広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Utility of CHA2DS2-VASc Score to Predict 1 Mid-Term Clinical Outcomes in Hemodialysis Patients
Author(s)	Okubo, Aiko; Doi, Toshiki; Morii, Kenichi; Nishizawa, Yoshiko; Yamashita, Kazuomi; Shigemoto, Kenichiro; Mizuiri, Sonoo; Usui, Koji; Arita, Michiko; Naito, Takayuki; Masaki, Takao
Citation	American Journal of Nephrology , 53 (2-3) : 169 - 175
Issue Date	2022-03-08
DOI	
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00054596
Right	© 2022 S. Karger AG, Basel. The final, published version of this article is available at https://karger.com/? doi=10.1159/000522225. This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご 確認、ご利用ください。
Relation	

1	Utility of CHA2DS2-VASc Score to Predict Mid-Term Clinical
2	Outcomes in Hemodialysis Patients
3	
4	
5	Aiko Okubo, MD, PhD, ¹ Toshiki Doi, MD, PhD, ^{1,2} Kenichi Morii, MD, PhD, ^{1,2} Yoshiko
6	Nishizawa, MD, PhD, ¹ Kazuomi Yamashita, MD, PhD, ¹ Kenichiro Shigemoto, MD,
7	PhD, ¹ Sonoo Mizuiri, MD, PhD, ¹ Koji Usui, MD, PhD, ³ Michiko Arita, MD, ⁴ Takayuki
8	Naito, MD, PhD, ⁵ Takao Masaki, MD, PhD ⁶
9	
10	¹ Department of Nephrology, Ichiyokai Harada Hospital, Hiroshima, Japan
11	² Department of Kidney Disease and Community Medicine, Hiroshima University
12	Hospital, Hiroshima, Japan
13	³ Ichiyokai Ichiyokai Clinic, Hiroshima, Japan
14	⁴ Iciyokai East Clinic, Hiroshima, Japan
15	⁵ Ichiyokai Yokogawa Clinic, Hiroshima, Japan
16	⁶ Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
17	
18	Short Title: CHA2DS2-VASc score predicts adverse events in Hemodialysis Patients

20 **Correspondence:**

- 21 Toshiki Doi, MD, PhD, Department of Kidney Disease and Community Medicine,
- 22 Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- 23 Tel.: +81-82-257-1506/Fax: +81-82-257-1508
- 24 E-mail: doitoshi@hiroshima-u.ac.jp
- 25
- 26 **Number of Tables:** 3 tables
- 27 Number of Figures: 1 figure
- 28 Word count: 2886
- 29 Keywords: CHA₂DS₂-VASc score, Mortality, Hemodialysis

30

32 Abstract

33	Background. The CHA ₂ DS ₂ -VASc score has been widely used to predict stroke in
34	patients with atrial fibrillation (AF). Recently, it was reported that the CHA2DS2-VASc
35	score helps predict cardiovascular disease (CVD) or all-cause mortality in patients with
36	or without AF. However, few reports have examined the association between this score
37	and mortality in hemodialysis patients.
38	Methods. We analyzed 557 consecutive patients who initiated hemodialysis at our
39	facilities between February 2005 and October 2017. The CHA2DS2-VASc score was
40	calculated at the time of initiation of hemodialysis. Patients were then categorized into
41	three groups according to their CHA ₂ DS ₂ -VASc scores: 0–1 (low), 2–3 (intermediate),
42	and 4-9 (high). Multivariate Cox proportional hazards analysis was used to assess
43	independent risk factors for 3-year all-cause mortality.
44	Results. During the 3-year follow-up period, 153 (27.5%) patients died (cardiovascular
45	death: n=88). According to multivariate analysis, serum albumin (hazard ratio [HR]
46	0.60, 95% confidence interval [CI] 0.43–0.85, P=0.003), creatinine (HR 0.91, 95% CI
47	0.84–0.99, <i>P</i> =0.049), and CHA ₂ DS ₂ -VASc score (HR 1.33, 95% CI 1.20–1.46,
48	P < 0.001) were associated with 3-year all-cause mortality. Compared with patients in the
49	low CHA2DS2-VASc score group, those in the intermediate and high score groups had a

- 50 higher risk for all-cause and CVD mortality (all-cause mortality: HR 1.77, 95% CI
- 51 1.23–2.55, P=0.002 and HR 2.94, 95% CI 1.90–4.53, P<0.001, respectively; CVD
- 52 mortality: HR 1.82, 95% CI 1.27–2.59, *P*=0.001 and HR 2.85, 95% CI 1.88–4.31,
- 53 *P*<0.001, respectively).
- 54 **Conclusion.** The CHA₂DS₂-VASc score is a valuable predictor of 3-year all-cause
- 55 and CVD mortality in incident hemodialysis patients.
- 56

57 Introduction

58	Cardiovascular disease (CVD) is the leading cause of death after initiating
59	hemodialysis (HD). In this population, more than 50% of patients have comorbid CVD
60	[1], and mortality resulting from CVD is 20 times higher than in the general population
61	[2]. In this context, investigations of how to appropriately evaluate the risk of CVD in
62	HD patients have been conducted. The CHA2DS2-VASc (Congestive heart failure,
63	Hypertension, Age \geq 75 years, Diabetes mellitus, Stroke or transient ischemic attack,
64	Vascular disease, Age 65–74 years, Sex [female] category) score has been
65	conventionally used as a predictive score for stroke and thromboembolism in patients
66	with atrial fibrillation (AF) [3]. However, in recent years some researchers have
67	reported the use of this score as a predictor of future CVD morbidity or all-cause
68	mortality with or without chronic AF [4-6]. Patients on HD are more likely to have
69	chronic AF in comparison with the general population: 11.6% have AF, and a further
70	50% have any form of arrhythmia, including paroxysmal AF [7]. Dialysis patients have
71	a higher incidence of CVD and a higher rate of arrhythmia as a comorbidity. However,
72	there are limited studies examining the utility of the CHA2DS2-VASc score for mortality
73	after the initiation of HD. The CHA2DS2-VASc score was reported to be associated with
74	1-year mortality in HD patients [8]. Nevertheless, the association between the

75	CHA ₂ DS ₂ -VASc score and mid-term prognosis (3 years) after the start of dialysis
76	remains unclear. In this study, we aimed to clarify the association between the
77	CHA2DS2-VASc score and all-cause or CVD mortality in HD patients over a follow-up
78	of 3 years after initiating HD. Moreover, we examined the factors that may have the
79	most impact on the mid-term prognosis of patients at the initiation of HD.
80	
81	Materials and Methods
82	Study population and design
83	This study was a retrospective observational study conducted in Ichiyokai Harada
84	Hospital, and included three dialysis clinics. The subjects were 557 patients undergoing
85	chronic HD or on-line hemodiafiltration (HDF) from February 2005 to October 2017.
86	All patients had vascular access providing a blood flow rate ≥200 mL/min and received
87	4-h HD or 4-h predilution on-line HDF using high-flux membranes, with a total
88	convective volume of 40 L per session (thrice per week). A standard bicarbonate
89	dialysis fluid (140 mEq/L sodium, 2.0 mEq/L potassium, 3.0 mEq/L calcium, 1.0 mEq/L
90	magnesium, and 100 mg/dL glucose) delivered using a central dialysis fluid delivery
91	system was used for HD and on-line HDF. The observation period started at the
92	initiation of dialysis and ended at one of the following events, whichever occurred first:

93	death, transfer to another facility, or the end of the study (3 years after study
94	enrollment). The exclusion criteria were <20 years of age, and history of advanced
95	cancer in the month leading up to the study. Demographic, clinical, and laboratory data
96	at the initiation of HD or HDF were collected from the electronic medical records of
97	each patient, and the CHA2DS2-VASc score [3] at the initiation of HD was calculated
98	for each patient accordingly. Patients were given 1 point for congestive heart failure,
99	hypertension, age 65-74 years, diabetes mellitus (DM), vascular disease, and female
100	sex, and 2 points for age \geq 75 years and previous stroke or transient ischemic attack
101	(Supplemental Table 1) [9]. Patients were classified into three groups according to their
102	CHA ₂ DS ₂ -VASc scores: 0–1 (low), 2–3 (intermediate), and 4–9 (high). Hypertension
103	was defined as systolic blood pressure (BP) ≥130 mmHg or diastolic BP ≥80 mmHg, a
104	history of hypertension treatment from medical records, or use of antihypertensive
105	drugs [10]. DM was defined by a hemoglobin A1c level \geq 6.5%, 2-h plasma glucose
106	\geq 200 mg/dL with a 75-g oral glucose tolerance test, fasting plasma glucose \geq 126
107	mg/dL, or medical history of DM [11]. Dyslipidemia was defined as low-density
108	lipoprotein cholesterol \geq 140 mg/dL, high-density lipoprotein cholesterol $<$ 40 mg/dL,
109	triglycerides \geq 150 mg/dL, or use of lipid-lowering drugs. Body mass index (BMI) was
110	calculated as dry weight in kilograms divided by the square of height in meters.

93 death, transfer to another facility, or the end of the study (3 years after study

111	The primary endpoint was the composite of all-cause and CVD mortality during the
112	3 years of HD or HDF. We defined 3-year mortality as the mid-term prognosis [12, 13].
113	Mortality data and data regarding CVD events within the 3 years were obtained from
114	the medical records. CVD events were defined as coronary artery disease (coronary
115	artery bypass surgery, percutaneous intervention, or myocardial infarction), heart
116	failure, ventricular arrhythmia, cerebrovascular accident (cerebral infarction, transient
117	ischemic attack, or cerebral hemorrhage), or peripheral arterial disease (peripheral
118	vascular revascularization or amputation). This study was performed following the
119	Declaration of Helsinki, and the protocol was licensed by the hospital ethics committees
120	of the hospital ethics committee of Ichiyokai Harada Hospital.
120 121	of the hospital ethics committee of Ichiyokai Harada Hospital.
	of the hospital ethics committee of Ichiyokai Harada Hospital. Statistical analysis
121	
121 122	Statistical analysis
121 122 123	Statistical analysis Data are presented as mean values ± standard deviation (SD) or median and
121 122 123 124	Statistical analysis Data are presented as mean values ± standard deviation (SD) or median and interquartile range (25th–75th percentiles) for skewed distributions. Differences
121 122 123 124 125	Statistical analysis Data are presented as mean values ± standard deviation (SD) or median and interquartile range (25th–75th percentiles) for skewed distributions. Differences between the groups were analyzed using the chi-squared test or Mann–Whitney U test,

129	and specificity of each factor was identified as the point on the ROC curve closest to the
130	upper left-hand corner. Cox proportional hazards models were used to assess
131	independent predictors of 3-year all-cause mortality, presented as hazard ratio (HR) and
132	95% confidence interval (CI). These parameters were included as explanatory variables
133	in the models based on a recent meta-analysis [14-16]. All statistical analyses were
134	performed using R3.6.2 and the JMP statistical package (version 16; SAS Institute,
135	Cary, NC, USA). A <i>P</i> value of <0.05 was considered statistically significant.
136	
137	Results
138	A total of 557 patients were enrolled in the present study, with 32 patients (30
139	because of hospital transfer or relocation and two because of kidney transplantation) lost
140	to follow-up within 3 years. The primary renal diseases were chronic glomerulonephritis
141	(n=123, 22.1%), diabetic nephropathy (n=270, 48.5%), nephrosclerosis (n=104, 18.7%),
142	polycystic kidney disease (n=16, 2.9%), other diseases (n=19, 3.4%), and unknown
143	conditions (n=25, 4.5%). In the present study, hemodialysis was initiated with an
144	arteriovenous fistula (n=519, 93.2%), arteriovenous graft (n=34; 6.1%), or a central
145	venous catheter (n=2, 0.4%). The mean age was 69.50 ± 13.58 years, and 62% (n=346)

147	history of cerebral infarction at the initiation of HD. During the 3-year follow-up period,
148	153 patients died (88 following CVD events). We divided the participants into three
149	groups according to their CHA ₂ DS ₂ -VASc score: 0–1 (low), 2–3 (intermediate), and 4–9
150	(high). The baseline clinical characteristics of each group are shown in Table 1.
151	Patients with a higher CHA2DS2-VASc score groups were older, more frequently
152	women, and had more of the following items: a corrected calcium value, C-reactive
153	protein, comorbidities (dyslipidemia and DM), medical history (heart failure, stroke, or
154	vascular disease), and the proportion of patients taking antiplatelet drugs. Additionally,
155	the serum albumin, blood urea nitrogen, creatinine, uric acid, potassium, sodium, and
156	phosphorus values were significantly lower in patients with higher CHA2DS2-VASc
157	scores. Table 2 shows the results of multivariate analyses for 3-year all-cause mortality.
158	In a multivariate analysis, serum albumin, creatinine, and CHA2DS2-VASc score were
159	associated with 3-year all-cause mortality (serum albumin: HR 0.60, 95% CI 0.43-0.85,
160	<i>P</i> =0.003; creatinine: HR 0.91, 95% CI 0.84–0.99, <i>P</i> =0.049; CHA ₂ DS ₂ -VASc score: HR
161	1.33, 95% CI 1.20–1.46, P<0.001). Kaplan–Meier survival curves for the three groups
162	divided according to the CHA2DS2-VASc score showed that patients with a high score
163	had a higher risk of 3-year all-cause and CVD mortality (Figure 1). Multivariate
164	analysis using the CHA ₂ DS ₂ -VASc score group of 0–1 as the reference group showed

165	that the intermediate and high groups had a higher risk for all-cause and CVD mortality
166	(all-cause mortality: HR 1.77, 95% CI 1.23–2.55, P=0.002 and HR 2.94, 95% CI 1.90–
167	4.53, P<0.001, respectively; CVD mortality: HR 1.82, 95% CI 1.27–2.59, P=0.001 and
168	HR 2.85, 95% CI 1.88–4.31, P<0.001, respectively) (Table 3). The results of
169	multivariate analysis on 3-year all-cause and CVD mortality with each item of the
170	CHA ₂ DS ₂ -VASc score included as a factor are shown in Supplemental Table 2. Age \geq 75
171	years (P<0.001), prior stroke or transient ischemic attack (P<0.001), albumin (P=0.01),
172	and creatinine ($P=0.02$) were associated with all-cause mortality. For CVD mortality,
173	age \geq 75 years (<i>P</i> <0.001), prior stroke or transient ischemic attack (<i>P</i> <0.001), albumin
174	(P =0.001), creatinine (P =0.006), and uric acid (P =0.01) were significant risk factors.
175	Multivariate analysis of the CHA2DS2-VASc score alone showed that age, DM, and
176	prior stroke were significantly associated with both all-cause and CVD mortality
177	(Supplemental Table 3). In addition, Supplemental Figure 1 shows the ROC curve of
178	baseline age for all-cause mortality, where the optimal cut-off value for age was 74
179	years (sensitivity, 0.71; specificity, 0.68). The type of vascular access at the initiation of
180	HD was not associated with 3-year mortality in this study (Supplemental Table 4).
181	

Discussion

183	We showed an association between the CHA2DS2-VASc score and mid-term
184	mortality of HD patients. The 3-year all-cause and CVD mortality were significantly
185	higher in patients with a higher CHA2DS2-VASc score. Compared with patents in the
186	low CHA2DS2-VASc score group, those in the high score group had an approximately
187	3-fold increased risk for all-cause mortality. To our knowledge, this study is the first
188	report that shows an association between the CHA2DS2-VASc score and med-term
189	prognosis among incident HD patients.
190	Patients with end-stage kidney disease often have some risk factors for
191	atherosclerosis, such as diabetes, hypertension, and abnormal lipid metabolism.
192	Furthermore, it has become well recognized in recent decades that advanced chronic
193	kidney disease itself is a risk factor for atherosclerosis. The high rate of cardiovascular
194	morbidity and resulting mortality in end-stage kidney disease, in particular after the
195	introduction of maintenance dialysis, have been noted in previous studies [1, 2]. Thus, it
196	is essential in clinical practice to identify patients at high risk of death at the induction
197	of HD therapy, and many tools for predicting the life expectancy of patients starting
198	dialysis have been reported [17, 18]. Although several studies reported precise
199	predictive models or indexes, many of them required cumbersome calculations
200	including several variables, such as anthropometric data, laboratory data, presence of

201	systemic complications, and information about activities of daily living [19]. If there are
202	any missing data, the utility of these models and indexes massively decrease. For this
203	reason, these newly proposal indexes are rarely used in current practice.
204	In contrast, the CHA2DS2-VASc score, a modified version of the CHADS2 score, is
205	widely used in clinical practice to assess the risk of stroke in patients with AF and is
206	easy to calculate. Although this score has been used to determine whether patients with
207	AF require treatment with anticoagulation or antiplatelet therapy, it has been associated
208	with the risk of death in patients with several diseases with or without AF, including
209	heart failure [20], stroke [21], acute pulmonary embolism [22], and in patients with
210	implantable cardiac defibrillators [23]. Recently, the CHA2DS2-VASc score was
211	reported to be useful in predicting all-cause and cardiovascular mortality in non-dialysis
212	[24, 25] and even in dialysis CKD patients [8]. Schamroth Pravda M et al. reported that
213	the CHA2DS2-VASc score was strongly associated with all-cause mortality and
214	increased risk of myocardial infarction and stroke within the first year of HD initiation.
215	However, their investigation did not mention the causes of death nor the number lost to
216	follow-up during the 1-year follow-up. In addition, their cohort had a high 1-year
217	mortality rate of 23.8%, which is higher than that reported in any other cohort in the
218	

219	20.5% in the United States [26], 12.5% in Europe [27], and 12.4% in Japan [28]. These
220	differences may be caused by racial differences, quantities of pre-dialysis care,
221	nutritional condition, medical environment or system, or timing of the start of HD. In a
222	short period of 1 year, the prediction of prognosis after the introduction of dialysis may
223	be more influenced by the pre-dialysis condition than the dialysis treatment, and the
224	results may vary widely among countries and regions. In the present study, the 1-year
225	mortality rate was 10% (data not shown), which was similar to that reported in Japan.
226	Thus, we consider this an accurate study of general maintenance HD patients.
227	Additionally, we investigated the association with all-cause mortality and cardiovascular
228	mortality, and showed that a higher CHA2DS2-VASc score was strongly associated with
229	both factors. We showed that among items in the CHA ₂ DS ₂ -VASc score, age (\geq 75
230	years) and history of previous stroke were significantly associated with both 3-year all-
231	cause and CVD mortality. Furthermore, the age cut-off value obtained using the ROC
232	curve was 74 years, approximating the item (age \geq 75 years) in the CHA ₂ DS ₂ -VASc
233	score. Age (≥75 years) and history of previous stroke both add 2 points to the
234	CHA ₂ DS ₂ -VASc score, suggesting that it could better reflect prognosis in HD patients.
235	Moreover, various studies on the medium- to long-term prognoses of HD patients have
236	been conducted. In the present study we also examined other risk factors, including

237	previously known poor prognostic factors such as serum albumin level [29], presence of
238	anemia [30, 31], and history of CVD [32] or stroke [33, 34]; the CHA ₂ DS ₂ -VASc score
239	was still a significant risk factor for 3-year mortality.
240	However, this study has several limitations. First, this was a retrospective
241	observational study. Thus, the casual effects between the CHA2DS2-VASc score and
242	prognosis were not examined. In addition, we were not able to evaluate whether the
243	CHA2DS2-VASc score could be an individual risk prediction in this study. For these
244	reasons, further prospective studies are needed. Second, we did not assess critical risk
245	factors, such as vascular calcification, left ventricular hypertrophy, and dialysis
246	adequacy. Third, our cohort included only Japanese people, whose survival is reportedly
247	one of the best globally, so the resulting data cannot be generalized to other populations.
248	Finally, we could not investigate changes in medication use or mode of dialysis
249	treatment (including change from HD to HDF) during the first 3 years after dialysis
250	induction. Despite these limitations, it is worthwhile to employ the CHA2DS2-VASc
251	score because it is easy to measure at the bedside and can significantly predict mortality
252	3 years after dialysis initiation.

- 253 In conclusion, patients with end-stage renal disease are at high risk of mortality and
- 254 CVD even within 3 years after the introduction of HD. The CHA₂DS₂-VASc score was
- strongly associated with 3-year all-cause and CVD mortality in HD patients.

257 Statement of Ethics

258	The study is in accordance with the ethical standards of the National Research
259	Committee and with the 1964 Helsinki Declaration and its later amendments or
260	comparable ethical standards. The protocol was licensed by the hospital ethics
261	committee of Ichiyokai Harada Hospital (approval number 202004, registered March
262	24, 2020). Written informed consent was not required because of the non-intervention
263	and retrospective design.
264	
265	Conflict of Interest Statement
266	The authors have no relevant financial or nonfinancial interests to disclose.
267	
268	Funding Sources
269	The authors received no specific funding for the present study.
270	
271	Author Contributions
272	Okubo A and Doi T designed the study, wrote, and edited the manuscript, Okubo A
273	researched and analyzed data. Okubo A and Doi T wrote and reviewed the manuscript.

All the authors approved the final version of the manuscript to be published. Doi T isthe guarantor of this work.

276

277 Data Availability Statement

278 The data that support the findings of this study are not publicly available due to their

- 279 containing information that could compromise the privacy of research participants but
- are available from the corresponding author [Toshiki Doi, E-mail: doitoshi@hiroshima-
- 281 u.ac.jp] or data sharing committee [Hiroshima University Hospital, 1-2-3 Kasumi,
- 282 Minami-ku, Hiroshima 734-8551, Japan. Tel.: +81-82-257-1506/Fax: +81-82-257-
- 283 1508] upon reasonable request.

286	1.	Cozzolino M,	Galassi A,	Pivari F,	Ciceri P,	Conte.	The ca	rdiovascul	ar burd	en i	n
-----	----	--------------	------------	-----------	-----------	--------	--------	------------	---------	------	---

- end-stage renal disease. Contrib Nephrol. 2017 191:44-57.
- 288 2. Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular
- disease in dialysis patients. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii28iii34.
- 291 3. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk
- stratification for predicting stroke and thromboembolism in atrial fibrillation using
- a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest
- 294 2010 Feb;137(2):263-72.
- 295 4. Glotzer TV, Hellkamp AS, Lee KL, Lamas GA. CHA₂DS₂-VAS(C) and CHADS₂
- 296 Scores Predict Adverse Clinical Events in Patients With Pacemakers and Sinus
- 297 Node Dysfunction Independent of Atrial Fibrillation. Can J Cardiol. 2015
- 298 Aug;31(8):1004-11.
- 299 5. Liu FD, Shen XL, Zhao R, Li GF, Wu YL, Tao XX, et al. Predictive role of
- 300 CHADS₂ and CHA₂DS₂-VASc scores on stroke and thromboembolism in patients
- 301 without atrial fibrillation: a meta-analysis. Ann Med. 2016 Aug;48(5):367-75.

302	6.	Tu HT, Campbell BC, Meretoja A, Churilov L, Lees KR, Donnan GA, et al. Pre-
303		Stroke CHADS ₂ and CHA ₂ DS ₂ -VASc Scores Are Useful in Stratifying Three-
304		Month Outcomes in Patients with and without Atrial Fibrillation. Cerebrovasc Dis.
305		2013;36(4):273-80.
306	7.	Zimmerman D, Sood MM, Rigatto C, Holden RM, Hiremath S, Clase CM.
307		Systematic review and meta-analysis of incidence, prevalence and outcomes of
308		atrial fibrillation in patients on dialysis. Nephrol Dial Transplant. 2012
309		Oct;27(10):3816-22.
310	8.	Schamroth Pravda M, Cohen Hagai K, Topaz G, Schamroth Pravda N, Makhoul N,
311		Shuvy M, et al. Assessment of the CHA2DS2-VASc Score in Predicting Mortality
312		and Adverse Cardiovascular Outcomes of Patients on Hemodialysis. Am J Nephrol.
313		2020 51(8):635-40.
314	9.	European Heart Rhythm Association; European Association for Cardio-Thoracic
315		Surgery, Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, et al.
316		Guidelines for the management of atrial fibrillation: the Task Force for the
317		Management of Atrial Fibrillation of the European Society of Cardiology (ESC).
318		Eur Heart J. 2010 Oct;31(19):2369-429.
319	10.	Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison

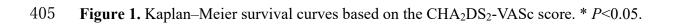
)1	7
)1

321		ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline
322		for the prevention, detection, evaluation, and management of high blood pressure in
323		adults: a report of the American College of Cardiology/American Heart Association
324		Task Force on Clinical Practice Guidelines. Hypertension. 2018 Jun;71(6):1269-
325		324.
326	11.	American Diabetes Association: 2. Classification and diagnosis of diabetes:
327		Standards of Medical Care in Diabetes-2020. Diabetes Care 2020. 43(Suppl 1):
328		S14-31.
329	12.	Lu YA, Chen SW, Lee CC, Wu VC, Fan PC, Kuo G, et al. Mid-term survival of
330		patients with chronic kidney disease after extracorporeal membrane oxygenation.
331		Interact Cardiovasc Thorac Surg. 2020 Nov 1;31(5):595-602.
332	13.	Grundmann D, Linder M, Goßling A, Voigtländer L, Ludwig S, Waldschmidt L, et
333		al. End-stage renal disease, calcification patterns and clinical outcomes after TAVI.
334		Clin Res Cardiol. 2021 Nov 13. doi: 10.1007/s00392-021-01968-y.
335	14.	März W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, et al. German
336		Diabetes and Dialysis Study Investigators: Atorvastatin and low-density lipoprotein
337		cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin J Am Soc

338 Nephrol. 2011 Jun;6(6):1316-25.

- 339 15. Bae E, Cho HJ, Shin N, Kim SM, Yang SH, Kim DK, et al. Lower serum uric acid
- 340 level predicts mortality in dialysis patients. Medicine (Baltimore). 2016
- 341 Jun;95(24):e3701.
- 342 16. C Choi SR, Lee YK, Cho AJ, Park HC, Han CH, Choi MJ, et al. Malnutrition,
- 343 inflammation, progression of vascular calcification and survival: Inter-relationships
- in hemodialysis patients. PLoS One. 2019 May 2;14(5):e0216415.
- 345 17. Anderson RT, Cleek H, Pajouhi AS, Bellolio MF, Mayukha A, Hart A, et al.
- 346 Prediction of Risk of Death for Patients Starting Dialysis. Clin J Am Soc Nephrol.
- 347 2019 Aug 7;14(8):1213-1227.
- 348 18. Kanda E, Kato A, Masakane I, Kanno Y. A new nutritional risk index for predicting
- 349 mortality in hemodialysis patients: Nationwide cohort study. PLoS One. 2019 Mar
- 350 28;14(3):e0214524.
- 351 19. Robinson BM, Zhang J, Morgenstern H, Bradbury BD, Ng LJ, McCullough KP, et
- al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney
- 353 Int. 2014 Jan;85(1):158-65.
- 20. Chen YL, Cheng CL, Huang JL, Yang NI, Chang HC, Chang KC, et al. Mortality
- 355 prediction using CHADS₂/CHA₂S₂DS₂-VASc/R₂CHADS₂ scores in systolic heart

failure patients with or without atrial fibrillation. Medicine (Baltimore). 2017


- 357 Oct;96(43):e8338. 358 21. Ntaios G, Lip GY, Makaritsis K, Papavasileiou V, Vemmou A, Koroboki E, et al. 359 CHADS₂, CHA₂S₂DS₂-VASc, and long-term stroke outcome in patients without 360 atrial fibrillation. Neurology. 2013 Mar 12;80(11):1009-17. 361 22. Onuk T, Karataş MB, İpek G, Güngör B, Akyüz Ş, Çanga Y, et al. Higher 362 CHA2DS2-VASc Score Is Associated With Increased Mortality in Acute Pulmonary 363 Embolism. Clin Appl Thromb Hemost. 2017 Sep;23(6):631-637. 364 23. Hong C, Alluri K, Shariff N, Khattak F, Adelstein E, Jain S, et al. Usefulness of the 365 CHA2DS2-VASc Score to Predict Mortality in Defibrillator Recipients. Am J 366 Cardiol. 2017 Jul 1;120(1):83-86. 367 24. Hsu PC, Lee WH, Chen SC, Tsai YC, Chen YC, Chu CY, et al. Using CHADS₂ 368 and CHA₂DS₂-VASc scores for mortality prediction in patients with chronic kidney 369 disease. Sci Rep. 2020 Nov 3;10(1):18942.
- 370 25. Vodošek Hojs N, Ekart R, Bevc S, Piko N, Hojs R. CHA2DS2-VASc Score as a
- 371 Predictor of Cardiovascular and All-Cause Mortality in Chronic Kidney Disease
- 372 Patients. Am J Nephrol. 2021;52(5):404-411.
- 373 26. The United States Renal Data System (USRDS). Available from:

374 https://adr.usrds.org/2020/end-stage-renal-disease/5-mortality.

- 27. Kramer A, Boenink R, Stel VS, Santiuste de Pablos C, Tomović F, Golan E, et al.
- 376 The ERA-EDTA Registry Annual Report 2018: a summary. Clin Kidney J. 2020
- 377 Dec 24;14(1):107-123.
- 28. Nitta K, Goto S, Masakane I, Hanafusa N, Taniguchi M, Hasegawa T, et al. Annual
- dialysis data report for 2018, JSDT Renal Data Registry: survey methods, facility
- data, incidence, prevalence, and mortality. Ren Replace Ther 2020;6:41.
- 381 29. Shimoda T, Matsuzawa R, Yoneki K, Harada M, Watanabe T, Yoshida A, et al.
- 382 Combined Contribution of Reduced Functional Mobility, Muscle Weakness, and
- 383 Low Serum Albumin in Prediction of All-Cause Mortality in Hemodialysis
- Patients: A Retrospective Cohort Study. J Ren Nutr. 2018 Sep;28(5):302-308.
- 385 30. Locham S, Mathlouthi A, Dakour-Aridi H, Nejim B, Malas MB. Association
- 386 between Severe Anemia and Outcomes of Hemodialysis Vascular Access. Ann
- 387 Vasc Surg. 2020 Jan;62:295-303.
- 388 31. Kido R, Akizawa T, Fukuhara S: Haemoglobin concentration and survival of
- 389 haemodialysis patients before and after experiencing cardiovascular disease: a
- 390 cohort study from Japanese dialysis outcomes and practice pattern study (J-
- 391 DOPPS). BMJ Open. 2019 Sep 5;9(9):e031476.

392	32.	Stirnadel-Farrant HA, Karaboyas A, Cizman B, Bieber BA, Kler L, Jones D, et al.
393		Cardiovascular Event Rates Among Hemodialysis Patients Across Geographical
394		Regions-A Snapshot From The Dialysis Outcomes and Practice Patterns Study
395		(DOPPS). Kidney Int Rep. 2019 Mar 28;4(6):864-72.
396	33.	Kojima M, Inaguma D, Koide S, Koshi-Ito E, Takahashi K, Hayashi H, et al.
397		Relationship between History of Ischemic Stroke and All-Cause Mortality in
398		Incident Dialysis Patients. Nephron. 2019;143(1):43-53.
399	34.	Findlay M, MacIsaac R, MacLeod MJ, Metcalfe W, Sood MM, Traynor JP, et al.
400		The Association of Atrial Fibrillation and Ischemic Stroke in Patients on
401		Hemodialysis: A Competing Risk Analysis. Can J Kidney Health Dis. 2019 Sep
402		27;6:2054358119878719. DOI: 10.1177/2054358119878719.

403 Figure legends

- 406 (A) Three-year all-cause mortality. (B) Cardiovascular mortality.

	All Patients	Cl	HA2DS2-VASc S	core	Р
		0–1	2–3	4–9	Value
	n = 557	n = 81	n = 267	n = 209	
Age, years	69.50±13.58	53.69±12.11	68.45±12.01*	76.97±9.85 ^{*†}	< 0.001
Male, n (%)	346 (62.1)	67 (82.7)	179 (67.0)	100 (47.6) ^{*†}	< 0.001
BMI, kg/m^2	22.11±4.15	24.37±15.32	22.16±4.31	$21.88 \pm 4.25^*$	0.07
AVF, n (%)	521 (93.5)	79 (97.5)	248 (92.9)*	195 (93.3)*	0.90
3-year death, n (%)	153 (29.0)	6 (7.4)	60 (22.5) [*]	87 (41.6) ^{*†}	< 0.001
Laboratory data					
Hemoglobin, g/dL	10.68 ± 1.46	10.84±1.38	10.73 ± 1.41	10.57 ± 1.54	0.29
Albumin, g/dL	3.40 ± 0.54	3.67±0.46	$3.45 \pm 0.45^*$	$3.20{\pm}0.59^{*\dagger}$	< 0.001
BUN, mg/dL	56.94±17.66	61.84±18.76	59.07±17.53	$52.32{\pm}16.40^{*\dagger}$	< 0.001
Creatinine, mg/dL	7.15 ± 2.83	9.24±3.31	$7.40{\pm}2.66^*$	$6.03{\pm}2.24^{*\dagger}$	< 0.001
Urinary acid, mg/dL	7.18±1.72	7.91±1.56	$7.22 \pm 1.67^*$	$6.85{\pm}1.63^{*\dagger}$	< 0.001
Sodium, mEq/L	138.00 ± 3.83	139.14±2.95	138.50±3.75	$136.94{\pm}4.09^{*\dagger}$	< 0.001
Potassium, mEq/L	4.48 ± 0.77	4.64 ± 0.78	4.56±0.73	$4.32{\pm}0.78^{*\dagger}$	< 0.001
Calcium, mg/dL	8.93 ± 0.96	8.80±0.91	8.87±0.92	$9.05{\pm}1.02^{*\dagger}$	0.006
Phosphorus, mg/dL	4.96 ± 1.47	5.23±1.31	5.11±1.49	4.66±1.46 ^{*†}	0.001
CRP, mg/dL	0.98 ± 2.90	0.53±1.50	0.89 ± 2.99	$1.27{\pm}3.18^{*\dagger}$	< 0.001
β 2MG, mg/dL	22.94 ± 7.56	22.19±7.45	22.78 ± 8.09	23.50±6.80	0.39
Comorbidities					
Hypertension, n (%)	536 (96.9)	76 (93.8)	258 (96.6)	202 (96.7)	0.84
Diabetes mellitus, n (%)	276 (49.9)	18 (22.2)	120 (44.9)*	138 (66.0)*†	< 0.001
Dyslipidemia, n (%)	319 (57.8)	30 (37.0)	148 (55.4)*	141 (68.4)*	< 0.001
Atrial fibrillation, n (%)	25 (4.5)	1 (1.2)	8 (3.0)	16 (7.7)	0.23
Medical history					
Heart failure, n (%)	95 (17.1)	2 (2.5)	22 (8.2)*	67 (32.6) ^{*†}	< 0.001
Stroke, n (%)	89 (16.0)	4 (4.9)	34 (12.7)*	57 (27.3) ^{*†}	< 0.001
Vascular disease, n (%)	36 (6.5)	2 (2.5)	11 (4.1)	23 (11.0)*†	< 0.001
Medications					
Antiplatelet drugs, n (%)	166 (29.8)	5 (6.2)	56 (21.0)	$105 (51.0)^{*\dagger}$	< 0.001
Anticoagulant drugs, n (%)	27 (4.5)	2 (2.5)	15 (5.6)	10 (4.8)	0.21

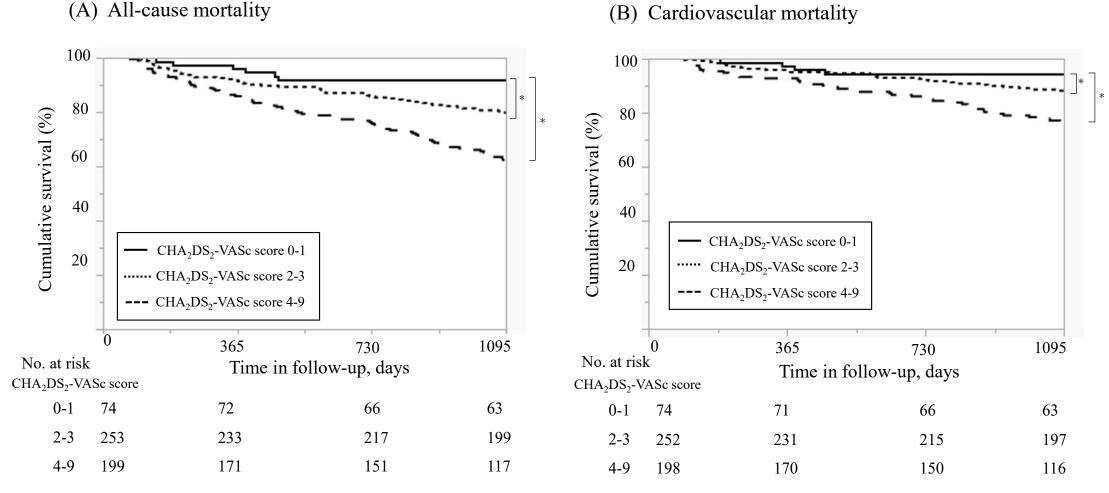
Table 1. Comparison of clinical characteristics according to the CHA₂DS₂-VASc score

BMI, body mass index; AVF, arteriovenous fistula; BUN, blood urea nitrogen; CRP, C-reactive protein; β2MG, β2-microglobulin.

Data are mean \pm SD for continuous variables. Differences between the groups were analyzed using the Mann–Whitney U test or chi-squared test. **P*<0.05 versus low score group, † *P*<0.05 versus intermediate score group.

	Multivariate Analysis				
	HR	95% CI	P Value		
CHA ₂ DS ₂ -VASc score	1.33	1.20-1.46	< 0.001		
BMI, 1 kg/m ²	1.01	0.98-1.03	0.70		
Smoking status	0.99	0.82-1.23	0.99		
Hemoglobin, 1 g/dL	0.98	0.80-1.13	0.54		
Albumin, 1 g/dL	0.60	0.43-0.85	0.003		
BUN, 1 mg/dL	1.01	0.99-1.02	0.06		
Creatinine, 1 mg/dL	0.91	0.84-0.99	0.049		
Uric acid, 1 mg/dL	0.94	0.89-1.00	0.07		
Sodium, 1 mEq/L	0.99	0.96-1.02	0.59		
Potassium, 1 mEq/L	0.82	0.66-1.01	0.61		
Calcium, 1 mg/dL	0.96	0.80-1.13	0.56		
Phosphorus, 1 mg/dL	0.96	0.87-1.09	0.67		
CRP, 1 mg/dL	1.05	0.96-1.13	0.29		
Dyslipidemia	0.88	0.67-1.14	0.32		

Table 2. Multivariate analysis (Cox proportional hazard model) ofparameters related to 3-year all-cause mortality

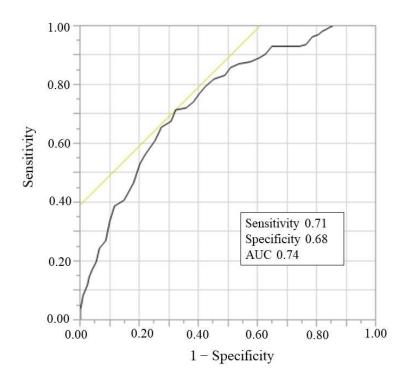

HR, hazard ratio; CI, confidence interval; BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive protein.

	All-Cause Mortality		Cardiovascular M	lortality
	HR (95% CI)	P Value	<i>P</i> Value HR (95% CI)	
Model 1				
CHA ₂ DS ₂ -VASc score 0-1	1.00 (ref.)		1.00 (ref.)	
CHA ₂ DS ₂ -VASc score 2-3	1.80 (1.37–2.36)	< 0.001	1.87 (1.43–2.44)	< 0.001
CHA ₂ DS ₂ -VASc score 4-9	3.06 (2.25-4.18)	< 0.001	3.28 (2.45-4.41)	< 0.001
Model 2				
CHA ₂ DS ₂ -VASc score 0-1	1.00 (ref.)		1.00 (ref.)	
CHA ₂ DS ₂ -VASc score 2-3	1.77 (1.23–2.55)	0.002	1.82 (1.27–2.59)	0.001
CHA ₂ DS ₂ -VASc score 4-9	2.94 (1.90-4.53)	< 0.001	2.85 (1.88-4.31)	< 0.001

Table 3. Risk of all-cause mortality and cardiovascular mortality associated with the CHA₂DS₂-VASc score

HR, hazard ratio; CI, confidence interval.

Multivariate Cox proportional hazards regression with crude (Model 1) and adjusted (Model 2) associations for the CHA₂DS₂-VASc score and mortality. The adjusted analysis included the following covariates: body mass index, smoking status, hemoglobin, serum albumin, blood urea nitrogen, creatinine, uric acid, potassium, sodium, corrected calcium, phosphorus, C-reactive protein, and history of dyslipidemia.



(A) All-cause mortality

Supplementary Materials

Supplemental Figure legends

Supplemental Figure 1. Receiver-operating characteristic curve of baseline age and 3year all-cause mortality. The area under the curve (AUC) (95% confidence interval) was 0.74, and optimal cut-off point (sensitivity, specificity) of 3-year all-cause mortality was 74 (0.71, 0.68). Supplemental Figure 1. Receiver-operating characteristic curve of baseline age and 3-year all-cause mortality

Risk Factor	Score
Chronic heart failure	1
Hypertension	1
Diabetes mellitus	1
Vascular disease	1
Age 65–74 years	1
Female	1
Age ≥75 years	2
Prior stroke or transient ischemic attack	2

Supplemental Table 1. Evaluation items for the CHA₂DS₂-VASc score

	All-Cause Mo	All-Cause Mortality Cardiovas		scular Mortality	
	HR (95% CI)	P Value	HR (95% CI)	P Value	
Age ≥75 years	2.04 (1.48–2.81)	< 0.001	2.74 (1.75–3.21)	< 0.001	
Gender, 1 female	0.99 (0.60–1.70)	0.28	0.89 (0.60–1.01)	0.16	
BMI, 1 kg/m ²	1.01 (0.98–1.04)	0.63	1.00 (0.97–1.03)	0.85	
Smoking status	1.02 (0.72–2.22)	0.47	0.99 (0.71–1.14)	0.39	
Hemoglobin, 1 g/dL	1.08 (0.99–1.18)	0.07	1.07 (0.99–1.15)	0.09	
Albumin, 1 g/dL	0.63 (0.44–0.89)	0.01	0.60 (0.44–0.81)	0.001	
BUN, 1 mg/dL	1.01 (0.99–1.02)	0.06	1.01 (0.99–1.02)	0.06	
Creatinine, 1 mg/dL	0.90 (0.82-0.99)	0.02	0.89 (0.82–0.97)	0.006	
Uric acid, 1 mg/dL	0.94 (0.88–1.00)	0.06	0.92 (0.87-0.98)	0.01	
Sodium, 1 mEq/L	0.97 (0.94–1.00)	0.09	0.99 (0.96–1.02)	0.62	
Potassium, 1 mEq/L	0.83 (0.67–1.02)	0.09	0.84 (0.69–1.01)	0.07	
Calcium, 1 mg/dL	0.98 (0.82–1.17)	0.80	0.91 (0.86–1.18)	0.87	
Phosphorus, 1 mg/dL	0.99 (0.88–1.19)	0.88	0.96 (0.85–1.07)	0.44	
CRP, 1 mg/dL	1.04 (0.95–1.12)	0.35	1.08 (0.99–1.14)	0.05	
Comorbidities					
Hypertension	0.51 (0.22–1.22)	0.13	0.77 (0.37–1.66)	0.52	
Diabetes mellitus	1.09 (0.79–1.51)	0.58	1.01 (0.76–1.36)	0.93	
Dyslipidemia	0.96 (0.69–1.33)	0.80	1.00 (0.75–1.34)	0.68	
Medical history					
Heart failure	1.09 (0.71–1.51)	0.86	1.05 (0.75–1.46)	0.78	
Stroke	2.04 (1.44–2.87)	< 0.001	1.75 (1.27–2.40)	< 0.001	
Vascular disease	1.22 (0.66–1.92)	0.67	0.99 (0.60–1.60)	0.93	

Supplemental Table 2. Multivariate analysis of 3-year mortality with each item of CHA₂DS₂-VASc score included as a variable

HR, hazard ratio; CI, confidence interval; BMI, body mass index, BUN, blood urea nitrogen; CRP, C-reactive protein.

	All-Cause Mortality		Cardiovascular Mortality	
	HR (95% CI)	P Value	HR (95% CI)	P Value
Age	1.04 (1.03–1.05)	< 0.001	1.04 (1.03–1.05)	< 0.001
Gender, 1 female	0.99 (0.48–1.18)	0.26	1.00 (0.81–1.22)	0.16
Hypertension	0.39 (0.18–1.00)	0.05	0.46 (0.45–1.00)	0.06
Diabetes mellitus	1.34 (1.09–1.66)	0.006	1.25 (1.03–1.52)	0.03
Heart failure	1.09 (0.77–1.50)	0.61	1.22 (0.91–1.61)	0.18
Vascular disease	1.07 (0.69–1.64)	0.77	1.00 (0.65–1.45)	0.93
Stroke	1.44 (1.08–1.89)	0.001	1.25 (1.01–1.64)	0.04

Supplemental Table 3. Multivariate analysis of 3-year mortality with each item of CHA₂DS₂-VASc score

HR, hazard ratio; CI, confidence interval.

	Multivariate Analysis			
	HR	95% CI	P Value	
CHA ₂ DS ₂ -VASc score	1.28	1.16-1.40	< 0.001	
BMI, 1 kg/m ²	1.01	0.98-1.03	0.70	
Smoking status	0.99	0.81-1.23	0.99	
Hemoglobin, 1 g/dL	1.12	1.02-1.22	0.01	
Albumin, 1 g/dL	0.60	0.43-0.85	0.004	
BUN, 1 mg/dL	1.01	0.99-1.02	0.06	
Creatinine, 1 mg/dL	0.91	0.84-0.99	0.049	
Uric acid, 1 mg/dL	0.94	0.89-1.00	0.07	
Sodium, 1 mEq/L	0.99	0.96-1.14	0.58	
Potassium, 1 mEq/L	0.82	0.66-1.01	0.67	
Calcium, 1 mg/dL	0.95	0.80-1.14	0.60	
Phosphorus, 1 mg/dL	0.96	0.87-1.10	0.67	
CRP, 1 mg/dL	1.05	0.96-1.14	0.27	
Dyslipidemia	0.88	0.67-1.14	0.33	
Arteriovenous fistula	0.93	0.29–2.93	0.89	

Supplemental Table 4. Multivariate analysis (Cox proportional hazard model) of parameters related to 3-year all-cause mortality

HR, hazard ratio; CI, confidence interval; BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive protein.