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With the widespread application of software in various fields such as industry, 
finance and healthcare, it has had a profound impact on human life. As developers 
seek to meet customer demands for software functionality, the corresponding 
software becomes larger and more complex. Defect prediction plays an important 
role in development to ensure the quality and reliability of software. If this 
technology can effectively predict potential defects in software modules during the 
early stages of development, it will help group members allocate resources to 
address potential failures in the software, thus significantly resolving issues of 
time and cost associated with testing. However, these are only suitable for 
quantitative analysis of specific projects and also lack an understanding of 
program syntax and semantics. 

Defect prediction relies on historical data from the software to build a model that 
predicts whether a defect exists in a module of the current project. Previous 
methods primarily utilized code metrics (static and process metrics) with 
statistical properties extracted from historical data as manual features, which 
were then fed into traditional machine-learning algorithms. Recently, some 
researchers have started to focus on capturing semantic features from code by deep 
learning methods to overcome the challenge that code metrics do not generalize 
well to other projects. Although these methods for defect prediction have been 
proposed, the performance of the implementations is not satisfactory. This is 
because these methods do not extract enough information from the software. To 
capture valid information from the code to improve the performance of the model, 
we need to focus on the following issues: (1) how to effectively exploit the 
complementary advantages of static metrics designed to measure the complex 
properties of code and high-level semantic features derived from code based on DL. 
(2) how to abstractly represent the syntax and semantics of code through semantic 
graphs. (3) how to leverage transfer learning to reduce the variability between 
project data for generalization purposes.  

To address the above three key issues, this dissertation accordingly proposes 
three different solutions to improve the performance of defect prediction, as 
follows: 

(1) As the complexity of software makes programs difficult to understand, 
appropriate representations that capture features from different levels of 



abstraction in the code can effectively represent the information in the code. 
We introduce Gated Homogeneous Fusion Network (GHFNet) for defect 
prediction, combining high-level semantic feature extraction and weighted 
static feature extraction. Through the mechanism of homogeneous gating 
fusion, weights are adaptively assigned to the two types of features based on 
the correlation of these features to form fused features for defect prediction in 
the code. Experiment results show that the proposed algorithm learns multiple 
levels of features efficiently and outperforms the reference algorithm for defect 
prediction.  

(2) Some researchers have leveraged deep learning (DL) to learn 
semantic features from the abstract syntax tree to identify potential defects. 
However, they directly serialize the nodes in the abstract syntax tree to form a 
sequence as DL input, ignoring the structural information of the tree. To solve 
the above problem, we propose a property-enhanced lightweight graph (PLG) 
based on an abstract syntax tree (AST) reflecting structural information in the 
source code. The PLG, which retains nodes related to program semantics, is 
more lightweight than the AST as well as enhances the strength of the 
connection between leaf nodes and the parent nodes of semantically stronger 
attributes. PLG is expected to significantly reduce the complexity of the 
original tree and enhance the attribute relationships between nodes. Moreover, 
based on PLG, we also develop a graph representation-based learning system 
to facilitate graph neural networks in defect prediction. The experiment results 
show that the proposed model has significant improvements for reference 
methods in several Java repositories.  

(3) A deep learning system (DLS) developed based on one software project 
for defect prediction may well be applied to the related code on the same project 
but is usually difficult to be applied to new or unknown software projects. To 
address this problem, we propose a Transferable Graph Convolutional Neural 
Network (TGCNN) that can learn defects from the lightweight semantic graphs 
of code and transfer the learned knowledge from the source project to the target 
project. We discuss how the semantic graph is constructed from code; how the 
TGCNN can learn from the graph; and how the learned knowledge can be 
transferred to a new or unknown project. We also conduct a controlled 
experiment to evaluate our method. The result shows that despite some 
limitations, our method performs considerably better than existing methods. 

 


