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Abstract

The exponential increase in Internet traffic and expansion in size have notably influenced the pro-
liferation of video streams, with a significant emphasis on HTTP video streams. This phenomenon
is particularly evident in content sharing and distribution, where a substantial portion of videos re-
volves around common themes, such as Oktoberfest. In response to this trend, a novel system lever-
aging Peer-to-Peer (P2P) technology for efficient caching and bundling of thematically similar video
content is proposed. This system innovatively utilizes the distributed processing capabilities of P2P
nodes to cache HTTP video segments and subsequently synthesize new video streams. The exper-
imental evaluation, which employed traditional servers as a benchmark, demonstrated the system’s
efficacy. It yielded markedly better performance for scenarios involving low-quality video and high
request volumes. Additionally, the system showed comparably favorable outcomes in other scenarios,
underscoring its potential for optimizing video content delivery in diverse conditions.
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Chapter 1

Introduction

1.1 Introduction

The exponential growth of internet connectivity, projected to encompass two-thirds of the global
population by 2023 according to Cisco’s 2018-2023 forecast, has significantly contributed to the bur-
geoning popularity of video sharing platforms like YouTube, TikTok, and Netflix. This escalation
in internet users correlates directly with an increase in video traffic, thereby solidifying HTTP video
streaming’s role as a pivotal technology for delivering a diverse array of high-resolution content with
minimal latency. This trend is further reinforced by recent scholarly work highlighting major advance-
ments in video codecs and the widespread adoption of video-enabled devices [1-3].

Central to the mechanism of HTTP streaming is HTTP Live Streaming (HLS), introduced by Ap-
ple in 2009. HLS utilizes segmented MPEG2-TS containers, enabling the delivery of fragmented
video and audio files via HTTP/1.1. Originating from HDTV broadcasting technology, MPEG2-TS
segments video data into small transport packets, which are instrumental for error correction, packet
reordering, and simultaneous playback/download. HLS operation depends on a manifest file, located
on the web server, that delineates the segmented media files’ locations for a given video. Analogous to
HLS, MPEG-DASH (Dynamic Adaptive Streaming over HTTP) [4], ratified by ISO MPEG in 2012,
employs an XML-formatted MPD (Media Presentation Description) as its manifest file. Other promi-
nent HTTP/1.1 streaming technologies include Microsoft’s Smooth Streaming [5] and the CMAF
(Common Media Application Format) [6].

A hallmark of HTTP streaming is its capacity to divide video content into segments with variable
bitrates, facilitating adaptive bitrate (ABR) switching in response to network conditions. This fea-
ture enables clients experiencing bandwidth fluctuations to request lower-resolution chunks, thereby
maintaining continuous playback. However, with the escalating number of users and the voluminous
increase in video content, media servers face an increased load. This can result in unintentional bitrate
reductions due to server congestion, adversely affecting the user experience.

These observations highlight the challenges in achieving scalable bitrate switching for high-quality
HTTP streaming within conventional client-server frameworks dependent on dedicated servers. A vi-
able alternative to address these challenges is the integration of peer-to-peer (P2P) technology, wherein
clients contribute their upload bandwidth to facilitate direct video content sharing among themselves.
This decentralized methodology presents several advantages, including:

* Reduced Server Load: P2P distribution alleviates the burden on central servers, particularly
during peak usage, by offloading video delivery, thereby mitigating congestion and bandwidth
bottlenecks.

* Enhanced Scalability: The combined upload capacity of additional clients in the network con-
tributes to an expanded resource pool, allowing for the network’s seamless expansion in line
with user growth.



* Improved Resilience: P2P systems inherently possess fault tolerance and redundancy, circum-
venting single points of failure. In case a peer is unavailable, other nodes can continue content
distribution, thus maintaining system stability and minimizing disruptions.

The feasibility and potential of P2P technology in augmenting video streaming have been exten-
sively explored in the last two decades. A multitude of studies have examined various P2P streaming
architectures and protocols [7—12], providing a substantial theoretical foundation for the development
of effective and efficient P2P-based solutions for high-quality HTTP streaming. These insights and
findings are instrumental in addressing the constraints inherent in traditional server-centric models.

This paper introduces a crowdsourced video streaming system to explore novel possibilities for
P2P-assisted HTTP video streaming. The system is designed to facilitate the sharing of multiple video
streams captured by users participating in large events, such as Oktoberfests and parades, on a P2P
network comprising nodes associated with participating users. User-generated video streams undergo
conversion to the HLS format, ensuring system versatility, a new video stream bundled from cached
chunk in the P2P network, available for download upon requests. Activation of the system aligns with
the event’s timing, enabling users to join and leave at their discretion. The proposed system avoids
centralized online cache management, reducing the risk of processing bottlenecks and single points
of failure. Only the bootstrap node (coordinator), serving as the entry point for participating peers, is
installed, managing limited tasks: bootstrapping and restarting the maintenance of the P2P overlay.

The architecture of the system incorporates a bespoke P2P network, termed the Worker Network,
which is established on the foundations of the InterPlanetary File System (IPFS). By leveraging the
inherent infrastructure components of IPFS, such as the Bitswap protocol and the Pubsub model, the
system effectively constructs a P2P network grounded in the kad-DHT (Kademlia Distributed Hash
Table) framework. This approach not only ensures the system’ s performance and availability but
also simultaneously enhances its security and flexibility. The foundational technology of the system
is based on FFmpeg, a leading multimedia framework.

Furthermore, a specialized video streaming module has been developed, also grounded in the
FFmpeg framework. This module operates autonomously within each node of the P2P network and
is tasked with the distributed processing of video streams. Its design is optimized to capitalize on
the substantial computational resources often lying idle within the network. By harnessing these re-
sources, the module enhances the efficiency and scalability of video processing across the network,
thereby maximizing the overall utility of the system’ s distributed architecture.

The proposed system is implemented in a simulate network environment created via Docker using
the Go language, and the evaluation assesses the time required for storing the generated video stream
in the P2P network and retrieving/playing the cached video content. Experimental results confirm the
effectiveness of the proposed system, demonstrating its suitability for sharing user-generated video
contents in an ad hoc manner.

1.2 Related Work

In the realm of P2P caching systems, significant contributions have been made in the context
of adaptive video streaming. Al-Habashna et al. presented a P2P caching system specifically de-
signed for DASH (Dynamic Adaptive Streaming over HTTP) in their publication [13]. Conversely,
Roberto Roverso and colleagues adopted a combined CDN-P2P (Content Delivery Network-Peer-to-
Peer) strategy to augment the efficiency of adaptive HTTP Live Streaming [14].

However, the integration of video processing capabilities within P2P networks remains relatively
underexplored. This gap in the research can be attributed to the substantial challenges associated with
such an integration. Specifically, the transmission of large-scale video content over networks demands
considerable bandwidth, and the processing of these videos requires significant computational power.



Silva et al. recognized the immense potential of P2P systems in caching videos that share common
themes or subject matter [15]. Yet, their work did not extend into the realm of video processing.

Addressing this gap, the proposed system in this paper presents a novel solution that mitigates the
issues of high bandwidth and computational demands. This is achieved by distributing segmented
HLS (HTTP Live Streaming) video slices, rather than entire videos, across the P2P network. Such an
approach significantly reduces the bandwidth and arithmetic power required for video processing in
P2P networks, thereby enabling more efficient and scalable video distribution and processing.

1.3 Paper Structure

The remainder of this paper is organized as follows. Chapter 2 outlines key technology stack. After
an overview of the proposed system in Chapter 3, the management of the P2P overlay and the storage
and retrieval of user-generated video streams are described in Chapter 4 and Chapter 5, respectively.
Chapter 6 describes the results of experiments conducted on our prototype system. Finally, Chapter 7
concludes the paper with future work.



Chapter 2

Technology Stack

In the proposed system, the foundational architecture of the Worker Network is meticulously con-
structed utilizing the core components of the InterPlanetary File System (IPFS). Concurrently, the
Video Processing Module is adeptly realized through the application of FFmpeg. Together, these
technologies form the cornerstone of the system’s core technology stack, underpinning its functional-
ity and efficiency.

2.1 InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) is a pivotal component in the architecture of the system,
serving as a fundamental library for the implementation of the distributed network. IPFS is a peer-to-
peer (P2P) hypermedia protocol, designed with the aim to make the web faster, safer, and more open.
It has emerged as a prominent solution for decentralized storage and sharing of data in a distributed
network.

IPFS has following core functions:

Decentralized Distribution Unlike traditional client-server protocols, IPFS operates on a P2P basis,
eliminating reliance on centralized servers. This decentralization facilitates more robust and
resilient data storage and access.

Content Addressing IPFS uses content-based addressing rather than location-based addressing. Each
file and all blocks within it are given a unique fingerprint called a cryptographic hash. This en-
sures that every piece of content can be uniquely identified and retrieved based on its content,
not its location.

Efficient File Storage and Retrieval By storing files in a distributed network and retrieving them
through global content addresses, IPFS optimizes bandwidth usage and improves file transfer
speeds.

Version Control and Linking IPFS integrates features akin to version control systems. It can track
versions of files and manage data in a way that makes it easy to link from one piece of content
to another.

In the system, IPFS is instrumental in the creation and maintenance of the Worker Network. It en-
ables efficient and reliable storage and retrieval of video content across the network. The use of IPFS’s
DHT (Distributed Hash Table) for content discovery and the Bitswap protocol for data exchange are
key in achieving a decentralized and efficient distribution of video content. Moreover, the Pubsub
model of IPFS facilitates a reactive and dynamic content distribution strategy, enhancing the system’s
overall performance.



IPFS’s integration into the system significantly contributes to overcoming challenges associated
with traditional centralized networks, such as single points of failure and scalability issues. By lever-
aging the robustness and efficiency of IPFS, the system achieves a decentralized, scalable, and resilient
architecture for video content distribution and processing.

2.2 FFmpeg

In the domain of the system’s video processing and streaming functionalities, FFmpeg stands as
a cornerstone library. FFmpeg is an open-source software suite, widely renowned for its comprehen-
sive capabilities in handling multimedia data. It encompasses a vast array of tools and libraries for
recording, converting, and streaming audio and video in various formats.

There are some principal features of FFmpeg:

Extensive Format Support FFmpeg is celebrated for its broad support of multimedia file formats,
codecs, and protocols. This versatility makes it an invaluable tool for a system that needs to
handle a diverse range of video and audio data.

Transcoding and Processing Atits core, FFmpeg excels in transcoding multimedia files - converting
them from one format to another. This feature is essential for transforming source video files
into compatible formats for efficient streaming and processing.

Streaming Capabilities FFmpeg also facilitates live streaming functionalities. Its capability to en-
code and stream media in real-time is pivotal for systems requiring live broadcast or real-time
video processing features.

High Performance Known for its high performance and quality output, FFmpeg processes and transcodes
video and audio with minimal loss of quality, ensuring optimal playback and viewing experi-
ences.

Within the system, FFmpeg serves a vital role in video processing tasks. This encompasses a
spectrum of functions including encoding, decoding, and bundling of video content, all of which are
executed through calls to the FFmpeg library. Detailed insights into its implementation and operational
role are provided in Chapter 5 of this paper.

In summary, the integration of FFmpeg into the system provides a robust, efficient, and flexible
framework for video processing and streaming. Its comprehensive set of tools and capabilities signif-
icantly contributes to the system’s ability to handle complex video processing tasks, making it a vital
component in the system’s overall architecture.



Chapter 3

System Overview

3.1 Overview

The proposed system is composed of multiple worker nodes and a dedicated coordinator. At its
core, the system relies on the worker network, a peer-to-peer (P2P) network of worker nodes respon-
sible for storing chunk data as the primary source of video streaming. Detailed information about the
worker network is provided in Chapter 4. The principal role of the coordinator is to oversee the DHT
utilized by the worker network and to facilitate the efficient transfer of video chunks within the worker
network.

All client devices involved in the system, including laptop PCs and tablets, function as worker
nodes. These nodes encompass creators, who act as producers of video chunks, and requesters.

3.2 Implementation Details

The system is implemented using Golang version 1.12.3 and comprises several modules. Among
them, the Video Stream Processing (VSP) module is responsible for video streaming, while the Peer-
to-Peer (P2P) module maintains and manages the worker network. The VSP module leverages the
advanced features of FFmpeg (version 2021-12-23, git-60ead5cd68-essential build), ensuring state-
of-the-art video processing capabilities within the system. Further details about the VSP module are
provided in Chapter 5.

The P2P module is developed using the Golang-based IPFS client, kubo. Each node within the
worker network is equipped with an integrated kubo client, establishing a private IPFS-based network.
Additionally, the module facilitates direct information exchange between endpoints through the HTTP
protocol, primarily utilized during specific operations, such as the initialization and termination of
IPFS services.

Within the system, file resources, such as video chunks, are identified as Tasks, each assigned a
unique Task Identifier (TID) generated using the SHA-256 algorithm. Worker nodes are effectively
managed using a specialized address format named *multiaddr,” encapsulating essential information
such as the workerID (generated by the SHA-256 algorithm), the protocol in use, and the port number.
The module employs a cryptographic algorithm to generate a private key for each workerID, ensuring
the verification of authenticity when workers attempt to establish a P2P connection.

In the current implementation, certain functionalities enabling interaction with the public IPFS
network are intentionally disabled to enhance security. Specifically, the IPFS Remote Procedure Call
(RPC) and IPFS gateway features, common in typical IPFS deployments, are deactivated. This proac-
tive measure strengthens the system’s security framework, preserving the private network’s insulation
from potential vulnerabilities associated with public network interfaces.



Chapter 4

Worker Network

4.1 Overview

In the proposed system, user-generated videos converted into the HLS format by the creators are
distributed and cached on the worker network in a distributed manner. Video chunks cached on the
network are requested by users who wish to view the video, and workers holding the video chunks
transfer them to the requester. The main role of the worker network is to perform the above process
efficiently without delay, and for this purpose, it effectively utilizes mechanisms provided by the IPFS,
such as distributed hash tables (DHTs) and Bitswap. In this section, we provide an overview of kad-
DHT, a concrete DHT employed in the proposed method, followed by the description of the Pubsub
model used to distribute video chunks and a resource swap mechanism responsible for the discovery
and transfer of cached chunks.

4.2 kad-DHT as an Underlying Overlay

The worker network incorporates a distributed hash table known as Kademlia (kad-DHT) within
its logical structure. Kademlia is a peer-to-peer network designed for storing key-value pairs, where
the key is typically a hash value, and the value is a record representing the network location of the
resource corresponding to the hash value. The address space of kad-DHT spans from 0 to 2256 — 1,
with peers and records mapped to this range using SHA256. Each record is stored on the nearest peer
in the address space, and the connection between adjacent peers in the kad-DHT is established through
an overlay that mimics the skip list, enabling a quick lookup in O(log V) hops, where N represents
the number of peers in the kad-DHT. The logical structure of kad-DHT is illustrated in Figure 4.1. In
the graph, the black nodes maintain K connections at each of the circled nodes, called K — buckets.
Where K is a value that varies with the state of the system

kad-DHT provides support for the joining and leaving of peers. In the proposed system, a des-
ignated node called the coordinator acts as a bootstrap server, ensuring correct maintenance of the
overall network structure as long as each worker appropriately executes the join/leave procedure of
the kad-DHT. However, in real network environments, workers joining the kad-DHT may leave un-
expectedly, temporarily turn off device, or delete cached chunks or critical information in the routing
table. Such a discrepancy can result in the coordinator’s understanding of the network structure not
aligning with the actual state, leading to malfunctioning join procedures and chunk retrievals.

To address this issue, the system delegates the coordinator with the authority to centrally restore the
entire network structure. The restoration process aims to reconstruct the complete DHT utilizing only
the currently online workers in the system. The worker network is structured to enable the coordinator
to receive reports on the success or miss of queries executed on the DHT. In this context, a query miss
indicates that the resource requested by a worker cannot be found within a predefined timeout period,
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Figure 4.1: Logical structure of P2P overlay used in kad-DHT. [16]

typically due to node departure and/or cache erasure.

The coordinator triggers the restore procedure when the percentage of query misses since the last
restore surpasses 15%, signaling a potential degradation in system performance. Upon completion of
the restoration, the coordinator relinquishes its centralized management role, reverting to its normal
role as a bootstrap server. This proactive approach ensures the continuous efficiency and robustness
of the network structure.

4.3 Peer-to-Peer Module

In the presented system, the maintenance and management of the worker network are orchestrated
through a dedicated peer-to-peer (P2P) module. This module encompasses two information exchange
mechanisms—Distributed Hash Table (DHT) and the Publish/Subscribe (Pubsub) model—as well as
a resource transfer mechanism named resource swap. While this subsection delves into the detailed
explanation of the information exchange mechanisms, the subsequent subsection provides an overview
of the resource swap mechanism. All these mechanisms are implemented using libraries provided by
the IPFS.

Within this system, resources, such as video chunks, are conceptualized as tasks, each assigned a
unique Task ID (TID). The DHT functions as a means for workers to locate specific tasks. Precisely,
a query to the DHT with the TID as a key retrieves a record containing the address of the worker node
responsible for that task. The Pubsub model, another mechanism facilitated by the P2P module, is
employed for push-based information exchange. In this model, a message associated with a specific
topic is disseminated to surrounding worker nodes upon publication. The message is then forwarded
and subscribed to exclusively by worker nodes that have subscribed to that particular topic. This
Pubsub model proves highly effective for distributing commands like the service restart directive.
The coordinator leverages this mechanism to guide and direct other worker nodes, fostering rational
and effective communication within the system.
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Figure 4.2: Resource Swap Process [17].

4.4 Resource Swap Service for Transferring Segment Files

The system employs a resource swap service, developed based on the Bitswap protocol, a funda-
mental component of the IPFS, for the distribution and retrieval of video segments. In the resource
swap service, file transfer involves dividing each task into smaller units known as blocks. Each block
is assigned a unique content identifier (CID) and organized into a Directed Acyclic Graph (DAG)
structure. The TID is then derived from the hash value of the string obtained by concatenating all the
CIDs in the task.

The primary functions of the resource swap service encompass task acquisition and distribution.As
shown in the figure 4.2 ,during task acquisition, the service efficiently obtains video segments re-
quested by clients from available worker nodes in the network. The discovery of a worker node
owning a specific file begins with the issuance of a “want-have” request to all known workers. This
request includes the CID of the root block of the DAG, and the recipient responds with a “have” mes-
sage if it owns the root block, entering the subsequent transfer process, or a “dont-have” message if
it does not possess the block. The Bitswap service aggregates responses, creating a map indicating
which worker owns each block. If the file holder cannot be found through the “want-have” request,
the DHT is queried to identify the worker holding the file.

Once the worker holding the desired block is identified, the requester issues a “want-block™ re-
quest, and the identified worker transfers (the sequence of) requested blocks. Data transfer occurs
through socket connections between worker nodes, with multi-addr format used for addressing com-
munication partners. To maximize bandwidth utilization, each worker node can concurrently create
up to three socket threads, and each block is transmitted and received as an independent data unit in a
predefined socket order. In the event of a connection drop during file transfer, the system responds by
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issuing a “want list” of CIDs for the remaining blocks. This list is distributed throughout the system,
prompting requests for the retransmission of outstanding blocks.



Chapter 5

Video Stream Processing Module

5.1 Overview of HTTP Live Streaming (HLS)

The proposed system adopts HTTP Live Streaming (HLS) as the video format for optimal com-
patibility and efficient video delivery. HLS operates by transcoding an input MP4 file into an index
file (.m3u8) and multiple segment files (.ts). Each .ts file contains video data, while the .m3u8 file
specifies the order, playback time, and delivery format of each .ts file. Acting as a playlist for client-
side playback, the .m3u8 file ensures seamless rendering of segment files with different resolutions
and bit rates in consecutive order, facilitated by the requirement of consecutive time stamps.

5.2 Generation of Video Chunks

In the envisioned system, user-generated video streams undergo a sequential process involving
recording, transcoding, delivery, bundling, and playback. The transcoding step involves converting
an MP4 file originating from a video camera or similar device into a sequence of segment files. In
compressed video formats like MP4, a video stream is encoded into a series of picture groups (GOPs),
each comprising multiple frames and commencing with a key frame referred to as an I-frame.

During transcoding, each segment file encapsulates an entire GOP, potentially causing variations
in chunk length compared to the specified duration. Even slight discrepancies, measured in millisec-
onds, can lead to blank spaces when bundling multiple streams into a single stream—an undesirable
outcome. To overcome this issue, the proposed system employs a strategy where the creator inserts
keyframes at regular intervals before initiating transcoding, ensuring uniform chunk lengths. The
keyframe insertion is achieved by resetting the IBP frame sequences using the libx264 library, main-
taining the integrity of the video content while addressing the specified problem.

5.3 Distribution of Generated Chunks

The video chunks generated through MP4 transcoding undergo distribution to workers and are
automatically cached by the receiving workers. The destinations for chunk distribution are governed
by the IDs assigned to the chunks. The implemented prototype system employs specific rules for ID
assignment to enhance the efficiency of the subsequent bundling process:

1. Video chunks originating from the same MP4 stream typically share the same ID. However,
when the MP4 stream exceeds a predefined length, such as 20 minutes, a new ID is generated
and assigned to chunks each time it surpasses this specific duration. This approach prevents
an excessive number of chunks from being cached on the same worker, promoting a balanced
distribution of chunks from the same video camera across the worker network.

11
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Figure 5.1: Video Stream Process.

2. Video chunks that have the potential to be bundled together are assigned the same ID. In cases
where the bundling potential cannot be predicted in advance, these chunks are permitted to be
pre-cached on any worker. Upon receiving a request for a bundled stream, relevant chunks are
then transferred between corresponding workers. It is crucial to note that in such scenarios, the
download time for the bundled stream may increase due to the transfer time.

5.4 Bundling Multiple Video Streams

In this paper, bundling refers to the process of aligning multiple videos either horizontally or ver-
tically to create a unified video. For instance, horizontally bundling two 24-second videos of 480*720
resolution results in a new 24-second video with 960*720 resolution. Figure 5.2 provides a screen-
shot illustrating the bundling process. The system supports various alignments such as 2*1 (1*2), 2*2,
and 2*3 (3*2). While some deviations can be adjusted using FFmpeg’s pad filter, it is essential to be
mindful that a significant difference in the bit rate or resolution of aligned videos may compromise
the naturalness of the resulting video.

In the proposed system, the bundling process is applied directly to segment files, resulting in the
generation of new .ts and .m3us8 files, where generated .ts files inherit the timestamp of the input files.
Consequently, when a requester seeks a bundled video stream, a fresh .m3u8 file is created, enabling
the requester to download and play solely the newly generated segment files, where the responsibility
of maintaining the new .m3u8 file lies with the worker who conducted the bundling. The hash value
of the freshly generated .ts file is annotated as a comment in the .m3uS8 file. This resulting .m3us8 file
serves both as a playlist for the bundled video stream and as a torrent file in BitTorrent.
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output_combined_aligned

Figure 5.2: Screenshot of video stream.

The bundling process leverages FFmpeg libraries effectively. Specifically, the hstack (or vstack)
operation combines frames with minimal frame loss, and the outcome is then rendered onto a larger
canvas using the pad filter. The amerge filter is employed to combine audio tracks into a multi-channel
stream, which is subsequently converted to stereo.



Chapter 6

Evaluation

6.1 Evaluation Setup

To rigorously evaluate the performance capabilities of the proposed system, a comprehensive suite
of experiments was methodically designed and executed. As a benchmark for comparison, the same set
of videos was also processed and distributed employing the conventional Client/Server (C/S) model.
This comparative analysis aims to provide a clear and objective assessment of the system’s efficiency
and effectiveness in contrast to traditional methodologies.

6.1.1 Video Set

For the experimental evaluation of the system, six videos, encompassing three distinct resolution
types, were selected as test subjects. These resolution categories include 360P, representing low-
definition video streams; 1080P, denoting the most commonly used and widespread resolution in con-
temporary video applications; and 4K, epitomizing high-definition video streams that maintain the
original quality of the captured footage. Two videos from each resolution category were incorporated
into the experiment, culminating in a total of six test videos. The specific parameters and charac-
teristics of these videos are systematically detailed in the accompanying table for a comprehensive
understanding of their properties.6.1

Table 6.1: Video Set

left.mp4 right.mp4 1080left.mp4 1080right.mp4 4k30left.mp4 4k30right.mp4
Resolution 640*360 640*%360  1920*1080 1920*1080 3840*2160 3840%*2160
Duration(second) 31 30 36 35 30 30
FPS 30 30 30 30 30 30
Number of chunks 7 7 8 8 7 7
Decoder MPEG-4 AAC,H.264 H.264 H.264 H.264 MPEG-4 AAC,HEVC MPEG-4 AAC,HEVC
DataSize(KB) 3042 1990 48737 59035 93842 112563

6.1.2 Evaluation Setup

The evaluation of the proposed system was meticulously conducted by simulating a real-world net-
work environment. This simulation involved the deployment of the client within a Docker container,
thereby creating a controlled yet realistic testing scenario.

The Docker host utilized for the simulation is a desktop machine, equipped with an AMD 5600X
CPU, 16GB DDR4 RAM, and running the Windows 11 23H2 operating system. Each docker container
is limited to a maximum of 3 cpu cores with 6GB of RAM. The Docker image used in the experiment
was based on the official Golang image, with FFmpeg and the kubo client installed within it. Each
Docker container in this setup is configured to represent an individual worker node in the network.
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The network throughput assigned to each worker node is calibrated to mirror the average throughput
of a 4G network, approximately 8Gbps, to replicate typical real-world network conditions.

For the purpose of benchmark comparison, a control experiment was conducted using the tradi-
tional Client/Server (C/S) model. In this setup, a content delivery server was established using an
Azure cloud server located in Tokyo. The server’ s configuration included Standard B1s specifica-
tions (1 vCPU, 1GiB RAM, and a 30 GiB SSD), and it boasted a bandwidth of approximately 328
Mbps. Additionally, a desktop machine with similar specifications as the Docker host (AMD 5600X
CPU and 16GB DDR4 RAM) was deployed as a video processing server. This configuration ensured
negligible latency between the video processing server and the content distribution server. For client-
side operations, several devices running either MacOS or Windows were utilized to send and request
video streams to and from the server.

The system repeatedly runs the complete video distribution-processing-downloading process in
the simulation6.1 and benchmarking environments6.2, recording its consumption time.

This comprehensive evaluation approach, encompassing both the simulation of a network environ-
ment and the deployment of a traditional C/S model for benchmarking, provides a robust framework
for assessing the performance and efficiency of the proposed system in a controlled, yet realistic,
network setting.
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6.2 Results of Experiment

In the conducted experiments, all videos were generated by two designated creators. The experi-
mental setup was structured to evaluate the processing and storage module under varying conditions,
utilizing different numbers of worker nodes. Specifically, experimental groups were established with
3, 8, 12, and 50 worker nodes to represent distinct scenarios: the minimal worker setup, the opti-
mal processing efficiency scenario (where each worker is responsible for handling just one pair of
blocks), a configuration with some degree of redundancy, and a scenario featuring significant redun-
dancy. In all these cases, every worker node was actively engaged in the processing and storage of
video chunks.All workers perform a 2*1 binding process on the received chunks.

On the receiver side, the number of requester was carefully chosen to simulate user load, with
groups of 2, 8, 12, and 50 requester representing different user count scenarios. This approach was
intended to assess the system’s performance under varying levels of demand and to understand how
the number of requester impacts the overall system efficiency and effectiveness.

The results of these experiments are as follows,all time units are in seconds:

In system, the video processing time within the system is defined as the duration necessary to com-
plete two critical operations: transcoding MP4 files into HLS streams at the creator level, and bundling
multiple chunks at the worker nodes to generate new video streams. Given that both the conversion
of video streams and the bundling of chunks are distributed processes executed concurrently across
multiple workers in the system, the overall video processing time is determined by aggregating the
two most time-consuming operations. Specifically, it is the sum of the longest duration taken for video
stream conversion and the longest duration required for the bundling of chunks among all workers.

Table 6.2: Video processing time

Process Unit 3Workers 8Workers 12Workers 50Workers Server

360P Convert 2.5 2.5 2.5 2.5 3.77
360P Bundle 2.7 1.33 1.36 1.29 3.58
1080P Convert 31.5 31.5 31.5 31.5 16.17
1080P Bundle 20.14 10.1 10.12 10.08 23.66
4k Convert 134 134 134 134 71.99
4K Bundle 101.21 53.22 53.52 53.48 104.70

In traditional server-based architectures, the predominant time-consuming operations are typically
associated with the uploading of recorded videos to the server and the subsequent downloading of the
processed video streams. In the architecture of the proposed system, analogous processes are observed
to be the primary consumers of time. Specifically, the transfer of HLS chunks from the creator to the
worker nodes, which are responsible for storage and bundling, constitutes a significant portion of the
processing time. Additionally, the time taken for requesters to download the content from the workers
also represents a substantial part of the overall time expenditure. These operations, integral to the
system’ s functionality, mirror the upload and download processes in conventional server setups,
albeit within the distributed framework of the proposed system.

6.3 Analysis of Experiment

6.3.1 Video Processing Efficiency

The analysis6.2 reveals a notable trend in the video processing segment of the system. It was
observed that with a sufficient number of worker nodes, there is a significant decrease in the time



chapter5 Evaluation

Table 6.3: Video transmission time

(a) 360P video transmission time

Process Unit 3Workers &Workers 12Workers 50Workers Server
2Requesters  5.16 5.47 5.60 5.97 5.66
8Requesters  10.09 5.69 5.00 5.16 6.02
12Requesters  13.62 7.01 5.11 5.33 6.04
S50Requesters 47.68 19.76 14.18 5.34 6.27
(b) 1080P video transmission time
Process Unit 3Workers 8Workers 12Workers 50Workers Server
2Requesters  125.78 130.30 128.71 126.86 125.06
8Requesters  241.98 129.69 124.90 128.81 130.54
12Requesters  334.31 160.71 129.13 127.37 126.22
S0Requesters 1201.07 489.93 345.12 127.56 142.69
(¢) 4K video transmission time
Process Unit 3Workers &Workers 12Workers 50Workers Server
2Requesters  256.87 260.29 262.97 265.94 260.20
8Requesters  511.12 259.72 264.92 258.99 259.27
12Requesters  708.61 337.22 266.13 261.06 257.98
S0Requesters 2595.20 1042.88 734.58 258.71 294.27
Table 6.4: Total time
(a) 360P video total time
Process Unit 3Workers 8Workers 12Workers 50Workers Server
2Requesters  10.36 9.30 9.46 9.76 13.01
8Requesters  15.29 9.52 8.86 8.95 13.37
12Requesters  18.82 10.84 8.97 9.12 13.39
S0Requesters 52.88 23.59 18.04 9.13 13.62
(b) 1080P video total time
Process Unit 3Workers 8Workers 12Workers 50Workers Server
2Requesters  177.42 171.90 170.33 168.44 164.89
8Requesters  293.62 171.29 166.52 170.39 170.37
12Requesters  385.95 202.31 170.75 168.95 166.05
50Requesters 1252.71 531.53 386.74 169.14 182.52
(c) 4K video total time
Process Unit  3Workers 8Workers 12Workers 50Workers Server
2Requesters  492.08 447.51 450.49 453.42 436.89
8Requesters  746.33 446.94 452.44 446.47 435.96
12Requesters  943.82 524.44 453.65 448.54 434.67
S50Requesters 2830.41 1230.10 922.10 446.19 470.96
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required for video processing. This trend, however, plateaus when the number of workers reaches or
exceeds the total number of video chunks.

The system demonstrates a marked advantage over traditional server models, particularly at lower
resolutions. This enhanced performance is attributed to the ability of the worker nodes to easily handle
videos of lower resolution and the benefits of parallel processing afforded by the distributed nature of
the system. As the resolution increases, the proportion of time spent on bundling within the system
shows a decline -from 34% at 360P resolution to 28.5% at 4K resolution. This suggests that as video
resolution increases, the impact of bundling on the overall processing time diminishes.

6.3.2 Video Transmission Dynamics

In the video transmission phase6.3, the system’s performance is influenced by the ratio of worker
nodes to requesters. When the number of workers is greater than or equal to the number of requesters,
the limiting factor in transmission speed becomes the download bandwidth of the requesters. Con-
versely, if there are fewer workers than requesters, the bottleneck shifts to the upload bandwidth of
the worker nodes.

Comparatively, in a traditional server setup, the transmission bottleneck depends on the balance
between the number of requesters and the server’ s bandwidth. When the number of requesters ex-
ceeds the server’s bandwidth capacity, the server becomes the bottleneck. In contrast, when the server
bandwidth is not fully occupied, the limitation lies on the client side.

Significantly, in scenarios where the server bandwidth is fully utilized (as in the case with 50
requesters), the proposed system with an adequate number of workers demonstrates a considerable
advantage. This advantage is particularly pronounced in configurations where the requester also func-
tions as a worker node, highlighting the system’s efficiency in scenarios with high demand.

6.4 Conclusion

The empirical data gleaned from the experiments underscores the distinct advantages of the pro-
posed system, particularly attributed to its distributed processing architecture. For video streams of
low resolution, the system exhibits a pronounced superiority. This advantage is anticipated to be even
more significant in the case of longer-duration video content.

Furthermore, the system demonstrates a clear edge in scenarios characterized by a high volume of
requests. In such high-demand situations, the distributed nature of the system efficiently manages the
increased load, outperforming traditional centralized server models.

In scenarios that do not involve high-resolution videos or an elevated number of requests, the
system still achieves performance comparable to that of high-performance servers. Remarkably, this is
accomplished using devices with lower performance capabilities and limited bandwidth. This outcome
not only highlights the efficiency of the system but also showcases its sophisticated design. The system
effectively leverages the strengths of distributed computing to deliver robust performance, even in
environments with constrained hardware resources.
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Future Work

In the research presented, the system has exhibited commendable performance in simulated en-
vironments, particularly in scenarios characterized by high demand for low-resolution video content.
Looking forward, the focus of future work will be on broadening the experimental scope in two prin-
cipal areas: diversifying the range of video content used in the experiments and extending the testing
into real-world network environments.

Notably, the system has shown promising results in preliminary tests with 30-second video clips. It
is anticipated that this performance could be further enhanced when applied to longer video duration,
offering a more rigorous test of the system’s capabilities.

The current experimental setup, conducted using Docker containers, effectively replicates typical
computational and network conditions. However, real-world network environments present a more
complex and varied landscape. Mobile devices, which are ubiquitously active, often face limitations in
terms of computational power and network connectivity. Conversely, stationary devices like desktop
PCs, while typically possessing higher performance capabilities and more stable network connections,
may have less availability for running the system. Therefore, conducting experiments in such real-
world scenarios is imperative to gain a holistic understanding of the system’ s performance.

This shift to real-world testing will enable a more comprehensive evaluation of the system, taking
into account the diverse range of devices and network conditions encountered in everyday use. Such an
assessment is crucial for understanding the system’s effectiveness in practical, everyday applications
and for identifying areas for further optimization and development.
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