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Abstract

Software quality is directly impacted by software maintainability, a vital com-

ponent of the program quality model, over the whole lifecycle of a software

product. Assessment and analysis of software maintainability is one of the fo-

cuses of software quality assurance efforts.

Formal specifications written in the SOFL specification language have been

used in several industrial projects to help enhance software reliability. Experi-

ence suggests that specifications need to be frequently changed in different ways

during the specification construction process and the specification-based imple-

mentation process. To make the changes easy to conduct without introducing

potential faults, specifications must be ensured to have a high maintainability.

To this end, we must first be able to assess the maintainability of formal spec-

ifications, but the problem we are facing is the lack of appropriate metrics for

this purpose.

The majority of previous software maintainability research has focused on

assessing it from implementation source code or project documentation rather

than other artifacts such as specifications and designs. Several predictive met-

rics or assessment models currently exist to measure software maintainability

in code. Despite the obvious application of assessing software maintainability

using a variety of clear criteria, maintainability models are still challenging to

implement effectively. Furthermore, the main disadvantage of such indicators

is that they do not provide project developers with early feedback since they

cannot be calculated until after major development work has been completed.

SOFL has various special concepts that we need to factor into the maintain-

ability measures of the specification so that maintainers can deal with them

effectively.

To address this problem, we put forward new metrics for assessing the main-

tainability of formal specifications in this thesis. It is based on eight clearly cal-

culable metrics: line of expressions (LOE), number of processes (NOP), number

of control data flows (NOCDF), cyclomatic complexity (CC), module Halstead



volume (MHV), number of data stores used (NODSU), extensiveness of com-

ments (EOC), and extensiveness of blank lines (EOBL). Compared with metrics

for code maintainability assessment, our metrics deal with the features of formal

specifications that are distinct from code. Most rules in the proposed metrics

can be applied to model-based formal specifications in general and only a small

part is specific for the SOFL language. Secondly, we discuss the principle and

the assessment rules of our metrics. Thirdly, we construct an automated assess-

ment support tool to help efficiently evaluate large and complex projects written

in the SOFL specification language. Finally, we experiment with several formal

specification cases to demonstrate how the metrics work in practice and verify

the effectiveness of the method and tool.
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Chapter 1

Introduction

1.1 Research Background and Purpose

Maintainability is defined as the degree of effectiveness and efficiency with which

the intended maintainers can modify a product or system. Software maintenance

refers to the process of making updates to software after it has been delivered to

the customer. The goal is to keep the software operational while it goes through

the changes that occur over its lifespan. Maintenance activities account for the

majority of software lifetime costs. Nowadays, software products have become

an essential component of our daily lives. Each software product is created to

satisfy one or more industry or user needs. However, these needs may alter

over time due to various influencing variables such as changing market circum-

stances or customer behavior. The costs of maintenance activities account for

the majority of software lifetime costs and are a major concern for both soft-

ware producers and customers. As a result, developing and designing software

systems with maintainability in mind is critical. We can predict which software

components will be complex, prone to errors, and difficult to modify early in the

development life cycle, particularly during the specification phase. By assess-

ing the software maintainability at the specification phase, we can also obtain

earlier feedback to help improve software maintainability and thus reduce the

increasingly high cost of software maintenance and upcoming expenditures in

significant personnel and time for software maintenance.

1
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It is well recognized that formal methods are a potentially effective approach

to the development of safety-critical systems [1]. Particularly, formal specifica-

tion can be beneficial for assisting developers in making sense of ambiguous

requirements and potentially avoiding a lot of faults in the early stages. Com-

prehensible formal specifications can be written using a formal notation called

Structured Object-Oriented Formal Language (SOFL) [2]. By promoting the

idea of building a formal specification based on the experience of writing an in-

formal specification and honing it into a semi-formal specification, SOFL offers

a three-step specification approach that makes it easier to write a high-quality

formal specification.

Based on previous experiences, it appears that modifications to specifications

are frequently necessary in different ways for both the specification construction

process and the specification-based implementation process. Specifications need

to be ensured highly maintainable in order to facilitate the updates without

creating potential errors.

Furthermore, the majority of software lifecycle costs are attributed to main-

tenance activities, which are a significant source of concern for both software

developers and customers. As a result, it is crucial to develop and design soft-

ware systems with maintainability in mind. It would be ideal if we can determine

whether the current specification has a good maintainability in the early phase

of the development life cycle, particularly during the specification phase. We

can also get early feedback to help enhance software maintainability and so

lower the rising cost of software maintenance and future investments in signif-

icant personnel and time for software maintenance by evaluating the software

maintainability during the specification process.

1.2 Research Status

The majority of previous software maintainability research has focused on as-

sessing it from implementation source code or project documentation rather

than other artifacts such as specifications and designs. Several predictive met-
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rics or assessment models currently exist for the measurement of software main-

tainability in code. Zhuo et al. [3] present and contrast seven software maintain-

ability assessment models to investigate the use of metrics in assessing software

maintainability. Ash et al. [4] describe mechanisms for automated software

maintainability assessment and apply those techniques to industrial software

systems. Mittal et al. [5] propose a fuzzy logic-based, precise, and easy ap-

proach to quantify the maintainability of software. They focused on the average

number of live variables, the average life span of variables, the average cyclo-

matic complexity, and the comment ratio as the four main software-related

factors. The objective of Momeni et al. [6] is to show that the Adaptive Neuro-

Fuzzy Inference System (ANFIS) can more accurately predict maintainability

as compared to other models such as fuzzy logic. Braeuer et al. [7] identified

a reference study that may be used to validate the Consortium for IT Software

Quality (IT-CISQ) approach and classified the maintainability of eight open-

source Java projects. The experimental findings demonstrate that the IT-CISQ

assessment method is incapable of accurately determining the quality of projects

since project size metrics are not taken into account.

Effective application of maintainability models remains a challenge, despite

the apparent benefits of evaluating software maintainability using several ex-

plicit indicators. Instead of analyzing the specifications directly, most existing

models concentrate on determining maintainability from implementation source

code or project documentation. It is hard to evaluate the maintainability of

a software system using this method because it is hard to derive quantitative

maintainability information from a requirement description expressed in natural

language. Moreover, since these indicators cannot be computed until essential

development work has been finished, their primary drawback is that they do

not offer project developers early feedback. It is expensive to modify the sys-

tem based on its measurements if poor software maintainability is recommended.

The Maintainability Index was put forward by Oman et al. [8] to measure the

maintainability of software systems objectively based on the current state of

the source code. Their experiments on various software systems served as the
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basis for this measurement, and these findings were modified in response to in-

put from the engineers responsible for system maintenance. The MI has been

used frequently as a comparison model in later maintainability research and

has been verified many times for several procedural programming languages (C,

Pascal, FORTRAN, and Ada) [9]. However, because of their unique characteris-

tics from programs, traditional software maintainability metrics are not suitable

for formal specifications, although fundamental ideas and principles of program

maintenance can still be utilized as a point of reference.

While they can be used to a particular extent, current work and notions on

code maintainability are insufficient for assessing specification maintainability.

This is mostly because the formal notation used in SOFL is very different from

programming languages in many aspects. For instance, in SOFL, the function-

ality of a process is defined by pre- and post-conditions rather than a sequence

of commands. Furthermore, SOFL has various special concepts that we need to

factor into the maintainability measures of the specification so that maintainers

can deal with them effectively.

In this thesis, we make three major contributions. We present a method

for assessing the maintainability of SOFL formal specifications, based on the

criteria of formal specifications [2] and the maintainability index model widely

used in code maintainability metrics [3, 10], which provides useful assistance

to developers when maintaining formal specifications. A suite of metrics has

been developed to measure the maintainability of SOFL formal specifications.

In addition, we developed an automated support tool that enables efficient soft-

ware maintainability assessment of SOFL formal specifications. To validate the

effectiveness of the proposed metrics and the automated support tool, we also

conduct a case study to check the implementation of our maintainability metrics

and support tool.

1.3 Structure of This Thesis

The structure of the paper is outlined as follows:
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Section 2 delves into the background, exploring the relevant context of soft-

ware maintenance evaluation. This section encompasses an examination of prior

research and methods in the field and outlines the challenges and limitations

associated with formal specifications in the realm of software maintenance. Ad-

ditionally, it discusses the unique characteristics of SOFL specifications, such

as condition data flow diagrams, three-step modeling approaches, and rigorous

review and testing.

Section 3 discusses the software maintainability assessment methods for

SOFL specifications. This is followed by a discussion of the maintainability

subfactors of the specifications and an in-depth description of the SOFL char-

acteristics and maintainability assessment methods.

Analysis and design of an automated software maintainability assessment

tool are covered in Section 4. An overview of the development environments

and tools utilized is introduced in this section. A requirements analysis of the

support tool comes next. The general design architecture of the support tool

is presented. Furthermore, Section 4.3 explores the automated tool’s functional

implementation, outlining the technical details of its development and the algo-

rithms used.

Section 5 transitions into a practical application of the developed methods

through a case study. This section details the application of the automated tool

within these environments and presents the empirical analysis results.

Finally, Section 6 serves as the conclusion and future work. The section

concludes by summarizing the research findings, delineating the contributions

and limitations of the thesis, and outlining directions for future research.



Chapter 2

Research Background

This section contains a brief background of software maintainability assessment

methods and the metrics, followed by a brief discussion of formal methods,

formal engineering methods, the SOFL specification, and its characteristics.

2.1 Software Maintainability Assessment

2.1.1 Software Maintainability

Software maintainability is a component of overall software quality. A software

quality model is defined by the ISO/IEC 25010 standard as a set of attributes in-

cluding efficiency, usability, suitability, compatibility, security, reliability, porta-

bility, and maintainability. ISO/IEC 25010:2011 defines maintainability as the

“degree of effectiveness and efficiency with which a product or system can be

modified by the intended maintainers” [11]. Software with high maintainability

is easier and less expensive to keep up-to-date and to extend with new function-

ality. Consequently, maintainability is an essential aspect of software quality

and is recognized as one of the most challenging assessments owing to the diffi-

culty in predicting future activities [12].

And the factors in a software quality model are too abstract to be measured

directly. Therefore, researchers usually hierarchize the high-level quality charac-

teristics into lower-level quality factors, which are measured with metrics. The

hierarchy of maintainability will be described in detail in Section 3.

6
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Figure 2.1: ISO/IEC 25010 SQuaRE - System and software quality model

2.1.2 Software Maintainability Assessment Metrics

Software maintainability assessment is a systematic analysis of the ease with

which a software product can execute subsequent maintenance. Software main-

tainability could be divided into several sub-characteristics and attributes that

serve as formalized maintainability indicators. Researchers have proposed vari-

ous software maintainability prediction or assessment models in previous studies

on software maintainability assessment in an attempt to quantify the main-

tainability of a software system. The Maintainability Index(MI) is the most

extensively used metric for quantifying software maintainability based on the

current state of the source code. The Maintainability Index was constructed at

the University of Idaho by Oman and Hagemeister [8]. It is a maintainability

model consisting of a variety of easily computed metrics. The MI is a polyno-

mial expression that provides a specific value representing the overall system

maintainability.

The typical MI exists in two variants, which only differ in the last compo-

nent [13]:

MI3 = 171− 5.2× ln(aveV )− 0.23× aveV (g′)− 16.2× ln(aveLOC) (2.1)

MI4 =171− 5.2× ln(aveV )− 0.23× aveV (g′)− 16.2× ln(aveLOC)+

50× sin
√
2.4× perCM (2.2)

In these formulas, aveV is the average Halstead Volume per module, aveV(g’)

is the average extended cyclomatic complexity per module, aveLOC is the av-
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erage number of lines of code per module, and perCM is the average percent of

lines of comments per module.

At the module level, the components are determined and then averaged. The

word “module” is used here to refer to the smallest functional unit. Depending

on the programming language, this might be a function, process, method, sub-

routine, or section. Halstead volume is a quantifiable measure of the density of

operators and operands. In other words, it indicates the number of variables

and their usage.

Cyclomatic complexity is a measurable indicator of the complexity of a sys-

tem’s logic. It reveals the number of possible code execution pathways. The

number of lines of code displays the size of the program. And a quantitative

metric of human insight is the percentage of lines of comments. Comments in

source code are a double-edged sword when considering their role in software

maintenance. Accurate, up-to-date comments and additional insights not al-

ready apparent in the source code are usually useful when making changes to the

program in the future. However, comments that are ambiguous, meaningless,

and not continually updated with the development process can actually become

an obstacle to the software maintenance process. Only people can judge whether

comments in source code are helpful. More comments in the source code do not

mean that it is easier to maintain. Therefore, expression (2.2) which contains

the components of the percentage of lines of comments, should be used only

when a human being judges that the comments are valid, not when blocks of

program code are commented out. Otherwise, expression (2.1) should be used.

The higher the MI value, the better the maintainability. With slightly various

metrics, metric combinations, and weights, several MI variations have evolved.

Each of them possesses the universal traits of the fundamental MI equations

and principles.

Maintainability Index =MAX(0, (171− 5.2 ∗ ln(HV )−

0.23 ∗ CC − 16.2 ∗ ln(LOC)) ∗ 100/171) (2.3)

The expression above is the definition of the MI calculation method in Visual
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Studio code analysis, where the maintainability index has been reset to be be-

tween 0 and 100. MI values are shown as follows: values above 20 indicate high

software maintainability and the marker is displayed in green; values between

10-20 indicate moderate maintainability, and the marker is displayed in yellow;

values below 10 indicate difficulty in maintaining the system, and the marker is

displayed in red [14].

Table 2.1: MI values and display in Visual Studio code analysis

Maintainability MI Value Marker

High 20 ≤ MI < 100 Green

Moderate 10 ≤ MI < 20 Yellow

Low 0 ≤ MI < 10 Red

2.2 Formal Methods

Formal methods are an approach based on mathematical theory that uses formal

specification as well as verification to provide reliability assurance for software

development. There are various languages in formal methods, such as VDM-SL,

B. Method, Z, etc., and include corresponding techniques and tools, etc. [15].

Formal methods are extracting and refining the specification, using set theory

and logic to describe the software specification, allowing the system function-

ality to be progressively clarified, resulting in a more precise and unambiguous

requirements analysis of the software functionality. Since the whole process of

refining requirements analysis is difficult to automate, there is a possibility of

errors. Therefore, it is also necessary to model the system with formal methods

to detect errors in the specification through rigorous mathematical reasoning

and to verify that the design and implementation of the system satisfy the

requirements. The principle of formal methods is as follows:

Formal methods are built based on basic mathematical theories, such as

set theory, logic, algebra, etc. They can be used in all phases of software de-
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Figure 2.2: The principle of formal methods

velopment, and are one of the techniques to improve the quality of software

development, with two main techniques: formal specification and formal verifi-

cation.

2.3 Formal Engineering Methods

Nowadays, developing software is a large-scale complex project. The ultimate

goal of software design is to describe how a set of models interact with each other

clearly and concisely. Although formal methods applied in the software field can

improve the quality of software and enhance the performance of software sys-

tems, its application requires a high level of mathematical abstraction and proof,

which hinders its widespread use in software development. There are some dis-

advantages of formalization methods. For large-scale software programs, formal

specifications are more difficult to read and write than informal specifications,

which aggravates software complexity for developers, makes development more

difficult, and reduces software readability. Formal verification techniques are

not easy to master for general developers, and applying them to the develop-

ment of actual software systems will increase the development cost, especially

for large-scale industrial software systems or systems with high requirements for

safety performance. The application of formal verification technology requires

more theoretical foundation and professional skills, and it is difficult for general

software product developers to meet the requirements of the application of this
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technology. In addition, in the system analysis and design phase, using formal

methods will require more time and labor, making the development efficiency

lower.

To address these shortcomings, Prof. Liu Shaoying proposed the concept

of Formal Engineering Methods (FEM) at the First International Conference

on Formal Engineering Methods (ICFEM) in Japan in the 1990s [16]. Formal

Engineering Methods are the methods that support the application of formal

methods to the development of large-scale computer systems [2]. They are a de-

scription method based on mathematical logic that is typically used to describe

a complete system, analyze the behavior in the system, assist in the implementa-

tion of the system, and validate key parts of the system through meticulous and

effective logical tools. Formal engineering methods are neither equivalent to the

application of formal methods nor formal methods themselves. They provide

a series of techniques and methods to build a bridge between formal methods

and their application in real development and provide techniques to incorporate

formal methods into the entire software engineering process, aiming to promote

the application of formal methods in industrial software development [17].

In general, the formal engineering methodology has several features: first,

the formal engineering methods use a suitable specification language, which is

a suitable combination of natural language, graphical symbols, and correspond-

ing notations. The entire framework of the system can be described in terms

of graphical symbols, and the definitions corresponding to these graphical sym-

bols can be created in terms of formal notations, while at the same time, the

definitions are interpreted in terms of natural language to make them easy to

understand. Integrating these three with a suitable specification language can

take full advantage of both graphical symbols and formal notations.

Second, the formal engineering methods employ a stepwise evolutionary

technique rather than a program refinement technique to create the specification

and develop the program [17]. The point of this evolutionary technique is how

to control, support, and verify changes in the specification during the software

development process to meet changing system requirements.
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Moreover, formal engineering methods adopt rigorous but effective tech-

niques to inspect and verify the system such as testing, reviewing, model check-

ing, etc., and do not use formal proofs, which saves cost, saves time and improves

the efficiency of the system development, which can be used in industrial soft-

ware development. Therefore, formal engineering methods for the creation and

transformation of specifications, provide theoretical guidance and technical sup-

port for software system inspection and promote its practical application in the

process of software product development. Structured Object-Oriented Formal

Language (SOFL), as an outstanding representative of formal engineering meth-

ods, has been widely used in the field of software engineering. It is widely used

in the field of software engineering.

2.4 SOFL Specification Overview

SOFL, standing for Structured Object-Oriented Formal Language, which was

first started in 1989 at the University of Manchester, UK, and is both a formal

method and a specification language. Through more than three decades of de-

velopment and popularization, SOFL is increasingly used in software system de-

velopment. As a specification language, SOFL effectively integrates traditional

graphical symbols and formalized notations. As a methodology, SOFL adopts

a unique three-step mechanism for building formal specifications and supports

specification-based review techniques, inspection, and verification techniques.

By adopting structured processes and object-oriented thinking, SOFL can fully

utilize the advantages and avoid the disadvantages of both. Previous studies

have shown that the SOFL approach is useful for improving software reliability

and promoting the design of maintainable software systems [18], [19], [20].

In general, SOFL has the following characteristics:

2.4.1 Condition Data Flow Diagram

SOFL specification language integrates Data Flow Diagrams, Petri nets, and

VDM-SL (Vienna Development Method - Specification Language). The graph-
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ical notation Data Flow Diagrams are adopted to describe comprehensibly the

architecture of specifications; Petri nets are primarily used to provide opera-

tional semantics for the data flow diagrams; and VDM-SL is employed, with

slight modification and extension, to precisely define the components occurring

in the diagrams. A formalized Data Flow Diagram, resulting from the integra-

tion, is called Condition Data Flow Diagram, or CDFD for short.

In SOFL, a specification is composed of a set of modules. Each module has

a Condition Data Flow Diagram that represents the behavior of the module and

contains all the essential data, including types and variables and the processes

utilized in the CDFD. Each process is specified using pre- and post-conditions.

In semantics, the CDFD associated with a module describes the behavior of the

module, while the module is an encapsulation of data and processes, with an

overall behavior represented by its CDFD. Furthermore, the use of a natural

language, such as English, is facilitated to provide comments on the formal

definitions in order to improve the readability of formal specifications [2].

2.4.2 Three-Step Modelling Approach

SOFL supports a three-step approach to developing formal specifications. Typ-

ically, an informal specification is first created, then the informal evolves into a

semi-formal, and finally, a formal specification is developed. Such development

is an incremental process, with different tasks at each step.

The purpose of the informal specification in the first stage is to obtain ab-

stract requirements for system functionality, usually written in natural language.

The developers can communicate better with the users to obtain their require-

ments and clarify the problems that the system is trying to solve. In this phase,

the specification consists of three parts: 1) the functional description section,

which is a hierarchical structure connecting the upper and lower levels; 2) the

data resources section, which shows the data information necessary to realize

the system functionality, and also describes the relationships between the data:

and 3) the conditional constraints section, which describes the conditions be-

tween the operations and the data resources. The second stage is the refinement
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of the informal specification to create a semi-formal specification. The goal of

the semi-formal specification is to write the functionality, data information, con-

straints, etc. in the informal specification in the SOFL specification language,

which will help to improve the readability and accuracy of the specification. In

this phase, the process uses pre- and post-conditions, and logical equations of

invariant types are still written informally.

The third stage is to convert the semi-formalized specification into a formal

specification. In this phase, the CDFD is designed to represent the structure

of the system, the pre-conditions, and post-conditions of the process are also

written in formal expressions, and the logical expressions in the invariant types

are close to being formalized. Since requirements and design specifications serve

different purposes, SOFL advocates that requirements specifications should be

written in a semi-formal way while design specifications must be completely

formal. The obvious explanation for that is that, while design specifications

serve mainly to provide a clear foundation for implementation, requirements

specifications are frequently used for communication between users and devel-

opers, demanding the document’s comprehensibility. Furthermore, studying

the demands described in the requirements specification is necessary to develop

design specifications, and formalization can be quite helpful in this process.

In conclusion, developing a formal specification using a three-step approach

can assist in achieving several goals, including reducing the specification’s com-

plexity, increasing its readability, and preventing unintended errors during the

evolutionary process.

2.4.3 Rigorous Review and Testing

SOFL uses rigorous review techniques for specification verification and valida-

tion. The purpose of specification verification is to detect errors in the speci-

fication. Rigorous review techniques are derived from a combination of formal

proof and fault tree analysis as a method of safety analysis. Reviews must be

done on a precise ground and supported by rigorous mechanisms [21]. They are

usually less formal than formal proof, but easy to conduct. The use of rigorous
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review techniques in the software development process, especially for complex

systems, will increase the efficiency of system development, reduce costs, and

minimize software risks. The purpose of specification verification is to detect

errors in the specification to ensure that the specification accurately meets the

demands of the requirements analysis.

2.4.4 Maintenance of SOFL

In practice, maintaining formal specifications is often regarded as a challenging

task. This is primarily since some maintainers may not be familiar with the

formal notation used, especially SOFL, and may find the logical relationships

of some of the processes to be complicated. In fact, tool support is crucial. The

process of maintaining the specification will be made much easier if a tool can be

used to assess modules with complex logic conditions and provide suggestions

for maintaining the specification. Moreover, SOFL has various special concepts

that need to be taken into account in maintainability assessment, which we will

discuss in detail in Section 3.2.



Chapter 3

Software Maintainability
Assessment Methods for
SOFL Specifications

ISO/IEC (International Organization for Standardization/International Elec-

trotechnical Commission) published “Systems and Software Engineering - Sys-

tems and Software Quality Requirements and Evaluation (SQuaRE) - System

and software quality models”, ISO/IEC 25010:2011 in March 2011. This stan-

dard outlines an eight-characteristic software quality model that can be further

broken down into a subset of qualities. Modifiability, reusability, analyzabil-

ity, modularity, and testability are the five sub-characteristics that constitute

maintainability, as illustrated in Figure 3.1. Modularity is the degree to which

a system or computer program consists of discrete components, i.e., a change in

one component that minimizes the impact on other components. The ability of

an asset to be utilized in multiple ways or to construct other assets is known as

reusability. Analyzability is the degree of effectiveness and efficiency in assessing

the impact on a system of anticipated changes to one or more components of the

system, diagnosing the cause of system defects or failures, or identifying compo-

nents that require modification. Modifiability is the degree to which a product

or system can be effectively and efficiently modified without introducing defects

or degrading existing product quality. Testability is the degree of effectiveness

16
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and efficiency with which test criteria can be established for a system, product,

or component, and tests can be performed to determine whether those criteria

have been met [11].

Figure 3.1: ISO/IEC 25010 SQuaRE: Sub-characteristics of maintainability

The qualities of the customer-oriented quality factor are listed in the SQuaRE

model. High-level quality qualities are further broken down into several internal

and external sub-characteristics because they are challenging to quantify and

evaluate directly. These quantifiable quality subfactors have greater significance

for software developers. Next, we can choose formal quantitative definitions of

maintainability metrics that are appropriate for assessing software features that

influence the quality subfactors of a certain quality attribute. In our work, which

is described below, we create our SOFL maintainability metrics hierarchy using

the SQuaRE model.

3.1 Maintainability Subfactors of the Specifica-
tions

Identifying the appropriate subfactors that affect software maintainability is a

foundation for constructing a SOFL formal specification maintainability metric

hierarchy. The first step in the software maintenance process is identifying the

maintenance objects. This level of software maintainability is influenced by

the modularity and analyzability of the SOFL formal specification. The most

crucial elements of the SOFL specification are its modules. A hierarchy-based

collection of related modules utilizes a specification. Each module is a functional

abstraction: it has a behavior represented by a graphical notation, known as



CHAPTER 3. MAINTAINABILITY ASSESSMENT METHODS 18

a CDFD and a structure to encapsulate the data and processes used in the

CDFD. The current research focuses exclusively on the analyzability of a SOFL

specification due to the high degree of modularity in the SOFL definition.

The analyzability of a specification is significantly impacted by its complex-

ity because analysis of the specification necessitates a precise comprehension of

it. Because modification is a common procedure during the development pro-

cess, we also focus on the issue of subfactor modifiability. Furthermore, as it is

vital to test the program or modified specification against the specification to

verify whether the system maintains the same level of reliability as the original

version, specification testability is an important component of software main-

tainability. Moreover, since the subfactor reusability is more concerned with

how the specification, or a portion of it, might be used in another specification

or project than it is with the dependability of the system that is currently in

development, we have not addressed it in our study. According to the analysis

of the software maintenance process, four subfactors—analyzability, complex-

ity, modifiability, and testability—are crucial for the maintainability of SOFL

formal specifications.

3.2 SOFL Features

Based on the experience gained from the literature discussed in Section 2 and

our analysis of SOFL specifications, we believe that the following major features

of a SOFL specification have an impact on the four maintainability subfactors:

• Total size. The size of a SOFL specification has a direct and simple

impact on its complexity. In general, the more complex the specification

is, the more maintenance effort is required. For example, the number of

lines of expressions a module has is one of the size metrics of a SOFL

module. It affects the complexity of the internal processes of the SOFL

module. If a module includes a lot of expressions, it could be difficult to

analyze and could affect additional testing. As a result, the SOFL formal

specification’s overall size has an impact on its complexity, analyzeability,
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and modifiability.

• Number of units. A module in a software system can be decomposed into

“units”. The unit is the smallest piece of code that can be executed indi-

vidually. In Java or C#, a unit is a method, in C a unit is a procedure.

The system components that can be the target of “unit testing” using

automated unit testing frameworks such as JUnit (for Java) or NUnit (for

.net) are the units of code. The SOFL definition states that a module can

have more than one process. The procedure, which has inputs, outputs,

and certain pre- and post-conditions, can be thought of as a unit of the

formal specification. Thus, in SOFL specifications, the quantity of pro-

cesses serves as a maintainability indication. This measure offers a basic

approximation of cohesiveness and coupling.

• Process coupling. A metric used to quantify the level of interdependence

between processes is called process coupling. To lessen the impact of pro-

cess modifications, we generally think that process coupling should be

maintained at a reasonable degree. The movement of data from one pro-

cess to another is referred to as data flow. The SOFL formal specification

distinguishes between two types of data flows: control data flow and ac-

tive data flow. The primary function of an active data flow is to transfer

the actual data that is expected to be used by another process, while a

control data stream is usually used to describe the dependencies between

processes, i.e. the requirement to execute a process after the execution of

the previous one without receiving any useful data flow. This indicates

that ”special data” that won’t be utilized by another operation is trans-

mitted via the control data flow. Therefore, the primary determinants

of process coupling complexity are these two types of data flows and the

possible frequency of contact between the two processes. By describing

the data flow between processes, the process coupling metric assesses the

complexity, analyzability, and modifiability of the SOFL specification.

• Logical structure of conditions. When describing process functionality
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using pre- and post-conditions, SOFL enhances conciseness and preci-

sion. This type of specification works adequately for high-level design

and requirement definition because it allows the developer to focus on the

relationship between inputs and outputs rather than how that relation-

ship should be executed. Nonetheless, an algorithmic solution utilizing

sequence, choice, and iteration is typically required when deriving a com-

prehensive design specification from a high-level design. Therefore, the

logical structure complexity of the conditions of a SOFL module is an-

other factor affecting its maintainability. Logical structure metrics are

used to measure the complexity and testability of the processes of the

SOFL specifications.

• Data Usage. A variable that holds data at rest is referred to as a ”data

store” or ”store” in the definition of SOFL formal specification. A data

store is passive. Instead of actively sending any data item to any process,

it always makes its value available for any related processes to read and

write. The SOFL formal specification defines a data store that can be

either read or written (updated) by a process, the complexity of data

usage within a SOFL process is a factor affecting its analyzability and

modifiability.

• Specification style. Specification style refers to the typography, naming,

and comments in the specification. It is distinct from other SOFL specifi-

cation features such as size and logical structure. Many previous studies

have found that programming style is a factor that affects the psycho-

logical complexity of programs. In traditional software maintainability,

programming style has been regarded as a significant factor affecting the

comprehensibility of a program. Consequently, one crucial component of

specification maintainability that should not be overlooked is specification

style. Specification style is considered to be an important factor influenc-

ing specification complexity and modifiability.

The framework for assessing the maintainability of a SOFL formal speci-
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fication is shown in Figure 3.2. Analyzability, complexity, modifiability, and

testability are the four subfactors that compose maintainability. The major

SOFL features that impact the four subfactors are subsequently determined.

Figure 3.2: The assessment framework for the maintainability of SOFL

3.3 Maintainability Assessment Metrics for Spec-
ifications

Based on the identified SOFL features explained previously that affect the four

maintainability subfactors, this thesis proposes the SOFL maintainability metric

model. Lines of expressions, number of processes, number of control data flows,

cyclomatic complexity, module Halstead volume, number of data stores used,

extensiveness of comments, and extensiveness of blank lines are the metrics

we advocate applying in this model. The developer can use this approach to

identify complex and error-prone modules and components in SOFL formal

specifications. This will assist in determining how the developer can enhance

maintainability. We will focus our discussion below on certain measures that

are included in our metric model.
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3.3.1 Lines of Expressions

The lines of expressions (LOE) metric is often used to evaluate the total size of

a system. The LOE metric is similar to the lines of code (LOC) metric in the

program. LOC metrics have several definitions. Comment lines are included

in certain LOC definitions but not in others. While some specify counting the

logical lines of a program (source instruction lines ended by a logical delimiter,

such as a semicolon), others define counting the physical lines of a program.

We propose a basic LOE metric to evaluate the maintainability of the SOFL

formal specification. This metric counts all lines of expressions that are neither

comments nor blank lines. It is a measure of the number of expressions that are

actually doing something. Comments and blank lines are ignored, so it gives a

more accurate picture of the total size of the system.

As an example, the formal specification for the Current Show Balance pro-

cess in an ATM system is given below. We define the seventh and eighth lines

as comment lines and we can see that the number of lines with comments is 2,

the number of blank lines is 0, and the number of LOE is 7.

Figure 3.3: Example of Current show balance process

3.3.2 Number of Processes

The number of processes (NOP) in a module determines the number of units

in the SOFL specification. The more processes in a module that perform the

same function, the more independent those processes are, and the easier it is

to maintain the module. Fig. 3.4 displays the CDFD of the Hotel Reservation
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System’s Reserve module as an illustration. The example contains 3 processes,

namely Check Vacancy, Make Reservation, and Issue Reservation Number.

Figure 3.4: The CDFD of the Reserve module

3.3.3 Number of Control Data Flows

According to the SOFL specification, the active data flow is from the input data

of one process to the output data of another process. The degree of connected-

ness of this data coupling is limited and unavoidable. Consequently, we do not

consider the number of active data flows as a metric of the complexity of the

process coupling. We consider the number of control data flows (NOCDF) in a

module to be the primary factor of the process coupling complexity. In CDFD,

the control data flow is represented by a dashed directed line. As a result, the

number of control data flows for a module is defined as a measure of the level

of process coupling for that module.

3.3.4 Cyclomatic Complexity

A pre-conditional and a post-conditional compose the conditions component in

the SOFL formal specification. The necessities that the input data flows need

to meet in order for the process to be carried out correctly are known as the

pre-conditions. In other words, there is no guarantee of the correct output data

flows if the pre-conditions are not met by the input data flows. Post-conditions

show the conditions that must be satisfied by the output data flows after the

process has been executed. Typically, the relationship between the input data

flow and the output data flow is defined in the post-condition. As a result,
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it is evident how the output data flow can be produced using the input data

flow. Since both are predicate expressions and the SOFL process specification

has similar sequential statements in the conditions section, we propose to use

McCabe’s cyclomatic complexity metric [22] to measure their logical structure

complexity. In addition to the fact that the cyclomatic complexity measure can

be derived from the program control flow graph, McCabe observes that it is

equivalent to the number of predicates plus one.

Cyclomatic complexity is a metric for software quality developed by Thomas

J. McCabe Sr. in 1976 and refers to the number of linearly independent paths

through a program’s source code [22]. The greater the cyclomatic complexity,

the greater the number of potential execution paths through the code, and the

more difficult the code is to test and maintain. Mathematically, the following

formula is used to calculate the cyclomatic complexity:

V (G) = E −N + P. (3.1)

A flow graph notation for a program defines several nodes connected through the

edges. Where E refers to the number of edges, N refers to the number of nodes,

and P refers to the number of connected components. For a traditional program

flow graph, we can simply find the number of edges, nodes, and connected

components, but for SOFL specifications these metrics are not clearly defined.

Consequently, we have considered an alternative method for assessing cyclomatic

complexity for SOFL specifications.

One alternative way to measure the cyclomatic complexity of a module is to

count the number of decision points, such as if-statements and while-statements.

The above method would obtain the cyclomatic complexity rating by multiply-

ing the number of decision points, or keywords, by one. Both methods yield the

same result. In the SOFL specifications, we calculate an approximation of cyclo-

matic complexity by counting the keywords in conditional expressions, multiple

choice expressions, block expressions, and while expressions. The cyclomatic

complexity keywords of SOFL formal specifications include the keywords “if”,

“else if”, “case”, and “while”. For each keyword in the specification, it is in-
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cremented by 1. The following specification fragment consists of one decision

point, thus yielding a cyclomatic complexity of 2.

if deposit amount ≤ maximum deposit once

then . . .

else . . .

Because there are some operators and quantifiers in SOFL that have the

same function as decision statements and contribute to the logical complexity

of the conditionals. Thus, the logic structure complexity metric of each process

in a module, denoted by V(G), is defined as the sum of the following add one:

• V(GK): the total number of cyclomatic complexity keywords,

• V(GQ): the total number of quantifiers provided by SOFL,

• V(GO): the total Cyclomatic Complexity of operators.

V (G) = V (GK) + V (GQ) + V (GO) + 1, (3.2)

where the quantifiers provided by SOFL predicate logic include the universal

quantifier “forall,” and the existential quantifier “exists.” Because the definition

of some operators contains keywords or quantifiers, such as “subset,” “get,”

and “power,” their logic structure complexity needs to be calculated. Table 3.1

illustrates the definition of the V(GO) for the operators on sets, sequences and

map types in the SOFL formal specification.

The average cyclomatic complexity per module is the definition of the cy-

clomatic complexity component in the MI metric. Systems constructed with

object-orientation techniques generally yield low average complexity per mod-

ule, meaning that these programs consistently score highly on this criterion. To

determine which specification fragments are particularly difficult to maintain,

we computed the metric for cyclomatic complexity in the SOFL formal speci-

fication maintainability assessment as the sum of the cyclomatic complexity of

all the processes in the module.



CHAPTER 3. MAINTAINABILITY ASSESSMENT METHODS 26

Table 3.1: The V(GO) for the operators on sets, sequences and map types in
SOFL

Operator Name V(GO) Operator Name V(GO)

inset Membership 0 hd Head 1

notin Non-membership 0 tl Tail 0

card Cardinality 0 elems Elements 1

subset Subset 1 inds Indexes 1

psubset Proper subset 1 conc Concatenation 2

get Member access 1 dconc Distributed concatenation 1

union Union 0 dom Domain 1

inter Intersection 0 rng Range 0

diff Difference 0 domrt Domain restriction to 1

dunion Distributed union 0 rngrt Range restriction to 1

dinter Distributed intersection 0 domrb Domain restriction by 1

power Power set 1 rngrb Range restriction by 1

len Length 0 inverse Map inverse 1

s Sequence application 1 override Override 2

s(i, j) Subsequence 1 comp Map composition 2

3.3.5 Module Halstead Volume

Halstead complexity measures (HCM) is a series of metrics known as Software

Science and was first presented by Halstead in 1977 [23]. It serves in the con-

struction of software to identify several quantitative laws. Halstead complexity

uses a set of basic metrics that are often calculated after the design phase of

the program is complete. Halstead believed that this statistic was indicative

of the size of any algorithmic implementation and also counted the number of

mental comparisons required to develop a program. However, Halstead just

gives a brief example without more discussion in his book rather than stating

specifically what should be regarded as operators and what should be consid-

ered operands. In general, the most common types of operators include reserved

words, function calls, mathematical operators, and related separators, among

others. Operands can be identifiers like variables and constants. When assessing

the maintainability of the SOFL specification, we compute the Module Holstead
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volume as:

MHV = 10.4× ln (N× log 2(n)) , (3.3)

where n is the number of different operators indicating the specification

vocabulary and N is the total number of operators appearing in the module

indicating the specification length. Operators contain reserved words, function

calls, mathematical operators, and can also include related separators, constants

and variables, etc. Table 3.2 displays the operators in the SOFL formal specifi-

cation.

Table 3.2: Operators in the SOFL formal specification

Numeric types\Character types\Enumeration types Boolean types Set types Sequence and string types

+ mod and inset diff len

− ∗∗ or notin dinter s

∗ < not card power hd

/ > => subset tl

abs <= <=> psubset elems

floor >= get inds

div = union conc

rem <> inter dconc

The lexical complexity of the formal specification is revealed in the Module

Holstead Volume. It functions as a metric for evaluating the logical structure

of conditions and specification style of SOFL formal specifications.

3.3.6 Number of Data Stores Used

The data usage metrics are used to capture the amount of data input to, pro-

cessed in, and output from a SOFL process. According to the SOFL formal

definition, data store or store is a variable holding data at rest. A data store

is passive. It does not actively send any data item to any process, but rather

always makes its value available for reading and writing by any associated pro-

cesses. A data store can be either read or written (updated) by a process,

which is represented by a directed line pointing to the process from the store or

pointing to the store from the process in CDFD. The currently used maintain-

ability measures were determined to be inadequate. Given the growing usage of
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databases these days, it is imperative to give database access the same consider-

ation. We suggested that the SOFL formal specification maintainability metrics

be expanded to include the number of data stores used metrics that indicate

database accesses in order to address this deficiency. The higher the value of

this metric, the lower the maintainability of the specification. This is because

a high value denotes a more frequently accessed database by the module and a

more complex system, making it more challenging to modify the specification

without creating new defects.

3.3.7 Extensiveness of Comments

In general, we can determine the characteristics of two specification style fea-

tures. The first feature is computed by the software analyzer and is expressed

quantitatively. The ”human-assessable characteristics” are the other character-

istic. We simply take into account aspects that can be evaluated by a computer

and that affect the maintainability of the specification. Since features that can

be evaluated by humans necessitate expert subjective opinions that are not

accessible to quantitative expression. The extensiveness of comments (EOC)

determines the comment extension feature. The EOC expressed in percentage

for a module is further defined as the number of lines with comments divided

by the number of total lines of expressions (including lines with comments and

blank lines) in a SOFL specification.

EOC = 100× Lines with Comments

Total Lines of Expressions
. (3.4)

3.3.8 Extensiveness of Blank Lines

Typographic features are another aspect we take into account when character-

izing specification style, similar to comment features. The following are the

proposed metrics along with their definitions.

Extensiveness of blank lines (EOBL). The EOBL expressed in percentage for

a module is further defined as the number of blank lines divided by the number

of total lines of expressions (including lines with comments and blank lines) in
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a SOFL specification.

EOBL = 100× Blank Lines

Total Lines of Expressions
. (3.5)

3.3.9 Maintainability Metrics Hierarchy

The maintainability metrics hierarchy for a formal specification written in SOFL

is summarized as shown in Figure 3.5.

Figure 3.5: SOFL formal specifications maintainability metrics hierarchy
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Analysis and Design of
Automated Support Tool

We have built a prototype tool, called SOFL-ASMAT (Automated Software

Maintainability Assessment Tool for SOFL formal Specification), to support

our research methodology for software maintainability assessment. The support

tool was designed using the SOFL method and implemented based on WPF and

C# languages. This section will analyze the key information that needs to be

extracted from the requirements of the support tool, identifying valuable infor-

mation and defining the scope of the effort of the tool. After that, the overall

design architecture of the support tool will be presented. The implementation of

metrics assessment methodologies in the support tool, along with the design of

the tool’s functionality for evaluating software maintainability based on SOFL

features, will be the main areas of focus. Finally, the design of the process-

ing approaches for software maintainability ratings of the support tool will be

described in detail.

4.1 Requirements Analysis of the Support Tool

Requirements analysis is a clear description of the functional and performance

aspects of a software system that should be met before the software product is

designed and implemented. Only with clear requirements on the functional and

30
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performance aspects of the system can a compliant software product be accom-

plished at the time of implementation. The research objective of this paper is to

apply the software maintainability assessment method mentioned in the previ-

ous section to automate the assessment of software maintainability of the SOFL

formal specification, and upon completion, to rate and analyze each software

maintainability metric of the specification as a whole and for each module, and

to export the generated maintainability rating results. Maintainability metrics

assessment is an important module of the tool to maintain consistency between

requirements analysis and design, improve software quality, and increase relia-

bility. With its excellent practicality, this support tool may significantly increase

the user’s efficiency while assessing the software maintainability of the SOFL

formal specification. The results generated in the support tool also provide the

basis for research into formalized module-based specification maintainability as-

sessment and other related SOFL technology explorations. To accomplish the

entire application of software maintainability assessment metrics, there are the

following functional requirements:

• SOFL formal specification analysis. Users can import SOFL specification

files through the interface or menu. Text file formats for SOFL speci-

fication files are supported by the tool. The tool can parse the SOFL

specification file to extract key information, including but not limited to

modules, processes, expressions, etc. At the same time, for documents

that do not meet the SOFL specification, the tool will provide appropri-

ate error messages and processing mechanisms.

• SOFL formal specification maintainability assessment calculations. The

tool supports the calculation of maintainability assessment metrics for

each module, including the following eight metrics: line of expressions

(LOE), number of processes (NOP), number of control data flows (NOCDF),

cyclomatic complexity (CC), module Halstead volume (MH), module size

(MH), module size (MH), module size (MH), module size (MH), and

so on. , module Halstead volume (MHV), number of data stores used
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(NODSU), extensiveness of comments (EOC), and extensiveness of blank

lines (EOBL). For every module, the support tool offers precise computed

values and rating outcomes. The tool should generate an overall mainte-

nance assessment for the system by synthesizing the maintenance assess-

ments for each module of the import specification in addition to computing

the metrics for each module.

• The generation of a visual report for the SOFL formal specification main-

tainability assessment. To visualize the characteristics of the system and

the assessment findings, the tool will generate a chart based on the results

of the maintainability assessment. Additionally, it offers a data table that

includes the raw data and computation results for each module’s mainte-

nance assessment results. Users can export the data table to a text file

via a menu or button so that they can retain and review their analysis

results again.

The automated software maintainability assessment support tool for SOFL

specification needs to fulfill not only the most basic functional requirements

but also the performance requirements. Functional requirements describe the

functions of each part to be accomplished by the support tool, and performance

requirements describe the operational characteristics of the system from the

following aspects:

To guarantee a positive user experience, the tool should react to user actions

on time. The tool should precisely calculate and rate the specification main-

tainability because it is a crucial support tool for the growth of SOFL formal

applications. Furthermore, to be able to handle the processing of large SOFL

specifications to guarantee that there is no speed bottleneck in the analysis, the

system’s fault tolerance and reliability need to be improved in order to ensure

that the maintainability assessment methods are applied appropriately.
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4.2 Architecture of the Support Tool

Based on the previous requirements analysis, a structural division of the auto-

mated software maintainability assessment tool for SOFL formal specifications

is derived. Three major modules comprise the support tool. These are the

SOFL file preprocessing module, the main function module, and the visual-

ization result generation and output module. The application begins from the

start menu. Users can interact with the software and initiate various tasks using

its main interface. The main function of the SOFL file preprocessing module

is to preprocess the text file of the SOFL formal specification. This involves

traversing through the specification file, extracting essential information from

such module processes, and constructing the specification structure tree. It can

visualize the hierarchy and relationship of each process in the SOFL formal spec-

ification. The main function module is the core function module responsible for

processing the application. The calculation logic for the metrics specified in the

application is handled and carried out by this module. It takes data out of the

SOFL formal specification and runs the appropriate calculations to figure out

the metric values and assign a rating to all of them. The display pages are then

refreshed with the computed ratings and values. The visualization results gen-

eration and output module are responsible for generating visual analysis charts

based on calculated data and predefined thresholds for each metric. Users will

find it easier to analyze and comprehend the analysis results according to the

charts, which demonstrate the information visually. Additionally, it generates a

comprehensive data table that users can export for further comparative main-

tainability study.

The structure chart of the entire automated software maintainability assess-

ment tool for SOFL formal specification is shown in Figure 4.1.
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Figure 4.1: The structure chart of SOFL-ASMAT

The programming language for this support tool is C#, and the development

environment is VS2022. C#, as an object-oriented programming language de-

rived from C and C++ by Microsoft, is simple, stable, and safe. At the same

time, it bears a strong resemblance to Java, thus programmers of all stripes can

quickly and simply become proficient in this language. The effectiveness and

usability of the tool also played a role in the decision to adopt C# as the pro-

gramming language. Windows Presentation Foundation (WPF) is a framework

for creating Windows applications. Comprehensive user interface design, includ-

ing 2D and 3D visuals, animations, styles, templates, and more, is supported by

WPF’s powerful UI technology. It facilitates the creation of interactive, highly

visual apps by developers. WPF provides a powerful data binding mechanism

that allows UI elements to be directly connected to data sources for synchro-

nization and automatic updating. That improves development efficiency and

streamlines data handling and presentation. Furthermore, WPF utilizes XAML

as the declarative language for the user interface, which facilitates the sepa-

ration of the logic and design of the UI. WPF allows developers to use styles

and templates to customize the look and feel of the application and provides a

flexible layout framework that enables programmers to create intricate layout

structures that satisfy the requirements of SOFL support tool design by utiliz-

ing a range of panels (such as Grid, Stack Panel, etc.). In terms of integration,
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WPF can readily interact with other .NET components and services(such as

ASP.NET, Windows Services, etc.). WPF also promotes the Model-View-View

Model (MVVM) architecture, which divides an application’s logic, data, and in-

terface. This allows developers to better organize the code and enhances testa-

bility and maintainability. All things considered, SOFL-ASMAT chose WPF

because it offers a powerful and flexible toolkit that lets programmers create

stunning and effective applications for Windows.

The organization chart of the application in Figure 4.2 shows the page hier-

archy in the support tool. The index is the top-level page which serves as the

application’s entrance point. Level 2 menus include the specification menu and

the function menu, which offer options related to different functions and specifi-

cations. Level 3 is divided into three sections: Overview Rating, Maintainability

Assessment, and Analysis Report. These pages, which are subsections of the

function menu, provide an overview of the ratings or scores assigned to the mod-

ule for maintainability assessment. The analysis report that is produced based

on the evaluation findings is shown. The measures page and the summary page

contribute to Level 4. These pages are subsections of the maintainability as-

sessment page that offer comprehensive metrics associated with the assessment.
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Figure 4.2: The organization chart of SOFL-ASMAT

The interface of the SOFL-ASMAT index page is illustrated in Figure 4.3,

which provides a visual representation of how the pages are arranged and con-

nected. The SOFL formal specification file’s structure and the hierarchical

structure containing its modules and processes are displayed in the specifica-

tion menu, which is located on the left side of the main screen. Using the top

menu bar or interface buttons, the user can import the formal specification file

for parsing through the function menu, which occupies a large portion of the

screen. For the benefit of new users in becoming acquainted with how to use

the tool quickly, the top menu bar of the interface also includes a user guide

and an introduction to maintainability metrics.



CHAPTER 4. ANALYSIS AND DESIGN OF SUPPORT TOOL 37

Figure 4.3: The interface of SOFL-ASMAT index page

4.3 Functional Implementation of the Support
Tool

In order to read the information to be processed from the SOFL formal specifi-

cation file, we need to extract the names of the modules and processes, obtain

the specification’s general structure, and calculate the precise values of each

maintainability metric that will be recorded in the list.

4.3.1 Implementation of the Specification Key Informa-
tion Parsing Method

In a SOFL formal specification, a module is a document written in the SOFL

language that encapsulates the data and processes that appear in the CDFD

associated with the module and defines the components that appear in the

CDFD. In general, a module has the structure depicted in Figure 4.4:
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Figure 4.4: Module structure

The name of the module is used after the keyword “module” to indicate

where a module starts. If the module is a submodule of a procedure in another

module, the module name should be followed by the “/” identifier, and then the

name of the parent module. Constant declarations are denoted by the keyword

“const”, type declarations by the keyword “type,” and variable declarations by

the keyword “var”. The CDFD related to the module can be found by using the

keyword “behav”. Some operations and functions are defined by the keywords

“process” and “function,” which are used to identify the relevant process part

and function part respectively. The end of the module is indicated with the

keyword “end module”. The specific implementation of identifying the module

and its name in C# is shown in the following code:

1 List<ModuleMetrics> moduleMetricsList = new List<

ModuleMetrics>();

2 // Convert content in the specification to lowercase for easy

3 identification

4 string fileContent = File.ReadAllText(filePath).ToLower();

5 string[] moduleFragments = fileContent.Split(new string[] { "

module " },

6 StringSplitOptions.RemoveEmptyEntries)

7 .Select(fragment => "module " +

fragment)

8 .ToArray();

9 //Since the identified fragments are the content after the
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keyword,

10 add "module" to each fragment

11

12 foreach (var moduleText in moduleFragments)

13 {

14 int endIndex = moduleText.IndexOf("end_module");

15 if (endIndex != -1)

16 {

17 string moduleContent = moduleText.Substring(0,

endIndex + "end_module".Length);

18 string[] lines = moduleContent.Split(new string[] {

Environment.NewLine }, StringSplitOptions.

RemoveEmptyEntries);

19

20 // Check if the module content contains "module" to

ensure that only valid module fragments are

processed

21 if (moduleContent.Contains("module "))

22 {

23

24 if (lines.Length > 0)

25 {

26 // Extract module name

27 string firstLine = lines[0].Trim();

28

29 // Identifies the content after "module " as

the module name

30 string moduleName = firstLine.Substring("module ".Length);

31

32 // Handling cases where the module name is a

submodule in another module

33 int slashIndex = moduleName.IndexOf(’/’);

34

35 if (slashIndex != -1)

36 {

37 moduleName = moduleName.Substring(0,

slashIndex).Trim();

38 }

39

40 // Handling module names ending in a semicolon

41 if (moduleName.EndsWith(";"))

42 {

43 moduleName = moduleName.Substring(0,

moduleName.Length - 1).Trim();

44 }

45 ModuleMetrics moduleMetrics =
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CalculateModuleMetrics(moduleContent);

46 moduleMetrics.ModuleName = moduleName;

47 moduleMetricsList.Add(moduleMetrics);

48 }

49 }

50 }

51 }

52 return moduleMetricsList;

One of the most essential components of a module is the process. A process

performs an action, task, or operation that takes input and produces output [2].

The typical structure of a process is shown in Figure 4.5:

Figure 4.5: Process structure

The process name and the input and output flows appear following the key-

word ”process,” which indicates the beginning of the process. The keyword

”ext” designates external variables that are required for the process. The sub-

modules related to a multi-level process’s lower-level CDFDs are written follow-

ing the keyword ”decom.” Comments are written after the keyword ”comment”

to improve the readability of the specification. The general execution flow of the

process is that the input and output data flows are first examined, and when

the input data flows are available and the output data flows are unavailable,

then the input data flows can be accepted and prepared for execution. Accept

the input data flow, check whether it meets the pre-conditions, and meet the

conditions of the process. At last, the process is carried out by producing the

output data flow and checking to see if it satisfies the post-conditions. If it does,

the process is considered valid. Similar to the module identification method, the

implementation of identifying the process and its name in C# is shown in the
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following code:

1 else if (lowercaseLine.StartsWith("process "))

2 {

3 string processLine = lowercaseLine.Substring("process ".

Length);

4

5 if (processLine.Contains("("))

6 {

7 // If parentheses are included, the original logic is

followed

8 int openingParenthesisIndex = processLine.IndexOf(’(’)

;

9 string processName = processLine.Substring(0,

openingParenthesisIndex).Trim();

10

11 Process process = new Process();

12 process.Name = processName;

13 processes.Add(process);

14

15 // Get the last module added and add the process to

the module’s Processes list

16 if (modules.Count > 0)

17 {

18 Module lastModule = modules.Last();

19 lastModule.Processes.Add(process);

20 }

21

22 // Create a ModuleProcessData object and set the

process name

23 tableData.Add(new ModuleProcessData

24 {

25 ProcessName = processName,

26 });

27 nopValue++;

28 }

29 else

30 {

31 // If no parentheses are included, the entire line is

treated as processName

32 string processName = processLine.Trim();

33

34 Process process = new Process();

35 process.Name = processName;

36 processes.Add(process);

37
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38 // Get the last module added and add the process to

the module’s Processes list

39 if (modules.Count > 0)

40 {

41 Module lastModule = modules.Last();

42 lastModule.Processes.Add(process);

43 }

44

45 // Create a ModuleProcessData object and set the

process name

46 tableData.Add(new ModuleProcessData

47 {

48 ProcessName = processName,

49 });

50 nopValue++;

51 }

52 }

4.3.2 Implementation of Lines of Expressions (LOE) Cal-
culation Method

This section details the implementation of the Lines of Expressions (LOE) calcu-

lation method in the context of SOFL formal specifications. The total size and

complexity of a software system are critical factors in determining its maintain-

ability. LOE is an essential metric for assessing the overall size and complexity

of a software system represented using SOFL language. Developers can un-

derstand and grasp the scope of the SOFL formal specifications by utilizing the

LOE metric, which offers information on the total number of lines with meaning-

ful expressions. With the exclusion of comments and blank lines, the algorithm

described here aims to count the lines that contain genuine expressions precisely.

Figure 4.6 displays the primary components of the LOE algorithm’s calculation:
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Figure 4.6: The Lines of Expressions (LOE) calculation method

The algorithm counts the number of expression lines by iterating through

each line of the file, checking to see if it is an expression line (non-commented

and non-empty), and accumulating counters. It ensures accurate counting by

excluding comments and blank lines, focusing on the lines contributing to the

logical structure of the SOFL formal specification. The LOE calculation method

provides a quantitative measure of the number of lines containing actual expres-

sions in the SOFL formal specifications. This metric aids developers in compre-

hending the scale of the specification system, contributing to better-informed

decisions on system maintenance and improvement.

4.3.3 Implementation of Number of Processes (NOP) Cal-
culation Method

Number of Processes (NOP) is a crucial metric reflecting the number of pro-

cesses within a module, which is indicative of the module’s independence and

complexity. The algorithm is implemented in C# and is triggered when a line in

the SOFL specification starts with ”process.” The process identification part of

this algorithm in performing key information extraction has been demonstrated.

The name of the identified process is used in the program for constructing a

process object. The process will be added to the global list of processes. The

identified process will be added to the process list of the last module. For stor-

ing the process name, a ModuleProcessData object is created. Following that,
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the NOP value that was determined is increased.

4.3.4 Implementation of Number of Control Data Flows
(NOCDF) Calculation Method

The SOFL definition states that the requirement that a process be carried out

following the completion of its preceding process without requiring the receipt

of any useful data flow is typically described by the control data flow. Each

control data flow variable needs to be declared using a unique type identified

as the signal, which is represented by the sign symbol. The exclamation mark ,

which indicates that there is only one value in this type, and serves as a signal to

specify the associated control data flow variable. That is, a data flow variable

of type sign is defined if it is bound to the value ; otherwise, the variable is

undefined. Formally,

sign = !

There is no operator on this type. It is important to note that type sign

cannot be used to declare any active data flow variables. In the SOFL formal

specification, we can thus identify inputs of type sign and compute the number

of control data flows. Number of Control Data Flows (NOCDF) is an essential

metric for assessing the complexity of process coupling within a module of SOFL

formal specifications. It measures the number of control data flows. Figure 4.7

keeps track of how many times the ’: sign’ pattern appears in every line of the

SOFL specification.

Figure 4.7: The Number of Control Data Flows calculation method
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4.3.5 Implementation of Cyclomatic Complexity (CC) Cal-
culation Method

Cyclomatic Complexity (CC) is a metric employed to gauge the logical structure

complexity of software processes. In the context of SOFL formal specifications,

it considers keywords, quantifiers, and operators to evaluate the complexity

of conditions. Figure 4.8 shows the main components of the CC calculation

algorithm.

Figure 4.8: The Cyclomatic Complexity calculation method

According to the computational method presented in subsection 3.3.4, coun-

ters for keyword occurrences, quantifier occurrences, and operator complexity

are first initialized. Then keyword and quantifier identification is performed

by traversing each line in the SOFL formal specification and checking for the

presence of predefined keywords and quantifiers. For each non-empty line, a

separate CalculateOperatorComplexity method is used to calculate the opera-

tor complexity. The relevant operator complexity has been defined in Section

3 and finally the ccValue is calculated according to the cyclomatic complexity

formula.
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4.3.6 Implementation of Module Halstead Volume (MHV)
Calculation Method

Module Halstead Volume (MHV), derived from Halstead Complexity Measures,

is employed to evaluate the lexical complexity of SOFL formal specifications.

The Module Halstead Volume (MHV) serves as a vital metric in software main-

tainability, offering valuable insights into the size and complexity of the vocab-

ulary within SOFL specifications. The MHV algorithm provides a quantitative

measure of the logical structure of SOFL formal specifications. It is a valuable

tool for developers to assess and enhance the maintainability of their software

by identifying areas of potential complexity within the formal specifications.

Figure 4.9 shows the main components of the MHV calculation algorithm.

Figure 4.9: The Module Halstead Volume calculation method

The MHV calculation begins by splitting the read SOFL formal specification

into individual words using the SplitIntoWords method, taking into account

spaces and common punctuation marks. Then the number of distinct keywords

(n) and the total number of occurrences of all keywords (N) are calculated

using the CalculateDistinctKeywordsCount and CalculateTotalKeywordsCount

specialized methods. The quantitative values are then calculated using the

formula for MHV defined in Section 3. Finally, exceptions are made for cases

where N or n may be invalid.
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4.3.7 Implementation of Number of Data Stores Used (NODSU)
Calculation Method

According to the SOFL definitions, there are two ways to connect a store to a

process: read and write. Each method denotes a distinct means for the process

to access the data in the store. The data store that is connected to a process

is regarded as an external variable by users. In actuality, it is a state variable

of the related module whose CDFD contains the store. The keywords rd or wr

must be used to correctly identify the access method when providing a formal

specification of a process that accesses a store. Rd is an abbreviation for ”read”

and wr is an abbreviation for ”write”. When a data store variable is designated

as external to the process, the process can read all or a portion of its value, but

it won’t be modified while the process is executing. A store variable declared as

external to wr means that the variable may be updated during process execution,

and it does not eliminate the possibility of the process reading from the variable.

In the Number of Data Stores Used (NODSU) algorithm, we identify ”rd” and

”wr” to obtain the amount of data input, processed, and output in the SOFL

process.

Figure 4.10: The Number of Data Stores Used calculation method

A quantitative measure of data store utilization in the SOFL process is of-

fered by the NODSU algorithm. Developers can obtain a more nuanced view

of data flow in the SOFL specification by employing the CountSubstringOc-

currences method to count the occurrences of writes and reads. This approach
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helps developers understand the interactions between processes and data stores.

4.3.8 Implementation of Extensiveness of Comments (EOC)
and Extensiveness of Blank Lines (EOBL) Calcula-
tion Methods

The EOC and EOBL calculation involves similar steps to the Calculating LOE

algorithm. In the EOC algorithm, the total lines of expressions and the num-

ber of lines with comments are first determined. The percentage of lines with

comments to the total total lines of expressions is calculated according to the

definitions in Section 3. In the EOBL algorithm, first, determine the total lines

of expressions and the number of blank lines. Calculate the percentage of blank

lines to the total lines of expressions based on the definitions in Section 3. Fi-

nally, format the results by rounding the percentage to two decimal places for

readability.

The algorithms for EOC and EOBL provide developers with valuable metrics

for evaluating the documentation and visual structure of SOFL specifications.

These metrics contribute to a more nuanced understanding of the qualitative as-

pects of SOFL formal specifications, facilitating improved readability and main-

tainability.

4.4 Rating Methodology of the Support Tool

This section outlines the methodology for rating various maintainability metrics

within SOFL formal specifications. The evaluation incorporates a Weighted Z-

score approach to provide a nuanced rating, considering the diverse units of each

metric.

Z-score, also known as a standard score, is a measure that represents the

deviation of a variable’s value from its mean divided by the standard deviation.

It is used to determine the relative position of a data point within a set of data.

Z-scores are also frequently used in student educational assessments for grading,

determining percentile ranks, and quantifying quality assessments, among other

purposes.
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The Z-score is calculated as

Z =
X − µ

σ
. (4.1)

In which, X is the metric value, µ is the mean of the set of metric values,

and σ is the standard deviation of the set of metric values. The raw values were

in different units in the different metrics. Z-scores are all in the same unit, that

is, standard deviation [24]. Z-scores tell us how much the variable’s values are

above or below the mean and are expressed in standard deviation. A Z-score

above 1 is farther from the mean than a Z-score below 1. Therefore, rating

based on Z-scores identifies outliers in the data.

However, we can observe that judging ratings by Z-scores alone is inaccurate

for SOFL formal specifications. When the size of the specification is small, the

values of complexity, MHV, NODSU, etc. will also be small. This module

performs comparatively better in terms of maintainability. At this moment,

it is further from the average value. According to our previous definition, the

bigger the Z-score, the lower the rating. To address this problem, the Weighted

Z-score (Zw) is calculated as follows

Zw =
X −

(
LOEi

avg(LOE)

)
× µ

σ
. (4.2)

Where X is the metric value, LOEi is the Lines of Expressions value for this

module, avg(LOE) is the average LOE value in the entire specification, µ is the

mean of the set of the specific metric values, σ is the standard deviation of the

set of specific metric values. Note that since the LOE metrics represent the

total size of the specification in the SOFL, this weighting model is used here for

metrics in the specification other than the LOE metrics. For the LOE metric

itself, we use the value of the NOPi divided by the average of the NOP metrics

as the weights for the calculation of Zw. Table 4.1 illustrates the classification

of differences using the absolute value of the weighted Z-score.
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Table 4.1: The classification of differences using weighted Z-score

Value Degree Grade

|Zw| < 1 Small difference A

1 ≤ |Zw| < 2 Moderate difference B

2 ≤ |Zw| < 3 Large difference C

|Zw| ≥ 3 Very large difference D

The Maintainability Metrics Rating Algorithm is implemented in C# and

outlines the following key components: First, the CalculateOverallStatistics

method is used to calculate weighted Z-scores for various maintainability met-

rics. The CalculateStandardDeviation method is called to calculate the stan-

dard deviation of a given metric. The GetGrade method is used to assign grades

based on the magnitude of the weighted Z-scores and assign values to the grades,

and finally, the GetOverallGrade method is used to obtain an overall grade for

the SOFL formal specification based on the assigned grades. By following these

steps, the support tool not only grades the different metrics for each module

but also obtains an overall grade for the maintainability of the SOFL formal

specification. The Weighted Z-score approach ensures a fair and comprehensive

evaluation of maintainability metrics in SOFL specifications. This method pro-

vides a robust basis for identifying modules that significantly deviate from the

average, allowing developers to prioritize areas requiring attention.



Chapter 5

Case Study

To exemplify the practical application of these metrics and the support tool,

we present a case study involving the assessment and rating of the software

maintainability of an Automated Teller Machine (ATM) system. The ATM

system was selected as a case study mainly because of its business effect, crit-

ical nature, and availability of the SOFL formal specification. The specifica-

tion defines the following six functions: authentication, operations on current

accounts, operations on savings accounts, money transfer between accounts,

operations on foreign currency accounts, and changing a password [25]. The

example consists 6 modules, in which Manage Current Account Decom, Man-

age Savings Account Decom, Manage Transfer Decom, Manage Foreign Curren-

cy Account, Change Password Decom are decompositions of the high-level pro-

cesses defined in the top-level module SYSTEM ATM. The toplevel Control and

Data Flow Diagram (CDFD) of the ATM system is depicted in Figure 5.1.

51
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Figure 5.1: Top Level CDFD of the ATM system

Our tool guides the user through a series of simple actions that make up

the assessment process. The user accesses the ”Overview” page in the first

stage, where the designated specification file is available for analysis. By se-

lecting ”File” from the top menu, the user can import the specification file.

”Help” offers a user guide and an overview of the software maintainability met-

rics assessment. After that, the user can carry out the specification analysis by

following the instructions provided in the user guide. On the overview page,

users can directly click the ’Open File’ button to import the ATM system spec-

ification in .txt format. The analysis starts with this easy yet important step.

After importing the specification, the tool performs a maintainability calcula-

tion and generates an overview rating based on the complexity of the system,

using the algorithm described in Section 4 of this thesis. This initial rating

provides the user with an immediate understanding of the complexity of the

system specification. The overall structure of the specification is well displayed

on the left side of the tool interface. Figure 5.2 displays the main page that

appears after the user imports the ATM system specification file.
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Figure 5.2: A snapshot of the Overview page

In the Maintainability Assessment section, two crucial pages unfold the var-

ious layers of the assessment process, the Summary page and the Metrics page.

The Summary page displays the composite value of each metric in the specifi-

cation. The tool utilizes weighted Z-scores to calculate an average rating based

on the module assessment. This process gives the user a nuanced view of the

overall maintainability of the system. Figure 5.3 shows the summary page of

the support tool.

Figure 5.3: A snapshot of the Summary page
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Access to the Metrics page allows users to drill down into the specifics of

each module. Here the user can select a specific module and view detailed values

and ratings for each corresponding metric. The exact values of the mean and

standard deviation for the entire specification file are also displayed below the

table in the selection module, which facilitates user comparison and analysis.

The component takes a synthesized approach, incorporating weighted Z-scores

for each metric to provide granular insight into the maintainability of individual

modules. Figure 5.4 shows the metrics page of the support tool.

Figure 5.4: A snapshot of the Metrics page

The Analysis Report section utilizes integrated LiveCharts to effectively vi-

sualize data. Visually appealing charts are displayed to users, who can hover

over individual data points to see particular metric values and their relative

proportions to the entire system. Figure 5.5 shows the Analysis Report page of

the support tool.
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Figure 5.5: A snapshot of the Analysis Report page

Additionally, we have included a ”Save” function, considering that docu-

mentation and comparison are necessary. The ”Save Analysis Table” option

in the ”File” menu bar allows users to save the table with the findings of the

maintainability assessment. This makes it easier to compare the results with

the updated specification document. Table 5.1 shows a summary of the main-

tainability assessment in this case study.

Table 5.1: Maintainability Assessment Summary of the ATM system

No. Module LOE NOP NOCDF CC MHV NODSU EOC EOBL

1 SYSTEM ATM 46 5 0 5 20.95 13 3.85 0.21

B C A A C C D D

2 Manage Current Account Decom 231 8 4 41 35.02 21 3.73 0.01

A A A A A A A B

3 Manage Savings Account Decom 290 9 4 53 37.04 22 2.96 0.05

A A A A B A B A

4 Manage Transfer Decom 237 6 1 45 35.52 13 2.4 0.09

A B A A A B B A

5 Manage Foreign Currency Account 362 9 3 59 37.26 17 2.38 0.05

A B A A C C D B

6 Change Password Decom 175 7 8 39 34.33 24 3.76 0.06

A A C A B C C A
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A case study demonstrates the benefit of our metrics and tools for soft-

ware maintainability assessment. Our method offers a way of comparing the

maintainability of the measured object at the process, module, and system

levels. Furthermore, our support tool provides a useful resource for areas of

system improvement and user decision-making. The key factors influencing the

maintainability of SOFL formal specifications have been covered by the SOFL

maintainability metrics along with measurement features given in this work.

However, our method is sufficiently flexible to enable users to measure relevant

metrics and add additional characteristics to the model-based formal specifica-

tions. Additionally, the supporting tool makes it easier to apply the idea more

broadly.



Chapter 6

Conclusion and Future
Work

This thesis has delved into the crucial realm of software maintainability within

the context of formal specifications, particularly emphasizing the SOFL formal

specifications. Recognizing the importance of maintainability, we have pro-

posed novel metrics and a comprehensive framework to assess and enhance the

maintainability of SOFL specifications. And developed an automated software

maintainability assessment tool to provide application support for our approach.

The developed framework offers an organized method for maintaining processes

during specification-based implementation, with analyzability, complexity, mod-

ifiability, and testability encapsulated as key subfactors. We calculate the main-

tainability metrics for each module utilizing a hierarchical dimensional assess-

ment approach, and then we assess the entire maintainability of the specifica-

tion. Through a hierarchical dimensional assessment, we’ve demonstrated the

applicability of our metrics and support tool, showcasing their effectiveness in

a real-world case study. The result shows that our approach addresses the need

for specific metrics for assessing maintainability during the specification phase.

In this research, we assigned individual relative grades to a range of metrics.

These grades were assigned values to obtain an overall aggregated maintain-

ability rating. This rating aims to holistically weigh individual metrics, offering

a nuanced and accurate assessment of maintainability. This will help develop-
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ers and organizations gain a better understanding of the maintainability status

of the systems and take appropriate measures to improve and enhance main-

tainability. The automated software maintainability assessment tool for SOFL

formal specifications also helps developers conduct assessments more efficiently

and visualize the results.

We are still fully committed to moving the field forward. Our immediate

focus is on validating the effectiveness of our approach through systematic eval-

uations with large-scale SOFL formal specifications. This step is pivotal in

ensuring the broader applicability and robustness of our method in diverse soft-

ware development scenarios. The next goal of our research is that by aggregating

and weighing these maintainability metrics, it is possible to trace the modules in

the specification that have low maintainability and provide targeted recommen-

dations for improving maintainability for problematic specification fragments.

This will help developers and organizations to better understand the maintain-

ability status of their systems and take appropriate measures to improve and

enhance maintainability.

Regarding the complexity of industrial projects and the growing magnitude

of formal specifications, we have emphasized the requirement for automated

assessment tools. The suggested tool will enable the application of software

maintainability assessment to a larger range of domains and will not be restricted

to SOFL specifications. Assessors will be able to rapidly and thoroughly assess

a system’s maintainability by using automated techniques. This aligns with

our desire to broaden the scope of applicability and extend these methods to

model-based formal specifications.
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