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Abstract

Recent progress in accelerator technologies has made it feasible to produce high-power and/or
high-brightness hadron beams for diverse applications. As a result, mutual Coulomb interaction
among accelerated particles is playing a crucial role in the beam stability. A detailed under-
standing of collective effects induced by the space-charge potential is indispensable to make a
reliable design of any next-generation hadron machine. Such information is also essential to
achieve the performance improvement of high-intensity accelerators currently operating around
the world. The purpose of the present work is to elucidate the basic mechanisms of resonant
instabilities expected to occur in high-intensity hadron beams. Emphasis is placed upon two
main subjects described in detail in Chapter 3 and Chapter 4. The first two chapters are for
providing fundamental beam-dynamics information that will help in understanding the contents
of the following chapters.

In Chapter 3, we pay attention to resonant instabilities in circular accelerators. Since the
beam goes through a huge number of lattice periods, even a weak nonlinear resonance may
affect the beam stability. The machine operating point must be chosen carefully in betatron
tune space to avoid dangerous stop bands of various resonances. For this purpose, we need
to predict the locations of those stop bands, taking the space-charge effect into account. It is
particularly important to consider the beam behavior in a self-consistent manner because the
motions of individual particles are no longer independent at high density but rather correlated
through the Coulomb potential. The so-called “incoherent resonance condition” and “necktie
diagram”, commonly used in the community to look for an optimum operating point, are not
self-consistent. We should, therefore, be careful in using these conventional concepts for the
optimization of machine parameters. In fact, the main body (core) of the beam turns out to be
stable even though the core particles satisfy the incoherent resonance condition.

According to the self-consistent analytic theory developed by Okamoto and Yokoya for one-
dimensional (1D) sheet beam, the core of an intense beam matched to an alternating-gradient
(AG) lattice may become unstable when the tune of a coherent core oscillation mode is close
to half integers. We here empirically generalize their 1D “coherent resonance condition” to
predict the core stability of a coasting beam. The proposed two-dimensional (2D) resonance
condition is applicable to a long bunch typical in modern high-intensity hadron rings. A self-
consistent simulation technique, namely, the particle-in-cell (PIC) code “WARP” is employed to
check the validity of the 2D condition. It is found that the present resonance theory can explain
systematic PIC simulation data fairly well. We also show that it is possible to suppress a specific
difference resonances strongly by adjusting the ratio of initial horizontal and vertical emittances
to a specific value. Based on the 2D coherent resonance condition, a new type of stability tune
diagram is constructed to visualize the preferable operating areas in betatron tune space. The
new diagram reveals not only the distribution of coherent resonance bands where the beam core
may be affected seriously but also incoherent resonance regions where large amplitude particles
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in the beam tail may become unstable. As an example, we take the lattice design of the rapid
cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) and
demonstrate that our stability chart is consistent with the current RCS operating condition.

In Chapter 4, we explore the stability of intense short hadron bunches propagating through
linear accelerators. Unlike in the case of circular machines, beams in linacs pass through only
a limited number of AG focusing periods. They, however, have much higher density in phase
space, so space-charge effects can be very severe even in a short timescale. Moreover, the bunch
shape is ellipsoidal or even spherical due to the strong longitudinal focusing force, which makes
the role of synchrotron oscillation more important. Further generalization of the 2D resonance
theory in Chapter 3 is then necessary to include the effect of synchrobetatron coupling as well
as the synchrotron resonance. We thus introduce the three-dimensional (3D) version of the
coherent resonance condition in this chapter.

Extra caution is required in the linac situation where the external potential generated by
beam focusing magnets and accelerating gaps is not strictly periodic as in the case of storage
rings. The operating betatron and synchrotron tunes per unit AG cell are no longer fixed but
move in the tune space as the beam is accelerated. We employ the 3D PIC code “IMPACT” to
incorporate these complications and apply it to investigate the stability of high-intensity proton
beams in the drift-tube linac (DTL) at J-PARC. A few possible sources of the emittance growth
actually observed in the DTL are suggested and studied in detail.

In addition to IMPACT simulations with the exact design parameters of the J-PARC DTL,
a systematic numerical study is performed over a wide parameter range, based on an analytic
model assuming the most typical Alvarez-type DTL structure. It is confirmed that a serious
emittance exchange occurs when the operating point crosses a low-order synchrobetatron dif-
ference resonance band. Such an emittance exchange effect can, however, be weakened signifi-
cantly by choosing a proper ratio of the initial emittances of the three directions, similarly to the
2D case discussed in the previous chapter. The equipartitioned linac design is found to automat-
ically achieve the magic emittance ratio for the suppression of low-order difference resonances,
which broadens the usable operating area in the tune space.
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Chapter 1

Basic theory

1.1 Hamiltonian formalism in the Frenet-Serret coordinate
system

The motion of the charged particle can be divided into a reference orbit and the small amplitude
displacement around it. It is convenient to define the spatial coordinate along the reference
orbit. Thus the coordinate system illustrated in Fig. 1.1, which is referred to as the “Frenet-
Serret system”, is adopted in this paper [1]. The particle position vector is given by

u = 𝑥n + 𝑦b + 𝑠t, (1.1)

where 𝑥 and 𝑦 are betatron coordinates. n, b, and t are principal normal unit vector, binormal
unit vector, and tangent unit vector to the reference orbit respectively. 𝑠 denotes the length
measured along the reference orbit from an initial point. Then the Lagrangian using time 𝑡 as
the independent variable is given by

𝐿𝑡 = −𝑚𝑐2

√√√
1 −

(
1
𝑐

𝑑u

𝑑𝑡

)2

+ 𝑞
(
A ·

𝑑u

𝑑𝑡
− 𝜙

)
, (1.2)

where 𝑚 and 𝑞 are the rest mass and charge of the particle. 𝑐 is the speed of light in the vacuum.
A is the sum of A(sc) comes from the beam current and A(mag) = (𝐴𝑥 , 𝐴𝑦, 𝐴𝑠) comes from
accelerator components, and 𝜙 denotes the scalar potential. In general, the transversal velocities
of the particle 𝑑𝑥/𝑑𝑡 and 𝑑𝑦/𝑑𝑡 are much smaller than longitudinal velocity 𝑑𝑠/𝑑𝑡, and we

s

Local Center
ρ

x

y

z

Reference Orbit

Figure 1.1: The Frenet-Serret system
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can approximate the vector potential by A(sc) = 𝛽s𝜙sct where 𝛽s and 𝜙sc are Lorentz factor
and scalar potential generated by particles’ charge. Then the total vector potential becomes
A = (𝐴𝑥 , 𝐴𝑦, 𝐴𝑠 + 𝛽s𝜙sc).

It is often useful to take 𝑠 instead of 𝑡 as the independent variable because the distribution
of A(mag) are spatially fixed. The new Lagrangian can be written

𝐿𝑠 ≡ 𝐿𝑡
𝑑𝑡

𝑑𝑠
= −𝑚𝑐2

√√√(
𝑑𝑡

𝑑𝑠

)2

−
(
1
𝑐

𝑑u

𝑑𝑠

)2

+ 𝑞
(
A ·

𝑑u

𝑑𝑠
− 𝜙sc

𝑑𝑡

𝑑𝑠

)
. (1.3)

Ignoring the torsion of the reference orbit, 𝑑u/𝑑𝑠 can be written

𝑑u

𝑑𝑠
=
𝑑𝑥

𝑑𝑠
n +

𝑑𝑦

𝑑𝑠
b +

(
1 +

𝑥

𝜌

)
t, (1.4)

where 𝜌 is the local curvature of the reference orbit.
According to the least action therm, Hamiltonian derived from Eq. (1.3) is

𝐻 (𝑥, 𝑦, 𝑡, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑡 ; 𝑠) =

−
(
1 +

𝑥

𝜌

) √√√(
𝑝𝑡 + 𝑞𝜙sc

𝑐

)2

− 𝑚𝑐2 − (𝑝𝑥 − 𝑞𝐴𝑥)2 − (𝑝𝑦 − 𝑞𝐴𝑦)2 − 𝑞
(
1 +

𝑥

𝜌

)
(𝐴𝑠 + 𝛽s𝜙sc).

(1.5)

Note that the longitudinal canonical coordinate is no longer the spacial coordinate 𝑧, and the
conjugate momentum 𝑝𝑡 is equal to just the negative of the total energy of the particle. The
canonical momentums 𝑝𝑥 and 𝑝𝑦 are usually much smaller than the total kinetic momentum
𝑝 =

√
(𝑝𝑡 + 𝑞𝜙sc)2/𝑐2 − 𝑚2𝑐2. Assuming |𝑝𝑥/𝑝 | ≪ 1 and |𝑝𝑦/𝑝 | ≪ 1, we can expand the first

term on the right-hand side of Eq. (1.5) as

𝐻 ≈ −
(
1 +

𝑥

𝜌

) [
𝑝 −

(𝑝𝑥 − 𝑞𝐴𝑥)2 + (𝑝𝑦 − 𝑞𝐴𝑦)2

2𝑝
+ 𝑞(𝐴𝑠 + 𝛽s𝜙sc)

]
. (1.6)

Here, we transform the longitudinal canonical momentum from 𝑝𝑡 to the energy deviation Δ𝐸
for later convenience. If we use the design energy 𝐸0, the energy deviation can be written
by Δ𝐸 = −𝑝𝑡 − 𝐸0. The canonical transformation from (𝑡, 𝑝𝑡) to (𝑡′,Δ𝐸) is realized by the
generating function

𝐹1(𝑡,−Δ𝐸) = −(Δ𝐸 + 𝐸0)𝑡. (1.7)

And the new Hamiltonian is

�̃� (𝑥, 𝑦, 𝑡′, 𝑝𝑥 , 𝑝𝑦,Δ𝐸 ; 𝑠) ≈(
1 +

𝑥

𝜌

) 
(𝑝𝑥 − 𝑞𝐴𝑥)2 + (𝑝𝑦 − 𝑞𝐴𝑦)2

2𝑝0
− 𝑞𝐴𝑠 +

𝑞𝜙sc

𝛽s𝑐𝛾
2
s
−
Δ𝐸

𝛽s𝑐
+

1
2𝑝0

(
Δ𝐸

𝛽s𝑐𝛾s

)2 ,
(1.8)
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where 𝑝0 ≡ 𝑚𝛽s𝛾s𝑐 is design moment. The following relation is used to derive Eq. (1.8).

𝑝 ≈ 𝑝0

√√
1 +

2𝑝0

𝑝2
0𝑐

2
(Δ𝐸 − 𝑞𝜙sc) +

1
𝑝2

0𝑐
2
(Δ𝐸 − 𝑞𝜙sc)2

≈ 𝑝0 +
1
𝛽s𝑐

(Δ𝐸 − 𝑞𝜙sc) −
Δ𝐸2

2𝑝0(𝛽s𝑐𝛾s)2 .

(1.9)

1.2 Multipole expansion of magnetic components

Ideally, only the longitudinal vector potential is enough to describe Lorentz forces from mul-
tipole magnets, and we assume A(mag) = 𝐴𝑠t. Let us consider the expansion of magnetic
components in a power series in the betatron coordinates. Using time-independent Maxwell’s
equations in a vacuum ∇ ×B = 0 and B = ∇ ×A, we have

∇2𝐴𝑠 = 0. (1.10)

In 2D cylindrical coordinates (𝑟, 𝜃), the general solution of 𝐴𝑠 can be obtained through power
series expansion in 𝑟 as follows.

𝐴𝑠 (𝑟, 𝜃) =
∞∑
𝑛=1

(1𝑑𝑛 cos 𝑛𝜃 +2 𝑑𝑛 sin 𝑛𝜃)
(
3𝑑𝑛𝑟

𝑛 + 4𝑑𝑛

𝑟𝑛

)
+(1𝑑0𝜃 +2 𝑑0) (3𝑑0 log 𝑟 +4 𝑑0),

(1.11)

where 1𝑑𝑛,2 𝑑𝑛,3 𝑑𝑛, and 4𝑑𝑛 (𝑛 = 0, 1, 2...) are constants. Here we are interested in the compo-
nents that do not diverge at 𝑟 = 0 and keep only them to obtain

𝐴𝑠 (𝑟, 𝜃) =
∞∑
𝑛=1

(
𝑟

𝑟0

)𝑛
(𝑎𝑛 cos 𝑛𝜃 + 𝑏𝑛 sin 𝑛𝜃), (1.12)

where 𝑎𝑛 and 𝑏𝑛 are 𝑛th multipole coefficients. 𝑟0 is a normalization constant. The components
with 𝑎𝑛 are called the normal component, and the components with 𝑏𝑛 are called the skew
component. The low-order components obtained from Eq. (1.12) are listed in Table 1.1. The
lowest (𝑛 = 1) and second lowest (𝑛 = 2) terms in Eq. (1.12) are essential in any accelerators.
The former is a source of dipole fields that are used to guide the reference orbit. It is also used
to make a closed orbit in circular accelerators. The latter is a source of quadrupole fields that
focus or defocus the beam in the transverse plane. Especially, the normal quadrupole field that
focuses the beam in the horizontal direction is “focusing-quadrupole”, and the contrary one
is “defocusing-quadrupole”. The so-called “alternating gradient (AG) focusing” is realized by
alternately aligning the focusing-quadrupole and defocusing-quadrupole.

1.3 Linear theory of transverse dynamics

In this section, we explain the basic linear theory of beam dynamics constructed by Courant and
Snyder with zero self field (𝜙sc = 0) [2]. Then the motion of charged particles in an accelerator
can be separated in the transverse and longitudinal direction, and we focus on only the former
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Table 1.1: Low-order magnetic components

order Normal component Skew component
1 𝑎1𝑥/𝑟0 𝑏1𝑦/𝑟0
2 𝑎2(𝑥2 − 𝑦2)/2𝑟2

0 𝑏2(𝑥𝑦)/𝑟2
0

3 𝑎3(𝑥3 − 3𝑥𝑦2)/6𝑟3
0 𝑏3(𝑦3 − 3𝑥2𝑦)/6𝑟3

0
4 𝑎4(𝑥4 − 6𝑥2𝑦2 + 𝑦4)/24𝑟4

0 𝑏4(𝑥3𝑦 − 𝑥𝑦3)/6𝑟4
0

one for simplicity. Considering the general case of AG focusing lattice, the Hamiltonian of the
transverse degree of freedom can be obtained from Eq. (1.8)

𝐻 (𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦; 𝑠) =
𝑝2
𝑥 + 𝑝2

𝑦

2
+
𝐾 (𝑠)

2
(𝑥2 − 𝑦2), (1.13)

where 𝐾 (𝑠) is the 𝑠-depedent function determined by the lattice structure and is periodic with
lattice period 𝐿; namely 𝐾 (𝑠 + 𝐿) = 𝐾 (𝑠). In Eq. (1.13) the canonical moments and the
Hamiltonian are normalized as �̃�/𝑝0 → 𝐻, 𝑝𝑥(𝑦)/𝑝0 → 𝑝𝑥(𝑦) . Here we introduce the phase
coordinate 𝜓𝑥(𝑦) and the action 𝐽𝑥(𝑦) for a better understanding of the particle motion governed
by the Hamiltonian. The generating function 𝐹2 of the transformation can be written as

𝐹2(𝑥, 𝑦, 𝜓𝑥 , 𝜓𝑦; 𝑠) = −
𝑥2

2𝛽𝑥

(
tan𝜓𝑥 −

1
2
𝑑𝛽𝑥

𝑑𝑠

)
−
𝑦2

2𝛽𝑦

(
tan𝜓𝑦 −

1
2
𝑑𝛽𝑦

𝑑𝑠

)
, (1.14)

where 𝛽𝑥 satisfies

1
2
𝑑2𝛽𝑥

𝑑𝑠2
+ 𝐾𝛽𝑥 −

1
𝛽𝑥

1 +
(
1
2
𝑑𝛽𝑥

𝑑𝑠

)2 = 0, (1.15)

and similarly for 𝛽𝑦 except for the sign of 𝐾 (𝑠) . Equation (1.14) gives us the relation
𝑥 =

√
2𝐽𝑥𝛽𝑥 cos𝜓𝑥

𝑝𝑥 = −

√
2𝐽𝑥
𝛽𝑥

(
sin𝜓𝑥 −

1
2
𝑑𝛽𝑥

𝑑𝑠
cos𝜓𝑥

)
.

(1.16)

It can be interpreted as a pseudo harmonic oscillation, which is called “betatron oscillation”.
Then 𝜓𝑥(𝑦) represents the phase of the betatron oscillation. 𝐽𝑥(𝑦) is equal to the phase space area
enclosed by the torus of a particle. Using Eq. (1.14), we find the new Hamiltonian

�̂� (𝜓𝑥 , 𝜓𝑦, 𝐽𝑥 , 𝐽𝑦; 𝑠) =
𝐽𝑥

𝛽𝑥
+
𝐽𝑦

𝛽𝑦
. (1.17)

𝐽𝑥(𝑦) is invariant because the new Hamiltonian is independent of 𝜓𝑥(𝑦) [3]. Figure 1.2 shows the
schematics of the torus for a particle. In the figure, 𝛼𝑥(𝑦) and 𝛾𝑥(𝑦) are defined by

𝛼𝑥 = −
1
2
𝑑𝛽𝑥

𝑑𝑠
, 𝛾𝑥 =

1 + 𝛼2
𝑥

𝛽𝑥
. (1.18)
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Figure 1.2: A torus for a particle in 𝑥-𝑝𝑥 phase space with action 𝐽𝑥 .

The functions 𝛽𝑥(𝑦) , 𝛼𝑥(𝑦) , and 𝛾𝑥(𝑦) are called “Twiss parameters” and are often used in beam
dynamics. We also obtain the canonical equation 𝑑𝜓𝑥(𝑦)/𝑑𝑠 = 1/𝛽𝑥(𝑦) . The relation suggests
that the phase advance of the betatron oscillation per length is given by 1/𝛽𝑥(𝑦) , and we can
define the “tune 𝜈𝑥(𝑦)” per one AG period length by

𝜈𝑥 =
1

2𝜋

∫ 𝑠0+𝐿

𝑠0

𝑑𝑠

𝛽𝑥
, (1.19)

where 𝑠0 is a constant. The important point is that 𝜈𝑥(𝑦) is independent of the amplitude of
the particle; in other words, the tune can be defined for the whole beam. In addition, the tune
is the oscillation frequency of the betatron oscillation and is essential to discuss the resonant
instability in accelerators. In this paper, the tune with zero self field is especially called “bare
tune ” and is represented by 𝜈0𝑥(0𝑦) .

1.4 Single-particle resonance conditions

The periodic nature of particle accelerators is the source of various resonant instabilities. Since
the resonant instabilities can degrade the beam quality seriously in some cases, much effort was
devoted to understanding and avoiding them. If we consider the single-particle case where no
Coulomb repulsive force acts, the classical resonance condition derived by Courant and Snyder
for circular accelerators given by [2]

𝑘𝜈0𝑥 + ℓ𝜈0𝑦 = 𝑛, (1.20)

where 𝑘 , ℓ, and 𝑛 are integers, and the order of the resonance is 𝑚 ≡ |𝑘 | + |ℓ |. This is one of the
most basic and important formulas in beam dynamics and can be found in any textbooks [1, 4–
6]. The resonance is driven by external fields whose sources are mainly misalignments of the
magnets and nonlinear multipole magnets.

Let us consider the feature of the resonances. The starting point of single-particle resonance

10



theory is the Hamiltonian of Eq. (1.17) with a nonlinear driving term

�̂� (𝜓𝑥 , 𝜓𝑦, 𝐽𝑥 , 𝐽𝑦; 𝑠) =
𝐽𝑥

𝛽𝑥
+
𝐽𝑦

𝛽𝑦
+ 𝐾p(𝑠)(2𝐽𝑥𝛽𝑥) |𝑘 |/2(2𝐽𝑦𝛽𝑦) |ℓ |/2 cos|𝑘 | 𝜓𝑥 cos|ℓ | 𝜓𝑦, (1.21)

where 𝐾p(𝑠) is periodic perturbation with the same period of 𝐾 (𝑠). We assume that the ampli-
tude of 𝐾p(𝑠) is small enough not to distort the non-perturbated state. It is useful to make the
phase advance smoothed by using the generating function

𝐹3(𝜓𝑥 , 𝜓𝑦, 𝐽𝑥 , 𝐽𝑦) =
(
𝜓𝑥 −

∫ 𝑠 𝑑𝑠

𝛽𝑥
+ 𝜈0𝑥𝜃

)
𝐽𝑥 +

(
𝜓𝑦 −

∫ 𝑠 𝑑𝑠

𝛽𝑦
+ 𝜈0𝑦𝜃

)
𝐽𝑦, (1.22)

and the Hamiltonian becomes

�̄� (�̄�𝑥 , �̄�𝑦, 𝐽𝑥 , 𝐽𝑦; 𝜃) = 𝜈0𝑥𝐽𝑥 + 𝜈0𝑦𝐽𝑦 +
2𝜋𝐾p(𝑠)

𝐿
(2𝐽𝑥𝛽𝑥) |𝑘 |/2(2𝐽𝑦𝛽𝑦) |ℓ |/2 cos|𝑘 | Φ𝑥 cos|ℓ | Φ𝑦,

(1.23)

where

Φ𝑥 = �̄�𝑥 +
∫ 𝑠 𝑑𝑠

𝛽𝑥
− 𝜈0𝑥𝜃, Φ𝑦 = �̄�𝑦 +

∫ 𝑠 𝑑𝑠

𝛽𝑦
− 𝜈0𝑦𝜃. (1.24)

The Hamiltonian is rescaled by 𝐿/2𝜋 to change the time coordinate from 𝑠 to 𝜃 (≡ 2𝜋𝑠/𝐿).
Then the phase advance is proportional to 𝜃 as 𝑑�̄�𝑥(𝑦)/𝑑𝜃 = 𝜈0𝑥(0𝑦) .

The resonances are roughly classified into two types: non-coupling resonance and coupling
resonance. The former develops in one degree of freedom, the other in two or three degrees of
freedom. The following two sections are devoted to showing the feature of each type with 3rd
external nonlinear field for example.

1.4.1 Non-coupling resonance

The driving term can be expanded in Fourier harmonics. Assuming 𝑘 = 3 and ℓ = 0, the Fourier
components include the term that is proportional to cos (3�̄�𝑥 − 𝑛𝜃 + 𝜁3,0,𝑛) where 𝜁3,0,𝑛 is the
Fourier phase. Leaving only the term, we can approximate the Hamiltonian of Eq. (1.23) as

�̄�A(�̄�𝑥 , 𝐽𝑥; 𝜃) = 𝜈0𝑥𝐽𝑥 + 𝐺3,0,𝑛𝐽
3/2
𝑥 cos (3�̄�𝑥 − 𝑛𝜃 + 𝜁3,0,𝑛), (1.25)

where 𝐺3,0,𝑛 is a Fourier amplitude. In order to analyze the third-order resonance, we use the
following generating function for a canonical transformation to a rotating system (𝜓, 𝐽) in phase
space.

𝐹A4 =

(
𝜓𝑥 −

𝑛

3
𝜃 +

𝜁3,0,𝑛

3

)
𝐽, (1.26)

and the Hamiltonian becomes

�̌�A(𝜓, 𝐽; 𝜃) = 𝛿𝐽 + 𝐺3,0,𝑛𝐽
3/2 cos (3𝜓). (1.27)
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Figure 1.3: Phase spaces for (a) 3rd and (b) 4th-order resonances. Here the normalization
constant 𝐽UFP is given by 𝑑𝐽/𝑑𝜃 = 0|𝐽=𝐽UFP .

Here 𝛿 = 𝜈0𝑥 − 𝑛/3 is the distance of 𝜈0𝑥 from the resonance state. The Hamiltonian has three
unstable fixed points (UFP) defined by 𝑑𝐽/𝑑𝜃 = 0 and 𝑑𝜙/𝑑𝜃 = 0. The locations of these UFP
are 𝜓 = 𝜋,±𝜋/3 with 𝐽 = |2𝛿/3𝐺3,0,𝑛 | for positive 𝛿/𝐺3,0,𝑛, and 𝜓 = 0,±2𝜋/3 for negative
𝛿/𝐺3,0,𝑛 similarly. It appears from Eq. (1.27) that 𝐽 decreases or increases near the UFP and the
particle distribution deformed into a triangle-like shape shown in Fig. 1.3 (a). Similar results
can be obtained for higher-order driving terms. For example, the deformation caused by 4th-
order non-coupling resonance is shown in Fig. 1.3 (b). Therefore we obtain the non-coupling
resonance condition driven by 𝑚th-order nonlinear external force as

𝑚𝜈0𝑥 = 𝑛. (1.28)

Note that the term that is proportional to cos (�̄�𝑥 − 𝑛𝜃 + 𝜁1,0,𝑛) is included in Fourier compo-
nents of the driving term in Eq. (1.23). Thus 𝑚th-order nonlinear external force also can drive
the resonances with smaller order than 𝑚 by even numbers. For example, 4th-order nonlinear
field can also drive the 2nd-order resonance and can’t drive the 3rd-order resonance.

It is easy to see that the resonances can be excited by 𝑚th-order nonlinear force of the
frequency 𝜅𝑚 under the condition

𝑚𝜈0𝑥 = 𝑛 ± 𝜅𝑚 . (1.29)

1.4.2 Coupling resonance

Assuming 𝑘 = 1 and ℓ = ±2, we focus on the Fourier component that has the harmonic number
of �̄�𝑥 ± 2�̄�𝑦 − 𝑛𝜃 and neglect all other non-resonant components. Then Eq. (1.23) becomes

�̄�B = 𝜈0𝑥𝐽𝑥 + 𝜈0𝑦𝐽𝑦 + 𝐺1,±2,𝑛𝐽
1/2
𝑥 𝐽𝑦 cos (�̄�𝑥 ± 2�̄�𝑦 − 𝑛𝜃 + 𝜁1,±2,𝑛), (1.30)
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where 𝐺1,±2,𝑛 and 𝜁1,±2,𝑛 are a Fourier amplitude and a Fourier phase. We introduce the rotating
system using a canonical transformation, as is the non-coupling case. The generating function
for the transformation (�̄�𝑥 , �̄�𝑦, 𝐽𝑥 , 𝐽𝑦) → (𝜓1, 𝜓2, 𝐽1, 𝐽2) is

𝐹B4 =
(
�̄�𝑥 ± 2�̄�𝑦 − 𝑛𝜃 + 𝜁1,±2,𝑛

)
𝐽1 + �̄�𝑦𝐽2, (1.31)

which yield the transformation equations

𝜓1 = �̄�𝑥 ± 2�̄�𝑦 − 𝑛𝜃 + 𝜁1,2,𝑛 , 𝐽1 = 𝐽𝑥

𝜓2 = �̄�𝑥 , 𝐽2 = 𝐽𝑦 ∓ 2𝐽𝑥 ,
(1.32)

and the Hamiltonian becomes

�̌�B(𝜓1, 𝜓2, 𝐽1, 𝐽2; 𝜃) = 𝛿𝐽1 + 𝜈0𝑦𝐽2 + 𝐺1,±2,𝑛𝐽
1/2
1 (𝐽2 ± 2𝐽1) cos𝜓1, (1.33)

where 𝛿 = 𝜈0𝑥 ± 2𝜈0𝑦 − 𝑛. We find that 𝐽2 is invariant since the Hamiltonian is independent of
𝜓2. Near the resonance condition 𝛿 ≈ 0, the Hamiltonian equation for 𝐽1 is given by

𝑑2𝐽1

𝑑𝜃2 − 𝐺2
1,±2,𝑛

12𝐽2
1 ± 8𝐽1𝐽2 + 𝐽2

2
2

= 0. (1.34)

If we chose the upper sign of ± and ∓ in equations (1.30)∼(1.34), Eq. (1.34) suggests that
the 𝐽1 diverges depending on the initial conditions. Then the resonant instability develops in
two degrees of freedom with the weighted difference in actions 𝐽𝑦 − 2𝐽𝑥 left constant. Such
resonances are called “sum-resonance” and are of particular concern in accelerator operation.
On the other hand, in the case of lower sign (“difference-resonance” case), beam stability is
guaranteed due to the invariance of the weighted sum of actions 𝐽𝑦 + 2𝐽𝑥 . Consequently, we
obtain the resonance condition in Eq. (1.20) whose driving term is proportional to 𝑥 |𝑘 |𝑦 |ℓ |.
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Chapter 2

Space-charge effects

2.1 Root-mean-squared envelope equations with space charge

Since the beam is composed of many particles, the approach based on statistical averages rather
than single-particle quantities is much more convenient. Considering that the observable quan-
tities in experiments are only the averaged values whole of the beam, such an approach is also
practically advantageous. In this section, we review the well-known second-moment equations
developed by Sacherer [7, 8].

For example, we assume the 2D case for a continuous beam, and the Hamiltonian from
Eq. (1.8) becomes

𝐻 (𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦; 𝑠) =
𝑝2
𝑥 + 𝑝2

𝑦

2
+
𝐾𝑥 (𝑠)

2
𝑥2 +

𝐾𝑦 (𝑠)
2

𝑦2 +
𝑞𝜙sc

𝑚𝑐2𝛽2
s𝛾

3
s
, (2.1)

where the Hamiltonian is normalized by 𝑝0. And the equations of motion are
𝑑2𝑥

𝑑𝑠2
+ 𝐾𝑥 (𝑠)𝑥 −

𝑞𝐸𝑥sc

𝑚𝑐2𝛽2
s𝛾

3
s
= 0,

𝑑2𝑦

𝑑𝑠2
+ 𝐾𝑦 (𝑠)𝑦 −

𝑞𝐸
𝑦
sc

𝑚𝑐2𝛽2
s𝛾

3
s
= 0,

(2.2)

where 𝐸𝑥sc and 𝐸 𝑦sc are electric field generated by 𝜙sc.
Considering 2nd-order moments, we can find the relation

𝑑⟨𝑤2⟩
𝑑𝑠

= ⟨𝑤𝑝𝑤⟩,

𝑑⟨𝑤𝑝𝑤⟩
𝑑𝑠

= ⟨𝑝2
𝑤⟩ − 𝐾𝑤 (𝑠)⟨𝑤2⟩ +

〈
𝑞𝑤𝐸𝑤sc

𝑚𝑐2𝛽2
s𝛾

3
s

〉
,

𝑑⟨𝑝2
𝑤⟩

𝑑𝑠
= −2𝐾𝑤 (𝑠)⟨𝑤𝑝𝑤⟩ + 2

〈
𝑞𝑝𝑤𝐸

𝑤
sc

𝑚𝑐2𝛽2
s𝛾

3
s

〉
,

(2.3)

where 𝑤 stands for 𝑥 or 𝑦. ⟨𝑉⟩ means taking average of 𝑉 over the whole phase space. Let
us define the rms radius of the beam in 𝑤-direction by 𝑟𝑤 ≡

√
⟨𝑤2⟩. Combining the Eqs. (2.3)
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yields 
𝑑2𝑟𝑥

𝑑𝑠
+ 𝐾𝑥 (𝑠)𝑟𝑥 −

𝜀2
𝑥

𝑟3
𝑥

−
𝐾sc

2(𝑟𝑥 + 𝑟𝑦)
= 0,

𝑑2𝑟𝑦

𝑑𝑠
+ 𝐾𝑦 (𝑠)𝑟𝑦 −

𝜀2
𝑦

𝑟3
𝑦

−
𝐾sc

2(𝑟𝑥 + 𝑟𝑦)
= 0,

(2.4)

where 𝐾sc = 𝑞2𝜆/2𝜋𝜖0𝑝0𝛽s𝑐𝛾
2
s is generalized perveance. 𝜆 is the number of particles per unit

length. Assuming the distribution with elliptical symmetry, ⟨𝑤𝐸𝑤sc⟩ can be written as

⟨𝑤𝐸𝑤sc⟩ =
𝑞𝜆2𝑟𝑤

𝑟𝑥 + 𝑟𝑦
. (2.5)

𝜀𝑤 is the rms emittance defined by

𝜀𝑤 ≡
√
⟨𝑤2⟩⟨𝑝2

𝑤⟩ − ⟨𝑤𝑝𝑤⟩2 . (2.6)

The rms emittance is equal to the average of the action 𝐽𝑤 and represents the phase space area
occupied by the beam; the rms emittance is also a useful index of the beam quality.

Let us introduce the rms tune shift in 𝑤 direction as follows

Δ𝜈𝑤 = 𝜈0𝑤 −
𝜀𝑤

2𝜋

∫ 𝑠0+𝐿

𝑠0

𝑑𝑠

𝑟2
𝑤

. (2.7)

This quantity represents the decrease of the tune caused by linear space charge force and can be
determined uniquely for a beam. For later convenience we define the rms tune depression 𝜂𝑤
by

𝜂𝑤 = 1 −
Δ𝜈𝑤
𝜈0𝑤

. (2.8)

where 𝜂𝑤 ranges from 0 to 1 and takes 0 for the high-density limit. It is worth noting that
rms tune depression can be defined for any beam with elliptical symmetry independent of the
particle distribution the beam possesses in real space. Thus we can express the strength of the
space charge force universally by using 𝜂𝑤.

2.2 Resonance conditions with space charge

It is indispensable for resonance analysis in high-intensity hadron machines to take the effect
of space-charge interaction into account. The Coulomb repulsive force weakens the external
focusing force from the quadrupole magnet and leads to the reduction of the effective betatron
tune. Thus, the single-particle resonance condition in Eq. (1.20) is not necessarily appropriate
once the space-charge effect becomes non-negligible. We here introduce several examples of
the resonance condition modified to include the space-charge effect.
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Figure 2.1: Determination of the operating point based on the conventional incoherent picture.
The red circle denotes the operating point (𝜈0𝑥 , 𝜈0𝑦), and gray dot denotes the incoherent tune
of each particle (𝜈𝑥 , 𝜈𝑦). The operating point is chosen so that the incoherent tune spread does
not cross the low-order resonance lines shown by solid lines.

2.2.1 Incoherent resonance condition

The starting point is the Hamiltonian in Eq. (1.17) with the self-field potential 𝜙sc

�̂� (𝜓𝑥 , 𝜓𝑦, 𝐽𝑥 , 𝐽𝑦; 𝑠) =
𝐽𝑥

𝛽𝑥
+
𝐽𝑦

𝛽𝑦
+

𝑞𝜙sc

𝑚𝑐2𝛽2
s𝛾

3
s
. (2.9)

Hamiltonian’s equation becomes

𝑑𝜓𝑥(𝑦)

𝑑𝑠
=

1
𝛽𝑥(𝑦)

+
𝑞

𝑚𝑐2𝛽2
s𝛾

3
s

𝜕𝜙sc

𝜕𝐽𝑥(𝑦)
. (2.10)

This yields the incoherent tune per lattice period

𝜈𝑥(𝑦) = 𝜈0𝑥(0𝑦) +
𝑞

2𝜋𝑚𝑐2𝛽2
s𝛾

3
s

∫ 𝑠0+𝐿

𝑠0

𝜕𝜙sc

𝜕𝐽𝑥(𝑦)
𝑑𝑠. (2.11)

The incoherent tunes of particles forming a particular beam are distributed in a finite area that
is called “incoherent tune spread” in the tune space schematically shown in Fig. 2.1. Since
𝜕𝜙sc/𝜕𝐽𝑥(𝑦) is generally negative, the incoherent tune spread lies lower tune region than the
operating point (𝜈0𝑥 , 𝜈0𝑦). With the horizontal and vertical incoherent tunes, the incoherent
resonance condition is given by

𝑘𝜈𝑥 + ℓ𝜈𝑦 = 𝑛. (2.12)

In order to avoid the resonance instabilities predicted by the incoherent resonance condition,
the operating point is required to be chosen so that the tune spread does not cross the low-order
resonance lines. For example, based on this concept, the operating point on the right side of
Fig. 2.1 is the better one. As is obvious from this figure, what is important in the incoherent
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resonance condition is the width of the tune spread.
Adopting the Gaussian model that has been frequently employed to determine the operating

point in past theoretical studies, we obtain

max(Δ𝜈𝑥) ≈ (1 − 𝜂2
𝑥)𝜈0𝑥 , (2.13)

where Δ𝜈𝑥 (≡ 𝜈0𝑥 − 𝜈𝑥) is referred as to “incoherent tune shift” (see appendix A). Eq. (2.13)
suggests that the tune spread gets larger as the beam density becomes higher (𝜂𝑥 → 0). A
similar tendency can be seen for non-Gaussian models.

The incoherent concept mentioned above has practically undesirable features. First of all,
it is difficult to obtain the density profile experimentally; in other words, we have to assume
some plausible models to obtain 𝐽𝑥 and 𝐽𝑦 in Eq. (2.11). Considering that the injection painting
scheme is employed in modern rings, there is no clear argument for adhering to the Gaussian
model despite the fact that it is frequently adopted. In addition, Eq. (2.11) suggests that reso-
nance instabilities are hardly driven when we adopt the Kapchinskij-Vladimirskij (K-V) model
that has no tune spread, contrary to the prediction of Vlasov analysis [12]. The incoherent con-
cept, however, has been employed in almost all synchrotrons for decades because it is much
easier and simpler than numerical simulations and experiments.

2.2.2 Coherent resonance condition

The space-charge dominant beam behaves as a sort of continuum, rather than a group of par-
ticles independent of each other. In this case stability of the beam is seriously affected by the
collective nature. The resonance condition of the collective motion is referred to as the “co-
herent resonance condition” studied by many researchers [8,12–23]. If we ignore the Coulomb
collisions whose effect is negligible in general beams, the use of the Vlasov-Poisson formalism
is one of the most trustable manners to explore the collective motion [24,25]. The first coherent
resonance condition derived in the pioneering work of Sacherer is

𝑚(𝜈0𝑥 − 𝐶𝑚ℎΔ𝜈) = 𝑛, (2.14)

where 𝐶𝑚ℎ is a constant depending on the azimuthal (𝑚) and radial (ℎ) mode numbers [8]. As-
suming a spatially uniform beam propagating through a continuous focusing lattice, Sacherer
analytically solved the 1D Vlasov-Poisson equations. Since the space-charge force is com-
pletely linear, all particles have an identical tune shift Δ𝜈. R. L. Gluckstern extended Sachere’s
theory to a round coasting beam [14]. After that, I. Hofmann et al. solved 2D Vlasov-Poisson
equations under AG-focusing lattice with a help of the spatially uniform distribution and pro-
posed the coherent resonance condition

𝑘𝜈𝑥 + ℓ𝜈𝑦 + Δ𝜐 = 𝑛, (2.15)

where Δ𝜐 represents the coherent tune shift and is a complicated function of several parame-
ters [22].
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2.2.3 Okamoto and Yokoya theory

Self-field-driven resonance

One of the works based on the Vlasov-Poisson formalism was done by H. Okamoto and K.
Yokoya [20]. They assumed the 1D sheet-beam propagating through an AG lattice. Adopt-
ing the waterbag model, which has a uniform density in phase space, they concluded that the
coherent resonance condition for that case is given by

𝑚 [𝜈0𝑥 − 𝐶𝑚 (1 − 𝜂𝑥)𝜈0𝑥] =
𝑘

2
, (2.16)

where 𝑚 is the order of the resonance. 𝐶𝑚 is a constant, and we call it “tune shift factor” in
this paper. Theoretically, 𝐶𝑚 is lower than one for all 𝑚 numbers. It is worthy to mention that
they assume no external driving field to derive Eq. (2.16); in other words, various resonances
can occur due to the nonlinearity of space-charge force in AG lattice even if there is no external
driving force, unlike the case of single particle resonances shown in Chapter 1. It is also impor-
tant that the right-hand side of Eq. (2.16) is half integers. This implies the existence of twice
as many resonances as predicted by common theories. Then the width of 𝑚th resonance band
Δ𝑤𝑚 can approximately be written (see Appendix B)

Δ𝑤𝑚 = 2(1 − 𝐶𝑚)
1 − 𝜂𝑥
𝜂𝑥

𝜈0𝑥 . (2.17)

External-field-driven resonance

They also derived the resonance condition in which an external driving field is introduced

𝑚 [𝜈0𝑥 − 𝐶𝑚 (1 − 𝜂𝑥)𝜈0𝑥] = 𝑛 ± 𝜅𝑚, (2.18)

where 𝜅𝑚 is the oscillation frequency of 𝑚th-order nonlinear driving field [26]. This relation
suggests that the tune shift factor is kept unchanged regardless of whether the resonance is
driven by the self field or the external field. In the general case where the driving field oscillates
with the same frequency of lattice period (namely 𝜅𝑚 is an integer), the right-hand side of
Eq. (2.18) is not half integers. Thus this is identical to Eq. (1.28) or Eq. (1.29) at the zero-
intensity limit.
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Chapter 3

Resonance in circular accelerators

3.1 Introduction

The resonance can be of great danger in AG-focusing modern accelerators. Such instability
causes the degradation of beam quality or particle loss inside the accelerator. In order to avoid
this instability, the operating point given by the horizontal and vertical bare tunes (𝜈0𝑥 , 𝜈0𝑦) is
kept sufficiently away from the resonance conditions. The conventional single-particle reso-
nance condition in Eq. (1.20) derived by Courant and Snyder is one of the most popular for-
mulas [2]. However, the increasing demand for high beam intensity and performance made
it essential to modify the resonance condition by considering the space charge effect. The
incoherent resonance condition in Eq. (2.12) is one of the most widely used such resonance
conditions [9–11]. On the other hand, the incoherent tune can’t be determined by experiments
because we can’t track each particle’s trajectory. It is important to note that the incoherent res-
onance condition is based on the single particle motion rather than the collective nature of the
beam since Eq. (2.12) can be obtained simply by exchanging bare tunes and incoherent tunes
in Eq. (1.20). Considering that the particle motion in dense beam core interacts with each other
by Coulomb repulsive force, the instability of the beam core is expected to develop collectively.
It is thus valuable for high-intensity accelerators to establish the “coherent resonance condi-
tion” based on the collective manner. Much effort has been devoted to establishing the coherent
resonance condition because of its practical importance [8, 12, 13, 16–19, 22, 27, 28].

The motivation of this study is to verify the 2D coherent resonance condition that we pro-
posed in recent years. We conducted self-consistent numerical simulations with the help of a
particle-in-cell (PIC) code “WARP” for the purpose [29]. In this chapter, we concentrate on the
transverse 2D dynamics of coasting beams propagating through circular accelerators, ignoring
the longitudinal motion and energy spreads. We first give an overview of the 2D coherent res-
onance condition in Sec. 3.2. After presenting the simulation conditions, Sec. 3.4 is devoted
to figuring out the difference between the tail and core resonance mechanisms. In Sec. 3.5, we
compare the distribution of resonance stop bands driven solely by the self-field with the indi-
cation of the coherent resonance condition to see if the proposed conditions are consistent with
numerical results. We then proceed to the evaluation of tune shift factors in Sec. 3.6. Finally,
we apply the coherent resonance condition to the current states of J-PARC RCS.
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3.2 2D coherent resonance condition

In recent years, our group generalized the conclusion of linearized Vlasov analysis in Eq. (2.16)
and proposed a hypothesis of 2D coherent resonance condition,

𝑘 (𝜈0𝑥 − 𝐶𝑚Δ�̄�𝑥) + ℓ(𝜈0𝑦 − 𝐶𝑚Δ�̄�𝑦) =
𝑛

2
. (3.1)

This formula is identical to the single particle resonance condition in Eq. (1.20) at zero inten-
sity limit when 𝑛 is even. In the case of non-coupling resonances (𝑘 = 0 or ℓ = 0), Eq. (3.1)
is also identical to Eq. (2.16). Eq. (3.1) has three important features that distinguish it from
conventional resonance conditions. First, the right-hand side is half integers, not integers. As
mentioned in Subsection 2.2.3, it indicates the two-fold resonance band increase in the tune
space. Second, the tune shift factor 𝐶𝑚 depends only on the resonance order 𝑚(= |𝑘 | + |ℓ |). In
the previous works, the factors corresponding to 𝐶𝑚 are more complicated and depend on sev-
eral beam properties such as the ellipticity and bare tunes [12, 22, 23, 30]. Finally, the formula
is expected to be model-independent and includes only the statical averages that can be defined
for any beams. Eq. (3.1), however, still remains to be only an empirical hypothesis. Since it is
hopeless to solve the 2D Vlasov-Poisson equations mathematically for arbitrary focusing lat-
tices and phase-space distributions, we rely on the numerical simulation to verify those features
in later sections.

3.3 Self-consistent numerical simulation

The self-consistent numerical simulations have become a powerful tool to investigate accelera-
tor systems with space charge. Numerical simulations are routinely used to identify the cause of
beam instabilities and accelerator designs in beam dynamics. There are many simulation codes
for such purposes, and we adopted the WARP code in this study [29]. This code is developed
originally for the research of inertial confinement fusion driven by heavy-ion and is equipped
with a versatile set of functions that enables a wide variety of simulations.

3.3.1 Sinusoidal focusing lattice

As illustrated in Fig. 3.1, we replace the 𝐾𝑥 and 𝐾𝑦 with stepwise 𝜏 dependence by the sinu-
soidal function, which is the most dominant harmonics of the standard FODO (Focusing-Drift-
Defocusing-Drift) lattice. Then the 𝐾𝑥 and 𝐾𝑦 can be written by

𝐾𝑥 = 𝑉0 sin (2𝜋𝜏/𝐿) +𝑈0,

𝐾𝑦 = −𝑉0 sin (2𝜋𝜏/𝐿) −𝑈0,
(3.2)

where, 𝑉0 and 𝑈0 are constants. The horizontal and vertical bare tunes can be set at arbitrary
values by choosing the proper 𝑉0 and 𝑈0. The resonance features of the sinusoidal lattice have
been confirmed to be almost the same as those of the FODO lattice [31, 32]. Additionally, the
exception of higher harmonics in 𝐾𝑥(𝑦) leads to better convergence with relatively few time
steps.
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Focusing 

Defocusing 

Figure 3.1: Sinusoidal focusing lattice.

Table 3.1: Distribution functions

TE (Thermal Equilibrium) 𝑓 (𝐻𝑏) = 𝑓0 exp

(
−
𝑚𝛾s𝛽

2
s 𝑐

2𝐻𝑏

𝑇

)
WB (WaterBag) 𝑓 (𝐻𝑏) = 𝑓0Θ(𝐻𝑏 − 𝐻0)

PA (PArabolic) 𝑓 (𝐻𝑏) = 𝑓0(𝐻𝑏 − 𝐻0)Θ(𝐻𝑏 − 𝐻0)

3.3.2 Phase-space matching of an initial particle distribution

In this study, we adopted not one but three models Gaussian (TE), WaterBag (WB), and PArabolic
(PA) for two reasons. First, it is difficult to obtain precise density profiles in the phase-space
for high-power hadron beams. It is thus dangerous to adhere to only one model since the detail
of the actual beam profile is ambiguous. In particular, the behavior of the Gaussian beam is
relatively peculiar among the three as shown in the later sections, even though the Gaussian
model is frequently employed. Second, it is informative to investigate the model dependency
of the coherent resonance condition in Eq. (3.1) as mentioned above. In order to ensure good
generality, we decided to compare the simulation results across the three models.

It is required for the simulations of high-intensity beams that the initial distributions are
well adapted to the lattice. The Vlasov equation indicates that the distribution functions defined
by the Hamiltonian describe the equilibrium state. However, due to the mathematical difficul-
ties to solve the Vlasov-Poisson formula self-consistently under an arbitrary periodic focusing
force, the rms matching concept in which the beam rms radius is set properly based on the
rms envelope Eq. (2.4) is generally employed [7, 13]. The rms matching inevitably leads to an
emittance blowup or halo formation [28, 33, 34]. Especially the matching error is considerably
enhanced at high beam density. In our study, a more sophisticated method than rms matching is
employed. The method, which is called Pseudo-equilibrium distribution, is proposed by Lund
and his co-workers and equipped with the WARP code [35]. The essence of the method is to
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Figure 3.2: The upper panels show the initial particle distributions in the real space. The lower
panels show particle number histograms.

approximate the Hamiltonian by the time-independent 1D Hamiltonian written as

𝐻𝑏 =
𝑝2

2
+
𝑘2
𝑏𝑟

2

2
+

𝑞𝜙sc

𝑚𝛾3
s 𝛽

2
s 𝑐2

, (3.3)

where 𝑟 =
√
𝑥2 + 𝑦2 and 𝑘𝑏 ≡

√
𝐾sc/𝑟2

𝑏 + 𝜀2
𝑏/𝑟4

𝑏 is the time-independent focusing strength given
with the averaged beam radius 𝑟𝑏 =

√
𝑟𝑥𝑟𝑦 |𝜏=0 and the averaged rms emittance 𝜀𝑏 =

√
𝜀𝑥𝜀𝑦. The

distribution functions defined with 𝐻𝑏 are shown in Table 3.1 where 𝐻0 and 𝑓0 are constants. 𝑇
denotes the temperature. We can obtain the pseudo equilibrium distribution by processing the
rms matching to the circular symmetric stationary state given by the distribution functions.

The real space profiles of the three particle distributions are shown in Fig. 3.2. The particles
are color-coded by relative density. The horizontal and vertical tune depressions are set at
0.95, which is a typical simulation condition in this chapter. The WB distribution has the
flattest density profile of the three, followed by the PA distribution. The Gaussian distribution
is distinctive and has a high-density beam core and a wide low-density region (tail region).

3.3.3 Simulation parameters

We assume a proton coasting beam propagating through a periodic focusing lattice, and the
focusing force acting on the beam is perfectly linear. The beam profile is then uniform in the
longitudinal direction, and the 2D PIC simulation is suitable for this case. The basic simulation
parameters are shown in Table 3.2. The parameters related to the PIC method are carefully
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Table 3.2: Basic parameters of 2D PIC simulations.

Grid size 0.072 [mm]
Number of macro particles 50000

Number of macro particles per grid cell 20 ∼ 40
Simulation region 21.5 × 21.5 [mm2]

Steps per cell 200
Ion Specie H+

Kinetic Energy 1 [MeV]
Lattice period 1.38 [m]

optimized to guarantee the accuracy of the calculation [36]. The Dirichlet boundary condition
for self-field potential is imposed on the edge of the simulation area. On the other hand, the
width of the simulation area is sufficiently large that the boundary condition does not affect the
beam motion.

3.4 Resonance instabilities for round beams

Before proceeding to 2D cases, we investigate the stop band distributions assuming round beams
when the horizontal and vertical motions are symmetric. The resonances are then expected to
develop one-dimensionally since the horizontal and vertical systems are effectively equivalent.
In this case, the beam parameters such as the bare tunes and initial emittances are set equal
in horizontal and vertical directions. We have conducted numerical simulations to explore the
resonance instabilities driven by the space charge force. It is demonstrated that the coherent
resonance conjecture in Eq. (3.1) can predict the approximate position of the 2nd, 3rd, and
4th-order collective non-coupling resonances. We also show that the three different resonance
mechanisms exist on the well-known envelope instability band; namely the 2nd-order, 4th-order
coherent resonances, and the 4th-order incoherent resonance.

3.4.1 Comparison of simulation results and 1D Vlasov analysis

Figure 3.3 shows the emittance growth Δ𝜀avg vs the bare tune 𝜈0(≡ 𝜈0𝑥 = 𝜈0𝑦) where the
emittance growth is defined as

Δ𝜀avg =

[
𝜀fin
𝑥 + 𝜀fin

𝑦

𝜀ini
𝑥 + 𝜀ini

𝑦

− 1

]
× 100 [%] . (3.4)

𝜀ini
𝑥(𝑦) and 𝜀fin

𝑥(𝑦) are the initial rms emittance and the rms emittance after 300 lattice periods
respectively. Since no external nonlinear field is applied, the observable stop bands are solely
caused by space charge force.

The sawtooth-like configuration of the emittance growth peaks can be observed. This is
caused by the reduction of the beam’s phase-space density associated with the development of
instabilities, which makes the tune depression approach unity. Then, it is clear from Eq. (2.16)
that the resonant value of the bare tune becomes lower. Since the stopband gradually moves
toward the lower tune, the development of instability tends to be suppressed in the higher tune
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Figure 3.3: The upper panel shows the growth rate amplitude of low-order modes as a function
of the bare tune. The panels (a), (b), and (c) show the stopband configurations at the exit of the
300th lattice period for three different types of distributions with 𝜂 = 0.8 and 0.9: (a) Gaussian,
(b) waterbag, and (c) parabolic.
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Figure 3.4: The waterbag type initial distribution is adopted. The transverse operating tunes set
at (a) 𝜈0 = 0.192 and (b) 𝜈0 = 0.147, and the tune depressions are initially adjusted to 𝜂 = 0.8
in both cases.

side of the stopband. A similar effect has been observed in experiments with a Paul ion trap [31,
32, 37–42].

There is the most severe emittance growth takes place near the bare tune of 0.25 for all three
cases. The instability is likely to be caused mainly by 2nd-order resonance and is referred to
as “Envelope instability” studied by many researchers [13, 27, 43–45]. The 1D Vlasov analysis
also predicts that the severe instability of 2nd-order resonance occurs there.

We can find two peaks on the lower tune side than 0.25. According to the 1D Vlasov
analysis and the coherent resonance condition in Eq. (3.1), the peaks of emittance growth that
take place slightly above 1/6 and 1/8 are caused by the 3rd-order and the 4th-order resonances
respectively. Figure 3.4 shows an example of the time evolution of the waterbag distribution.
When the operating bare tune is set at 0.192 which is inside the 3rd-order stopband predicted
by Eq. (3.1), the deformation of the beam core into a triangle-like shape is shown. Similarly,
a rectangle-like deformation is observed inside the 4th-order stopband. These results indicate
that the low-order collective instabilities develop in the beam core. Such instabilities cannot be
described by the incoherent pictures.

The features of Gaussian stopbands are much different from the other two. First of all,
they are extended toward the lower thresholds given by the single particle reasons condition in
Eq. (1.20). The peculiarity is observed for the peaks near the bare tune of 0.25. The significant
extra emittance growths between the left edge of the peaks and 0.25 have occurred for the Gaus-
sian case. These results suggest that resonances with different underlying mechanisms overlap.
It can be explained by considering the tail resonances that are prominent for the Gaussian dis-
tribution, and we discuss this issue in detail in the following subsections.
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Figure 3.5: The left panel shows an incoherent tune spread of the Gaussian beam. The right
panel shows particle distribution in real space at the exit of the 1000th lattice period. The
operating tune is set at 𝜈0 = 0.257. The tune depression is adjusted to 𝜂 = 0.9 at injection. The
macroparticles with horizontal or vertical incoherent tunes greater than 0.25 are represented by
blue dots.

3.4.2 Tail and core resonances above a quarter-integer tune

The coherent resonance condition in Eq. (3.1) predicts that the resonance of 𝑚th-order always
overlaps with the resonance of 2𝑚th-order. For example, 2nd and 4th-order resonances take
place near the bare tune of 1/4, and 3rd and 6th-order resonances take place near the bare tune
of 1/6 as well. According to 1D Vlasov theory, the higher order resonances have the higher
resonant value of the bare tune since the tune shift factor 𝐶𝑚 theoretically gets greater as the
𝑚 number increases. Thus the instabilities of higher-order resonances are expected to locate
higher tune side of the stopband. On the other hand, the simulation result shown in Fig. 3.3
indicates the existence of the other instability that occurs lower tune side than the instability
mainly caused by the 2nd-order resonance for the Gaussian case. Considering that the lowest
order of the resonance driven by the space charge is 2nd (1st mode means the oscillation of the
center of mass), a different mechanism from the collective instability seems to be there. The
purpose of this subsection is to examine the resonance overlapping issue. We have focused
on the well-known envelope instability band above the 0.25 bare tune per lattice period which
is one of the most practically important resonances for high-intensity machines because of its
strong influence on beam stability.

Tail resonance

Figure 3.5 shows an incoherent tune spread of a Gaussian beam when the tune depressions
are fixed to 0.9. The operating point is set at (𝜈0𝑥 , 𝜈0𝑦) = (0.257, 0.257) which is inside the
extra stopband adjacent to the envelope instability band. The gray and blue dots indicate the
average incoherent tunes of individual macroparticles evaluated numerically using the Fourier
analysis. It is shown that the several hundred macro particles moved above 4th-order resonance
lines indicated by the single particle resonance condition and form a halo around the beam core
in real space. This is because the self-field force that acts on the particle is weakened as the
betatron oscillation amplitude is enlarged by the resonance. It is worth noting that the beam
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Figure 3.6: Phase space configuration at the exit of the 1000th lattice period. 10% of outermost
particles identified at the injection base on the 𝐸-value in Eq. (3.10) are represented by the red
dots.

core seems to remain stable despite the emittance growth of 34% during the 300 lattice period.
Since there is no external driving field, the resonance instabilities of halo particles are driven by
the nonlinear self-field.

The result in Fig. 3.5 implies the existence of the self-field-driven incoherent resonance in
the tail region. The motion of tail particles far from the core could be rather individual than
collective. Taking the spatial symmetry of the beam core into account, the tail resonance that
requires particular attention can be written as

2𝜈𝑥 + 2𝜈𝑦 = 𝑛, (3.5)

where the incoherent tunes should be relatively close to the bare tunes.

3.4.3 Tail separation

Despite the small number of tail particles, they have a significant contribution to the calculation
of rms values and are likely to obscure the beam collective instabilities. Thus, it is informative
for the elucidation of the resonance mechanism to consider the collective motion of core par-
ticles except for tail particles. The Hamiltonian then can provide the information necessary to
identify the tail particles executing the betatron oscillation with large amplitude [28, 33]. Since
the energy of Coulomb potential is comparably small to the external potential in circular accel-
erators, it should be enough to consider the contribution from the linear space-charge term only.
We can then obtain the approximate Hamiltonian from Eq. (2.9) as

�̂� =
𝐽𝑥

𝛽𝑥
+
𝐽𝑦

𝛽𝑦
, (3.6)

where 𝛽𝑥(𝑦) is the modified betatron function calculated from rms beam radius 𝑟𝑥 and 𝑟𝑦 in
Eq. (2.4) as

𝛽𝑥 = 𝑟
2
𝑥/𝜀𝑥 ,

𝛽𝑦 = 𝑟
2
𝑦/𝜀𝑦 .

(3.7)
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The actions of certain particle that has the canonical cordinates (𝑥, 𝑦, 𝑝𝑥 , 𝑝𝑦) are evaluated from

2𝐽𝑥 = 𝛽𝑥 𝑝2
𝑥 + 2�̂�𝑥𝑥𝑝𝑥 + �̂�𝑥𝑥2 ,

2𝐽𝑦 = 𝛽𝑦𝑝2
𝑦 + 2�̂�𝑦𝑦𝑝𝑦 + �̂�𝑦𝑦2 ,

(3.8)

where �̂�𝑥(𝑦) and �̂�𝑥(𝑦) are the modified Courant-Snyder functions defined as

�̂�𝑥 (𝑠) = −
1
2
𝑑𝛽𝑥 (𝑠)
𝑑𝑠

, �̂�𝑥 =
1 + �̂�𝑥 (𝑠)2

𝛽𝑥 (𝑠)
,

�̂�𝑦 (𝑠) = −
1
2
𝑑𝛽𝑦 (𝑠)
𝑑𝑠

, �̂�𝑦 =
1 + �̂�𝑦 (𝑠)2

𝛽𝑦 (𝑠)
.

(3.9)

Taking the average of Eq. (3.6) over one lattice period, we introduce the parameter

𝐸 ≡ 𝜈0𝑥𝜂𝑥𝐽𝑥 + 𝜈0𝑦𝜂𝑦𝐽𝑦, (3.10)

that corresponds to the energy of each particle. It can be used as a good measure of the amplitude
of the betatron oscillation unless the beam density is not so high (𝜂𝑥(𝑦) ≈ 1).

Let us take a look again at the simulation result shown in Fig. 3.5. Figure 3.6 shows the
particle distribution in phase-space at the exit of the 1000th lattice period. 10% of the outermost
particles are classified as tail particles based on the 𝐸-value at injection and are shown in red. It
is confirmed that most of the halo particles come from the tail region as expected. This strongly
suggests that the particles in the tail region where the Coulomb interaction with the beam core
is weak tend to become unstable individually. In addition, we can see the development of
four arms around the beam core in 𝑥-𝑝𝑥 and 𝑦-𝑝𝑦 plane. This is consistent with the resonance
condition in Eq. (3.5) predicting that the 4th-order resonance occurs under a such situation.

In order to separate the contribution of the tail particles to the rms values, we check the 𝐸-
value of individual particles and define the tail particles at injection. The rms emittance growth
at the exit of 𝑀th lattice period excluding the tail particle contribution is calculated as

Δ𝜀(𝜅) (𝑀) ≡ 𝜀(𝜅) (𝑀) − 𝜀(𝜅) (0)
𝜀(0) (0)

× 100 [%] , (3.11)

where 𝜀 is the sum of the horizontal and vertical rms emittance. 𝜅 indicates the percentage of
the particles classified as tail particles and excluded from the rms emittance evaluation.

3.4.4 Simulation results

We carried out PIC simulations with the WARP code to explore the resonance features above
the 0.25 bare tune per lattice period in detail. The tune depressions are set at 0.9. We used
the Gaussian-type distribution that is well adapted to the focusing lattice. Here, the pseudo
equilibrium matching procedure mentioned in Subsection 3.3.2 enables to make the emittance
growth induced by an initial Coulomb potential mismatch negligible.

Figure 3.7 shows the tune dependence of emittance growth at the exit of the 100th, 200th,
and 500th lattice periods. According to the maximum incoherent tune shift in Eq. (2.13), the
incoherent resonance condition predicts that the resonant bare tune reaches approximately 0.3
from 0.25. As is clear from the figure, the stopband does not have such a width. This suggests
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Figure 3.7: Emittance growths of a Gaussian beam evaluated at the exit of the (a) 100th, (b)
200th, and (c) 500th lattice period.

that the incoherent picture can not be applied to the collective motion of beam core particles
as mentioned above. On the other hand, the stopbands evaluated with Eqs. (2.16) and (2.17)
are found to be in good agreement with the simulation results. Then the tail resonance region
is expected to locate on the lower tune side of the collective 2nd-order resonance stopband and
above the single particle 4th-order resonance line (𝜈0 = 0.25).

The three curves in each panel are evaluated for different ensembles of particles excluding
the outermost particles. We then assumed three truncation factors 𝜅𝑚 = 0%, 10%, and 20%. It
is confirmed that the emittance growth in the tail region is very sensitive to the truncation factor
and eliminated almost completely by disregarding 20% of outermost particles. This strongly
suggests that the instability is caused exclusively by the tail particles and is separable from
the collective instabilities in the beam core [46]. Contrary to the tail resonance, the emittance
growth in the 2nd and 4th collective resonance region seems to be almost independent of the
truncation factor.
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Figure 3.8: Phase space configurations at 𝜈0 = 0.257 assuming three different truncation factors
(a) 𝜅 = 0%, (b) 10%, and (c) 20%, observed at injection, exit of 50th, 100th, 200th, and 500th
cell.

3.4.5 Phase-space configuration

Figures 3.8-3.10 show the typical phase-space configurations in the tail resonance region (𝜈0 =
0.257), 2nd-order collective resonance band (𝜈0 = 0.263), and 4th-order collective resonance
band (𝜈0 = 0.275). The abscissa (𝑥) and ordinate (𝑝𝑥) are scaled to be dimensionless by their
initial rms averages. The particles are color-coded based on their initial 𝐸-values. The color
varies from red to blue as the initial 𝐸-values get larger.

In the case of Fig. 3.8, we can see only the slight deformation of the beam core. On the
other hand, the tail particles form a large halo around the beam core. It is confirmed in Fig. 3.8
(b) that the halo consists of 10% of outermost tail particles in the initial phase-space. Fig. 3.11
(a) also shows the emittance growth is solely caused by the tail particles.

The phase-space profile at the bare tune of 0.263 in the 2nd-order collective resonance band
fairly differs from the tail resonance case. After the 4th-order resonance, the beam core is found
to be deformed into the 2-arm structure, which is peculiar to 2nd-order resonance. It is worth
noting that the three distributions obtained with different truncation factors are quite similar
after the 200th cell. Thus, the core and tail particles become unstable at the same time as the
whole of the beam.

The phase-space profiles near the upper boundary (Fig. 3.10) and below the lower boundary
(Fig. 3.8) of the collective instability band are clearly different, although both resonances are
of the same 4th-order. In the case of Fig. 3.10, we can see the strong deformation and four-
island structure developed inside the beam core. We also find that the core particles spread in a
relatively narrow area as wide as the initial beam size with almost no halo particles. In addition,
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Figure 3.9: Phase space configurations at 𝜈0 = 0.263 assuming three different truncation factors
(a) 𝜅 = 0%, (b) 10%, and (c) 20%, observed at injection, exit of 50th, 100th, 200th, and 500th
cell.

it is observed in Figs. 3.10 and 3.11 that the emittance growth and the phase-space profile are
hardly affected by the truncation factor similar to the case of Fig. 3.9. These results suggest
that the resonance at 𝜈0 = 0.275 develops rather collectively than individually, unlike the tail
resonance at 𝜈0 = 0.257.

3.4.6 Incoherent tune spread

In the last subsection, it is confirmed that there are two families of resonance mechanisms
driven by the space charge force namely the incoherent resonance in the tail region and the
coherent collective resonance. The instabilities at 𝜈0 = 0.263 and 𝜈0 = 0.275 are classified in
the former, at 𝜈0 = 257 is classified in the latter. These results are consistent with our discussion
in Sec. 3.4.2 and the theoretical predictions based on the Vlasov analysis.

According to the incoherent resonance condition, the upper boundary of the stopband in
the case of Fig. 3.7 is 𝜈0 = 0.3; the operating point is generally not chosen in the range
0.25 ≤ 𝜈0 ≤ 0.3. On the other hand, we detect only negligible emittance growth outside
the collective instability band despite the core deformation as shown in Fig. 3.12. This figure
depicts the incoherent tune spread when the operating point is set at 0.29 beyond the upper
boundary of the collective instability band. The incoherent tunes are evaluated using Fourier
transform technique. The incoherent tune spread lies on the 4th-order single-particle resonance
line, and the particles moved above the resonance line. It is clear that the core particles sat-
isfy the incoherent resonance condition in Eq. (3.5), but the emittance growth at the exit of the
1000th cell is less than a few percent. Thus, there is little practical importance to caring about
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Figure 3.10: Phase space configurations at 𝜈0 = 0.275 assuming three different truncation
factors (a) 𝜅 = 0%, (b) 10%, and (c) 20%, observed at injection, exit of 50th, 100th, 200th, and
500th cell.

such distortion of the incoherent tune spread.
Figure 3.13 shows examples of the incoherent tune spreads in the 2nd-order and 4th-order

collective resonance bands (𝜈0 = 0.263 and 0.275) for comparison. In this case, we used the
orbit data of individual particles from the 300th cell to the 1300th cell after the collective insta-
bilities roughly settled; these incoherent tune spreads are expected to remain almost unchanged
after the 300th cell. We find that a lot of particles located initially much below the resonance
lines 𝜈0𝑥(0𝑦) = 1/4 moved above them. In particular, it turns out from Fig. 3.13 (a) that only a
few particles remain below the resonance lines. In the case of Fig. 3.13 (b), we also notice that
the tune region where the particles are affected by the resonance instability is much wider than
in the case of Fig. 3.12.

Figure 3.14 displays another example of nonlinear collective instability at 𝜈0𝑥(0𝑦) = 0.192
with a well-matched waterbag beam. In this example, the tune depression adjusted at 0.8. As is
evident from Fig. 3.4 (a), the operating point is set in the 3rd-order collective instability band.
Then, the orbits of an individual particle between the 500th and 1500th are Fourier analyzed to
evaluate their incoherent tunes. The right panel indicates that the resonance instability affects
the particles having a much lower incoherent tune than the single particle resonance condition
𝜈0𝑥(0𝑦) = 1/6, which is very similar to the 4th-order case in Fig. 3.13 (b).

These results suggest that the reason why the particles cross the resonance line and are
accumulated near or above 𝜈0𝑥(0𝑦) = 1/4 is not necessarily responsible for the incoherent effect.
Recalling the tune spread configurations after redistribution due to the collective instabilities
shown in Figs. 3.13 and 3.14, the resonance effect appears rather well below the resonance line
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Figure 3.11: Time evolutions of the rms emittance-growth rates at the operating bare tunes of
(a) 𝜈0 = 0.257, (b) 0.263, and (c) 0.275.

than on the resonance line. Based on the incoherent picture, it is difficult to interpret the results
that the resonance instability affects the particles not on the resonance line but well below it.
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Figure 3.12: Incoherent tune spread of a Gaussian beam at the operating tune of 𝜈0 = 0.29. The
initial tune depression is adjusted at 𝜂 = 0.9.

Figure 3.13: Incoherent tune spread of a Gaussian beam at the operating tune of (a) 𝜈0 = 0.263
and (b) 0.275. The initial tune depression is adjusted at 𝜂 = 0.9, similarly to the cases of
Figs. 3.9 and 3.10.
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Figure 3.14: Incoherent tune spread of the waterbag beam after the development of the coherent
3rd-order resonance is settled. All simulation conditions are the same as employed in Fig. 3.4
(a).

3.5 Resonance instabilities in an ideal AG lattice

We now explore the resonance instabilities on the 𝜈0𝑥-𝜈0𝑦 plane. The horizontal and vertical
motions are no longer symmetric, and the beam parameters such as bare tunes, emittances,
and tune depressions are not necessarily equal in the horizontal and vertical directions. In this
section, we employ the WARP code again and conducted systematic numerical simulations of
charged particle beam propagating through a sinusoidal focusing force same as in the previous
section for simplicity.

3.5.1 Stop band distribution in tune space

In this section, we try to investigate whether the hypothesis of 2D-coherent resonance condition
in Eq. (3.1) can predict the approximate stopband distributions on the 𝜈0𝑥-𝜈0𝑦 plane. In order
to reveal the precise positions of stopbands, a series of self-consistent numerical simulations is
performed over a wide tune range.

Stop bands with fixed tune depression

Assuming horizontal and vertical tune depressions are equal and fixed over the whole tune
space, we can simplify the coherent resonance conjecture as

𝑘𝜈0𝑥 + ℓ𝜈0𝑦 =
𝑛

2
·

1
1 − (1 − 𝜂)𝐶𝑚

. (3.12)

As is obvious from this equation, the resonance conditions are expected to be straight lines
on 𝜈0𝑥-𝜈0𝑦 plane. Figure 3.15 shows the result summarizing the simulations with about five
thousand (71×71) of different combinations of operating tunes 𝜈0𝑥 and 𝜈0𝑦. The tune depression
is fixed at 0.9 for all operating points. The visible instability bands are found to be straight as
consistent with the prediction in Eq. (3.12).
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The most conspicuous two stopbands near 𝜈0𝑥(0𝑦) = 0.25 are the envelope instabilities, and
their serious emittance growths should be attributed mainly by 2nd-order collective resonances
with (𝑘, ℓ, 𝑛) = (2, 0, 1), (0, 2, 1). The 2nd-order mode is expected to appear accompanied
by the 4th-order or higher modes, but they are much weaker than the 2nd-mode instability as
discussed in the previous section. The serious emittance growth that appears along the reso-
nance line with (𝑘, ℓ, 𝑛) = (1, 1, 1) should also be exclusively due to the 2nd-order collective
resonance. However, another 2nd-order instability with (𝑘, ℓ, 𝑛) = (1,−1, 0) that is expected to
appear on the diagonal of Fig. 3.15 is almost invisible. The reason for the disappearance of the
2nd-order different resonance is that the horizontal and vertical emittances are equal along the
diagonal line 𝜈0𝑥 = 𝜈0𝑦. The symmetric different resonance can not develop in such an isotropic
beam. This is also confirmed experimentally by using the S-POD [32].

The eight noticeable instabilities except for 2nd-order modes can be explained by consider-
ing lowest-order nonlinear (𝑚 = 3) modes with (𝑘, ℓ, 𝑛) = (3, 0, 1), (0, 3, 1), (3, 0, 2), (0, 3, 2),
(2,−1, 0), (−1, 2, 0), (2,−1, 1), and (−1, 2, 1). The possible other 3rd-order resonances with
(𝑘, ℓ, 𝑛) = (2, 1, 1), (1, 2, 1), (2, 1, 2), and (1, 2, 2) are hardly observable in Fig. 3.15, but we
can detect a few percent of emittance growth attributed by them. The effects of overlapping
6th-order or higher-order resonances should be negligible compared with the ones of 3rd-order
resonances.

The tune diagram in Fig. 3.16 is obtained with a waterbag beam. In order to encourage the
development of collective instabilities and observe resonance instabilities in 100 lattice periods,
the particle distribution is initially weakly distorted by applying 3rd-order nonlinear potential
proportional to 𝑥3 − 3𝑥𝑦2 in this case. Similarly to the result in Fig. 3.15, almost all observable
stopbands can be identified as 2nd-order or 3rd-order resonances. We found that the stopband
widths are narrower than the Gaussian case. This is due to the tail resonance region as discussed
in Sec. 3.4. It is thus confirmed that there is no intrinsic difference in the resonance features of
Gaussian and waterbag beams.

It is important to note that all of the observed stopbands can be explained as 2nd-order or
3rd-order resonances. If the right-hand side of the coherent resonance condition in Eq. (3.15)
is not half integers but integers, we have to introduce 4th-order or 6th-order resonances to
interpret the simulation results in Fig. 3.15. Then, the troublesome question may be raised why
many missing 4th-order and 6th-order resonances exist. In addition, it is also unnatural that the
stopbands of 5th-order resonances are completely invisible even though 6th-order resonances
can be detectable.

In Fig. 3.15, we can see that the stopbands shift induced by space-charge force. For refer-
ence, we have plotted indices of the stopband shift for two resonance conditions; namely the
coherent resonance condition in Eq. (3.1) and the incoherent resonance condition in Eq. (2.12).
We introduce the equation Γ𝑘ℓ (Δ𝑥 ,Δ𝑦) defined as

Γ𝑘ℓ (Δ𝑥 ,Δ𝑦) ≡ 𝑘 (𝜈0𝑥 − Δ𝑥) + ℓ(𝜈0𝑦 − Δ𝑦) =
𝑛

2
. (3.13)

Γ𝑘ℓ (0, 0) then indicates the single-particle resonance condition except for the 1/2 factor on the
right-hand side and is plotted with a solid line. The dashed lines correspond to the former
and given with Γ𝑘ℓ (Δ𝜈𝑥 ,Δ𝜈𝑦). Thus, the line indicates the resonant tunes predicted by the
coherent resonances condition assuming 𝐶𝑚 = 1. The dash-dotted lines also correspond to the
latter and are given with Γ𝑘ℓ (max(Δ𝜈𝑥),max(Δ𝜈𝑦)) where max(Δ𝜈𝑥(𝑦)) is maximum incoherent
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Figure 3.15: Tune diagram obtained from 2D WARP simulations with Gaussian beam. The
rate of rms emittance growth evaluated at the exit of the 100th cell is color-coded. The tune
depression is initially adjusted at 𝜂𝑥(𝑦) = 0.9 over the whole tune space. The solid, dashed, and
dash-dotted lines in the diagram are obtained from Eq. (3.13) with Δ𝑥(𝑦) = 0, (1 − 𝜂𝑥(𝑦))𝜈0𝑥(0𝑦) ,
and (1 − 𝜂2

𝑥(𝑦))𝜈0𝑥(0𝑦) respectively.

tune shift in the Gaussian distribution evaluated from Eq. (2.13). Here the line indicates the
upper boundary of the stopband unlike in the former case. Based on the incoherent picture,
we should avoid putting the operating point inside the region between the dash-dotted line and
the solid line. It is, however, found that the actual stopband width is much narrower than the
prediction. The conventional incoherent manner thus tends to be overestimating the stopband
width considerably. Moreover, the stopband widths seem to depend on the resonance orders; in
other words, the stopband widths are not determined by the size of the tune spread. This implies
the instabilities in the beam core can not be described by the incoherent manner. We also see
that the observable stopbands are almost within the region between the dashed lines and solid
lines. Thus, the resonant tunes may be predicted well by the coherent resonance condition with
the tune shift factor smaller than one.

Stop bands with fixed beam intensity

In a practical accelerator, the beam current and emittances are not varied arbitrarily but are deter-
mined by injection configurations such as the performance of ion sources and pre-accelerators.
Thus, we next assume the case where the beam current and initial emittances remain constants
regardless of the operating tunes. Figure 3.17 shows the emittance growth at the exit of the
100th lattice period in this practical situation. For simplicity, the horizontal and vertical initial
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Figure 3.16: Tune diagram obtained from 2D WARP simulations with weakly distorted waterbag
beam. Other conditions and the definitions of the red lines are the same as those assumed for
the case of Fig. 3.15.

emittances are set equal. The beam current is adjusted so that the initial tune depression (≡ 𝜂1/6)
at the operating tunes of (𝜈0𝑥 , 𝜈0𝑦) = (1/6, 1/6) is equal to 0.9. In this case, the resonance lines
defined by Eq. (3.1) are no longer straight since the initial tune depression depends on the op-
erating tunes. The major 2nd and 3rd-order stopbands shown in Fig. 3.17 are also observable
in Fig. 3.15. In addition to them, we notice the weak instabilities of 4th-order resonances with
(𝑘, ℓ, 𝑛) = (4, 0, 3) and (0, 4, 3).

The resonance line curves induced by the shift of tune depression are enhanced by increasing
the initial beam current. Figure 3.18 shows the tune diagram assuming three different initial
beam currents corresponding to 𝜂1/6 = 0.9, 0.8, and 0.7. Unlike the case of 𝜂1/6 = 0.9, we
can observe significant bending of the stopband and the resonance line for the other two cases.
We here focus on the 2nd-order resonance stopband above 𝜈0𝑥 = 1/4 for example. The dotted
lines for each panel denote the resonant tune predicted by the coherent resonance condition
with the tune shift factors 𝐶2 = 0.75 (red) and 𝐶2 = 0.5 (black). These numbers are derived
from rms envelope Eq. (2.4) and correspond to so-called quadrupole mode and breathing mode
respectively [7, 23]. However, we can not observe additional instability of 2nd-order resonance
overlapping the stopband whose tune shift factor is predicted to be slightly below 0.75. In
the case of Fig. 3.18, we also can not detect the second peak comparable to the peak of over
400% emittance growth. The breathing mode instability thus appears to hardly develop in a
quadrupole channel. Therefore, it should be sufficient to assign a single value to 𝐶2 in practical
applications.
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Figure 3.17: Tune diagram obtained from 2D WARP simulations with Gaussian beam. The line
density and initial emittances are fixed at the value that gives 𝜂𝑥(𝑦) = 0.9 with the operating
tunes (𝜈0𝑥 , 𝜈0𝑦) = (1/6, 1/6). Other conditions and the definitions of the red lines are the same
as those assumed for the case of Fig. 3.15.

Stop bands of the initially equipartitioned beam

The equipartitioning case, in which the beam effective temperatures in three degrees of freedom
are set equal, is also physically interesting to us. When the beam is initially equipartitioned, the
following equation is satisfied at injection [13]

𝜀𝑥

𝜀𝑦
=
𝜂𝑦𝜈0𝑦

𝜂𝑥𝜈0𝑥
. (3.14)

Figure 3.19 summarizes the simulation results with the initial beam parameters determined by
Eq. (3.14). The initial beam current and the initial emittance that is the greater of the horizontal
and vertical directions are set at the same value as assumed in Fig. 3.17. We can see that the
resonance lines bend in the opposite direction to the case of Fig. 3.17. The tendency is enhanced
by assuming a higher beam current as shown in Fig. 3.20. It is found that the coherent resonance
condition in Eq. (3.1) successfully reproduces the feature of stopband distribution again.

Disappearance of difference resonances

It is worth noting that the two 3rd-order difference resonance bands with (𝑘, ℓ, 𝑛) = (2,−1, 0)
and (−1, 2, 0) can not be detected in Fig. 3.19, even though other major stopbands are ob-
servable as well as previous cases. Figure 3.21 shows that the difference resonances remain
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Figure 3.18: Beam intensity dependence of the envelope-instability stopband obtained from 2D
WARP simulations with Gaussian. The initial beam parameters are determined in the same way
as in the case of Fig. 3.17. The tune depressions are adjusted to (a) 𝜂𝑥(𝑦) = 0.9, (b) 0.8, and
(c) 0.7 with the operating tunes (𝜈0𝑥 , 𝜈0𝑦) = (1/6, 1/6). The dotted lines are the theoretical
prediction from Eq. (3.1) for the 2nd-order resonance assuming the tune shift factors 𝐶2 = 0.75
(red) and 𝐶2 = 0.5 (black).

unobservable if we apply an external nonlinear potential proportional to 𝑥3 − 3𝑥𝑦2 to enhance
them. Here we introduce a quantity 𝐼𝑘ℓ defined as

𝐼𝑘ℓ ≡
𝜀𝑥

𝑘
+
𝜀𝑦

ℓ
. (3.15)

Figure 3.21 (b) shows the contour plot of 𝐼𝑘ℓ. We recognize from this figure that the contour of
𝐼𝑘ℓ = 0 almost corresponds to the 3rd-order difference resonance line with (𝑘, ℓ, 𝑛) = (−1, 2, 0).
We also confirmed that 𝐼𝑘ℓ = 0 is satisfied along the resonance line with (𝑘, ℓ, 𝑛) = (2,−1, 0).
Moreover, it can be seen from Figs. 3.15, 3.17, and 3.19 that the case of 2nd-order difference
resonance with (𝑘, ℓ, 𝑛) = (1,−1, 0) also follows this rule. The space-charge driven difference
resonance that occurs under the condition 𝜈0𝑥 = 𝜈0𝑦 is referred to as the “Montague reso-
nance” [47, 48]. Ion trap experiments also have shown that the Montague resonance is hardly
activated when the horizontal and vertical emittances are approximately equal [32]. Another
example is shown in Fig. 3.22 in which the initial emittance ratio 𝜀𝑥/𝜀𝑦 is fixed at 1/2. The
simulation results with and without external nonlinear driving field proportional to 3𝑥2𝑦 − 𝑦3

are shown in the right and left panels respectively. Then, 𝐼𝑘ℓ = 0 is fulfilled along the resonance
lines with (𝑘, ℓ, 𝑛) = (2,−1, 0) and (2,−1, 1), and we can see that the corresponding stop bands
disappear in both cases. Thus, it is obvious that the quantity 𝐼𝑘ℓ is seriously correlated to the
disappearance of difference resonances. Since 𝐼𝑘ℓ is free from intensity-dependent parameters,
the present finding is expected to be able to apply regardless of the beam current.
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Figure 3.19: Tune diagram obtained from 2D WARP simulations with Gaussian beam. The
initial emittances are chosen so as to meet the equipartitioning condition in Eq. (3.14). The
line density is fixed at the value that gives 𝜂𝑥(𝑦) = 0.9 with the operating tunes (𝜈0𝑥 , 𝜈0𝑦) =
(1/6, 1/6). Other conditions and the definitions of the red lines are the same as those assumed
for the case of Fig. 3.15.

3.5.2 Evaluation of low order tune shift factors

The Okamoto and Yokaya theory suggests that the tune shift factor does not depend on whether
the resonance is driven by the external field or self-field, as long as the external non-linearity
can be treated as a perturbation. We assumed the theoretical prediction for a 1D beam is also
valid in the 2D case. Then, the extension of the 1D coherent resonance condition with𝑚th-order
nonlinear external driving field in Eq. (2.18) to a 2D beam can be written as

𝑘 (𝜈0𝑥 − 𝐶𝑚Δ�̄�𝑥) + ℓ(𝜈0𝑦 − 𝐶𝑚Δ�̄�𝑦) = |𝑛 ± 𝜅𝑚 |, (3.16)

where 𝜅𝑚 is the frequency per one lattice period. In computer simulations, we can take an
arbitrary number of 𝜅𝑚, unlike in a real circular accelerator where the periodicity of the external
driving field is limited by its structure. We here introduce an external driving field in addition
to the sinusoidal linear focusing force, in order to identify the resonance condition numerically
and evaluate low-order tune shift factors. This has two advantages over relying on the self-field.
First, we can avoid the overlapping of resonance instabilities of different orders by choosing a
proper number of 𝜅𝑚 and the operating point. As mentioned in the last section, the self-field-
driven 𝑚th-order resonance occurs accompanied by 2𝑚th-order resonances. Since the tune shift
factor depends on the resonance order, the overlapping may degrade the evaluation accuracy of
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Figure 3.20: Beam intensity dependence of the envelope-instability stopband obtained from 2D
WARP simulations with Gaussian. The initial beam parameters are determined in the same way
as in the case of Fig. 3.19. The tune depressions are adjusted to (a) 𝜂𝑥(𝑦) = 0.9, (b) 0.8, and (c)
0.7 with the operating tunes (𝜈0𝑥 , 𝜈0𝑦) = (1/6, 1/6). The definitions of the red and black lines
are the same as those assumed for the case of Fig. 3.18.

the tune shift factor. Second, the resonance strength is controllable independently of the beam
intensity. In particular, self-field-driven 4th-order resonances may be too small to locate their
stopbands.

We expect the tune shift factors to be independent of the distribution function. In order to
verify that the difference in the particle distribution does not cause a significant change in the
evaluated value of tune shift factors, we employ the parabolic and waterbag beams in addition
to the Gaussian beam in this section.

3.5.3 Non-coupling resonance

Let us first look at the non-coupling resonance cases where the horizontal and vertical motions
are symmetric. The horizontal and vertical tune depression are set equal; namely 𝜂𝑥 = 𝜂𝑦 (≡ 𝜂).
We keep the operating point at (𝜈0𝑥 , 𝜈0𝑦) = (0.15, 0.15) where the significant emittance growth
does not occur for the range of 0.8 < 𝜂 < 0.95 unless the external driving force is not applied.
Then the resonance condition in Eq. (3.16) can be simplified as

𝑚(𝜈0 − 𝐶𝑚Δ�̄�) = |𝑛 ± 𝜅𝑚 |, (3.17)

where Δ�̄� = (1 − 𝜂)𝜈0 represents the rms tune shift in the horizontal and vertical direction. A
nonlinear perturbation can drive several resonances at the same time, but it may be sufficient
for our purpose to focus on the most severe resonance with 𝑛 = 0 at

𝑚𝜈0 =
𝜅𝑚

1 − (1 − 𝜂)𝐶𝑚
. (3.18)
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Figure 3.21: (a) 2D WARP simulation results obtained with Gaussian beam. The conditions
are the same as those assumed for the case of Fig. 3.17 except that a 3rd-order nonlinear field
proportional to 𝑥3 −3𝑥𝑦2 is added. (b) Contour plot of 𝐼𝑘ℓ defined by Eq. (3.16). The number in
panel (b) indicates the value of 𝐼𝑘ℓ in a unit of mm·mrad. The red dotted line is the theoretical
prediction from Eq. (3.1) for the 3rd-order resonance assuming the tune shift factor of 𝐶3 =
0.875.

This suggests that we can locate the 𝑚th-order resonance band by scanning the perturbation
frequency 𝜅𝑚.

We now try to estimate the low-order tune shift factors 𝐶𝑚 by applying an external pertur-
bation field. However, the precise estimation is not so easy due to several reasons. We show
an example of the emittance behavior driven by the 2nd-order perturbation in Fig. 3.23. The
emittance growths at the exit of the 200th lattice period are plotted. The sawtooth-like con-
figurations of the emittance growth curves are due to the stop band shifts caused by the beam
density reduction as discussed in Sec. 3.4. This makes it difficult to evaluate the initial stop-
band location. Considering that the resonance instability makes the tune depression approach
unity, the 𝐶𝑚 is inevitably estimated to be less than the correct value. Moreover, we see that
the stopbands of the Gaussian beam in Fig. 3.23 (a) are clearly different from the others and
are expanded toward upper thresholds 𝜅2 = 0.3(= 2𝜈0) given by the single particle resonance
condition. We even observe a second peak in the 𝜂 = 0.9 case. It is apparent from Fig. 3.24 that
the peculiarity of the Gaussian beam originates from the tail particles. The emittance growth
curves are deformed to the dashed lines by disregarding only 5% of outermost particles that are
identified with 𝐸-value in Eq. (3.10) in the emittance calculation. We can see that the second
peak is almost completely eliminated by only 5% of removal in the 𝜂 = 0.9 case. The emittance
growth on the higher 𝜅2 side is also significantly lowered in the 𝜂 = 0.8 case. In both cases, the
highest peaks are hardly affected by removing halo particles. These results are quite similar to
the case in Sec. 3.4 and suggest the existence of the tail resonance region.

It is important for a better estimate of the 𝐶𝑚 to suppress the effect from stopband shift and
the tail resonance. We here define the resonant 𝜅𝑚 of 𝑚th-order coherent resonance as the point
that reaches one percent of emittance growth at first. The one-percent level is expected to have
only a negligible effect on the stopband shift. We also expect that no significant halo develops
in such a short time. On the other hand, the tail particle of the Gaussian beam may cause percent
level emittance growth before the collective resonance develops. We thus truncate one percent
of the outermost particle defined with 𝐸-value in Eq. (3.10) at injection, in order to mitigate the
tail resonance effect.

Figure 3.25 shows the emittance growth evaluated with the WARP code on 𝜅2-𝜂 plane. The
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Figure 3.22: Tune diagram obtained from 2D WARP simulations with Gaussian beam. The
initial emittance ratio is fixed at 𝜀𝑥/𝜀𝑦 = 1/2 over the whole tune space. The line density is
set at the same value as assumed in Fig. 3.17. The red dotted line is the theoretical prediction
from Eq. (3.1) for the 3rd-order coupling resonances with (𝑘, ℓ, 𝑛) = (2,−1, 0) and (2,−1, 1)
assuming the tune shift factor of 𝐶3 = 0.875. The external field is completely linear in the case
of the panel (a). A 3rd-order nonlinear field proportional to 𝑥3 −3𝑥𝑦2 is added in the case of the
panel (b).

center of the 2nd-order stopband lies clearly higher 𝜅2 region than the solid line with 𝐶2 = 1
and is well fitted by the Eq. (3.18) with 𝐶2 ≈ 0.7 as shown by the dotted line for all three cases.
This suggests that the numerical observation can not be explained without the 𝐶2 smaller than
unity. The tune shift factor of the 2nd mode evaluated with these results is 𝐶2 = 0.78 ± 0.05
for the Gaussian beam, 𝐶2 = 0.71 ± 0.04 for the waterbag beam, and 𝐶2 = 0.73 ± 0.05 for the
parabolic beam.

The dash-dotted line in Fig. 3.25 (a) indicates the boundary of the stopband based on the
incoherent picture, on which the following equation is satisfied

𝑚𝜈0 =
𝜅𝑚

𝜂2 . (3.19)

This can be derived from Eq. (2.13). As is obvious from this panel, the incoherent picture tends
to overestimate the width of the stopband.

The results of similar WARP simulations are shown in Figs. 3.26 and 3.27, where 3rd-order
and 4th-order nonlinear fields are added respectively. The positions of stop bands are well
fitted by Eq. (3.18). Then, it is confirmed that the proper tune shift factors become significantly
smaller than unity for all cases. As in the case of Fig. 3.25, we can not detect indications of
incoherent resonance in Figs. 3.26 and 3.27.

The fitting results of 2nd, 3rd, and 4th non-coupling coherent resonances are summarized
in Table 3.3. Since the single-peaked band profiles can be seen in all cases, we only need
a single value of the tune shift factor to be assigned for each mode of a specific order from
a practical point of view. The tune shift factor tends to be greater as the mode number gets
higher for waterbag and parabolic beams as predicted by the theoretical studies [8, 20]. In
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Figure 3.23: 𝜅2 dependence of the emittance growth evaluated at the exit of 200th cell. The
operating point is set at (𝜈0𝑥 , 𝜈0𝑦) = (0.15, 0.15). The tune depressions are initially adjusted
at 𝜂𝑥(𝑦) = 0.8 (red) and 0.9 (black). The external 2nd-order perturbation is applied to excite
the 2nd mode. Three different types of initial distributions are considered: (a) Gaussian, (b)
waterbag, and (c) parabolic.

Figure 3.24: 𝜅2 dependence of the emittance growth evaluated at the exit of 200th cell. The
dashed lines are the same as those in Fig. 3.23 (a). The solid lines indicate the stopband config-
urations after 5% of halo particle scraping based on the 𝐸-value defined by Eq. (3.10).

particular, the estimated tune shift factors for the waterbag beam are in good agreement with the
theoretical value derived from Sachere’s 1D Vlasov analysis assuming the uniform distribution
(𝐶2 = 0.75, 𝐶3 = 0.88, and 𝐶4 = 0.92). On the other hand, the evaluated tune shift factors of the
Gaussian beam get smaller as the 𝑚 number increases. The main cause of this 𝑚 dependence
of 𝐶𝑚 opposite to the others must be the incoherent resonance in the remaining tail region.
The tail resonance expands the stopband toward the single-particle resonance line, making the
evaluated tune shift factor smaller. The truncation of more tail particles may lead to more
mitigation of this effect. However, too much scraping is not preferable due to the enhancement
of a mismatch since the initial particle distribution generator equipped with the WARP code is
designed assuming a full Gaussian distribution function.
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Figure 3.25: Emittance-growth chart obtained from 2D WARP simulations with the 2nd-order
perturbation on. Three different types of initial particle distributions are considered: (a) Gaus-
sian, (b) waterbag, and (c) parabolic. The operating point is set at (𝜈0𝑥 , 𝜈0𝑦) = (0.15, 0.15). The
solid and dashed lines correspond to the theoretical prediction from Eq. (3.1) with 𝐶2 = 0 and
1. The dotted line is the location of the stopband peak fitted by Eq. (3.1) with (a) 𝐶2 = 0.78, (b)
0.71, and (c) 0.73. The dash-dotted line in panel (a) is corresponding to the limit of the resonant
region predicted based on the incoherent picture with Eq. (2.13).

Figure 3.26: Emittance-growth chart obtained from 2D WARP simulations with the 3rd-order
perturbation on. Except for the order of the perturbation, the other conditions are the same as
employed in the case of Fig. 3.25.

3.5.4 Coupling resonance

According to the coherent resonance condition in Eq. (3.16), the external field that is propor-
tional to 𝑥𝑘 𝑦ℓ exites sum or difference resonances under the condition,

𝑘𝜈0𝑥 + ℓ𝜈0𝑦 =
𝜅𝑚

1 − (1 − 𝜂)𝐶𝑚
, (3.20)

where the horizontal and vertical tune depressions are set equal for simplicity. If 𝜈0𝑥 = 𝜈0𝑦
and both of 𝑘 and ℓ are positive numbers, the resonance condition in Eq. (3.20) is identical
to Eq. (3.18). The fact that the simulation results of the last subsection show single-peaked
band profiles in all cases supports our assumption that the tune shift factor depends only on the
resonance order.

The 𝐶𝑚 estimation is conducted by locating the stopband on 𝜂-𝜅𝑚 plane as well as the last
subsection, however, the case of coupling resonance is comparably troublesome. First of all,
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Figure 3.27: Emittance-growth chart obtained from 2D WARP simulations with the 4th-order
perturbation on. Except for the order of the perturbation, the other conditions are the same as
employed in the case of Fig. 3.25.

Table 3.3: Tune shift factors estimated from non-coupling resonance bands excited by nonlinear
fields

𝐶2 𝐶3 𝐶4

TE 0.78 ± 0.05 0.77 ± 0.06 0.71 ± 0.06
WB 0.71 ± 0.04 0.87 ± 0.03 0.92 ± 0.01
PA 0.73 ± 0.05 0.85 ± 0.04 0.87 ± 0.02

the emittance growth is very sensitive to the initial emittances, and even the disappearance of
the different resonance occurs under certain conditions as discussed in the last subsection. In
addition, the difference resonance causes the emittance exchange between the horizontal and
vertical degree of freedom and makes the stopband position ambiguous. In this subsection, we
thus focus on sum-resonance to avoid such unwanted effects.

The operating point is set at (𝜈0𝑥 , 𝜈0𝑦) = (0.142, 0.211), after careful test simulations. There
are several reasons we decide to choose this operating point. First, this is within a region free
from self-field-driven resonances of the orders lower than 4th. It is necessary to avoid self-field-
driven resonances so that we observe the emittance growth that comes solely from the external
field-driven resonance. We also have to take care of the other external-field resonances accom-
panied by the sum resonance of interest. For example, the 4th-order nonlinear field proportional
to 𝑥3𝑦 − 𝑥𝑦3 can drive the sum and difference resonances with (𝑘, ℓ) = (3, 1), (3,−1), (1, 3),
and (−1, 3) at the same time, and the overlapping of the resonances with different conditions
can be a serious error in the estimation of the tune shift factors.

The emittance growth due to the 2nd-order coupling resonance with (𝑘, ℓ) = (1, 1) is color-
coded in Fig. 3.28 on 𝜂-𝜅2 plane, when the 2nd-order skew perturbation proportional to 𝑥𝑦 is
switched on. Since 𝜈0𝑥 , 𝜈0𝑦, 𝑘 , and ℓ are known, we can evaluate the 𝐶2 by fitting Eq. (3.20) to
the position of the stopband. The evaluated tune shift factor is𝐶2 = 0.71±0.05 for the Gaussian
beam, 𝐶2 = 0.72 ± 0.05 for the waterbag beam, and 𝐶2 = 0.71 ± 0.05 for the parabolic beam.
Thus, we found that the estimated values of 𝐶2 are almost identical for the three distribution
functions.

The 3rd-order nonlinear field proportional to 3𝑥2𝑦−𝑦3 was switched on to drive the coupling
resonance with (𝑘, ℓ) = (2, 1) in Fig. 3.29. Because the 3rd-order resonant instability is much
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Figure 3.28: Emittance-growth chart of the sum resonance with (𝑘, ℓ) = (1, 1) driven by the
2nd-order perturbation proportional to 𝑥𝑦 obtained from 2D WARP simulations. Three differ-
ent types of initial particle distributions are considered: (a) Gaussian, (b) waterbag, and (c)
parabolic. The operating point is set at (𝜈0𝑥 , 𝜈0𝑦) = (0.142, 0.211). The solid and dashed lines
correspond to the theoretical prediction from Eq. (3.1) with 𝐶2 = 0 and 1. The dotted line is the
location of the stopband peak fitted by Eq. (3.1) with (a) 𝐶2 = 0.71, (b) 0.72, and (c) 0.71. The
dash-dotted line in panel (a) is corresponding to the limit of the resonant region predicted based
on the incoherent picture with Eq. (2.13).

weaker than the second’s, the amplitude of the 3rd-order perturbation is set large compared with
the case in Fig. 3.28 (𝑏3/𝑏2 in Eq. (1.12) is 1/4 when 𝑟0 is set at 5 mm). The fitting Eq. 3.20 to
these results leads to 𝐶3 = 0.72±0.08 for the Gaussian beam, 𝐶3 = 0.82±0.03 for the waterbag
beam, and 𝐶3 = 0.80 ± 0.05 for the parabolic beam.

The 4th-order resonant instability is even much weaker than the other two cases. In order
to observe the 4th-order stopband clearly, we have to further raise the amplitude of the pertur-
bation (∝ 𝑥3𝑦 − 𝑥𝑦3). On the other hand, the comparably strong nonlinearity may lead to the
development of the tail resonance. The fitting procedure based on the Eq. (3.20) with 𝑘 = 1 and
ℓ = 3 results in 𝐶4 = 0.63 ± 0.03 for the Gaussian beam, 𝐶4 = 0.84 ± 0.01 for the waterbag
beam, and 𝐶4 = 0.79 ± 0.01. Then, we found the evaluated 𝐶4 for the Gaussian beam is signif-
icantly smaller than the others. The much wider stopband shown in Fig. 3.30 (a) implies that
the tail resonance has a non-negligible effect on the emittance growth. A similar tendency has
been seen also in the case of Fig. 3.29 (a). Thus, it is difficult to make a reasonable estimate for
the Gaussian beam since the effect of the tail resonance reduces the evaluated 𝐶𝑚 from its real
value, even though one percent of the outermost particle is truncated at injection.

Table 3.4: Tune shift factors estimated from sum resonance bands excited by nonlinear fields

𝐶2 𝐶3 𝐶4

TE 0.71 ± 0.05 0.72 ± 0.08 0.63 ± 0.03
WB 0.72 ± 0.05 0.82 ± 0.03 0.84 ± 0.01
PA 0.71 ± 0.05 0.80 ± 0.05 0.79 ± 0.01
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Figure 3.29: Emittance-growth chart of the sum resonance with (𝑘, ℓ) = (2, 1) driven by the
3rd-order perturbation proportional to 3𝑥2𝑦 − 𝑦3 obtained from 2D WARP simulations. Except
for the order of the perturbation, the other conditions are the same as employed in the case of
Fig. 3.28.

Figure 3.30: Emittance-growth chart of the sum resonance with (𝑘, ℓ) = (3, 1) driven by the
4th-order perturbation proportional to 𝑥3𝑦 − 𝑥𝑦3 obtained from 2D WARP simulations. Except
for the order of the perturbation, the other conditions are the same as employed in the case of
Fig. 3.28.

3.6 Construction of a stability tune diagram

We here consider the determination of the operating point (𝜈0𝑥 , 𝜈0𝑦) based on the coherent res-
onance condition in Eq. (3.1), whose validity has already been confirmed in previous sections.
In order to provide a simple and useful guideline to choose the operating betatron tunes, we
constructed a stability tune diagram that shows the resonance-free regions on 𝜈0𝑥-𝜈0𝑦 plane. In
the stability tune diagram, we pay attention to the following three types of resonant instabilities
of practical importance.

1 Self-field-driven coherent resonances: The space change force can be a source of various
nonlinear resonances without external nonlinearity as shown in Figs. 3.15, 3.17, and 3.19.
It is clear that we have to pay attention to these instabilities.

2 Tail resonances: The tail particles’ motions are unstable rather individually than collec-
tively under certain conditions that roughly correspond to the narrow region surrounded
by coherent resonance stopbands and the single particle resonance lines on 𝜈0𝑥-𝜈0𝑦 plane.
Considering that the beams more or less have a tail around the core, in reality, the tail
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resonance region must be an essential component for our stability tune diagram.

3 External-field-drive resonances: In almost all of the circular accelerators, the sextupole
magnets are equipped for chromaticity correction and generate much stronger nonlinear
forces than the error field originating from misalignments. Since the resonances driven
by this intended nonlinearity can be comparably severe, furthermore attention should be
paid to these instabilities.

Then the effect of the error field-driven resonances is automatically covered by taking the co-
herent resonances into account.

Here, a question arises as to what orders of resonances should be noted. It is clear that we
should pay attention to rather lower-order resonances than higher orders’ since the higher-order
modes are weak and tend to be suppressed by the Landau damping mechanism except for the
resonances driven by a strong external nonlinear field. According to the ion trap experiments,
the non-coupling coherent resonances of up to 3rd-order are always detectable [32]. Similarly,
2nd and 3rd-order resonance can be clearly seen in numerical simulations of Figs. 3.15, 3.17,
and 3.19, and thus we should always take care of the coherent resonances of up to 3rd-order.
On the other hand, whether we have to care of the next order (𝑚 = 4) resonance or not may
depend on several configurations such as the beam density, accumulation time, and acceptable
emittance of the accelerator. If an allowable emittance growth is strictly limited, or if the beam
accumulated for a very long time, we need to take care of the 4th-order resonances.

It is very difficult to theoretically evaluate a bandwidth of coherent resonances. They ex-
pected to depend on not only the beam intensity and operating points but also density profiles
as shown in Subsection 3.5.1. Thus, we have to rely on time-consuming numerical simulations
to obtain precise bandwidth. On the other hand, our purpose is to provide a simple and useful
guideline as a starting point for the determination of the operating point, and thus we here rely
on a simple criterion given by

Δ𝑤𝑚 = 2(1 − 𝐶𝑚)
1 − 𝜂
𝜂
�̄�0 𝑓𝑘ℓ . (3.21)

This is a generalization of Eq. (2.17) derived from the 1D Vlasov theory. �̄�0 ≡ (𝜈0𝑥 + 𝜈0𝑦)/2
and 𝜂 ≡ (𝜂𝑥 + 𝜂𝑦)/2 denote the averaged values in the horizontal and vertical directions. The
factor 𝑓𝑘ℓ is defined as

𝑓𝑘ℓ =
|ℓ𝜀𝑥 + 𝑘𝜀𝑦 |
|ℓ |𝜀𝑥 + |𝑘 |𝜀𝑦

. (3.22)

This is introduced to reflect the disappearance of difference resonances as discussed in Sec. 3.5.
The difference resonance disappears when the condition 𝐼𝑘ℓ = 0 is fulfilled, and then 𝑓𝑘ℓ also
becomes zero. Thus, the stopbands with 𝐼𝑘ℓ = 0 will be drawn with no bandwidth in our stability
tune diagram.

3.6.1 Application of a stability tune diagram to the RCS at J-PARC

As an example, we assume the current configurations of the rapid cycling synchrotron (RCS)
at Japan Proton Accelerator Research Complex (J-PARC) [49]. The basic parameters of RCS
are shown in Table 3.5 [50]. The super-period 𝑁sp denotes the number of groups of cells. The
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Table 3.5: Fundamental parameters of the RCS at J-PARC [49, 51].

Circumference 348.333 [m]
Number of cells 27

Super-period (𝑁sp) 3
Operating point (𝜈0𝑥 , 𝜈0𝑦) (6.45, 6.42)

Injection energy 400 [MeV]
Extraction energy energy 3 [GeV]

Transverse rms emittance (at injection) 50 [mm·mrad]
Bunch length 92 [m]

Number of bunches 2
Particle per pulse 8.3 × 1013

RCS has a triangle-like shape and consists of three large structures that include 9 cells. If we
expand the betatron function into Fourier series around the ring, 𝑁sp harmonics then appear.
Thus the right-hand side of Eq. (3.1) have to be replaced by 𝑁sp𝑛/2, and the coherent resonance
condition is given by

𝑘 (𝜈0𝑥 − 𝐶𝑚Δ�̄�𝑥) + ℓ(𝜈0𝑦 − 𝐶𝑚Δ�̄�𝑦) =
𝑛𝑁sp

2
, (3.23)

where the 𝜈0𝑥 and 𝜈0𝑦 represent the bare tunes per one revolution of the RCS. According to the
parameters shown in Table 3.5, the rms tune depression is evaluated to be 0.98 at injection.

Figure 3.31 shows the stability tune diagram assuming the RCS. The stopband with (𝑘, ℓ, 𝑛) =
(1,−1, 0) has no width since 𝜀𝑥 ≈ 𝜀𝑦 in the RCS. We here take the coherent tune shift factors
as 𝐶2 = 0.7, 𝐶3 = 0.8, and 𝐶4 = 0.9 based on the numerical evaluation in the last section. If we
adopt the theoretical values of 𝐶2 = 0.75, 𝐶3 = 0.88, and 𝐶4 = 0.92 proposed by Sachere [8],
the stopband features in the figures are hardly affected. The bands shown in black correspond
to the resonant instabilities driven by the quadrupole field and 3rd-order nonlinear field origi-
nating from the sextupole magnets equipped with the RCS. We can construct such stability tune
diagrams only with the basic parameters shown in the table and the lattice design including the
alignment of the nonlinear magnets, which are known in any machine.

The operating point was chosen around the (𝜈0𝑥 , 𝜈0𝑦) = (6.68, 6.27) (green dot) at the
design stage and had been already changed due to the resonant instabilities. After a careful
tune survey, the current operating point has been chosen at around (𝜈0𝑥 , 𝜈0𝑦) = (6.45, 6.42) (red
dot). Figure 3.31 shows that the red dot is located at the resonance-free region contrary to the
green dot. Thus, it is confirmed that the prediction in Fig. 3.31 is consistent with the result of
experimental optimization of the operating point in the RCS.

Next, we add the 4th-order stopbands to the stability diagram as shown in Fig. 3.32. Then the
current operating point was found to be overlapped with the 4th-order stopbands corresponding
to (𝑘, ℓ, 𝑛) = (4, 0, 51), (0, 4, 51), (3, 1, 51), (1, 3, 51), and (2, 2, 51). Thus, the RCS perfor-
mance might be improved by choosing the operating point around at (𝜈0𝑥 , 𝜈0𝑦) = (6.29, 6.32)
and (6.71, 6.68) denoted with blue dots. Then the (𝜈0𝑥 , 𝜈0𝑦) = (6.29, 6.32) is should be prefer-
able than (6.32, 6.29) since the instability of external field driven resonance corresponding to
(𝑘, ℓ, 𝑛) = (2, 1, 36) expected to be more severe than self-field-driven one corresponding to
(𝑘, ℓ, 𝑛) = (1, 2, 36).
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Figure 3.31: Stability tune diagram obtained from Eqs. (3.21) and (3.23). The fundamental
parameters of the RCS at J-PARC given in Table 3.5 are assumed. The stopbands of self-
field-driven, external-field-driven, and tail resonances are drawn in the diagram. The possible
resonant instabilities of up to 3rd-order are considered. The tune shifts factors determined in
Sec. 3.5: 𝐶2 = 0.7 and 𝐶2 = 0.8 is used here. The tune depression is fixed at 𝜂𝑥(𝑦) = 0.98
that is approximately corresponding to the configuration of the RCS. The red dot represents the
typical operating point (𝜈0𝑥 , 𝜈0𝑦) = (6.45, 6.42) of the RCS [51].
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Figure 3.32: Stability tune diagram obtained from Eqs. (3.21) and (3.23). The possible resonant
instabilities of up to 4th-order are considered. The tune shifts factors determined in Sec. 3.5:
𝐶2 = 0.7, 𝐶3 = 0.8, and 𝐶4 = 0.9 are used here. The other conditions are the same as employed
in the case of Fig. 3.31.
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3.7 Summary

We have conducted systematic self-consistent simulations to study the 2D betatron resonances
induced by space-change force in high-intensity circular accelerators. The simulation results
suggest that two different types of instability mechanisms exist; namely the incoherent res-
onances in the beam tail region and collective coherent resonances in the beam core. It is
confirmed that the proposed 2D coherent resonance condition well explains the basic features
of the collective coherent resonances despite its remarkable simplicity. The factor 1/2 on the
right-hand side of Eq. (3.1) implies that many instability bands of low-order resonances can
be disregarded in previous studies at high beam density. In addition, no clear signature of the
occurrence of incoherent resonances in the dense beam core has been observed contrary to the
conventional incoherent concepts.

It is also confirmed that the tune shift factors of low-order resonances are always smaller
than unity as predicted by the 1D Vlasov analysis. Moreover, the tune shift factor is found to
depend almost exclusively on the resonance order 𝑚. This suggests that we can predict the
locations of important stopbands with the several tune shift factors of each order over the whole
tune space unless the beam density does not exceed the achievable range in circular accelerators.

We have proposed a stability tune diagram based on the coherent resonance concept. The
simple rule shown in Sec. 3.6 allows us to quickly spot the resonance-free region that is prefer-
able to set operating points, without the experimentally unobservable parameters or consider-
able efforts. The predictions of our diagram have been confirmed to be consistent with the
operating configuration of the RCS in J-PARC, which guarantees the reliability of the diagram.
It seems possible to provide a valuable guideline for any circular accelerators as long as the
basic lattice information including the distribution of nonlinear magnets is given.
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Chapter 4

Resonance in linear accelerators

4.1 Introduction

In ion linear accelerators (linac), the beam stability can be seriously deteriorated by space-
charge-driven resonances. Even if the external field is completely linear, the nonlinear space
charge potential can be a source of various resonances [12, 20, 22, 52, 53]. Unlike in the case of
circular accelerators, the bunch length in linac is comparable to the transverse beam size. Since
the synchrotron and betatron tunes are also comparable, the cooperation between the longitudi-
nal and transverse degrees of freedom is expected to be more pronounced. Thus we should pay
attention to not only betatron resonances but also synchrobetatron coupling resonances. In ad-
dition, any ion linac does not have a strictly periodic structure due to the increase in the beam’s
kinetic energy. The betatron and synchrotron phase advances are not necessarily constants but
rather shift gradually. Then the operating point may cross low-order resonance stopbands. The
resonance crossing may lead to emittance growth and beam loss.

In order to study the resonance features in the linac systematically, we developed a sim-
ulation model and performed self-consistent multi-particle simulations using the “IMPACT”
code [55, 56]. Assuming the most typical drift-tube linac structure (DTL), we explore the low-
order resonant instability over a wide parameter range. In this chapter, we first derive the Hamil-
tonian for charged particle beam propagating through a DTL. After presenting our simulation
model in detail, Sec. 4.6 is devoted to showing the simulation results with similar design pa-
rameters of J-PARC DTL. It is then confirmed that serious emittance exchanges occur when the
operating point crosses the synchrobetatron difference resonance band. We also demonstrate
that the difference resonances can be significantly suppressed by choosing a certain ratio of the
initial transverse and longitudinal emittances. The equipartitioned linac design is found to au-
tomatically achieve the proper emittance ratio and broaden the usable operating area in the tune
space.

4.2 Hamiltonian formalism for drift-tube linacs

In this section, we follow the work of H. Okamoto et al. and derive the Hamiltonian of an
ion beam propagating through an Alvarez-type linac [57]. We assume the axisymmetric TM
mode (𝐵𝑧 = 0) generated by an accelerating structure of period 𝐿 = 𝛽s𝜆 where 𝛽s and 𝜆 are
Lorentz factor of synchronous particle and RF wavelength. Maxwell’s equation in cylindrical
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coordinates can be written as 
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(4.1)

where 𝑡 denotes time. 𝐸𝑤 and 𝐵𝑤 denote the electric and magnetic field components in the 𝑤
direction respectively. 𝐸𝜃 and 𝐵𝑟 are zero. Combining the above equations yields
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We here focus only on the RF components that have the angular frequency of 𝜔. Assuming that
𝐸𝑧 can be written as 𝐸𝑧 = 𝑅(𝑟)𝑍 (𝑧) cos𝜔𝑡, 𝑅(𝑟) and 𝑍 (𝑧) satisfy that
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(4.3)

where 𝑛 is necessarily an integer because 𝑍 (𝑧) must be periodic function, and 𝑍 (𝑧) is given by
the linear combination of cos(2𝑛𝜋𝑧/𝐿) and sin(2𝑛𝜋𝑧/𝐿). The differential equation for 𝑅(𝑟) is
found to be identical to modified Bessel’s equation, and 𝑅(𝑟) can be given by modified Bessel
functions. Thus we can obtain the Electromagnetic fields

𝐸𝑧 =
∞∑
𝑛=0

𝑎𝑛𝐼0(𝑘𝑛𝑟) cos
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𝑘𝑛𝑐2𝐼1(𝑘𝑛𝑟) cos
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sin𝜔𝑡 ,

(4.4)

where 𝐼𝑛 denotes the modified bessel function of order 𝑛. 𝑎𝑛 is the 𝑛th Fourie coefficients
determined by the boundary conditions, and 𝑘2

𝑛 = (2𝜋/𝜆)2 [(𝑛𝜆/𝐿)2 − 1].
In order to determine 𝑎𝑛 approximately, we here assume a boundary condition that 𝐸𝑧 is

uniform at the aperture radius within every accelerating gap of width 𝑔 as shown in Fig. 4.1;
namely 𝐸𝑧 (𝑟 = 𝑟0, 𝑧, 𝑡 = 0) = 𝐸0𝐿/𝑔 where 𝐸0 is a constant. Then, we obtain

𝑎0 =
𝐸0

𝐼0(𝑘0𝑟0)
, 𝑎𝑛 =

2𝐸0

𝐼0(𝑘𝑛𝑟0)
·

sin (𝑛𝜋𝑔/𝐿)
𝑛𝜋𝑔/𝐿 for 𝑛 = 1, 2, 3, .... , (4.5)
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Drift tube

Figure 4.1: Schematic view of the accelerating gap. Neumann boundary condition is imposed
on the red dotted line.

The traveling waves of 𝑛 ≠ 1 have different phase velocities to the synchronous particle, and
their contributions are disappeared by averaging over one structure period [58, 59]. Only the
traveling wave of 𝑛 = 1 contributes to the beam acceleration, and we here ignore the other
field components for simplicity except that our calculations in later sections take all of the field
components into account. Then, the vector potential A(rf) = (𝐴(rf)

𝑟 , 𝐴(rf)
𝜃 , 𝐴(rf)

𝑧 ) that derives the
electromagnetic field in Eq. (4.4) is given by

𝐴(rf)
𝑧 =

𝐸0𝑇

𝜔
𝐼0(𝑘1𝑟) sin

(
2𝜋𝑧
𝐿

− 𝜔𝑡
)
,

𝐴(rf)
𝑟 = −

2𝜋𝐸0𝑇

𝜔𝑘1𝐿
𝐼1(𝑘1𝑟) cos

(
2𝜋𝑧
𝐿

− 𝜔𝑡
)
,

(4.6)

where 𝑇 is referred to as the “transit time factor” characterizing the accelerating field distribu-
tion and given by

𝑇 =
1

𝐼0(𝑘1𝑟0)
·

sin (𝜋𝑔/𝐿)
𝜋𝑔/𝐿 . (4.7)

The time dependence of the total energy of the synchronous particle𝑊s is approximately written
as

𝑑𝑊s

𝑑𝑧
≈ 𝑞𝐸0𝑇 cos𝜓s , (4.8)

where 𝜓s is the synchronous phase defined by

𝜓s = 𝜔
∫ 𝑧 𝑑𝑧

𝛽s𝑐
−

2𝜋𝑧
𝐿

. (4.9)

In this study, we assume that the 𝜓s is a constant through a whole linac for simplicity.
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From Eq. (1.5), the Hamiltonian in cylindrical coordinates can be written as

𝐻DTL(𝑟, 𝜃, 𝑡, 𝑝𝑟 , 𝑝𝜃 , 𝑝𝑡 ; 𝑧) = −

√
𝑝2 −

(
𝑝𝑟 − 𝑞𝐴(rf)

𝑟

)2
−
𝑝2
𝜃

𝑟2 − 𝑞
(
𝐴(rf)
𝑧 + 𝐴(mag)

𝑧

)
−
𝑞𝛽s

𝑐
𝜙sc ,

(4.10)
where 𝑝 =

√
(𝑝𝑡 + 𝑞𝜙sc)2/𝑐2 − 𝑚𝑐2 is the kinetic momentum. After the Taylor expansion of the

square root, substituting Eq. (4.6) into the Hamiltonian yields

𝐻DTL ≈ − 𝑝 +
1

2𝑝s

[
𝑝𝑟 +

2𝜋𝑞𝐸0𝑇

𝜔𝑘1𝐿
𝐼1(𝑘1𝑟) cos

(
2𝜋𝑧
𝐿

− 𝜔𝑡
)]2

+
𝑝2
𝜃

2𝑝s𝑟2

−
𝑞𝐸0𝑇

𝜔
𝐼0(𝑘1𝑟) sin

(
2𝜋𝑧
𝐿

− 𝜔𝑡
)
+
𝑞𝐺 (𝑧)𝑟2 cos 2𝜃

2
−
𝑞𝛽s

𝑐
𝜙sc ,

(4.11)

where the kinetic momentum for the synchronous particle is given by 𝑝s =
√
(𝑊s/𝑐)2 − 𝑚𝑐2.

We have assumed that the transverse momenta are much lesser than 𝑝 and neglect the higher
order terms. 𝐺 (𝑧) represents the quadrupole gradient along the beam line. We now consider
the canonical transformation from (𝑡,𝑊) to the relative time and energy (Δ𝑡,−Δ𝑊) with a
generating function

𝐹1(𝑡,−Δ𝑊 ; 𝑧) = −(Δ𝑊 +𝑊s)
(
𝑡 −

∫ 𝑧 𝑑𝑧

𝛽s𝑐

)
. (4.12)

The new Hamiltonian is

𝐻DTL ≈
(Δ𝑊)2

2𝑝s(𝛽s𝛾s𝑐)2 +
1

2𝑝s

[
𝑝𝑟 +

2𝜋𝑞𝐸0𝑇

𝜔𝑘1𝐿
𝐼1(𝑘1𝑟) cos (𝜔Δ𝑡 + 𝜓s)

]2

+
𝑝2
𝜃

2𝑝s𝑟2

+
𝑞𝐸0𝑇

𝜔
[𝐼0(𝑘1𝑟) sin (𝜔Δ𝑡 + 𝜓s) − 𝜔Δ𝑡 cos𝜓s] +

𝑞𝐺 (𝑧)𝑟2 cos 2𝜃
2

+
𝑞

𝛽s𝛾
2
s 𝑐
𝜙sc .

(4.13)

Assuming that the particle amplitude in the bunch is sufficiently small; namely, 𝑘1𝑟 ≪ 1 and
𝑤Δ𝑡/2𝜋 ≪ 1, we can approximately write

sin (𝜔Δ𝑡 + 𝜓s) ≈ 𝜔Δ𝑡 cos𝜓s + sin𝜓s [1 − (𝜔Δ𝑡)2/2] ,
cos (𝜔Δ𝑡 + 𝜓s) ≈ cos𝜓s − 𝜔Δ𝑡 sin𝜓s ,

𝐼0(𝑘1𝑟) ≈ 1 + (𝑘1𝑟)2/4 ,
𝐼1(𝑘1𝑟) ≈ 𝑘1𝑟/2 .

(4.14)

Note that the 3rd-order nonlinear term proportional to Δ𝑡𝑟2 is inevitably present in the product
of 𝐼0(𝑘1𝑟) and sin (𝜔Δ𝑡 + 𝜓s). This nonlinear term can be a source of 3rd-order different res-
onance, and this aspect will be discussed later in this chapter. Substituting Eq. (4.14) into the
Hamiltonian in Eq. (4.13) and keeping low-order terms, we obtain the linearized Hamiltonian

𝐻DTL ≈
(Δ𝑊)2

2𝑝s(𝛽s𝛾s𝑐)2 +
1

2𝑝s

(
𝑝𝑟 +

𝜋𝑞𝐸0𝑇

𝜔𝐿
𝑟 cos𝜓s

)2

+
𝑝2
𝜃

2𝑝s𝑟2

−
𝑞𝐸0𝑇𝜔 sin𝜓s

2
(Δ𝑡)2 +

𝑞𝐸0𝑇 sin𝜓s

4𝜔
(𝑘1𝑟)2 +

𝑞𝐺 (𝑧)𝑟2 cos 2𝜃
2

+
𝑞

𝛽s𝛾
2
s 𝑐
𝜙sc .

(4.15)
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Now we would like to perform a canonical transformation to remove the cross term propor-
tional to 𝑟 𝑝𝑟 in the 2nd term on the right-hand side. This transformation is achieved with the
generating function

𝐹2(𝑟, 𝑝𝑟 ; 𝑧) = 𝑟 𝑝𝑟 −
𝜋𝑞𝐸0𝑇

2𝜔𝐿
𝑟2 cos𝜓s , (4.16)

The new Hamiltonian is given by

𝐻DTL ≈
(Δ𝑊)2

2𝑝s(𝛽s𝛾s𝑐)2 +
1

2𝑝s

𝑝2
𝑟 +

(
𝑝𝜃

𝑟

)2 +
𝑝s

2

(
𝛾s𝜎∥

2𝜋

)2

(𝜔Δ𝑡)2

−
𝑝s𝜎

2
∥

4

1 −
(
𝛾s𝜎∥

2𝜋
cot𝜓s

)2
(
𝑟

𝐿

)2

+
𝑞𝐺 (𝑧)𝑟2 cos 2𝜃

2
+

𝑞

𝛽s𝛾
2
s 𝑐
𝜙sc ,

(4.17)

where 𝜎2
∥ = −2𝜋𝑞𝜆𝐸0𝑇 sin𝜓s/𝑚𝑐2𝛽s𝛾

3
s represents the synchrotron phase advance. The 2nd

term on the right-hand side suggests that the longitudinal focusing is inevitably accompanied
by the defocusing force in the transverse direction. This effect is referred as to “RF-defocusing”
and may enlarge the amplitude of the betatron oscillation when the synchrotron tune is high.

4.2.1 Root-mean-squared envelope equations for bunched beams

The rms envelope equations for bunched beams including acceleration can be given by [7, 60]:

𝑑2𝑋

𝑑𝑧2
+

(
1
𝑝s

𝑑𝑝s

𝑑𝑧

)
𝑑𝑋

𝑑𝑧
+ 𝐾𝑥 (𝑧)𝑋 −

Γ𝑢s𝜋𝜆3

𝑙2
𝑀311(𝑋,𝑌, 𝑢s𝑇)𝑋 −

(
𝛿

𝑝s

)2
𝜖2
𝑥

𝑋3 = 0,

𝑑2𝑌

𝑑𝑧2
+

(
1
𝑝s

𝑑𝑝s

𝑑𝑧

)
𝑑𝑌

𝑑𝑧
+ 𝐾𝑦 (𝑧)𝑌 −

Γ𝑢s𝜋𝜆3

𝑙2
𝑀131(𝑋,𝑌, 𝑢s𝑇)𝑌 −

(
𝛿

𝑝s

)2
𝜖2
𝑦

𝑌3 = 0,

𝑑2𝑇

𝑑𝑧2
+ 3

(
1
𝑝s

𝑑𝑝s

𝑑𝑧

)
𝑑𝑇

𝑑𝑧
+ 𝐾𝑡 (𝑧)𝑇 −

Γ𝑢s𝜋𝜆3

𝑙2
𝑀113(𝑋,𝑌, 𝑢s𝑇)𝑇 −

(
𝛿

𝑝s𝑢
2
s

)2
𝜖2
∥

𝑇3 = 0,

(4.18)

with

𝑢s = 𝛾s𝛽s , 𝛿 = 𝑚𝑐 , Γ =
𝑞𝐼

2𝜋𝜖0𝑝s𝛽
2
s 𝑐2𝛾2

s
, (4.19)

where Γ represents the generalized perviance, and 𝐼 is the peak beam current. 𝜆3 ≈ 1/5
√

5 is
a factor depending weakly on the beam’s density profile in the real space. The elliptic integral
𝑀𝑖, 𝑗 ,𝑘 is given by

𝑀𝑖, 𝑗 ,𝑘 (𝑥, 𝑦, 𝜏) =
3
2

∫ ∞

0

𝑑𝑠

(𝑥2 + 𝑠)𝑖/2(𝑦2 + 𝑠) 𝑗/2(𝜏2 + 𝑠)𝑘/2
,

𝑋 and 𝑌 are horizontal and verrtical rms beam size scaled with 𝑙 = 𝑐/𝜔 to be dimensionless. 𝑇
is the longitudinal rms phase given by 𝑇 = 𝜔

√
⟨Δ𝑡2⟩. 𝐾𝑥 , 𝐾𝑦, and 𝐾𝑡 represent linear focusing

forces produced by the accelerating field and quadrupole magnets. 𝜖𝑥 , 𝜖𝑦, and 𝜖∥ are normalized
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Figure 4.2: Schematic plot of a unit focusing cell.

rms emittances defined with unnormalized rms emittances as

𝜖𝑥 = 𝜀𝑥𝛽s𝛾s ,

𝜖𝑦 = 𝜀𝑦𝛽s𝛾s ,

𝜖∥ = 𝜀𝑧𝛽s𝛾
3
s .

(4.20)

The rms phase advances in 𝑖 and (𝑖 + 1)th unti cells can be obtained by

𝜇𝑥,𝑖𝜂𝑥,𝑖 =
∫ 𝑧𝑖+2

𝑧𝑖

𝜖𝑥

𝛽s𝛾s𝑙2𝑋2 𝑑𝑧,

𝜇𝑦,𝑖𝜂𝑦,𝑖 =
∫ 𝑧𝑖+2

𝑧𝑖

𝜖𝑦

𝛽s𝛾s𝑙2𝑌2 𝑑𝑧,

𝜎𝑖𝜂∥,𝑖 =
∫ 𝑧𝑖+2

𝑧𝑖

𝜖∥

𝛽3
s𝛾

3
s 𝑙2𝑇2

𝑑𝑧,

(4.21)

where 𝜂𝑥,𝑖, 𝜂𝑦,𝑖, and 𝜂∥,𝑖 are rms tune depressions in 𝑖 and (𝑖 + 1)th unit cells. 𝜇𝑥,𝑖, 𝜇𝑦,𝑖, and 𝜎𝑖
denote the transverse and longitudinal zero current phase advances per one FODO period consist
of 𝑖 and (𝑖 + 1)th unit cells. In our simulation model, the horizontal and vertical motions are
assumed to be symmetric. Then the horizontal and vertical phase advances are approximately
equal; namely 𝜇𝑥,𝑖 ≈ 𝜇𝑦,𝑖 (≡ 𝜇𝑖) and 𝜂𝑥,𝑖 ≈ 𝜂𝑦,𝑖 (≡ 𝜂⊥,𝑖), when the equipartitioning condition is
given by [13, 61]

𝜖⊥𝜇𝑖𝜂⊥,𝑖

𝜖∥𝜎𝑖𝜂∥,𝑖
= 1. (4.22)

4.3 Simulation model

We assume an Alvarez-type DTL structure where the electromagnetic fields from quadrupole
magnets and accelerating gaps exist along the design orbit. The transverse focusing is provided
by the quadrupole magnetic field in the drift tubes. In the longitudinal direction, the beam is
focused by the accelerating fields between the drift tubes. A schematic plot of this channel is
shown in Fig. 4.2. The subscript 𝑖 represents the serial number assigned to each unit structure
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and increases from 1. There are many design parameters to determine the electromagnetic field
configuration such as the effective quadrupole length ℓ𝑖, quadrupole field gradient 𝐺𝑖, and gap
width 𝑔𝑖. Thus we introduce a simulation model to give these design parameters [62].

4.3.1 Accelerating gap

Strictly speaking, the DTL structure is not periodic contrary to the assumption in Sec. 4.2.
However, the variation in the unit length is so slow that the lengths of adjacent two units cells
can be assumed to be approximately equal (𝐿𝑖 ≈ 𝐿𝑖+1) until the accelerating gradient 𝐸0𝑇 cos𝜓s
is within a realistic range of the order of several megavolts per meter. Thus the electromagnetic
field exists in 𝑖th accelerating gap can be well approximated by Eqs. (4.4) and (4.5) where 𝐿
and 𝑔 are replaced by 𝐿𝑖 and 𝑔𝑖.

In this chapter, we keep the 𝐸0 and 𝑇 constants through a whole linac. The accelerating
gradient becomes also constant. Then the gap width 𝑔𝑖 should be chosen so that the 𝑎1 in
Eq. (4.5) is kept constant, and that can be numerically accomplished with ease. Thus the 𝑔𝑖
becomes not constant but gradually gets longer as 𝑖 increases in our simulations.

The summation in Eq. (4.4) has to be interrupted at the proper 𝑛 number in numerical sim-
ulations. After some test simulations, we set the upper limit of 𝑛(≡ 𝑛max) at 20. Fig. 4.3 shows
examples of 𝐸𝑧 for different 𝑛max numbers. 𝐸𝑧(𝑟 = 𝑟0) converges to a square shape in the limit
of 𝑛→ ∞ due to the boundary condition. The profiles of 𝐸𝑧 (𝑟 = 𝑟0) appear to be quite different
from each other. On the other hand, we can hardly see any difference between the three profiles
of 𝐸𝑧 (𝑟 = 0) shown in Fig. 4.3 (b). It is also confirmed that there is no significant difference
among the simulation results as long as we set 𝑛max greater than 10.

4.3.2 Quadrupole magnet

The stepwise 𝑧-dependence of 𝐺 (𝑧) leads to a worse convergence of simulation results since a
sufficiently fine time step is required to reflect the rapid change in transverse focusing force. In
addition, the real quadrupole magnets more or less have fringe fields, and the quadrupole gra-
dients are expected to get stronger smoothly as one moves from the outside to the inside along
the design orbit. Thus, we take the fringe field effect into account to guarantee the accuracy of
the simulation with a relatively small number of time steps. Then the quadrupole gradient of 𝑖th
magnet is given by

𝐺 (𝑧) = 𝐺𝑖 [𝐹 (𝑧 − 𝑧𝑖 − ℓ𝑖/2) − 𝐹 (𝑧 − 𝑧𝑖 + ℓ𝑖/2)], (4.23)

where 𝐹 (𝑧) is a function defined by

𝐹 (𝑧) =
1
2

[
1 −

𝑧

8

(
1
𝑟1

+
1
𝑟2

) (
𝑣2

1𝑣
2
2(𝑣2

1 + 𝑣1𝑣2 + 𝑣2
2 + 4 + 8/𝑣1𝑣2)

𝑣1 + 𝑣2

)]
, 𝑣𝑖 =

√√√
1 +

(
𝑧

𝑟𝑖

)2

, (4.24)

where 𝑧𝑖 represents the center position of the 𝑖th quadrupole magnet [63]. 𝑟1 and 𝑟2 are outer
and inner radius of the quadrupole magnet. In later simulations, 𝑟1 and 𝑟2 are set to 12 mm,
which approximately reproduces the fringe fields of the quadrupole magnets installed in the
J-PARC DTL.

Figure 4.4 shows an example of𝐺 (𝑧) for one FODO period. Then the FODO lattice consists
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Figure 4.3: Amplitude of the accelerating field on (a) 𝑟 = 𝑟0 and (b) 𝑟 = 0 axis.

of half-focusing, defocusing, and half-focusing quadrupole magnets. We have assumed that a
H− beam accelerated from the kinetic energy of 3 MeV to 3.24 MeV through two unit cells.
It is found that the fringe fields effect reaches nearly the center of the accelerating gaps, and
𝐺 (𝑧) varies quite smoothly. In real machines, the effective length ℓ𝑖 changes discontinuity or
is kept constant for the sake of better productivity. However, we assume that ℓ𝑖 gets longer
continuously and is proportional to the 𝛽s for simplicity; namely ℓ𝑖 = ℓ0𝛽s(𝑧𝑖) where ℓ0 is a
constant, and 𝛽s(𝑧𝑖) denotes the 𝛽s at the center of each quadrupole magnet. Here the parameter
𝐺𝑖 remains to be determined, and there are infinite sets of 𝐺𝑖. In this study, we consider the
following two practical design guidelines based on the phase advances to determine the set of
𝐺𝑖.

Constant tune ratio (design-A)

Each of the 𝐺𝑖 is determined so that the ratio of transverse and longitudinal rms phase advances
is kept constant; namely

𝜇𝑖𝜂⊥,𝑖

𝜎𝑖𝜂∥,𝑖
= Const. (4.25)

Then the equipartitioning condition is expected to be maintained independently of 𝑖 if the initial
emittances and phase advances are adjusted so that Eq. (4.22) is satisfied. This is referred as
“equipartitioning setting” and adopted in J-PARC DTL [61, 64–66]. The previous numerical
study has shown that the emittance exchange between longitudinal and transverse degrees of
freedom caused by coupling resonances can be significantly suppressed by adopting this set-
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Figure 4.4: 𝑧-dependence of the quadrupole gradient for one FODO period.

Figure 4.5: Evolutions of (a) bare phase advances and (b) rms phase advances in design-A and
design-B. Three different combinations of starting points have been assumed for each case.

ting [67].

Constant transverse tune (design-B)

In the second design, 𝐺𝑖 is set to keep the transverse rms phase advance constant; namely,

𝜇𝑖𝜂⊥,𝑖 = Const. (4.26)

when the transverse beam size is expected to be approximately unchanged. Thus, this setting
may enable us to accelerate beams with a larger emittance than design-A in which the beam
size is gradually enlarged as the beam’s kinetic energy increases.

Comaprison of design-A and design-B

Figure 4.5 shows the shifts of the operating points through 100 FODO units (200 unit cells)
for three different combinations of the initial operating point (𝜇1, 𝜎1). Here the acceleration of
H− beam from the kinetic energy 3 to 72 MeV is assumed with the accelerating gradient of 1.6
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Figure 4.6: Matched rms envelopes in (a) design-A, and (b) design-B. Initial operating point is
set at (𝜇1, 𝜎1) = (39.8◦, 32.4◦) in both Designs.

MeV/m. The transverse and longitudinal emittances are set at 0.22 and 0.295 𝜋 mm·mrad, and
the peak current is set at 50 mA. These are the same as the design parameters of the J-PARC
DTL. As indicated by Eq. (4.17) the longitudinal focusing force decreases proportionally to
1/𝛽s𝛾

3
s , and the operating longitudinal phase advances shift to lower direction as 𝑖 increases for

all cases. The operating points shift straightly in Fig. 4.5 (b) as expected from the conditions
in Eqs. (4.25) and (4.26). The left panel (a) shows the slight curves in the shifts of bare phase
advances due to the changes in the tune depressions.

We next take a look at the rms beam radius shown in Fig. 4.6, where the initial operating
point set at (𝜇1, 𝜎1) = (39.8◦, 32.4◦). The other parameters are the same as the case of Fig. 4.5.
The upper panel (a) shows that the transverse and longitudinal beam sizes gradually get larger
since the transverse focusing force decreases as well as the longitudinal direction. In the case of
Fig. 4.5 (b), we can see that the transverse beam sizes remain almost at the same level through
the 100 FODO units, while the longitudinal beam size rapidly gets larger. It is confirmed that
the difference in transverse and longitudinal tune depressions are also developed as (𝜂⊥,𝑖, 𝜂∥,𝑖)
changes from (0.55, 0.50) to (0.66, 0.28) in 200 units. Thus, the space charge effect seems to
contribute to the rapid growth of the longitudinal beam size in the case of design-B; in other
words, the compression in the transverse direction likely leads to dissipation in the longitudinal
direction.
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Table 4.1: Main simulation parameters.

Ion species H−

Accelerating gradient 1.6 [MV/m]
Transit time factor 0.2

Initial kinetic energy 3 [MeV]
Output kinetic energy 72 [MeV]

Number of FODO cells (unit cells) 100 (200)
Transversal normalized emittance at injection 0.220 [𝜋 mm·mrad]

Longitudinal normalized emittance at injection 0.295 [𝜋 mm·mrad]
Peak beam current 50 [mA]

RF frequency 324 [MHz]
Effective length of the 1st quadrupole magnet (ℓ1) 40 [mm]

4.4 Self-consistent numerical simulation

4.4.1 Basic parameters

The basic parameters of our simulations are summarized in Table 4.1. We reference the design
parameters of J-PARC DTL as an example [49, 65]. The original design had a structure length
of 26.7 m with 146 accelerating gaps, whereas we here assume a structure length of 43 m with
200 accelerating gaps, and the output kinetic energy increases from 50 to 72 MeV. The other
configurations are quite similar to the original design except that a continuous DTL structure
ignoring the connection between the DTLs is assumed for simplicity. As mentioned above,
the equipartitioning setting is adopted in J-PARC DTL, and the equipartitioning condition in
Eq. (4.22) is satisfied at the initial operating point of J-PARC DTL (𝜇1, 𝜎1) = (39.8◦, 32.4◦)
when the beam parameters shown in Table 4.1 are chosen.

4.4.2 Initial distributions

Considering that the beams in linac have much higher density in phase space, it is more im-
portant than the 2D cases in the previous chapter to construct initial particle distribution well
adapted to the lattice. Here, we again employ the pseudo-equilibrium distributions proposed
by Steven et al. [35]. We have generalized their procedure for the 3D case with the simulation
study of bunched beams in mind (see appendix D).

Typical pseudo equilibrium waterbag (WB) and thermal equilibrium (TE) distributions are
shown in Fig. 4.7. We here assume a H− beam with the betatron and synchrotron phase advances
of 39.8◦ and 32.4◦ at injection, and the main beam parameters are given by Table 4.1. Then, the
transverse and longitudinal tune depressions become 0.54 and 0.51 in both cases. We can see
that the phase space configurations are deformed into a rectangle-like shape due to the nonlinear
nature of the Coulomb potential.
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Figure 4.7: Initial particle distributions of (a) Gaussian and (b) waterbag beams in the horizontal
and longitudinal phase spaces.

4.5 3D coherent resonance condition

Before proceeding to numerical simulation, we introduce the coherent resonance condition gen-
eralized to include the synchrotron resonance given by

𝑛𝑥𝜇𝑥,𝑖 [1 − 𝐶𝑚 (1 − 𝜂𝑥,𝑖)]+𝑛𝑦𝜇𝑦,𝑖 [1 − 𝐶𝑚 (1 − 𝜂𝑦,𝑖)]
+𝑛∥𝜎∥,𝑖 [1 − 𝐶𝑚 (1 − 𝜂∥,𝑖)] = 𝜋𝑛,

(4.27)

where 𝑛𝑥 , 𝑛𝑦, and 𝑛∥ are integers. The resonance order is defined by 𝑚 = |𝑛𝑥 | + |𝑛𝑦 | + |𝑛∥ |.
𝜇𝑥(𝑦) and 𝜎∥ are the bare phase advances calculated considering the RF-defocusing. Except for
that the factor of 2𝜋 is muliplied, the definition of 𝜇𝑥(𝑦) and 𝜎∥ are basically same as 𝜈0𝑥(0𝑦) .
This resonance condition is the straightforward generalization of the 2D coherent resonance
condition in Eq. (3.1). It was concluded in previous works that the 3D coherent resonance
condition in Eq. (4.27) well reproduces the feature of numerical and experimental results, in
spite of its remarkably simple form [67]. It was also confirmed that the stopbands positions
can be well fitted with the same tune shift factors determined numerically in Chapter 3; namely
𝐶2 = 0.7, 𝐶3 = 0.8, and 𝐶4 = 0.9. Assuming the symmetry of the horizontal and vertical
motions, we can simplify the Eq. (4.27) as

𝑛⊥𝜇𝑖 [1 − 𝐶𝑚 (1 − 𝜂𝑖⊥)] + 𝑛∥𝜎𝑖 [1 − 𝐶𝑚 (1 − 𝜂𝑖∥)] = 𝜋𝑛, (4.28)

where 𝑛⊥ is an integer.
The generalization of the stability tune has been discussed by Okamoto et al. [68], and we

here introduce it for later convenience. The bandwidth is given by

Δ𝑤𝑚,𝑖 = 2(1 − 𝐶𝑚)
1 − 𝜂𝑖
𝜂𝑖

�̄�𝑖 𝑓
′
𝑛⊥,𝑛 ∥ ,

(4.29)
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Figure 4.8: Stability tune diagram constructed based on Eqs. (4.28) and (4.29). The initial
kinetic energy of (a) 3 MeV and (b) 72 MeV is assumed. The coherent resonance bands of up
to 3rd-order are drawn.

where 𝜂𝑖 ≡ (𝜂𝑥,𝑖 + 𝜂∥,𝑖)/2, �̄�𝑖 ≡ (𝜇𝑥,𝑖 + 𝜎∥,𝑖)/2, and 𝑓𝑛⊥,𝑛 ∥ is a factor defined by

𝑓 ′𝑛⊥,𝑛 ∥ =
|𝑛∥𝜖⊥ + 𝑛⊥𝜖∥ |
|𝑛∥ |𝜖⊥ + |𝑛⊥ |𝜖∥

. (4.30)

It has been confirmed that the generalized stability tune diagram can explain the experimental
observation in a linear Paul trap fairly well. As shown in Fig. 4.8, we construct a stability tune
diagram in 𝜇𝑖-𝜎𝑖 plane assuming the main beam parameters given in Table 4.1 for example. The
coherent stopbands of up to the 3rd order are drawn in the figure. In this case, the tail resonance
effect is expected to be ignorable since the operating point shifts within a sufficiently shorter
time than the development of the tail resonances. In addition, the coherent collective effects
should be much more important than the incoherent effects because of the relatively strong
space-charge force. The upper panel (a) shows the stability tune diagram at injection, and the
other corresponds to the output. We can hardly detect a significant difference between the two
panels. In general, the tune depression tends to approach unity as the beam’s kinetic energy
increases. However, the effect seems to be counteracted by the phase space compression caused
by the reduction in emittances accompanied by the increase in the beam’s kinetic energy.
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Figure 4.9: Simulation results obtained with the zero-current waterbag beam in design-A. The
growth rates of the (a) horizontal and (b) longitudinal normalized emittances evaluated at the
exit of the DTL are color-coded in 𝜇1-𝜎1 plane. Except for the peak current, the main simulation
parameters are given in Table 4.1.

4.6 Simulation results

4.6.1 Zero beam current

We first focus on the external field-driven resonances. As mentioned in Sec. 4.2, the accelerating
field has nonlinear components and can be a source of synchrobetatron coupling resonances. In
order to eliminate the space charge effect, the peak current is set at 0 mA. Figure 4.9 shows the
simulation result assuming the beam parameters given in Table 4.1 except for the peak current.
The abscissa and ordinate represent the horizontal and vertical initial bare phase advances. The
quadrupole gradients are determined based on design-A, and the operating points shift straightly
to the (𝜇𝑖, 𝜎𝑖) = (0◦, 0◦) in this case since the tune depressions are always equal to 1. The rate
of emittance growth evaluated at 21× 29 different combinations of initial phase advances at the
exit of 100th FODO units are color-coded. Note that the operating phase advances are much
lowered during the 100 FODO unit from the initial phase advances.

The dotted line represents the single-particle resonance condition at injection given by 2𝜇1−
𝜎1 = 0. This resonance is driven by the 3rd-order nonlinear term proportional to Δ𝑡𝑟2 that is
present in the Hamiltonian in Eq. (4.13). As expected from the Hamiltonian in Eq. (4.13), clear
emittance exchange between transverse and longitudinal degrees of freedom can be seen along
the dotted line.

4.6.2 Constant tune ratio

The simulation results in Figs. 4.10 and 4.11 are obtained using the matched waterbag and
Gaussian beams. The simulation parameters are listed in Table 4.1, and the quadrupole gradi-
ents are determined based on design-A. The abscissa and ordinate represent the horizontal and
vertical initial bare phase advances as well as Fig. 4.9. The dotted and solid lines show the 3rd-
order and 2nd-order single-practical resonance conditions at injection given by 2𝜇1 − 𝜎1 = 0
and 𝜇1 − 𝜎1 = 0 respectively. The rates of emittance growth after 100 FODO units at 21 × 72
different combinations of initial phase advances are color-coded.
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Figure 4.10: Simulation results obtained with the waterbag beam in design-A. The growth rates
of the (a) horizontal and (b) longitudinal normalized emittances evaluated at the exit of the DTL
are color-coded in 𝜇1-𝜎1 plane. Main simulation parameters are given in Table 4.1.

It is confirmed that there is no significant difference in both cases except for the emittance
growth of the lower 𝜎1 region in the Gaussian case. Given that the particle distribution of
the Gaussian beam is much broader than that of the waterbag beam, this can be attributed to
the nonlinearity of the accelerating field. The + marker represents the initial phase advances
of the J-PARC DTL (𝜇1, 𝜎1) = (39.8◦, 32.4◦). Since we can detect only a few percent of
emittance growth in both of the directions around it, the current operating configuration of
J-PARC DTL may be appropriate. The emittance growth in the 𝜇1 > 90◦ region is the well-
known envelope instability. In addition to this, we can see that the emittance exchange between
the transverse and longitudinal directions occurs along the each of lines. The stopband along
the solid line should be caused by the self-field-driven 2nd-order resonance with (𝑛⊥, 𝑛∥ , 𝑛) =
(1, 1, 0). The stopband with (𝑛⊥, 𝑛∥ , 𝑛) = (2, 1, 0) along the dotted line should be mainly driven
by the external nonlinear field since the self-field-driven 3rd order stopband with (𝑛⊥, 𝑛∥ , 𝑛) =
(1, 2, 0) can not be detectable.

Figures 4.12 and 4.13 show the comparison of the stability tune diagram and the simulation
results. The hatch represents the coherent resonance bands with (𝑛⊥, 𝑛∥ , 𝑛) = (2, 1, 0), (1, 1, 0),
and (2, 0, 1), where only the observable instabilities in Figs. 4.10 and 4.11 are drawn. The
stopbands with (𝑛⊥, 𝑛∥ , 𝑛) = (2, 0, 1) are only drawn in upper panels since it is kind of a non-
coupling resonance and develops within the transverse direction. The markers show the shifts
of operating points through 100 FODO units for 37 different combinations of initial phase
advances and are color-coded based on the local emittance growth. The stability tune diagram
suggests that the coherent resonance band moves to a higher 𝜇𝑖 side induced by the space-charge
force, and this is consistent with the numerical observation for the three stopbands. In addition,
it is shown that the emittance growth occurs when the operating points across the stop bands
given by the coherent resonance conjectures in Eqs. (4.28) and (4.29).
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Figure 4.11: Simulation results obtained with the Gaussian beam. Except for the initial distri-
bution, all simulation conditions are the same as employed in Fig. 4.10.

4.6.3 Equipartitioning setting

The tune diagram in Fig. 4.14 is obtained with the equipartitioning setting, where the initial
longitudinal emittances are chosen so that the condition in Eq. (4.22) is satisfied at injection
for each operating points. Other numerical conditions are the same as in Fig. 4.10, and the
initial distribution is the waterbag-type. The difference resonance instabilities with (𝑛⊥, 𝑛∥ , 𝑛) =
(2,−1, 0) and (1,−1, 0) are significantly suppressed. Thus, the equipartitioning setting has the
practical advantage that the usable operating region on the tune space is considerably widened
by suppressing the difference resonance instabilities.

Figures 4.15 shows the stability tune diagram and the evolutions of emittance growths ob-
tained from simulations with 37 different combinations of initial phase advances. The definition
of the hatches and dotted lines are the same as in Fig. 4.12. Since the 𝑓 ′1,−1 and 𝑓 ′2,−1 are nearly
equal to 0 within the two corresponding difference resonance bands, their bandwidths are quite
narrow. It is worth mentioning that the emittance exchanges on the two difference resonances
are made inactive. We here introduce the emittance-based parameter defined as

𝐼′𝑛⊥,𝑛 ∥ ≡
𝜖⊥

𝑛⊥
+
𝜖∥

𝑛∥
. (4.31)

This is the straightforward generalization of Eq. (3.16). It is confirmed that 𝐼′𝑛⊥,𝑛 ∥ = 0 is satisfied
for the two difference resonances. Thus, the finding mentioned in Chapter 3 for continuous
beams is found to be still valid in the case of bunched beams, which supports the argument in
Ref. [67].
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Figure 4.12: Stability tune diagram obtained from Eqs. (4.28) and (4.29). The square dots show
the evolutions of bare phase advances and are color-coded based on the local growth rates of
the (a) horizontal and (b) longitudinal normalized emittances obtained with the waterbag beam
in design-A.

4.6.4 Constant transverse tune

Figure 4.16 shows the IMPACT data obtained under the design-B. The initial beam parameters
are similar to the case in Fig. 4.10. The excitation of difference resonances is clearly observed
in the higher 𝜎1 region than the dotted line given by 𝜇1 − 𝜎𝑖 = 0. In addition to this, we can
detect the slight emittance growth caused by the 3rd-order coherent resonance with (𝑛⊥, 𝑛∥ , 𝑛) =
(3, 0, 1). Since the operating points shift downward in 𝜇𝑖-𝜎𝑖 plane and stay within the stopband
relatively long time, the effect of the non-coupling betatron resonance is expected to be higher
than in the case of Fig. 4.10. It is worth noting that we can find a resonance-free region with
sufficient width still in this case. Furthermore, given the larger acceptable emittance can be
provided than the equipartitioning setting, the design-B should also be one of the viable settings
for the DTL.

Next, let us compare the simulation results with the stability tune diagram. Considering
that the operating points shift downward almost straightly as shown in this figure, it may be
difficult to avoid the instability of difference resonance with (𝑛⊥, 𝑛∥ , 𝑛) = (1, 1, 0) when the
initial operating point is chosen within a region defined by 𝜎1 > 𝜇𝑖.

We can see the 3rd-order betatron resonance locate just on the position theoretically pre-
dicted from Eq. (4.28). On the other hand, the 3rd-order stopband is much weaker and narrower
than others. This may be due to the low distortion of the initial particle distribution. We employ
the digit-reserved numbers to minimize the distortion of the initial particle distribution and re-
duce the statistical noise. The asymmetry of the particle distribution in real space originating
from the initial distortion should be the seed of the self-field-driven parametric instabilities, es-
pecially for odd modes. Given that realistic beams are more distorted, the effect of 3rd-order
betatron resonance should be underestimated in our case. Thus the result in Fig. 4.15 alone may
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Figure 4.13: Stability tune diagram and simulation results obtained with the Gaussian beam.
Except for the initial distribution, all conditions are the same as employed in Fig. 4.12.

be insufficient to measure the danger of the 3rd-order instability. A similar discussion can be
found in Ref. [69].
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Figure 4.14: Simulation results obtained with the waterbag beam in design-A. The growth rates
of the (a) horizontal and (b) longitudinal normalized emittances evaluated at the exit of the DTL
are color-coded in 𝜇1-𝜎1 plane. The initial transverse emittances are fixed at 0.220 𝜋mm·mrad,
while the initial longitudinal emittance is chosen so as to meet the equipartitioning condition in
Eq. (4.22).

Figure 4.15: Stability tune diagram and simulation results obtained with the waterbag beam in
design-A. The initial longitudinal emittances for each simulation are chosen so that the equipar-
titioning condition in Eq. (4.22). Other conditions are the same as employed in Fig. 4.12.
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Figure 4.16: Simulation results obtained with the waterbag beam in design-B. The growth rates
of the (a) horizontal and (b) longitudinal normalized emittances evaluated at the exit of the DTL
are color-coded in 𝜇1-𝜎1 plane. Main simulation parameters are given in Table 4.1.

Figure 4.17: Stability tune diagram and simulation results obtained with the waterbag beam in
design-B. Except for the channel design, all conditions are the same as employed in Fig. 4.12.
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4.7 Summary

We have investigated resonant instabilities in high-intensity bunched beams propagating through
linear accelerators. The self-consistent numerical simulations are conducted for this purpose
over a wide parameter range employing an analytic model. The IMPACT simulation results
assuming the design parameters of J-PARC DTL suggest that the low-order resonance cross-
ing of operating points leads to the emittance growth or emittance exchange in transverse and
longitudinal directions. It is also confirmed that the emittance exchange can be significantly
mitigated by choosing the proper ratio of the initial emittances of transverse and longitudinal
directions as well as the 2D case discussed in Chapter 3.

The equipartitioning setting is found to automatically give the proper emittance ratio and is
preferable to broaden the usable operating region in tune space. However, the equipartitioning
setting may not be essential. For example, the simulation results under the constant transverse
phase advance settings also show that the beams can be accelerated with a sufficiently low
emittance growth in three directions. Therefore, we have to not adhere to the equipartitioning
setting but be flexible in pursuing the optimum linac design from a practical point of view.

We have also proposed a 3D generalized coherent resonance condition. The comparison
of simulation results and the stability tune diagram constructed on the basis of the coherent
resonance condition shows good agreement. On the other hand, the effects of self-field-driven
parametric resonances may be underestimated in our simulations due to the low distortion of
the initial particle distribution. Further investigations should be needed to provide more reliable
information without overlooking dangerous resonant instabilities.
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Appendix A

Incoherent tune

In many cases, the size of the tune spread is a primary interest of us. Now let us assume a
coasting beam with the Gaussian distribution, and the density profile is given by

𝜚(𝑥, 𝑦) =
𝜆𝑝

2𝜋𝜎𝑥𝜎𝑦
exp

(
−
𝑥2

2𝜎2
𝑥

−
𝑦2

2𝜎2
𝑦

)
, (A.1)

where 𝜆𝑝 is the line density of the beam, and 𝜎𝑥(𝑦) is the average rms beam size. The exponential
can be expanded in a power series of 𝑥2 or 𝑦2 as

𝜚(𝑥, 𝑦) ≈
𝜆𝑝

2𝜋𝜎𝑥𝜎𝑦

[
1 −

𝑥2

2𝜎2
𝑥

−
𝑦2

2𝜎2
𝑦

+
1
2

(
𝑥4

4𝜎4
𝑥

+
𝑦4

4𝜎4
𝑦

+
𝑥2𝑦2

4𝜎2
𝑥𝜎

2
𝑦

)
+ · · ·

]
. (A.2)

Substituting this equation into Poisson’s equation, we obtain the space charge potential

𝜙sc(𝑥, 𝑦) ≈
𝜆𝑝𝑞

4𝜋𝜖0

[
−

𝑥2

𝜎𝑥 (𝜎𝑥 + 𝜎𝑦)
−

𝑦2

𝜎𝑦 (𝜎𝑥 + 𝜎𝑦)

+
(2𝜎𝑥 + 𝜎𝑦)𝑥4

12𝜎3
𝑥 (𝜎𝑥 + 𝜎𝑦)2

+
(𝜎𝑥 + 2𝜎𝑦)𝑦4

12𝜎3
𝑦 (𝜎𝑥 + 𝜎𝑦)2

+
𝑥2𝑦2

2𝜎𝑥𝜎𝑦 (𝜎𝑥 + 𝜎𝑦)2 + · · ·
]
.

(A.3)

In general, the incoherent tune shift becomes greater for particles closer to the center of the
beam core. Thus, the maximum incoherent tune shift can be evaluated by assuming that 𝑥(𝑦)
is much lower than 𝜎𝑥(𝑦); namely 𝑥/𝜎𝑥 ≪ 1 and 𝑦/𝜎𝑦 ≪ 1 [70]. Then we only need to
consider the first two terms in Eq. (A.3), and the maximum incoherent tune can be obtained
from Eq. (2.11) as

max(Δ𝜈𝑥) =
1

2𝜋

∫ 𝑠0+𝐿

𝑠0

2𝜆𝑝𝑟𝑝𝛽𝑥 cos2 𝜓𝑥

𝛽2
s𝛾

3
s𝜎𝑥 (𝜎𝑥 + 𝜎𝑦)

𝑑𝑠. (A.4)

The smooth approximation 𝛽𝑥 = 𝐿/2𝜋𝜈0𝑥 gives

max(Δ𝜈𝑥) ≈
𝑟𝑝𝜆𝑝𝐿

2

4𝜋2𝜈0𝑥𝛽
2
s𝛾

3
s𝜎𝑥 (𝜎𝑥 + 𝜎𝑦)

, (A.5)
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Then the tune depression is approximately given by

𝜂𝑥 ≈
1
𝜈0𝑥

√√√(
2𝜋𝜈0𝑥

𝐿

)2

−
𝐾sc

2𝜎𝑥 (𝜎𝑥 + 𝜎𝑦)
. (A.6)

Substituting this into Eq. (A.5) results in

max(Δ𝜈𝑥) ≈ (1 − 𝜂2
𝑥)𝜈0𝑥 . (A.7)

82



Appendix B

1-dimensional Vlasov model

Here we follow the discussion of the 1D Vlasov analysis studied by H. Okamoto and K.
Yokoya [20]. The starting point is the 1D Hamiltonian with a small mismatch

𝐻 = 𝐻0 +
𝑞

𝑝0𝛽s𝑐𝛾
2
s
𝛿𝜙, (B.1)

where 𝛿𝜙 is the perturbation scaler potential generated by the mismatch. The beam stationary
motion is governed by the unperturbed Hamiltonian 𝐻0 given by

𝐻0 =
1
2
[
𝑝2
𝑥 + 𝐾𝑥 (𝑠)𝑥2] + 𝑞

𝑝0𝛽s𝑐𝛾
2
s
𝜙0(𝑥; 𝑠). (B.2)

where 𝜙0 denotes the unperturbed self-field potential. Here we suppose that the focusing force
is periodic and linear as in Chapter 3. We represent the distribution function 𝑓 by the sum of
the stationary part 𝑓0 which satisfies 𝑑𝑓0/𝑑𝑠 = 0 and perturbing part 𝛿 𝑓 ; namely 𝑓 = 𝑓0 + 𝛿 𝑓 .
Leaving dominant linear terms of 𝛿 𝑓 and 𝛿𝜙, the linearized Vlasov equation can be written by

𝜕𝛿 𝑓

𝜕𝑠
+ 𝑝𝑥

𝜕𝛿 𝑓

𝜕𝑥
−
𝜕𝐻0

𝜕𝑥

𝜕𝛿 𝑓

𝜕𝑝𝑥
=

𝑞

𝑝0𝛽s𝑐𝛾
2
s

𝜕 𝑓0

𝜕𝑝𝑥

𝜕𝛿𝜙

𝜕𝑥
. (B.3)

It is necessary to analyze Eq. (B.3) that the stationary distribution 𝑓0 is given. 𝑓0 must satisfy
the Poisson equation

𝜕2𝜙0

𝜕𝑥2 = −
𝑞

𝜖0

∫
𝑓0 𝑑𝑝𝑥 , (B.4)

It can be solved analytically for the distribution having a uniform density in real space but is
almost hopeless to solve for other general non-uniform distributions. In order to avoid the dif-
ficulty, we introduce linear approximation for the self-field potential as 𝜙0 ≈ −𝑞𝑁𝜁 (𝑠)𝑥2/4𝜋𝜖0
where 𝑁 is the number of particles per length. Then the Hamiltonian can be written by

𝐻0 =
1
2
[
𝑝2
𝑥 +𝑄(𝑠)𝑥2] , (B.5)

where 𝑄(𝑠) = 𝐾𝑥 − 𝐾sc𝜁 (𝑠). 𝐾sc = 𝑞2𝑁/2𝜋𝜖0𝑝0𝛽s𝑐𝛾
2
s is generalized perveance. Then the

Hamiltonian can be transformed canonically to �̂� (𝜓, 𝐽) = 𝐽/𝛽𝑥 by the generating function as
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shown in Eq. (1.22)

𝐹2(𝑥, 𝜓𝑥; 𝑠) = −
𝑥2

2𝛽𝑥

(
tan𝜓𝑥 −

1
2
𝑑𝛽𝑥

𝑑𝑠

)
. (B.6)

where 𝛽𝑥 satisfies

1
2
𝑑2𝛽𝑥

𝑑𝑠2
+𝑄𝑥𝛽𝑥 −

1

𝛽𝑥

1 +
(
1
2
𝑑𝛽𝑥

𝑑𝑠

)2 = 0, (B.7)

then 𝑓0(𝐽) describes stationary distribution because 𝐽 is a invariant.
Here, we adopt the waterbag model, which has a uniform density in phase space

𝑓0(𝐽) =
𝑁

2𝜋𝜖

[
1 + sgn

(
𝜖

2
− 𝐽

)]
, (B.8)

where 𝜖 denotes the area occupied by the distribution. Looking back over the Eq. (B.3), and
using Eq. (B.8) we have

𝜕𝛿 𝑓

𝜕𝑠
+

1

𝛽𝑥

𝜕𝛿 𝑓

𝜕𝜓
= −

2𝜖0𝐾sc

𝑞

√
𝛽𝑥

𝜖
𝛿

(
𝜖

2
− 𝐽

)
𝛿𝐸 (𝜓, 𝐽 = 𝜖/2; 𝑠) sin𝜓, (B.9)

where 𝛿(𝑧) is the Dirac delta function. 𝛿𝐸 is the perturbation space charge field and satisfies
Poisson equation

𝜕𝛿𝐸

𝜕𝑥
=
𝑞

𝜖0

∫
𝛿 𝑓 𝑑𝑝𝑥 . (B.10)

Eq. (B.9) suggests that the action dependence of 𝛿 𝑓 can be written by 𝛿 (𝜖/2 − 𝐽). 𝛿 𝑓 can be
expanded in Fourier harmonics since it is a periodic function with respect to 𝜓.

𝛿 𝑓 (𝜓, 𝐽; 𝑠) = 𝛿
(
𝜖

2
− 𝐽

) ∞∑
𝑚=−∞

𝑔𝑚 (𝑠)e𝑖𝑚𝜓 , (B.11)

where 𝑔𝑚 (𝑠) denotes the Fourier amplitude. We can obtain the following relation from Eqs (B.9)
and (B.11).

𝑑𝑔𝑚

𝑑𝜃
+ 𝑖𝑚𝜈𝑥𝑔𝑚 = −

𝑖𝑚𝜈𝑥𝐾sc

2𝜋𝜖1/2 𝛽
3/2
𝑥

∞∑
𝑛=−∞

𝐹𝑚𝑛𝑔𝑛,

𝐹𝑚𝑛 =


−

32
[(𝑚 − 𝑛)2 − 1] [(𝑚 + 𝑛)2 + 1]

for 𝑚 + 𝑛 = even

0 for 𝑚 + 𝑛 = odd.

(B.12)

where the independent variable in now 𝜃 =
∫
𝑑𝑥/𝜈𝑥𝛽𝑥 with 𝜈𝑥 is the tune depressed by linear

spaces charge force. Since 𝛽𝑥 is a periodic function, the Floquet theorem provides the general
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solution

𝑔𝑚 (𝜃) = e−𝑖𝜈𝜃
∞∑

ℓ=−∞
�̂�(ℓ)𝑚 e𝑖ℓ𝜃 , (B.13)

where 𝜈 is a constant. Then we reach the eigenvalue problem

∞∑
𝑛=−∞

∞∑
ℓ=−∞

𝑀 𝑘ℓ
𝑚𝑛�̂�

(ℓ)
𝑛 = 𝜈�̂�(𝑘)𝑚 ,

𝑀 𝑘ℓ
𝑚𝑛 = (𝑘 + 𝑚𝜈𝑥)𝛿𝑘ℓ𝛿𝑚𝑛 + 𝑚𝜈𝑥𝐵𝑘−ℓ𝐹𝑚𝑛,

𝐵𝑘 =
𝐾sc

4𝜋2𝜖1/2

∫ 2𝜋

0
𝛽3/2
𝑥 e−𝑖𝑘𝜃 𝑑𝜃.

(B.14)

We may approximate the eigenvalue problem by considering only two modes �̂�𝑘1
𝑚1 and �̂�𝑘2

𝑚2 re-
lated to the resonant instability(

𝑘1 + 𝑚1𝜈𝑥 + 𝑚1𝜈𝑥𝐵0𝐹𝑚1𝑚1 𝑚1𝜈𝑥𝐵𝑘1−𝑘2𝐹𝑚1𝑚2

𝑚2𝜈𝑥𝐵𝑘2−𝑘1𝐹𝑚2𝑚1 𝑘2 + 𝑚2𝜈𝑥 + 𝑚2𝜈𝑥𝐵0𝐹𝑚2𝑚2

) (
�̂�(𝑘1)
𝑚1

�̂�(𝑘2)
𝑚2

)
= 𝜈

(
�̂�(𝑘1)
𝑚1

�̂�(𝑘2)
𝑚2

)
. (B.15)

We obtain the eigenvalue

𝜈 =
1
2
[
(𝑘1 + 𝑚1𝜈𝑥 + 𝑚1𝜈𝑥𝐵0𝐹𝑚1𝑚1) + (𝑘2 + 𝑚2𝜈𝑥 + 𝑚2𝜈𝑥𝐵0𝐹𝑚2𝑚2)

]
±
√
𝐷 , (B.16)

where

𝐷 =
1
4
[
(𝑘1 + 𝑚1𝜈𝑥 + 𝑚1𝜈𝑥𝐵0𝐹𝑚1𝑚1) − (𝑘2 + 𝑚2𝜈𝑥 + 𝑚2𝜈𝑥𝐵0𝐹𝑚2𝑚2)

]2

+𝑚1𝑚2 |𝐵𝑘1𝑘2 |2(𝜈𝑥𝐹𝑚1𝑚2)2 .

(B.17)

As is obvious from Eq. (B.13), 𝑔𝑚 (𝜃) grows exponentially if the imaginary part of 𝜈 is not
zero. Thus, the modes become unstable when 𝐷 is negative. From Eq. (B.17) the range of the
resonant depressed tune can be given by

𝜈𝑐 − 𝛿𝜈𝑥 < 𝜈𝑥 < 𝜈𝑐 + 𝛿𝜈𝑥 , (B.18)

where

𝜈𝑐 = −
1

𝑚1 − 𝑚2

[
𝑘1 − 𝑘2 + 𝜈𝑥𝐵0(𝑚1𝐹𝑚1𝑚1 − 𝑚2𝐹𝑚2𝑚2)

]
,

𝛿𝜈𝑥 =
2𝜈𝑥

√
|𝑚1𝑚2 |

|𝑚1 − 𝑚2 |
|𝐵𝑘1−𝑘2 | |𝐹𝑚1−𝑚2 |.

(B.19)

We can also solve Eq. (B.12) numerically. Taking the sinusoidal focusing model introduced
in Chapter 3, Fig. B.1 shows the numerical integration of Eq. (B.12). The abscissa 𝜈0𝑥 is bare
tune determined solely by 𝐾𝑥 , and the tune depression 𝜂𝑥 ≡ 𝜈𝑥/𝜈0𝑥 is set at 0.8. Im(𝜈) shown
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Figure B.1: Bare tune dependence of the eigenvalues numerical evaluated from Eq. (B.13) with
the cutoff 𝑚𝑐 = 8. The tune depression is maintained at 0.8.

in the lower panel locates the stopband position of the coherent instabilities.
By comparing the upper and lower panels in Fig. B.1, we can see that the severe instabilities

are caused when the eigenvalues Re(𝜈) of the same orders approach each other. Thus, we focus
on the case where 𝑚1 = −𝑚2(≡ 𝑚), and then the resonance condition can be given by

𝑚𝜈𝑥 (1 + 𝐵0𝐹𝑚𝑚) =
𝑘

2
(B.20)

By taking the smooth aproximation to 𝐵0, we can write the above resonance condition as

𝑚 [𝜈0𝑥 − 𝐶𝑚 (1 − 𝜂𝑥)𝜈0𝑥] ≈
𝑘

2
(B.21)

where 𝐶𝑚 = 1 − 𝐹𝑚/4𝜋. From Eq. (B.19), the band width can be approximately wirtten by

𝛿𝜈𝑥 ≈ (1 − 𝐶𝑚)
1 − 𝜂𝑥
𝜂𝑥

𝜈0𝑥 (B.22)
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Appendix C

PIC method

The PIC method enables us to integrate the Hamiltonian self consistently taking into account
the space charge effect in reasonable computing time. In order to avoid the direct calculation
of Coulomb interaction, which needs processes of the square of the number of simulation par-
ticles, and shorten the computing time, the PIC method has a unique algorithm. The algorithm
proceeds as follows with macro particles representing several hundreds of real particles and a
mesh that covers whole the simulation region in real space.

(1) Assign the macro particles to the mesh grid and estimate the density profile in real space.

(2) Based on the density profile obtained in (1), solve Poisson’s eq. numerically using the
finite difference method.

(3) Update coordinates and velocities of each macro particle, taking into account the self and
the external fields.

The processes are schematically shown in Fig. C.1. This indirect calculation of Coulomb repul-
sive force is superior to the direct calculation in that the number of processes increases roughly
linearly with the number of macro particles. Considering that several millions of macro par-
ticles are used to describe the density profile with proper precision, this feature is essential to
shorten the computing time.

Figure C.1: Schematic of the PIC simulation.
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The PIC method should not be adopted for extremely high-intensity beams such as Coulomb
crystals, since Coulomb collisions can not be taken due to the algorithm (1). It can be seen by
the following quantity whether Coulomb collisions predominate or not.

𝑁D =
4
3
𝜋𝜚0𝜆

3
D,

(C.1)

where 𝜆D is the Debay length and 𝜚0 is the particle density. 𝑁D represents the number of
particles contained in a sphere of radius 𝜆D; to employ the PIC method, 𝑁D must be much
greater than one.

In order to guarantee high resolution and good statics of the PIC method, both the mesh size
and the number of macro particles have to be optimized properly. The large mesh size relative
to the beam radius leads to the deterioration of the resolution of density profile estimation. The
insufficient number of macro particles also causes statistical noise in density profile estimation.
It is, however, undesirable to waste computing time with too many macro particles or too small
a mesh size. These simulation parameters thus should be carefully optimized to balance the
accuracy of the calculation and the computing time [29].
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Appendix D

Pseud-equilibrium 6-dimensional phase
space distributions

We here outline the generalization of the pseudo-equilibrium concept proposed by Steven et al.
to the 3D case [35, 71]. Similarly to the 2D case in Eq. (3.3), the piecewise constant focusing
strength is defined as

𝜅𝑏 =
3𝜆3Γ

2𝑎3
𝑏

∫ ∞

0

𝑑𝜁

(1 + 𝜁)5/2 +
𝜀2
𝑏

𝑎4
𝑏

, (D.1)

where 𝑎𝑏 = (𝑙3𝛽s �̂�𝑌𝑇)1/3 |𝑧=0 and 𝜀𝑏 = (𝜀𝑥𝜀𝑦𝜀𝑧)1/3 are the initial rms beam radius and emit-
tance averaged over three degrees of freedom, and �̂� , 𝑌 , and 𝑇 become a stationary solution of
Eq. (4.18). We assume the Hamiltonian with 𝜅𝑏 as

𝐻𝑏 (𝑥, 𝑦, 𝑧, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧; 𝑠) =
𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧

2
+ 𝜅𝑏𝑅

2

2
+ 2𝜋𝜖0Γ
𝑞𝑁𝑝

𝜙sc(𝑅), (D.2)

where 𝑅 =
√
𝑥2 + 𝑦2 + 𝑧2, and 𝑁𝑝 represents the number of particles per bunch. Then, the

arbitrary function 𝑓 (𝐻𝑏) satisfies the Vlasov equation and describes the stationary beam dis-
tribution, since 𝐻𝑏 becomes a constant of motion. The self-field potential 𝜙sc of the stationary
beam satisfies the Poisson’s equation

1
𝑅2

𝑑

𝑑𝑅

(
𝑅2 𝑑

𝑑𝑅
𝜙sc

)
= − 𝑞

𝜖0

∫ ∫ ∫
𝑓 (𝐻𝑏)𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 . (D.3)

We here, for example, consider the two types of distribution functions, namely, the thermal
equilibrium (TE) and waterbag (WB), and their distribution functions are shown in Table 3.1.
The combination of the distribution function and Eq. (D.3) gives

1
𝜌2

TE

𝑑

𝑑𝜌TE

(
𝜌2

TE
𝑑𝜓

𝑑𝜌TE

)
= 1 + Δ − exp (−𝜓). (D.4)

for the TE distribution with 𝜓 ≡ 𝜅𝑏𝑅
2/2 + 2𝜋𝜖0Γ/𝑞𝑁𝑝𝜙sc and Δ ≡ 3𝑝s𝛽s𝛾

2
s 𝑐𝜅𝑏𝜖0/𝑞2𝜚0 − 1.

Here the radial coordinate 𝑅 is scaled to be dimensionless with
√
𝑇𝜖0/𝑞2𝜚0; namely 𝜌TE ≡
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Figure D.1: Radial density profiles of the rms matched beams and spherical distributions given
by 𝑓 (𝐻𝑏).

𝑅/
√
𝑇𝜖0/𝑞2𝜚0. Likewise, we obtain

𝑑2𝑃

𝑑𝜌2
WB

−
1

3𝑃

(
𝑑𝑃

𝑑𝜌WB

)2

+
2
𝜌WB

𝑑𝑃

𝑑𝜌WB
=

𝑞2𝜚0𝑃
4/3

3𝜅𝑏𝜖0𝑝s𝛽s𝛾
2
s 𝑐

− 𝑃1/3 , (D.5)

for the WB distribution with 𝑃 = 𝜚(𝑅)/𝜚0 and 𝑟s =
√
(3𝜚0/4𝜋 𝑓0)2/3/9𝜅𝑏. 𝜌WB ≡ 𝑅/𝑟s is a

scaled radial coordinate. The set of two constants (𝑇 and 𝜚0 for TE, 𝑟s and 𝜚0 for WB) can be
chosen so that the rms radius and particle number given with 𝑓 (𝐻𝑏) correspond to 𝑎𝑏 and 𝑁
respectively. Figure D.1 shows the 𝑅 dependence of the density profile 𝜚(𝑅) in real space. 𝜚max
represents the maximum beam density given by

𝜚max =
3𝑞𝑁𝑝𝜅𝑏

2𝜋Γ
. (D.6)

In principle, the density profile of the rms matched beam is independent of the beam intensity.
On the contrary, it is shown for pseudo-equilibrium distributions that the profiles are more
homogenized because of the Debay screening effect as the beam gets higher intensity (𝜂 → 0).
Finally, the canonical variables of an individual particle are transformed so that 2nd-moments
of the beam are adopted to the AG lattice at 𝑠 = 0 as follows:

𝑤 →
(
�̂�𝑤
𝑎𝑏

)
𝑠=0
𝑤,

𝑝𝑤 →
(
𝑎𝑏𝜀𝑤
�̂�𝑤𝜀𝑏

)
𝑠=0

𝑝𝑤 +
(

1
𝑎𝑏

𝑑�̂�𝑤
𝑑𝑠

)
𝑠=0
𝑤.

(D.7)

where �̂�𝑤 is matched rms beam size in 𝑤 direction. Needless to say, the pseudo equilibrium
distribution is not a self-consistent solution to the Vlasov-Poisson system. Due to the approxi-
mation in Eq. (D.2), the mismatch of the pseudo-equilibrium distribution should be enhanced in
a bunch whose aspect ratio is far from unity and also under the comparably strong AG focusing.
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Figure D.2: Time evolution of the longitudinal and horizontal emittance growths.

Figure D.2 shows an example of the rms emittance evolution. For simplicity, the accelerat-
ing gradient is set at zero, and the operating point is kept at (𝜇𝑖, 𝜎𝑖) = (39.8◦, 32.4◦) through
the DTL. The other main parameters are listed in Table 4.1. Then, the initial horizontal and lon-
gitudinal tune depressions become 0.55 and 0.51 respectively. The emittances of rms matched
beams jump considerably right after the injection. On the other hand, such an emittance jump
is well suppressed in the case of pseudo-equilibrium beams.

The phase space distributions corresponding to the simulation in Fig. D.2 are shown in
Figs. D.3 and D.4. Comparing the results in the left panel (a) for the rms matched beams to
the results in the right panel (b) for pseudo-equilibrium beams, it is obvious that the pseudo-
equilibrium beams are better adapted for both cases of TE and WB. The rms matched beams
seem to be deformed into rectangle-like shapes due to the nonlinear nature of space charge force
and redistributed into similar configurations of the pseudo equilibrium distributions.

91



Figure D.3: Particle distributions in the horizontal and longitudinal phase space at the entrance
and exit, corresponding to the simulations in Fig. D.2. The initial distribution is TE type.

Figure D.4: Particle distributions in the horizontal and longitudinal phase space at the entrance
and exit, corresponding to the simulations in Fig. D.2. The initial distribution is WB type.
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