ 2,

where E(S)/〈Φ〉 denotes the quotient space of the cyclic group action on E(S)
induced by Φ, and | · | denotes the cardinality of a set.

Proof. We first prove the only if part. Suppose that an SBW cubed-complex
C3(S, φ) is isomorphic to the Aitchison complex A(Γ) of a connected alternat-
ing diagram Γ ⊂ S2. Then we may assume S and φ are constructed from Γ
as in Section 1.3. Observe that there is a one-to-one correspondence between
EB(S)/〈Φ〉 (resp. EW (S)/〈Φ〉) and the set of the black (resp. white) regions of
Γ. Consider the cell decomposition of the projection plane S2 obtained from Γ.
Then the above observation implies that |E(S)/〈Φ〉| is equal to the number of
2-cells of the cell decomposition. Since the cell decomposition has n vertices and
each vertex has degree four, the number of 1-cells is equal to 2n when n = |S|.
Hence, we have

2 = χ(S2) = n− 2n+ |E(S)/〈Φ〉|.

This implies |E(S)/〈Φ〉| = |S|+ 2, completing the proof of the only if part.
Next, we prove the if part. Suppose |E(S)/〈Φ〉| = |S| + 2. By using this

condition, we construct a connected alternating diagram Γ such that C3(S, φ) ∼=
A(Γ). Consider the two-dimensional complex, X, obtained from the set S =
{s1, . . . , sn} of SBW-squares by attaching a 1-cell γ = 〈v, φ(v)〉 for each v ∈
V+(S), and we now attach black/white 2-cells to X, as follows.

Consider the action of the cyclic group 〈ΦB〉 on EB(S), and pick its orbit
{e,ΦB(e), . . . ,Φ

k−1
B (e)} with Φk

B(e) = e. Then for each i ∈ {0, . . . , k − 1}, the
terminal vertex of Φi

B(e) is mapped by φ to the initial vertex of Φi+1
B (e), and

so there is an edge, γi, of X joining these two points. Then,

e+ γ0 +ΦB(e) + γ1 + · · ·+Φk−1
B (e) + γk−1

determines a simple 1-cycle, where γi is given a natural orientation. We attach
a black 2-cell to X along the 1-cycle. Similarly, each orbit of the action of 〈ΦW 〉
on EW (S) determines a simple 1-cycle, and we attach a white 2-cell to X along
the 1-cycle.

Let M be the two-dimensional cell complex obtained from X by attaching
black/white 2-cells in this way. We can easily observe that M is an orientable
2-manifold. To compute the Euler characteristic χ(M), observe the following.
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1. The number of vertices of M is 4n with n = |S|, since each vertex is
contained in an SBW-square.

2. The edge set of M consists of 4n edges of the SBW-squares and 2n “con-
necting” edges. So, the number of edges of M is equal to 6n.

3. The face set of M consists of n squares and |EB(S)/〈ΦB〉| black 2-cells
and |EW (S)/〈ΦW 〉| white 2-cells. So, the number of faces of M is n +
|E(S)/〈Φ〉|.

Hence,

χ(M) = 4n− 6n+ (n+ |E(S)/〈Φ〉|) = −n+ |E(S)/〈Φ〉|,

and so, by the assumption, it is equal to 2. Therefore, M is homeomorphic to
S2.

Add an overpass connecting two negative vertices and an underpass connect-
ing two positive vertices to each SBW-square. The union of connecting edges
and overpasses and underpasses gives a connected link diagram Γ, which is
clearly alternating. Moreover, it is obvious from the construction that C3(S, φ)
is isomorphic to A(Γ).

Corollary 1.4.2. A compact 3-manifold M is homeomorphic to the exterior
of an alternating link L represented by a connected alternating diagram, if and
only if M is homeomorphic to the underlying space of an SBW cubed-complex
C3(S, φ) such that |E(S)/〈Φ〉| = |S|+ 2.

Remark 1.4.3. If the identity in Theorem 1.4.1 is not satisfied, then the sur-
face M in the proof is a closed orientable surface of genus ≥ 1, and Γ is an
alternating diagram in the surface M . In this case the underlying space of A(Γ)
is homomorphic to the Dehn space of the link L in M × [−1, 1] represented by
the diagram Γ, namely the space obtained from the exterior of L by coning off
M × {±1} (see [17]). We note that the “Dehn complexes” of these spaces and
related spaces are studied extensively in the works [26, 25, 17] by Harlander,
Rosebrock, and Byrd.
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Chapter 2

Two-parabolic-generator
subgroups of hyperbolic
3-manifold groups

2.1 Introduction

Adams proved in [1, Theorem 4.3] that the fundamental group of a finite volume
hyperbolic 3-manifold is generated by two parabolic elements if and only if the
3-manifold is homeomorphic to the complement of a 2-bridge link which is not
a torus link. Moreover, he also proved that the pair consists of meridians. This
refines the result of Boileau-Zimmermann [13, Corollary 3.3] that a link in S3

is a 2-bridge link if and only if its link group is generated by two meridians.
Adams also proved that (i) each hyperbolic 2-bridge link group admits only
finitely many distinct parabolic generating pairs up to equivalence [1, Corol-
lary 4.1] and (ii) for the figure-eight knot group, the upper and lower meridian
pairs are the only parabolic generating pairs up to equivalence [1, Corollary 4.6].
Here, a parabolic generating pair of a non-elementary Kleinian group Γ is an un-
ordered pair of two parabolic transformations that generates Γ. Two parabolic
generating pairs {α, β} and {α′, β′} of Γ are equivalent if {α′, β′} is equal to
{αϵ1 , βϵ2} for some ϵ1, ϵ2 ∈ {±1} up to simultaneous conjugation.

Agol [3] announced the following theorem which generalizes and refines these
results to all non-free Kleinian groups generated by two parabolic transforma-
tions.

Theorem 2.1.1 (Agol [3]). Let Γ be a non-free Kleinian group generated by
two non-commuting parabolic elements. Then one of the following holds.

(1) Γ is conjugate to a hyperbolic 2-bridge link group. Moreover, every hyper-
bolic 2-bridge link group has precisely two parabolic generating pairs up to
equivalence.
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Figure 2.1: The upper and lower meridian pairs of a 2-bridge link group. The
proper arcs τ+ and τ− in the exterior M(L) of a 2-bridge link L ⊂ S3 are the
upper and lower tunnels, respectively. Each of the meridian pairs represented
by τ+ and τ− generates the link group G(L) = π1(S

3 \ L).

(2) Γ is conjugate to a Heckoid group. Moreover, every Heckoid group has a
unique parabolic generating pair up to equivalence.

For an explicit description of the theorem, including the definition of a
Heckoid group, see Akiyoshi-Ohshika-Parker-Sakuma-Yoshida [9] and Aimi-Lee-
Sakai-Sakuma [8] (cf. Lee-Sakuma [28]), which give a full proof of the classifi-
cation of non-free, two-parabolic-generator Kleinian groups and an alternative
proof of the classification of parabolic generating pairs, respectively. In the
recent interesting articles [20] and [38] by Parker-Tan and Elzenaar-Martin-
Schillewaert, respectively, we can find very beautiful pictures, produced by Ya-
sushi Yamashita upon request of Caroline Series, that nicely illustrate Theo-
rem 2.1.1 (see also Figure 0.2b in Akiyoshi-Sakuma-Wada-Yamashita [10]).

The two parabolic generating pairs of a hyperbolic 2-bridge link group in the
second statement of Theorem 2.1.1(1) are the upper and lower meridian pairs
illustrated in Figure 2.1 (cf. Section 2.2). The assertion was obtained in [3]
as a consequence of the following more detailed result, together with Adams’
result [1, Theorem 4.3] that every parabolic generating pair of a hyperbolic
2-bridge link group consists of meridians.

Theorem 2.1.2 (Agol [3]). Let L ⊂ S3 be a hyperbolic 2-bridge link. Then any
non-commuting meridian pair in the link group G(L) which is not equivalent
to the upper nor lower meridian pair generates a free Kleinian group which is
geometrically finite.

The main purpose of this paper is to give a detailed account of Agol’s beau-
tiful proof of Theorem 2.1.2 included in the slide [3]. A key ingredient of the
proof is non-positively curved cubed decompositions of alternating link exteriors
in which the checkerboard surfaces are hyperplanes (Proposition 2.6.1). Accord-
ing to Rubinstein [45, p.3177], such cubed decompositions were first found by
Aitchison, though he did not publish the result. They were rediscovered by D.
Thurston [50] and described in detail by Yokota [54] (cf. [5, 45, 41]). The cubed
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decompositions play essential roles in the proofs of (i) Proposition 2.3.1 which
says that the checkerboard surfaces for hyperbolic alternating links are quasi-
fuchsian and (ii) Propositions 2.7.4 and 2.8.3 concerning the disks bounded by

the limit circles associated with checkerboard surfaces in the ideal boundary Ĉ
of the universal covering H3 of the hyperbolic alternating link complement. The
proof of Theorem 2.1.2 is completed by applying Proposition 2.4.11 (a variant
of Klein-Maskit combination theorem proved by using Maskit-Swarup [30]) to

the action of meridian pairs on Ĉ by using Proposition 2.8.3. (See Figures 2.16
and 2.17, which are copied from [3].)

Building on Theorems 2.1.1 and 2.1.2, we also prove the following general-
ization of Theorem 2.1.2.

Theorem 2.1.3. Let X = H3/G be an orientable, complete, hyperbolic 3-
manifold, {µ1, µ2} a pair of non-commuting parabolic elements of G, and Γ =
〈µ1, µ2〉 the subgroup of G generated by {µ1, µ2}. Then one of the following
holds.

(1) Γ is a rank 2 free group.

(2) Γ is equal to G, and it is a hyperbolic 2-bridge link group. Moreover,
{µ1, µ2} is equivalent to the upper or lower meridian pair.

(3) Γ is an index 2 subgroup of G, where Γ is the link group of a 2-component
hyperbolic 2-bridge link, and G is the link group of a rational link in the
projective 3-space P 3. Moreover, {µ1, µ2}, as a subset of Γ, is equivalent to
the upper or lower meridian pair in the 2-bridge link group, and {µ1, µ2},
as a subset of G, consists of meridians of the rational link.

Moreover, if X has finite volume, then the conclusion (1) is replaced with the
following finer conclusion.

(1’) Γ is a rank 2 free Kleinian group which is geometrically finite.

See Definition 2.10.2 for the definition of a rational link in P 3, and see
Remark 2.10.6 for a detailed description of the statement (3) in the above the-
orem. This theorem gives a refinement of the result by Boileau-Weidmann
[12, Proposition 2] concerning subgroups generated by two parabolic primitive
elements of the fundamental group of an orientable, complete, hyperbolic 3-
manifold of finite volume. The proof of Theorem 2.1.3 is based on (i) the result
of Millichap-Worden [34] concerning the commensurable classes of 2-bridge link
groups and (ii) the covering theorem of Canary [19] together with the tameness
theorem established by Agol [4] and Calegari-Gabai [18] (see also Soma [47] and
Bowditch [15]).

This paper is organized as follows. In Section 2.2, we reformulate the main
Theorem 2.1.2 into Theorem 2.2.1, by using the correspondence between the
meridian pairs up to equivalence and the proper arcs in the link exterior up to
proper homotopy. We also state Theorem 2.2.2 concerning general alternating
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links which is implicitly included in [3]. In Section 2.3, we recall the key fact that
the checkerboard surfaces associated with prime alternating link diagrams of hy-
perbolic alternating links are quasi-fuchsian (Proposition 2.3.1). In Section 2.4,

we describe the actions of meridians on the ideal boundary Ĉ of the hyperbolic
space H3, and give a sufficient condition for a meridian pair to generate a free
Kleinian group which is geometrically finite (Proposition 2.4.11). The proposi-
tion is a basic tool for the proof of Theorems 2.2.1 and 2.2.2. In Section 2.5, we
quickly recall fundamental facts concerning non-positively curved spaces, which
is used in Sections 2.6 and 2.7. In Section 2.6, we describe non-positively curved
cubed decompositions of alternating link exteriors (Proposition 2.6.1), and study
relative positions of “checkerboard hyperplanes” and “peripheral hyperplanes”,
the components of the inverse images of checkerboard surfaces and peripheral
tori, respectively, in the universal cover X̃ of a hyperbolic alternating link com-
plement X (Proposition 2.6.6). In Section 2.7, we review the ideal polyhedral
decomposition of X from the view point of the non-positively curved cubed de-
compositions. Then we prove Proposition 2.7.4 concerning relative positions of
closed half-spaces in X̃ bounded by checkerboard hyperplanes. In Section 2.8,
we use Proposition 2.7.4 to prove the key proposition, Proposition 2.8.3, con-
cerning discs, in the ideal boundary Ĉ of X̃ = H3, bounded by the limit circles
of checkerboard hyperplanes. In Section 2.9, we prove Theorems 2.2.1 and 2.2.2
(and so Theorem 2.1.2), by using Propositions 2.4.11 and 2.8.3. In Section 2.10,
we prove Theorem 2.1.3 after introducing and studying rational links in P 3.

2.2 Reformulation of Theorem 2.1.2

Let L be a link in S3, X = X(L) := S3 \ L the link complement, and M =
M(L) := S3 \ intN(L), the link exterior, where N = N(L) is a regular neigh-
borhood of L. The link group G = G(L) of L is the fundamental group
π1(M) = π1(X). A meridian of L is an element µ of G which is represented by
a based loop freely homotopic to a meridional loop in ∂N , i.e., a simple loop
that bounds an essential disk in N .

A meridian pair is an unordered pair {µ1, µ2} of meridians of L. Two merid-
ian pairs {µ1, µ2} and {µ′

1, µ
′
2} are equivalent if {µ′

1, µ
′
2} is equal to {gµ

ε1
1 g

−1, gµε2
2 g

−1}
for some ε1, ε2 ∈ {±1} and g ∈ G.

Note that there is a bijective correspondence between the set of meridian
pairs of L up to equivalence and the set of proper paths in M up to proper
homotopy (cf. [1], [28, Section 2] and Lemma 2.4.9(2)). Here a proper path inM
is a path (a continuous image of a closed interval) which intersects ∂M precisely
at the endpoints. Two proper paths in M are properly homotopic in M if they
are homotopic keeping the condition that the endpoints are contained in ∂M .

Assume that L is hyperbolic, i.e., the complement X admits a complete
hyperbolic structure of finite volume. Then the meridian pair {µ1, µ2} is com-
muting (i.e., µ1µ2 = µ2µ1) if and only if the corresponding proper path is
inessential, i.e., properly homotopic to an arc in ∂M (cf. Lemma 2.4.2). In
other words, {µ1, µ2} is non-commuting if and only if the proper path is es-
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sential, i.e., not inessential. If L is a 2-bridge link and if the arc is properly
homotopic to the upper or lower tunnel of L, then {µ1, µ2} generates the link
group G (see Figure 2.1). Thus Theorem 2.1.2 is reformulated as follows.

Theorem 2.2.1. Let L ⊂ S3 be a hyperbolic 2-bridge link. Let γ be an essential
proper path in the link exterior M(L), and let {µ1, µ2} be the meridian pair in
the link group G(L) represented by γ. Assume that γ is not properly homotopic
to the upper nor lower tunnel of L. Then {µ1, µ2} generates a rank 2 free
Kleinian group which is geometrically finite.

Agol’s proof of Theorem 2.2.1 in [3] actually includes a proof of the following
result concerning hyperbolic alternating links.

Theorem 2.2.2. Let L ⊂ S3 be a hyperbolic alternating link and D a prime
alternating diagram of L. Let {µ1, µ2} be a non-commuting meridian pair and
γ an essential proper path in the link exterior M(L) that represents the pair
{µ1, µ2}. If γ is not properly homotopic to a crossing arc (with respect to the
diagram D), then {µ1, µ2} generates a rank 2 free Kleinian group which is geo-
metrically finite.

2.3 Checkerboard surfaces for alternating links

In the remainder of this paper, L ⊂ S3 denotes a hyperbolic alternating link
and D ⊂ S2 denotes a prime alternating diagram of L, except in Sections 2.6
and 2.7, where we assume only that L is a prime alternating link. Here a link
diagram is prime if (i) it contains at least one crossing and (ii) for every simple
loop α in the projection plane, if α meets the diagram transversely in exactly
two points, then α bounds a disk that contains no crossings of the diagram. It
should be noted that a prime alternating diagram of a prime link is connected
(as a plane graph) and reduced (i.e., contains no nugatory crossings.)

We pick two points v+ and v− in S3, identify S3 \ {v+, v−} with S2 × R so
that limt→±∞(x, t) = v± for x ∈ S2. The diagram D is regarded as a 4-valent
graph in S2 × {0}, and we assume L ⊂ D × [−1, 1]. For each crossing c of
D, we assume L ∩ (c× [−1, 1]) = c × {−1, 1}. We call the point c+ := c × 1
(resp. c− := c × (−1)) the over (resp. under) crossing point of L at c, and
call c × [−1, 1] the crossing arc of L at c. The intersection of c × [−1, 1] with
the link exterior M (resp. the link complement X) is called the crossing arc in
M (resp. the open crossing arc in X) at c. We assume that the crossing arc
c×[−1, 1] is oriented so that c− and c+, respectively, are the initial and terminal
points.

We also assume that L coincides with D outside crossing balls, regular neigh-
borhoods in S3 of the crossing arcs at the crossings of D. We color the com-
plementary regions of D in S2 alternatively black and white. Then there is a
compact, connected surface Sb (resp. Sw) bounded by L that coincides with the
black (resp. white) regions outside the crossing balls and intersects each crossing
ball in a twisted rectangle: it is called the black (resp. white) surface for L. It
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should be noted that Sb and Sw intersect transversely along the crossing arcs
(cf. Figure 2.4(a) in Section 2.6). Moreover, there is a natural bijective corre-
spondence between the components of (Sb ∪ Sw) \ (Sb ∩ Sw) and the regions of
D. We occasionally refer to each of Sb and Sw as a checkerboard surface and
denote it by S.

For each checkerboard surface S, we assume that S intersects the regular
neighborhood N of L in a collar neighborhood of ∂S and so S ∩M is properly
embedded in M . We refer to S ∩M ⊂ M (resp. S ∩ X ⊂ X) a checkerboard
surface in M (resp. an open checkerboard surface in X), and continue to denote
it by S.

The following key proposition is implicitly included in the slide [3], and its
proof following Agol’s suggestion is given by Adams [2, Theorem 1.9]. The proof
depends on the fact that every hyperbolic alternating link complement admits
a non-positively curved cubed decomposition in which checkerboard surfaces
are hyperplanes (see Section 2.6). Except for the existence of such a decomposi-
tion, essentially the same arguments had been given by Aitchison-Rubinstein [6,
Lemma and its proof in p.146] in a more general setting. See Futer-Kalfagianni-
Purcell [22, Theorem 1.6] for a generalization.

Proposition 2.3.1. Let L ⊂ S3 be a hyperbolic alternating link, and S a
checkerboard surface obtained from a prime alternating diagram D of L. Then
S is quasi-fuchsian.

To explain the meaning of the proposition, let pu : X̃ → X be the universal
covering, and identify the link group G = π1(X) with the covering transforma-
tion group Aut(X̃). Since L is hyperbolic, X̃ is identified with the hyperbolic
space H3 and G = Aut(X̃) is regarded as a Kleinian group. Then S being
quasi-fuchsian means that π1(S) injects into π1(X) = G and the Kleinian group
π1(S) < G < PSL(2,C) satisfies the following condition: if S is orientable then
π1(S) is a quasi-fuchsian group (cf. [31, p.120, Definition]), and if S is non-
orientable then the index 2 subgroup of π1(S) corresponding to the orientation
double cover is a quasi-fuchsian group. Since the action of a quasi-fuchsian
group on the 3-ball H̄3 = H3 ∪ Ĉ is topologically conjugate to the action of a
fuchsian group (see [31, Theorem 5.31]), we obtain the following corollary.

Corollary 2.3.2. Let L ⊂ S3 be a hyperbolic alternating link, and S a checker-
board surface obtained from a prime alternating diagram D of L. Let Σ be a
component of the inverse image p−1

u (S) ⊂ X̃ = H3. Then Σ is an open disk
properly embedded in H3, and it divides H3 into two half-spaces, B− and B+,
which satisfy the following conditions.

(1) H3 = B− ∪B+ and Σ = B− ∩B+.

(2) The closure Σ̄ of Σ in H̄3 = H3∪ Ĉ is a disk properly embedded in H̄3, and
(H̄3, Σ̄) is homeomorphic to the standard ball pair (B3, B2), where B3 is
the unit 3-ball in R3 and B2 is the intersection of B3 with the x-y plane.

(3) The closures B̄± of B± in H̄3 are 3-balls, such that

H̄3 = B̄− ∪ B̄+, Σ̄ = B̄− ∩ B̄+.
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(4) ∂Σ̄ is a circle in Ĉ which divides Ĉ into two disks ∆− := B̄− ∩ Ĉ and

∆+ := B̄+ ∩ Ĉ, such that Ĉ = ∆− ∪∆+ and ∂Σ̄ = ∆− ∩∆+.

We call Σ ⊂ H3 and Σ̄ ⊂ H̄3, respectively, a checkerboard plane and a
checkerboard disk. The color of Σ (or Σ̄) is defined to be black or white according
to the color of the corresponding checkerboard surface S. We call each of B± a
checkerboard half-space bounded by Σ.

2.4 The action of meridian pairs on the ideal
boundary of the hyperbolic space

In the reminder of the paper, we assume for convenience that the hyperbolic al-
ternating link L is oriented, and we use the terminology “meridian” and “merid-
ian pair” in the following restricted sense: A meridian of L is an element of the
link group G which is represented by an oriented closed path freely homotopic
to a meridional loop in ∂N that has linking number +1 with L. A meridian pair
is an unordered pair {µ1, µ2} of meridians of L in the restricted sense. Then two
meridian pairs are equivalent in the sense defined in Section 2.2 if and only if
they are simultaneously conjugate. Of course, this does not affect the contents
of Theorems 2.2.1 and 2.2.2.

Recall that X̃ is identified with the hyperbolic space H3 and G = Aut(X̃)
is identified with a Kleinian group. Thus a meridian µ ∈ G < PSL(2,C) is

parabolic, and its action on H̄3 = H3 ∪ Ĉ has a unique fixed point, which lies in
Ĉ. The point is called the parabolic fixed point of µ and denoted by Fix(µ).

Let PFix(G) ⊂ Ĉ be the set of the parabolic fixed points of G, i.e., the set
of the fixed points of the parabolic elements of G. For each p ∈ PFix(G), the
stabilizer StabG(p) of p in G is a rank 2 free abelian group which belongs to
the conjugacy class of the fundamental group of a component of ∂M . Since
every component of ∂M contains a unique meridian loop (which has linking
number +1 with L) up to isotopy, StabG(p) contains a unique meridian µp of
the oriented link L. We call µp the meridian of L at the parabolic fixed point p.

Lemma 2.4.1. The maps µ 7→ Fix(µ) and p 7→ µp, respectively, determine the
following bijective correspondence and its inverse:

{meridians of L} → PFix(G).

The following lemma is easily proved.

Lemma 2.4.2. Let {µ1, µ2} be a meridian pair represented by a proper path γ
in the link exterior M . Then the following conditions are equivalent.

(1) {µ1, µ2} is commuting.

(2) Fix(µ1) = Fix(µ2).

(3) γ is inessential.

15



We now describe the action of the meridian µp on H̄3. To this end, we assume

that X \M consists of open cusp neighborhoods, and therefore M̃ := p−1
u (M)

is a submanifold of X̃ = H3 bounded by disjoint horospheres {Hp}p∈PFix(G).

Note that the Euclidean torus Hp/StabG(p) is a component of ∂M and every
component of ∂M is of this form.

Now, let S ⊂ X be an open checkerboard surface for L. We may assume
that S intersects transversely each component of ∂M in a closed Euclidean
geodesic. For each p ∈ PFix(G), p−1

u (S) ∩ Hp is a disjoint union of Euclidean
lines {ℓj}j∈Z = {ℓj(p)}j∈Z such that µp(ℓj) = ℓj+1. Let Σj = Σj(p) be the
checkerboard plane that is the component of p−1

u (S) such that ℓj ⊂ Σj ∩Hp.

Lemma 2.4.3. Under the above setting, Σj ∩ Hp = ℓj for each p ∈ PFix(G)
and j ∈ Z. In other words, the checkerboard planes Σj (j ∈ Z) are all different.

Proof. Suppose to the contrary that Σj = Σj′ for some distinct integers j and

j′. Let Σ̌ be the intersection of Σj = Σj′ and M̃ . Then Σ̌ is properly embedded

in M̃ , and the image Š := pu(Σ̌) = S ∩M is a checkerboard surface in M . Let
α̃ be a path in Σ̌ joining the boundary components ℓj and ℓj′ of Σ̌. Since M̃ is

simply connected, α̃ is homotopic rel endpoints to a path in Hp ⊂ ∂M̃ . Thus
the path α := pu ◦ α̃ in Š is homotopic rel endpoints to a path in ∂M inside
M . On the other hand, since ℓj 6= ℓj′ , α is not homotopic rel endpoints to ∂Š
in Š. This contradicts [39, Theorem 11.31] which says that Š is π1-essential, in
particular, boundary π1-injective (see [39, Definition 11.30]).

Remark 2.4.4. See Proposition 2.6.6(2) for a direct geometric proof of the
above lemma. The π1-essentiality of checkerboard surfaces associated with
prime alternating diagrams had been proved by Aumann [11] (cf. Menasco-
Thistlethwaite [33, Proposition 2.3]). See Ozawa [36, Theorem 3] and [37, The-
orem 2.8] for generalizations.

Lemma 2.4.5. (1) There are checkerboard half-spaces B±
j = B±

j (p) (j ∈ Z)
bounded by Σj which satisfy the following conditions:

(a) H̄3 = B̄−
j ∪ B̄+

j and Σ̄j = B̄−
j ∩ B̄+

j .

(b) B̄−
j ⊂ B̄−

j+1 and B̄+
j ⊃ B̄+

j+1.

(c) µp(B̄
±
j ) = B̄±

j+1.

(2) Set ∆±
j = ∆±

j (p) := B̄±
j (p) ∩ Ĉ. Then ∆±

j are disks in Ĉ which satisfy
the following conditions.

(a) Ĉ = ∆−
j ∪∆+

j and ∂Σ̄j = ∆−
j ∩∆+

j .

(b) ∆−
j ⊂ ∆−

j+1 and ∆+
j ⊃ ∆+

j+1.

(c) µp(∆
±
j ) = ∆±

j+1.
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(a) (b)

Figure 2.2: (a) The action of µp on (Hp,Hp ∩ p−1
u (Sb),Hp ∩ p−1

u (Sw)). (b)
A rough model of the action of µp on (H̄3, {Σ̄j}j). This figure is not precise.
In fact, ∆−

j ∩ ∆+
j+1 = ∂∆−

j ∩ ∂∆+
j+1 is generically strictly bigger than {p}

(cf. Remark 2.4.8).

In the above lemma, the symbol ± is used in the following way: for example,
µp(B̄

±
j ) = B̄±

j+1 means that µp(B̄
ϵ
j) = B̄ϵ

j+1 for each ϵ ∈ {−,+}. We apply this
convention throughout the paper.

Proof. By Lemma 2.4.3, Hp ∩ Σj is equal to the line ℓj . Observe that the line
ℓj divides Hp into two closed half-spaces H−

p,j and H+
p,j , where ℓj±1 ⊂ H±

p,j (see

Figure 2.2(a)). By Corollary 2.3.2, (H̄3, Σ̄j) is a standard ball pair and there
are checkerboard half-spaces Bϵ

j (ϵ ∈ {−,+}) bounded by Σj which satisfy the

condition (1-a), such that Hϵ
p,j ⊂ B̄ϵ

j . Since H−
p,j ⊂ H−

p,j+1 and H+
p,j ⊃ H+

p,j+1,

the condition (1-b) are satisfied. Since µp(H
±
p,j) = H±

p,j+1, the condition (1-c)
is also satisfied, completing the proof of (1).

The assertion (2) follows from (1) and the fact that (H̄3, Σ̄j) is a standard
ball pair.

Definition 2.4.6. Under the above setting, a butterfly BF(p) at p ∈ PFix(G)

is a pair of disks {∆−
j ,∆

+
j+1} = {∆−

j (p),∆
+
j+1(p)} in Ĉ for some j ∈ Z. The

color of the butterfly is defined to be black or white according to the color of
the checkerboard surface S. The underlying space |BF(p)| of BF(p) is defined

by |BF(p)| := ∆−
j ∪∆+

j+1 ⊂ Ĉ (see Figure 2.2(b)).
It should be noted that a butterfly BF(p) is determined by the parabolic

fixed point p, the color (equivalently, the choice of a checkerboard surface S),
and the choice of a component Σj of p−1

u (S) such that p ∈ Σ̄j .

Lemma 2.4.7. For a butterfly BF(p) = {∆−
j ,∆

+
j+1} at p ∈ PFix(G), the fol-

lowing hold.

(1) ∆−
j and ∆+

j+1 are disks in Ĉ which have disjoint interiors.

(2) µp(Ĉ \ int∆−
j ) = ∆+

j+1.
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Proof. (1) By Lemma 2.4.5(2-a, b), int∆−
j ⊂ int∆−

j+1 = Ĉ \∆+
j+1. Hence

int∆−
j ∩ int∆+

j+1 ⊂ (int∆−
j ) ∩∆+

j+1 = ∅.

(2) By Lemma 2.4.5(2-c), µp(Ĉ \ int∆−
j ) = µp(∆

+
j ) = ∆+

j+1.

Remark 2.4.8. The parabolic fixed point p is contained in the intersection
∆−

j ∩ ∆+
j+1 = ∂∆−

j ∩ ∂∆+
j+1. However, in general, the intersection is strictly

bigger than the singleton {p}; it is generically a Cantor set (cf. [31, Theorem
3.13]). We hope to give a more detailed description of the intersection in a
subsequent paper.

Now, let {µ1, µ2} be a non-commuting meridian pair, and set pi := Fix(µi) ∈
PFix(G) (i = 1, 2). Note that p1 6= p2 and µi = µpi

(i = 1, 2) by Lemmas 2.4.1
and 2.4.2. Then the following lemma follows immediately from Lemma 2.4.1.

Lemma 2.4.9. (1) The correspondence {µ1, µ2} 7→ {p1, p2} gives a bijective
correspondence from the set of the non-commuting meridian pairs of L up to
equivalence to the set of the unordered pairs of distinct points in PFix(G) up to
the action of G.

(2) Let {µ1, µ2} and {p1, p2} be as in the above, and let γ be a proper path
in M that represents the pair {µ1, µ2}. Then γ lifts to a proper path γ̃ in
the universal cover M̃ ⊂ X̃ = H3 that joins the horospheres Hp1

and Hp2
.

Conversely, if γ is a proper path in M which is the image of a proper path γ̃ in
M̃ joining Hp1 and Hp2 , then γ represents the pair {µ1, µ2}.

Notation 2.4.10. Under the above setting, when we consider two butterflies
BF(p1) and BF(p2) simultaneously, we denote the butterfly BF(pi) by {∆−

i ,∆
+
i }

for i = 1, 2, where ∆−
i and ∆+

i correspond to ∆−
j (pi) and ∆+

j+1(pi), respectively,

in Definition 2.4.6. Thus µi(Ĉ\int∆−
i ) = ∆+

i (i = 1, 2). In this sense, we regard

BF(pi) as the ordered pair (∆−
i ,∆

+
i ) of closed disks in Ĉ, though we continue

to denote it by {∆−
i ,∆

+
i }.

The proof of Theorem 2.2.1 is based on the following proposition.

Proposition 2.4.11. Let L ⊂ S3 be a hyperbolic alternating link, {µ1, µ2} a
non-commuting meridian pair in the link group G(L), and {p1, p2} the corre-
sponding pair of parabolic fixed points. Then the subgroup Γ = 〈µ1, µ2〉 generated
by {µ1, µ2} is a rank 2 free Kleinian group which is geometrically finite, pro-
vided that there are butterflies BF(pi) = {∆−

i ,∆
+
i } at pi (i = 1, 2) satisfying

the following conditions.

(i) The underlying spaces |BF(p1)| and |BF(p2)| have disjoint interiors in Ĉ,
equivalently, the four disks ∆−

1 , ∆
+
1 , ∆

−
2 and ∆+

2 have disjoint interiors.

(ii) The complementary open set O := Ĉ \ (|BF(p1)| ∪ |BF(p2)|) is non-empty.
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Proof. By a standard ping-pong argument (see [35, Chapter 4] for a nice expo-
sition with beautiful illustrations), we have w(O) ∩ O = ∅ for any non-trivial
reduced word w in {µ1, µ2}. Hence, the subgroup Γ = 〈µ1, µ2〉 of G(L) is
a rank 2 free group and it has a non-empty domain of discontinuity. Since
a two-parabolic-generator Kleinian group which has a non-empty domain of
discontinuity is geometrically finite by Maskit-Swarup [30, Theorem 1], Γ is
geometrically finite.

Remark 2.4.12. Though [3] appeals to the Klein-Maskit combination theorem,
we could not verify that the conditions in [29, Theorem C.2] is satisfied in the
setting of Proposition 2.4.11. This is the reason why we use the result of Maskit
and Swarup [30]. We thank Yohei Komori and Hideki Miyachi for suggesting
this idea to us.

2.5 Basic facts concerning non-positively curved
spaces

In this section, we recall fundamental facts concerning non-positively curved
spaces, basically following Bridson-Haefliger [16].

Let X = (X, d) be a metric space. In this paper, we mean by a geodesic in X
an isometric embedding g : J → X where J is a connected subset of R. If J is
the whole R (resp. a closed interval), g is called a geodesic line (resp. a geodesic
segment). We do not distinguish between a geodesic and its image. X is said
to be a geodesic space if every pair of points can be joined by a geodesic in X.
For points a and b in a geodesic space X, we denote by [a, b] a geodesic segment
joining a and b. The symbols (a, b), [a, b) and (a, b] represent open or half-open
geodesic segments, respectively. Then the distance d(a, b) is equal to the length,
length([a, b]), of the geodesic segment [a, b]. (See [16, Definition I.1.18] for the
definition of the length of a curve.)

A geodesic space X is called a CAT(0) space if any geodesic triangle is thin-
ner than a comparison triangle in the Euclidean plane E2, that is, the distance
between any points on a geodesic triangle is less than or equal to the corre-
sponding points on a comparison triangle. A CAT(0) space is uniquely geodesic,
i.e., for every pair of points, there is a unique geodesic joining them ([16, Propo-
sition II.1.4(1)]). A geodesic space X is said to be non-positively curved if it
is locally a CAT(0) space (cf. [16, Definitions II.1.1 and II.1.2]). The following
(special case of) the Cartan-Hadamard theorem is fundamental.

Proposition 2.5.1. [16, Special case of Theorem II.4.1(2)] Let X be a com-
plete, connected, metric space. If X is non-positively curved, then the universal
covering X̃ (with the induced length metric) is a CAT(0) space.

A subset W of a uniquely geodesic space X is said to be convex if, for any
distinct points a and b in W , the geodesic segment [a, b] is contained in W . For
a closed convex set W of a complete CAT(0) space X, let πW : X →W be the
projection, namely πW (x) for every x ∈ X is the unique point in W such that
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d(x, πW (x)) = d(x,W ) := inf{d(x, y) | y ∈ W} (see [16, Proposition II.2.4]).
For points x ∈ X \W and w ∈W define

∠w(x,W ) := inf {∠w(x, y) | y ∈W \ {w}} ,

where ∠w(x, y) is the Alexandrov angle ∠w([w, x], [w, y]) between the geodesic
segments [w, x] and [w, y] at w (see [16, Definition I.1.12 and Notation II.3.2]).

Remark 2.5.2. The angle ∠w(x,W ) is determined by the local shape of (X,W )
around w in the following sense. For any neighborhood U of w, and for any
x′ ∈ (w, x] ∩ U , we have

∠w(x,W ) = ∠w(x
′,W ∩ U) := inf {∠w(x

′, y′) | y′ ∈ (W ∩ U) \ {w}} ,

because for any x′ ∈ (w, x], y ∈ W \ {w} and y′ ∈ (w, y], we have ∠w(x, y) =
∠w(x

′, y′).

Lemma 2.5.3. Let X be a complete CAT(0) space and W a closed convex
subset of X. Then for any x ∈ X and w ∈ W , we have w = πW (x) if and only
if ∠w(x,W ) ≥ π

2 .

Proof. The only if part is nothing other than [16, Proposition II.2.4(3)]. To see
the if part, suppose that the inequality ∠w(x,W ) ≥ π

2 holds, and assume to the
contrary that w is different from the point w0 := πW (x). Let ∆(x̄, w̄, w̄0) ⊂ E2

be the comparison triangle of the geodesic triangle ∆(x,w,w0) ⊂ X. Then
∠w̄(x̄, w̄0) ≥ ∠w(x,w0) ≥ ∠w(x,W ) ≥ π

2 by [16, Propositions II.1.7(4)] and
the assumption. We also have ∠w̄0(x̄, w̄) ≥ ∠w0(x,w) ≥ π

2 by [16, Propositions
II.1.7(4) and II.2.4(3)]. Thus the Euclidean triangle ∆(x̄, w̄, w̄0) has two angles
≥ π

2 , a contradiction.

Let W1 and W2 be closed convex subsets of a complete CAT(0) space X.
The distance d(W1,W2) between W1 and W2 is defined by

d(W1,W2) := inf{d(x1, x2) | x1 ∈W1, x2 ∈W2}.

For a pair of distinct points (x1, x2) ∈W1×W2, the geodesic segment [x1, x2] is a
shortest path between W1 and W2 if d(W1,W2) = length([x1, x2]). The geodesic
segment [x1, x2] is a common perpendicular to W1 and W2 if ∠x1

(x2,W1) ≥ π
2

and ∠x2(x1,W2) ≥ π
2 .

Lemma 2.5.4. Let X be a complete CAT(0) space, and let W1 andW2 be closed
convex subsets of X. Then, for a pair of distinct points (x1, x2) ∈ W1 ×W2,
the geodesic segment [x1, x2] is a shortest path between W1 and W2 if and only
if it is a common perpendicular to W1 and W2. In particular, if a common
perpendicular to W1 and W2 exists, then d(W1,W2) > 0 and so W1 ∩W2 = ∅.

Proof. Assume that [x1, x2] is a common perpendicular toW1 andW2. Consider
the projection πs := π[x1,x2] from X to the closed convex set [x1, x2]. Then for
any pair of points (y1, y2) ∈ W1 × W2, we see x1 = πs(y1) by the if part
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of Lemma 2.5.3, because ∠x1(y1, [x1, x2]) = ∠x1(x2, y1) ≥ ∠x1(x2,W1) ≥ π
2 .

Similarly x2 = πs(y2). Since the projection does not increase distances by [16,
Proposition II.2.4(4)], we have

d(x1, x2) = d(πs(y1), πs(y2)) ≤ d(y1, y2).

Hence length([x1, x2]) = d(x1, x2) = d(W1,W2). This completes the proof of the
if part. The only if part immediately follows from (the if part of) Lemma 2.5.3.

A cubed complex is a metric space X = (X, d) obtained from a disjoint union
of unit cubes X̂ =

⊔
λ∈Λ(I

nλ × {λ}) by gluing their faces through isometries.
To be precise, it is an Mκ-polyhedral complex with κ = 0 in the sense of
[16, Definition I.7.37] that is made up of Euclidean unit cubes, i.e., the set
Shapes(X) in the definition consists of Euclidean unit cubes. (See [16, Example
(I.7.40)(4)].) The metric d on X is the length metric induced from the Euclidean
metrics of the unit cubes (see [16, I.7.38] for a precise definition). We recall the
following basic fact (cf. [16, Theorem in p.97 or I.7.33]).

Proposition 2.5.5. Every finite dimensional cubed complex is a complete geodesic
space.

When we need to consider the combinatorial structure of the cubed complex
X in addition to its metric, we denote it by using the corresponding calligraphic
letter X and regard the metric space X as the underlying space |X | of X .
Otherwise, we do not distinguish symbolically among X, X and |X |, and use a
symbol which we think fit to the setting. We also call X a cubed decomposition
of the metric space X.

For a point x ∈ X = |X |, two non-trivial geodesics issuing from x are said
to define the same direction if the Alexandrov angle between them is zero. This
determines an equivalence relation on the set of non-trivial geodesics issuing
from x, and the Alexandrov angle induces a metric on the set of the equivalence
classes. The resulting metric space is called the space of directions at x and
denoted by Sx(X) (see [16, Definition II.3.18]).

Suppose x is a vertex v of the cubed complex X . Then the space Sv(X ) is
obtained by gluing the spaces {Svλ(I

nλ ×{λ})}, where λ runs over the elements

of the index set Λ such that (vλ, λ) ∈ Inλ × {λ} ⊂ X̂ is mapped to v by the
projection X̂ → X. Here Svλ(I

nλ × {λ}) is the space of directions in the cube
Inλ × {λ} at the vertex vλ; so it is an all-right spherical simplex, a geodesic
simplex in the unit sphere Snλ−1 all of whose edges have length π/2. Hence
Sv(X ) has a structure of a finite dimensional all-right spherical complex, namely
anMκ-polyhedral complex with κ = 1 in the sense of [16, Definition I.7.37] which
is made up of all-right spherical simplices. This complex is called the geometric
link of v in X , and is denoted by Lk(v,X ) (see [16, (I.7.38)]). It is endowed with
the length metric dLk(v,X ) induced from the spherical metrics of the all-right
spherical simplices. Then the following holds (cf. [16, the second sentence in
p.191]).
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Lemma 2.5.6. The metric dSv(X ) on Sv(X ) = Lk(v,X ) determined by the
Alexandrov angle is equal to the metric dπLk(v,X ) defined by

dπLk(v,X )(g1, g2) := min{dLk(v,X )(g1, g2), π}.

Proof. By [16, Theorem I.7.39], there is a natural isometry f from the open
ball BX(v, ϵ) = {x ∈ X | d(v, x) < ϵ}, for some ϵ > 0, onto the open ball
of the same radius ϵ about the cone point of the Euclidean cone C0(Lk(v,X ))
over the metric space Lk(v,X ). (See [16, Definition I.5.6] for the definition
of the Euclidean cone (κ-cone with κ = 0) and its cone point.) The metric
dπLk(v,X ) is recovered from the metric of the open ball about the cone point of

the Euclidean cone C0(Lk(v,X )) (see [16, Remark I.5.7]), whereas the metric
dSv(X ) is determined by the metric on BX(v, ϵ). Hence, by the naturality of the
isometry f , we obtain the desired result.

We recall the following well-known criterion for a cubed complex to be non-
positively curved [16, Theorem II.5.20], where a flag complex is a simplicial
complex in which every finite set of vertices that is pairwise joined by an edge
spans a simplex.

Proposition 2.5.7 (Gromov’s flag criterion). A finite dimensional cubed com-
plex X is non-positively curved if and only if the geometric link of each vertex
is a flag complex.

2.6 Non-positively curved cubed decompositions
of alternating link exteriors

The proof of Proposition 2.7.4, as well as that of Proposition 2.3.1 given by [2, 3,
6], is based on non-positively curved cubed decompositions of prime alternating
link exteriors in which the checkerboard surfaces are hyperplanes, i.e., consist
of midsquares of the cubes. Here a midsquare of a cube I3 is a square properly
embedded in I3 which is parallel to a face of ∂I3 and passes through the center
( 12 ,

1
2 ,

1
2 ). (See [24, Definition 2.2] for a precise definition of a hyperplane.) In this

section, we quickly describe the cubed decompositions following the construction
by D. Thurston [50] and the detailed description by Yokota [54] (cf. [5, 45, 41]).

For each crossing of a prime alternating diagram D of a prime alternating
link L, consider an octahedron that contains the corresponding crossing arc as
a vertical central axis (see Figure 2.3). Truncating each octahedron at its top
and bottom vertices and splitting along the horizontal square containing the
remaining four vertices, we obtain a pair of cubes in the link exterior M , each
of which intersects ∂M along the top or bottom face and intersects the checker-
board surfaces in the vertical midsquares (see Figure 2.4). We can expand the
cubes inM so as to obtain the desired cubed decomposition ofM (see Figure 2.3
and its caption). Thus we obtain the following proposition.
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Figure 2.3: Local picture of the cubed complex M. The partially truncated
octahedra in M are expanded so that they cover the whole M . The shaded
faces of the octahedra at the crossings c and c′ are identified with the central
bow-shaped face. In particular, the pair of the horizontal arrowed edges of the
octahedra are identified with the arrowed edge of the bow-shaped face joining
monotonically the top vertex v+ and the bottom vertex v−, passing through the
center m(R) of the region R.
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Sw

(a)

∂Sw

(b) (c)

Figure 2.4: At each crossing, (a) Sb and Sw intersect transversely along the
crossing arc, (b) each of Sb and Sw intersects the partially truncated octahedron
in a vertical middle plate containing the crossing arc, and (c) each of the middle
plate determines a pair of midsquares in the pair of cubes, and the two pairs of
midsquares intersect orthogonally along the vertical axes of the cubes.

Proposition 2.6.1. Let L be a prime alternating link and D a prime alternating
diagram of L. Then there is a complete, non-positively curved, cubed complex
M whose underlying space is the exterior M of L, which satisfies the following
conditions.

(1) Each cube I3 intersects ∂M in the top face I2 × {1} or the bottom face
I2 × {0}.

(2) There are hyperplanes Sb and Sw in M that represent the isotopy classes
of the black and white surfaces, respectively, and satisfy the following con-
ditions.

(a) Each of Sb and Sw intersects each cube in one of the two vertical
midsquares { 1

2} × I2 and I × { 1
2} × I.

(b) Sb and Sw intersects “orthogonally” along C := Sb ∩ Sw, the disjoint
union of geodesic segments representing crossing arcs.

(3) M has precisely two inner vertices v+ and v−.

(4) There is a bijective correspondence between the inner edges (edges con-
tained in intM) of M and the regions of D: the inner edge e(R) corre-
sponding to a region R is a monotone path joining v+ with v− that in-
tersects Sb ∪Sw “orthogonally” at a single point m(R) which is contained
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Figure 2.5: The geometric link Lk(vϵ,M): The union of the thick red graph
and the thick green graph forms the 1-skeleton of Lk(vϵ,M).

in the component of (Sb ∪ Sw) \ C corresponding to R. We call m(R) the
center of R.

(5) For each ϵ ∈ {+,−}, the geometric link Lk(vϵ,M) is the all-right spherical
complex whose combinatorial structure is obtained from the cell decompo-
sition of S2 determined by the dual graph D∗ of D, by subdividing each
region of D∗ as follows. Each region of D∗ contains a unique vertex, say
c, of D. Subdivide the region by taking the join of c and the edge cycle
of D∗ forming the boundary of the region (see Figure 2.5). Here the ver-
tex m∗(R) of D∗ ⊂ Lk(v±,M) dual to the region R corresponds to the
direction at vϵ determined by the geodesic [vϵ,m(R)].

Remark 2.6.2. (1) In the statement (2-b), the adjective “orthogonally” means
that every interior point of C has a neighborhood U in M such that the triple
(U,U∩Sb, U∩Sw) is isometric to a neighborhood of the origin in (R3, 0×R2,R×
0× R).

(2) In the statement (4), the adjective “orthogonally” means that there is
a CAT(0) neighborhood U of m(R) in M, such that for any point x ∈ (e(R) \
{m(R)}) ∩ U and y ∈ ((Sb ∪ Sw) \ {m(R)}) ∩ U , we have ∠m(R)(x, y) = π/2.

(3) For each component T of ∂M , the restriction M|T of M to T gives a
cubed decomposition of T , whose 1-skeleton is the union of two longitudes ℓb
and ℓw, where ℓb and ℓw are parallel to Sb ∩ T and Sw ∩ T , respectively. In
particular, for each square I2 of M|T , exactly one of the two diagonals of the
square projects to a meridional loop (cf. Figure 2.2(a)).

(4) The assertion (5) implies the following key fact. For distinct regions R1

and R2 of D, the distance dLk(vϵ,M)(m
∗(R1),m

∗(R2)) is π/2 or ≥ π according
to whether R1 and R2 are adjacent or not. By Lemma 2.5.6, this implies that
the Alexandrov angle ∠vϵ(m(R1),m(R2)) is equal to π/2 or π according to
whether R1 and R2 are adjacent or not. This fact plays a key role in the proof
of Proposition 2.7.4.

Let X be the cubed complex obtained by attaching the cubed complex∪∞
n=1 ∂M × [n, n + 1] to M along ∂M. Then the underlying space is the
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link complement X, and we have the following key proposition.

Proposition 2.6.3. The cubed complexes M and X are complete and non-
positively curved.

Proof. By Proposition 2.5.5, M and X are complete. From the description of
Lk(v±,M) (= Lk(v±,X )) given by Proposition 2.6.1(5), we can check that they
are flag complexes as in [45, Proof of Proposition 3.3]. For any other vertex
v of M and X , we can easily see that the geometric link of v in M and X ,
respectively, is a flag complex. Hence, M and X are non-positively curved by
Gromov’s flag criterion (Proposition 2.5.7).

Let X̃ (resp. M̃) be the cubed decomposition of the universal covering
space X̃ (resp. M̃) obtained by pulling back the cubed decompositions X of
X (resp. M of M) through the covering projection pu : X̃ → X. Then X̃
and M̃ are complete CAT(0) cubed complexes by Proposition 2.6.3 and the
Cartan-Hadanard theorem (Proposition 2.5.1).

As in Proposition 2.6.1(2), the open checkerboard surfaces Sb and Sw in X
are isotopic to hyperplanes in X , which we also denote by Sb and Sw, respec-
tively. Then Sb and Sw intersects orthogonally along C := Sb ∩ Sw, the disjoint
union of geodesic lines representing open crossing arcs. Set S̃b := p−1

u (Sb) and
S̃w := p−1

u (Sw). Then every component Σ of S̃b (resp. S̃w) is a hyperplane in X̃ ,
and it is regarded as the universal covering of Sb (resp. Sw): we call Σ a checker-
board hyperplane in X̃ . Of course, a checkerboard hyperplane is a checkerboard
plane defined in Section 2.3.

Proposition 2.6.4. Every checkerboard hyperplane Σ is convex in the CAT(0)
space X̃ . Moreover, Σ divides X̃ into two closed convex subspaces, namely, there
are convex subspaces B and Bc of X̃ such that X̃ = B ∪ Bc and Σ = B ∩ Bc.

Proof. This follows from Farley’s result [21, Theorem 4.4], that is motivated by
Sageev’s combinatorial study of hyperplanes in [40, Section 4]. See [42, Section
4.3] for another proof.

We call each of the subspaces B and Bc of X̃ in the above proposition a
checkerboard half-space bounded by the checkerboard hyperplane Σ. Though
every checkerboard half-space is also regarded as that defined in Section 2.3, we
use the terminology in the above sense throughout the remainder of this paper.

By a peripheral plane, we mean a component of ∂M̃ ⊂ X̃ . Then we have
the following proposition, which is easily proved by using [42, Theorem 1.1].

Proposition 2.6.5. Under the above setting, every peripheral plane H ⊂ ∂M̃
is convex in the CAT(0) space X̃ .

Propositions 2.6.4 and 2.6.5 imply the following proposition.

Proposition 2.6.6. (1) Let Σ1 and Σ2 be distinct checkerboard hyperplanes in
X̃ . Then one of the following holds.

(a) Σ1 ∩ Σ2 = ∅.
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(b) Σ1 ∩ Σ2 is a geodesic line. Moreover, Σ1 and Σ2 intersect orthogonally
along Σ1 ∩ Σ2, in the sense defined in Remark 2.6.2(1). Furthermore,
Σ1 ∩ Σ2 divides each of Σ1 and Σ2 into two convex subspaces.

(2) Let Σ be a checkerboard hyperplane and H a peripheral plane in X̃ . Then
one of the following holds.

(a) Σ ∩H = ∅.

(b) Σ∩H is a geodesic line. Moreover, Σ and H intersect orthogonally along
Σ ∩ H, in the sense defined in Remark 2.6.2(1). Furthermore, Σ ∩ H
divides each of Σ and H into two convex subspaces.

Proof. The assertions except for the orthogonalities are consequences of Propo-
sitions 2.6.4, 2.6.5 and the fact that the intersection of two convex sets is again
convex. The orthogonality of Σ1 and Σ2 in (1-b) follows from the fact that
Σ1 and Σ2 are hyperplanes, and so their relative positions are as explained in
Proposition 2.6.1(2) and illustrated in Figure 2.4(c). The orthogonality of Σ
and H in (2-b) follows similarly from Proposition 2.6.1(1,2) and Figure 2.4(c).
The additional assertions in (1-b) and (2-b) are proved by a (much simpler)
argument similar to the proof of Proposition 2.6.4.

The following technical corollary is used in Section 2.9.

Corollary 2.6.7. Let Σ1 and Σ2 be distinct checkerboard hyperplanes such that
ℓ := Σ1 ∩ Σ2 is a geodesic line. Then the following hold.

(1) If ℓ′ is a geodesic in X̃ such that ℓ ∩ ℓ′ 6= ∅, then either ℓ′ ⊂ ℓ or ℓ ∩ ℓ′ is
a singleton.

(2) If ℓ′ is a geodesic in Σi (i = 1 or 2) such that ℓ ∩ ℓ′ is a singleton {y} in
int ℓ′, then y is a transversal intersection point of ℓ and ℓ′, and the two
components of ℓ′ \ {y} are contained in distinct components of Σi \ ℓ.

(3) Let H be a peripheral hyperplane in X̃ , such that ℓ ∩H 6= ∅. Then ℓ ∩H
consists of a single point, w, and π−1

H (w) = ℓ, where πH : X̃ → H is the
projection.

Proof. (1) Since ℓ∩ℓ′ is a convex subset of ℓ, ℓ∩ℓ′ is either a singleton or a non-
degenerate geodesic (a geodesic strictly bigger than a singleton). If ℓ∩ℓ′ is a non-
degenerate geodesic, then ℓ′ must be contained in the geodesic line ℓ, because
every point in ℓ has a Euclidean neighborhood in X̃ by Proposition 2.6.6(1-b)
and Remark 2.6.2(1), and because, in the Euclidean space, every geodesic has
no branching (see Figure 2.6(a)).

(2) This follows from the fact that the point y ∈ ℓ ⊂ Σi has a Euclidean
neighborhood in Σi (by Proposition 2.6.6(1-b) and Remark 2.6.2(1)) and the fact
that every geodesic has no branching in the Euclidean plane (see Figure 2.6(b)).

(3) It follows from Proposition 2.6.1(1), (2) that ℓ intersects H orthogonally
at a single point, w, and that ℓ ⊂ π−1

H (w). To see the converse inclusion, pick
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(a) (b)

Figure 2.6: Branching of geodesics. Though branching of geodesic can occur in
CAT(0) spaces, it never occurs in Euclidean spaces.

a point z ( 6= w) of π−1
H (w). Then the geodesic segment of [z, w] is orthogonal

to H at w (cf. Lemma 2.5.3). Since w has a Euclidean neighborhood in X̃ by
Proposition 2.6.6(2-b), this implies that a small neighborhood of w in [z, w]
is contained in ℓ. Hence [z, w] ⊂ ℓ by the assertion (1). Thus z ∈ ℓ and so
π−1
H (w) = ℓ.

The following lemma is used in Sections 2.8 and 2.9.

Lemma 2.6.8. Let Σ1 and Σ2 be disjoint checkerboard hyperplanes in X̃ . Then
Σ1 ∪ Σ2 divides X̃ into three convex subspaces. To be precise, there are three
closed convex subspaces B1, B1,2 and B2, such that

X̃ = B1 ∪ B1,2 ∪ B2, B1 ∩ B1,2 = Σ1, B1,2 ∩ B2 = Σ2, B1 ∩ B2 = ∅.

Proof. By Proposition 2.6.4, there are closed convex subspaces Bi and Bc
i such

that X̃ = Bi∪Bc
i and Σi = Bi∩Bc

i (i = 1, 2). Since Σ1 ⊂ X̃ \Σ2 = intB2tintBc
2,

we may assume Σ1 ⊂ intBc
2 and Σ1 ∩ B2 = ∅. Similarly, we may assume

Σ2 ⊂ intBc
1 and Σ2∩B1 = ∅. Then B1∩B2 is disjoint from Σ1∪Σ2 = ∂B1∪∂B2,

and therefore B1 ∩B2 = intB1 ∩ intB2. Hence B1 ∩B2 is a closed, open, proper
subset of X̃ . Since X̃ is connected, this implies B1 ∩ B2 = ∅. Thus, by setting
B1,2 := Bc

1 ∩ Bc
2, we obtain the desired result.

2.7 Decompositions of alternating link comple-
ments into checkerboard ideal polyhedra

We recall the (topological) ideal polyhedral decomposition of the complement
X of a prime alternating link L associated with its prime alternating diagram
D, due to Thurston [52], Menasco [32], Takahashi [49] and others, following the
description by Aitchison-Rubinstein [7] (see also [39, Theorem 11.6]).

Regard the prime alternating diagram D as a 4-valent graph on the bound-
ary of the 3-ball B3. Then (B3, D) is regarded as a (topological) polyhedron
(cf. [39, Definition 1.1]). By removing the vertices from (B3, D), we obtain a
(topological) ideal polyhedron, which we denote by P(D). Each region R of
D determines the (ideal) face Ř := R \ {vertices} of P(D), and each edge e of
D determines the (ideal) edge ě := int e of P(D). Prepare two disjoint copies
P+(D) and P−(D) of P(D), and glue them together by the following “gear
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Figure 2.7: The decomposition of the figure-eight knot complement into a pair
of checkerboard ideal polyhedra: The shaded regions are black regions and the
unshaded regions are white regions.

rule”: For each region R of D, the face Ř of P+(D) is identified with the face
Ř of P−(D) through rotation by one edge in the clockwise or anti-clockwise
direction according to whether R is black or white (see Figure 2.7). (Here, we
employ the convention that the twisted bands in the black (resp. white) surface
are left-handed (resp. right-handed) as in Figure 2.4(a).)

Proposition 2.7.1. Under the above setting, the resulting space is naturally
homeomorphic to the complement X of L. Moreover, the following hold.

(1) The image in X of an edge of P±(D) is an open crossing arc. Moreover,
the inverse image of each crossing arc in each of P±(D) consists of two
edges.

(2) If R is a black region of D, then the image in X of the face Ř of P±(D)
is equal to the closure of the component of Sb \ (Sb ∩Sw) corresponding to
R. Parallel assertions also hold when R is a white region.

(3) For each ϵ ∈ {+,−}, the image of Pϵ(D) in X is equal to the closure of
the component of X \ (Sb ∪ Sw) containing the point vϵ.

Though the natural maps from P±(D) to X are not injective on the 1-
skeletons, their lifts to the universal cover X̃ are homeomorphisms onto their
images, each of which is equal to the closure of a component of X̃ \p−1

u (Sb∪Sw).
Thus we obtain a tessellation of X̃ by copies of P+(D) and P−(D), where the
wall is p−1

u (Sb ∪ Sw), the union of all checkerboard planes.

By working in the non-positively curved cubed decomposition X of X and
the CAT(0) cubed decomposition X̃ of X̃, we can refine the above topological
picture into the geometric picture explained below.

Recall that the open checkerboard surfaces Sb and Sw in X are isotopic
to the hyperplanes Sb and Sw in the non-positively curved cubed complex X .
They intersect orthogonally along C = Sb ∩ Sw, the disjoint union of geodesic
lines representing open crossing arcs. The union Sbw := Sb ∪ Sw cuts X into
two connected components. We denote by P+ and P−, the closures of the
components of X \ Sbw containing the vertices v+ and v−, respectively. Then
P± is naturally homeomorphic to the image of P±(D) in X.
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In the universal cover X̃ , both S̃b = p−1
u (Sb) and S̃w = p−1

u (Sw) are disjoint
unions of checkerboard hyperplanes, and they intersect orthogonally along C̃ :=
S̃b ∩ S̃w. The union S̃bw = S̃b ∪ S̃w of all checkerboard hyperplanes divides X̃
into infinitely many “right-angled, cubed, ideal polyhedra”, and we obtain the
following proposition.

Proposition 2.7.2. Let P̃ϵ be the closure of a component of X̃ \ S̃bw which
projects to Pϵ ⊂ X (ϵ ∈ {+,−}). Then P̃ϵ admits a natural structure of a
(topological) ideal polyhedron with respect to which there is an isomorphism φϵ :
P(D) → P̃ϵ satisfying the following conditions.

(1) For each region R of D, there is a checkerboard hyperplane, ΣR = ΣR(P̃ϵ),
satisfying the following conditions.

(a) φϵ(Ř) = ∂P̃ϵ ∩ ΣR.

(b) If R is a black region, then pu(ΣR) = Sb, and the restriction of the
universal covering projection pu|ΣR

: ΣR → Sb to the face φϵ(Ř)
is a homeomorphism onto the closure of the component of Sb \ C
corresponding to R. Parallel assertions also hold when R is a white
region.

(2) For each region R of D, let Bc
R = Bc

R(P̃ϵ) be the checkerboard half-space
bounded by ΣR that contains P̃ϵ. Then P̃ϵ =

∩
R Bc

R, where R runs over

the regions of D. In particular, P̃ϵ is convex in the CAT(0) space X̃ .

(3) Let e be an edge of D and let R1 and R2 be the regions of D sharing e.
Then the two faces φϵ(Ř1) and φϵ(Ř2) intersect orthogonally along the
edge φϵ(ě). The edge φϵ(ě) projects to a geodesic line in X representing
an open crossing arc.

Moreover, φ+ and φ− are related as explained below. Note that, for each
region R of D, (pu ◦ φ±)|Ř are homeomorphisms with the same image, and so

the composition (pu◦φ−)|Ř◦(pu ◦ φ+)|Ř
−1

is a well-defined automorphism of the
ideal polygon Ř. This automorphism is a rotation by one edge in the clockwise
or anti-clockwise direction according to whether R is black or white.

The proposition is obtained by looking Proposition 2.7.1 in the setting of
Proposition 2.6.1. The convexity of P̃ϵ in (2) is a consequence of Proposi-
tion 2.6.4.

Definition and Notation 2.7.3. We call P̃ϵ a checkerboard ideal polyhedron
in X̃ . The unique point ṽϵ ∈ p−1

u (vϵ) contained in P̃ϵ is called the center of P̃ϵ.
When we do not mind the sign ϵ, we drop it from the symbols, such as P̃ϵ

and φϵ. For a fixed checkerboard ideal polyhedron P̃ and for a region R of D,
we use the following terminology and notation.

(1) The face φ(Ř) of P̃ is called the face R of P̃.
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∆R(P̃)

(a) (b)

Figure 2.8: (a) BR(P̃) is the checkerboard half-space in X̃ bounded by the
hyperplane ΣR(P̃) which is disjoint from int P̃. (This 2-dimensional figure does
not reflect the fact that P̃ is an ideal polyhedron.) (b) If R1 and R2 are not
adjacent, then ∠ṽ(m̃(R1), m̃(R2)) = π, and hence [m̃(R1), ṽ] ∪ [ṽ, m̃(R2)] is a
common perpendicular to ΣR1

and ΣR2
. This implies BR1

(P̃) ∩ BR2
(P̃) = ∅.

(2) The center m̃(R) of the face R of P̃ is defined as follows. By Proposi-
tion 2.7.2(1-b), pu determines a homeomorphism from φ(Ř) to the clo-
sure of the component of Sbw \ C containing the center m(R). Then
m̃(R) ∈ φ(Ř) is the inverse image of m(R).

(3) ΣR = ΣR(P̃) denotes the checkerboard hyperplane in X̃ containing the
face R of P̃.

(4) BR = BR(P̃) and Bc
R = Bc

R(P̃) denote the checkerboard half-spaces in X̃
bounded by ΣR(P̃), such that P̃ ⊂ Bc

R(P̃) and BR(P̃) ∩ Bc
R(P̃) = ΣR(P̃)

(see Figure 2.8(a)).

Then we have the following proposition, which plays a key role in the proof
of Theorem 2.1.2.

Proposition 2.7.4. Let P̃ ⊂ X̃ be a checkerboard ideal polyhedron, and let R1

and R2 be distinct regions of D. Then BR1
= BR1

(P̃) and BR1
= BR2

(P̃) are
disjoint if and only if R1 and R2 are not adjacent.

Proof. Let ṽ be the center of P̃, and let m̃(Ri) be the center of the face Ri

of P̃ (i = 1, 2). Then the geodesic segment [ṽ, m̃(Ri)] is perpendicular to
ΣRi

= ΣRi
(P̃) by Proposition 2.6.1(4) (cf. Remark 2.6.2(2)) and Remark 2.5.2.

Note that there is a natural isomorphism Lk(ṽ, X̃ ) ∼= Lk(v,M), where v = pu(ṽ).
Thus, by Remark 2.6.2(4), ∠ṽ(m̃(R1), m̃(R2)) is equal to π/2 or π according to
whether R1 and R2 are adjacent or not. Hence, if R1 and R2 are not adja-
cent, then [m̃(R1), ṽ] ∪ [ṽ, m̃(R2)] is a geodesic which is perpendicular to the
checkerboard hyperplanes ΣR1

and ΣR2
at their endpoints. (In fact, it is a local

geodesic by [16, Remark I.5.7 and Theorem I.7.39] and so it is a geodesic by [16,
Proposition II.1.4(2)].) Hence, by Lemma 2.5.4, it is a shortest path between
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(a) (b)

Figure 2.9: The checkerboard polyhedra P̃+ and P̃− share a face that is
contained in the checkerboard hyperplane ΣRw(P̃+) = ΣRw(P̃−). Then
ΣRb,i

(P̃+) = ΣRb,i+1
(P̃−).

the hyperplanes, and in particular, ΣR1 and ΣR2 are disjoint. By Lemma 2.6.8,
ΣR1

∪ ΣR2
divides X̃ into three closed convex subspaces B1, B1,2 and B2, that

satisfy the condition in the lemma. Since P̃ intersects both ΣR1 and ΣR2 , we
have P̃ ⊂ B1,2. This implies that Bi = BRi (i = 1, 2). Hence BR1 and BR2 are
disjoint (see Figure 2.8(b)).

On the other hand, if the regions R1 and R2 are adjacent in D, then the
faces R1 and R2 of P̃ are adjacent. Thus ΣR1

∩ΣR2
is a geodesic line (cf. Propo-

sition 2.6.6(1)) and hence BR1
and BR2

are not disjoint.

At the end of this section, we note the following observation (see Figure 2.9),
which is used in Section 2.9.

Lemma 2.7.5. Let Rw be a white region of D and Rb,i (1 ≤ i ≤ n) be the black
regions of D which are adjacent to Rw and which are arranged around Rw in this
cyclic order with respect to the anti-clockwise orientation of ∂Rw. Let P̃± ⊂ X̃
be the checkerboard ideal polyhedra, such that P̃+∩P̃− is the face Rw of both P̃+

and P̃−. Then we have ΣRb,i
(P̃+) = ΣRb,i+1

(P̃−) and BRb,i
(P̃+) = BRb,i+1

(P̃−),
where the index i is considered with modulo n. When the colors black and white
are interchanged, similar assertion holds.

Proof. For ϵ ∈ {+,−}, let φϵ be the isomorphism from P(D) to the checkerboard
ideal polyhedron P̃ϵ. Then φ+(Řw) = φ−(Řw) by the assumption. Consider the
edge ei := Rw ∩ Rb,i of D. Then, by the last assertion of Proposition 2.7.2, we
see that φ+(ěi) = φ−(ěi+1) and that it is a common edge of the faces φ+(Řb,i)

and φ−(Řb,i+1). Since P̃± are right-angled cubed polyhedra (cf. Proposition
2.7.2(3)), this implies that the two faces are contained in a single checkerboard
hyperplane, which is equal to ΣRb,i

(P̃+) = ΣRb,i+1
(P̃−). Since P̃+ and P̃− share

the common face φ+(Řw) = φ−(Řw), we also have BRb,i
(P̃+) = BRb,i+1

(P̃−).
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2.8 Butterflies and checkerboard ideal polyhe-
dra

The complement X of a hyperbolic alternating link L with a prescribed prime
alternating diagram D admits two distinct geometric structures given as:

- the complete hyperbolic manifold H3/G, and

- the underlying space of the non-positively curved cubed complex X that
is constructed from a prime alternating diagram D of L.

We fix homeomorphisms

(X,M) ∼= (H3/G, (H3 \ Q)/G) ∼= (|X |, |M|),

and identify the relevant spaces through the homeomorphisms. Here Q is the
disjoint union of the open horoballs bounded by the horospheres {Hp}p∈PFix(G)

introduced in Section 2.4 (the paragraph after Lemma 2.4.2). This identifica-
tion induces the following G-equivariant identifications of the universal covering
spaces

(X̃, M̃) = (H3,H3 \ Q) = (|X̃ |, |M̃|).
In particular, each horosphere Hp ⊂ H3 is regarded as a peripheral plane con-

tained in ∂M̃ in the CAT(0) space X̃ ; so we call it the peripheral plane centered
at p.

We also assume that the quasi-fuchsian checkerboard surfaces Sb and Sw

in the hyperbolic manifold X = H3/G (cf. Sections 2.3 and 2.4) are the hy-
perplanes Sb and Sw, respectively, in the non-positively curved cubed complex
X (cf. Sections 2.6 and 2.7). Thus each checkerboard plane Σ ⊂ H3 is a
checkerboard hyperplane in the CAT(0) cubed complex X̃ .

For a checkerboard ideal polyhedron P̃ ⊂ X̃ = H3, let P̂ be the closure of P̃
in H̄3 = H3∪Ĉ. Then the isomorphism φ : P(D) → P̃ (between topological ideal
polyhedra) extends to an isomorphism φ̂ : (B3, D) → P̂ (between topological
polyhedra), because X̃\M̃ is identified with the disjoint family of open horoballs
Q centered at points in PFix(G). For each vertex c of D, the ideal point p :=
φ̂(c) belongs to PFix(G), and we call p the ideal vertex of P̃ corresponding to
c. We also call c the vertex of D corresponding to the ideal vertex p of P̃.

We introduce the following notation for objects in the closure H̄3 of the
hyperbolic space, building on Definition and Notation 2.7.3 for objects in the
CAT(0) cubed complex X̃ (cf. Figure 2.8(a)).

Notation 2.8.1. Let P̃ ⊂ X̃ be a checkerboard ideal polyhedron, and R a
region of the diagram D.

1. Σ̄R = Σ̄R(P̃) denotes the checkerboard disk properly embedded in H̄3

obtained as the closure of ΣR(P̃) ⊂ X̃ = H3.

2. B̄R = B̄R(P̃) and B̄c
R = B̄c

R(P̃) denote the 3-balls in H̄3 obtained as the
closures of the checkerboard half-spaces BR(P̃) and Bc

R(P̃). Note that
P̃ ⊂ B̄c

R(P̃) and B̄R(P̃) ∩ B̄c
R(P̃) = Σ̄R(P̃).
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3. ∆R(P̃) denotes the disk in Ĉ defined by ∆R(P̃) := B̄R(P̃) ∩ Ĉ.

Then we have the following lemma.

Lemma 2.8.2. Let P̃1 and P̃2 be checkerboard ideal polyhedra, and let R1 and
R2 be regions of D. If the checkerboard half-spaces BR1

(P̃1) and BR2
(P̃2) in H3

are disjoint, then the two disks ∆R1(P̃1) and ∆R2(P̃2) have disjoint interiors in

Ĉ.

Proof. By Corollary 2.3.2, the pair (H̄3, B̄Ri
), with BRi

= BRi
(P̃i), is homeo-

morphic to the standard pair (B3, B3
+) of the unit 3-ball B

3 in R3 and the closed

upper half-ball B3
+ = {(x, y, z) ∈ B3 | z ≥ 0} (i = 1, 2). Thus a point x ∈ Ĉ

belongs to the interior of ∆Ri
:= ∆Ri

(P̃i) if and only if there is a neighborhood
U of x in H̄3 such that U∩H3 ⊂ BRi

(i = 1, 2). So x belongs to int∆R1
∩int∆R2

if and only if there is a neighborhood U of x in H̄3 such that U∩H3 ⊂ BR1
∩BR2

.
Hence, if BR1 ∩ BR2 = ∅ then int∆R1 ∩ int∆R2 = ∅.

Proposition 2.7.4 together with Lemma 2.8.2 implies the following proposi-
tion, which plays a key role in the proof of Theorem 2.2.1.

Proposition 2.8.3. Let P̃ ⊂ X̃ be a checkerboard ideal polyhedron, and let R1

and R2 be distinct regions of D. If R1 and R2 are not adjacent, then ∆R1
(P̃)

and ∆R2
(P̃) have disjoint interiors in Ĉ.

Remark 2.8.4. In Lemma 2.8.2 and Proposition 2.8.3, the converses also hold.
Actually, Proposition 2.8.3 reflects only a small part of a very interesting state-
ment in Agol’s slide [3], which we read as follows. Aitchison and Rubinstein
(cf. [6]) studied patterns of the intersections of the limit circles {∂∞Σ} of the
checkerboard hyperplanes in the ideal boundary ∂∞X̃ of the CAT(0) space X̃ :
Put a circle around each region of D, then the limit circles {∂∞(ΣR(P̃))}R
“have this intersection pattern” in ∂∞X̃ (see Figure 2.10). We hope to give
more detailed interpretation of this statement in a subsequent paper.

The following characterization of butterflies is used repeatedly in the proof
of Theorem 2.2.1.

Lemma 2.8.5. Let p ∈ PFix(G) be a parabolic fixed point and P̃ an ideal
checkerboard polyhedron which has p as an ideal vertex. Let c be the vertex
of D corresponding to p, and let {R−, R+} be a pair of regions that contain c
and have the same color. Then, after replacing R± with R∓ if necessary, the
pair {∆R−(P̃),∆R+(P̃)} forms a butterfly BF(p) at p (in the sense of Nota-
tion 2.4.10). Conversely, every butterfly is obtained in this way.

Proof. Consider the compact right-angled polyhedron P̃0 obtained from P̃ through
truncation along the peripheral planes {Hp} (see Figure 2.11). Then, for each

ideal vertex p of P̃, the intersection P̃ ∩Hp forms a square in ∂P̃0, one of whose
diagonals projects to a meridian (see Figure 2.11). By using this fact, we can
see that the meridian µp ∈ G maps the checkerboard hyperplane ΣR−(P̃) to the

checkerboard hyperplane ΣR+(P̃), if necessary after replacing R± with R∓. We
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(a) (b) (c)

Figure 2.10: Put a circle CR around each region R of the diagram D, so that CR

bounds a disk containing R and passes though the vertices on ∂R. The figures
(a) and (b) illustrates the circles {CR} where R runs over the black or white
regions, respectively. By overlaying these two figures, we obtain the figure (c).
According to [3], the figure (c) “illustrates” the intersection pattern of the limit
circles {∂∞(ΣR(P̃))}R, where R runs over the regions of D.

Figure 2.11: The truncation P̃0 of the checkerboard ideal polyhedron P̃ = P̃+.
The blue diagonal arcs in the squares project to meridians.
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(a) (b) (c)

Figure 2.12: The plane graph G dual to the black regions. The complementary
region of G labeled Rw determines the desired white region Rw.

can further see that µp maps the ball pair (B̄R−(P̃), B̄c
R−(P̃)) to the ball pair

(B̄c
R+(P̃), B̄R+(P̃)). This implies that {∆R−(P̃),∆R+(P̃)} is a butterfly at p.
To see the converse, let BF(p) = {∆−

j ,∆
+
j+1} = {∆−

j (p),∆
+
j+1(p)} be a

butterfly, where we use notations in Definition 2.4.6. Consider the infinite strip
in the peripheral plane (or the horosphere) Hp ⊂ p−1

u (∂M) bounded by the
lines ℓj(p) = Σj(p) ∩ Hp and ℓj+1(p) = Σj+1(p) ∩ Hp (see Figure 2.2). Let

P̃ be a checkerboard ideal polyhedron which has p as an ideal vertex, such
that P̃ ∩ Hp is a square contained in the strip. Then there are regions R−

and R+ of D containing the vertex c of D corresponding to the ideal vertex
p of P̃, such that Σj(p) = ΣR−(P̃) and Σj+1(p) = ΣR+(P̃). Then we see

BF(p) = {∆−
j ,∆

+
j+1} = {∆R−(P̃),∆R+(P̃)}.

At the end of this subsection, we prove the following elementary lemma
concerning prime alternating diagrams of hyperbolic alternating links, which is
used in Section 2.9.

Lemma 2.8.6. Let D be a prime alternating diagram of a hyperbolic alternating
link L ⊂ S3. Then the following hold.

(1) D has at least three black regions.

(2) Suppose D has precisely three black regions. Then there is a white region
Rw, such that Rw is a bigon and the black regions adjacent to Rw are
distinct (to be precise, the black regions that contain one of the two edges
of Rw are distinct).

(3) Suppose D has precisely four black regions. Then there is a white region
Rw, such that either (a) Rw is a bigon and the black regions adjacent to
Rw are distinct, or (b) Rw is a 3-gon and the black regions adjacent to
Rw are all distinct.

Parallel statements also hold when black and white are interchanged.

Proof. Let G be the plane graph whose vertices are the black regions and whose
edges correspond to the crossings. Observe that G is connected and has no loop
edge nor a cut edge, because the diagram D is connected and prime.
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(1) By using the above observation, we see that D has at least two black
regions. If D has only two black regions, then L is the (2,±n)-torus link, where
n is the number of the edges of G, a contradiction. Hence D has at least three
black regions.

(2) Suppose D has precisely three black regions. Then, by using the obser-
vation above, we see that G has a 3-cycle. If G is equal to the 3-cycle then L
is the (2,±3)-torus knot, a contradiction. Hence, there is an additional edge
and so G has multiple edges. Then we see that the white region, Rw, deter-
mined by an innermost pair of multiple edges satisfies the desired condition (see
Figure 2.12(a)).

(3) Suppose D has precisely four black regions. Then, as in (2), we see that
G has a 4-cycle. Since L is hyperbolic, G is strictly bigger than the 4-cycle.
Thus we see that there is a complementary region of G that is either a bigon or
a triangle. Then the white region, Rw, determined by a complementary bigon
or triangle satisfies the desired condition (a) or (b), accordingly (see Figure 2.12
(b,c)).

2.9 Proof of Theorem 2.2.1 and 2.2.2

In this section, we first prove Theorem 2.2.2 and then prove Theorem 2.2.1.

Proof of Theorem 2.2.2. Let L, D, {µ1, µ2} and γ be as in the setting of the
theorem, and let {p1, p2} be the pair of parabolic fixed points corresponding to
{µ1, µ2} (cf. Lemma 2.4.9(1)). We regard γ living in the non-positively curved
cubed complex M ⊂ X . Then there is a lift γ̃ of γ in the universal cover
M̃ ⊂ X̃ which joins the peripheral planes Hp1

and Hp2
centered at p1 and

p2, respectively (cf. Lemma 2.4.9(2)). We may assume γ̃ satisfies the following
conditions.

(A1) γ̃ is an arc properly embedded in M̃ ⊂ X̃ that is disjoint from C̃ =
S̃b ∩ S̃w and transversal to S̃bw = S̃b ∪ S̃w. Moreover, for i = 1, 2, the
endpoint xi := ∂γ̃ ∩Hpi is disjoint from the family of lines S̃bw ∩Hpi (see
Figure 2.2(a)).

(A2) The cardinality ι(γ̃) of γ̃ ∩ S̃bw = γ̃ ∩ (S̃bw \ C̃) is minimal among all arcs
properly embedded in M̃ joining the boundary components Hp1

and Hp2

of M̃ and satisfying the condition (A1).

We orient γ̃ so that x1 ∈ Hp1
and x2 ∈ Hp2

are the initial point and the terminal
point, respectively.

In the remainder of the paper, we use the following terminology. For a
connected topological space Y and its connected subspaces Y1, Y2 and Z, we
say that Z separates Y1 and Y2 (in Y ), if Y1 and Y2 are contained in distinct
components of Y \ Z. We say that Z weakly separates Y1 and Y2 (in Y ), if Y1
and Y2 are contained in the closures of distinct components of Y \ Z.

Case I. ι(γ̃) > 0. Throughout the treatment of this case, geodesics are those
with respect to the CAT(0) metric of the cubed complex X̃ .
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Figure 2.13: If a checkerboard hyperplane Σ′ 6= Σ intersects [x′1, z], then it
separates Hp1

and z, and hence intersects γ̃0.

Lemma 2.9.1. Any checkerboard hyperplane intersects γ̃ in at most one point.

Proof. Assume that there is a checkerboard hyperplane Σ which intersects γ̃ in
more than one points. Pick two successive intersection points z1 and z2 of γ̃
with Σ, and let γ̃0 be the subarc of γ̃ bounded by z1 and z2. Since Σ is convex
(Proposition 2.6.4), the geodesic segment [z1, z2] is contained in Σ.

Claim 2.9.2. If a checkerboard hyperplane Σ′ different from Σ intersects [z1, z2],
then (i) Σ′ ∩ [z1, z2] consists of a single transversal intersection point in (z1, z2)
and (ii) Σ′ ∩ int γ̃0 6= ∅.

Proof. Let Σ′ 6= Σ be a checkerboard hyperplane which intersects [z1, z2]. Then
ℓ := Σ∩Σ′ ⊃ [z1, z2]∩Σ′ 6= ∅, and so ℓ is a geodesic line (cf. Proposition 2.6.6(1))
which intersects [z1, z2]. Since z1, z2 6∈ ℓ by the condition (A1), Σ′ ∩ [z1, z2] =
ℓ ∩ [z1, z2] is a singleton {y} for some y ∈ (z1, z2) by Corollary 2.6.7(1). By
Corollary 2.6.7(2), the two components of [z1, z2] \ {y} are contained in distinct
components of Σ \ ℓ. Hence the condition (i) holds. This also implies that Σ′

separates the endpoints z1 and z2 of γ̃0. Hence (ii) also holds.

Let γ̃′ be an arc obtained from γ̃ by replacing γ̃0 with [z1, z2] and then
pushing (a neighborhood in the resulting arc of) [z1, z2] off Σ, by using a regular
neighborhood of Σ. Then γ̃′ is properly homotopic to γ̃, and we may assume γ̃′

satisfies the condition (A1). Moreover, Claim 2.9.2 implies that ι(γ̃′) ≤ ι(γ̃)−2,
a contradiction.

We now prove a key lemma for the treatment of Case 1.

Lemma 2.9.3. Any checkerboard hyperplane which intersects γ̃ separates Hp1

and Hp2 in X̃ .

Proof. Let Σ be a checkerboard hyperplane which intersects γ̃. By Lemma 2.9.1
and the condition (A1), Σ ∩ γ̃ consists of a single transversal intersection point
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z ∈ int γ̃. Thus we have only to show that Σ is disjoint from Hp1 and Hp2 .
Suppose to the contrary that Σ intersects one of Hp1 and Hp2 , say, Hp1 (see
Figure 2.13). Let γ̃0 be the subarc of γ̃ bounded by the initial point x1 ∈ Hp1

of γ̃ and the intersection point z ∈ Σ ∩ γ̃. Let x′1 ∈ Σ ∩Hp1
be the projection,

in the CAT(0) space Σ, of z to the geodesic line Σ ∩ Hp1
. Since Σ intersects

Hp1
orthogonally (Proposition 2.6.6(2)), we see that the geodesic segment [x′1, z]

intersects Hp1
orthogonally. Thus x′1 is the projection, in the CAT(0) space X̃ ,

of z to Hp1
by Lemma 2.5.3.

Claim 2.9.4. If a checkerboard hyperplane Σ′ different from Σ intersects [x′1, z],
then (i) Σ′ ∩ [x′1, z] consists of a single transversal intersection point in (x′1, z)
and (ii) Σ′ ∩ int γ̃0 6= ∅.

Proof. Let Σ′ 6= Σ be a checkerboard hyperplane which intersects [x′1, z]. Then,
as in the proof of Claim 2.9.2, ℓ := Σ ∩ Σ′ is a geodesic line which intersects
[x′1, z]. Since z /∈ ℓ ∩ γ̃ by the condition (A1), ℓ ∩ [x′1, z] is a singleton {y} for
some y ∈ [x′1, z) by Corollary 2.6.7(1). If y = x′1, then {x′1} = Hp1

∩ Σ ∩ Σ′

and so [x′1, z] ⊂ π−1
Hp1

(x′1) = ℓ by Corollary 2.6.7(3), a contradiction to the fact

that z /∈ ℓ ∩ γ̃. Thus ℓ ∩ [x′1, z] is a singleton {y} for some y ∈ (x′1, z). So, by
Corollary 2.6.7(2), we obtain the conclusion (i). This also implies that x′1 and z
belong to distinct components of Σ \ ℓ, and hence Σ′ separates x′1 ∈ Hp1

and z.
Moreover, Σ′ is disjoint from Hp1

as shown below. Suppose to the contrary that
Σ′ ∩Hp1

6= ∅. Then Σ′ intersects Hp1
orthogonally (Proposition 2.6.6(2)), and

we see by the argument preceding Claim 2.9.4 that the projection, y1, of y, in
the CAT(0) space Σ′, to Σ′ ∩Hp1 is equal to the projection of y in the CAT(0)

space X̃ toHp1
, which is equal to x′1. Hence x′1 = y1 belongs to Σ

′, and therefore
x′1 ∈ Σ′ ∩ Σ = ℓ, a contradiction to the fact that [x′1, z] ∩ Σ′ = {y} ⊂ (x′1, z).
Hence Σ′ is disjoint from Hp1 as desired. Since Σ′ separates x′1 ∈ Hp1 and z,
this implies that Σ′ separates Hp1

and z. Since γ̃0 joins the point x1 ∈ Hp1
and

z, γ̃0 must intersect Σ′. Thus the conclusion (ii) holds.

Let γ̃′ be an arc obtained from γ̃ by replacing γ̃0 with [x′1, z] and then
pushing (a neighborhood in the resulting arc of) [x′1, z] off Σ. Then γ̃′ is properly
homotopic to γ̃, and we may assume γ̃′ satisfies the condition (A1). Moreover,
Claim 2.9.4 implies that ι(γ̃′) ≤ ι(γ̃)− 1, a contradiction.

Let y1 be the first intersection point of γ̃ with S̃bw, and P̃1 the checkerboard
ideal polyhedron that contains the subarc of γ̃ bounded by x1 and y1. Similarly,
let y2 be the last intersection point of γ̃ with S̃bw, and P̃2 the checkerboard
ideal polyhedron that contains the subarc of γ̃ bounded by x2 and y2 (see
Figure 2.14(a)). (If ι(γ̃) = 1 then y1 = y2 but P̃1 6= P̃2.) For i = 1, 2, recall the
isomorphism P̂i

∼= (B3, D), and let ci be the vertex of D corresponding to the
ideal vertex pi of P̂i, and let Ri be the region of D such that ΣRi

= ΣRi
(P̃i)

contains yi (Definition and Notation 2.7.3). Note that the region Ri does not
contain the vertex ci by Lemma 2.9.3.

For simplicity, we assume that R1 is a black region. For i = 1, 2, let R±
i

be the black regions of D that contain the vertex ci, and consider the disks
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(a) (b)

Figure 2.14: (a) The checkerboard hyperplane ΣR1
(P̃1) separates BR−

1
∪ BR+

1

and BR−
2
∪ BR+

2
. Note that BR1 = BR1(P̃1) is the region in X̃ = H3 “below”

ΣR1 . (b) The arc γ̃1,2, that is the union of the arc δ ⊂ Hp2 and the subarc of
γ̃ bounded by y1 and x2, intersects ΣR1 and ΣRϵ

2
only at the endpoints. Here

ϵ = +.

∆R±
i
:= ∆R±

i
(P̃i) in Ĉ (see Notation 2.8.1 and Figure 2.8(a)). Then BF(pi) :=

{∆R−
i
,∆R+

i
} forms a butterfly at pi by Lemma 2.8.5 (after replacing R±

i withR∓
i

if necessary). Set ΣR±
i
:= ΣR±

i
(P̃i) and BR±

i
:= BR±

i
(P̃i) (see Figure 2.14(a)).

Then we have the following lemma.

Lemma 2.9.5. (1) BR−
2
∪ BR+

2
⊂ BR1

, where BR1
= BR1

(P̃i)

(2) BR−
1
∪ BR+

1
and BR−

2
∪ BR+

2
are disjoint.

(3) ∆R−
2
∪∆R+

2
⊂ ∆R1

, where ∆R1
= ∆R1

(P̃1).

(4) |BF(p1)| = ∆R−
1
∪∆R+

1
and |BF(p2)| = ∆R−

2
∪∆R+

2
have disjoint inte-

riors.

Proof. (1) For each ϵ ∈ {−,+}, ΣR1
is distinct from ΣRϵ

2
, because ΣRϵ

2
∩Hp2

6= ∅
whereas ΣR1 ∩Hp2 = ∅ by Lemma 2.9.3. This implies that ΣR1 is disjoint from
ΣRϵ

2
(because they are distinct components of p−1

u (Sb)). By Lemma 2.6.8, the

disjoint union ΣR1
tΣRϵ

2
divides X̃ into three closed convex subspaces B1, B1,2

and B2, such that B1 ∩ B1,2 = ΣR1
, B1,2 ∩ B2 = ΣRϵ

2
and B1 ∩ B2 = ∅. Let δ

be an arc in the square Hp2
∩ P̃2 which joins x2 with a point z2 in Hp2

∩ ΣRϵ
2

(cf. Figure 2.2(a)), and let γ̃1,2 be the union of δ and the subarc of γ̃ bounded by
y1 and x2 (see Figure 2.14(b), where ϵ is assumed to be +). Then γ̃1,2 is an arc

in X̃ joining y1 and z2, such that γ̃1,2∩ΣR1
= {y1} and γ̃1,2∩ΣRϵ

2
= {z2}. Hence

γ̃1,2 is contained in B1,2. This implies P̃2 ⊂ B1,2, because int P̃2∩(ΣR1
∪ΣRϵ

2
) = ∅

and int P̃2 ∩ int γ̃1,2 6= ∅. Hence we have B2 = BRϵ
2
. On the other hand, we

have P̃1 ⊂ B1, because γ̃1,2 ⊂ B1,2 and γ̃ intersects ΣR1
transversely at y1;
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(a) (b)

Figure 2.15: (a) If D has more than 3 black regions, then, for a black region
Rb distinct from R1 and R±

1 , the open disk int∆Rb
is disjoint from |BF(p1)| ∪

|BF(p2)|. (b) If D has precisely 3 black regions, then, for the black region
Rb,1 that is not adjacent to the white bigon Rw, the open disk int∆′

Rb,1
, where

∆′
Rb,1

= ∆Rb,1
(P̃ ′

1), is disjoint from |BF(p1)| ∪ |BF(p2)|.

so B1 = Bc
R1

:= Bc
R1

(P̃1). Hence Bc
R1

∩ BRϵ
2
= B1 ∩ B2 = ∅, and therefore

BRϵ
2
⊂ BR1

.
(2) Since the black region R1 does not contain c1, it is distinct from the

black regions R±
1 . Hence BR±

1
are disjoint from BR1 by Proposition 2.7.4. Since

BR−
2
∪ BR+

2
⊂ BR1 by (1), this implies that BR±

1
are disjoint from BR−

2
∪ BR+

2
.

(3) By (1), we have ∆R−
2
∪∆R+

2
= (B̄R−

2
∩ Ĉ)∪ (B̄R+

2
∩ Ĉ) ⊂ B̄R1 ∩ Ĉ = ∆R1 .

(4) This follows from (2) and Lemma 2.8.2.

Lemma 2.9.6. The open set O := Ĉ \ (|BF(p1)| ∪ |BF(p2)|) is non-empty.

Proof. Suppose first that D has more than 3 black regions. Pick a black region
Rb ofD different from R1 and R

±
1 . Then the interior of the disk ∆Rb

:= ∆Rb
(P̃1)

is disjoint from the disks ∆R1
and ∆R±

1
by Proposition 2.8.3. Since ∆R−

2
∪∆R+

2
⊂

∆R1
by Lemma 2.9.5(3), this implies that the open disk int∆Rb

is disjoint from
∆R1

∪ ∆R−
1
∪ ∆R+

1
⊃ ∆R−

1
∪ ∆R+

1
∪ ∆R−

2
∪ ∆R+

2
= |BF(p1)| ∪ |BF(p2)| (see

Figure 2.15(a)). Hence int∆Rb
⊂ O and therefore O is non-empty, as desired.

Suppose next that D has at most 3 black regions. Then, by Lemma 2.8.6(1),
(2), D has precisely three black regions, {Rb,j}1≤j≤3 = {R1, R

−
1 , R

+
1 } and a

white bigon Rw. We may assume Rb,1 is not adjacent to Rw. Let P̃ ′
1 be the

checkerboard ideal polyhedron such that P̃1∩P̃ ′
1 is the common face correspond-

ing to Rw. Set ∆Rb,j
:= ∆Rb,j

(P̃1) and ∆′
Rb,j

:= ∆Rb,j
(P̃ ′

1) (1 ≤ j ≤ 3). (See

Figure 2.15(b).)

Claim 2.9.7. The interior of the disk ∆′
Rb,1

is disjoint from ∪3
j=1∆Rb,j

= ∆R1∪
∆R−

1
∪∆R+

1
.
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Proof. By Lemma 2.7.5 and by Notation 2.8.1(3), we see ∆′
Rb,2

= ∆Rb,3
and

∆′
Rb,3

= ∆Rb,2
. Hence, by Proposition 2.8.3, int∆′

Rb,1
is disjoint from ∆′

Rb,3
∪

∆′
Rb,2

= ∆Rb,2
∪ ∆Rb,3

. Moreover, int∆′
Rb,1

is also disjoint from ∆Rb,1
, as ex-

plained below. Since Rb,1 and Rw are not adjacent, Proposition 2.7.4 implies

that BRb,1
(P̃1)∩BRw

(P̃1) = ∅. Hence BRb,1
(P̃1) ⊂ X̃ \ BRw

(P̃1) = intBRw
(P̃ ′

1).

Similarly, BRb,1
(P̃ ′

1) ⊂ intBRw
(P̃1). Since intBRw

(P̃1) and intBRw
(P̃ ′

1) =

intBc
Rw

(P̃1) are disjoint, BRb,1
(P̃1) and BRb,1

(P̃ ′
1) are disjoint. By Lemma 2.8.2,

this implies that ∆Rb,1
and ∆′

Rb,1
have disjoint interiors, and hence int∆′

Rb,1
is

disjoint from ∆Rb,1
.

Since ∆R−
2
∪∆R+

2
⊂ ∆R1

by Lemma 2.9.5(3), Claim 2.9.7 implies that the

open disk int∆′
Rb,1

is disjoint from ∆R−
1
∪ ∆R+

1
∪ ∆R−

2
∪ ∆R+

2
= |BF(p1)| ∪

|BF(p2)|. Hence int∆′
Rb,1

⊂ O and therefore O is non-empty, as desired.

Thus we have proved that the pair of butterflies BF(p1) and BF(p2) sat-
isfies the conditions in Proposition 2.4.11. Hence {µ1, µ2} generates a rank 2
free Kleinian group which is geometrically finite. This completes the proof of
Theorem 2.2.2 in Case I where ι(γ̃) > 0.

Case II. ι(γ̃) = 0. In this case, the proper arc γ̃ ⊂ M̃ is contained in
P̃ ∩ M̃ for some ideal checkerboard polyhedron P̃. Recall the isomorphism
φ̂ : (B3, D) → P̂, where P̂ is the closure of P̃ in H̄3 (Section 2.8). We identify P̂
with (B3, D) through the isomorphism. Let ci be the vertex of D corresponding
to the ideal vertex pi of P̂ (i = 1, 2). Then the equivalence class of the meridian
pair {µ1, µ2} is determined by the pair {c1, c2}. Let γ̂ be an arc in ∂B3 joining
c1 and c2, such that γ̂ intersects the vertex set of D only at their endpoints and
that int γ̂ is transversal toD. Then the proper homotopy class of γ̃ is represented
by γ̂. We assume that the cardinality ω(γ̂) of int γ̂ ∩D is minimized.

Subcase II-1. ω(γ̂) > 0. For i = 1, 2, let R−
i and R+

i be the black regions
that contain the vertex ci. Then {∆R−

i
,∆R+

i
} forms a butterfly BF(pi) at pi by

Lemma 2.8.5 (see Figure 2.16).

Claim 2.9.8. The four black regions R−
1 , R

+
1 , R

−
2 and R+

2 are distinct.

Proof. Suppose to the contrary that there is an overlap among the four regions.
Since R−

i 6= R+
i for i = 1, 2, we have Rϵ1

1 = Rϵ2
2 for some ϵ1, ϵ2 ∈ {−,+}. Then

the vertices c1 and c2 are contained in the single region Rϵ1
1 = Rϵ2

2 . Thus the two
vertices are joined by an arc in the region, a contradiction to the assumption
ω(γ̂) > 0.

By Claim 2.9.8 and Proposition 2.8.3, the butterflies BF(p1) and BF(p2)
have disjoint interiors. Moreover, the following lemma holds.

Lemma 2.9.9. The open set O := Ĉ \ (|BF(p1)| ∪ |BF(p2)|) is non-empty.
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Figure 2.16: The butterflies BF(p1) and BF(p2) and the actions of the meridians
µ1 and µ2, in the case ω(γ̂) > 0. Here, we employ the model picture of the limit
circles described in Remark 2.8.4 and Figure 2.10.

Proof. The proof of this lemma is parallel to that of Lemma 2.9.6. If D has
more than four black regions, then a black region Rb different from R±

1 and
R±

2 gives a non-empty open disk int∆Rb
disjoint from |BF(p1)| ∪ |BF(p2)| by

Proposition 2.8.3. So, we may assume D has precisely four black regions. Then,
by Lemma 2.8.6(3), there is a white region Rw which is either a bigon or a 3-gon.
In either case, there is a black region, say Rb,1, that is not adjacent to Rw. Let

P̃ ′
1 be the checkerboard ideal polyhedron such that P̃1 ∩ P̃ ′

1 is the common face
corresponding to Rw. Then, as in the proof of Claim 2.9.7, we see that the open
disk int∆Rb,1

(P̃ ′
1) is disjoint from |BF(p1)| ∪ |BF(p2)|.

Thus the pair of butterflies BF(p1) and BF(p2) satisfies the conditions in
Proposition 2.4.11. Hence {µ1, µ2} generates a rank 2 free Kleinian group which
is geometrically finite. This completes the proof of Theorem 2.2.2 in the case
where ι(γ̃) = 0 and ω(γ̂) > 0.

Subcase II-2. ω(γ̂) = 0. In this case, there is a region R of D that contains
γ̂ and the vertices c1 and c2. Recall that γ is not properly homotopic to a
crossing arc by the assumption of the theorem. This implies that γ̂ is not
homotopic relative to the endpoints to an edge of R (i.e., the vertices c1 and
c2 are not adjacent in ∂R), because, for any edge e of D, the composition
pu ◦ φ : P(D) → pu(P̃) ⊂ X maps the ideal edge ě to an open crossing arc
(cf. Proposition 2.7.2(3) and Figure 2.7).

For simplicity, assume that R is a white region. For i = 1, 2, let R±
i be the

black regions that contain the crossing ci. Then {∆R−
i
,∆R+

i
} forms a butterfly

BF(pi) at pi by Lemma 2.8.5 (see Figure 2.17).

Claim 2.9.10. The four black regions R−
1 , R

+
1 , R

−
2 and R+

2 are distinct.

Proof. Suppose to the contrary that there is an overlap among the 4 regions.
Then as in the proof of Claim 2.9.8, we have Rϵ1

1 = Rϵ2
2 for some ϵ1, ϵ2 ∈ {−,+}.

Since c1 and c2 are not adjacent in ∂R, the edges ei := R ∩ Rϵi
i (i = 1, 2) are

distinct. Thus we can find a simple loop C in the union of the white region R
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Figure 2.17: The butterflies BF(p1) and BF(p2) and the actions of the meridians
µ1 and µ2, in the case ω(γ̂) = 0 and γ is not a crossing arc. Here, we employ
the model picture of the limit circles described in Remark 2.8.4 and Figure 2.10.

and the black region Rϵ1
1 = Rϵ2

2 , which intersects D transversely in precisely two
points, one in int e1 and the other in int e2. Since e1 6= e2, both disks bounded
by C contains a vertex of D. This contradicts the primeness of the diagram
D.

The proof of Lemma 2.9.9 works in the current setting, and so, we see that
the open set O = Ĉ \ (|BF(p1)| ∪ |BF(p2)|) is non-empty. Thus the pair of
the butterflies BF(p1) and BF(p2) satisfies the conditions in Proposition 2.4.11.
Hence {µ1, µ2} generates a rank 2 free Kleinian group which is geometrically
finite.

This completes the proof of Theorem 2.2.2.

Proof of Theorem 2.2.1. Let L ⊂ S3 be a hyperbolic 2-bridge link, γ an essential
proper path in the link exterior M , {µ1, µ2} a non-commuting meridian pair
in the link group G represented by γ, and {p1, p2} the corresponding pair of
parabolic fixed points. Assume that γ is not properly homotopic to the upper
or lower tunnel of L. We show that {µ1, µ2} generates a rank 2 free Kleinian
group which is geometrically finite.

If necessary by taking the mirror image of L, we may assume that L admits
the prime alternating diagram D in Figure 2.18, where (a1, a2, . . . , an) is a
sequence of positive integers with n ≥ 2, a1 ≥ 2 and an ≥ 2. D consists of
n twist regions A1, A2, · · · , An, where Ai consists of ai right-hand or left-hand
half-twists according to whether i is odd or even. By Theorem 2.2.2, we have
only to treat the case where γ is a crossing arc with respect to the diagram
D. Let Ai be the twist region that contains the crossing corresponding to the
crossing arc γ. If i = 1 or n, then γ is isotopic to the upper or lower tunnel
accordingly. So, 2 ≤ i ≤ n− 1.

Suppose i is odd. Apply the flype to D as illustrated in Figure 2.19, and let
D′ be the resulting prime alternating diagram. Then the image of the crossing
arc γ by the flype is an arc γ′ contained in a region R′ of D′, such that the
corresponding arc γ̂′ in the polyhedron (B3, D′) joins crossings c′1 and c′2 of R′

which are not adjacent in ∂R′. Hence, we can apply the arguments in Subcase
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Figure 2.18: The standard prime alternating diagram D of a hyperbolic 2-bridge
link L

Figure 2.19: The flype maps the crossing arc γ in the diagram D to an arc
which is not a crossing arc in the new diagram D′.

II-2 in the proof of Theorem 2.2.2 to show that {µ1, µ2} generates a rank 2 free
group which is geometrically finite.

Suppose i is even. Then we first modify D by an ambient isotopy in S2

(which is not an ambient isotopy in R2) as in Figure 2.20, and then apply the
flype as in Figure 2.20. Then we can again apply the arguments in Subcase II-2
in the proof of Theorem 2.2.2 and to obtain the same conclusion.

This completes the proof of Theorem 2.2.1.

2.10 Rational links in the projective 3-space and
the proof of Theorem 2.1.3

In this section, we first define the rational links in P 3 (Definition 2.10.2) and
present their basic properties including classification and hyperbolization (Propo-
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Figure 2.20: If i is even, then first modify D by an ambient isotopy in S2 into
the middle diagram and then apply the flype.

sitions 2.10.3 and 2.10.5). Then we give a detailed description of Theorem 2.1.3(3)
in Remark 2.10.6, and prove the theorem.

We recall the definition of a rational tangle following [14, Chapter 18] and [9,
Section 2]. Let B3 := {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 2} be the round 3-ball

in R3 ⊂ R̂3 := R3 ∪ {∞}, whose boundary contains the set P 0 consisting of the
four marked points

SW := (−1,−1, 0), SE := (1,−1, 0), NE := (1, 1, 0), NW := (−1, 1, 0).

For r ∈ Q̂ := Q∪{∞}, the rational tangle of slope r is the pair (B3, t(r)), where
t(r) is a pair of arcs properly embedded in B3 such that t(r)∩∂B3 = ∂t(r) = P 0

as depicted in Figure 2.21(b). Here the “pillowcase” in the figure is the quotient
space (R2,Z2)/J , where J is the group of isometries of the Euclidean plane R2

generated by the π-rotations around the points in Z2, and the pair of arcs on
the pillowcase is the image of the lines in R2 of slope r passing through points
in Z2. We can arrange t(r) so that it is invariant by the π-rotations hx, hy and
hz = hxhy about the x-, y- and z-axis, respectively.

The 2-bridge link (S3,K(r)) of slope r is obtained by gluing (disjoint copies
of) (B3, t(r)) and (−B3, t(∞)) via the identity map on ∂B3. (Here B3 inherits

the natural orientation of R̂3.) Thus we may regard

K(r) = t(r) ∪ ι(t(∞)) ⊂ B3 ∪ ι(B3) = R̂3,

where ι is the inversion of R̂3 in ∂B3. Let D be the Farey tessellation, that
is, the tessellation of the upper half-space H2 by ideal triangles which are ob-
tained from the ideal triangle with the ideal vertices 0, 1,∞ ∈ Q̂ by repeated
reflection in the edges. Let Aut(D) be the automorphism group of D and
Aut+(D) the orientation-preserving subgroup of Aut(D). The following propo-
sition reformulates (i) the classification of 2-bridge links established by Schu-
bert [46] and (ii) the hyperbolization of alternating link complements proved by
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(a) (b)

Figure 2.21: (a) The 3-ball B3 with the set P 0 of the four marked points. (b)
The rational tangle (B3, t(r)) with r = 2/5. Note that the vertical axis is the
y-axis, not the z-axis.

Menasco [32, Corollary 2] by using Thurston’s uniformization theorem of Haken
manifolds [51], applied to 2-bridge link complements.

Proposition 2.10.1. (1) For two rational numbers r, r′ ∈ Q̂, there is a home-
omorphism ψ : S3 → S3 such that ψ(K(r)) = K(r′) if and only if there is
an element ξ ∈ Aut(D) that maps {r,∞} to {r′,∞}. Moreover, ψ can be
chosen to be orientation-preserving if and only if either (i) ξ is orientation-
preserving and (ξ(r), ξ(∞)) = (r′,∞) or (ii) ξ is orientation-reversing and
(ξ(r), ξ(∞)) = (∞, r′).

(2) K(r) is hyperbolic if and only if d(∞, r) ≥ 3, where d is the edge path
distance in the 1-skeleton of D.

Now, we define the rational links in P 3 and state their basic properties.

Definition 2.10.2. For r ∈ Q̂, the rational link of slope r in the projective
3-space P 3 is the pair (P 3,KP (r)) := (B3, t(r))/ ∼, where ∼ identifies x and
−x for every x ∈ ∂B3. The inverse image K̃P (r) of KP (r) in the universal cover
S3 of P 3 is called the covering link of KP (r).

Proposition 2.10.3. The covering link of a rational link KP (r) in P
3 is equiva-

lent to the 2-bridge link K(r̃) with r̃ = ηr(r), where ηr is an element of Aut+(D)
such that ηr(−r) = ∞. (In other words, r̃ is characterized by the property that
(r̃,∞) = (ηr(r), ηr(−r)) for some ηr ∈ Aut+(D).)

Here, we assume that P 3 inherits the natural orientation of B3 ⊂ R̂3 ∼= S3,
and so the covering projection S3 → P 3 is orientation-preserving. Two links
in an oriented 3-manifold are equivalent if there is an orientation-preserving
homeomorphism of the ambient 3-manifold that maps one to the other.

Proof of Proposition 2.10.3. Identify S3 := {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}
with the spherical join S1

1 ∗ S1
2 of the circles S1

1 := S3 ∩ (C × 0) and S1
2 :=

S3 ∩ (0 × C) (cf. [16, Definition I.5.13]). Then we can identify R̂3 with S3 so
that the following conditions are satisfied (see Figure 2.22(a)).
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1. The great circle ∂B3∩{y = 0} is identified with S1
1 , and the compactified

y-axis is identified with S1
2 . Moreover B3 is identified with the spherical

join S1
1 ∗ J2, where J2 := {(0, z2) ∈ S1

2 | − π/2 ≤ arg(z2) ≤ π/2}.

2. The π-rotations hx, hy, hz of R̂3, respectively, are identified with the
involutions on S3 defined by

hx(z1, z2) = (z̄1, z̄2), hy(z1, z2) = (−z1, z2), hz(z1, z2) = (−z̄1, z̄2).

3. Let f be the generator of the covering transformation group of the covering
S3 → P 3, given by f(z1, z2) = (−z1,−z2). Then f viewed on R̂3 is
the composition of the antipodal map (x, y, z) 7→ (−x,−y,−z) and the
inversion ι in ∂B3.

Then the the covering link K̃P (r) ⊂ S3 of KP (r) ⊂ P 3 is given by K̃P (r) =
t(r)∪f(t(r)) ⊂ B3∪f(B3) = S3, and it is invariant by the action of the subgroup
〈hx, hy, f〉 ∼= (Z/2Z)3 of Isom+(S3). Note that f(t(r)) = fhz(t(r)), where fhz,
which is given by fhz(z1, z2) = (z̄1,−z̄2), is the π-rotation of S3 = S1

1 ∗S1
2 whose

axis is the spherical join S0
1 ∗ iS0

2 , where S
0
1 = {(±1, 0)} and iS0

2 = {(0,±i)}.
The axis of fhz viewed in R̂3 is the great circle ∂B3 ∩ {z = 0}, which passes
through the set P 0. Hence the action of fhz on (S3, K̃P (r)) is conjugate to
the involution illustrated in Figure 2.22(b), where K̃P (r) is represented as the
“sum” of the two rational tangles of slope r. Note that the right rational tangle
in the figure corresponds to the image of (B3, t(−r)) by the inversion ι. So, we
have (S3, K̃P (r)) ∼= (B3, t(r)) ∪ ι(B3, t(−r)).

Now, let ηr ∈ Aut+(D) and r̃ ∈ Q̂ be such that (r̃,∞) = (ηr(r), ηr(−r)).
Recall the isomorphism Aut+(D) ∼= SL(2,Z), and let A ∈ SL(2,Z) be the
matrix corresponding to ηr. Then the linear map A : R2 → R2 maps the
lines of slope r (resp. −r) to the lines of slope r̃ (resp. ∞). Thus A induces
an orientation-preserving auto-homeomorphism of the pillowcase (R2,Z2)/J
which maps the pair of proper arcs of “slope” r (resp. −r) to the pair of
proper arcs of slope r̃ (resp. ∞). This homeomorphism induces an orientation-
preserving auto-homeomorphism of (∂B3, P 0) via the natural identification
(∂B3, P 0) ∼= (R2,Z2)/J . By using the fact that t(s) ⊂ B3 is boundary par-

allel for every s ∈ Q̂, we can extend the homeomorphism to an orientation-
preserving homeomorphism from (S3, K̃P (r)) ∼= (B3, t(r)) ∪ ι(B3, t(−r)) to
(S3,K(r̃)) = (B3, t(r̃)) ∪ ι(B3, t(∞)).

Remark 2.10.4. By using [44, Proof of Lemma II.3.3(3) and Figure II.3.4], we
obtain the following expression of r̃. Consider a continued fraction expansion

r = a0 + [a1, a2, · · · , an] = a0 +
1

a1 +
1

a2 + .. . +
1

an

.
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(a) (b)

Figure 2.22: In (a), the axis of the π-rotation fhz is the great circle ∂B3∩{z =
0}, and it passes through the four marked points. In (b), ∂B3 is the central
vertical plane and the axis of fhz is the vertical line. The free involution f is
the composition of the π-rotations fhz and hz, where Fix(fhz)∪Fix(hz) forms
a Hopf link.

Then

r̃ =

{
(−1)n−1[an, · · · , a1, 2a0, a1, · · · , an] if a0 6= 0,

(−1)n−1[an, · · · , a2, 2a1, a2, · · · , an] if a0 = 0.

Moreover, if r̃ = q̃/p̃ with gcd(p̃, q̃) = 1 then q̃2 ≡ 1 (mod 2p̃).

Propositions 2.10.1 and 2.10.3 imply the following proposition for rational
links in P 3.

Proposition 2.10.5. (1) KP (r) is trivial (i.e., it bounds a disk in P 3) if and
only if r = 0 or ∞.

(2) For r, r′ ∈ Q̂, there is a homeomorphism ψ : P 3 → P 3 such that
ψ(KP (r)) = KP (r

′) if and only if r′ = ±r or ±1/r. Moreover, ψ can be
chosen to be orientation-preserving if and only if r′ = r or −1/r.

(3) KP (r) is hyperbolic if and only if min(d(0, r), d(∞, r)) ≥ 2, equivalently,
r 6∈ Z ∪ {∞} ∪ {1/p | p ∈ Z \ {0}}.

Proof. (1) Recall that t(r) is boundary parallel in B3, namely, there is a pair of
disjoint disks ∆ in B3, such that t(r) ⊂ ∂∆ and cl(∂∆\t(r)) = ∆∩∂B3. If r = 0
or ∞, then the antipodal map interchanges the components of cl(∂∆\t(r)), and
so ∆ descends to a disk in P 3 bounded by KP (r). Hence KP (r) is trivial if r = 0
or ∞. Conversely, suppose that KP (r) is trivial. Then its covering link K(r̃)
is the 2-component trivial link, and so r̃ = ∞. This implies r = 0 or ∞ by
Proposition 2.10.3.

(2) If r′ = −1/r, then (B3, t(r′)) is obtained from (B3, t(r)) by π/2-rotation
about the z-axis. Since its restriction to ∂B3 is commutative with the antipodal
map, it induces an orientation-preserving homeomorphism ψ : P 3 → P 3 such
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that ψ(KP (r)) = KP (r
′). Similarly, if r′ = −r, then (B3, t(r′)) is obtained

from (B3, t(r)) by the reflection in the xy-plane. Since its restriction to ∂B3 is
commutative with the antipodal map, it induces an orientation-reversing home-
omorphism ψ : P 3 → P 3 such that ψ(KP (r)) = KP (r

′). The if part of (2)
follows from these two observations.

Next, we prove the only if part of (2). By (1), we may assume none of r and
r′ is equal to 0 or ∞. Then the following hold.

(a) Let ν0 ∈ Aut(D) be the reflection of D in the Farey edge 0∞, i.e., ν0 is

the element of Aut(D) such that ν0(x) = −x for every x ∈ Q̂. Then, for

any r ∈ Q̂ \ {0,∞}, ν0 is the unique reflection of D that interchanges r
and −r.

(b) If ξ ∈ Aut(D) is commutative with ν0, then the action of ξ on Q̂ is given
by ξ(x) = x, −x, 1/x or −1/x. Here ξ is orientation-preserving if and
only if ξ(x) = x or −1/x.

The observation (a) implies that, for any r ∈ Q̂ \ {0,∞}, if ηr is an element of
Aut+(D) such that (ηr(r), ηr(−r)) = (r̃,∞), then νr := ηrν0η

−1
r is the unique

reflection of D that interchanges r̃ and ∞.
Now suppose that there is a homeomorphism ψ : P 3 → P 3 such that

ψ(KP (r)) = KP (r
′), where r, r′ ∈ Q̂ \ {0,∞}. Then ψ lifts to a homeo-

morphism ψ̃ : S3 → S3 which maps the covering link K(r̃) of KP (r) to the
covering link K(r̃′) of KP (r

′). By Proposition 2.10.1(1), there is an automor-
phism ξ ∈ Aut(D) which maps {r̃,∞} to {r̃′,∞}. By the uniqueness of the
reflections νr and νr′ , we have νr′ = ξνrξ

−1. Again, by the uniqueness of the
reflection ν0, this in turn implies that the conjugation of ν0 by ξ0 := η−1

r′ ξηr
is ν0, i.e., ν0 and ξ0 are commutative. Hence, by the observation (b), the

action of ξ0 on Q̂ is given by ξ0(x) = x, −x, 1/x or −1/x. On the other
hand, r′ = η−1

r′ (r̃′) is equal to either η−1
r′ (ξ(r̃)) = η−1

r′ (ξ(ηr(r))) = ξ0(r) or
η−1
r′ (ξ(∞)) = η−1

r′ (ξ(ηr(−r))) = ξ0(−r). Since ξ0 is equal to one of the four
transformations in the above, we see that r′ is equal to ±r or ±1/r as desired.
This completes the proof of the first assertion of (2). The second assertion of
(2) can be proved by refining the above arguments by using the second assertion
of Proposition 2.10.1(1).

(3) Since KP (r) is hyperbolic if and only if K(r̃) is hyperbolic, Proposi-
tion 2.10.1(2) implies that KP (r) is hyperbolic if and only if d(∞, r̃) ≥ 3. On
the other hand, since the Farey edge 0∞ separates −r and r, we have

d(∞, r̃) = d(−r, r) = 2min(d(∞, r), d(0, r)).

Hence KP (r) is hyperbolic if and only if min(d(∞, r), d(0, r)) ≥ 2. It is obvious
that the latter condition is equivalent to the condition r 6∈ Z∪{∞}∪{1/p | p ∈
Z \ {0}}.

By Proposition 2.10.5, we have the following description of the statement
(3) of Theorem 2.1.3.
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Remark 2.10.6. In the setting of Theorem 2.1.3(3), the following hold. X =
H3/G is the complement of a hyperbolic rational link KP (r) in P 3 for some

r ∈ Q̂\(Z∪{∞}∪{1/p | p ∈ Z\{0}}), Γ = 〈µ1, µ2〉 is an index 2 subgroup of G,
and H3/Γ is the complement of the 2-bridge link K(r̃), where r̃ is characterized
by the property that (r̃,∞) = (η(r), η(−r)) for some η ∈ Aut+(D). In the group
Γ = π1(S

3 \K(r̃)), {µ1, µ2} is equivalent to the upper or lower meridian pair of
the 2-bridge link K(r̃). In the group G = π1(P

3 \KP (r)), {µ1, µ2} is a meridian
pair of the rational link KP (r), such that G/〈µ1, µ2〉 ∼= π1(P

3) ∼= Z/2Z.

The following proposition, obtained by using the result of Millichap-Worden [34,
Corollary 1.2] on the commensurable classes of hyperbolic 2-bridge links, plays
a key role in the proof of Theorem 2.1.3.

Proposition 2.10.7. If the complement of a hyperbolic 2-bridge link K(r̃) non-
trivially covers an orientable, complete hyperbolic manifold X, then X is the
complement of a hyperbolic rational link KP (r) in P

3, and K(r̃) is the covering
link of KP (r). Thus the covering is a double covering, and r̃ is characterized by
the property that (r̃,∞) = (η(r), η(−r)) for some η ∈ Aut+(D). Moreover, the
image of the upper and lower meridian pairs of the link group of K(r̃) in π1(X)
are meridian pairs of KP (r).

Proof. By [34, Corollary 1.2], a hyperbolic 2-bridge link complement covers a
hyperbolic manifold X non-trivially, then it is a regular covering. The isometry
group of hyperbolic 2-bridge link complements are calculated by [8, Proposition
4.1] (cf. [43, Theorem 4.1]). As suggested by Boileau-Weidmann [12, Lemma
15], the calculation implies that (i) the complement of the hyperbolic 2-bridge
link K(r̃) with r̃ = q̃/p̃ admits an orientation-preserving free isometry if and
only if q̃2 ≡ 1 (mod 2p̃) and (ii) any such hyperbolic 2-bridge link complement
admits a unique orientation-preserving free isometry. In fact, the orientation-
preserving isometry group Isom+(S3 \ K(r̃)) for such a 2-bridge link K(r̃) is
isomorphic to (Z/2Z)3. Moreover, it extends to the (Z/2Z)3-action of (S3,K(r̃))
generated by {hx, hy, f} as illustrate in Figure 2.22; we can easily check that
f is the unique element which acts on the link complement (and also on S3)
freely. (See Bonahon-Siebenmann [14, Chapter 18] for nice description of link
symmetries as rigid motions of S3.) This fact together with Proposition 2.10.3
implies the first assertion. The last assertion is obvious.

Proof of Theorem 2.1.3. Let X = H3/G and {µ1, µ2} be as in Theorem 2.1.3,
and let Γ = 〈µ1, µ2〉 be the subgroup of G generated by {µ1, µ2}. Then, since
Γ < G is torsion-free, Theorem 2.1.1 implies that Γ is either a rank 2 free
group or a hyperbolic 2-bridge link group. In the former case, the conclusion
(1) holds. In the latter case, X = H3/G is covered by the hyperbolic 2-bridge
link complement H3/Γ. Hence, by Proposition 2.10.7, either (i) Γ = G and the
conclusion (2) holds by Theorem 2.1.2 (or Theorem 2.1.1) or (ii) Γ is a proper
subgroup of G and the conclusion (3) holds. This completes the first assertion
of Theorem 2.1.3.
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In order to prove the second assertion, assume that X = H3/G has finite
volume and Γ is a rank 2 free group. Suppose to the contrary that Γ is geometri-
cally infinite. Since the codomain X of the covering p : X̂ = H3/Γ → X = H3/G
has finite volume and since X̂ is tame by the tameness theorem ([4, 15, 18, 47]),
the covering theorem of Canary [19] implies that X has a finite cover X ′ which
fibers over the circle, such that the cover XS of X ′ associated to a fiber subgroup
satisfies one of the following conditions.

(a) X̂ = XS .

(b) X̂ is a twisted I-bundle which is doubly covered by XS .

Suppose first that X̂ = XS . Then there is a fuchsian group Γ0 of co-finite
volume, such that (i) the hyperbolic surface H2/Γ0 is homeomorphic to the fiber
surface S of the bundle X ′ over S1, and (ii) there is an isomorphism ρ : Γ0 → Γ
which is strictly type-preserving, i.e., for g ∈ Γ0 < Isom+(H2), ρ(g) is parabolic
if and only if g is parabolic. Since Γ is generated by two parabolic elements,
S must be a thrice-punctured sphere. This contradicts the assumption that S
is a fiber surface of X ′, because a thrice-punctured sphere does not admit a
pseudo-Anosov homeomorphism.

Suppose next that X̂ is a twisted I-bundle which is doubly covered by
XS . Then there is a non-orientable hyperbolic surface F = H2/Γ0, where
π1(F ) ∼= Γ0 < Isom(H2) < Isom+(H3), and a strictly type-preserving isomor-
phism ρ : Γ0 → Γ. (Here F is homeomorphic to the base space of the twisted
I-bundle X̂.) This contradicts the fact that there is no non-orientable surface
whose fundamental group is generated by peripheral elements. Hence Γ is geo-
metrically finite.
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