
A Framework of Two-level Specification-based Data
Generation for Deep Neural Networks

Dissertation submitted in partial fulfillment for the
degree of Master of Informatics and Data Science

Yanzhao Xia

Under the supervision of
Professor Shaoying Liu

Dependable System Laboratory,
Department of Informatics and Data Science,

Graduate School of Advanced Science and Engineering,
Hiroshima University, Higashi-Hiroshima, Japan

January 2024

Abstract

Deep Neural Networks (DNNs) have garnered increased attention in domain-

specific supervised learning applications. However, two major challenges persist

in contemporary DNNs: the difficulty of obtaining well-labeled training data

for supervised learning and the inefficiency of training due to the lack of char-

acterization of objects in the training process. This research addresses these

challenges through the development of a comprehensive framework for formal

specification-based data generation in DNNs.

The framework relies on formal specifications to precisely define object char-

acteristics, serving as the foundation for effective training and testing data gen-

eration. Our initial work established this framework, delving into all activities

involved and presenting a detailed approach to writing formal specifications.

However, identified limitations, such as insufficient formality in specification

descriptions and a gap between specifications and generated data, prompted a

refined approach.

To address these limitations, we introduce a two-level specification method

within the framework. The first level focuses on detailing object characteristics,

while the second level defines parameters and values for data generation. This

novel approach enhances both human comprehension and machine handling,

significantly reducing the gap between specifications and generated data.

This dissertation offers a detailed exploration of the entire framework and

the two-level specification method. Through a case study on traffic sign recog-

nition, we demonstrate the performance of the specification in describing object

characteristics and facilitating data generation.

Keywords:

Formal methods, Specification, SOFL, Traffic sign recognition

Acknowledgments

First and foremost, I extend my deepest gratitude to my supervisor, Professor

Shaoying Liu, for his invaluable guidance, patience, and continuous support

throughout my research journey. His insights and expertise have been pivotal

in shaping both the direction and success of my work.

Besides, I am grateful to my co-supervisors, Professor Hiroyuki Okamura

and Professor Hiroaki Mukaidani, whose expertise and constructive feedback

have significantly contributed to my research and personal development. Their

dedication and willingness to impart knowledge have been immensely beneficial.

In addition, I would like to acknowledge the past and present members of the

Dependable System Laboratory, Department of Informatics and Data Science.

Working alongside such a talented and supportive group has been an enriching

experience. Their camaraderie, collaborative spirit, and shared wisdom have

greatly enhanced my time at the laboratory.

A special thanks goes to my family, whose unwavering love and support

have been my constant source of strength and motivation. Their sacrifices,

encouragement, and belief in my abilities have been the bedrock of my Master’s

graduation.

Lastly, I am thankful for all those who have contributed to my journey,

whether directly or indirectly, in the successful completion of my master’s thesis.

This achievement is a testament to the collective effort and encouragement of

each one of you.

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1

2 Background 5

2.1 DNNs . 5

2.2 Deep learning . 6

2.3 Supervised learning . 7

2.4 Data set . 7

2.5 Training process . 8

2.6 Formal language . 9

2.7 Formal specification . 10

2.8 SOFL . 10

2.9 Adversarial data . 11

3 The Proposed Framework 12

3.1 Preparation . 12

3.2 Data generation . 13

3.3 Model training . 14

3.4 Evaluation . 15

3.5 Adversarial data generation . 15

iv

4 Two-level specification approach 17

4.1 Extraction of attributes . 17

4.2 Two-level specifications . 19

4.2.1 First level specification . 21

4.2.2 Second level specification 22

5 Case study 25

5.1 Extraction of attributes . 26

5.2 First level specification . 33

5.2.1 The traffic sign of the speed limit of 40 km/h 34

5.2.2 The traffic sign of no left turn 36

5.3 Second level specification . 37

5.3.1 The traffic sign of the speed limit of 40 km/h 38

5.3.2 The traffic sign of no left turn 39

6 Discussion 41

6.1 Precision of description . 41

6.2 Facilitation of automatic data generation 44

7 Related work 48

8 Conclusion & Future work 50

Bibliography 52

Chapter 1

Introduction

DNNs have emerged as vital tools for implementing Deep Learning (DL), playing

a significant role in supervised learning applications over the past decade [1–4].

Despite this progress, the current supervised DNNs still have some limits. Firstly,

since the result of DNNs significantly relies on data, to ensure the accuracy of the

DNNs, the training process requests a large-scale well-labeled data. However,

in the field of supervised learning, well-labeled data may cost plenty of human

resources and time to obtain. Secondly, due to the inherent calculation process,

deep learning models treat data as vector values that may not clearly reflect the

characteristics of the original data. This kind of omission might influence the

effectiveness of the training process.

On the other hand, formal languages, formed by strict mathematical rules

and syntax, have long been applied in conventional software development to

define the user’s requirements and/or the functionality of the systems to be

implemented [5, 6]. Many formal specification languages have been proposed

and/or applied in real development projects, such as Vienna Development Method

– Specification Language (VDM-SL) [7] and Structured Object-Oriented Formal

Language (SOFL) [8], but few existing studies utilize formal specification to im-

prove the performance of deep learning systems. Our experience suggests that

formal specifications can facilitate precise characteristics descriptions of objects,

enabling effective data generation for DL systems.

1

CHAPTER 1. INTRODUCTION 2

Our initial research [9] endeavors a comprehensive framework that harnesses

the advantages inherent in formal specifications to autonomously generate la-

beled data for DNNs. This framework works across a sequence of five steps.

Firstly, we articulate the characteristics of the original object data through the

utilization of SOFL specifications. These characteristics are described by defin-

ing attributes and their interrelationships, serving as the discriminating factors

that distinguish the target object from others. For instance, in the case of rec-

ognizing a bicycle, the specification highlights two wheels as pivotal attributes.

Secondly, we integrate the formal specifications into the data generation pro-

cess. This procedure is designed to ensure that the generated data faithfully

mirrors the characteristics of the object described in the formal specifications.

Thirdly, we utilize the labeled data generated in the second step to train a DNN

model. This strategy via the generated data empowers the model to effectively

learn and recognize the specified characteristics, facilitating the training process.

Fourthly, the next step encompasses a critical validation process, evaluating the

accuracy of the trained model. This is achieved by subjecting the model to

a separate set of real-life data, such as photographs, representing the original

data. This step serves as a comprehensive validation mechanism, thoroughly

assessing the model’s performance in accurately identifying the target object

under real-world conditions. Fifthly, besides the fundamental four procedures

outlined above, the framework introduces an innovative concept to generate ad-

versarial data through precise modifications to the formal specification. This

novel addition broadens the framework’s utility by enabling the generation of

data specifically crafted to challenge and fortify the model against adversar-

ial examples. Through these five cohesive steps, the framework is expected

to not only establish a robust foundation for labeled data generation but also

contribute novel insights into improving the accuracy and reliability of DNNs.

However, this existing framework exhibits limitations, particularly in the

lack of formality in specification descriptions and a gap between the specifica-

tion and the generated data. This is because the specifications prioritize the

accuracy of the description of the specifications, rather than providing exact

CHAPTER 1. INTRODUCTION 3

mathematical parameters to direct the transformation of characteristics into vi-

sual images or precise numerical values. The lack of detailed parameters makes

the specifications easy for stakeholders to understand the content, but increases

the difficulty for the data generation processes. To address this, we propose

a two-level specification method employing different purposes for two levels of

formal specifications.

The first level focuses on presenting object characteristics in a human-readable

manner, utilizing natural language and descriptive terms. However, this level

lacks the precise values required for accurate data generation. To bridge this

gap, the second level specification provides detailed mathematical values and

parameters for precise data generation. For instance, instead of describing a

shape as a ”Triangle,” the second level assigns precise dimensions and angles

for accurate data representation.

This two-level specification approach aims to reduce the gap between spec-

ification and generated data. The second level specification offers the machine

with the necessary information to generate data aligned with the formal speci-

fications, ensuring an accurate representation of intended object characteristics

for DNN training.

In this dissertation, we undertake a comprehensive discussion of all activi-

ties involved in the framework. Focusing on the foundation of data generation

through formal specifications, we explore how the two-level formal specification

can be written to reflect distinct object characteristics and facilitate the data

generation process. To validate our method’s effectiveness, we conduct a case

study on traffic sign recognition, evaluating the workflow of specification gener-

ation. This method provides a novel perspective on the data source for DNNs,

particularly in the context of object recognition.

The subsequent sections of this dissertation are shown as follows. Section 2

serves as background information by introducing key terms and definitions in-

tegral to both deep learning and formal methods. This section aims to establish

a comprehensive background for readers, ensuring a clear understanding of the

terminology used throughout the paper. Section 3 provides a meticulous in-

CHAPTER 1. INTRODUCTION 4

troduction to our framework, offering an intricate exploration of the individual

activities of our proposed framework. Section 4 discusses the two-level specifi-

cation approach, laying out a systematic method for crafting specifications for

the purpose of enhancing both human comprehension and machine handling. In

Section 5, we concentrate on a real-world application through the presentation

of a case study of traffic sign recognition. Section 6 takes a dive into the anal-

ysis and discussion of the strengths and limitations of our proposed method.

Section 7 introduces some existing related works. Lastly, Section 8 presents a

comprehensive summary of the contributions made throughout this dissertation

and potential future research.

Chapter 2

Background

2.1 DNNs

Deep Neural Networks (DNNs) [10] constitute a powerful paradigm within the

domain of machine learning. At their core, DNNs mimic the human brain’s

structure by employing multiple layers of interconnected nodes, enabling the

model to learn intricate hierarchical representations from data. This architec-

tural depth allows DNNs to discern complex patterns and relationships in the

input data.

Mathematically, a DNN M(x) = y is a function from input data x ∈ Rn

and the predicted probability vector y ∈ Rm. The vector y would be used to

determine the final predicted decisions for some DNN tasks. The behavior of a

neural network can be expressed as a series of transformations. In specific, the

output of a single layer can be denoted as:

y = σ(Wx+ b), (2.1)

where x represents the input to the network, W the weight matrix, b the bias

vector, and σ the activation function.

For a DNN with multiple layers, the output of each layer serves as the input

to the next:

y = σ(WLσ(WL−1...σ(W1x+ b1)...+ bL−1) + bL), (2.2)

5

CHAPTER 2. BACKGROUND 6

where Wi and bi represent the weights and biases of the i-th layer, and σ is the

activation function applied element-wise.

Typically, as depicted in Figure 2.1, Deep Neural Networks (DNNs) exhibit

hierarchical structures [11]. In the computational sequence, DNNs systemati-

cally process input data layer by layer, relying on the internal parameters of the

model to generate the prediction outcome. This contrasts with conventional

software development, where developers explicitly code decision logic. DNNs

adhere to a data-driven programming paradigm, where developers concentrate

on gathering pertinent data, defining the architecture, and creating training

programs. The decision logic of a DNN is autonomously acquired through the

training process.

Figure 2.1: Hierarchical structures of DNNs

2.2 Deep learning

Deep Learning [12] represents a subset of machine learning methodologies that

specifically harnesses the capabilities of DNNs to learn intricate representations

of data.

The relationships between Deep Learning and DNNs are shown as follows.

Deep Learning, as a broader concept, encompasses the use of neural networks

with multiple layers, i.e., Deep Neural Networks (DNNs). DNNs, with their

hierarchical architecture, enable deep learning models to automatically learn

intricate representations of data through successive layers [11]. In other words,

Deep Learning involves the application of DNNs, utilizing their capacity for

CHAPTER 2. BACKGROUND 7

hierarchical feature extraction and representation learning. DNNs, in turn, are

the foundational models within the broader field of Deep Learning.

2.3 Supervised learning

Supervised Learning [1] is a foundational paradigm in machine learning where

the model is trained on a labeled dataset. In this setting, the algorithm learns to

map input data to corresponding output labels by generalizing from the provided

examples. This learning approach is particularly relevant for tasks where the

goal is to predict or classify based on historical data with known outcomes.

Supervised Learning involves minimizing a predefined loss function L by

adjusting the model parameters to optimize performance on the training set.

Mathematically, this optimization can be expressed as:

minθ
1

N

N∑
i=1

L(yi, f(xi; θ)), (2.3)

where N is the size of the training set, yi is the ground truth label for the

i-th example, f(xi; θ) is the model’s prediction, and θ represents the model

parameters.

While Supervised Learning relies on labeled datasets, there exist other learn-

ing paradigms. Unsupervised Learning, in contrast, deals with unlabeled data,

aiming to discover inherent patterns or structures within the data. Semi-

supervised learning lies between these two, incorporating both labeled and un-

labeled data for training. Each paradigm serves distinct purposes: Supervised

Learning for tasks with labeled data, Unsupervised Learning [13] for exploring

hidden structures, and Semi-Supervised Learning [14] for scenarios with limited

labeled instances.

2.4 Data set

A Dataset forms the foundational bedrock for any machine learning endeavor,

serving as the raw material upon which models are trained, tested, and eval-

uated. It is a structured collection of data instances, typically organized into

CHAPTER 2. BACKGROUND 8

input-output pairs in the context of supervised learning. A well-constructed

dataset is crucial for ensuring the generalization and robustness of machine

learning models [15].

A dataset comprises two fundamental components:

• Input Data (X): This represents the features or attributes of the instances

in the dataset. For instance, in an image classification task, each image’s

pixel values, size, and color channels constitute the input data.

• Output Labels (Y): In supervised learning, each instance in the dataset

is associated with a corresponding label or output. For the image classi-

fication example, the labels might indicate the category of the depicted

object (e.g., cat, dog).

Datasets can be categorized based on several criteria:

• Training Dataset: Used to train the machine learning model.

• Testing Dataset: Independent dataset used to evaluate the model’s per-

formance and generalization.

• Validation Dataset: An additional subset used during the training phase

to fine-tune model parameters and avoid overfitting.

• Unlabeled Dataset: Used in unsupervised learning, where the data lacks

predefined labels.

The quality and representativeness of a dataset significantly impact the per-

formance of machine learning models. Biases, insufficient diversity, or data

anomalies can lead to models that perform poorly in real-world scenarios.

2.5 Training process

The training process of DNN models is a fundamental stage in the field of

machine learning, where the model learns to recognize patterns and make pre-

dictions based on input data [16,17]. Understanding this process is crucial for

developing effective and accurate models.

CHAPTER 2. BACKGROUND 9

Key Components of DNN Training:

• Neural Network Architecture: DNNs consist of layers of interconnected

neurons, forming a complex architecture. This architecture determines

the model’s capacity to learn hierarchical features from the input data.

• Loss Function: The loss function quantifies the difference between the

model’s predictions and the actual labels in the training data. It serves as

the optimization objective during training, guiding the model to minimize

prediction errors.

• Backpropagation: Backpropagation [18] is a key optimization algorithm

in DNN training. It involves iteratively adjusting the model’s weights

and biases based on the gradients of the loss function with respect to

these parameters. This process enables the model to learn and improve

its performance over time.

• Activation Functions: Activation functions introduce non-linearities to

the model, allowing it to capture complex relationships in the data. Com-

mon activation functions include ReLU (Rectified Linear Unit) [19] and

Sigmoid [20].

• Optimization Algorithms: Various optimization algorithms, such as Stochas-

tic Gradient Descent (SGD) [21] and Adam [22], are employed to effi-

ciently update the model parameters during training, facilitating conver-

gence to a minimum of the loss function.

2.6 Formal language

Formal Language is a structured and precise system of symbols and rules used

for the unambiguous representation of information. It serves as a means of

communication between humans and, crucially, between humans and machines.

In conventional software development, formal Languages are well used for il-

lustrating the user’s requirements and/or the functionality of the program or

CHAPTER 2. BACKGROUND 10

systems [5, 6]. Many formal specification languages have been proposed and/or

applied in real development projects, such as Vienna Development Method –

Specification Language (VDM-SL) [7] and Structured Object-Oriented Formal

Language (SOFL) [8].

2.7 Formal specification

Formal specification is one of the three techniques of formal methods, the other

two are refinement, and formal verification. Some formal methods are already

used in the field of software design and development, such as VDM [23], Z [24],

Event-B [25], SCADE [26], and SOFL [8]. In contrast to other design systems,

formal specifications perform appropriate mathematical analysis to ensure cor-

rect behavior. The utilization of formal specifications can contribute to the

reliability and robustness of a system design. The use of formal specifications

offers several advantages: 1). Precision: Formal specifications leave little room

for ambiguity, providing precise guidelines for the generation of labeled data.

2). Automation: Automated processes can be employed to generate data based

on formal specifications, enhancing efficiency and consistency. 3). Verification:

The formal nature of specifications allows for rigorous verification of the gener-

ated data against the defined characteristics.

2.8 SOFL

Structured Object-Oriented Formal Language (SOFL), developed by Liu, is a

formal method integrating VDM-SL with data flow diagrams, commonly used in

software engineering. It offers a systematic approach combining object-oriented

modeling with formal specification techniques to precisely define system be-

haviors and structures. SOFL employs a three-step formal specification ap-

proach that assists in designing software systems and their evolution into object-

oriented implementations. The usage of SOFL also facilitates formal verification

through inspection and testing based on specifications.

As depicted in Figure 2.2, key components of SOFL include Conditional

CHAPTER 2. BACKGROUND 11

Data Flow Diagrams (CDFD), data flows, modules, types, and processes.

Figure 2.2: The structure of a SOFL specification

2.9 Adversarial data

Adversarial data refers to intentionally crafted input instances designed to de-

ceive machine learning models, causing them to make incorrect predictions or

classifications. The existence of adversarial data poses a significant challenge to

the robustness and reliability of DNNs.

The key factor of adversarial data is the small perturbations. Adversarial

samples often involve minimal, imperceptible changes to the input data. These

subtle modifications can cause significant shifts in the model’s predictions, while

still keeping the same result to the sense of human beings.

In mathematical terms, let x represent the original input with a ground

truth label y, and assume the prediction of DNN, M , aligns with the ground

truth label, i.e., M(x) = y. An adversarial example x′ = x + δ is crafted by

introducing a slight perturbation δ, based on specific criteria. Notably, in certain

scenarios, the DNN’s prediction of the adversarial example x′ may deviate from

the original prediction y (i.e., M(x′) = M(x+ δ) ̸= M(x)). Consequently, this

discrepancy can breach the decision boundary, leading the model astray and

resulting in incorrect decisions.

Chapter 3

The Proposed Framework

Our framework of the method for data generation provides a procedure that

is divided into five steps: Preparation, Data generation, Model training, Eval-

uation, and Adversarial data generation. Figure 3.1 illustrates the procedure

and below we discuss each step involved in the procedure, respectively. In this

section, we present the procedure by discussing the issues involved in each step.

Figure 3.1: The workflow of the method

3.1 Preparation

The first step in our methodology is the preparation stage, focusing on devel-

oping formal specifications for DNNs. Due to the inherent difference between

the logic of DNNs and conventional software, the process of writing specifica-

tions differs significantly from traditional ones as well. In conventional systems,

developers explicitly code the decision logic, whereas DNNs operate on a data-

driven programming paradigm. Hence, the developer’s primary role shifts to

gathering effective data, selecting appropriate DNN architectures, and oversee-

12

CHAPTER 3. THE PROPOSED FRAMEWORK 13

ing the training process, where the decision logic is formed implicitly through

data.

Recent studies highlight the complexities of writing formal specifications for

DNNs [27,28], especially for tasks that imitate human perception. The inherent

complexity of DNNs, characterized by multiple layers and numerous parame-

ters, complicates the task of defining their behavior through traditional formal

methods. Unlike conventional software, the behavior of DNNs is largely dictated

by the training data, making it challenging to encapsulate their functionality in

explicit rules and logical constraints inherent in formal specifications.

However, formal specifications are still important for outlining the charac-

teristics of training data. By defining desired properties and constraints, they

guide the generation and selection of training samples. In tasks like image classi-

fication, formal specifications can delineate critical object attributes like shape,

color, and texture, which the DNN is expected to recognize. Thus, formal spec-

ifications are used to indirectly shape the behavior of DNNs by influencing the

nature of their training data.

The preparation step encompasses three sub-stages: 1) extraction of at-

tributes, 2) generation of the first-level specification, and 3) generation of the

second-level specification, each of which will be elaborated in Section 4. These

stages collectively facilitate the creation of formal specifications that describe

the essential characteristics of the original data, setting the foundation for our

framework.

3.2 Data generation

After establishing formal specifications in the preparation stage, the subsequent

crucial step is data generation. This process, integral to training the DNN

effectively, involves creating a dataset that accurately mirrors the established

specifications.

When embarking on this process, the specific task addressed by the DNN is

a critical consideration. Different tasks necessitate distinct types of input data,

CHAPTER 3. THE PROPOSED FRAMEWORK 14

such as images for object recognition or text for natural language processing.

The choice of techniques, drawn from computer graphics or other relevant fields,

hinges on the nature required of data for these tasks. The complexity of types

of data makes it a challenge to propose a common method for data generation.

However, despite the difficulty of generating different kinds of data gener-

ally, we suppose the Component-based Data Generation, aligned with formal

specifications, would be a promising approach. This methodology involves con-

structing attribute repertoires, each mapping valid values pertinent to specific

domains. By progressively assigning values to attributes in accordance with

the second-level specifications, we can select corresponding components from

these repertoires. Consequently, the generated data comprises components that

collectively reflect all attribute values, adhering to the formal specifications to

form a comprehensive dataset.

The generated data should undergo rigorous scrutiny against both levels of

specifications. This step ensures that the data is not only pertinent or relevant

but also of superior quality, fitting the intended DNN training. This rigor-

ous selection and filtering process aligns the synthetic data with our training

objectives.

3.3 Model training

The next step delves into the process of training the DNN using the dataset

prepared in the earlier stages. This phase is crucial as it translates theoretical

specifications and generated data into practical machine learning applications.

First, we should discuss the criteria for selecting an appropriate DNN ar-

chitecture for the task. This choice is related to various factors, including the

complexity of the network, the specific nature of the task, and the characteris-

tics of the dataset. A well-suited architecture is instrumental in harnessing the

full potential of the generated data [11].

Following this, we explore the training process in detail. Key parameters

such as learning rate and batch size are carefully configured to optimize the

CHAPTER 3. THE PROPOSED FRAMEWORK 15

learning process. Additionally, strategies like cross-validation are employed to

bolster the model’s performance and reliability. In this phase, the generated

data, along with their corresponding ground truth labels, form the training

set that is instrumental in training the DNN. This approach ensures that the

model is not only trained on diverse and representative data but also fine-tuned

to achieve high accuracy and efficiency.

3.4 Evaluation

The evaluation step focuses on evaluating the effectiveness of the DNN model

trained using our formally generated dataset. The evaluation process is criti-

cal to assess the model’s performance and the viability of our data generation

method.

Considering different DNN applications, the criteria for evaluating the model’s

performance may include accuracy, precision, recall, and F1 score. These met-

rics provide a comprehensive understanding of how well the model recognizes

and interprets the data based on our specifications.

The test dataset, distinct from the training set, should comprise real-world

data that the model has not previously encountered. This ensures that our

evaluation genuinely reflects the model’s capability to generalize and perform

in practical scenarios.

Moreover, a comparative analysis against other models trained on conven-

tional datasets is expected to be conducted. This comparison is intended to

highlight the strengths and potential limitations of our data generation method.

3.5 Adversarial data generation

In addition to the four common procedures previously discussed, our framework

introduces a novel approach to adversarial data generation. As we discussed

above, adversarial data or adversarial examples, crafted by introducing subtle

modifications to original input data, are designed to deceive DNNs. Their gen-

eration and use are crucial for developing DNNs that are accurate, secure, and

CHAPTER 3. THE PROPOSED FRAMEWORK 16

reliable in real-world scenarios [29].

The prevailing approach in adversarial data generation involves incremen-

tally altering original input data to progressively approach and ultimately breach

the model’s decision boundary, resulting in a different prediction [30]. Our data

generation methodology, as outlined in the data generation section, is adaptable

for this purpose. Contrasting with standard training data generation, adversar-

ial data generation necessitates slight modifications to the attributes defined

in the formal specifications. For instance, adjusting the RGB values of a color

attribute or altering the value of a length attribute. Subsequently, adversarial

data is generated based on these revised specifications, challenging the DNN’s

decision-making capabilities.

Chapter 4

Two-level specification
approach

As discussed in Section 3, the proposed framework is structured into five dis-

tinct steps. Among them, the foundation of the whole workflow is the prepara-

tion step, including the extraction of attributes and the two-level specifications.

Hence, in this separate section, we will present the two-level specification ap-

proach by discussing the purpose of each level of specification and introducing a

novel methodology for their formulation. Both levels of specification are integral

to generating satisfactory data, which is essential for the effective training of

DNNs.

4.1 Extraction of attributes

Before delving into the two-level specification method, we have to illustrate the

first sub-step in the preparation step, the extraction of attributes. This process

involves sufficient observations and meticulous analysis of the original data to

identify features crucial for the DNN application. Besides, the identification of

relevant attributes requires a deep understanding of the domain and the specific

problem being addressed.

For example, for some object detection tasks, key attributes may include

shape, color, volume, texture, symbols, and their spatial relationships. Illus-

17

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 18

trating this with a small example in traffic sign recognition, the traffic sign of

Pedestrians in Figure 4.1, important attributes may include the main shape,

background color, and the graphic of the pedestrian in the middle of the sign.

Figure 4.1: The traffic sign of Pedestrians

On the other hand, in Natural Language Processing (NLP), attribute ex-

traction involves identifying text-related features like the length of the text,

vocabulary usage frequency, sentiment polarity, and linguistic patterns, essen-

tial for tasks like sentiment analysis or text classification.

Moreover, for some kinds of mathematical tasks where direct observation

is challenging, exploratory data analysis techniques become crucial for gaining

insights. Techniques like data visualization through scatter plots, histograms,

and box plots are instrumental in unveiling data relationships and distribu-

tions. Statistical measures, including mean, median, and standard deviation,

are key to understanding the central tendencies and variations of numerical

attributes. Correlation analysis is used to unearth linkages between various

attributes, and methods to determine feature importance help in identifying at-

tributes that significantly influence model predictions. Additionally, dimension

reduction techniques, such as Principal Component Analysis (PCA) [31] are

valuable for visualizing complex, high-dimensional data, assisting in discerning

its structure and identifying potential patterns or clusters.

Collaborative brainstorming sessions with subject matter experts, data an-

alysts, and domain specialists are pivotal in the attribute extraction process

as well. These discussions, blending varied expertise and insights, play a cru-

cial role in uncovering the intrinsic characteristics essential for manual attribute

extraction. By engaging in these interdisciplinary exchanges, a more compre-

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 19

hensive and nuanced understanding of relevant attributes is achieved, guiding

the extraction of the attribute process effectively.

In sum, the process of extracting attributes is an iterative one, demanding

a comprehensive understanding of both the data and its contextual problem. It

involves a blend of domain expertise, insightful analytical discussions, and the

application of exploratory data analysis techniques. This careful and repeated

refinement and validation of extracted attributes ensure their relevance and

importance in the successive stages of the framework.

4.2 Two-level specifications

Following attribute extraction, we utilize formal specifications to delineate ob-

ject characteristics. As we briefly discussed in Section 3.1, due to the distinct

logic between traditional software and DNNs, formal specifications are crafted

to indirectly influence DNN behavior by defining data characteristics.

During employing SOFL for writing these specifications, both the accurate

description of original objects and the facilitation of automatic training data

generation should be paid attention to. Hence, we provide the two-level speci-

fication method for this circumstance.

Since the specifications are crafted based on SOFL, we have to adhere to

SOFL’s syntax and rules, including focusing on key components such as Con-

ditional Data Flow Diagrams (CDFDs), data flows, modules, types, and pro-

cesses. This ensures that our formal specifications, free from the ambiguities

of informal descriptions, accurately guide the generation of training data, with

particular emphasis on utilizing SOFL to describe target data characteristics.

Specifically, the following components of SOFL are significant in describing the

characteristics of the target data in the formal specifications:

(1) Module: In complex systems, functionality is typically divided into mod-

ules in a top-down approach. This kind of division aids a systematic defini-

tion and a better contraction on different functions. However, instead of a

complex system, our method requires just one specific module to describe

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 20

the data. In SOFL, a module, demarcated by the keywords ”module”

and ”end-module,” encapsulates data and procedures. It encompasses el-

ements like constants (’const’), variables (’var’), types (’type’), behavior

identifiers (’behav’), and processes (’process’). The structure of a module,

inclusive of these keywords, is depicted in Figure 4.2.

Figure 4.2: The structure of a module

The items involved in a module are explained as follows:

• The keyword module is the symbol of the start of the module, fol-

lowed by the name of the module;

• The keyword const defines constants within the module;

• The keyword var c.specifies variable values in the module;

• The keyword type outlines data types used in the module;

• The keyword behav links to the CDFD that connect to the module;

• The keyword process details specific operations and functions in-

volved in the module;

• The keyword end module represents the end of the whole module.

(2) Type: SOFL supports a variety of data types, ranging from basic ones

like integers, floats, and characters to more complex structures such as

sets and sequences. Composed types, which are amalgamations of basic

data types, can be tailored to match the form and complexity of the data

involved in our supervised learning tasks.

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 21

(3) Process: This component describes specific functions and operations,

depicting the transformation from input to output. For example, in a

supervised learning task like object recognition, a process might evaluate

if an input image correctly identifies the target object, yielding a ’yes’ or

’no’ outcome.

(4) Pre-condition: Pre-conditions in SOFL set necessary criteria for inputs

prior to the execution of a process. They ensure that the input data meets

certain conditions.

(5) Post-condition: Conversely, post-conditions define the expected state of

data or results following the completion of a process. They can be treated

to the outcomes or consequences of executing the process, guaranteeing

that the process achieves its intended results.

To concisely summarize, we utilize some components of SOFL for precise

and thorough formal specifications. This focus on particular components aligns

with our method, enabling us to accurately depict the attributes of target data

in supervised learning scenarios.

4.2.1 First level specification

The first-level specification is designed to accurately represent the original ob-

jects’ characteristics, incorporating all extracted attributes while being compre-

hensible to human readers. It balances mathematical precision with accessible

language. For example, in traffic sign recognition, simple descriptive terms like

”Triangle”, ”Square”, and ”Circle” for shapes, and ”White”, ”Red”, and ”Yel-

low” for colors are used. The emphasis at this stage is on the accuracy of these

descriptions, reflecting the real attributes of the objects, instead of its direct

transformation to visual images. For instance, in the traffic sign of Stop in

Figure 4.3, it is expected to be described with a “Red” background attribute

and “Right octagon” shape attribute.

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 22

Figure 4.3: The traffic sign of Stop

This level of specification lays the foundation for the framework’s subse-

quent steps, including data generation and DNN model training. It provides

clear and concise object characteristics descriptions, facilitating the creation of

representative training data and effective DNN models.

To achieve better accuracy of the first level specification, collaboration with

domain experts and stakeholders to validate and refine the selection of attributes

and descriptions is essential. Their insights are critical in accurately capturing

the key characteristics of the objects relevant to the task.

Moreover, documenting the rationale behind attribute selection is vital, of-

fering clarity and building confidence in the framework, ensuring its applica-

bility and reliability across diverse tasks and domains. This process ultimately

ensures that the first-level specification effectively formalizes object characteris-

tics, balancing mathematical detail with readability, and setting the foundation

for subsequent stages in the framework.

In summary, the first level specification plays a pivotal role in formalizing

the characteristics of the original objects. By combining mathematical rigor and

intelligible natural language, it sets the foundation for generating accurate and

relevant training data for DNNs. Through collaboration with domain experts

and proper documentation, the first level specification ensures the effectiveness

and reliability of the entire framework.

4.2.2 Second level specification

The second-level specification’s role is to transform the human-readable object

characteristics in the first level specification into specific, quantifiable attributes

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 23

for data synthesis. It focuses on detailed mathematical values and parame-

ters, converting natural language descriptions into precise numerical values and

constraints. This ensures that machines can interpret and implement these

specifications effectively, facilitating efficient and accurate data generation that

mirrors the desired object characteristics.

For example, in the traffic sign recognition task, the second level specifica-

tion assigns precise dimensions to the ”Triangle”, ”Square”, and ”Circle” shapes,

specifying the exact ratios and angles to ensure faithful representation in the

generated data. Additionally, the color descriptions ”White”, ”Red”, and ”Yel-

low” are quantified in terms of RGB values or color codes, enabling the machine

to produce realistic color variations for the traffic signs. Still, for the traffic sign

of Stop, as shown in Figure 4.3, the color attribute should be described as “(190,

40, 40)” for RGB value. On the other hand, for a right polygon, we can use cos

and sin functions to calculate the location of points as shown in Algorithm 1.

Hence, we can use “sides = 8” to describe the shape of the right octagon for the

second level specification.

Algorithm 1 Calculation of points in a right polygon

Require: Number of sides of the polygon (sides), center coordinates (center),
radius of the polygon (radius)

Ensure: All points of the polygon
1: Initialize angle to 0
2: for i = 1 to sides do
3: x← center[0] + radius× cos(angle)
4: y ← center[1] + radius× sin(angle)
5: Append point (x, y) to points
6: angle← angle + 360

sides
7: end for

By providing explicit mathematical values and parameters, the second level

specification will facilitate automatic data generation on a lager scale. It stream-

lines the machine’s understanding of the desired object characteristics, reducing

ambiguity and potential errors during data synthesis.

Collaboration between domain experts and data scientists remains pivotal

in refining the second level specification. Domain experts validate the relevance

CHAPTER 4. TWO-LEVEL SPECIFICATION APPROACH 24

and accuracy of the numerical values, ensuring that they align with real-world

object properties. Data scientists verify the feasibility and implementation as-

pects of the specification, guaranteeing that the machine can seamlessly generate

data based on the provided mathematical parameters.

In summary, the second level specification complements the first level by

translating natural language descriptions into quantifiable and machine-interpretable

values. This precision-driven approach empowers the machine to generate data

with greater fidelity, contributing to the effectiveness and robustness of the en-

tire framework for formal specification-based data generation for DNNs.

The adoption of a two-level specification approach arises from the need to

strike a balance between human comprehension and machine processing effi-

ciency. If we solely rely on a one-level specification, it may become overly

complex for human readers to interpret, hindering their ability to understand

the content. Simultaneously, directly writing the specification at a too fine level

might introduce an overwhelming amount of details, increasing the risk of errors.

By employing a two-level specification strategy, we achieve a harmonious

combination of simplicity and precision. The first level specification offers an

easily understandable representation, enabling human readers to comprehend

the object characteristics effortlessly. In contrast, the second level specification

provides formal, detailed parameters for the machine to handle during data

generation. This division ensures that the specification remains manageable,

yet comprehensive enough to yield accurate and realistic data.

Overall, the two-level specification facilitates effective communication be-

tween human readers and the machine, fostering the successful application of

the formal specification-based data generation framework in deep neural net-

works.

Chapter 5

Case study

We conduct a case study to validate our formal specification method, focusing on

traffic sign recognition, a crucial aspect of autonomous driving systems [32]. Re-

cent attention has been devoted to this field, with numerous researchers propos-

ing methods for traffic sign detection and recognition [33–36]. However, the

development of deep learning methods for this task is hindered by the scarcity

of diverse and accurately labeled training data.

The dependence on large-scale, carefully labeled datasets for training accu-

rate models is a significant challenge. Complicating matters further, different

countries and regions employ distinct traffic signs, necessitating varied sets of

well-labeled data for research [34]. Figure 5.1 illustrates examples of Pedestrian

and Stop signs from different countries, highlighting the variations.

Acquiring a substantial number of traffic sign photos and accurately labeling

them is a time-consuming and labor-intensive process, impeding researchers’

ability to promptly access a comprehensive dataset. This issue underscores the

importance of exploring alternative approaches to data generation, making our

formal specification-based method a valuable solution for traffic sign recognition

tasks.

25

CHAPTER 5. CASE STUDY 26

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Pedestrians: (a), (b), (c); Stop: (d), (e), (f)

In this section, we use the details of the example of traffic sign recognition

to demonstrate our methodology, including the introduction of the data set we

used.

Data set - We utilize the Traffic Sign Recognition Database (TSRD)1

sourced from the Chinese Traffic Sign Database, published by Beijing Jiao-

tong University, as our original data set. This data set comprises 6,164 traffic

sign images, encompassing 58 sign categories such as Speed limits, Pedestrians,

and General caution. The dataset encompasses images captured under diverse

weather and lighting conditions, including instances of partial occlusion.

We have finished both levels of specifications of all the 58 categories of traffic

signs. However, due to the limitation of pages, we only take two specific traffic

signs, the Speed limit of 40 km/h and No left turn, as examples to demonstrate

the case study.

5.1 Extraction of attributes

Different from some other general items or objects, traffic signs have some com-

mon characteristics. These signs often feature simple shapes, such as circles and

triangles, alongside regular graphics and numbers. Therefore, we abstract sev-

eral key attributes to describe them, including shape, background color, content,

content color, border color, content number, font, arrow number, arrow turn

1http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

CHAPTER 5. CASE STUDY 27

smooth sign, arrow start point, arrow turn points, arrow end points, graphic

description, location, ratio, border ratio, and forbid type. In Figure 5.2, we

present two examples, the traffic signs of the speed limit of 40 km/h and no

left turn. We mainly use these two particular signs as the basis to elucidate the

significance of all the aforementioned attributes.

(a) (b)

Figure 5.2: The speed limit for 40 km/h: (a); No left turn: (b)

• Shape: The shape attribute characterizes the primary geometric form

of the traffic sign. Within our dataset of 58 distinct traffic sign classes

as indicated in Figure 5.3, only four shapes are present: Circle, Triangle,

Square, and Octagon. In our case study, the shape attribute representing

the speed limit of 40 km/h is identified as a ”Circle”.

(a) (b) (c) (d)

Figure 5.3: Shape attribute: Circle: (a), Triangle: (b), Square: (c), and Oc-
tagon: (d)

• Background color: This attribute refers to the color of the main blank

areas or the background space between the content and the border of the

traffic sign. The data set contains four predominant background colors:

White, Blue, Yellow, and Red. In the case study, the background color of

the speed limit of 40 km/h is “White”.

• Content: The content attribute refers to the core information displayed

on the traffic sign, conveying its primary purpose. Typically, traffic signs

feature numbers, graphics, or arrows as their core content. For our case

CHAPTER 5. CASE STUDY 28

study, the content attribute of the speed limit of 40 km/h corresponds to

”Number”, while the attribute of no left turn corresponds to ”Arrows”.

• Content color: In contrast to the background color, this attribute speci-

fies the color of the content parts within the traffic sign. Most traffic signs

have black or white content color. In the case study, the content attribute

of the speed limit of 40 km/h is denoted as “black”.

• Border color: The border color represents the color of the exterior part

of the traffic sign. Commonly, the border color is red, blue, or black. For

some sign categories in the data set without a border, we consider their

Border color attribute identical to “null”. In the case study, the border

color attribute of the speed limit of 40 km/h is “Red”.

• Content number: This attribute exclusively applies to traffic signs

where the content attribute is ”Number.” It directly describes the nu-

meric value displayed on the sign, such as ”40” in our case study of the

speed limit of 40 km/h.

• Font: The font attribute, similar to the content number, is also relevant

to specific traffic sign types. For those signs that have numbers or strings,

the font attribute refers to the typeface used. To maintain consistency,

only formal fonts like ”Arial” and ”Calibri” are considered. As illustrated

in Figure 5.4, the font used in these two pictures are the “Arial” and the

“Chaparral Pro Light”. Apparently, the choice of font can significantly

impact the authenticity of a traffic sign.

Figure 5.4: Example of different fonts

• Arrow number: As we mentioned in the content attribute, some traffic

signs will contain arrows as their displayed core information. For those

CHAPTER 5. CASE STUDY 29

types of signs, we have several arrow-related attributes, including arrow

number, to discuss the details of arrows. The arrow number attribute

represents the total number of arrows in the traffic sign. Based on our

data set, the possible results for the arrow number attribute are 0, 1, 2,

and 3. For instance, Figure 5.5 shows examples of traffic signs consisting

of two or three arrows. For the case study, the arrow number attribute of

the traffic sign of no left turn is 1.

Figure 5.5: Examples of traffic signs having 2 or 3 arrows

• Arrow turn smooth sign: Similar to the arrow number attribute, this

arrow turn smooth sign attribute is only meaningful for the traffic signs

whose content attribute is “Arrows”. It is used to discuss whether the

arrow turns smoothly or not. Figure 5.6 shows an example of the traffic

sign with a smooth turn. In contrast, our case study of the traffic sign of

no left turn has a “false” as its’ arrow turn smooth sign attribute.

Figure 5.6: Example of traffic sign having a smooth-turn arrow

• Arrow start point: This attribute and the following two are expected

to describe the structure of an arrow. The arrow start point is used to

demonstrate the position of the starting point of an arrow. For instance,

we can roughly divide the traffic sign into several parts to represent differ-

ent locations to show the position of points. In our case study, the arrow

start point attribute of the traffic sign of no left turn is “downright”.

CHAPTER 5. CASE STUDY 30

• Arrow turn points: The arrow turn points attribute is used to refer to

the position of points where an arrow turns. Different from the starting

point, an arrow might turn several times in a traffic sign, as the example

shown in Figure 5.7. Hence, we use the plural for this attribute. The

arrow turn points attribute for this case study of the traffic sign of no left

turn is “upright”.

Figure 5.7: Examples of a traffic sign having multiple turns

• Arrow end points: This attribute is used to represent all the positions

of the ending points of an arrow. Similar to the turning points, for some

divergent arrows, multiple ending points exist. For example, Figure 5.8

shows a divergent arrow of the traffic sign of turn left or right. However,

in our case study, the traffic sign of no left turn has only one ending point.

The corresponding result of the attribute is “upleft”.

Figure 5.8: Examples of a traffic sign having divergent arrow

• Graphic description: The graphic description attribute is used only for

some specific graphics that are difficult to describe in formal language.

For example, the traffic sign shown in Figure 5.9 has a car inside, which

can not be directly described. However, for the both two traffic signs of

our case study, the graphic description attribute should be “null”.

CHAPTER 5. CASE STUDY 31

Figure 5.9: Traffic sign of Motor vehicles only

• Location: The location attribute illustrates the position of the main

content within the sign. While most traffic signs place the main content at

the center, there are still some exceptions. In the case study, the location

attribute of the speed limit of 40 km/h is labeled as ”center”.

• Ratio: The ratio attribute quantifies the size of the main content relative

to the overall size or diameter of the traffic sign. For the case study, the

ratio attribute of the speed limit of 40 km/h is calculated as ”0.55”.

• Border ratio: Similar to the ratio attribute, the border ratio describes

the relative size of the border. However, it is often disregarded or omitted.

In Figure 5.10, the importance of the border ratio is depicted. For circular

signs, the Border ratio is derived from the inner and outer diameters of

concentric circles. In the case study, the border ratio attribute of the

traffic sign of the speed limit of 40 km/h is ”0.22”.

Figure 5.10: Example of different border ratios

• Forbid type: In our data set, some traffic signs are used to forbid specific

behaviors during driving. For instance, the traffic sign of no left turn

forbids the behavior of turning left at the place. Generally, there are

different kinds of representing methods of forbidden type in our data set,

including red oblique line, red cross, red vertical line, and black oblique

lines, as illustrated in Figure 5.11. In our case study, the forbid type

CHAPTER 5. CASE STUDY 32

attribute should be “not forbidden” for the traffic sign with the speed

limit of 40 km/h, and “red oblique line” for the traffic sign of no left turn.

Figure 5.11: Example of traffic signs with different forbid type

In sum, all attributes and corresponding values of the case study are sum-

marized in Table 5.1.

Table 5.1: The attributes of the case study

Attribute speed limit of 40 km/h no left turn

Shape Circle Circle

Background color White White

Content Number Arrows

Content color Black Black

Border color Red Red

Content number 40 Null

Font Arial, Calibri Null

Arrow number 0 1

Arrow turn smooth sign False False

Arrow start point Null Downright

Arrow turn points Null Upright

Arrow end points Null Upleft

Graphic description Null Null

Location Center Center

Ratio 0.55 0.55

Border ratio 0.22 0.2

Forbid type Not forbidden Red oblique line

Based on this case study, we demonstrate the process of selecting attributes

CHAPTER 5. CASE STUDY 33

for a specific data set. However, considering the variety of DNN tasks we are

facing, it is difficult to provide a standard to define the number of required at-

tributes to describe the targeted data. For different kinds of tasks, the attribute

selection would be different as well.

5.2 First level specification

Once the attributes have been extracted from all 58 different traffic sign classes,

the subsequent step involves writing the first level formal specification strictly in

SOFL principles. It is essential to acknowledge that real pictures of traffic signs

may differ from ideal representations due to various factors such as weather con-

ditions, sunlight, angles, and camera devices. Figure 5.12 illustrates examples

of such changes, where the color changes to a darker version in the first pic-

ture and the shape transforms from a circle to an ellipse in the second picture.

Therefore, when formulating the specification, it is crucial to accommodate this

variety. For instance, the ratio of the content and the border should be treated

as ranges of values instead of fixed ones.

Figure 5.12: Changes in color and shape of the real pictures

In our case study, for a specific traffic sign, only one function is required.

Thus, there is no need to address a complex system comprising multiple mod-

ules. Instead, a single module, named ”Traffic sign recognition,” is created.

All the essential non-basic types required in the module are declared in the

type section. Specifically, for the traffic sign recognition task, we require self-

defined types based on the extracted attributes. Among these data types, the

”TraffiaSign” serves as a composite type, encompassing fields that describe all

attributes belonging to a traffic sign. As we mentioned in the previous sub-

section, the maximum number of arrows in the data set is 3. Hence, the at-

CHAPTER 5. CASE STUDY 34

tributes related to the points of an arrow repeat three times in the composite

type declaration.

The process keyword denotes the primary operation responsible for deter-

mining if a set of input data satisfies the characteristics of the traffic signs in our

case study. Unlike image-based recognition, the input to this process consists

of data representing all attributes of a traffic sign. The objective is not to auto-

matically recognize whether the input image corresponds to a specific traffic sign

type, but rather to manually define the standards for traffic sign characteristics.

In essence, when a set of input data fulfills the requirements of this process, it

serves to describe the characteristics of the traffic sign of the speed limit of 40

km/h or no left turn. The pre-condition and post-condition establish the

conditions that must be satisfied before and after the process, respectively. For

the first level specification, no specific pre-condition is required. Hence, the pre-

condition can be “true”, representing the process will be directly run without

any constraints.

Besides, as we mentioned previously, in the first level specification, the main

purpose is ensuring the correctness of the specification to represent the charac-

teristics of the objects, rather than its direct transformation to visual images.

Therefore, we use “Circle” to describe the shape of the sign and “Red” or

“White” to describe the involved color.

As a result of the considerations outlined above, the first level formal specifi-

cation is constructed as following sub-sections. Since the whole specification for

the case study is too long and complex, we omit some parts of the specification

to illustrate the important information of the process.

5.2.1 The traffic sign of the speed limit of 40 km/h

module Traffic_sign_recognition

type
shape = set of {<Circle >, <Right triangle >, <Right

octagon >, <Square >, <Inverted triangle >,<Right

decagon >, <Right hendecagon >, <Right dodecagon

CHAPTER 5. CASE STUDY 35

>, <Right triskaidecagon >,<Right tetradecagon >,

<Right pentadecagon >, <Right hexadecagon >, <

Right heptadecagon >, <Ellipse >};

color = seq of nat0/*Three nums for R, G, and B*/

colortext = set of {<red >, <blue >, <white >, <black

>, <yellow >, <green >}

content = set of {<Number >, <Character >, <Chinese

character >, <Graphics >, <Exclamation mark >, <

Arrows >}

location = set of {<center >, <left >, <right >, <up

>, <down >}

points = set of {<center >, <left >, <right >, <up >,

<down >, <upleft >, <upright >, <downleft >, <

downright >}

font = set of {<Chaparral Pro Light >, <Arial >, <

Calibri >, <Franklin Gothic Book >, <Microsoft

JhengHei >, <Times New Roman >}

TrafficSign = composed of

sign_name: string

sign_id: nat0

sign_shape: shape

background_color: colortext

content_color: colortext

border color: colortext

sign_content: content

content_number: int

content_font: font

arrow_number: int

arrow_turn_smooth: boolean /*used for

u-turn or roundabout */

arrow1_start_point: points

arrow1_turn_points: points

arrow1_end_points: points

arrow2_start_point: points

arrow2_turn_points: points

arrow2_end_points: points

arrow3_start_point: points

arrow3_turn_points: points

arrow3_end_points: points

graphic_des: string /*used for some

specific graphics */

content_location: location

ratio: real /*used to describe the

size of the content */

border_ratio: real /*used to indicate

the width of a border */

CHAPTER 5. CASE STUDY 36

forbid: int /*0 for not forbidden , 1

oblique line , 2 cross , 3 vertical

line , 4 black oblique line */

end

process Recognition_speed_limit_40 (this_shape:

shape , this_backc: colortext , this_contc:

colortext , this_bordc: colortext , this_cont:

content , this_number: int , this_location:location

, this_font: font , this_ratio: real , this_bordr:

real , this_forbid: int , this_arrown: int ,

this_arrow_ts: boolean , this_arrow1_sp: points ,

this_arrow1_tp: points , this_arrow1_ep: points ,

..., this_graphicd: string) correct_sign:boolean

pre true

post this_shape inset {<Circle >, <Right tetradecagon

>, <Right pentadecagon >, <Right hexadecagon >,

...} and this_backc = {<white >} and this_contc =

{<black >} and this_bordc = {<red >} and this_cont

= {<Number >} and this_number = 40 and

this_location = {<center >} and 0.45 <= this_ratio

<= 0.65 and 0.18 <= this_bordr <= 0.26 and

this_font inset {<Arial >,} and this_forbid =

0 and this_arrown = 0 and this_arrow_ts = false

and this_arrow1_sp = null and this_arrow1_tp=

null and this_arrow1_ep = null and ...

this_graphicd = null and let sign_name = "

Speed_limit_40" and correct_sign = true

or ...

end process
end module

5.2.2 The traffic sign of no left turn

As we mentioned before, the traffic sign of no left turn has an arrow inside the

sign, which is not included in the sign of the speed limit of 40 km/h. Hence, we

will omit other parts and only maintain the arrow-related information in both

levels of specifications of this sign.

module Traffic_sign_recognition

type
...

process Recognition_no_left_turn (...) correct_sign:

boolean

CHAPTER 5. CASE STUDY 37

pre true

post ... and this_forbid = 1 and this_arrown = 1 and

this_arrow_ts = false and this_arrow1_sp = {<

downright >} and this_arrow1_tp = {<upright >} and

this_arrow1_ep = {<upleft >} and this_arrow2_sp =

null and ... and this_graphicd = null and let

sign_name = "No_left_turn" and correct_sign =

true

or ...

end process
end module

5.3 Second level specification

For the second level specification, we should provide detailed mathematical val-

ues and parameters. Hence, the natural language description of colors and

shapes should be changed to a more formal style. Specifically, the color should

be demonstrated as RGB values, while the shape should demonstrated as the

number of sides of a right polygon. Similar to the first level one, when formu-

lating the second level specification, it is also important to accommodate this

variety. For instance, the RGB value of a specific color or the ratio may need to

be defined within a range. Besides, with the increasing of sides, a right polygon

will look more like a circle. Therefore, in our second level specification, we use

sides = 0 or sides > 14 to represent a circle shape.

In addition to the shape and color, we also have other different descriptions

between the two level specifications. For example, in the first level specification,

we use location words like “left” or “right” to indicate the position of points of

an arrow. But in the second level one, we involve polar coordinates to precisely

manifest the location. Polar coordinates provide a two-dimensional represen-

tation of points in a plane by using two parameters: radial distance (r) and

angular displacement Θ. Unlike Cartesian coordinates that rely on the X and

Y axes, polar coordinates express the distance from the point to the origin as

the radial distance (r), and the angle between the reference direction and a line

connecting the point and the origin as angular displacement (Θ). The following

CHAPTER 5. CASE STUDY 38

equations are used to convert between Cartesian and polar coordinates:

x = r · cos(Θ)

y = r · sin(Θ)

where (x, y)are the Cartesian coordinates, r is the radial distance, and Θ is the

angle in radians.

Due to the limitation of pages, we omit some parts of the specification as

well. The following part demonstrates the second level specification of the case

study.

5.3.1 The traffic sign of the speed limit of 40 km/h

module Traffic_sign_generation

type
...

SignOutput = composed of

sign_name: string

sign_id: nat0

sign_sides: int

background_color: color

content_color: color

border_color: color

text: string

content_font: int /*1 for formal fonts

, 2 for informal fonts */

arrow_number: int

arrow_turn_smooth: boolean

arrow1_start_point: points_polar

arrow1_turn_points: points_polar

arrow1_end_points: points_polar

...

graphic_des: string

content_location: location

size: real /*used to describe the size

of the content */

border_size: real /*used to indicate

the width of a border */

forbid: int

end

var radius = 250

CHAPTER 5. CASE STUDY 39

process Generation_speed_limit_40 (correct_sign:

boolean , traffic_sign_name: string , this_shape:

shape , backcolor: colortext , contcolor: colortext

, bordcolor: colortext ,this_backc: color ,

this_contc: color , this_bordc: color , this_cont:

content ,this_number: int , this_location:location ,

this_ratio: real , contfont: font , this_bordr:

real , this_forbid: int , this_arrown: int ,

this_arrow_ts: boolean , this_arrow1_sp: points ,

..., this_graphicd: string) this_sign: SignOutput

pre correct_sign = true and traffic_sign_name = "

Speed_limit_40"

post this_shape inset {<Circle >, ...} and let sides

= 0 or sides >= 14 and backcolor = {<white >} and

190 <= this_backc (1) <= 255 and 190 <= this_backc

(2) <= 255 and 190 <= this_backc (3) <= 255 and

contcolor = {<black >} and 0 <= this_contc (1) <=

70 and 0 <= this_contc (2) <= 70 and 0 <=

this_contc (3) <= 70 and bordcolor = {<red >} and

130 <= this_bordc (1) <= 255 and 0 <= this_bordc

(2) <= 80 and 0 <= this_bordc (3) <= 80 and

this_cont = {<Number >} and this_number = 40 and

let text = "40" and this_location = {<center >}

and 0.45 <= this_ratio <= 0.65 and let int (0.45 *

2 * radius) <= size <= int (0.65 * 2 * radius)

and 0.18 <= this_bordr <= 0.26 and let int (0.18 *

radius) <= border_size <= int (0.26 * 2 * radius

) and contfont inset {<Arial >, ...} and this_font

= 1 and this_sign = mk_TrafficSign(

traffic_sign_name , 3, sides ,this_backc ,

this_contc , this_bordc , text , this_font ,

this_arrown , this_arrow_ts , this_arrow1_sp ,

this_arrow1_tp , ..., this_graphicd , this_location

, size , border_size , this_forbid)

end process
end module

5.3.2 The traffic sign of no left turn

module Traffic_sign_generation

type
...

process Generation_no_left_turn (...) this_sign:

SignOutput

CHAPTER 5. CASE STUDY 40

pre correct_sign = true and traffic_sign_name = "

No_left_turn"

post ... and this_arrown = 1 and this_arrow_ts =

false and this_arrow1_sp= {<downright >} and

arrow1_sp = {[int (0.5 * size), 315]} and

this_arrow1_tp = {<upright >} and arrow1_tp = {[

int (0.5 * size), 45]} and this_arrow1_ep = {<

upleft >} and arrow1_ep = {[int (0.5 * size), 135]}

and this_sign = mk_TrafficSign(traffic_sign_name

, 11, sides , this_backc , this_contc , this_bordc ,

null , null , this_arrown , this_arrow_ts ,arrow1_sp ,

arrow1_tp , arrow1_ep , null , null , null , null ,

null , null , null , this_location , size ,

border_size , this_forbid)

end process
end module

Chapter 6

Discussion

This research primarily concentrates on the method of drafting two level spec-

ifications. Hence, it is crucial to evaluate the performance of the method. In

this section, we aim to explore two key aspects: 1). the ability of the drafted

specifications to precisely describe the characteristics of objects, and 2). the ef-

fectiveness of the two-level specification approach in facilitating the automation

of data generation. We still use the case study in Section 5 to demonstrate the

performance.

6.1 Precision of description

In order to evaluate whether our SOFL specification can clearly define the char-

acteristics of the traffic sign of the speed limit of 40 km/h, we conducted a

survey. This survey comprises 20 pictures that were manually generated based

on selected sets of data according to the formal specification.

We prepared 20 different sets of data, 10 of them satisfy the definition of

the specification while the other 10 sets do not. As we discussed previously,

considering the influence of weather, sunlight, angle, and camera devices, the

actual picture of a traffic sign may be different from the ideal picture. That is

why when we generate the SOFL formal specification, we use ranges or sets to

the attributes to consider more variety. The following four cases can serve as

typical examples of all the 20 sets of selected data.

41

CHAPTER 6. DISCUSSION 42

a.Case a:
side = 0 and this_backc (1) = 255 and this_backc (2) =

255 and this_backc (3) = 255 and this_contc (1) = 0

and this_contc (2) = 0 and this_contc (3) = 0 and

this_bordc (1) = 237 and this_bordc (2) = 28 and

this_bordc (3) = 36 and this_cont = {<Number >} and

this_number = 40 and this_location = {<Center >} and

this_ratio = 0.5 and this_bordr = 0.23 and

this_font = {<Arial >} and this_forbid = 0 and

this_arrown = 0 and this_arrow_ts = false and

this_arrow1_sp = null and this_arrow1_tp= null and

this_arrow1_ep = null and this_arrow2_sp = null and

this_arrow2_tp = null and this_arrow2_ep = null

and this_arrow3_sp = null and this_arrow3_tp = null

and this_arrow3_ep = null and this_graphicd = null

b.Case b:
side = 0 and this_backc (1) = 190 and this_backc (2) =

190 and this_backc (3) = 190 and this_contc (1) = 30

and this_contc (2) = 30 and this_contc (3) = 30 and

this_bordc (1) = 150 and this_bordc (2) = 40 and

this_bordc (3) = 40 and this_cont = {<Number >} and

this_number = 40 and this_location = {<Center >} and

this_ratio = 0.5 and this_bordr = 0.23 and

this_font = {<Arial >} and this_forbid = 0 and

this_arrown = 0 and this_arrow_ts = false and

this_arrow1_sp = null and this_arrow1_tp= null and

this_arrow1_ep = null and this_arrow2_sp = null and

this_arrow2_tp = null and this_arrow2_ep = null

and this_arrow3_sp = null and this_arrow3_tp = null

and this_arrow3_ep = null and this_graphicd = null

c.Case c:
side = 0 and this_backc (1) = 255 and this_backc (2) =

255 and this_backc (3) = 255 and this_contc (1) = 0

and this_contc (2) = 0 and this_contc (3) = 0 and

this_bordc (1) = 237 and this_bordc (2) = 28 and

this_bordc (3) = 36 and this_cont = {<Number >} and

this_number = 40 and this_location = {<Center >} and

this_ratio = 0.5 and this_bordr = 0.05 and

this_font = {<Chaparral Pro Light >} and this_forbid

= 0 and this_arrown = 0 and this_arrow_ts = false

and this_arrow1_sp = null and this_arrow1_tp= null

and this_arrow1_ep = null and this_arrow2_sp = null

and this_arrow2_tp = null and this_arrow2_ep =

null and this_arrow3_sp = null and this_arrow3_tp =

null and this_arrow3_ep = null and this_graphicd =

null

CHAPTER 6. DISCUSSION 43

d.Case d:
side = 4 and this_backc (1) = 255 and this_backc (2) =

255 and this_backc (3) = 255 and this_contc (1) = 0

and this_contc (2) = 0 and this_contc (3) = 0 and

this_bordc (1) = 63 and this_bordc (2) = 72 and

this_bordc (3) = 204 and this_cont = {<Number >} and

this_number = 40 and this_location = {<Center >} and

this_ratio = 0.25 and this_bordr = 0.25 and

this_font = {<Calibri >} and this_forbid = 0 and

this_arrown = 0 and this_arrow_ts = false and

this_arrow1_sp = null and this_arrow1_tp= null and

this_arrow1_ep = null and this_arrow2_sp = null and

this_arrow2_tp = null and this_arrow2_ep = null

and this_arrow3_sp = null and this_arrow3_tp = null

and this_arrow3_ep = null and this_graphicd = null

Among these four sets of data, cases a and b satisfy the definition of the

specification while cases c and d do not. Specifically, case a is the ideal situation

of the case study; case b tries to simulate the traffic sign photographed in a

low light environment; case c mainly violates the requirements of the font and

the border ratio based on the formal specification; case d mainly violates the

requirements of the number, the shape, and the color attributes. Figure 6.1

shows the visualized pictures that are manually generated based on each case.

Figure 6.1: Visualization of cases a, b, c, and d

After the selection of all 20 sets of data and the generation of all pictures

based on them, shown in Figure 6.2, we conducted the survey among 13 subjects.

Limited by capital, time, and human resources, we only organize the survey in

our lab. However, we considered the diversity of our subjects to guarantee the

impartiality of our survey. Among all the members in our lab, we have males

and females; Chinese, Japanese, and Bengali; Ph.D. students, master’s students,

and research students.

CHAPTER 6. DISCUSSION 44

Figure 6.2: Generated pictures based on the selected sets

According to the result of the survey, the pictures of the cases that satisfy

the requirements of the formal specification are treated as pictures of the traffic

signs of the speed limit of 40 km/h. In the meantime, the pictures of cases that

do not satisfy the formal specification are not likely to be recognized as specific

traffic signs. This result indicates that the formal specification can be used to

describe the characteristics of the traffic signs that are likely to help generate

effective training data for DNNs.

6.2 Facilitation of automatic data generation

The primary objective of the two-level specification method is to reduce the

gap between formal specification and data generation, enabling more efficient

and accurate training of deep neural networks (DNNs), as it facilitates the clear

definition of object characteristics while providing precise values and parameters

for data generation.

To validate the effectiveness of our approach, we present an example demon-

strating how our two-level specification method enables the generation of labeled

training data for traffic sign recognition. In this example, we carefully select a

specific set of data that satisfies the requirements of the first-level specification

for a traffic sign depicting a speed limit of 40 km/h. The selected set of data is

shown as follows:

CHAPTER 6. DISCUSSION 45

this_shape = {<Circle >} and this_backc = {<White >}

and this_contc = {<Black >} and this_bordc = {<Red

>} and this_cont = {<Number >} and this_number = 40

andthis_location = {<Center >} and this_ratio=

0.55 and this_bordr = 0.22 and this_font= {<Arial

>} and this_forbid = 0 and this_arrown = 0 and

this_arrow_ts = false and this_arrow1_sp = null

and this_arrow1_tp = null and this_arrow1_ep= null

and this_arrow2_sp = null and this_arrow2_tp =

null and this_arrow2_ep = null and this_arrow3_sp

= null and this_arrow3_tp = null and

this_arrow3_ep = null and this_graphicd = null

These data servers as the input data of the first level specification. As we

discussed, these data can be mapped to each one of the extracted attributes.

Table 6.1 manifests the relationship between the selected data and the corre-

sponding attributes.

Next, we leverage the second level specification to transform these selected

data into precise values, ensuring that each detail is accurately represented.

This meticulous process guarantees that the generated training data aligns with

the formal specifications and meets the desired criteria for robust DNN training.

Specifically, the RGB values for white, black, and red in our example are (245,

245, 245), (20, 20, 20), and (237, 28, 36), respectively. Based on the second

level specification, the transformed parameters are illustrated as follows:

this_sign = mk_TrafficSign(traffic_sign_name , 3,

0, (245, 245, 245), (20, 20, 20), (237, 28,

36), 40, 1, 0, false , null , null , null , null ,

null , null , null , null , null , null , {<Center

>}, int (0.55 * 2 * radius), int (0.22 * 2 *

radius), 0)

To implement the data generation process, we employ Python programming

language along with the PIL (Python Imaging Library) package. This combina-

tion allows us to efficiently create high-quality images of the traffic signs based

on the detailed attribute values derived from the second-level specification. The

generated result is shown in Figure 6.3.

CHAPTER 6. DISCUSSION 46

Table 6.1: Input data of first level specification and corresponding attributes

Attribute Input data Corresponding values

Shape this shape {Circle}

Background color this backc {White}

Content this cont {Number}

Content color this contc {Black}

Border color this bordc {Red}

Content number this number 40

Font this font {Arial}

Arrow number this arrown 0

Arrow turn smooth sign this arrow ts False

Arrow start point this arrow1 sp, ... Null

Arrow turn points this arrow1 tp, ... Null

Arrow end points this arrow1 ep, ... Null

Graphic description this graphicd Null

Location this location Center

Ratio this ratio 0.55

Border ratio this bordr 0.22

Forbid type this forbid 0

Figure 6.3: Example of generated result

By comparing the resulting images with the original traffic sign requirements,

we assess the performance of our two-level specification approach. This example

serves as a practical demonstration of our method’s potential to bridge the gap

between formal specifications and data generation, paving the way for more

CHAPTER 6. DISCUSSION 47

effective and precise DNNs training in various domain-specific applications.

However, our method still exhibits certain limitations. Particularly when

confronted with intricate graphics akin to the one illustrated in Figure 5.9, we

apply the graphic description attribute as a means to encapsulate the complex

image. It is because of the granularity of current specifications, which struggles

to comprehensively depict such intricate graphics. On the other hand, striking a

balance between granularity and precision of the specification is critical. Intro-

ducing more intricate attributes tailored to such complex graphics could lead to

unwieldy composed type definitions, rendering the specification more intricate

and less intuitive. Moreover, these specific attributes might not hold relevance

for the majority of other traffic signs within the data set, potentially inundating

the specification with needless verbosity.

To solve this problem, we must find a delicate equilibrium or a balance

between the granularity of specification, which outlines the attributes, and the

degree of detail required for an accurate description. A refined balance will not

only optimize the precision of the specification but also streamline its usability

and applicability across various traffic sign instances. This refinement process

holds the key to addressing the challenge of accommodating complex visuals

within the confines of our specification framework.

Chapter 7

Related work

While research on Deep Neural Networks (DNNs) has garnered significant at-

tention, only a scant amount of literature has delved into the potential of for-

mal specifications and methods to enhance the training and testing of neural

networks. Sanjit A. Seshia and Ankush Desai et al. [27] approached the DNN

scenario as a constituent within an extensive application-specific system. Rec-

ognizing the intricacies of formulating formal specifications for DNN tasks, their

focus lay on an approach that comprehensively encapsulated the entire system’s

specifications. Similarly, Sanjit A. Seshia and Dorsa Sadigh et al. [28] scruti-

nized the challenges of AI verification within the purview of formal methods

and their underlying principles. Sumathi Gokulanathan et al. [37] championed

formal verification to streamline neural networks, reduce the size of DNNs with-

out compromising precision. In addition, Arvid Jakobsson et al. [38] conducted

a comprehensive survey spanning pivotal publications on formal methods and

software engineering pertaining to DNNs. Russel, Dewey, and Tegmark [39], in

their white paper, reiterated the criticality of formal verification and security

in all AI systems. Their proposition underscores the importance of AI sys-

tems, including deep learning systems, being amenable to behavior, design, and

specification verification.

In our research, the objective of the two-level specification method is to apply

the specifications for both data generation and human understanding. On the

48

CHAPTER 7. RELATED WORK 49

other hand, some researchers also focus on the research to analyze and under-

stand specifications. For instance, Li and Liu et al. [40, 41] constructed knowl-

edge graphs to SOFL specification and proposed a method for requirements-

related fault prevention.

Turning to the domain of traffic sign recognition, a myriad of studies exist.

For instance, F. Zaklouta and B. Stanciulescu et al. [33] evaluated k-d trees, ran-

dom forests, and support vector machines (SVMs) for traffic-sign classification

performance. J. Stallkamp et al. [42] benchmarked traffic sign recognition algo-

rithms by juxtaposing human and state-of-the-art machine learning algorithm

performances. However, a crucial gap persists in these studies: the absence of

a discourse around enhancing DNN efficiency via formal methods.

Chapter 8

Conclusion & Future work

In this dissertation, we propose a framework for generating training data for

supervised learning based on SOFL formal specifications, trying to provide a

solution to the difficulty of obtaining well-labeled training data. In particular,

we propose a two-level specification method to describe the characteristics of

objects and facilitate automatic data generation. Specifically, we discuss the

purpose of both the two levels of specifications and the method of writing them,

respectively. In addition, we provide a case study of the traffic sign recogni-

tion task to demonstrate the process of extracting attributes and writing both

the two level specifications. Around the case study, we discuss the approaches

of manually extracting the attributes of the objects to be identified and defin-

ing the characteristics by SOFL specifications. Besides, we apply Python and

the PIL package for a data generation example to manifest the feasibility of

data generation based on the two-level specifications. This example illustrates

that our method facilitates the clear definition of object characteristics while

providing precise values and parameters for data generation.

Our research offers several future directions for progression. Firstly, having

successfully generated formal specifications characterizing object attributes, our

subsequent step involves the automated production of training data for DNN

models. Hence, we anticipate formulating an effective approach for data gen-

eration based on our specifications. In the meantime, even though our efforts

50

CHAPTER 8. CONCLUSION & FUTURE WORK 51

to encompass variability through the inclusion of ranges and sets have yielded

promising results, the results still seem too ideal. Our data generation process

will delve into additional considerations, such as image skewing and blurring,

to better reflect real-world scenarios.

Secondly, our current case study exclusively spotlights traffic signs, which

consist of relatively simple images with a few components. Therefore, our focus

will evolve toward exploring the feasibility of extending our method to intricate

data types. Besides, as we discussed the challenge of accommodating complex

graphics within current specification granularity, we are determined to strike a

refined balance between specification granularity and precise characterization.

Moreover, we expect to conduct an extensive experiment to comprehensively

validate the performance of our method. Limited by the progress of our research

so far, such work cannot be done. Bur future strides related to automatic data

generation will pave the way for a systematic evaluation. Our plan involves

comparing our framework against existing benchmarks, thus ensuring a robust

and comparative assessment.

Bibliography

[1] Singh, A., Thakur, N. & Sharma, A. A review of supervised machine learn-

ing algorithms. 2016 3rd International Conference On Computing For Sus-

tainable Global Development (INDIACom). pp. 1310-1315 (2016)

[2] Hirschberg, J. & Manning, C. Advances in natural language processing.

Science. 349, 261-266 (2015)

[3] Jiao, L. & Zhao, J. A survey on the new generation of deep learning in

image processing. IEEE Access. 7 pp. 172231-172263 (2019)

[4] Liang, M. & Hu, X. Recurrent convolutional neural network for object

recognition. Proceedings Of The IEEE Conference On Computer Vision

And Pattern Recognition. pp. 3367-3375 (2015)

[5] Woodcock, J., Larsen, P., Bicarregui, J. & Fitzgerald, J. Formal meth-

ods: Practice and experience. ACM Computing Surveys (CSUR). 41, 1-36

(2009)

[6] Lamsweerde, A. Formal specification: a roadmap. Proceedings Of The Con-

ference On The Future Of Software Engineering. pp. 147-159 (2000)

[7] Riaz, S., Afzaal, H., Imran, M., Zafar, N. & Aksoy, M. Formalizing mobile

ad hoc and sensor networks Using VDM-SL. Procedia Computer Science.

63 pp. 148-153 (2015)

[8] Liu, S., Offutt, A., Ho-Stuart, C., Sun, Y. & Ohba, M. SOFL: A formal

engineering methodology for industrial applications. IEEE Transactions On

Software Engineering. 24, 24-45 (1998)

52

BIBLIOGRAPHY 53

[9] Xia, Y. & Liu, S. A Framework of Formal Specification-Based Data Genera-

tion for Deep Neural Networks. Proceedings Of The 2023 12th International

Conference On Software And Computer Applications. pp. 273-282 (2023),

https://doi.org/10.1145/3587828.3587869

[10] Samek, W., Montavon, G., Lapuschkin, S., Anders, C. & Müller, K. Ex-

plaining deep neural networks and beyond: A review of methods and ap-

plications. Proceedings Of The IEEE. 109, 247-278 (2021)

[11] Alzubaidi, L., Zhang, J., Humaidi, A., Al-Dujaili, A., Duan, Y., Al-

Shamma, O., Santamarıa, J., Fadhel, M., Al-Amidie, M. & Farhan, L.

Review of deep learning: Concepts, CNN architectures, challenges, appli-

cations, future directions. Journal Of Big Data. 8 pp. 1-74 (2021)

[12] Hinton, G. & Salakhutdinov, R. Reducing the dimensionality of data with

neural networks. Science. 313, 504-507 (2006)

[13] Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K., Elkhatib, Y., Hussain,

A. & Al-Fuqaha, A. Unsupervised machine learning for networking: Tech-

niques, applications and research challenges. IEEE Access. 7 pp. 65579-

65615 (2019)

[14] Zhu, X. Semi-supervised learning literature survey. (University of

Wisconsin-Madison Department of Computer Sciences,2005)

[15] Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S.,

Mujumdar, S., Afzal, S., Sharma Mittal, R. & Munigala, V. Overview and

importance of data quality for machine learning tasks. Proceedings Of The

26th ACM SIGKDD International Conference On Knowledge Discovery &

Data Mining. pp. 3561-3562 (2020)

[16] Strom, N. Scalable distributed DNN training using commodity GPU cloud

computing. Sixteenth Annual Conference Of The International Speech

Communication Association. (2015)

BIBLIOGRAPHY 54

[17] Ruder, S. An overview of gradient descent optimization algorithms. ArXiv

Preprint ArXiv:1609.04747. (2016)

[18] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by

back-propagating errors. Nature. 323, 533-536 (1986)

[19] Agarap, A. Deep learning using rectified linear units (relu). ArXiv Preprint

ArXiv:1803.08375. (2018)

[20] Han, J. & Moraga, C. The influence of the sigmoid function parameters on

the speed of backpropagation learning. International Workshop On Artifi-

cial Neural Networks. pp. 195-201 (1995)

[21] Bottou, L. Large-scale machine learning with stochastic gradient descent.

Proceedings Of COMPSTAT’2010: 19th International Conference On Com-

putational StatisticsParis France, August 22-27, 2010 Keynote, Invited And

Contributed Papers. pp. 177-186 (2010)

[22] Kingma, D. & Ba, J. Adam: A method for stochastic optimization. ArXiv

Preprint ArXiv:1412.6980. (2014)

[23] Jones, C. Systematic software development using VDM. Prentice Hall In-

ternational Series In Computer Science. (1990)

[24] Spivey, J. Understanding Z: a specification language and its formal seman-

tics. (Cambridge University Press,1988)

[25] Abrial, J., Butler, M., Hallerstede, S., Hoang, T., Mehta, F. & Voisin, L.

Rodin: an open toolset for modelling and reasoning in Event-B. Interna-

tional Journal On Software Tools For Technology Transfer. 12, 447-466

(2010)

[26] Berry, G. SCADE: Synchronous design and validation of embedded con-

trol software. Next Generation Design And Verification Methodologies For

Distributed Embedded Control Systems. pp. 19-33 (2007)

BIBLIOGRAPHY 55

[27] Seshia, S., Desai, A., Dreossi, T., Fremont, D., Ghosh, S., Kim, E., Shiv-

akumar, S., Vazquez-Chanlatte, M. & Yue, X. Formal specification for deep

neural networks. International Symposium On Automated Technology For

Verification And Analysis. pp. 20-34 (2018)

[28] Seshia, S., Sadigh, D. & Sastry, S. Toward verified artificial intelligence.

Communications Of The ACM. 65, 46-55 (2022)

[29] Aldahdooh, A., Hamidouche, W., Fezza, S. & Déforges, O. Adversarial ex-

ample detection for DNN models: A review and experimental comparison.

Artificial Intelligence Review. 55, 4403-4462 (2022)

[30] Yuan, X., He, P., Zhu, Q. & Li, X. Adversarial examples: Attacks and

defenses for deep learning. IEEE Transactions On Neural Networks And

Learning Systems. 30, 2805-2824 (2019)

[31] Jolliffe, I. & Cadima, J. Principal component analysis: a review and recent

developments. Philosophical Transactions Of The Royal Society A: Mathe-

matical, Physical And Engineering Sciences. 374, 20150202 (2016)

[32] Møgelmose, A. Visual analysis in traffic & re-identification. (Aalborg Uni-

versitetsforlag,2015)

[33] Zaklouta, F. & Stanciulescu, B. Real-time traffic-sign recognition using tree

classifiers. IEEE Transactions On Intelligent Transportation Systems. 13,

1507-1514 (2012)

[34] Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M. & Igel, C. Detection

of traffic signs in real-world images: The German Traffic Sign Detection

Benchmark. The 2013 International Joint Conference On Neural Networks

(IJCNN). pp. 1-8 (2013)

[35] Lillo-Castellano, J., Mora-Jiménez, I., Figuera-Pozuelo, C. & Rojo-Álvarez,

J. Traffic sign segmentation and classification using statistical learning

methods. Neurocomputing. 153 pp. 286-299 (2015)

BIBLIOGRAPHY 56

[36] Zhu, Y., Zhang, C., Zhou, D., Wang, X., Bai, X. & Liu, W. Traffic sign de-

tection and recognition using fully convolutional network guided proposals.

Neurocomputing. 214 pp. 758-766 (2016)

[37] Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C. & Katz, G. Sim-

plifying neural networks using formal verification. NASA Formal Methods

Symposium. pp. 85-93 (2020)

[38] Hains, G., Jakobsson, A. & Khmelevsky, Y. Formal methods and software

engineering for DL. Security, safety and productivity for DL systems de-

velopment. ArXiv Preprint ArXiv:1901.11334. (2019)

[39] Russell, S., Dewey, D. & Tegmark, M. Research priorities for robust and

beneficial artificial intelligence. Ai Magazine. 36, 105-114 (2015)

[40] Li, J., Liu, S., Liu, A. & Huang, R. Knowledge graph construction for SOFL

formal specifications. International Journal Of Software Engineering And

Knowledge Engineering. 32, 605-644 (2022)

[41] Li, J. & Liu, S. Requirements-related fault prevention during the transfor-

mation from formal specifications to programs. IET Software. (2023)

[42] Stallkamp, J., Schlipsing, M., Salmen, J. & Igel, C. Man vs. computer:

Benchmarking machine learning algorithms for traffic sign recognition.

Neural Networks. 32 pp. 323-332 (2012)

