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Abstract

We propose a new approach to data filtering called Influence-guided data filter-
ing applied to data augmentation. Data augmentation methods are commonly
employed to mitigate overfitting and improve the generalization of deep neural
network models. Current approaches involve examining additional replacement
words and immediately substituting them. However, our objective is to improve
the model by filtering out the most important sentences, which we expect will
lead to better training results because more relevant sentences are obtained in
the context of a smaller corpus. In the rapidly evolving digital media landscape,
where emotions are extensively expressed online, our experiments on sentiment
analysis tasks demonstrate that augmenting importance-filtered expectations
yields superior improvements.
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Chapter 1

Introduction

The demand for sentiment analysis has been increasing in recent years because
of the development of technology and the increase in social media. Sentiment
analysis, commonly known as opinion analysis, involves computational methods
to investigate people’s feelings, attitudes, evaluations, and appraisals regard-
ing diverse aspects of products, services, entities, individuals, topics, events,
and issues. Sentiment analysis is a common task in the natural language pro-
cess(NLP) involving categorizing texts. The rapid advancement of neural net-
works and deep learning has driven this field’s development and widespread
adoption. This task achieved relatively perfect results due to the advent of
transformers. Subsequently, a model named Bidirectional Encoder Representa-
tions from Transformers (BERT) based on transformers has shown impressive
performance in the NLP, which was introduced in [1]. This development has
provided a reasonable basis for various downstream tasks in the text domain,
including sentiment analysis. Both Transformer and BERT are based on deep
learning to achieve better performance.

The amount of data required for deep learning is generally large, although
it is more accurate than traditional machine learning. Data augmentation be-
comes very important because too little data can lead to over-fitting in deep
learning. The main idea of data augmentation is generating or synthesizing
data by various means to expand the data when there is only a small amount
of data. Data augmentation was first studied and explored in computer vision
tasks. At the image level, it is also easier to perform data augmentation through
various image transformations without destroying the meaning of the original
image, so the data augmentation technique will also be more mature in image
vision. Data augmentation techniques are also more mature in the image field,
and we can easily see this observation in work [2], [3].

Data augmentation is also still needed in data processing for NLP, But at
first, the idea could have worked out better. It may be due to the difficulties
associated with the discrete nature of language, which prevents text from being
augmented as simply as images. Despite the challenges, many large pre-trained
models have emerged with the rapid development of NLP, and naturally, more
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relevant downstream tasks can be explored. In this background, many new
domains or tasks are low-resource; in other words, the datasets will generally
be small and lack training data; thus, data augmentation is significant in this
condition. After a large number of researchers in this area of research has made
tremendous progress and also confirmed that the data enhancement use in the
model training process through a particular method of generating new data to
improve the generalization ability of the model in the actual scenario, and in
today’s trendy field of deep learning can also get excellent results.

However, current research on data augmentation predominantly focuses on
substituting specific words within a sentence, a practice that may only par-
tially capture the complexity of sentence-level augmentation. To address this
limitation, we propose a novel approach inspired by real-life learning scenarios,
where emphasis on critical content yields better results. Our method identi-
fies essential data during model training using the influence function[4] from
the Explainable Artificial Intelligence (XAI) field, and there is a detailed sum-
mary and introduction to this concept in work [5]. XAI seeks to enhance the
transparency and understandability of machine learning models, contributing
to improved decision-making processes. By applying the influence function to
data augmentation, we shift the focus from merely replacing words in isolated
sentences to augmenting entire sentences.

This work explicitly concentrates on identifying and augmenting crucial data
to enhance performance. Leveraging a small dataset, we fine-tuned BERT for
sentiment analysis. Subsequently, utilizing the influence function, we compute
influence scores to identify significant data portions. Augmenting this essential
data results in a more comprehensive dataset, contributing to improved model
validation and overall performance.

The main contributions of this thesis are the following:

• A new data filtering method is proposed, which can improve the perfor-
mance of data augmentation methods and achieve better performance on
a data-sparse NLP task.

• Combining the influence function in XAI with BERT, one of the most
famous representatives of big models today.

• Explored a popular and successful data augmentation named Easy Data
Augmentation with excellent performance gains in our proposed frame-
work and found the optimal augmentation parameters.

The subsequent sections of the paper will adhere to the following structure.
Chapter 2 will provide a comprehensive review of pertinent methods and related
work essential for conducting the experiments. In Chapter 3, the model struc-
ture and the overarching methodology employed in this thesis will be elucidated.
Chapter 4 will discuss the experiments’ specifics and present the corresponding
results. Finally, Chapter 5 will encapsulate the theory with a concise summary.
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Chapter 2

Related Works

2.1 Data Augmentation

In NLP, various approaches to data augmentation techniques are also commonly
employed. Among these, lexical replacement stands out as a widely utilized
method. This approach involves the substitution of a specific part of the original
text. Notably, the challenge lies in ensuring the replacement keeps the sentence’s
overall meaning identical. One mature method entails randomly selecting a word
from a sentence and substituting it with a synonym. Often leveraging resources
like the WordNet database, this technique has been implemented in works such
as [6], [7]. The latter utilized a similar method for their sentence similarity
model, generating an additional 10,000 pieces of data.

Another prominent method involves word embedding replacement. In this
straightforward approach, pre-trained word vectors, such as Word2Vec[8], GloVe[9],
and FastText[10], are employed to identify the closest words in vector space, re-
placing words in the original sentence. [11] used this technique to enhance the
language model’s ability to mitigate overfitting in downstream tasks.

Moreover, various methodologies, such as back-translation, have been ex-
plored in NLP. Back-translation involves machine translation to translate text
backward, altering the sentence composition without changing its meaning. In
work [12], it demonstrated the successful application of back-translation to ex-
tend an unlabeled model, achieving commendable results.

In addition to back-translation, an important focus within the data aug-
mentation domain is the Easy Data Augmentation(EDA) concept[13]. EDA
encompasses a systematic approach to augmenting training data by applying
synonym replacement, random insertion, and paraphrasing techniques. These
methods aim to introduce controlled variations into the original text, enhancing
the model’s performance. While some researchers have explored data augmen-
tation by injecting random noise into the training data, our emphasis in this
related work lies on the principles and applications of EDA. Adding noise, which
involves random insertion, swapping, and deletion, has shown noteworthy re-
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sults in diverse NLP tasks.
However, traditional data augmentation methods, particularly those persis-

tently modifying and replacing words, have shown limitations and encountered
bottlenecks. At this juncture, our proposed method comes to the forefront. Our
approach signifies a paradigm shift from a word-centric focus to a more holistic
sentence-level perspective.

Within the scope of our study, EDA assumes a central and pivotal role.
We leverage the fundamental principles of EDA to amplify the performance of
our specific model architecture. Importantly, our research introduces a novel
perspective by incorporating the influence function to enhance the efficacy of
EDA further. While EDA inherently contributes to substantial improvements
in the performance of deep learning models, our method goes a step further by
harnessing influence function. This synergy enables us to achieve heightened
performance gains, effectively demonstrating the superior capabilities of our
approach. Our work not only builds upon the documented successes of EDA
in existing literature but also establishes the unique superiority of our method.
By employing the influence function in conjunction with EDA, we showcase the
adaptability and effectiveness of EDA and the additional performance boost
afforded by our innovative integration.

2.2 Influence Function

XAI is pivotal in understanding and interpreting the intricate workings of ma-
chine learning models. The advent and deployment of large models have fueled
interest in interpretable learning, prompting extensive research in methods that
shed light on model behaviors observed in previous works[14], [15]. Previous
efforts primarily aimed to quantify the importance of input data using mathe-
matical techniques or intermediate model quantities, thereby explicating model
behavior through such essential measures. Various methods, including attention
mechanisms mentioned in [16], [17], perturbation analysis[18], and approxima-
tion techniques[19], have been employed to illustrate model predictions.

The influence function, a cornerstone in XAI, analyzes a model’s sensitivity
to individual sample predictions. This analytical approach allows researchers
to pinpoint samples or features significantly impacting the model’s predictions,
thereby enhancing model interpretability. Initially applied in the early stages
of machine learning for identifying crucial training samples [4], the influence
function found its way into deep learning, particularly in computer vision. In
[20], it was used to identify detrimental data and address issues related to data
distribution instability. In the realm of NLP, [21] demonstrated the application
of the influence function in uncovering biases in word embeddings, showcasing
its versatility.

Crucially, in our research, the influence function plays a transformative role.
Leveraging its capacity to discern the impact of individual samples on model
predictions, we integrate the influence function into the model training process.
By identifying and prioritizing crucial training samples, we harness the influence
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function’s superior capabilities to enhance model performance substantially. In-
corporating the influence function in our experimental design provides a unique
avenue for augmenting universal data augmentation techniques. Through the
targeted selection of necessary training samples during model training, we wit-
ness a notable boost in performance, addressing bottlenecks encountered in
conventional augmentation methods. The influence function, acting as a guid-
ing force, not only enhances our understanding of the model’s decision-making
but also serves as a practical tool for achieving substantial performance gains.

In summary, the influence function, an essential element of XAI, enriches
our understanding of model predictions and proves transformative in augment-
ing model training. By identifying and leveraging crucial training samples, its
superior capabilities are harnessed to achieve significant performance improve-
ments, thereby elevating the overall effectiveness of the model.

2.3 BERT

Pre-trained language models have received much attention in NLP since 2018,
achieving excellent performance in several tasks. One of the best known is
the BERT model, based on the transformer structure mentioned in [22], which
captures rich language representations in the unsupervised pre-training phase
and then achieves significant performance gains on specific tasks through fine-
tuning. Using the Transformer encoder structure, the BERT model breaks
the traditional limitation that text can only be modeled from left to right.
It introduces bi-directional contextual information, i.e., the model uses both
the left and right contexts of the text during the pre-training process. After
the pre-training phase, the BERT model can be fine-tuned to perform well in
various downstream tasks. In the fine-tuning phase, task-specific labeled data
is linked to the pre-trained model, and then the model’s parameters are fine-
tuned through supervised training. The proposal of BERT started a revolution
in the field of NLP, and its pre-training-fine-tuning framework not only set
new performance records on several benchmark tasks but also inspired several
subsequent pre-training models, such as the GPT family, Roberta, and XLNet
mentioned in [23], among others. These models are all based, to varying degrees,
on BERT and continue to drive the development of NLP technology.

2.4 Sentiment Analysis

Through work [24], we can get the definition of sentiment analysis. Sentiment
analysis, which aims to recognize the sentiments or emotional states expressed in
text, is essential in NLP. This task helps to gain insight into people’s attitudes
and emotional tendencies towards products, events, topics, etc. It has many
applications in social media analysis, consumer reviews, and opinion monitoring.
Generally, this task can be categorized into the following methods.
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Traditional methods: Early research focused mainly on rule-based and dictionary-
based methods in sentiment analysis. Researchers construct sentiment dic-
tionaries and rules to identify sentiment tendencies in texts. However, these
methods are often limited by vocabulary coverage and semantic understanding,
making it difficult to deal with complex linguistic expressions and polysemous
words.

Machine Learning Approaches: With the rise of machine learning techniques,
sentiment analysis has gradually shifted from traditional methods to data-driven
approaches. At this stage, researchers began to explore the use of machine learn-
ing algorithms such as Support Vector Machines (SVMs)[25], Plain Bayesian
Classifiers and Random Forests to learn sentiment analysis models from labeled
data automatically. Feature engineering is also a key aspect at this stage, where
researchers try to extract meaningful features from text to use as inputs to the
model.

Deep learning methods have achieved remarkable advancements in senti-
ment analysis tasks in recent years, as evidenced by notable breakthroughs in
the field [26], [27]. The introduction of Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN) has enabled models to better capture
contextual information between sentences and text. Models such as Long Short-
Term Memory Networks (LSTMs)[28] and Gated Recurrent Units (GRUs)[29]
have been widely applied to sentiment analysis of sequential data, effectively
solving the problem of long-range dependency on text.

In the current landscape, developing large language models (LLMs) has be-
come a standard in sentiment analysis. The experimentations in this study
will align with this trend, opting for using the classic BERT model, showcasing
the influence of cutting-edge large-scale models in advancing sentiment analysis
capabilities.
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Chapter 3

Methodology

To accomplish the sentiment analysis task, we choose the publicly available
sentiment analysis dataset named The Stanford Sentiment Treebank(SST)[30],
which is an expanded version of the MR (Movie Review) dataset. There are
two versions of this SST dataset: SST -1, which contains five labels, and the
other is the dataset we use, SST-2. The structure of our proposed method is
illustrated in Figure3.1. Initially, we select the first 500 data instances from
the dataset, leveraging them to train a model through fine-tuning with the
pre-trained BERT model. Subsequently, some of the parameters of the fine-
tuned model, the training data, and the data from the test set are fed into the
influence function to compute the importance scores of all the training data.
Following this, the training set’s data is sorted according to the importance
scores obtained, dividing it into the crucial and general data. In the final phase,
data labeled as important is augmented by more multiples, like 24 times, when
the data augmentation method is applied. In contrast, general data retains a
standard augmentation multiplier, like 16 times. To validate the effectiveness
of our proposed method, the new dataset generated by our proposed method is
examined on the pre-trained BERT model.

The forthcoming sections will intricately describe each module within the
method and the underlying mathematical frameworks. The initial module in-
volves the training of sentiment analysis predictions utilizing BERT. The second
module encompasses the application of the influence function, and the conclud-
ing module addresses the data augmentation methods pertinent to this experi-
ment.

This structural framework will be presented in the subsequent section, demon-
strating how our proposed method provides a discernible performance boost to
the data augmentation approach. This comprehensive description outlines the
sequence of operations, from initial data selection to the final validation. It
explains the methodology’s inner workings and potential impact on augmenting
and enhancing the dataset.
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Figure 3.1: The structure of our proposed method.
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3.1 Dataset

There are two variations of the SST(The Stanford Sentiment Treebank) dataset
available: SST-1, including five labels, while the version we use, SST-2, is iden-
tical to the one we refer to. [31] trained the model with this dataset. This task
is given the sentiment of a sentence as shown in Figure 3.2. From the figure, we
can see that the first column is the sentence, and the second column is the label
corresponding to the sentence. This dataset is a dataset with two categories of
data. By the labels, we can see that all the sentences are categorized into two
categories. 0 represents the sentences with negative emotions, and 1 illustrates
those with positive emotions. Since we will perform a sentiment analysis task,
this dataset fits the scenario we need. This dataset contains 67,350 training
data and has 1821 test data to provide validation operations. Our experiments
will be carried out based on this dataset to simulate scenarios with very little
data to verify that our proposed method is effective in data augmentation meth-
ods. Therefore, we randomly selected 500 entries from the training dataset as
training data for our experiments. Then, 100 more data were randomly selected
from the training set as validation data. Finally, 100 randomly selected data
from the test dataset are used as the test set.

Figure 3.2: Example of dataset

3.2 Model Structure

3.2.1 Sentiment Analysis Module

The sentiment analysis module can be achieved through various methods and
models. The recent emergence of large language models has led to unparalleled
advancements in this task. Additional effective methods and models include
ELMO [32] and GPT [33]. However, they can not perform as well as BERT in
sentiment analysis. ELMO is a bi-directional LSTM-based model that gener-
ates context-sensitive word vectors. However, unlike BERT, ELMO omits the
Transformer architecture during training, which may impact its effectiveness in
capturing long-distance dependencies. GPT operates as a unidirectional gener-
ative model, producing text through unidirectional autoregression. In sentiment
analysis, a bidirectional encoding model holds an advantage as sentiment may be
impacted by both preceding and subsequent text. Therefore, BERT is deemed
the most appropriate for sentiment analysis; this experiment utilizes the BERT
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model. BERT is a pre-trained model founded on the Transformer architec-
ture, which has gained significant attention in the NLP field. The fundamental
concept behind BERT is to comprehend contextual data of the text using the
bi-directional encoder. Such capability facilitates the model’s understanding of
each word’s context within a sentence. The training of BERT comprises two
phases, As shown in Figure 3.4 mentioned in [1], namely, pre-training and fine-
tuning. As mentioned, our proposed approach suggests using the pre-trained
BERT model to fine-tune it on a randomly selected 500-unit training set from
SST-2. This process will lead to the development of a fine-tuned model, which
can be applied to the sentiment analysis dataset. Additional validation of the
fine-tuned model’s accuracy is then conducted to test the validity of the chosen
validation method.

When using BERT for sentiment analysis tasks, the whole process of working
with the model can be divided into the following steps: preprocessing, pre-
training, and fine-tuning. Each step is described in detail below:

• Preprocessing: In the preprocessing stage, it is necessary to transform the
raw text data into a suitable input format for the BERT model. BERT
accepts tokens (usually words or subwords), each paired with a corre-
sponding number.

• Pre-training: In the pre-training phase, the model learns an ability to
make sense of the contextual representation of words by absorbing a large
amount of the corpus. We use the pre-trained model in [22] for experiments

• Fine-tuning: During this phase, we employ the pre-trained BERT model to
fine-tune it for the sentiment analysis task. The weights of the pre-training
phase for BERT are initially loaded to ensure fast training. Subsequently,
a classification layer must be added on top of BERT. In contrast, the last
hidden layer of [CLS] serves as the terminal representation of the input
sentence, as shown in Figure 3.3. Using the softmax activation function,
we may add a fully connected layer at the end to map the CLS to sentiment
categories. Our task involves binary categorization (positive, negative).
We should also note that there are 12 encoder layers in the figure 3.3, and
this parameter will be used later on.

This module ends with a sentiment classification for each sentence based
on the scores obtained after a softmax function on the [CLS] labels in BERT.
As shown in Figure 3.5, Each sentence will have a score X (0<X<1) and then
be differentiated into positive and negative emotions based on the score. For
example, If X<0.5, the sentence sentiment is negative. If X>0.5, the sentence
sentiment is positive. Within the structural framework of the proposed method,
as depicted in Figure 3.1, a sentiment analysis task is conducted using the fine-
tuned model both at the commencement and conclusion of the method. It is
crucial to note that the former represents the training stage, while the latter
assesses accuracy using the fine-tuned model.

This sentiment analysis task serves as a critical benchmark for evaluating
the superiority of our proposed method. The results will be elaborated upon in
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Figure 3.3: Overall fine-tuning procedures for BERT.
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Figure 3.4: Overall procedures for BERT[1]

Figure 3.5: Example of sentiment analysis
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the next section, showing how effectively our method captures and categorizes
sentiment within sentences. This validation underscores the efficacy and distinct
advantages of our proposed approach.

Moreover, an integral aspect is that after fine-tuning the BERT model on the
sentiment analysis task dataset, specific parameters of the fine-tuned model are
input into the subsequent module (influence function screening data) for com-
puting importance scores. as shown in the beginning sentiment analysis module
in Figure 3.1, This dual employment of the sentiment analysis module serves
a dual purpose. The initial iteration is dedicated to obtaining the fine-tuned
model, allowing the transfer of parameters to the influence function to calcu-
late the essential importance scores our method requires. The final iteration of
the sentiment analysis module is then utilized to validate the effectiveness of
our proposed method. This iterative approach ensures the seamless integration
of sentiment analysis, fine-tuning, and influence function calculations, thereby
substantiating the efficacy of our methodology.

3.2.2 Influence Function module

The influence function gauges a model’s sensitivity to each sample within the
training data. It works by locally perturbing a piece of data in the training set
and then measuring the importance of this perturbed data in the training set
by observing how much the model’s performance on the test set is affected after
being trained on this perturbed training set. The influence function serves not
only to identify anomalies in the training data but also to aid comprehension of
the reliability of model predictions and how the removal of a sample affects such
predictions. Implementing the influence function will also involve the choice of
parameters of the model; for example, the model used in our experiments is
the BERT model, which has 12 layers of encoder and the last layer of fully
connected layers. How many parameters we chose, will we choose in the next
section of the experiment? Next, let’s discuss the basics of the influence function
and mathematically demonstrate why the computation can be done without
retraining the model.

Through work [34], we can explain the theory by deriving it as follows:
Suppose we have n existing training samples Z1, Z2... ,ZN , where Zi(xi,yi), L(Z,
θ) denotes the loss of z trained under the theta parameter, where x represents
the textual content of the training samples, while y represents the actual label.
With the above definition, then, the loss function or empirical risk function can
be expressed as R(θ):

R(θ) =
1

n

n∑
i=1

L(Zi, θ) (3.1)

When we minimize the empirical risk loss, we can get the parameter at this
point expressed by the following equation:

13



θ̂ = arg min
θ

1

n

n∑
i=1

L(Zi, θ) (3.2)

The influence function is used to observe the effect of a slight change in
a specific data point (xi) in the training dataset for a given model parameter
theta. To utilize the influence function, we alter or remove a particular sample
(Zi) and observe the resultant change in theta. The purpose of this experiment
is to demonstrate the effectiveness of the influence function by making a slight
increase in xi for Zi. At this time, the parameter a is expressed as follows:

θ̂ϵ,Z = arg min
θ

(
1

n

n∑
i=1

L(Zi, θ) + (Z, θ)

)
(3.3)

Looking at equations 3.1 and 3.3, we can see that we can substitute equation
3.1 into equation 3.3 to obtain:

θ̂ϵ,Z = arg min
θ

[R(θ) + ϵL(Z, θ)] (3.4)

Define ∆ϵ = θ̂ϵ,Z −θ̂ to measure the amount of change in the parameter
θ, again because θ is a consequence of arg minR(θ), independent of ϵ, So the
following equation holds:

dθ̂ϵ,Z
dϵ

=
d∆ϵ

dϵ
(3.5)

Since θ̂ϵ,Z is an extreme value, we can obtain it by taking the derivative of
arg min

θ
[R(θ) + ϵL(Z, θ)] and making the derivative equal to zero: ∇R(θ̂ϵ,Z ) +

ϵ∇L(Z, θ̂ϵ,Z ) = 0, when θ̂ϵ,Z −→ θ̂ expanding equation 3.5 can be done as a

first-order Taylor’s formula; that is, it is obtained by expanding θ̂ϵ,Z in the
neighborhood of θ̂:

∆ϵ ≈ 1

∇2R(θ̂) + ϵ∇2L(z, θ̂)
·
[
∇R(θ̂ϵ,Z ) + ϵ∇L(z, θ̂)] (3.6)

The following expression can be obtained by simplifying from equation 3.2 and
reasoning:

∆ϵ ≈ −∆2R(θ̂)−1 · ∆L(z, θ̂)ϵ (3.7)

And ∆2R(θ̂) is the Hessian matrix H(θ̂)mentioned in [4]
By combining equations 3.5 and 3.7, the expression for the final influence

function can be expressed as:

Iup, params(Z) =
dθ̂ϵ,Z

dϵ
= −H−1

θ̂
∇L(Z, θ̂) (3.8)

We can observe from Equation 3.8 that the impact score of every training sample
Z solely depends on θ̂. Therefore, there is no requirement to retrain the model,

14



and we can precisely calculate the score, signifying the importance of every
training sample.

Through the intricate mathematical procedures detailed above, we acquire
crucial importance scores for the training data during the training process. This
accomplishment is a critical outcome and forms the core of our research en-
deavor. The series of mathematical operations provides profound insights into
the significance of each data point and establishes a robust foundation for our
study.

Following the acquisition of these importance scores, we gain a nuanced
understanding of the relative importance of each data point. This signifies a
shift from perceiving data as homogeneous to identifying critical factors. Sub-
sequently, we systematically rank all training data based on their importance
levels. This hierarchical ranking system enables us to establish rules, specifying
which data points are paramount—whether within the top one hundred, two
hundred, or three hundred. This ranking system offers a layered understanding
of the data, empowering us to utilize its latent value purposefully.

Integrating this with the visual representation in Figure 3.1’s influence func-
tion filtering module, a dynamic portrayal of our method’s operational process
emerges. The output of this module divides the original dataset into two dis-
tinct subsets. As evident from the colors in the figure, the initially trained data
is represented in all blue. After the influence function’s calculation and filtering,
a portion of the data is identified as crucial (depicted in red). In contrast, the
remaining data is considered general (retaining the original blue color). This
division vividly illustrates our method’s process, showcasing the identification
of essential data through influence function analysis and the subsequent cate-
gorization into distinct subsets.

This pivotal step is an indispensable and fundamental component within our
proposed methodology and serves as the starting point for detailed data analy-
sis. Our research goes beyond the performance of the overall dataset; it delves
into uncovering highlights and crucial data points, providing robust support for
our methodology. This in-depth analysis informs subsequent experiments and
model refinements, allowing us to tailor data processing strategies precisely and
ultimately enhance the performance and practicality of our proposed approach.

3.2.3 Data Augmentation module

Nowadays, data augmentation methods are also developing rapidly in the field
of NLP, in which substituting a certain proportion of words in a sentence for
words with similar meanings by various methods is the primary method. Of
course, there is also the back translation method. The classic EDA method is
mentioned in surveys [35], [36], and so on, and they all praise the efficiency of
this method. The idea is simple but can achieve excellent results. Therefore, I
will use EDA in my experiments to validate my proposed method and explore
the parameters in EDA that work best in our proposed method.

We implemented EDA to generate more diversified training samples by ap-
plying four primary operations on raw text data. As figure3.6[13] shows, the
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four primary operations we employed are as follows:

• SR: Replacing synonyms is one of the earliest EDA procedures. To perform
this task, a random word is chosen from the original text and switched
out with a synonym extracted using NLP libraries such as NLTK and
WordNet. Not only does this technique improve the diversity of the text,
but it also leads to an enhanced comprehension of the surrounding context
and meaning by the model.

• RI: Random insertion is another crucial operation in EDA. In this process,
we arbitrarily choose a word and insert a randomly selected word into a
random location in the original text. This inserted word can be selected
from a thesaurus or randomly chosen in the text. This helps to extend
the sentence’s length and structure, thus enhancing the model’s ability to
adjust to various sizes and syntactic structures.

• RS: The random swap operation aims to increase the diversity of the
sentence structure of the text. In this operation, we randomly select two
words in the original text and swap their positions. This process simulates
the rearrangement of words within the sentence and helps the model better
understand the relationship between different words.

• RD: The random omission process emulates the lack of information in
a text. With some probability, a word is randomly selected and then
omitted from the original text. This process compels the model to deduce
insufficient information, thereby enhancing model stability.

The operations conducted within our Data Augmentation Module serve as
more than just mechanisms to introduce controlled variations into the origi-
nal text—they form the cornerstone of our innovative augmentation approach.
Specifically, our method, based on the insights gained from the influence func-
tion, identifies and seamlessly integrates influential data points into the EDA
process.

In this crucial step, we employ the influence function to compute impor-
tance scores for each data point. Those identified as highly influential are then
strategically chosen to undergo intensified augmentation within the EDA frame-
work. This nuanced approach enables us to concentrate the augmentation efforts
on data points deemed most critical by the influence function, enhancing the
model’s understanding of significant patterns and contexts. It involves metic-
ulously exploring various parameters within the EDA framework to optimize
its effectiveness with influence function. By creating a symbiotic relationship
between EDA and influence function, our method aspires to achieve superior
performance, showcasing its distinctive contributions to the field.

Adding a visual layer to this description, referring to Figure 3.1’s data aug-
mentation module, vividly illustrates the process. Following the previous mod-
ule’s data partitioning into crucial and general subsets, we observe distinct levels
of augmentation applied to each subgroup. Notably, the numerical indicators
provide a clear distinction—24X signifies a 24 times augmentation for crucial
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Figure 3.6: EDA’s operations

data, while 16X indicates a 16 times augmentation for general data. This aligns
seamlessly with the original EDA framework, further enhancing the richness of
our augmentation process and emphasizing the differential treatment based on
the identified importance of each subset.

In summary, the Data Augmentation Module in our study intricately com-
bines the conventional power of EDA with sophisticated insights from the influ-
ence function. By intensifying augmentation on strategically identified influen-
tial data points, our methodology aims to diversify training samples and elevate
the model’s performance through a targeted focus on critical elements, thereby
contributing to advancing our research objectives.
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Chapter 4

Experiment

To illustrate the efficacy of our proposed approach, we carried out experiments
in this chapter. This chapter details the experimental setup and steps, presents
and analyzes the results, and explores variations in the results with different
parameter configurations.

4.1 Experiment settings

4.1.1 Dataset

This experiment employs the SST-2 publicly available dataset to simulate data
enhancement in limited data. Therefore, we will randomly select 500 and 100
data samples from the dataset as a training and validation set and 100 as a test
set. The random sampling is assigned to compose a balanced training set, so
we will randomly select 250 positive and 250 negative samples to ensure this
dataset is reasonable. If any of the categories are too many or too few, it will
significantly affect the overall results of the experiment.

4.1.2 Baseline

Because we propose filtering to improve the effectiveness of data augmentation
methods, the Baseline of our experiment will be the result obtained with the
same dataset under the optimal parameter configuration of EDA’s data augmen-
tation. The parameters of the Baseline method will be set precisely according
to the optimal parameter settings as mentioned in the [13], and the new dataset
will be formed by augmenting the dataset by 16 times to be trained and tested
in BERT’s model.

4.1.3 Experiment setup

We designed the experiment to include three modules: sentiment analysis, in-
fluence function filtering, and data augmentation. I’ll detail the parameters of
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each module separately below:

• Sentiment analysis module: In our experiments, we used the BERT-base
model, which consists of a 12-layer Transformer Encoder structure. We
tuned some key parameters, including setting the hidden layer dimension
of each layer to 768, the number of self-attentive heads to 12, and the
fully connected feed-forward network dimension of each layer to 3072.
The size of the vocabulary table was 30,000. In addition, we conducted
multiple rounds of training for our experiments, using a batch size of
128 for each round. The maximum sequence length was 50 for both the
training and validation sets to ensure that the input sequences were short
when processed. We used the Adam optimizer, put the learning rate to
1e-5, and set the random seed to 42 to ensure the repeatability of the
results. Twenty training epochs were performed for better convergence.

• Influence function filtering module: Among the general parameters in this
module, the batch size is set to 32, and the maximum sentence length of
each data is set to 128. To ensure that the experiment can be repeated
each time, we set the random seed to 42. There is also the critical hy-
perparameter that needs to be fixed, which is the parameter that we will
study in our experiments, and it is the number of parameters that will
be fed in. Since we are analyzing which data the BERT model values
more during training, we need to decide which of the total 12 layers of
transformer encoder in BERT to input. As mentioned in [37], the in-
fluence function can only become accurate if few parameters are input.
Therefore, we will experiment with the last layer of BERT’s encoder, the
final two layers of BERT’s encoder, and the final three layers of BERT’s
encoder to demonstrate our proposed method.

• Data augmentation module: The EDA’s data augmentation method is
used, the base method uses the default optimal parameters for that method,
and the augmentation is done 16 times. The previous introduction to the
EDA mentioned that the process has four operations: random substitu-
tion, deletion, random swap, and random insertion. All four parameters
are set to 0.1, meaning, i.e., each word has a 10% probability of performing
these operations.

However, for the object, we want to experiment with, there are two differ-
ences with the Base method; one is that some of the data are augmented
more, exactly which part of the data, in our experiment, we set a range
called essential data, and will be sorted to find out the top 100, 200, and
300 data as the critical data for the experiment respectively. Then the
second difference is that instead of being 16 times, the essential data is
enhanced 20, 24, 28, and 32 times.
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4.1.4 Evaluation metrics

In our experiments, since the experiments are conducted based on the sentiment
analysis task. So, we chose four key evaluation metrics to comprehensively assess
the model’s performance and thus evaluate the effectiveness of our proposed
method. In our experiments, we validate our proposed method’s effectiveness
through a sentiment analysis task and use publicly available sentiment analysis
datasets. This means that our result is a categorization task. So, we used
the traditional evaluation criteria for categorization tasks. These metrics are
Accuracy, Recall, Precision, and F1 value. The result will be between 0 and
1, with closer to 1 representing better performance. The following is a brief
description of each metric:

• Accuracy: Accuracy is the number of samples for which the model’s pre-
dictions are correct for the entire data set as a percentage of the total data.
This is an important metric, and the higher this metric is, the better the
model performs in terms of overall performance.

• Recall: It measures the proportion of all actual positive cases the model
successfully predicts. A high recall rate means the model has good cover-
age of positive examples.

• Precision: Precision measures the proportion of positive cases that the
model predicts out of the total number of positive cases. A high precision
means the model is more reliable in predicting positive cases.

• F1: The F1 value is the harmonic mean of recall and precision. A higher
value means the model performs better when considering both recall and
precision.

While we evaluated the four key metrics of accuracy, recall, precision, and
F1 value, we believe that accuracy and F1 value have a more integrated
and holistic significance in evaluating model performance. Accuracy in-
tuitively measures the model’s prediction accuracy on the overall data,
while the F1 value provides a more global performance evaluation after
considering the balance of Recall and Precision. So, we will focus on ac-
curacy and the F1 value in interpreting our experimental results better
to understand the model’s performance in sentiment analysis tasks and
better explain the validity of our proposed approach.

4.2 Sentiment analysis

Figures 4.1 and 4.2 shows the training process of our proposed and Base meth-
ods. The x-axis indicates the number of epochs trained, while the y-axis indi-
cates the accuracy and loss during training. We can see that the losses at the
end of the training have been shallow, and the fluctuation of the model accuracy
is reasonable.
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Figure 4.1: Validation accuracy of Sentiment Analysis Module

Figure 4.2: Train loss of Sentiment Analysis Module
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The pink line(2layer 200) in the figure represents that I input the parame-
ters of the last two layers of the encoder of the BERT model into the influence
function. After calculating the importance scores of each data and then sorting,
I set the first 200 of the 500 training data as the essential data to be augmented
24 times by EDA to form the training data to be involved in the training pro-
cess. The other line represents the Base method, which uses the default optimal
parameters of EDA to augment all the data 16 times and participate in the
training process.

4.3 Important score of sentences

One of the many experiments is shown here as an example. The importance
scores for each data calculated after we input the training data and some of
the parameters of the fine-tuned BERT model into the influence function are
shown.

Figure 4.3: Examples of importance scores on negative samples

Figure 4.4: Examples of importance scores on positive samples

An excellent absolute value of the importance score means a more critical
role in the training process. Figure 4.4 shows the three most important pieces
of data in the positive sample labeled 1. In comparison, Figure 4.3 shows the
three most important pieces of data that the negative sample labeled 0 focused
on during model training. We can see that each piece of data will have an
importance score, as shown in the figure in general, and we can sort the positive
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and negative samples in order of importance, respectively, and then filter out
a certain number of ’the most important data.’ Finally, because the scores are

Figure 4.5: Distribution of importance scores for all 500 training data

discrete, we normalized the scores for the 500 pieces of data and showed the
distribution of the importance scores for all the data in Figure 4.5. We can see
that the positive and negative samples seem to conform to a normal distribution,
meaning the critical data are still in the minority.

4.4 Result

In this subsection, we will show the entirety of our experiment. Our proposed
method will be applied to EDA, and a comparison will be made with the tech-
nique using only EDA to verify the correctness of our proposed method. In the
above section on the experimental setup, I have mentioned that there are three
critical variables in our experiment, which are the number of parameters input
into the influence function of the fine-tuned BERT, the range of the vital data,
and the diversity of augmentation of the essential data.

This is because several experiments were conducted to verify that our re-
sults were not accidental. Then, the calculated mean and deviation values were
written as results to be presented in a table. As shown in Table 4.1, we can
see that the vertical axis results from combining the Base method according
to the parameters mentioned earlier. The horizontal axis is the four metrics
mentioned earlier in the section on evaluation methods. I want to make a de-
tailed explanation of the different parameter combinations in the figure, as an
example, where 1layer with 100 means that we get the importance score of all
the data after inputting the last layer of encoder parameters in the fine-tuned
Bert model into the influence function to participate in the calculation. Then,
all the data are ranked according to the importance score, and the top 100 data
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Accuracy Precision Recall F1
EDA(Base) 84 ± 2.51 82.78 ± 4.40 87.89 ± 1.83 84.89 ± 3.13
1layer with 100 83.66 ± 2.51 81.18 ± 3.55 89.52 ± 6.41 85.04 ± 3.45
1layer with 200 84.27 ± 2.00 85.05 ± 4.08 85.13 ± 8.64 84.96 ± 3.06
1layer with 300 81.33 ± 3.05 80.68 ± 4.12 84.46 ± 6.08 82.45 ± 4.08
2layer with 100 86± 2.64 84.36 ± 4.47 88.37 ± 4.56 86.75± 3.31
2layer with 200 86.67± 3.78 85.32 ± 4.43 89.61 ± 4.62 87.49± 4.31
2layer with 300 84.67 ± 2.31 83.34 ± 3.31 88.37 ± 4.1 85.73 ± 2.92
3layer with 100 85 ± 3 84.07 ± 5.55 87.89 ± 1.83 85.94 ± 3.39
3layer with 200 86± 1 84.98 ± 0.89 88.94 ± 5.1 86.81± 2.32
3layer with 300 85 ± 2.64 83.26 ± 2.36 88.94 ± 5.48 85.98 ± 3.69

Table 4.1: Experiments on each set of parameters

are selected as important data for more augmentation. In the case of 2layer,
the last two layers of encoder parameters are input into the influence function,
while 3layer means that the final three layers of encoder parameters are input.
Here, we have set to augment all the critical data 24 times while increasing the
remaining data by 16 times, as in the Base method. Then, because this ex-
periment has three variables, we will augment the critical data in this table 24
times. Then, we will keep one variable fixed to compare the change of the other
variable. The experiment here is to test the validity of our proposed method and
explore under what parameter our proposed filtering structure can improve the
EDA. Why did we only experiment within three layers of the encoder? That is
because we have seen a study about the influence function in [37], which shows
that approximation is needed in the mathematical calculation process because
of the influence function. Therefore, the more parameters we input, the more
unstable the result will be. The paper shows that the performance is relatively
better and more stable when the parameters are input within three layers.

4.4.1 The effectiveness of our approach

From Table 4.1, we can evaluate and analyze our method through the results.
According to our previous section’s description of the experimental evaluation
criteria, we will prioritize comparing these two metrics to judge our method.
Accuracy and F1 can better indicate the model’s performance. Therefore, we
also introduce Figures 4.6 and 4.7 to show only these two critical metrics sepa-
rately to provide a more effective and intuitive presentation of our results. We
focus on the first part of Table 4.1, and we show Figures 4.6 and 4.7. The
horizontal dotted line shows the accuracy obtained by the Baseline method.

First, we focus on the effect of the number of input layers; in the case of
using only one layer, i.e., only the last layer of the encoder parameter is entered
into the influence function, the result is not very good; selecting the first 200
data as the critical data in the performance of The performance improvement
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Figure 4.6: accuracy of different parameter combinations

Figure 4.7: F1 score of different parameter combinations
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of choosing the first 200 data as essential data is minimal compared to Baseline.
In contrast, the performance of selecting the first 100 as crucial data and the
first 300 as critical data is reduced. Subsequently, we can see in the remainder
of the table that a significant improvement is obtained when using 2layer, i.e.,
inputting the parameters of the last two sides of the encoder into the influence
function and setting the first 200 data as the critical data, Baseline’s accuracy
and F1 score are 84 and 84.89, respectively, but after using our method, they can
reach 86.67 and 87.49, which are improved by 2.67 and 2.6 respectively. This is
a nice boost and the best parameter combinations we have experimented with.

We not only focus on the results but also take the Deviation of the results
into account, as shown in Figures 4.8 and 4.9,

Figure 4.8: Deviation of the accuracy results for each parameter combination

we calculated the Deviation of the experimental results obtained for each set
of parameters. Deviation implies the stability of the values and is as small as
possible. We can only see from the data that even the Deviation of the Baseline
method is not low; it reaches 2.51 and 3.13 for the accuracy and F1 scores. I
think this is probably because each training data set is randomly filtered from
the SST-2 dataset, and the data distribution will differ in each set. The length
of the sentences may also be different. The length of the sentences may also be
different, thus bringing bias. Combining the table and the figure, we can see that
the Deviation of the results obtained by combining layer 2 with 200 parameters
is slightly higher than the Baseline. In comparison, the results obtained by
combining three layers with 200 parameters are more stable than the Baseline,
which is also surprising.

In this subsection, we have analyzed the effectiveness of our method con-
cerning the experimental results, explaining and justifying that our method is
indeed effective. However, the analysis in this subsection is based on the ex-
periments conducted by fixing the multiplicity of augmentation at 24 times in
our three critical parameters, and in the following subsection, we will also an-
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Figure 4.9: Deviation of the F1 score results for each parameter combination

alyze the effects of different multiplicities of augmentation. This way, we can
find our proposed method’s most suitable parameters for EDA, a vital data
augmentation method.

4.4.2 Comparison of different augmentation multiples

Previously, we mentioned three critical parameters of our proposed method, two
of which we studied in the previous subsection: the number of input parameters
and defining the range of essential data. In this subsection, we will experiment
to find the most suitable parameters for EDA using our method. This is because
the multiplicity of augmentation is a critical parameter for the data augmen-
tation method. Too much data augmentation may lead to overfitting of the
model on the training set, especially when the generated augmented samples
are highly similar to the original samples. The model may be overfitted to the
noise in the training set, and the generalization ability may decrease. More-
over, large-scale data augmentation increases the computational and storage
overhead during training. This may lead to longer training time while requiring
more hardware resources. However, too little data augmentation won’t work
either; if the augmentation times are too small, the model may not be able
to learn the diversity of the data adequately, resulting in poor generalization
performance when faced with unseen samples. With a small dataset, more data
augmentation may prevent the model from prematurely overfitting the training
data, limiting its effectiveness in real-world scenarios. The context of our study
is the situation when faced with only small datasets.

Therefore, we want to validate not only the effectiveness of our method but
also how many times we should augment the part of the data that we recognize
as ’important data’ to be a good performer when using our method on EDA.
In Table 4.1, we see that the most significant improvement is in the case of
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the parameter combination 2layer with 200. Still, the Deviation of its accuracy
and F1 scores are 3.78 and 4.31, respectively, while the Deviation of Baseline’s
method is 2.51 and 3.13 for these two metrics, respectively. In contrast, in the
case of the parameter combination, In the case of 3layer with 200, we can see
that there is still a good improvement. The Deviation of each index of this set
of parameters is lower than that of the baseline method. The Deviation of its
accuracy is only 1, which is much lower than that of the corresponding index of
the baseline method. For Deviation, the lower the better; the more insufficient
means, the more stable the result. However, the combination of 2layer with
200 gives the best results, so we will look for the best enhancement multiplier
based on these two sets of parameters to find the best combination of these
three important parameters.

Accuracy Precision Recall F1
20X 86± 3.61 85.04 ± 4.52 87.7 ± 4.78 86.06± 4.74
24X 86.67± 3.78 85.32 ± 4.43 89.61 ± 4.62 87.49± 4.31
28X 85.33± 2.52 83.38 ± 3.32 89.7 ± 4.97 86.38± 3.43
32X 85.67± 3.06 81.51 ± 0.83 90.46 ± 2.51 86.8± 3.47
Baseline(EDA) 84 ± 2.51 82.78 ± 4.40 87.89 ± 1.83 84.89 ± 3.13

Table 4.2: Different augmentation multiples of 2layer with 200.

Table 4.2 shows that inputting the parameters of the last two layers of the
encoder into the influence function, the top two hundred importance scores in
the 500 pieces of training data are classified as essential data. This part of the
data is augmented 20, 24, 28, and 32 times, and different multiplications boost
them to see the results of the final model test. The four indicators still evaluate
the results.

By combining Figure 4.10 and Figure 4.11, we can very intuitively see that
in the case of 24X augmentation of essential data, the four metrics accuracy,
precision, recall, and F1 scores are the most obvious ones to be improved, the
rest of the augmentation multiples are still improved, and the worst one, 28X,
can still be improved in accuracy by 1.33. Therefore, this can illustrate the
effectiveness of our validity of the proposed method. When exploring the best
parameter combinations, a more precise answer can also be obtained through
the combined presentation of tables and pictures. However, the Deviation
of the results of this parameter combination could be more reasonable because
accuracy and F1 scores are the evaluation metrics we are more concerned about.
Through Figure 4.12 and Figure 4.13, we can see that all the results are worse
than Baseline’s method, except for the group of 28X, which is almost the same
as Baseline’s method. However, the instability here doesn’t mean there’s no
performance improvement for a particular data set. By analyzing the results of
each set of data in the experiments, we find that using this set of parameters
(2layer with 200) can sometimes improve the performance by five percentage
points. In comparison, sometimes it can only improve the performance by two
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Figure 4.10: Accuracy of ’2layer with 200’ for different multiples

Figure 4.11: F1 score of ’2layer with 200’ for different multiples
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Figure 4.12: Deviation of the accuracy of ’2layer with 200’

Figure 4.13: Deviation of the F1 score of ’2layer with 200’
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percentage points. The degree of improvement fluctuates, implying that this set
of parameters can sometimes enhance a lot of performance when dealing with
different data sets. This means that this set of parameters can sometimes be
improved and sometimes only a little when dealing with different data sets. This
means that this set of parameters can sometimes improve a lot and sometimes
only a little when dealing with other data sets, but it will constantly improve
the performance of the baseline method.

We did this experiment for 2layer with 200 and the parameter combination
of 3layer with 200 because the experimental results for this set of parameters
had a lower deviation. We also wanted to test whether this set of parameters
would be optimal for EDA.

Accuracy Precision Recall F1
20X 83.66± 2.52 81.40 ± 4.44 88.13 ± 3.58 84.54± 2.28
24X 86± 1 84.98 ± 0.89 88.94 ± 5.1 86.81± 2.32
28X 84± 2 83.23 ± 2.89 86.05 ± 10.08 84.29± 3.46
32X 85± 1.73 83.23 ± 1.85 88.13 ± 2.19 85.60± 1.86
Baseline(EDA) 84 ± 2.51 82.78 ± 4.40 87.89 ± 1.83 84.89 ± 3.13

Table 4.3: Different augmentation multiples of 3layer with 200.

Table 4.3 shows the results of the experiments, which were conducted with
the last three layers of the encoder parameters entered into the influence func-
tion, setting how many times the important data was enhanced if the data
ranked in the top 200 according to the importance scores out of the 500 training
data was the important data. As in the previous experiments, we focus more

Figure 4.14: Deviation of the accuracy of ’3layer with 200’

on the accuracy and F1 score among the four outcome metrics, and thus, we
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Figure 4.15: Deviation of the F1 score of ’3layer with 200’

introduce Figures 4.14 and Figures 4.15. With these two figures and a table, we
can see the advantage of this set of parameters, which is that, as we suspected,
they both indeed have lower Deviation than the Baseline method, which means
that They will have a more stable augmentation effect across different datasets.
However, we can see the shortcomings of this set of parameters through Figures

Figure 4.16: Accuracy of ’3layer with 200’ for different multiples

4.16 and Figures 4.17. Only the augmentation of 24X performs well; the rest
of the augmentation seems to need to bring better performance, and even the
performance of 20X augmentation is worse than that of the Baseline method.
Moreover, compared to the result of using 2layer with 200, the performance of
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Figure 4.17: F1 score of ’3layer with 200’ for different multiples

3layer with 300 is worse under different augmentation multiples.
After conducting and analyzing our experiments, we have accomplished the

two questions we posed in this chapter that we wanted to explore. The first
is that our method can indeed improve the effectiveness of data enhancement
because EDA is an outstanding representative of data enhancement methods
and is also in line with the idea of the majority of data augmentation, which
is the addition, deletion, exchange, and modification of words in a sentence.
Therefore, if we can validate the success of our method on EDA, it will show
its effectiveness. The second one is about exploring the optimal parameters for
using our proposed method on EDA-based data augmentation methods. Our re-
sults described in the previous section show that the best results are achieved by
enhancing the data labeled as important data 24 times and keeping the remain-
ing data augmentation at the same augmentation multiple as in the Baseline
method. However, there is a trade-off between deviation and performance re-
sults in the discussion about choosing the last two or three layers’ parameters.
Still, even though the Deviation of the results of 2layer with 200 is more signifi-
cant, their different augmentation multiplicity can improve the original method.
On the contrary, the results of the 3layer with 200 On the other hand, 3layer
with 200 is not a very good combination of parameters, but it is stable. There-
fore, we can think that for our proposed method, we choose to input the last two
layers or three layers of encoder parameters of BERT into the influence function
for the calculation of the importance score and then sort the training data ac-
cording to the importance score of the first 40% of the data, in our experiment
is the first 200 data of the 500 pieces of training data. This is also in line with
the distribution of importance scores of all the data we showed in Section 4.3,
where the critical data are in the minority. Therefore, the top forty percent
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of the data are recognizable as essential. The best parameters described here
are applied to EDA to improve performance in EDA as a data augmentation
approach.
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Chapter 5

Conclusion and Discussion

This thesis proposes an effective method to improve data augmentation effec-
tiveness. In this paper, we introduce the two critical areas of XAI and data
augmentation and point out areas that current data augmentation methods fail
to focus on. Thanks to XAI’s development, we have considered combining these
two areas to make data enhancement methods more effective. Specifically, we
wanted to explain the model’s behavior through an influence function so that
we could filter the data from it and then create an influence-guided filter to
identify the critical data, which would make the model pay more attention to
that part of the data. This behavior manifests by having the data augmentation
method augment the critical data several times so the resulting dataset contains
more meaningful data. The model then focuses more on the essential data in
the dataset generated with our method because there are more meaningful data.
Our experiments are conducted by randomly sampling 500 pieces of data in a
large dataset as a training set to simulate the scarcity of data resources. The
experiments are conducted in two parts. The first part tests the effectiveness of
our method. The effectiveness of our proposed method is found by conducting
experiments with different combinations of parameters. The second part is to
find the best parameters for using our proposed EDA method. In conclusion,
the presentation of the related work and principles of our method and the care-
ful analysis of the whole experiment also show the validity and reliability of our
proposed method.

This paper’s contributions can be summarized as follows:

• Combining the fields of XAI and data augmentation gives LLMs better
performance on sentiment analysis tasks.

• Proposes impact-guided filters that can effectively improve classical data
augmentation methods such as EDA.

• Optimal parameters regarding the use of this method on EDA are inves-
tigated.
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In future work, other large-scale pre-trained models besides BERT can be
explored in our proposed method. Secondly, in our experiments, we have only
computed the final three layers of encoder parameters of BERT’s model; in
future research work, it is possible to choose to input more parameters of BERT’s
or other big models into the influence function to explore whether it will give
better results and thus improve the data augmentation method to a greater
extent.
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