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Chapter 1

Introduction

1.1 Background

Dynamic characteristics such as velocity, displacement and strain can effectively
indicate working conditions of machines in factories [1-4] and stability of engineering
structures such as bridges and buildings [5—8]. Dynamic analysis plays an important role
in structure health monitoring [9] [10], fault detection [11] [12] and service life prediction
that can greatly reduce maintenance costs and improve production efficiency.

Effective dynamic analysis requires high-accuracy, high-robustness and high-speed
signal capturing and processing. High accuracy guarantees accurate analysis results for
further judgment. High robustness provided stable output regardless of changing working
conditions. High speed enables long-term and real-time state monitoring that is important
to predict and avoid accidents in time. However, limited by complicated structures and
different working environments of measured objects, it still keeps challenging to simulta-
neously meet above mentioned three requirements with an unified method.

Current methods for dynamic measurement can be mainly divided into two cate-
gories by their installation requirements: contact-sensor-based and non-contact-sensor-
based approaches. Contact-sensor-based methods, such as strain gauges, velometers, and
accelerometers, are directly installed on objects to be observed. Strain gauges [13] [14]

installed on objects capture strain signals caused by dynamic moving, which can then be
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easily converted into displacements. Velometers [15] output velocity signals that are lin-
early proportional to the velocities of target objects, based on the principle of electromag-
netic induction. Accelerometers [16—18] are the most popular sensors for contact sensor-
based measurements. Acceleration values become more sensitive in higher frequency
ranges, and accelerometers are suitable for monitoring the vibrations of fast-vibrating ob-
jects with high precision and sensitivity. In recent years, microelectromechanical system
accelerometers [19-21] have become popular for structural health monitoring. Most of
these accelerometers are inexpensive and designed for real-time long-distance operations
that utilize wireless sensor networks. These contact-type sensors can provide accurate
and robust dynamic signals; however, their installation is generally time-consuming, and
their maintenance costs are high.

Non-contact-sensor-based methods are mainly based on optical sensors. Laser
Doppler vibrometers [22-24] can obtain vibration signals by calculating the Doppler
shift of a laser beam reflected from a target vibrating object. They are highly accurate
and sensitive for repeatable measurements in the frequency range of 0-300 kHz. How-
ever, they are easily affected by speckle noise and involve cumbersome intermittent mea-
surements. Vision-based solutions are popular for vibration measurements because of
their easy installation and non-contact monitoring. Depth cameras, including infrared
cameras [25] [26] and binocular cameras [27] [28] directly measure the actual distances
between cameras and vibrating objects and convert their time-changing distance into dis-
placement amplitudes. Typical cameras do not rely on distance calculation; instead, im-
age displacements between adjacent frames are computed using various computer vision
algorithms, such as template matching [29] [30] , optical flow [31] [32], and digital im-
age correlation [33] [34]. Video-based solutions require considerable memory for data
storage and time-intensive data processing. Moreover, their frame rates are often limited
to tens of frames per second, and most of them provide dynamic measurement in a low

frequency range within tens of hertz.
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To realize higher-frequency-range measurement, high-speed vision systems have
been developed to measure dynamic signals in a high frequency range. High-speed vision
systems [35-37] have been developed to measure dynamic signals in a high frequency
range. Compared with standard video formats at low frame rates, high-speed vision sys-
tems can execute video processing for HFR images at a high frame rate of hundreds or
thousands of frames per second, enabling dynamic measurements at a frequency of 500
Hz or higher. However, captured HFR images can only be displayed in slow motion to
operators on an offline computer display; thus there is a demand for further real-time
processing and visualization of high-speed information for more intuitive and widely ap-

plications.

1.2 Concept of the research

Capture High-frame-rate Video by high-speed Camera
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Figure 1.1: Concept overview of this study.

In this study, we propose a novel concept called High-frame-rate(HFR)-video-based
software sensor that combines high-speed digital image correlation (DIC) with real-time

dynamic analysis to analyze high-speed and micro movements happening at dozens or
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hundreds of Hz that cannot be directly seen by the human eye.

Figure 1.1 shows the concept of HFR-video-based software sensor that mainly con-
sists of three steps: High-frame-rate (HFR) video capturing, high-speed DIC calculation
and real-time dynamic analysis.

High-speed camera working at hundreds of fps can comprehensively sample motion
information of fast-moving objects with a high sample frequency. However, huge image
data also brings challenges in real-time image processing that requires computer vision
algorithms must work within millisecond-level time.

To address this challenge, I develop GPU-based DIC algorithms that parallelize a
batch of DIC calculation by the strong GPU platform to estimate velocity values of mul-
tiple regions simultaneously in milliseconds. Realtime and frame-by-frame DIC calcu-
lation converts the high-speed-vision camera into a high-frequency-velocity camera that
can output high-accuracy and high-frequency velocity signals for further dynamic scene
analysis.

Based on the high-frequency-velocity camera, we developed three kinds of high-
speed-vision-based software sensors by realtime dynamic analysis of the velocity sig-
nals, namely, frequency-analysis-based vibration visualization sensor, angle-similarity-
analysis-based rotation sensor and tapping-analysis-based finger tapping sensor.

Vibration visualization sensor can estimate and display vibration distributions at all
frequencies in real time to help operators intuitively monitor high-speed vibration. The
proposed sensor can estimate the full-field vibration displacements of 1920x1080 im-
ages in real time at 1000 fps and display their frequency responses in the range of 0—500
Hz on a computer at dozens of frames per second by accelerating phase-only DICs for
full-field displacement measurement and video conversion. The effectiveness of this sen-
sor for real-time vibration monitoring and visualization was demonstrated by conducting
experiments on objects vibrating at dozens or hundreds of hertz.

Rotation sensor can simultaneously detect the angles of multiple rotational objects



1.3 OUTLINE OF THESIS 5

in a high-speed video sequence. Our rotation sensor can be executed at 500 fps using
parallel-implementing digital image correlation processes to inspect the similarities be-
tween the input image and 360 reference images at different angles on a GPU-based high-
speed vision system. Its performance in measurement accuracy was verified using sev-
eral experiments for multiple rotating gears monitored with partial occlusion in 500-fps
videos, including multiple gears fast-rotating at 2400 rpm.

Finger tapping sensor can simultaneously estimate when and where an operator taps
with his/her finger by detecting the high-frequency component that develops when the fin-
gertip actively contacts something. Our fingertapping sensor can execute DIC operation
on 720x540 resolution images at 500 fps with CNN-based fingertip detection at 30 fps.
By presenting several experimental results for finger tapping detection, including virtual
keyboard interaction with a tenfinger keyboard input, the effectiveness of our fingertip
sensor as a finger tapping interface was demonstrated, which can simultaneously estimate
the tapping positions and moments of multiple fingers when finger tapping is performed

10 times or more in a second.

1.3 Outline of thesis

This thesis is organized as 7 Chapters, including this introduction.

Chapter 2 summarized related works on digital image correlation and high-speed
vision.

In Chapter 3, two DIC algorithms are proposed for high-speed dynamic informa-
tion sensing based on high-speed vision system. GPU-based Batch POC (Phase-only
Correlation) algorithm is designed to simultaneously estimate velocity values of multiple
regions within milliseconds by parallelizing phase correlation calculation on the strong
GPU platform. To achieve higher accuracy and robustness of velocity estimation, multi-

POC algorithm is proposed based on Batch POC. Multi-POC utilizes multiple reference
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images generated by subpixel intrpolation instead of original single one as reference to
get optimal estimation of image velocity. The performance of the two algorithms are also
evaluated in this section.

Chapter 4 introduce the concept and algorithms of proposed frequency-analysis-
based vibration visualization sensor. A high-speed-vision system is developed to visu-
alize the vibration distribution at hundreds of Hz. Finally, two experiments containing
free vibration and forced vibration are presented to demonstrate the effectiveness of the
vibration visualization sensor.

In Chapter 5, to measure the angle speed of rotating parts in factories, the high-
speed-vision-based rotation sensor is developed. The concept of rotation sensor is firstly
introduced. Relative similarity estimation algorithm is designed and run on the developed
high-speed-vision-based system. To verify the performance of proposed rotation sensor,
offline analysis of multiple rotary gears and real-time experiment for high-speed rotary
gears are further conducted.

Chapter 6 aims to explain the research of fingertip velocimeter for multi-finger tap-
ping detection. Requirement of real-time multi-finger tapping detection and limitation of
current methods are presented in the introduction section. To address this requirement,
high-speed-vision-based fingertio velocimeter is introduced in the concept section and the
algorithm section and implemented in the system section. The performance of proposed
fingertip velocimeter is verified and compared by the force sensor experiment and the
comparison experiment, respectively. Moreover, a kind of virtual keyboard is also devel-
oped based on proposed fingertip velcocimeter and presented in the experiment section.

In Chapter 7, it summarized the contributions of this study and discussed future

work.



Chapter 2

Related works

2.1 Digital Image Correlation

DIC [38] is a well-known image-based measurement technique that can precisely
estimate deformation displacements in images as a full-field distribution by calculating
the similarities between digital images before and after deformation. Owing to its easy
experimental setup and effective measurement, DIC has been widely applied in the field of
experimental solid mechanics to quantitatively analyze the deformation displacements of
materials [39], components [40], and structures [41]. DIC was proposed in 1980s to track
the motion of a small aluminum specimen [42]. Many studies have been conducted to im-
prove the performance of DIC by focusing on better similarity estimation criteria, such as
sum of absolute differences [43], sum of squared difference [44], cross-correlation [45],
and zero-mean normalized cross-correlation [46]. To improve the computational effi-
ciency of DIC, Sutton et al. [47] proposed employing the Newton—Raphson (NR) method
with differential correlation to accelerate normalized cross correlation, and Chen [48]
used a fast Fourier transform red (FFT) to estimate the similarity in the frequency domain
and detected their peaks to determine displacements without pixel-by-pixel searching.

To improve the measurement accuracy of DIC, many methods have been proposed
for subpixel image registration, such as iterative space-domain cross-correlation [49],

gradient-based subpixel registration [50], and genetic algorithms [51]. Pan [46] demon-
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strated that the iterative NR algorithm achieves higher accuracy and better stability, and
proposed the inverse-compositional Gauss—Newton algorithm [52] for more efficient sub-
pixel registration. To improve the subpixel interpolation accuracy, Luu [53] employed B-
spline interpolation with a family of recursive interpolation schemes, and many optimized
versions of B-spline-based interpolation [54, 55] have been introduced for precise DIC
computation. Several studies have aimed to reduce interpolation errors by introducing
pre-processing techniques such as the random subset offset strategy [56], self-correlation
scheme [57], and Gaussian pre-filtering [58].

However, most DIC algorithms cannot realize real-time visualization of full-field
displacements or velocities. This is because they focus on the accuracy of short-term
videos, which are not designed for long-term and real-time applications. Heavy com-
putation in DIC remains a challenging limitation in the development of real-time and
long-term displacement monitoring. Moreover, most targets such as industrial operat-
ing machines, have poor surface texture, making it difficult to attach markers on their
surfaces. Furthermore, weak-texture targets, small image sizes [59], and different dis-
placement ranges [60] [61] can decrease DIC performance heavily.

In this study, to address real-time and full-field displacement in high-speed-vision
systems, GPU-based batch POC algorithm is developed. Moreover, Batch-POC-based
multi POC is further proposed to achieve more accurate displacement estimation under

challenging cases.

2.2 High-speed vision

With the rapid development of computer and electronic device technologies, numer-
ous high-speed vision systems have been developed and applied to various high-speed
motion applications that cannot be directly observed by the naked eye, such as object

tracking [62] [63], biomedicine [64], robotic control [65], high-dynamic-range image
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capturing [66], and 3D measurement [67]. Wantanabe et al. [68] developed a high-speed
vision system that can extract the moment features of 1024 objects in a 256x256 image at
955 fps using a parallel-implemented labelling algorithm on an field programmable gate
array (FPGA). To improve the allowed complexities of algorithms implemented on high-
speed vision systems, Ishii et al. [62] developed a personal-computer(PC)-based high-
speed vision system that can transfer HFR images and their processed image features in
real time by organically linking three data-processing platforms: FPGA, CPU, and GPU.
For real-time video processing at a high frame rate, various types of computer vision al-
gorithms have been implemented on this PC-based high-speed vision system such as face
tracking [69], multiobject feature tracking [70], color-histogram-based tracking [71], and
optical flow estimation [72].

Recently, high-speed vision systems have been used for vibration sensing. Con-
sidering an image sensor as a set of numerous optical sensors in which every pixel can
measure time-varying brightness as a signal for time-series analysis, an HFR camera,
in which HFR images can be used to observe human-invisible vibrations at the audio-
frequency level, can provide full-field vibration signals sampled at its frame rate. Jiang
et al. [73] achieved robust tracking of vibrating objects by executing pixel-level digital
filters for HFR images and performed real-time tracking by processing 512x512 images
at 1000 fps [74]. Shimasaki et al. [75] reported the pixel-level localization of flying hon-
eybees with wing flapping at 180-240 Hz and estimated their trajectories by calculating
the frequency responses of brightness signals at all pixels of 1024x1024 images at 500
fps. Similarly, HFR video-based tracking was conducted for flying multicopters with pro-
pellers at dozens of rotations per second by performing pixel-level STFTs in real time at
500 fps [76].

However, captured HFR images can only be displayed in slow motion to operators
on an offline computer display; thus there is a demand for further real-time processing

and visualization of high-speed information for more intuitive and widely applications.
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In this study, three kinds of high-speed-vision-based software sensors are proposed to
convert high-speed sensor information into real-time dynamic analysis results that are

more intuitive for direct applications.



Chapter 3

GPU-based DIC algorithms for high-speed

sensing

3.1 Introduction

Digital image correlation (DIC) is a popular vision-based measurement method that
can estimate surface displacement by calculating the similarity between images before
and after deformation. Owing to its advantages, including full-field view, no-contact
measurement, and easy installation, DIC has been widely applied in many experimental
mechanics.

With the development of vision chips, great increase of frame rate and resolutions
of current cameras makes it more and more time-consuming to execute full-field displace-
ment estimation by DIC methods. As mentioned in Section 2, many current DIC-based
displacement-analysis systems focus on high accuracy of DIC by offline processing which
enables complicated algorithm design. However, in high-speed motion case, offline pro-
cessing requires huge physical memory for storing high-resolution and high-frame-rate
image data and only supports a short-time video analysis. Moreover, offline processing
cannot provide feedback information in time which is critical for quick response to ac-
cidents that can effectively avoid big loss in factories. Thus, for long-term and real-time

full-field displacement calculation, higher speed of DIC calculation is meaningful and

11



12 CHAPTER 3. GPU-BASED DIC ALGORITHMS FOR HIGH-SPEED SENSING

A

<
<« »

Ui | L

&

Short frame interval
but huge image data

High-speed motion

Processing within A, is hard.
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Figure 3.2: Noise and weak texture will decrease performance of similarity estima-
tion.

necessary.

Figure 3.1 shows the conflict between slow DIC calculation for full-field measure-
ment and short frame interval of high-speed vision systems. It is challenging to process
multiple pairs of subimages within J, that is generally several milliseconds in a high-speed
vision system working at hundreds of frames per second. One-by-one DIC calculation re-
quires high configuration of computers and only work well under low-resolution images.

Another challenge in DIC calculation is that the measuring environments in real ap-
plications are not always conducive. As Figure 3.2 shown, random noise and pattern noise
will affect the similarity calculation in DIC procedure. Low signal noise ratio (SNR) usu-
ally causes unreliable estimation results. Moreover, weak-texture object cannot provide

enough effective information for the similarity comparison of images before and after de-
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formation. Generally, it is also hard to attach markers as artificial texture information in
big-scale structures or industrial operating machines.

In this study, to address these two challenges, we proposed two kinds of GPU-based
high-speed DIC algorithms, namely, GPU-based Batch POC and GPU-based Multi POC,
respectively. Batch POC accelerate DIC calculation of multiple pairs of subimages by
parallelizing all the steps of phase-only correlation on the strong GPU platform. Through
extensive parallelization, our developed Batch POC can estimate displacements occurring
in the whole view of an image of 1920x1080 resolution at a millisecond time scale. Multi
POC is developed to improve the estimation accuracy in challenging application cases
by calculating the mathematical expectations of multiple independent DIC estimations as
the measured true values. Average of estimation results calculated by multiple reference
images leads to an unbiased displacement estimation and performs better than single-time

estimation on noisy or weak-texture images.

3.2 GPU-based Batch POC

3.2.1 concept

Input images of M X N pixels are converted to displacement images A(i, j, k7) of

M’ x N’ pixels:

A(i, , kt) =Displacement(I(x,y, k7)) (k=1,2,-- ), 3.1

where the M’N’ displacement sensors are virtually located on the input images, and
they are operated at the same sampling time as the camera cycle time 7. A(i, j, k1)
= (A, j,k1),A,(i, j, k7)) is composed of x- and y-displacement images with M’ x N’
pixels. Considering the computing resources for real-time execution, their resolutions are

downconverted from M X N pixels.
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Figure 3.3: Full-field displacement estimation.

As Fig. 3.3 shown, full-filed displacement estimation consists of two steps, namely,
grid management and displacement estimation. Grid management defines the density and
positions of sampled regions from the whole image range. Displacement is parallelized
DIC operation that can parallelize DIC operation to speed up the displacement estimation

of all sampled regions.

3.2.2 Implementation

Parallel Grid Management on GPU: To parallelize the DIC computation for full-
field displacement measurement, we assign grid management for creating multiple blocks
to be processed in parallel on the GPU-based high-speed vision platform. Given input
images I(x,y,t) of M X N pixels, the four parameters for grid management were block
size (by, b,) and the block step (sy, 5,). They determined the accuracy and density of the

full-field displacement measurements. The block and step sizes determined the M’ X N’
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resolution of the full-field displacement measurement as follows:

N/ — \‘(N_ix + sx)
| M=+ s) (32)
Sy

where | x| denotes the largest integer that is less than or equal to x.

DIC-based Displacement Measurement: For full-field displacement measure-
ments, we parallelized the phase-only correlation (POC) [77] algorithm, which can utilize
efficient peak detection in the frequency domain for subpixel image displacements. The
displacements between the two sub-images I;;(x, y,?) and I;;(x, y, tz) were calculated as
follows. In the following steps, ¢ and #z indicate the times at the current frame and the

reference frame in the DIC computation, respectively.

(1) 2-D FFTs of the input and reference sub-images
The sub-images of b, X b, pixels were converted into the frequency domain as

follows:

Gij(u,v,1)

F €ij(x, y, 1)-O(x, y)), (3.3)
F €ij(x, y, tr)-Q(x, 1)), (3.4

Gij(u,v,tg)

where 7 () indicates the 2-D FFT function. Q(x, y) is a binary mask image that indicates

the pixels to be processed in the DIC computation.
(2) Cross-power spectrum computation
The phase correlation distribution in the frequency domain was computed using the

following cross-power spectrum:

Gii(”v U7 t) . G;kj(u’ U, tR)
R,‘j(l/t, v, t) = -

) 3.5)
Gij(u9 v, t) : G;kj(u’ v, tR)
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where G7; is the complex conjugate of G;;.

(3) Inverse 2-D FFT for peak detection
The cross-power spectrum R;;(u,v,t) was transformed into the spatial domain, as

follows:
rij(x9 Y, t) = T_I(Rij(l/h v, t))’ (36)

where F~!(-) indicates the inverse 2-D FFT function.
The displacement vector Ax;;(f) = (Ax;j(t), Ay;;(t)) at time ¢ was obtained with

integer pixel precision by determining the maximum peak value of r;;(x, y, 1), as follows:
AX,'J'(Z‘) = (AX,']'([), Aylj([)) = arg max r,~‘,~(x, Y, t). (37)
X,y

(4) Estimation of the subpixel displacement
To estimate the displacement vector with higher accuracy, subpixel-level peak de-
tection was conducted by computing the weighted centroid values of the correlation val-

ues r;(x, y, t) in the neighborhood N(Ax;;(7)) as follows:

X7,y 1)

(x.EN(AX;(1))
AR () = —2 2 (3.8)

iy

(x.y)eN(AX;;(1))

Y rij(x,y, 1)

- (x.)EN(AX;(1)
A1) = : (3.9)
E(x, Y, 1)
(xy)EN(AX;())

where the displacement vector AX;;(r) = (AX;;(¢), Ay, (1)) corresponds to the displacement
image of M’ x N’ pixels in the DIC-based displacement measurement.The neighborhood

N(x) indicates the P x P-pixel neighborhood of x, where P is an odd positive integer.
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Table 3.1: Execution time of DIC-based displacement measurement (unit: ms)
block size / block step | 64/64 64/32 128/128128/64 128/32 256/256256/128256 /64
Copy from CPU to | 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180
GPU
(1) 2-D FFT 0.232 0.555 0.361 1.270 4446 0.441 1.848 6.380
(2) Cross Power Spec- | 0.060 0.226 0.059 0.207 0.793 0.056 0.187 0.650
trum
(3) Inverse 2-D FFT 0.199 0.590 0304 0957 3.235 0457 2.026 6.392
(4) Subpixel Estima- | 0.009 0.010 0.008 0.009 0.009 0.008 0.008 0.008
tion
Copy from GPU to | 0.040 0.038 0.035 0.054 0.062 0.061 0.051 0.069
CPU
Total Time 0.720 1.599 0947 2.677 8.725 1.203 4300 13.679

A,(i, j,t) to be processed in the STFT-based vibration visualization was set to the x- or

y-displacement component based on the vibration characteristics:

Ayl 1) = AX;;(t) or A, (1) (3.10)

Subprocesses (1)—(4) were simultaneously executed for M’N’ blocks in parallel on

a GPU at time ¢ = k7 every time an input image of M X N pixels was captured.

3.2.3 Execution time

We accelerated the algorithm by implementing it on a GPU board (GeForce RTX
3090) with the C++ language and CUDA Toolkit 11.4 using Microsoft Visual Studio
Community 2017.

Table 3.1 lists the execution time of the DIC-based displacement measurement for
8-bit 1920x1080 images (M = 1920, N = 1080) when the block size b (= b, = b,)
and step s (= s, = s,) were set to b = 64, 128, and 256, and s = b, b/2, and b/4,
respectively. The M’ X N’ resolution in the full-field displacement measurement was
determined using Eq.(3.2). The DIC computation was accelerated by parallelizing it to

use the global memory on the GPU for M’ X N’ threads, corresponding to the block



18 CHAPTER 3. GPU-BASED DIC ALGORITHMS FOR HIGH-SPEED SENSING

operation of b X b pixels. The image and processed data transfer times between the CPU
and GPU are not negligible, and the execution time listed in Table 3.1 involved the time
required to transfer (a) two 8-bit-unsigned-char input images of 1920x1080 pixels from
the CPU to the GPU and (b) the full-field 32-bit-float displacement vectors of M’ x N’
blocks from the GPU to the CPU. The execution time of the DIC computation was similar
when the block size was equal to the block step. 0.720 ms (b = s = 64), 0.947 ms
(b = s =128), and 1.203 ms (b = s = 256). When the block size was larger than the
block step, the execution time increased. 8.725 ms (s = 32), 2.677 ms (s = 64), and

0.947 ms (s = 128), with b = 128.

3.3 GPU-based Multi POC

3.3.1 Concept

The proposed MFPOC is illustrated in Fig. 3.4. Different from one-to-one single-
time estimation in traditional DIC methods, here, multiple reference images were gen-
erated with different subpixel displacements by interpolating the reference image and
realizing multi-to-one correlation calculation in parallel on a GPU platform. Final dis-
placement synthesized multiple independent estimations by averaging the values for high
statistical robustness. Compared to traditional one-to-one POC, the MFPOC has the fol-
lowing advantages.

(1) More robust against image noise: Random noise decreases similarity between
images and yields poor correlation results. The MFPOC calculates the correlation values
between the test image and the multiple reference images with different noise distribu-
tions. The average operation can considerably reduce the error caused by random noise.

(2) More accurate displacement estimation of small-size images: Small-size images
cannot provide sufficient detailed information near the correlation peak for accurate in-

terpolation to calculate subpixel-level-accuracy results. In MFPOC, subpixel estimation
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Figure 3.4: Concept of multi POC.

is independently executed on every correlation map. Subpixel estimation error can be
considerably suppressed by averaging the results of multiple estimations.

(3) Better adaptability to the displacement range: The subpixel estimation error is
small in the range of 0.2 to 0.2 pixels and large above the 0.2-pixel offset [78]. In MFPOC,
multiple reference images were generated corresponding to the subpixel displacements
from 0.5 to 0.5 pixels overlapping the entire subpixel displacement range. Symmetric
rough estimations can cancel each other to a certain extent by performing the averaging

operation.

3.3.2 Implementation

Given the reference image R(x, y) and test image I(x, y) of W x H pixels, the pro-
cedure for Multi POC can be divided into following three steps.

(1) L reference image generation

For complete subpixel-level displacements for independent displacement estima-
tion, we generated L reference images corresponding to the subpixel range from 0.5 to 0.5
in both horizontal and vertical directions with a step of s = ﬁ To generate a reference
image R,(x, y) with a subpixel displacement of d; = (Ax, Ay), where [ = 1,2,..., L, bilin-

ear interpolation was used to upsample the reference image /(x, y) to a higher-resolution
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image I'(x, y) of ¥ x £ pixels.

[ (x,y) = Bilinear(I(x, y), %). (3.11)

Ax Ay
s’ s

Then, the shifted reference image I (x — AT", y— %) with an inter offset of (
from I’ (x, y) was easily obtained via the shifting operation. Finally, with a down-sampling
operation, the final reference image R,(x, y) with a subpixel displacement of (Ax, Ay) can

be obtained as
’ A A
R/(x,y) = Downsample(/ (x — —x, y— —y), s). (3.12)
s s

As the reference image /(x, y) was fixed during the displacement estimation, reference-
image generation only required one-time execution in advance. Therefore, no computa-
tional burden occurs in real-time displacement estimation.

(2) Parallelized phase-only correlation

Displacement between every generated reference image R;(x,y) and test image

I(x,y) is estimated independently by phase-only correlation.
(ax;, ayy) = POC(R,(x, y), I(x, y)). (3.13)

The estimated result should be compensated by the subpixel displacement of the reference

image to obtain the correct values.
e; = (Ax, Ayp) — di. (3.14)

Multiple reference images with different subpixel displacements can provide different

precision estimations owing to different offsets and similarities. However, it is a time-
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consuming process compared to single-time estimation. To solve this problem, we paral-
lelized the L-time POC operations on the GPU platform, thereby significantly improving
the speed of MFPOC.

(3) Averaging the results to obtain an unbiased estimation

L estimated results were averaged to obtain their mathematical expectation value to

realize an unbiased estimation.

L
e

o= 214 (3.15)

The averaging operation can effectively reduce the random noise caused by interpolation

or other numerical procedures. Specifically, when the image has poor quality or small

size, multiple reference images can provide significantly more redundant information for

robust displacement estimation.

3.3.3 Execution time

The performance of the proposed MFPOC algorithm was verified using C++ lan-
guage on a personal computer (Dell, USA) equipped with a GPU board of NVIDIA
Geforce RTX 2080Ti (NVIDIA, Santa Clara, US), an Intel Core CPU i9-9900 K @ 3.60
GHz and 32 GB- memory. The PC had Windows 10 Professional 64-bit OS (Microsoft,
Redmond, WA, US). For the MFPOC algorithm parallelized on the PC, reference image
count L was set to 121. The subpixel range in the horizontal and vertical directions was
from 0.5 to 0.5 with a step of 0.1. Reference images were generated only once in an
offline mode on the CPU platform. L independent POC operations were parallelized on
the GPU platform.

Execution times of the Multi POC algorithm for different image sizes are presented
and compared with the POC function of OpenCV (Release version 4.5.0) in Table 3.2.

For the POC function of OpenCV lib, multiple POC only needs to convert the ref-
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Table 3.2: Execution time of Multi POC (unit: ms)

Time:ms 64x64 128%128 256x256
Single POC (OpenCV) 0.301 0.855 3.288
Multiple POCs (OpenCV) 9.252 34.832 153.118
Multi POC 0.223 0.822 3.851

erence image as a float type for FFT operation, because the test image does not need to
be converted repeatedly. Thus, the execution time of multiple POC is not simply 121
times that of the single POC. For all image sizes, the execution times of multiple POCs
of OpenCV were 30-50 times that of the single POC. For an image size of 64x64 pixels,
the MFPOC required 0.223 ms. This is faster than that required for the single POC of
OpenCV, which required 0.301 ms. For bigger images (256x256 pixels), multiple POC
of OpenCV required 153.118 ms; this cannot meet the real-time requirements. However,
the MFPOC maintained almost the same speed for the single POC of OpenCV at a rate
of 259 fps.

3.3.4 Experiment

(1) Parameter Experiment

In this section, we demonstrate the performance of the Multi POC algorithm by
comparing it with the POC function of OpenCV under the cases of small-size and noisy
images that are challenging for traditional single-estimation DIC algorithms. To guar-
antee the rationality and fairness of the experiments, we collected 12 classic images in

99 ¢ 29 ¢

the computer vision field: “baboon,” “cameraman,” “Lena,” “peppers,” “house,” “bridge,”

9 ¢

“couple,

R N3 99 <

airplane,” “dark-hair woman,” “man,” “woman,” and “sailboat,” as shown in
3.5.

Every image was resized to: 64x64, 128x128, and 256256 pixels. For every
image size, 10 images with subpixel displacements in the horizontal direction in the range
of 0.0 to 0.9 were generated.

Reference image count L is the most important parameter of Multi POC. Here, we
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Figure 3.5: Dataset images.

designed a parametric experiment to discuss the effect of the reference image count on the
performance of Multi POC. To this end, we test the averaged estimation errors of different
reference image counts L = (2k + 1)?, where k € [3, 10], and the displacement step s was

set to 0.1. The averaged estimation error can be calculated as follows:

9 i
=0 lei(x) — x )
error = O| 10 T|,x’T =ix0.1. (3.16)

Where ¢;(x) and xiT are the estimated and true values in the horizontal direction, respec-
tively. The experimental results are shown in Fig 3.6.

When k was smaller than 5, the average error decreased with increasing k value.
However, when k continued to increase, the performance showed no obvious improve-
ment. However, a bigger k value increases the computational time. Considering the
balance of performance and running speed, we set k to 5 in this study, i.e., L= 121.

(2) Noise Experiment

In real applications, various types of image noise are generated by the imaging
system. To verify the performance of the MFPOC algorithm in real cases, we added two
most common types of noise to the images in our dataset: Poisson noise and Gaussian
noise, as shown in Fig. 3.7.

For Poisson noise, A is set to 0.06. The mean value and variance of the Gaussian
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Figure 3.6: Parametric experimental results.

noise were set to 0 and 0.12, respectively. Furthermore, the image size was set to 64x64.
The estimation results of the POC function was compared with those of the proposed MF-
POC algorithm under the noise condition. The experimental result is shown in Fig. 3.8,
wherein the 12 tested images re displayed from top to bottom, and each image is tested
with the subpixel displacement from 0.0 to 0.9.

The POC function shows large estimation error peaks above 0.1 pixel around the
displacements of 0.5 pixel and 0.7 pixel. However, in all tested images with different
image content and subpixel displacement, the MFPOC algorithm maintained a smoother
curve around 0, thereby effectively eliminating the error peaks appearing in the traditional
POC. This experiment verified that even in real-world cases with some image noise, the

proposed MFPOC algorithm can provide stable and high-accuracy measurement results.
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Figure 3.7: Noise image for simulating real cases.
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Chapter 4

Real-time Vibration Visualization Sensor Using

GPU-based High-speed Vision

4.1 Introduction

Vibration monitoring is widely used in mechanical structure analysis [1-4] for oper-
ating machines with reciprocating and rotating components (e.g., engines, bearings, gear
boxes, and motors) and structural health monitoring of civil infrastructures [5-7] (e.g.,
bridge condition analysis and building structure monitoring). Real-time vibration mon-
itoring is critical for the continuous long-term monitoring of machines throughout their
service life. Such monitored vibration data during operation can help operators identify
early on damaged regions in structures, thereby reducing economic losses in machinery
maintenance. Real-time and long-term monitoring of dilapidated buildings and bridges
can help reduce accidents and unnecessary construction costs by extending their lifetime.
In most cases, vibration monitoring is conducted by measuring the displacement, veloc-
ity, and acceleration using various types of contact sensors that need to be installed on the
target structures to be observed [13, 15, 17]. These contact sensors can maintain the same
motion with vibrating targets and provide accurate and robust vibration signals at their
installation positions. These methods have two main limitations in vibration monitor-

ing: (1) single-point measurement—multiple sensors need to be installed for a complex-

27
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shaped structure; however, dozens or hundreds of sensors require large installation times
and increase system costs; and (2) uninstallable locations—there are many uninstallable
locations for sensors in the cases of high-temperature, high-voltage, or small-scale struc-
tures operating at high speed.

Vision-based methods can address the aforementioned problems effectively. Cam-
eras can remotely receive light signals reflected from the surfaces of vibrating structures
as digital images, and the displacements at many measurement points can be calculated
using computer vision algorithms [25] [28]. These methods can realize non-contact and
full-field measurements without interfering with the targets to be observed. However,
the limited image collection speed and high computational cost associated with image
processing limit the sample frequency of the vibration signals in video-based monitoring.
Conventional cameras working at 30 fps can only measure vibrations at frequencies below
15 Hz. In recent years, high-frame-rate (HFR) vision systems [35-37], which can capture
and process images at hundreds or thousands of hertz, have been developed for the real-
time tracking and recognition of fast-moving objects. Two main challenges still limit the
realization of real-time full-field vibration monitoring: (1) Displacement measurements at
thousands of points: faster computer vision algorithms are required for real-time full-field
vibration monitoring as well as high-frame-rate capturing; (2) Real-time, human-readable
monitoring: operators cannot directly observe vibration phenomena. High-speed phe-
nomena are replayed offline in slow motion because they are too fast for the human eye
to resolve.

In this study, we developed a real-time vibration visualization system that can es-
timate and display vibration distributions at all frequencies on a computer as real-time,

human-readable data.
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4.2 Concept of vibration visualization sensor

Most high-speed vision systems are designed for real-time sensing of high-speed
scenes, and they function as software vibration sensors to output scalar image features
in real time. However, captured HFR images can only be displayed in slow motion to
operators on an offline computer display; thus there is a demand for real-time vibration
visualization of HFR images as intuitive full-field images for long-term vibration moni-
toring.

To solve this problem, we introduce a two-step framework for real-time vibration vi-
sualization that involves HFR video processing to convert human-visible images at dozens
of frames per second from invisible HFR images in parallel with full-field vibration dis-
placement measurements. When input images of M X N pixels (frame number k) are
obtained at time k7, denoted by I(x, y, k7), the process flow is described below. 7 and

fo = 1/t are the frame cycle time and frame rate, respectively.

(1) Full-field vibration displacement estimation
Input images of M X N pixels are converted to displacement images A(i, j, kt) of

M’ x N’ pixels:
A(i, ], kt) =Displacement(I(x,y, k7)) (k=1,2,-- ), “4.1)

where the M’N’ displacement sensors are virtually located on the input images, and
they are operated at the same sampling time as the camera cycle time 7. A(, j, k1)
= (A,(, j,kt),A, (i, j, k7)) is composed of x- and y-displacement images with M’ x N’
pixels. Considering the computing resources for real-time execution, their resolutions are
downconverted from M x N pixels.
(2) Conversion to temporal frequency response images

By performing STFTs of the displacement signals with K frames at all pixels in the

displacement images A,(i, j, t + k't) (k' =0,---, K—1), the temporal frequency response
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(TFR) images are computed as follows:

F@i.j.0)=(Fo(i.j.0),- -, Fk1(i.), 1)

=STFT(Ay(i. 1), - , Au(i. j, t+(K—1)T)) (4.2)

where K determines the frequency resolution in STFT as Af = 1/(K1). Fp(x,y,t) in-
dicates the frequency-component image at a frequency of fir = K'Af (K =0,---, K—1).
The displacement image to be processed A,(i, J, ¢) is selected from the component images
of A(i, j,t). The STFTs are performed at time ¢t = IT (I = 1,2,---), and T indicates
the interval of the STFT computation. This corresponds to the frame-rate conversion for
vibration visualization on a computer display. Owing to the symmetric frequency distri-
bution in the FFT results, K/2 TFR images corresponding to K/2 frequency components

are concatenated to generate a single image that presents all frequency information.

These TFR images, which are computed from the displacement images estimated at
the camera frame rate, can indicate the vibration status as single-frame-based features. In
this study, we computed the TFR images at all K/2 frequency bands, and simultaneously
visualized them so that they could be observed by the human eye at an interval T of tens

of milliseconds, which is relatively longer than the camera cycle time 7.

4.3 Proposed algorithm of frequency analysis

Based on high-speed GPU-based Batch POC, we can acquire full-field displace-
ment images of M’ X N’ pixels at K consecutive frames, A,(i, j,t+k7) (k=0,--- ,K—1).
For vibration analysis, these displacement images were simultaneously processed using
STFTs, and their TFR images F(i, j, 1) = (Fo(i, j. 1), -, Fx(i, j, 1)) were obtained with
a frequency resolution of Af = 1/(K7) as the vibration visualization results. These op-

erations were executed at intervals of 7', which is relatively longer than the camera cycle
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time, 7. The displacement images computed in the DIC-based displacement measurement
were transferred from the GPU to the CPU memory at intervals of 7, and the calculated
displacement results at consecutive K frames were transferred from the CPU memory to
the GPU for STFT computation. Finally, the TFR images processed on the GPU were
transferred back to the CPU for vibration visualization every time the STFT computation

starts at intervals of T'.

4.4 Vibration visualization system

For real-time vibration visualization, we used a GPU-based high-speed vision plat-
form that can capture and process HFR images and display temporal frequency response
images for full-field vibration displacements on a computer. It consisted of a high-speed
CMOS camera head (EoSens 2.0CXP2, Mikrotron, Unterschleissheim, Germany) with a
CoaXPress CXP-12 frame grabber (Coaxlink Quad CXP-12, Euresys, Seraing, Belgium)
for HFR video capturing and a personal computer (PC) for HFR video processing accel-
erated by a GPU board.

The camera head had a 1920x1080-pixel CMOS image sensor(19.2x10.8 mm?),
with a pixel size of 10x10 um?>. It could capture 8-bit gray images of 1920x1080 pixels
at 2220 fps and transfer them to a PC using a CXP-12 frame grabber. We used a PC with
the following specifications: ASUSTek WS C422 PRO/SE main board, Intel Core CPU
19-11700K @ 3.60 GHz, 10 cores, 128-GB memory, and Windows 10 Professional 64-bit
OS (Microsoft, Redmond, WA, US). To accelerate HFR video processing, a GPU board

(GeForce RTX 3090, NVIDIA, Santa Clara, CA, US) was installed on the PC.
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High speed camera:

(a) Experimental environment

(b) Observed cymbal

Figure 4.1: Experimental setup for a cymbal with free vibration.

4.5 Real-time vibration visualization experiments

4.5.1 Free vibration of a cymbal

To verify the effectiveness of our vibration visualization system, we show the ex-
perimental results of a metal cymbal with a diameter of 45.7 cm freely vibrated after
knocking it with a wooden stick. Fig. 4.1 shows (a) a photo of the experimental setup and
(b) a photo of the cymbal to be observed. The cymbal was vertically installed on a metal
stand at a distance of 4.0 m from the camera head with an 85 mm lens. The cymbal was
painted in a black and white speckled pattern. A total of 1920x1080 images (M = 1920,
N = 1080) were captured and processed at 1000 fps (r = 1 ms). The block and step
sizes in the DIC computation were set to b, = b, = 64 and s, = 5, = 64, respectively.
Corresponding to the 1920x 1080 image, full-field displacement vectors of 30 X 16 blocks

(M’ =30, N = 16) were computed using DIC in real time at 1000 fps. In the experiment,
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Figure 4.2: Estimated velocities in the cymbal experiment.

the DIC computation between /;;(x, y, t) and I;;(x, y,t — 7), which were the sub-images at
the current and previous frames (fz = ¢ — 1), respectively, was executed to obtain full-field
velocity vectors. A mask image Q(x,y) was set to cover only the cymbal region in the
images. The vertical velocity components were processed using STFTs with K = 256
at intervals of 7 = 32 ms; 128 TFR images in the range of 0-500 Hz with a frequency
resolution of 3.9 Hz were displayed on a computer for vibration visualization in real time
at 31.25 fps.

Fig. 4.2 shows the estimated velocity vectors at intervals of 0.8 s for 7 = 0.0-3.2 s.
The cymbal was knocked by a wooden stick at t = 0.6 s, and the velocity vectors were
magnified so that a 1-pixel-length corresponded to 2.0x107° pixel/s. Fig. 4.3 shows (a)
the 17 measurement points on the cymbal, and (b) the vertical velocity components for
t = 1.0-2.0 s. Fig. 4.4 shows their frequency amplitudes in the range of 0-500 Hz. As
shown in Fig. 4.3(b), the vertical velocity components at py, ps, ..., ps around the edge
of the cymbal, vibrated more strongly than those at po, pio, ..., P16 located on the inner
circle, and those at p;; around the center of the cymbal vibrated weakly with the smallest
amplitude. Corresponding to the natural vibration of the cymbal, nonspatially uniform
velocity vectors were time-varying, as shown in Fig. 4.3(b), whereas the peak frequencies

in the frequency amplitudes were similar at the measurement points shown in Fig. 4.4.
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Figure 4.3: Velocities at 17 measurement points on the cymbal.

The data shown in Fig. 4.5 were obtained for the vibration visualization data to
be monitored on a computer display in real time at 31.25 fps. Fig. 4.5 shows (a) an
image map of the 128 TFR images in the range of 0-500 Hz with their average frequency
amplitude at # = 1.1 s, (b) TFR images at the peak frequencies of 42.9, 89.8, 148.4, and

210.9 Hz at t = 1.1 s, (c) the vertical velocity components at p; for t = 0.0-30.0 s, and
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Figure 4.4: Frequency amplitudes at 17 measurement points on the cymbal.

(d) the spectogram of the average frequency amplitude for # = 0.0-30.0 s. The colormaps
in (b) and (d) indicate the frequency amplitudes. These peak frequencies correspond to
the natural frequencies of the cymbal. The amplitudes of the TFR images correspond
to various mode shapes. As shown in Fig. 4.5(d), frequency amplitudes at these peak
frequencies were observed after knocking the cymbal at # = 0.6 s, whereas the frequency
amplitude remained constant for a longer time as the peak frequency decreased. This is
because the damping ratios of the vibration components in the low-frequency range were

larger than those in the high-frequency range.
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Figure 4.5: Vibration visualization results in the cymbal experiment.
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Figure 4.6: Experimental setup for a steel box with forced vibration.

t=200.0 s

Figure 4.7: Estimated velocities in a steel-box experiment.

4.5.2 Forced vibration of a steel box

Next, we show the experimental results of a steel box forcibly vibrated on a vibration-
testing machine. Fig. 4.6 shows (a) the photo of experimental setting and (b) the photo of
steel box to be observed. A vibration-testing machine (D-Master APD-200FCD, Asahi
Seisakusyo, Hino, Japan) excited the steel box in the horizontal direction by manually

adjusting its sweeping frequency using a sine wave in the range of 5-200Hz for 272 s.
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A steel box (35x24x24 cm) was painted in a black and white speckled pattern and fixed
on the vibration testing machine using a belt. A camera head with an 85 mm lens was
installed 3.5 m in front of the steel box so that its 35x24 ¢cm? front surface could be ob-
served in the images. With this installation, a 1920x 1080 image and a pixel corresponded
to 19.2x10.8 mm? and 10x10 um?, respectively. In the experiment, 1920x 1080 images
were captured and processed at 500 fps (r = 2 ms), and the block and step sizes in the
DIC computation were set to by = b, = 128 and s, = s, = 128, respectively. With the
DIC computation between the sub-images at the current and previous frames, full-field
velocity vectors of 15x8 blocks (M’ = 15, N’ = 8) were computed in real time at 500 fps.
A mask image Q(x, y) was set to cover only the region of the steel box in the image. The
horizontal velocity components were processed using STFTs with K = 512 at intervals
of T = 50 ms. A total of 256 TFR images in the range of 0-250 Hz with a frequency
resolution of 0.98 Hz were displayed in real time at 20 fps.

Fig. 4.7 shows the estimated velocity vectors at ¢ = 20.0, 50.0, 100.0, and 200.0 s.
The velocity vectors were magnified so that a 1-pixel-length corresponded to 2.0 x 1073
pixel/s. Fig. 4.8 shows the (a) 12 measured points on the steel box and (b) horizontal
velocity components for # = 30.0-31.0 s, when the metal box was vibrating at one of its
resonant frequency of 28.3 Hz. Fig. 4.9 shows their frequency amplitudes in the range of
0-250 Hz. This shows that the metal box did not vibrate uniformly under the resonant
frequency. Although all points were vibrating at the same peak frequency of 28.3 Hz, the
amplitudes of p1, p,, p3 distributed on the top region were larger than those of pyo, p11, P12
distributed on the bottom region.

Fig. 4.10 shows the real-time visualized vibration data at three resonant frequencies
of 28.3 Hz (t =32.35),45.9 Hz (t =54.5s), and 137.7 Hz (t = 177.1 s). The figure shows
the (a) image maps of the 256 TFR images in the range of 0-250 Hz at the three moments
and their average frequency amplitudes, (b) horizontal components at measurement point

p2 fort =0.0-272.0 s, and (c) spectrogram of the average frequency amplitude at t = 0.0—
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Figure 4.8: Estimated velocities at 12 measurement points on a steel box vibrating
at 28.3 Hz.

272.0 s. When the sweep frequency increased over time, the amplitude of the horizontal
component varied and the peak frequency increased, as illustrated in Fig. 4.10 (a) and (b).
At the resonant frequencies when the steel box vibrated with a loud sound, the amplitudes
of the TFR images at these frequencies corresponded to the various mode shapes shown in
Fig. 4.10(a). The amplitudes were strong around its upper, middle-lower, and upper-edge

sections in the 28.3 Hz-, 45.9 Hz-, and 137.7 Hz-TFR images, respectively.
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Figure 4.9: Frequency responses at 12 measurement points on a steel box vibrating
at 28.3 Hz.

We confirmed that all data in Fig 4.10, as shown in Fig. 4.5, were monitored in
real time on a computer display, and the resonant frequencies of the steel box and its
mode-shape-like velocity amplitudes were intuitively visualized as vibration-feature data
by using an image map of all frequency amplitudes. This can provide timely and effective

information for structural analysis and mechanical defect detection to operators.

4.6 Concluding remarks

In this chapter, we realized real-time HFR-video-based vibration visualization in
which operators can intuitively see the frequency responses of full-field vibration dis-
placements at all frequencies as visible data at tens of frames per second on a computer

display. Using parallel-accelerating DIC computations with STFTs on a GPU-based high-
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Figure 4.10: Vibration visualization in steel-box experiment.
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speed vision platform, full-field vibration displacements of 19201080 images captured
at 1000 fps were simultaneously visualized as TFR images in the range of 0—500 Hz. To
verify its effectiveness, real-time monitoring experiments were conducted using a (1) free
vibrating cymbal and (2) forced vibrating steel box. These experimental results demon-
strate that our vibration visualization system can estimate full-field vibration responses
at different levels of frequencies, which are extremely fast for human eyes to see. And
operators can directly observe them as visible image data by displaying them at 31.25 fps
on a computer.

This study focused on the real-time visualization of full-field vibration and utilized
local information for DIC calculation, the accuracy depends heavily on the texture infor-
mation of measured targets. For future work, we plan to improve the proposed system to
generate more accurate velocity fields by merging the results obtained from multiple DIC
calculations. Moreover, we aim to assess more practical applications of the system, such

as bridge vibration monitoring and aided analysis for structural designs.



Chapter 5

Software Rotation Sensor Based on High-Speed

Video Analysis

5.1 Introduction

In many factories, faults in rotating parts such as motors or gears can cause se-
rious safety problems. Traditional measures such as post-event maintenance or regular
inspections cannot provide timely abnormal signals for damage prediction.

In recent years, IoT sensors [79] have been used to capture continuous working
signals of rotating machines for real-time inspection. However, their installation is limited
by complicated machine structures, especially those with multiple rotating parts inside.
High-speed vision systems operating at hundreds or thousands of frames per second can
be utilized to capture and analyze high-speed motions not observable directly with naked
eyes [80]. Several high-speed vision systems have been proposed to investigate periodic
vibration faults [81-83], even though most of them are offline playback of less lengthy
high-speed videos captured in slow motion and not utilized as real-time sensors. With the
development of computational technology, several studies [84—-86] have been conducted
on high-speed vision that can achieve real-time capturing and processing of high-frame-
rate (HFR) images, such as optical flow [87] and object tracking [88]. With vibrations at

audio-level frequencies captured in real time, studies such as the analysis of the scraping
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behavior of experimental model mice [89] and drone rotating propeller detection [90]
have been proposed, showing the effectiveness of using high-speed vision systems as
real-time software sensors. These studies show that high-speed vision-based software
sensors can also be applied in monitoring machine parts rotating at dozens of revolutions
per second unseen by the naked eye.

Therefore, in this study, we propose a real-time software rotation sensor that can
estimate the angles of rotational targets by processing high-speed video images contain-
ing multiple rotational objects in the same view. A parallel-implementing digital image
correlation algorithm was developed to estimate the similarities between the input image
and multiple reference images, corresponding to different angles at 500 fps. To verify
its effectiveness, we conducted several experiments for multiple partially occluded rotat-
ing gears, showing that multiple rotation angles could be simultaneously estimated with
high accuracy regardless of the posture and appearance of the target. Real-time angle

estimation was also performed on a gear that rotated at 40 revolutions per second (2400

pm).

5.2 Concept of rotation sensor

The proposed software rotation sensor is shown in Fig. 5.1. HFR-video is captured
by a remotely installed high-speed camera. Rotation angles of multiple objects were es-
timated in real time by simultaneously calculating the similarities between current frame
and numerous reference images at different angles. The software sensor has several ad-
vantages.

(1) Non-contact measurement without sensor mounting: Our software rotation sen-
sor can be mounted without any interference on high-speed rotating objects that are diffi-
cult to attach. Its installation cost is relatively low and enables angular measurements at

any position.
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Figure 5.1: Concept of Software Rotation Sensor.

(2) Simultaneous measurement for multiple rotational objects: Every rotational ob-
ject in the camera view is defined by a ROI region. By applying the software rotation
sensor algorithm to each ROI image, our software rotation sensor can simultaneously
estimate the rotation angles of multiple rotational targets.

(3) Robust measurement against posture and appearance changes: The relative po-
sition between the camera and the measured object does not change, ensuring that the
visible part of the object maintains the same posture as in the image view. Our algorithm
for software sensors is powerful against noise such as appearance changes and lighting

fluctuations.

5.3 Proposed algorithm of parallelized similarity estima-

tion
L reference images with MXN pixels were acquired in advance. Reference image

R/(x,y)(l = 0,...,L — 1) refers to rotation angle of 2//L. Rotational object is defined by

a M x N ROl image R/(x,y) = Ri(x + Xo,y + yo). The following steps were executed
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frame-by-frame:

(1) High-speed input image and ROI image obtention

Input image at moment t is recorded as /(x, y, t), and ROI image corresponding to
the inspected object is cropped as I' (x', y , 1) = I(x + Xo, y + Yo, t). The frame interval is Xt
(frame rate F = 1/Xr).

(2) Correlation between input ROI and reference ROI

The correlation value C;(f) between the reference ROI image R;(x, y) and input ROI

image I'(x',y, t) is calculated using the following equation:

Ci(t) = DICU (x4, 1), R/(x, y)). (5.1

Here, digital image correlation is achieved using the phase-only correlation method
[13]. Att=0.0s, correlation values between every L reference ROl image (I =0, ...,L—-1)
and input ROI image are calculated to obtain the initial angle index estimation. Then,
based on the estimated angle index of the last frame [,(f — Af), only L’ reference images
(I € N(l,(t—Ar))) whose angle indices are close to [,(#—Af) will be sought in the following
correlation calculation.

(3) Angle index detection based on correlation peak value

The matched angle index /,(7) is detected by determining the maximum correlation
value, C/(r). When ¢ = 0, all reference images are searched, or only reference images near

the detected angle index of the last frame [,(r — Af) will be.

max; Cy(1),t =0
L) = (5.2)
maxep—ar Ci(t), otherwise

(4) Rotation angle estimation based on parabolic fitting

The correlation values Cy(t) of three angle indexes namely: the peak angle index
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1,(?) and those before and after it [,(r) — 1, [,(t) + 1, are utilized to execute parabolic fitting
for higher estimation accuracy of rotation angle ¢(f)than the angle interval of reference

images.

7(Cr-1(8) = Cry+1(2))
- o1 53
Y0 = LCroa ) = 2C, (1) + Crpmtey P ©3)

Here, 0(/,(1)) refers to the angle value that corresponds to angle index /,(t).

5.4 Rotation analysis system

To verify the effectiveness of our software rotation sensor, we configured a GPU-
based vision system that could capture 19201080 images at 1000 fps or higher frame
rates. The system comprises a high-speed camera head (EoSens 2.0CXP2, Mikrotron)
with a Coaxlink Quad CXP-12 frame grabber for high-speed image transfer, a personal
computer (Dell, USA) equipped with an Intel Core CPU i9-9900K @ 3.60GHz, 32GB-
memory, a GPU board of NVIDIA Geforce RTX 2080Ti (NVIDIA, Santa Clara, US), and
Windows 10 Professional 64-bit OS (Microsoft, Redmond, WA, US).

For the parallelized algorithm on the GPU, the reference image count L is set at 360
and that of L’ at 8. Execution times of DIC for different sizes of ROI images are shown in
Table 5.1. For 128x128 ROI calculation, the angle estimation for the first time was 8.39
ms and the next was 0.97 ms. Compared to CPU-only-based processing, with 68.26 ms
(the first-time estimation) and 2.25 ms (the following estimation), the processing speed
values were 8.1 and 2.3 times faster, respectively, indicating that our software rotation
sensor can estimate rotation angles in 1 ms and process HFR-video at 1000 fps in real

time.
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Table 5.1: Execution time (unit: ms)

parameters 64x64 128x128 256x256 512x512
first frame 2.41 8.39 55.16 327.97
others 0.71 0.97 2.08 5.38

Figure 5.2: Left: Experimental Settings, right: Gears to be inspected

5.5 Experiments for rotation analysis

In this section, we show the utilization of multiple rotary gears as observation tar-
gets for experimental verification. Fig.5.2 shows the experimental settings including the
camera and an example image of multiple gears. The KG gear education kit (Kyoiku
Gear Industry) is driven by a DD motor (SGM7A-C2AFA21, Yaskawa Electric). Gear 1
(80 mm diameter, 80 teeth ) and 2 (43 mm diameter, 40 teeth) with different reduction
ratios were photographed diagonally at high speed with a resolution of 480x480 pixels.
Gear 2 was 68 cm away from the camera with a physical resolution of 0.14 mm per pixel.
Gear 2 is directly connected to the DD motor and rotates at the same rotation speed as the
motor, whereas gear 1 rotates at half the rotation speed of gear 2. Each gear was patterned
to improve the accuracy of the rotation angle measurements by reducing the mismatch in
the DIC calculation. The count of the reference images was set as L= 360 in the following

experiments.

5.5.1 Offline Analysis for Multiple Rotary Gears

To confirm the measurement accuracy of our proposed software rotation sensor,

we recorded a 6-second HFR video of gears 1 and 2 with a resolution of 800x800 at
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Figure 5.3: Motor command and estimated angles in multi-gear experiment.

1080 fps for offline analysis when the forward, reverse, and stop commands at 1 rps were
intermittently sent to the DD motor.

Fig. 5.3 shows the (a) rotation command values during t= 0.0 6.0 s, (b) rotation
angle of gear 1, and (c) rotation angle of gear 2. The rotation angles of gears 1 and 2
increased to 180° and 360° respectively during the recorded t= 0.0 1.0 s. The rotation
speed of gear 1 was (.5 times that of gear 2, corresponding exactly to the reduction ratio.
In Fig. 5.4, the left and right sides show the correlation similarity curves for gears 1
and 2, respectively. The correlation similarity curves of gears 1 and 2 both showed a
remarkable peak, with their peak positions moving by 36° and 72°, respectively, every 0.2
s. These movements correspond to the rotation of gears 1 and 2 at 180 deg/s and 360 deg/s,

respectively. The accuracy of the rotation angle estimated at the 0.1-deg level greatly
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Figure 5.4: Similarities for 360 reference images.

exceeded the 1-deg step of the reference images after applying parabolic fitting. These
results revealed that with a high-speed camera working as a software rotation sensor, the
rotation angles of multiple gears could be simultaneously and accurately measured, even

when the gears were partially occluded.

5.5.2 Real-time Experiments for High-speed Rotary Gears

For the real-time experiment, the scene of gear 2 rotating at 40 rps was monitored
using a camera with a resolution of 480x480 at 500 fps, wot a 128x128 ROI region
corresponding to gear 2 processed in real time. The correlation similarity values between
the 65 reference images (L' = 65, 32 reference images before and after the last matched
reference image) and the current frame were calculated parallelly. The maximum rotation

speed Wy, that our software sensor could measure was determined by the frame rate F,
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Figure 5.5: Screen capture in real-time experiment.

reference image count L, and searched reference image count w,,,, = (L' — 1)F/2L.

According to the above-mentioned parameters, our sensor can measure rotation
speeds up to 44.4 rps (2664 rpm). Fig. 5.5 shows a screenshot of a personal computer
screen where the software rotation sensor was operated in real time. The upper left is
the input image of the gears (480x480), the upper right is the time-changing estimated
rotation angle, and the lower right is the user interface for the DD motor command. When
electrical commands were intermittently sent to the DD motor through screen operations,
high-speed rotation at 40 rps was measured in real-time, confirming that our software
rotation sensor could visualize rotation by monitoring the time-changing rotation angle in
a manner similar to an oscilloscope.

Fig. 5.6 shows the real-time experimental results: (a) rotation command values for
the DD motor and (b) the time-changing rotation angle of gear 2. During t= 46.0 47.0
s, the rotation angle increased from 0 deg to 360 deg 40 times, corresponding to the
rotation speed of gear 2. From t= 47.7 s, the rotation angle decreased from 360° to 0° 40
times, owing to the reverse command. During the quick start of gear 2, sliding friction
with interlocking gear 1 occurred, and abnormal vibrations of the rotation angle were
observed for a short time. This experiment revealed that our developed software rotation

sensor could measure high-speed rotations up to 2400 rpm with high accuracy in real
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Figure 5.6: Motor command and estimated angle in real-time experiment.

time.

5.6 Concluding remarks

In this study, we propose a software rotation sensor that can estimate the rotation
angles of multiple rotary objects in a high-speed video. The experiment on multiple gears
showed that one high-speed camera could function as a multiple software rotation sensor,
and rotation angles could be accurately estimated. Moreover, a real-time experiment con-
firmed the effectiveness of the software rotation sensor, with the rotation of a high-speed

gear rotating at 40 rps successfully monitored in real time.



Chapter 6

HFR-video-based Fingertip Velocimeter for

Multi-finger Tapping Detection

6.1 Introduction

A human finger is capable of rapidly moving with dexterity, and many traditional
input interfaces, such as computer keyboards and mice, have been designed on the pre-
sumption of finger mobility [91]. With the rapid progress of human-computer interaction
technologies, there is a strong demand for fingertip tracking as an unconstrained human
interface that allows an operator to freely control computer systems and devices using
their fingers. Recently, fingertip-tracking-based interfaces have been adopted in many
fields, such as virtual reality [92-94], augmented reality [95-97], robot control [98-100],

and IoT device control for smart households [101-103].

Existing fingertip interfaces mainly include two categories: sensor-mounted finger-
tip interfaces that require sensors on fingertips or targets to be touched and camera-based

fingertip interfaces that capture fingertip motions with remote cameras.

The most popular sensors for sensor-mounted fingertip interfaces are inertial mea-
surement unit (IMU) sensors [104—106] that can directly output finger acceleration infor-
mation in three orthogonal directions. Magnetic sensors [107-109] can realize mid-air

fingertip tracking based on the interaction between a magnet placed on the fingernail and
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magnetometer array under the device. Stretch sensors [110] [111] are usually mounted to
obtain finger motion based on the bending angle. Sensor-mounted interfaces can provide
accurate finger motion signals in real time regardless of vision occlusion and complicated
motions. However, mounted sensors may cause stress on fingers and non-user-friendly
interactions. Moreover, they are not always suitable for multiple finger measurements

because of their complicated installment and management.

In camera-based approaches, finger motions are tracked using real-time video pro-
cessing without mounting any auxiliary device on the user. Several studies [112-114]
have been reported for hand-region segmentation with color- and contour-based fea-
tures but they are not always stable when implemented with time-varying illumination
and background interferences. RGB-D cameras, such as Kinect and Leap Motion Con-
troller [115-119], can solve this problem by extracting hand regions with depth informa-
tion but they cannot observe objects at long distances because of the power limitations
regarding emitted beams [120]. Recently, many deep learning methods [121-124] have
been proposed for image-based finger detection in natural scenes and achieved state-of-
the-art performance, mainly focusing on detecting and tracking the positions of fingertips
in standard videos at dozens of frames per second. These standard camera-based studies
cannot provide precise fingertip velocities or accelerations to analyze finger motion that

involves quick tapping at dozen times in a second [125].

To capture high-speed phenomena at the audio-frequency level in real-time, high-
speed vision techniques such as vision chips have been widely used in the field of com-
puter vision. Compared to conventional image processing speeds of dozens of frames
per second, high-speed vision systems operating at hundreds or thousands of frames per
second can simultaneously capture and detect human-invisible fast movements, and their
effectiveness has been demonstrated in various applications such as robot control [126],

vibration measurement [127] and quadcopter navigation [128]. If such high-speed vision
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can capture and detect finger motion with quick finger tapping, it would become a key
device for next-generation human interfaces without mounting any auxiliary devices on

users.

In this study, we propose a novel concept of a software-based fingertip velocimeter
that can estimate when and where fingertips tap by executing high-frame-rate (HFR) video
processing. This concept enables fingertip velocity estimation with sub-pixel precision in
real time by hybridizing digital image correlation (DIC) [129] at hundreds of frames per
second with CNN-based object detection operating at dozens of frames to determine the
image regions of fingertips as software sensor positions. We implemented a software-
based fingertip velocimeter algorithm on 720x540 resolution images operating at 500
fps; its effectiveness was demonstrated by performing several finger tapping experiments,
such as a real-time virtual keyboard experiment with multi-fingertip tapping at a dozen

times in a second.

6.2 Concept of fingertip velocimeter

In this study, we proposed a concept named software-based velocimeter that enables
dynamic velocity analysis of moving objects in HFR images by hybridizing the high ro-
bustness of Al-based object detection and high accuracy of sub-pixel DIC measurements.
Fig. 6.1 summarizes the advantages and disadvantages of Al detection, DIC estimation,
and our concept. Fig. 6.2 presents how our proposed software-based velocimeter gener-
ates high-frequency velocity signals for dynamic analysis. Given an HFR video as input,
Al detection is executed at a longer time interval to robustly update target locations in
real time, and DIC is performed frame-by-frame to accurately estimate velocities with
the same frequency as the input video. The recorded high-frequency velocity signals can

be used for dynamic analysis in different applications.
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Figure 6.1: Advantages and disadvantages of Al detection, DIC estimation, and our
concept.

Figure 6.2: The proposed software-based velocimeter for dynamic analysis.

6.3 Proposed algorithm of finger tapping analysis

To verify the effectiveness of our concept, we developed a software-based fingertip
velocimeter for computer interaction that can simultaneously detect tapping positions and
timings of multiple fingers by estimating their velocities at high frequencies in real-time.
Fig. 6.3 shows the framework of our fingertip velocimeter. Given an HFR image se-
quence, (I(x, y, kt,) denotes an image of M X N resolution captured at ¢ = k7, where 7,
denotes the frame cycle time. The procedure for our fingertip velocimeter is divided into

the following three stages.
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Figure 6.3: Framework of software-based fingertip velocimeter.

6.3.1 DL-based Fingertip ROI Detection

To localize the multiple fingertips in images, the MediaPipe network [130] is used
for fingertip detection as a DL-based hand-landmark detection method. It can extract 21
landmarks from each hand and each finger is represented by four landmarks { PP p;, pf]

from its base to its end, as shown in Fig.6.4.

Corresponding to these fingertip landmarks, a fingertip ROI r; is set for the fingertip
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(xi, yi)

Figure 6.4: Locations of fingertip ROIs.

of the i-th finger (i = 0, - - - , 4) as a square sub-image region; with side length /; and center

position x; = (x;, y;) determined as follows:

=k Ip} - p]l, (6.1)

xi=ky-pl +(1—ky)-p;. (6.2)

where k; is a coefficient for setting the side length sufficiently large so that the background
scene is not largely involved in the fingertip ROI, and k; is a coefficient for setting the
center position so that pixels occupied with a finger are largely involved in the fingertip
ROI when its end is observed in the ROI. We can reduce inaccurate estimation of fingertip
velocity by properly setting these parameters to include the fingertip area largely in the

ROL

6.3.2 DIC-based Fingertip Velocity Estimation

Given the ROI region r; of fingertip i, its velocity v; is obtained by executing the

phase-only correlation (POC) algorithm [131] at a time interval of 7,

v; = POC(I (r;, kty) , I (ri, (k + 1)71)) (6.3)
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v, = (v, v;) denotes the velocity vector of the i-th fingertip. I (r;, kt;,) refers to the cropped

fingertip ROI r; from input frame 7 (x, y, kt},).

POC can output sub-pixel-accuracy estimated velocities by interpolating integer
results calculated from the pixel-level similarity distribution in the frequency domain.
Moreover, owing to the small sub-image size and FFT-based acceleration, POC can be

executed at a millisecond-level speed to realize HFR velocity measurement.

6.3.3 FFT-based Finger Tapping Recognition

Finger tapping can be divided into non-contact tapping, corresponding to taps in
the air, and contact tapping, corresponding to contacting a plane. Contact tapping is more
in line with human operating habits because of the support and feedback provided by the
physical plane. When a finger contacts a plane, its velocity suddenly stops, and high-
frequency components are generated in the frequency domain. Thus, contact tapping
can be distinguished from non-contact tapping by extracting the frequency components

generated by the contact action.

The camera view is another key factor in vision-based fingertip motion measure-
ment. Fig. 6.5 shows the hand images captured under different camera views. The side
view provides a larger motion amplitude but blurs the fingertip positions on the plane.
The top view can easily monitor clear finger trajectories at the expense of smaller tapping
amplitudes. Moreover, finger tapping can still be detected because it is not a strict vertical
reciprocating motion.

Our finger velocimeter was designed to detect effective contact-tapping actions un-
der the top camera view. Fig. 6.6 shows the data measured under the top view: (a) the
vertical velocity component of non-contact tapping, (b) the vertical velocity component of

contact tapping, (c) their frequency distribution, and (d) bandpass filtered tapping signals.

The peak width in contact tapping is approximately half of that in non-contact tap-
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Figure 6.5: Hand images captured under different camera views.

ping because the contact action suddenly stops the fingertip. In the frequency domain,
the non-contact tapping signal has stronger low-frequency components in the range of
0-10 Hz, which corresponds to the basic tapping circle. Except for the basic tapping
frequencies, the contact tapping signal exhibits larger amplitudes in the frequency range
of 20-50 Hz, which is generated by the contact action. From the filtered signals with
only 20-50 Hz frequency components remaining, observe that the contact tapping signal

retains obvious peaks, whereas the non-contact tapping signal retains only random noise.

Based on the results of the tapping analysis, N-frame velocity signal V; is filtered

by the following equations to make it more discriminative for contact-tapping detection.

Fi=%1a(V), (6.4)

) F: k), ki <k <k,
F; (k) = , (6.5)

0, otherwise

Vi=Fa (F)- (6.6)

where 714 and ¥, refer to the 1-D FFT and inverse FFT operations, respectively. k

is the index of the k;,-frequency component. k; and k, represent the frequency components
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Figure 6.6: Tapping analysis results from the top view.

at 20 Hz and 50 Hz, respectively. V; represents the filtered velocity sequence {v;, - - , vy}

used for tapping recognition.

Here, N refers to the signal length selected for tapping detection. A signal that is
too short will miss the complete tapping shape and cause low-frequency resolution, which

makes it difficult to select the expected frequency range. A signal that is too long may
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include two or more tapping actions, which can confuse peak detection. Thus, N should

be properly set according to the tapping speed.

Based on the filtered velocity signal V;, we designed the following two constraints

to locate the tap position.

(a) Double-peak constraint: A complete finger-tap signal should contain a positive peak

P, and negative peak P,. Each peak can be defined using five points.

Pp =D lf (Up = max (Up—57 Up—15Ups Up+1, Up+5)) > (6.7)

P, =n, lf (Un = min (Un—57 Un—15Uns Un+1, Un+5)) . (68)

Here, P, and P, denote the indices of the frames where positive and negative peaks
occur, respectively.
(b) Peak shape constraint: The magnitudes of P, and P, should be larger than the peak
threshold A7y to ensure sufficient tapping amplitude. Their time interval should not be

shorter than 7 to further filter out similarly shaped noise signals.

Up, > Arg, (6.9)
vp, < —Aru, (6.10)
P,—P,>T. (6.11)

At the frame when the negative peak is detected, all conditions are calculated to determine

whether the contact-tapping action occurs.
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High-speed Camera

i
Figure 6.7: The system configuration of finger tapping detection.

6.4 Finger tapping system

To verify the performance of our fingertip velocimeter, we developed a multi-finger
tapping detection system that can measure fingertip velocities at 500 fps and output the
tapping signals of multiple fingers in real time. As Fig. 6.7 demonstrates, the system
consists of a high speed CMOS camera (Image Source Camera, DMK37BUX287, made
in Germany) equipped with a 1/2.9 inch image sensor (IMX287LQR, SONY, Japan) for
high-frame-rate video capturing and computer for performing high-speed DIC computa-
tions. The high-speed camera was installed above the table plane and could capture RGB
images of 720x540 pixels at 500 fps and transmit them to the computer via the USB
3.1 protocol. The computer runs a Windows 10 (64-bit) operating system with an Intel
Core 17-8750H 2.2GHz CPU and Geforce GPU board (RTX2080Ti), which is necessary
to execute a deep-learning-based fingertip detection algorithm in real time.

The input image flow was 720x540 pixels at a rate of 500 fps and camera cycle
time 7, = 2 ms. For finger ROI calculation, k; and k, are set to 1.4 and 0.7, respectively.
Assuming that a tapping action can be finished within 0.2 s, N is set to 100 with 500 fps
HFR video as input. For peak detection, A7y and T are set to 0.2 pixel/frame and 0.15 s

by default, respectively.
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(a) Execution time for Finger ROI extraction: The finger ROI extraction algorithm is di-
vided into hand landmark detection and ROI area calculation. The landmark detection
network required 32 ms to process an image with 720x540 pixels. Based on the land-
marks, one fingertip ROI calculation takes 0.05 ms; the time of ten fingertip ROIs for
both hands is 0.5 ms. Thus, the fingertip ROI calculation takes 7, = 32.5 ms in total,

which means that fingertip ROIs are updated at 30 fps.

(b) Execution time of velocity estimation: POC speed is determined mainly by the ROI
size. The average block size of the fingertip ROIs is 48 x 48 pixels. It takes 0.46 ms for
POC to estimate the velocities of all finger ROIs individually. This time is less than the
camera cycle time of 7, = 2 ms. Thus, the actual velocity estimation speed is the same as

the camera frame rate, that is, 500 fps.

(c) Execution time for tapping detection: In the tapping detection algorithm, bandpass
filtering and peak detection are executed every 20 frames, which requires an execution
time shorter than 40 ms. For a single fingertip ROI, bandpass filtering takes 0.13 ms and
peak detection takes 0.02 ms. The 10-time tapping detection for all fingertips takes 1.5
ms that is significantly shorter than the required 40 ms. Therefore, tapping detection can

be performed at 25 fps in real-time.

6.5 Experiments for fingertip velocimeter

6.5.1 A force sensor experiment

To verify the effectiveness of our fingertip velocimeter, we conducted an experi-
ment that compared the force signal collected by the force sensor with the velocity signal
measured by our system. As Fig. 6.8 illustrates, the force sensor (PFS055YA251U6,
Leptrino, Japan) is fixed on the table and its surface can sense the force information at
a sample frequency of 1200 Hz. The high-speed camera is installed at a distance of 50

cm directly over the force sensor and can capture the index finger tapping at 500 fps with
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Figure 6.8: The scene of the comparison experiment.

a resolution of 720x540 pixels. The parameters of the algorithms are the same as those
stated in Subsection 6.4.

Fig. 6.9 shows (a) vertical velocity signal measured by our system, (b) its frequency
distribution, (c) bandpass filtered signal of 20-50 Hz, and (d) force signal collected by the
force sensor.

DL-based fingertip detection automatically detects the index finger position to up-
date the fingertip ROIs for POC in real-time. Frame-by-frame POC calculation enables
our software-based velocimeter to output a sub-pixel-accuracy velocity signal with a sam-
pling frequency of 500 Hz. The bandpass-filtered signal depicts the tapping moment more
intuitively by removing the low-frequency tapping components and high-frequency ran-

dom noise.

The velocity signal measured by our fingertip velocimeter maintained a high con-
sistency with the force signal collected by the force sensor. Both types of signals clearly
showed that the index finger tapped 17 times during the 5 s test. The velocity signals
measured by our system can completely record the tapping procedure, whereas the force

sensor can only record the moment at which the fingertip contacts the surface.

This experiment demonstrates that our mount-free fingertip velocimeter can collect

the same high-accuracy velocity signals as a force sensor. Moreover, it keep tracking the
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Figure 6.9: Experimental results of the comparison experiment.

fingertip motion instead of sensing the finger speed at certain moments.

6.5.2 Comparison experiment

In this experiment, we compared our method with two popular classic methods

(color-contour [113], depth camera [117]) and two recent Al-based methods (OpenPose
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Figure 6.10: Configuration of comparison experiment.

(LN

Figure 6.11: Recorded images in comparison experiment.

[123], mediapipe [130]). As Fig. 6.10 shown, a high-speed camera and a Kinect (Azure
Kinect, Microsoft, America) are installed 60 cm away from the table plane. The high-
speed camera outputs high-speed video (720x540@500fps) as input of our method, the
color-contour method and the two Al methods, and the Kinect device outputs real-time
RGB video (1280x720@30fps) and depth video (640x576@30fps) for the depth-camera-
based method. The experimental images are shown in Fig. 6.11: left is the hand image
recorded by the high-speed camera; right is the depth-based-segmented color image cap-
tured by Kinect. During the experiment, the index finger of the left hand keeps tapping
for 3 seconds with light condition changing from ¢t = 0.7 s to t = 2.4 s. For fingertip
detection methods, velocity in the vertical direction was calculated by the difference of
fingertip positions of two adjacent frames. Our method can directly output velocity signal

by the POC algorithm with two adjacent frames as input.
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Figure 6.12: Velocity signals of the comparison experiment.

Fig. 6.12 shows the performance of tested methods. Color-contour method can
run within 2 ms and output high-frequency velocity signals. Its signal appears clear pat-
tern until # =0.7 s but become messy when the light changes from r = 0.7 stot = 2.4
s. It means that color-contour-based method can efficiently detect fingertip position but
will be easily affected by the light changes. Kinect-based method shows the same trend
with lower sampling frequency because it also uses the color and contour information for
fingertip recognition after the depth-based segmentation and works only at 30 fps. Open-
Pose can detect the fingertip positions at 25 fps on GPU and adapt light changes well. Its
velocity keeps 0 because its detection accuracy is too rough for accurate fingertip veloc-
ity estimation and just outputs a static fingertip position when the fingertip moves with
a small motion. Compared to OpenPose, medeiapipe was deeply optimized both from

network structure and engineering completion. It can robustly output fingertip detection
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Figure 6.13: Keyboard scene captured by the camera and detected character distri-
bution.

results at 30 fps and achieve higher accuracy than OpenPose. However, its sample fre-
quency is relatively limited by its low sampling frequency at 15 Hz so that it still cannot
provide clear patterns for finger tapping. The velocity signal of our method simultane-
ously meets the requirements of high speed and high robustness. Clear tapping pattern is
well displayed, which contains a sharp change when the fingertip contacts a plane.

This experiment demonstrated that our proposed method can address low robustness
of traditional color-contour-based methods and low speed of recent popular AI methods.
With high-frequency and high-robustness velocity signals, more complicated dynamic

analysis of finger motions are enabled.

6.5.3 Virtual keyboard experiment
To verify the effectiveness of our system in simultaneously detecting the tapping
actions of multiple fingers, we conducted a virtual keyboard experiment that converts

tapping signals into tapped characters to function as an intelligent input device.

As shown in Fig. 6.13, the keyboard is printed on a piece of A4 paper pasted on
the table. The two hands can tap on keyboard paper freely similar to their operations on
real keyboards. The camera is installed over the table at a distance of 60 cm to monitor
hand motions and output HFR image sequence of 720x540 pixels at 500 fps. The key-

board paper can be placed on the table arbitrarily, and character positions on the keyboard



70 CHAPTER 6. HFR-VIDEO-BASED FINGERTIP VELOCIMETER FOR MULTI-FINGER TAPPING DETECTION

Figure 6.14: Processed image sequence in the virtual keyboard experiment.

can be automatically detected by a character recognition algorithm [132]. With fingertip
positions detected by Al-based fingertip detection and character positions detected by the
OCR algorithm, we can determine which character a fingertip is above by finding the

closest character around the fingertip.

Fig. 6.14 shows processed image sequence of the whole experiment process. The
entire experiment was divided into four stages: keyboard detection, hand movement, non-
contact tapping, and contact tapping. Ten fingertip ROIs marked in different colors were
updated using DL-based fingertip detection. During ¢+ = 0-1.5 s, when the keyboard
appeared in the camera view, character distribution was detected in real-time. In the third
stage, t = 1.8-3.1 s, two hands moved in the horizontal direction quickly. Then, the ten
fingertips tapped above the keyboard and did not contact the keyboard during t = 4.2—6.2

s. Finally, contact tapping was executed during r = 7.4—14 s.
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Figure 6.15: Velocity information in the vertical direction of 10 fingertips during the
14 s test. From top to bottom are the thumb, index, middle, ring, and little fingers of
the left hand, and those of the right hand.

Fig. 6.15 shows the vertical velocity values of 10 fingertips during the 14 s test.
When the two hands were purely moving in the horizontal direction, the velocity signals
appeared chaotic owing to the large shifting amplitudes. In the non-contact tapping stage,
the original vertical velocities exhibited clear tapping patterns. However, the amplitudes
of the filtered velocities decreased significantly because there were no contact actions

that could generate obvious frequency components in the range of 20-50 Hz. In the
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Figure 6.16: Trajectories and tapping results of 10 fingertips at the contact-tapping
stage.

contact-tapping stage, the velocities before and after filtering both exhibited obvious tap-
ping patterns. This indicates that our FFT-based tapping detection can distinguish contact

tapping from invalid non-contact tapping.

Fig. 6.16 shows the trajectories of ten fingertips and their tap results during the
contact-tapping stage. DL-based fingertip detection can record all fingertip positions to
recognize tapped characters in real time. Tapping detection is effective only when the
hand is static because a finger cannot simultaneously move and tap on the table plane.
The filtered vertical velocities of the ten fingertips are shown in Fig. 6.17 to present the
processing procedure. From the velocity signals, we can clearly see when a character is
tapped, and which finger performs the tapping action. Regarding the two most commonly
used fingers, the middle finger of the left hand tapped the character ’S’ for three times
and index finger of the right hand tapped the character *T” for three times. All characters

tapped by the four fingers make up the sentence "THIS IS A TEST”.

The virtual keyboard experiment demonstrates that our system can simultaneously
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Figure 6.17: Filtered velocities and tapped characters at the contact-tapping stage.
From top to bottom are the thumb, index, middle, ring, and little fingers of the left
hand, and those of the right hand.

detect the tapping actions of multiple fingers and can effectively distinguish invalid tap-
ping actions. Because any customized plane can be used to collect tapping signals, we

believe that our system has broad application prospects in the field of human-computer

interactions.
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6.6 Concluding remarks

In this study, we propose an HFR-video-based fingertip velocimeter that can output
the velocity signals of multiple fingers at 500 fps by combining DL-based fingertip detec-
tion with DIC-based velocity estimation. Based on this framework, we built a multi-finger
tapping detection system that can simultaneously detect the tapping actions of multiple
fingers. To verify its effectiveness, a comparison experiment with the force sensor, as
well as a virtual keyboard experiment, was conducted. The experimental results show
that our system can output high-accuracy and high-frequency velocity signals obtained

from multiple fingers and can detect valid contact-tapping actions in real time.

As DIC-based velocity estimation is easily affected by invalid background informa-
tion, in future research, we plan to introduce image segmentation to remove background
interference for achieving a more accurate velocity estimation. Moreover, we focus on
apparent 2D velocity measurement of fingertips in images due to single-camera-based
environment. For future works, we will consider 3D velocities of fingertips to know fin-
gertip environment interaction in detail by extending our system to multi-camera stereo

one.
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Conclusions

In this study, to realize the dynamic analysis for high-speed scene where the mov-
ing actions could not be directly seen by human naked eyes, we proposed a novel concept
named HFR-video-based software sensor that can realize real-time and long-term dy-
namic analysis by combining parallelized DIC algorithms for high-speed sensing with
real-time analysis algorithms developed for specific applications.

The working procedure of proposed software sensor consists three steps: HFR-
video capturing for recording original light-level image data, high-speed full-field veloc-

ity/displacement estimation, and real-time dynamic analysis facing to specific application.

To realize high-speed full-filed image velocity estimation, we developed two kinds
of GPU-based DIC algorithms, GPU-based batch POC algorithm and GPU-based multi
POC algorithm. GPU-based batch POC algorithm is developed for parallelizing velocity
estimation of multiple pair of subimages to realize millisecond-level full-filed velocity
field calculation. With the strong Geforce RTX 3090 GPU platform, our proposed batch
POC algorithm can estimate full-field velocity/displacement distribution in an image of
1920 x 1080 pixels in 1 ms at 100 fps. To improve reliability of POC under noisy and
weak-texture cases, GPU-based multi POC algorithm was developed to estimate final dis-
placement value by synchronizing the estimated results between test image and multiple

reference images generated by interpolation. A series of experiments were conducted to

75
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demonstrate that multi POC outperforms traditional POCs under different interferences at
a faster speed.

Then we developed three kinds of software sensors facing to vibration visualization,
rotation measurement and finger tapping analysis.

Vibration visualization sensor is proposed to help human more intuitively under-
stand vibration distribution that is usually hard to capture. Through executing real-time
STFT analysis on the full-field velocity/displacement calculated by GPU-based batch
POC algorithm, our proposed software sensor for vibration visualization realized dis-
playing frequency responses in the range of 0—500 Hz on a computer at dozens of frames
per second with a HFR-video of 1920x1080 resolution at 1000 fps as input. Real-time
vibration visualization experiments including a cymbal-based free vibration and a metal-
box-based forced vibration were conducted.

The second rotation sensor can simultaneously measure rotation angles of multiple
high-speed rotating targets by real-time angle searching in the similarity values calculated
by the GPU-based batch POC algorithm. With 500fps HFR video as input, our software
sensor realized rotation angle detection of fast-rotating gears working at 2400 prm.

To apply our software sensor concept in more natural and complicated scene, we
developed the finger velocimeter for finger tapping analysis. With HFR video as input,
deep-learning-based finger detection is introduced to detect and update positions of multi-
ple fingertips in real time. High-frequency sub-pixel-precision finger velocity information
is calculated by operating POC algorithm on every frame. Finally, by extracting the high-
frequency components that develops when the fingertip actively contacts something, our
finger tapping sensor realized real-time tapping detection of multiple fingers. A series of
experiments including comparison experiment with current popular solutions were con-
ducted to demonstrate the advantages of the proposed finger tapping sensor. A virtual
keyboard was also presented to show our software sensor can effectively and accurately

detect finger tapping of 10 fingers in real time.
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The following issues remain to be solved in the future. First, more accurate region
selection for DIC calculation still remains a challenge. Unnecessary background infor-
mation will decrease the accuracy and robustness of DIC estimation. So in the future
research, we will try introducing image segmentation to obtain pixel-level target regions.
Second, current DIC calculation only focus on 2D-level measurement. However, most
real applications shows strong requirement of 3D measurement especially in the fault de-
fection, structure health analysis fields. Thus, we plan to research high-speed 3D DIC

algorithm to explore more widely application scenes.
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