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Chapter 1

Introduction

Does a quantum mechanical system thermalize? The answer is certainly yes;
research is underway to establish that an isolated many-body quantum sys-
tem is thermalized by its dynamics. Here, thermalization refers to the process
via which, through time evolution, the quantum expectation value of an ob-
servable tends to approach and eventually becomes practically identical to the
corresponding microcanonical expectation value. The eigenstate thermalization
hypothesis (ETH) [1, 2, 3] proposes sufficient conditions for such thermaliza-
tion. Subsequent theoretical, numerical, and experimental studies have shown
the validity of the hypothesis under various conditions.

On contrary, many-body localization (MBL) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
phase is rather an exceptional case wherein this ETH breaks down. In the
presence of strong disorder, the wave function is known to localize at the level of
single-particle quantum mechanics (Anderson localization) [14]. In the presence
of inter-particle interaction, localization still occurs; however, it occurs in the
Hilbert/Fock space; as in case of MBL. In time evolution the initial density (or
spin) pattern remains essentially unchanged, while the expectation value of an
observable does not reach its microcanonical ensemble averaged value. This lack
of thermalization stems from the emergence of an extensive number of locally
conserved quantities, each of which is called a local integral of motion (LIOM).
Since a conserved quantity commutes with the Hamiltonian, LIOM acts as a
constraint to dynamics and prohibits the quantum state from thermalization.
Hereafter, we state that a system is in the ETH phase if ETH holds therein.

The entanglement entropy S is a measure of non-local correlation (entangle-
ment) between subsystems; here, it is presumed that the system is divided into
two parts and only one subsystem is focused on (for a more precise definition
of the entanglement, see Chapter 3). If the entire system is in a pure state, the
subsystems attain a mixed state if S ̸= 0, implying the emergence of a certain en-
semble. The entanglement entropy S measures the entropy of such an ensemble,
and the expectation value of an observable in the subsystem is equal to its statis-
tical average over this ensemble. The behaviors of S is qualitatively different in
the MBL and ETH phases in terms of both their static [15, 16, 17, 18, 19] and dy-
namical [20, 21, 22, 23, 24, 25] properties. Therefore, the entanglement entropy
S can be used for characterizing the MBL and ETH phases. For an eigenstate
obeying ETH, the ensemble describing a subsystem is akin to a thermal (sta-
tistical) ensemble, and thus the expectation value of an observable is regarded
as a thermal expectation value. This implies that S of the eigenstate obeys a
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volume-law scaling since thermodynamic entropy is extensive. In contrast, in
the MBL phase, an eigenstate only possesses a correlation within a localization
length, and thus S of the eigenstate obeys an area-law scaling [15, 16, 17, 18, 19].
Therefore, the ETH-MBL transition involves the transition of entanglement from
volume-law to area-law scaling.

Particle transport generally involves the growth of entanglement entropy with
time evolution of an initial state expressed in the form of a wave packet. Such
particle transport is hindered by the random potential, and thus, a power-law
growth of S [25] in the ETH phase gradually decreases as the disorder strength
increases. However, even in the MBL phase, a logarithmic growth of S with time
still exists. This relaxation dynamics, i.e., the logarithmic growth of S [20, 21,
22], is unique to the MBL phase. For the Anderson localization (AL) phase in a
noninteracting system, in an early time scale, S exhibits similar behavior to the
MBL phase, although S ceases to increase after its initial growth. An extensive
set of LIOMs provides an intuitive explanation for this behavior: even if the
interaction is exponentially small, the time evolution of a wave packet becomes
more complicated than that in the AL phase owing to the mutual interaction of
LIOMs [see Eq. (3.17)].

Another motivation of this work lies in recent renewed interests [26, 27, 28, 29,
30, 31, 32] in the previously proposed (late 1990’s) non-Hermitian extension of
quantum mechanics [33, 34, 35]. Remarkable advances in experiments in the last
decades have changed and is still changing the shape of theoretical research. 1

One of the advantages of such experiments is their high controllability. This
realizes a bonafide example of the so-called open quantum system, that is es-
sentially a quantum system coupled to the measuring equipment or surrounding
environment. Such a system is effectively described by a non-Hermitian Hamil-
tonian, whose characteristics are essentially different from those of the original
closed systems, excluding the environment. In the effective tight-binding model
in Refs. [33, 34], lies in the non-reciprocity of hopping amplitudes; 2 the ampli-
tude with which an electron hops to the right neighboring site is different from
the one with which it hops to the left neighboring site.

In this thesis, we consider the case of the many-body Hatano–Nelson model,
wherein nearest-neighbor short-range interactions are incorporated into the orig-
inal tight-binding model; see Eq. (2.12). In this non-Hermitian many-body sys-
tem, we have examined how/whether existing scenarios on Hermitian ETH-MBL
systems function, particularly focusing on the behavior of entanglement entropy.
Few existing studies regarding this system include Refs. [36, 37], typical entan-
glement dynamics are stated to be qualitatively similar to the Hermitian case (at
least in an early time scale). In this thesis, I show that this statement is validated
based on observations only in the extreme cases of exceedingly weak and strong
disorder, without considering the typical behavior of the entanglement entropy
S(t) observed in the moderate disorder case. In the moderate disorder case, S(t)
typically turns to decrease after an initial growth, exhibiting a remarkable non-

1The theoretical research on thermalization (ETH) and MBL have also been much pushed
forward by such remarkable advances in the experiments, which has enabled us (experimetal-
ists) to investigate thermalization and MBL in an isolated many-body quantum system in real
experimental setups.

2Another typical example of the non-Hermitian effective Hamiltonian is the case of complex
potential, which has been much studied from the viewpoint of PT symmetry [35].
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monotonic time dependence. An interesting feature of the Hatano–Nelson model,
i.e., the localization length ξ in the Hermitian limit is definitely related to the
critical value gc of a non-reciprocal parameter at the localization–delocalization
transition point in the non-Hermitian regime (see Chapter 2 for details). This
relation has not been examined in the presence of many-body effects.

Specifically, the following unsolved issues have been clarified in this thesis:

i the extent to which non-reciprocal hopping qualitatively changes the en-
tanglement behavior, and

ii whether the relation between ξ and gc still holds in a many-body system.

Note the result reported in Ref. [38]: the saturation value of S(t) in a many-
body system with non-reciprocity increases as the disorder strength increases
under a specific parameter setting. This indicates that non-reciprocity affects
the entanglement behavior and is related to issue (i). However, the authors
of Ref. [38] did not investigate this behavior; instead, they focused on another
feature: non-monotonic time evolution of S(t). In this study, the increase in
the saturation value of S(t) is found to disappear if the system approaches the
localization transition point, which is determined via a separate analysis [38].
This suggests that one can detect the transition between the MBL and ETH
phases by observing the time evolution of S(t), paving a way for tackling issue
(ii) from the perspective of dynamics.

In the Hermitian case, the spreading of a wave packet (quasiparticle) is closely
related to the growth of S(t) over time [39, 40, 41]. Assume that a pair of en-
tangled quasiparticles is given as an initial state in the system comprising of two
subsystems. S(t) grows if the two quasiparticles propagate in opposite directions
in different subsystems. Consequently, in the clean limit, the entanglement en-
tropy increases as S(t) ∝ 2vf t, where vf is the velocity of the quasiparticles.
For a disordered system, a wave packet ceases to spread, and thus the growth of
entanglement entropy is suppressed. The author of Ref. [42] has reported that
a wave-packet spreading in non-Hermitian systems with nonreciprocal hopping
is substantially different from that in Hermitian systems. In the presence of
non-reciprocity, a wave packet does not spread; rather it slides in the direction
determined by the non-reciprocity. This behavior is immune to disorder, and
the wave packet spreads through the entire system only in the vicinity of the
transition point. Therefore, the non-reciprocal hopping should strongly affect
the entanglement entropy.

Here, we systematically study the entanglement dynamics in non-Hermitian
systems with non-reciprocal hopping. Notably, non-reciprocal hopping qualita-
tively changes the entanglement dynamics compared with that in the Hermitian
system. Interestingly, disorder generates entanglement entropy S in the delo-
calized phase, suppressing S in the localized phase, enabling estimation of the
localization–delocalization transition from S(t). Additionally, we validate that a
non-reciprocal parameter g relates to the localization length in a non-interacting
many-body system. This relation holds even in an interacting many-body sys-
tem. We also provide a more detailed reason why entanglement dynamics leads
to non-monotonic behavior over time. We employ number and configuration en-
tropies (Snum and Sconf) that play different roles in entanglement dynamics and
constitute the entanglement entropy Stot as Stot = Snum + Sconf .
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In addition to the work described in this thesis, the following relevant topics
have also been studied:

1. Fock-space localization in many-body systems [43, 44]

2. Many-body localization in a Flat-band system [45, 46]

3. Many-body localization with topological order [47, 48]

4. Information spreading and scrambling in many-body systems [49, 50].

This thesis is structured as follows. In Chapter 2, we review the localiza-
tion phenomenon in Hermitian and non-Hermitian (Hatano–Nelson model) sys-
tems. In Chapter 3, we review the characteristic features of the ETH and MBL
phases in the Hermitian and non-Hermitian systems. We particularly focus
on the properties of entanglement entropy in these phases. In Chapter 4, we
demonstrate how a wave packet spreads in a non-Hermitian disordered system
with non-reciprocal hopping. Employing single and few particle (three-particle)
cases, we show that the spreading of wave-packet is considerably different from
its behavior in the Hermitian system. In Chapter 5, we examine entanglement
dynamics, highlighting its non-monotonic time evolution and a characteristic
disorder-dependence. We also study the size dependence of the results, pre-
dicting an unusual area-volume-area law crossover of the maximal entanglement
entropy, which is not observed in the Hermitian case and allows us to estimate
the localization transition even in dynamics. Finally, we examine and visu-
alize the characteristic stages in the evolution of the reduced density matrix,
which closely relates to the entanglement entropy. We emphasize that the differ-
ence in its behavior between Hermitian and non-Hermitian cases arises from the
imaginary part of eigenenergy. Chapter 6 incorporates the concluding remarks.
Details are provided in Appendices. In this thesis, Quspin [51, 52] is used to
compute various physical quantities of a quantum many-body system.
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Chapter 2

(De)localization transition of
(non-)Hermitian systems

In quantum mechanics, disorder in the form of a random potential tends to
localize the wave function of a quantum particle [14]. Figure 2.1 shows such a
localized wave function (plotted in orange) and a delocalized wave function (plot-
ted in blue)for comparison, both in real space [panel (a)] and the corresponding
reciprocal space [panel (b)]. Here, W represents the strength of disorder, 1 i.e.,
the magnitude of the random potential. Naturally, the case of W = 0 falls within
the clean limit, while the relatively strong disorder case of W = 4 corresponds
to the localized regime. In the case of W = 0, the eigen wave function ψ(j) is
a superposition of plane waves eikj and e−ikj , extending uniformly to the entire
system, so that |ψ(j)|2 is almost constant in real space (or in the local basis)
[panel (a)], where j specifies a site in real space. Contrastingly, it shows only the
δ-function peaks in the reciprocal space [panel (b)]. This is precisely prescribed
by the uncertainty principle of quantum mechanics. Similarity, in case of W = 4,
the eigen wave function ψ(j) becomes a localized wave function, expressed in the
form of a localized function in the local basis [orange plots in panel (a)], while
it is almost uniformly distributed (up to a weak modulation associated with the
quasi periodicity) in the reciprocal space.

(a) (b)

Figure 2.1: A (de)localized eigenstate in the (a) local basis (|j⟩) and (b) recip-
rocal space (|k⟩) with a specific disorder configuration.

In this chapter, we first distinguish such localized and delocalized wave func-
tions in a quantitative manner, i.e., the approach to quantify the degree of local-
ization in quantum mechanics (Section 2.1). We introduce a common knowledge

1Here, the strength W of disorder is in the sense of Eq. (2.7).

5



of the field: in the model case of one spatial dimension (specifically focused on in
this study), as soon as moderate randomness or disorder (in the form of a very
weak random potential) is introduced into a system, the wave function is imme-
diately localized, so that delocalization never occurs in one spatial dimension,
except in the clean limit 2 of W = 0. We argue the existence of certain (known)
exceptions to this common knowledge, even in one spatial dimension. Further-
more, we also argue that the indices describing the localization–delocalization
transition introduced in Section 2.1 are indeed useful in the description of these
systems. The case of correlated disorder [Aubry–André (AA) model] [53] (Sec-
tion 2.2) and that of non-reciprocal hopping [Hatano–Nelson model] [33, 34, 54]
(Section. 2.3) include such exceptional cases. Finally, we introduce a perspective
on the localization/delocalization phenomena from quantum dynamics, thus far
described as properties of the eigen wave function.

2.1 Quantification of the degree of localization and delo-
calization in quantum mechanics

The probability amplitude of a localized eigenstate features an imbalanced dis-
tribution, whereas a delocalized eigenstate exhibits a uniform distribution. Let
us introduce a normalized wave function ψj, where j specifies a site in the sys-
tem. One of the effective measures to quantify the degree of localization and
delocalization is the inverse participation ratio (IPR):

IPR =
∑
j

|ψj|4 (2.1)

or multifractal dimension (MFD):

MFD = − ln(IPR)

ln(L)
. (2.2)

In the delocalized phase, the probability amplitude |ψj|2 is uniformly distributed
over the entire system, and thus, the probability amplitude is |ψj|2 ∼ 1

L
. Sub-

stituting 1
L2 for |ψj|4 in Eq. (2.1), we obtain

IPR =
∑
j

|ψj|4 ∼
∑
j

1

L2
∼ 1

L
, (2.3)

which results in

MFD = − ln(IPR)

ln(L)
∼ − ln(1/L)

ln(L)
= 1. (2.4)

While in the localized phase, the probability amplitude exponentially localizes
in a domain of width ξ centered at a point called the localization center, where ξ
is referred to as the localization length. If the probability amplitude is uniformly

2In this sense, the clean limit is an exceptional and unstable limit, at least in the Hermitian
case with uncorrelated disorder [cf. Eq. (2.7)].
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distributed in the domain, the typical probability amplitude becomes |ψj|2 ∼ 1
ξ
.

Substituting 1
ξ2

for |ψj|4 in Eq. (2.1), we obtain

IPR =
∑
j

|ψj|4 ∼
∑

|j−j0|∈ξ/2

|ψj|4 = ξ
1

ξ2
=

1

ξ
, (2.5)

which results in

MFD = − ln(IPR)

ln(L)
∼ ln(ξ)

ln(L)
. (2.6)

(a) (b)

Figure 2.2: IPR and MFD in the AA model as a function of W with ϕ = 0. In
calculating (a) IPR and (b) MFD, a specific disorder configuration is used for
each value of L.

Figure 2.2 shows the IPR (panel (a)) and MFD (panel (b)) as a function of W
with various values of L. At weak disorder (W ∼ 0), IPR shows size-dependent
behavior, which is consistent with Eq. (2.3). As W increases, IPR gradually
increases in a weakly disordered regime, suddenly increases near W = 2J (lo-
calization transition point), and it exhibits size-independent behavior (∼ 1/ξ),
which is consistent with Eq. (2.5). In contrast to IPR, under weak disorder
(W ∼ 0), MFD exhibits size-independent behavior (cf. Eq. (2.4)). As W in-
creases, MFD gradually decreases in a weakly disordered regime, suddenly de-
creases near W = 2J , and it wxhibits size-dependent behavior (∼ ln(ξ)/ ln(L))
(cf. Eq. (2.6)). Remarkably, MFD’s with different system sizes cross at W = 2J ,
represented by the black dashed line. This implies that MFD is an effective good
indicator, enabling the estimation of the localization–delocalization transition.

2.2 Absence of delocalization in one space dimension and
case of the Aubry–André model

We have discussed in the previous section that disorder tends to localize the
wave function in quantum mechanics. This is known as Anderson localization,
and is quantified [14, 55] through analyses of the so-called Anderson model:

H =
∑
j

[
−J(|j⟩⟨j + 1|+ |j + 1⟩⟨j|) +Wj|j⟩⟨j|

]
, (2.7)

where J represents the strength of hopping and Wj denotes the random on-site
potential disorder at site j. As mentioned at the beginning of this Chapter,

7



the localization–delocalization transition dis commonly known to not occur in
one spatial dimension since the wave function tends to be localized if negligible
amount of disorder is introduced into the system. In higher dimensions, even in
the presence of such random potential, a particle (usually an electron) can still
avoid it and move almost freely, since there is sufficient room/space or allowed
paths to evade the randomness. The corresponding wave function in this case
remains delocalized/extended unless the random potential is exceedingly strong.
This common knowledge is well-established through analyses of the Anderson
model (2.7) in the case of the random potential Wj distributed randomly but
uniformly in the range Wj ∈ [−W,W ], where the (half) width W of this uniform
distribution represents the strength of disorder.

The uniform distribution, which is the most standard form of random poten-
tial in the study of Anderson localization, is referred to as uncorrelated disorder,
in contrast to the case of correlated disorder, which we will discuss next. The
case of quasi-periodic disorder or the Aubry–André (AA) model falls within this
second category:

Wj = W cos(2παj + ϕ), (2.8)

where α is an irrational number, considered typically to be the following inverse
golden ratio:

α =

√
5− 1

2
. (2.9)

An unimportant constant ϕ in Eq. (2.8) is set equal to 0 in this chapter. Since
an irrational number α may be suitably approximated by a fraction M/N with
both M and N being a large integer: M,N ≫ 1, so that αj mod 1 assumes an
almost random number between 0 and 1 for integer j’s. Correspondingly, 2παj
represents an almost random phase, and the periodic potential (2.8) exhibits an
extremely large period. We can regard it as a quasi-periodic potential represent-
ing correlated disorder. The Anderson Hamiltonian (2.7) with the quasi-periodic
potential (2.8) is referred to as the AA model. Previous studies [56, 57, 58] show
that in this model, the delocalized phase continues to exist even in one space
dimension and at a finite disorder strength, indicating that the effect of corre-
lated disorder is weak compared with that of uncorrelated disorder. This implies
that by adopting the quasi-periodic potential (2.8), we can compare differences
between the delocalized and localized phases in one spatial dimension under var-
ious conditions, such as with and without interaction and non-reciprocity. For
this reason, we employ the AA model in the remainder of this thesis.

In the AA model, the existence of a delocalized phase and that of a localized
phase are related to duality of the model. In the following, we see that this
duality of the AA model allows us to identify the critical disorder strength Wc

at the delocalization–localization transition. We introduce the following unitary
transformation with integer k̃:

|j⟩ = 1√
L

∑
k̃

exp(2πiαk̃j/L)|k̃⟩, (2.10)

which is different from the Fourier transformation (|j⟩ = 1√
L

∑
k̃ exp(2πik̃j/L)|k̃⟩).

Substituting Eq. (2.10) into Eq. (2.7), we obtain the Hamiltonian in k̃-space (|k̃⟩)
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as follows:

HAA =
∑
k̃

[
−W
2J
J(|k̃⟩⟨k̃ + 1|+ |k̃ + 1⟩⟨k̃|) + 2J

W
W cos(2παk̃)|k̃⟩⟨k̃|

]
. (2.11)

Comparing Eq. (2.7) to (2.11), both Hamiltonians exhibit the same structure,
and the unitary transformation changes the hopping amplitude from J to W

2J
J

and the disorder strength from W to 2J
W
W . Since both Hamiltonians include the

same delocalization-localization transition point, the hopping amplitude and dis-
order strength in Eq. (2.7) must become identical to those in Eq. (2.11) at the
transition point, i.e., J = (W/2J)J and W = (2J/W )W . Let Wc be the critical
disorder strength of the Hamiltonian in Eq. (2.7) for a given J . Accordingly
Wc = 2J . The transition occurs in the local basis (|j⟩) and k̃-space (|k̃⟩) simul-
taneously.

In the previous section we have seen that IPR and MFD are suitable measures
for quantifying the extent to which a wave function is localized or delocalized.
In Fig. 2.2 we have also visualized localization–delocalization transition in a
disordered system. The results illustrated in Fig. 2.1 and Fig. 2.2 are based on
the simulation performed for the AA model. As noted in Chapter 2, we cannot
observe such localization–delocalization transition in one spatial dimension if the
Anderson model with uncorrelated disorder is employed.

2.3 Case of the Hatano–Nelson model: a non-Hermitian
extension of quantum mechanics

(a) (b)

Figure 2.3: Role of the similarity transformation U given in Eq. (2.13), which
transforms an eigen wave function Ψ(j) to Ψg(j) = UΨ(j). Panel (a) schemat-
ically shows how |Ψg(j)| varies with increasing g. Panel (b) shows numerical
results of |Ψg(j)| for several values of g with a specific disorder configuration for
W = 10.

Non-Hermitian quantum mechanics has attracted considerable attention in
various fields. The Hatano–Nelson (HN) model [33, 34, 54] is one example.
Although the HN model was originally introduced to describe the phenomenon
of flux-line depinning of the type-II superconductors, this model also entails an
interesting implication for a disordered quantum system. In this section, we
summarize the basic properties of the HN model and highlight the emergence of
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delocalization transition in a disordered quantum system as an exception to the
Anderson localization. The Hatano–Nelson model is expressed as follows:

Hns(g) =
L−1∑
j=1

[
−J(eg|j⟩⟨j + 1|+ e−g|j + 1⟩⟨j|)

]
+

L∑
j=1

Wj|j⟩⟨j|, (2.12)

where the first two terms are hopping terms with g being a parameter quantifying
the degree of non-reciprocity, and the third term is the onsite potential. If
g ̸= 0, the Hamiltonian is non-Hermitian H ̸= H†, and thus, the eigenenergy
can become a complex number.

To understand the role of g, the following similarity transformation may be
introduced:

U |j⟩ = e−gj|j⟩,
⟨j|U−1 = egj⟨j|. (2.13)

Equation (2.13) represents the gauge transformation if g is iA (A ∈ R). Thus, the
similarity transformation is referred to as the imaginary gauge transformation.
Using this transformation, we can reduce the non-Hermitian Hamiltonian Hns(g)
to the Hermitian Hamiltonian Hns(0) = U−1Hns(g)U . This means that the
eigenenergies of Hns(g) are real numbers [59]. Additionally, the nth left and
right eigenvectors of Hns(g) are expressed as

|ΨR
n ⟩ = U |Ψn⟩, (2.14)

and

⟨ΨL
n | = ⟨Ψn|U−1, (2.15)

respectively, where |Ψn⟩ is the nth eigenvector of Hns(0). These results do not
apply under the periodic boundary condition (PBC).

Under PBC, Eq. (2.12) transforms Hns(g) as

U−1Hns(g)U =
L−1∑
j=1

[
−J(|j⟩⟨j + 1|+ |j + 1⟩⟨j|)

]
+

L∑
j

Wj|j⟩⟨j|

−J(eLg|L⟩⟨1|+ e−Lg|1⟩⟨L|). (2.16)

The non-Hermiticity of the HN model is described by only the last two hopping
terms of Eq. (2.16). In the delocalized phase, these terms dominate the Hamil-
tonian and generate a complex eigenenergy. However, these terms become unim-
portant in the localized phase. To verify this, we consider a perturbation of non-
reciprocal hopping to the localized eigenstate |Ψ0⟩ ∼

∑
j

1√
ξ
exp(− |j−L/2|

ξ
)|j⟩, 3

where ξ is a localization length of Hns(0). The correction ∆E to an eigenenrgy
due to the perturbation is expressed as

∆E = ⟨Ψ0| − J((eLg − 1)|L⟩⟨1|+ (e−Lg − 1)|1⟩⟨L|)|Ψ0⟩
∼ −JeLg⟨Ψ0|L⟩⟨1|Ψ0⟩

= −J
ξ
eLg exp(−L/2

ξ
) exp(−L/2

ξ
)

= −J
ξ
eL(g−ξ−1). (2.17)

3We assume that the localization center of |Ψ0⟩ is located at L/2.
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When g < ξ−1, ∆E is exponentially small as per Eq. (2.17) and hence, the
eigenenergy remains a real number. Contrastingly, when g > ξ−1, Eq. (2.17)
shows that ∆E is exponentially large. Note that Eq. (2.17) captures only the
magnitude of ∆E. Since the perturbation is non-Hermitian, ∆E should contain
an imaginary part. Consequently, the eigenenergy becomes a complex number.
These results indicate that the critical value gc is expressed as follows:

gc = ξ−1. (2.18)

Equation (2.18) suggests that the non-Hermiticity enables us to evaluate the lo-
calization length. Interestingly, the normalization condition of a localized eigen-
state also presents the same condition of the critical value gc. Under the similar-
ity transformation of Eq. (2.13), a localized eigen wave function 4 is transformed
to

Ψg(j) ≡ UΨ(x) ∼ exp(
−|x|
ξ

− gx), (2.19)

Figure 2.3(a) schematically shows the variation of Ψg(j) with increasing g. Until
g exceeds gc, Ψg(j) maintains a tendency to localize. The critical value gc can
be determined by the normalization condition of the eigenstate. If ξ−1 > g, the
normalization constant is expressed as follows:

1 = C2

∫ ∞

−∞
|Ψg(x)|2dx ∼ C2

∫ ∞

−∞
dx exp(2

−|x| − ξgx

ξ
)

= C2

[∫ ∞

0

dx+

∫ 0

−∞
dx

]
exp(2

−|x| − ξgx

ξ
)

= C̃2(
ξ

2(1 + ξg)
+

ξ

2(1− ξg)
)

= C̃2 ξ

1− ξ2g2
,

leading to

C̃ =

√
1− ξ2g2√

ξ
. (2.20)

If ξ−1 < g, the integration diverges, i.e., Ψg(j) is not square integrable, indicating
that the eigenstate is delocalized. Therefore, critical gc is expressed as

gc = ξ−1. (2.21)

Using Eq. (2.12), we numerically examine the above results. Figure 2.3(b)
shows |Ψg(j)| as a function of j for various values of g with a specific disorder
configuration (W = 10). As g increases, the eigenstate changes according to
Eq. (2.19), and the eigenstate extends the entire system beyond gc. In the
actual computation, we obtain eigenstates at g = 0 and select one eigenstate
|Ψg=0⟩ at random. Next, we calculate eigenstate |Ψg⟩ for several values of g.
The resulting |Ψg⟩’s are plotted in Fig. 2.3(b).

4We assume that the localization center of Ψ(x) is located at 0.
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IPR

Figure 2.4: Typical behavior of IPR and eigenenergies for several values of g
with L = 100.

We characterize the delocalization transition due to g by employing IPR
and complex spectrum. Figure 2.4 shows complex eigenenergies and IPRs in
a complex plane as a function of g. Here, the color map represents values of
IPR. When g is small, eigenenergies do not exhibit an imaginary part, and
IPR ∼ 1. As g increases, IPRs gradually decrease reflecting the fact that an
eigenstate becomes more extended than that of the g = 0 case. Eigenenergies
remain real numbers as long as g < gc. Beyond gc, eigenenergies become complex
numbers, and IPRs take small values as IPR ∼ 1

L
. These results suggest that the

localization–delocalization transition accompanies the real–complex transition.
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Figure 2.5: Wave packet spreading in the HN model with several values of dis-
order strength V/J with JR = 0 and J = JL = 1. The behavior of wave packet
spreading is qualitatively similar to that reported in Ref. [42].

2.4 Localization/delocalization phenomena from the per-
spective of wave packet dynamics

Dynamical behavior of the HN model has been studied in Ref. [42]: the author
employs a modified version of the HN model expresssed as

H =
∑
j

[−JR|j + 1⟩⟨j| − JL|j⟩⟨j + 1|+ V cos(2παj)|j⟩⟨j|] . (2.22)

Eigenstates of H are delocalized as long as V/J < 1. Time evolution of a wave
packet is shown in Fig. 2.5 for several values of V/J . This figure shows that
the wave packet moves in the positive direction (unidirectional motion) when
V/J < 1 and stops moving when 1 < V/J . These features indicate that the
diffusion constant β, defined as

⟨x2⟩ =
∑

j j
2|ψj|2∑

j |ψj|2
∝ tβ, (2.23)

takes a positive value when V/J < 1 and vanishes when 1 < V/J . The author
of Ref. [42] has mainly focused on the relationship between β and the complex
spectrum of the system. Cascade-like spreading of the wave packet near the
transition point (V/J = 1) is also reported in Ref. [42].

At this stage, an intuitive explanation of unidirectional motion has not been
provided. Why does the wave packet show a unidirectional motion against disor-
der? We will provide an intuitive explanation of the above features in Chapter 4.
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Chapter 3

ETH, MBL, and entanglement entropy

In this chapter, we explain ETH, MBL, and its extension to the non-Hermitian
case. First, we discuss the thermalization of an isolated many body system and
its relationship to ETH. We subsequently introduce a phenomenological view
of MBL. We show differences in static and dynamical features of entanglement
entropy between ETH and MBL phases. We also discuss differences between AL
and MBL phases and discuss why the MBL phase exhibits relaxation behavior in
its dynamics. We comment on open problems of the ETH–MBL transition and
elucidate why estimating its transition point is difficult. Finally, we summarize
the previous study of the many-body HN model and highlight potential problem
related to its dynamics.

3.1 Eigenstate thermalization hypothesis (ETH)

In an isolated quantum many-body system, its energy is conserved in the course
of time evolution. At equilibrium, the system with certai energy E is described
by a microcanonical ensemble:

ρ̂mic(E) =
1

ZE,δE

∑
|EN−E|<δE

|EN⟩⟨EN |, (3.1)

where |EN⟩ is an eigenstate in the microcanonical energy shell |EN − E| < δE,
and ZE,δE is the number of such eigenstates. Using ρ̂mic(E), the expectation

value of an observable Ô in the microcanonical ensemble is expressed as

⟨Ô⟩mic = Tr(ρ̂mic(E)Ô). (3.2)

The expectation value of Ô evolves as

⟨Ô(t)⟩ = ⟨Ψ(t)|Ô|Ψ(t)⟩
=

∑
N,N ′

eiEN tϕ∗
N⟨EN |Ô|EN ′⟩e−iEN′ tϕN ′

=
∑
N,N ′

ei(EN−EN′ )tϕ∗
NϕN ′ÔN,N ′ , (3.3)

where ϕN = ⟨EN |Ψ(0)⟩ and ÔN,N ′ = ⟨EN |Ô|EN ′⟩. We expect that ⟨Ô(t)⟩ ap-
proaches the microcanonical ensemble averaged value expressed in Eq. (3.2).
As per Eq. (3.3), ⟨Ô(t)⟩ oscillates reflecting the phase factor arising from the
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Figure 3.1: Time evolution of ⟨Ô(t)⟩ (a schematic picture); the broken redline
represents the time average of ⟨Ô(t)⟩, and ∆O2 represents the variance of ⟨Ô(t)⟩.

time evolution operator. Figure 3.1 shows the behavior of ⟨Ô(t)⟩ in a schematic
manner.

Considering the thermalization of a given state, we are interested in the
statistical behavior of ⟨Ô⟩. Thus, we focus on the time average of ⟨Ô(t)⟩ defined
as

⟨Ô⟩ = lim
T→∞

1

T

∫ T

0

⟨Ψ(t)|Ô|Ψ(t)⟩dt. (3.4)

Generally, one defines the thermalization in such a manner that ⟨Ô⟩ becomes
equal to ⟨Ô⟩mic. This results in ⟨Ô(t)⟩ ∼ ⟨Ô⟩mic because a quantum state should
reach the equilibrium state if it is thermalized. To satisfy the above condition,
the variance of ⟨Ô(t)⟩ defined as

∆Ô2 = [⟨Ô(t)⟩ − ⟨Ô⟩]2 (3.5)

must be small.
In considering the average over t, we assume that EN and EN ′ are not de-

generate

EN ̸= EN ′ (3.6)

and that arbitrary two pairs of eigenstates (N and N ′, and N ′′ and N ′′′) satisfy

EN − EN ′ ̸= EN ′′ − EN ′′′ . (3.7)
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Accordingly we can rewrite Eq. (3.4) as follows:

⟨Ô⟩ = lim
T→∞

1

T

∫ T

0

⟨Ψ(t)|Ô|Ψ(t)⟩dt

= lim
T→∞

1

T

∫ T

0

∑
N,N ′

ei(EN−EN′ )tϕ∗
NϕN ′ÔN,N ′

=
∑
N

|ϕN |2ÔN,N (3.8)

and Eq. (3.5) as

∆Ô2 = [⟨Ô(t)⟩ − ⟨Ô(t)⟩]2

= ⟨Ô⟩2 − [⟨Ô⟩]2

= lim
T→∞

1

T

∫ T

0

∑
N,N ′,N ′′,N ′′′

[ei[(EN−EN′ )+(EN′′−EN′′′ )]t

×(ϕ∗
NϕN ′ϕ∗

N ′′ϕN ′′′ÔN,N ′ÔN ′′,N ′′′)]− [⟨Ô⟩]2

=
∑
N ̸=N ′

∑
N ′′ ̸=N ′′′

ϕ∗
NϕN ′ϕ∗

N ′′ϕN ′′′

×ei[(EN−EN′ )−(EN′′′−EN′′ )]tÔN,N ′Ô∗
N ′′′,N ′′

=
∑
N ̸=N ′

∑
N ′′ ̸=N ′′′

ϕ∗
NϕN ′ϕ∗

N ′′ϕN ′′′

×δN,N ′′′δN ′,N ′′ÔN,N ′Ô∗
N ′′′,N ′′

=
∑
N ̸=N ′

|ϕN |2|ϕN ′ |2|ÔN,N ′ |2. (3.9)

One of the promising hypotheses for realization of thermalization is the eigen-
state thermalization hypothesis (ETH) that comprises two parts: off-diagonal
ETH and diagonal ETH. The off-diagonal ETH assumes that ON,N ′ = ⟨N |Ô|N ′⟩
with N ̸= N ′ in the microcanonical energy shell satisfying

lim
L→∞

ON,N ′ → 0. (3.10)

Under the off-diagonal ETH, ∆Ô2 vanishes in the limit of L→ ∞. This can be
expressed as follows:

∆Ô2 =
∑
N ̸=N ′

|ϕN |2|ϕN ′ |2|ÔN,N ′ |2

≤
∑
N,N ′

|ϕN |2|ϕN ′ |2
∣∣∣maxN ̸=N ′{|ÔN,N ′ |}

∣∣∣2
≤

∣∣∣maxN ̸=N ′{|ÔN,N ′ |}
∣∣∣2 → 0. (3.11)

The diagonal ETH assumes that ON,N = ⟨N |Ô|N⟩ in the microcanonical energy
shell satisfying

lim
L→∞

ON,N → ⟨Ô⟩mic(E). (3.12)
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Under the diagonal ETH, ⟨Ô⟩ ∼ ⟨Ô⟩mic is expressed as

⟨Ô⟩ =
∑
N

|ϕN |2ÔN,N

≃
∑
N

|ϕN |2⟨Ô⟩mic(E)

= ⟨Ô⟩mic(E). (3.13)

Next, we finally comment on the physical representation of thermalization in
a isolated quantum system without a heat bath. A possible interpretation is the
occurrence of thermalization as a consequence of entanglement. Let us assume
that the system can be divided into two subsystems A and B, and we consider
the expectation value of an operator ÔA that belongs to A. The expectation
value is expressed as ⟨ÔA × IB⟩, where IB is the identity operator in B. The
expectation value is expressed as follows:

⟨Ψ(t)|ÔA × IB|Ψ(t)⟩ = Tr(ÔA × IBρ)

= TrATrB(ÔA × IBρ)

= TrA(ÔAρA), (3.14)

where ρA in the last line is the reduced density matrix of the subsystem A
defined as ρA = TrB{ρ}. If |Ψ(t)⟩ is entangled, the quantum state described
by ρA becomes a mixed state. One can interpret ⟨ÔA × IB⟩ as the expectation
value of ÔA with a statistical distribution ρA. This implies that the subsystem
B plays the role of a bath for subsystem A [6], leading to the thermalization of
A. Conversely, the subsystem A leads to the thermalization of subsystem B.

3.2 Many-body localization (MBL)

Under the ETH, the expectation value of an observable O in an eigenstate of
H depends on only its eigenenergy E without large fluctuation. The fluctuation
vanishes in the thermodynamic limit. However, in a strongly disordered system,
such a quantity fluctuates and does not depend on E [60]. We examine such
behavior, employing the Hamiltonian expressed as

H =
∑
j

[
Jxy
2

(S+
j S

−
j+1 + S+

j+1S
−
j ) + JzzS

z
jS

z
j+1 +WjS

z
j ], (3.15)

where the first two terms represent exchange interaction, the third term repre-
sents Ising interaction, and the last term represents an onsite random magnetic
field term with uniform random distribution Wj ∈ [−W,W ]. In considering a
quantum system, attention is typically focused on the properties of the ground
state. Notably, we focus on highly excited states in the studies on ETH–MBL
transition. We introduce normalized eigenenergy:

ϵ =
E −Min(E)

Max(E)−Min(E)
, (3.16)

where Max(E) and Min(E) are the maximum and minimum eigenenergies, re-
soectively. Figure 3.2 shows ⟨Sz

L/2⟩ as a function of ϵ at weak (W = 0.4) and
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strong (W = 8.0) disorder strength. In the weak disorder case, ⟨Sz
L/2⟩ depends

on ϵ, and its fluctuation is sufficiently small in the middle of the spectrum. These
tendencies become more apparent as the system size increases [60]. In the strong
disorder case, ⟨Sz

L/2⟩ is independent of ϵ, and its fluctuation is considerably large.
That is, ETH does not hold. This failure of ETH stems from the many-body

Figure 3.2: Expectation value ⟨Sz
L/2⟩ as a function of ϵ, where L = 14, Jxy =

1, and Jzz = 1 with a specific disorder configuration. We consider the zero
magnetization sector

∑
j S

z
j = 0.

localization (MBL), which is intrinsic to a quantum many-body system. An
eigenstate of the MBL phase localizes in the Fock space [61, 62, 63, 43] and
typically involves localization in real space [64] as well. Here, the localization in
real space means that the system is separated into several domains: ⟨Sz

j ⟩ ∼ 1
2
in

certain domains and ⟨Sz
j ⟩ ∼ −1

2
in others. This localization behavior is shown

in Fig. 3.2 in the strong disorder case of W = 8.0. The authors of Refs. [22, 65]
have suggested that an ideal MBL phase is described by a phenomenological
Hamiltonian that is expressed as

HMBL = E0 +
∑
j

hjτ
z
j +

∑
j,k

Jj,kτ
z
j τ

z
k +

∑
j,k,l

Jj,k,lτ
z
j τ

z
k τ

z
l + · · · , (3.17)

where E0 is a constant value, and τ zi is a locally conserved quantity called a local
integral of motion (LIOM). Equation (3.17) has been justified for a certain class
of spin chains [66]. LIOM’s are operator which exponentially localize in Fock
space and are expressed as

τ zi =
∑
i1

∑
α=x,y,z

aαi1σ
α
x/
√
ξ +

∑
ii,i2

∑
α,β=x,y,z

bα,βi1,i2
σα
i1
σβ
i2
+ · · · , (3.18)
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where ξ is the localization length, ik denotes the kth localization center, and
aαi1 and bα,βi1,i2

are proportional to e−|i−i1|/ξ and e−(|i−i1|+|i−i2|)/ξ, respectively [67,
68, 69]. Hamiltonian (3.17) incorporates only the terms with τ zj ’s and therefore
commutes with τ zj :

[HMBL, τ
z
j ] = 0. (3.19)

This means that each τ zj is a conserved quantity [22, 65], and the ideal MBL phase
can be regarded as an integrable system [8, 65]. LIOMs act as constraint in the
quench dynamics without particle transport under the breaking of ETH [68, 69].
The existence of such operators explains the relaxation behavior of observables
and entanglement entropy [22, 70], which we discuss in Section 3.5.

3.3 Quantum entanglement and entanglement entropy

3.3.1 General definition of the entanglement

Let us introduce Fock basis |{n}⟩ ≡ |n1n2 · · ·nL−1nL⟩, where nj (j = 1, 2, · · · , L)
denotes the number of electrons in the jth orbital 1. One can describe a general
many-body quantum state |Ψ⟩ as a superposition of basis states corresponding
to different particle configurations with many-body coefficients ψ{n}:

|Ψ⟩ =
∑
{n}

ψ{n}|{n}⟩. (3.20)

Here, we divide the system of length L into two subsystems A and B of length
L/2, where A consists of the sites with j ∈ jA = {1, 2, · · · , L/2}, while B consists
of the sites with j ∈ jB = {L/2 + 1, L/2 + 2, · · · , L}. By tracing out subsystem
B, we calculate the entanglement entropy Stot for subsystem A. To concretize
this procedure, we employ the density matrix Ω,

Ω = |Ψ⟩⟨Ψ|
=

∑
{n},{n′}

ψ{n}ψ
∗
{n′}|{n}⟩⟨{n′}|

=
∑

{nA},{nB},{n′
A},{n′

B}

ψ{nA},{nB}ψ
∗
{n′

A},{n′
B}|{nA}⟩|{nB}⟩⟨{n′

A}|⟨{n′
B}|,

(3.21)

where {nA} = n1, n2, · · · , nL/2 and {nB} = nL/2+1, · · · , nL
2. We perform partial

trace over {nB}:

ΩA = TrB Ω

=
∑
{n′′

B}

⟨{n′′
B}|Ω|{n′′

B}⟩

=
∑

{nA},{n′
A},{nB}

ψ{nA},{nB}ψ
∗
{n′

A},{nB}|{nA}⟩⟨{n′
A}|. (3.22)

1For a spin 1/2 system, ni = 0 and ni = 1 is interpreted as ↓i and ↑i, respectively.
Additionally, {n} corresponds to the configuration of spins in real space.

2Here, ψ{n} ≡ ψ{nA},{nB} and |{n}⟩ ≡ |{nA}⟩|{nB}⟩.
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The entanglement entropy is defined as

Stot = −Tr ΩA log ΩA, (3.23)

which is written in terms of the eigenvalues λα of the reduced density matrix ΩA

as
Stot = −

∑
α

λα log λα. (3.24)

3.3.2 Two types of contributions to the entanglement entropy: num-
ber and configuration entropies

Figure 3.3: Schematic derivation of the reduced density matrix from a given
quantum state in the system with four sites at half filling.

We consider that a quantum state |Ψ⟩ is described by a superposition of the
Fock bases |{n}⟩ = |{nA}⟩|{nB}⟩. We assume that the total number of particles
is L

2
that is half of the total number of sites (i.e., half filling). The number of

particles in |{nA}⟩ defined as

NA ≡
∑
j∈jA

nj (3.25)
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relates to that in |{nB}⟩ defined as

NB ≡
∑
j∈jB

nj, (3.26)

since they satisfy the half filling condition: NA + NB = L
2
. The vector space

HA spanned by |{nA}⟩’s can be decomposed into subspaces specified by NA ∈
{0, 1, · · · , L

2
}. The vector space HB spanned by |{nB}⟩’s can also be decomposed

into subspaces specified by NB ∈ {0, 1, · · · , L
2
}. Under the constraint of NA +

NB = L
2
, the subspace of HA with NA = j is paired with the subspace of HB

with NB = L
2
−j. Indeed, the density matrix includes non-zero components only

in such paired subspaces, which are mutually isolated in the full vector space.
Reflecting this isolated structure, the reduced density matrix is expressed in a
block diagonal form, as can be observed in Fig. 3.3. Here, each block corresponds
to a subspace of HA and the total number of the blocks is L/2+1. The reduced
density matrix is expressed as follows:

ΩA = ΩN0 ⊕ ΩN1 ⊕ · · · ⊕ ΩNL
2 −1

⊕ ΩNL
2

, (3.27)

where ΩNj
describes the subspace specified by NA = j (cf. Fig. 3.3). Using the

block diagonal representation of ΩA, we can rewrite Eq. (3.23) as

Stot = −Tr [ΩA log ΩA]

= −
L/2∑
j=0

[
Tr
{
ΩNj

log ΩNj

}]
= −

L/2∑
j=0

dim(ΩNj
)∑

α=1

λ(Nj)
α log λ(Nj)

α , (3.28)

where λ
(Nj)
α is the αth eigenvalue of ΩNj

, and dim(ΩNj
) is the dimension of ΩNj

.
We define pNj

as

pNj
=

∑
α

λ(Nj)
α , (3.29)

and λ̃
(Nj)
α as

λ̃(Nj)
α =

1

pNj

λ(Nj)
α . (3.30)

The contributions to the entanglement entropy Stot can be divided into two
parts: the number and configuration entropies (Snum and Sconf) [71]:

Stot = −
L/2∑
j=0

dim(ΩNj
)∑

α=1

λ(Nj)
α log λ(Nj)

α

= −
L/2∑
j=0

dim(ΩNj
)∑

α=1

pNj
λ̃(Nj)
α (log pNj

+ log λ̃(Nj)
α )

= −
L/2∑
j=0

pNj
log pNj

−
L/2∑
j=0

dim(ΩNj
)∑

α=1

pNj
λ̃(Nj)
α log λ̃(Nj)

α

= Snum + Sconf , (3.31)
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where

Snum = −
L/2∑
j=0

pNj
log pNj

, (3.32)

Sconf = −
L/2∑
j=0

dim(ΩNj
)∑

α=1

pNj
λ̃(Nj)
α log λ̃(Nj)

α . (3.33)

Let us consider the properties of Snum and Sconf . The number entropy Snum is
essentially the Shannon entropy of pNj

, which is a probability that one observes
Nj particles in the subsystem A; therefore, Snum quantifies the fluctuation of
the number of particles in the subsystem A. Particle transport generates this
type of entropy; i.e., Snum is controlled by a local process. The configuration
entropy Sconf arises from non-local correlations in the many-body state that are

intrinsic to a many-body state. In contrast to pNj
, λ̃

(Nj)
α can change without

particle transport, indicating that non-particle transport (i.e., evolution of non-
local correlations) can generate Sconf in a many-body localized state.

3.4 Static and dynamical properties of the ETH andMBL
phases

3.4.1 Static property of Stot in the ETH and MBL phases

The authors of Ref. [16] have reported on the characteristic scaling transition of
Stot. They have studied Stot in the random field spin 1/2 XXZ model, which is
the same as Eq. (3.15), employing a sophisticated exact diagonalization method.
The definition of Stot is the same as Eq. (3.24) (cf. Sec. 3.3). The behavior of
Stot shown in Fig. 3.4 is qualitatively similar to that reported in Ref. [16]. The
top panel of Fig. 3.4 show Stot/L as a function of L for various values of disorder
strength h. In the weakly disordered regime of h ∼ 1, Stot/L takes a constant
value for large L, which implies the volume-law scaling of entanglement entropy
Stot ∝ L. This behavior is consistent with the view that the system is in the
ETH phase, where an eigenstate is thermalized and yields the volume-law scaling
of entanglement entropy. In the strongly disordered regime of h ∼ 4, Stot/L
decreases as L increases, which implies the area-law scaling of entanglement
entropy Stot ∼ const. This behavior is consistent with the view that the system
is in the MBL phase, where a localized eigenstate only generates an entanglement
when the localization length exceeds the subsystem size.

They have estimated this volume-to-area law scaling transition point and the
exponent of entanglement entropy, employing finite size scaling. Additionally,
they have attempted to conduct finite size scaling of the variance of Stot. The
variance of Stot, shown in the bottom panel of Fig. 3.4, can be interpreted as
specific heat if Stot acts as a thermodynamic entropy. Notably, the actual phase
transition point and exponent remain unaddressed problems; indeed, such a
transition has recently been regarded as a Kosterlitz–Thouless-like transition.
One of the possible directions for a more detailed analysis of this transition is
to calculate Stot in a quantum many-body system whose system size is larger
than that of the previous study. Unfavorably, the Hilbert space of a many-
body system exponentially increases as a function of system size L, and thus,
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Figure 3.4: Scaling of Stot in the case of ϵ = 0.5: top panel; Stot/L as a function
of L, bottom panel; variance of Stot as a function of h. We focus on the zero
magnetization sector

∑
j S

z
j = 0 as in Ref. [16].

calculating Stot in a large system size is a challenging problem. The tensor
network method is one of the methods that has addressed such an inevitable
problem and thus has attracted considerable attention recently.

3.4.2 Dynamical property of the ETH and MBL phases: Imbalance
and Stot

The authors of Ref. [72] have reported on the characteristic dynamical behavior
in a disordered quantum many-body system. They have studied the random
field spin 1/2 XXZ model [Eq. (3.15)], employing a sophisticated tensor network
method. In the study of the time evolution of a many-body quantum system, the
tensor-network method enables treating the system size up to L = 100, which is
considerably larger than L ≤ 28 that can be treated by an exact diagonalization
method.

Imbalance I is often employed to characterize the ETH-MBL transition point.
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Figure 3.5: Imbalance as a function of time: left, middle, and right panels show
the W = 2, 4, and 8 cases with chain length L = 18. We focus on the zero
magnetization sector

∑
j S

z
j = 0 as in Ref. [72].

I is defined by

I =
4

L

∑
j

⟨Ψ(0)|Sz
j |Ψ(0)⟩⟨Ψ(t)|Sz

j |Ψ(t)⟩, (3.34)

where |Ψ(0)⟩ is an initial state, and |Ψ(t)⟩ = e−iHt|Ψ(0)⟩. This quantity charac-
terizes the time period for which the quantum state memorizes an initial state
after time evolution. In the delocalized phase, an initially provided spin pattern
melts with increasing time, and I becomes 0. While in the localized phase, an
initially provided spin pattern persists, and I becomes finite. Figure 3.5 shows
the Imbalance I as a function of time obtained by an exact diagonalization
method. The behavior of I is qualitatively similar to that reported in Ref. [72].
They employed the Néel state |Ψ(t = 0)⟩ = | ↑↓↑↓ · · · ⟩ as an initial state. In
the weakly disordered regime (left panel of Fig. 3.5), I reaches 0 as time evolves,
which implies thermalization of the quantum many-body system. As the disor-
der increases (middle panel of Fig. 3.5), I becomes finite, and in the strongly
disordered regime (right panel of Fig. 3.5), I does not decrease, implying that
the system localizes.

Figure 3.6: Stot(t) as a function of time: left, middle, and right panels show
the W = 2, 4, and 8 cases with chain length L = 18. We focus on the zero
magnetization sector

∑
j S

z
j = 0 as in Ref. [72].

Entanglement entropy also characterizes the dynamical behavior of both the
ETH and MBL phases. Figure 3.6 shows Stot(t) as a function of time obtained
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by using an exact diagonalization method. The definition of Stot is the same
as Eq. (3.24) (cf. Section 3.3). The behavior of Stot(t) is qualitatively simi-
lar to that reported in Ref. [72]. In a weakly disordered regime (left panel of
Fig. 3.6), Stot exhibits a power-law growth Stot ∝ tβ. As the disorder strength
W increases (middle panel of Fig. 3.6), an exponent β gradually decreases (i.e.,
Stot decreases). This decrease in β is consistent with the behavior of I, which
characterizes a relaxation time of a quantum many-body system. As disorder
strength W increases, the relaxation time duration of such a system increase,
leading to potential divergence in the MBL phase. However, in a strongly dis-
ordered regime (right panel of Fig. 3.6), Stot still shows a logarithmic growth in
time evolution, although I does not decrease, i.e., without particle transport.
This slow logarithmic growth of entanglement entropy stems from dephasing,
(discussed in Section 3.5) and characterizes the MBL phase.

We have seen that the entanglement entropy characterizes the dynamical be-
havior of both ETH and MBL phases. However, this quantity is unsuitable for
estimating the ETH–MBL transition because one cannot distinguish between a
logarithmic growth and an extremely slow power-law growth of Stot. Addition-
ally, the saturation value of Stot obeys the volume law in both ETH and MBL
phases, i.e., the non-scaling transition of entanglement entropy. Unfavorably, I
is also unsuitable for estimating the ETH–MBL transition because its saturation
value cannot be calculated. Using the tensor network method, we can study a
quantum many-body system for large system sizes, but cannot evaluate a suf-
ficient long-time scale. Therefore, estimating the ETH–MBL transition point
requires a quantity or method which enables estimation of such a transition
point from behavior in a finite time.

3.5 Slow logarithmic growth of entanglement entropy in
the MBL phase

The static properties of the MBL phase, characterized by IPR, gap ratio, and
Stot, show qualitatively similar behavior to the AL phase. Here an obvious
question arises: does interaction cause any difference between the AL and MBL
phases? The answer is Yes. The dynamical properties of the MBL phase is
qualitatively different from those in the AL phase.

The authors in Refs. [20, 21] have examined the dynamical behavior of Stot

in the AL and MBL phases. The top panel of Fig. 3.7 shows Stot as a function of
time in a strongly disordered regime. In contrast to the non-interacting case (AL
case), Stot exhibits a slow logarithmic growth in the case including interaction.
Additionally, the saturation value of Stot shown in the bottom panel of Fig. 3.7
exhibits a volume law in the interacting cases, which is different from the AL
case showing area law.

Based on Ref. [22], we consider a two-particle system as a simple example
to examine the effect of interaction on Stot. We consider the conventional
Hamiltonian with open boundary condition expressed as

H =
∑
j

[−J(c†jcj+1 + c†j+1cj) +Wjnj + V njnj+1], (3.35)

where c†j (cj) creates (annihilates) a fermion at site j, while n̂j = c†jcj counts the
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Figure 3.7: Quench dynamics of Stot in the strongly disordered regime. Top panel
represents Stot as a function of a normalized time, where J⊥ is the strength of
exchange interaction and Jz is the strength of Ising interaction. Bottom panel
represents the saturation value of Stot as a function of system size L.

L1 L2 R1 R2

Figure 3.8: Schematic of the initial state [Eq. (3.36)].
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Figure 3.9: Time evolution of Stot with various disorder strengths with L = 10
and J = 1, and Wj’s are uniformly distributed in [−6, 6].

number nj of fermions at site j. Even if the interaction is sufficiently weak, a
logarithmic growth of Stot emerges, and thus we consider the weak interaction
V ≪ J and strong disorder W ≫ J limit. In the non-interacting limit of V = 0,
we introduce two eigenstates localized near the left end of the system. Their
eigenenergies are expressed as ϵLi

(i = 1, 2), where i is used to specify the two
states. We also introduce two eigenstates localized near the right end with ϵRi

(i = 1, 2). Let c†Li
and c†Ri

(i = 1, 2) be the creation operators of the eigenstates
localized near the left and right ends, respectively. Let us consider the time
evolution of an initial state defined as

|Ψ(t = 0)⟩ = 1

2
(c†L1

+ c†L2
)(c†R1

+ c†R2
)|0⟩. (3.36)

A schematic of the initial state is shown in Fig. 3.8. The energy of this state is
expressed as

Eα,β = ϵα + ϵβ + δEα,β, (3.37)

where α ∈ {L1, L2}, β ∈ {R1, R2}, and δEα,β represents the correction arising
from the interaction term with V . If only the first order correction with respect
to the interaction is considered,

δEα,β ∼ Cα,βV exp

(
−|xα − xβ|

2ξ

)
, (3.38)

where xα and xβ represent the localization centers of the states specified by α
and β, respectively, ξ is a localization length, and Cα,β is a constant that is
not significant in the following argument. Since V ≪ J is assumed, the time
evolution of the state is expressed as

|Ψ(t)⟩ = 1

2

∑
α∈L1,L2 and β∈R1,R2

exp(−iEα,βt)|α, β⟩, (3.39)

where |α, β⟩ = |α⟩|β⟩ with |α⟩ = c†α|0⟩ and |β⟩ = c†β|0⟩. To define Stot in this
case, we introduce the reduced density matrix

ρL =
∑

β∈R1,R2

⟨β|Ψ(t)⟩⟨Ψ(t)|β⟩, (3.40)
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which is expressed as

ρL =
1

2

(
1 F (t)/2

F ∗(t)/2 1

)
, (3.41)

where F (t) = e−iωt(1 + e−iδωt), δω = δEL1,R2 − δEL2,R2 + δEL1,R1 + δEL2,R1 , and
ω = ϵL1 + ϵL2 + δEL1,R1 − δEL2,R1 . Let λ1(t) and λ2(t) be the eigenvalues of ρL,
in terms of which we define Stot as

Stot = −
∑
i=1,2

λi(t) lnλi(t). (3.42)

When t ∼ 0, Stot ∼ 0, since the eigenvalues are 0 and 1. When t ∼ T = π
δω

∼
1
2V
ex/ξ, Stot ∼ ln 2, since both eigenvalues are 1

2
.

Using Eq. (3.35), we numerically examine the above results in an initial
state that is compatible with Eq. (3.36). Figure 3.9 shows Stot as a function of
time/V with various strengths of V . Except for the case of V = 0, Stot gradually
increases with time, and takes the maximal value ln 2, which is consistent with
the perturbation analysis discussed above.

Figure 3.10: Time evolution of the density ⟨nj⟩ as a function of time/V. We
employ the same data used to draw Fig. 3.9.

Note that ⟨nj(t)⟩ exhibits localization tendency in dynamics as shown in
Fig. 3.10, which suggests that a non-particle transport generates Stot. Employing
the same data used to draw Fig. 3.10, we compare Stot, Snum, and Sconf in
Fig. 3.11 and observe that Sconf dominates Snum, i.e., Stot ∼ Sconf .

The perturbation analysis tells us that the growth of Sconf is ascribed to the
suppression of the off-diagonal elements of ρL caused by the small corrections of
ϵα and ϵβ due to interaction. If the number of particles included in the initial
state increases, the suppression of the off-diagonal terms due to the interaction
is more pronounced. Now, let us focus on the fact that any off-diagonal element
consists of many components, each of which shows complicated time evolution
due to interaction. Hence any off-diagonal element decreases in time owing to
the distractive interference among the many components. This phenomenon is
referred to as dephasing. The perturbation analysis shows that a pair of particles
suppresses the off-diagonal elements of ρL, contributing to the growth of Stot,

28



Figure 3.11: Time evolution of Stot, Snum, and Sconf . We employ the same data
used to draw Fig. 3.9.

when distance x between them is smaller than ξ log(2V t). Hence, the growth
of Stot in the many particle case is expressed as

Stot ∝ x(t) = ξ log(2V t). (3.43)

3.6 Non-Hermitain many-body localization

Figure 3.12: Stot as a function of time with L = 12, averaged over various
disorder configurations in the two cases of h = 2 and 14, where h represents
disorder strength.

The authors of Ref. [36] have studied the localization problem in a Hatano-
Nelson model with many-body interaction. They have reported on level statis-
tics, entanglement entropy of eigenstates, and complex spectrum (cf. Chapter 2).
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Let us focus on entanglement entropy in the many-body HN model. The authors
of Ref. [36] reported on the time evolution of Stot only in the weak disorder case
of h = 2 and the strong disorder case of h = 14. The behavior of Stot shown
in Fig. 3.12 is qualitatively similar to that reported in Ref. [36]. As we shown
in Fig. 3.12, Stot exhibits a power-law growth in the weak disorder case and a
logarithmic growth in the strong disorder case. These features are observed in
the Hermitian case, as shown in Fig. 3.6; apparently, non-Hermiticity (i.e., non-
reciprocal hopping) does not affect Stot in a drastic manner. This observation
leads to one of the two questions in Chapter 1, i.e., to what extent non-reciprocal
hopping qualitatively changes the entanglement behavior. The other question is
whether the relation between a non-reciprocal parameter g and the localization
length still holds in a many-body system (see Chapter 2 for details).

We have conducted a systematic study of Stot(t) and revealed characteristic
disorder-dependence of Stot(t), which is the answer to the first question, that is,
non-reciprocal hopping qualitatively changes the entanglement behavior. Ad-
ditionally, the characteristic behavior of Stot(t) closely related to the second
question. Such a unique behavior of Stot(t) allows estimation of the localization
length.
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Chapter 4

Non-Hermitian wave packet dynamics

In this chapter, we study how a wave packet spreads in a disordered non-
Hermitian system, considering the Hatano–Nelson model as a concrete exam-
ple. Interestingly, a cascade-like wave packet spreading in the Hermitian case is
suppressed within the clean limit and at weak disorder, while it revives in the
vicinity of the localization–delocalization transition. We explain why the wave-
packet dynamics in the non-Hermitian system becomes considerably different
from that in the Hermitian case.

4.1 Single-particle case: Hatano-Nelson model and Aubry-
André model

Let us consider the Hatano-Nelson model [33] under the periodic boundary con-
dition, which we introduced in Section 2.3:

H = −
L−1∑
j=0

(
ΓL|j + 1⟩⟨j|+ ΓR|j⟩⟨j + 1|

)
+

L−1∑
j=0

Wj|j⟩⟨j|, (4.1)

where |j⟩ represents a single-particle state localized at site j, ΓL = egΓ0 and
ΓR = e−gΓ0 with g being a parameter quantifying the degree of non-reciprocity.
g can be regarded as an imaginary vector potential [33]. The first two terms
represent the nearest neighbor hopping with non-reciprocal hopping amplitude. 1

The third term is on-site potential. We have chosen quasi-periodic potential as
on-site potential, i.e.,

Wj = W cos(2πθj + θ0), (4.2)

which effectively acts as random potential (Aubry-André model [53]), where θ
is an irrational constant, which we choose to be the so-called (inverse) golden
ratio: θ = (

√
5 − 1)/2. θ0 ∈ R is a free parameter used to consider a disorder

average; θ0’s distributed uniformly in the range of θ0 ∈ [0, 2π) provide a random
ensemble. The θ0-averaging has been considered over 50 samples, e.g., xG(t) and
its fluctuation (Figs. 4.4 and 4.6), Stot, Snum and Sconf .

1In non-Hermitian quantum mechanics with non-reciprocal hopping, choice of the boundary
condition is a subtle issue in its statics, whereas it is not a central issue in its dynamics (see
Appendix A for details).
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In the Hermitian case (g = 0), the eigenstates are extended when W is
sufficiently weak (W < Wc), while they are localized for W > Wc, where

Wc

2Γ0

= 1, (4.3)

which provides the critical point (cf. Section 2.2). This is consistent with the
divergence of localization length ξ defined in the localized phase [42, 67]:

ξ−1 ≃ log
W

2Γ0

. (4.4)

The localization length ξ diverges as W approaches the critical value (4.3) from
above.

In the non-Hermitian case (g ̸= 0), the critical value gc is related to the
localization length ξ as [34, 73] 2

ξ−1 = gc. (4.5)

Substituting Eq. (4.5) into Eq. (4.4), the delocalization transition point is

Wc = 2Γ0 e
g = 2ΓL, (4.6)

where ΓL > ΓR (g > 0); i.e., Wc in the non-Hermitian case is found simply
by replacing Γ0 in Eq. (4.3) with the left/large hopping amplitude ΓL = egΓ0.
Both in the Hermitian and non-Hermitian cases, the location of the transition
point (4.6) does not depend on the energy, indicating the absence of a mobility
edge. When g ̸= 0, the eigenenergy ϵn becomes complex in the extended phase
(W < Wc = 2ΓL) as is also seen in the case of free particle motion described in
Appendix C. Contrastingly, the eigenenergy remains real in the localized phase
(W > Wc). Thus, the localization–delocalization transition is accompanied by
a real–complex transition of the eigenenergies (see Section 2.3 and Appendix A
for details).

Let us consider how the initially localized wave packet evolves in time fol-
lowing quantum mechanics. Four panels of Figs. 4.1 and 4.2 show examples of
such dynamics. We consider the wave packet located in site j = j0 at t = 0:

|ψ(t = 0)⟩ = |j0⟩. (4.7)

At time t, the wave packet that follows the Schrödinger equation with time-
independent Hamiltonian evolves as

|ψ(t)⟩ =
∑
j

ψj(t)|j⟩

=
∑
n

cne
−iϵnt|n⟩, (4.8)

2In the non-Hermitian case: g ̸= 0, g plays the role of an imaginary vector potential that
appears in the wave functions of a localized state so that

ψL,R(x) ∼ exp(−|x− xc|
ξ

∓ g(x− xc)),

where ψL,R(x) are left and right eigenvectors; xc is its localization center, while ξ represents
the corresponding localization length. If |g| > ξ−1, ψL(x) or ψR(x) diverges; the wave func-
tions ψL,R(x) no longer represent an exponentially localized state. Therefore, the delocalized
transition point is determined by the condition (4.5). Further details are presented in Sec-
tion 2.3.
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where |n⟩ represents the nth single-particle eigenstate of the Hamiltonian with
an eigenenergy ϵn, i.e., H|n⟩ = ϵn|n⟩, while cn = ⟨⟨n|ψ(t = 0)⟩. Here, ⟨⟨n|
represents the left eigenstate defined as ⟨⟨n|H = ϵn⟨⟨n|, where ⟨⟨n| ̸= |n⟩†.
Notably, we impose the biorthogonal condition, i.e., ⟨⟨n|m⟩ = δn,m. In the case
of g ̸= 0, the eigenenergy ϵn is typically complex; cf. the free particle case in
Appendix C [Eqs. (4.14) and (4.15)], so that the probability amplitude of the
eigenstate |n⟩ tends to exponentially grow or decay reflecting Im(ϵn) > 0 or
Im(ϵn) < 0. Consequently, the normalization condition ⟨ψ(t)|ψ(t)⟩ = 1 is not
satisfied. In the actual computation, we therefore rescale (renormalize) |ψ(t)⟩ at
every interval ∆t as

|ψ(t)⟩ → |ψ̃(t)⟩ = |ψ(t)⟩√
⟨ψ(t)|ψ(t)⟩

, (4.9)

where ∆t is chosen as ∆t ≃ 10−4 − 10−1.

Figure 4.1: Single-particle dynamics in the Hermitian case of g = 0. Time
evolution of the initial wave packet: ψj(0) = δj,j0 is visualized with j0 = 300
and L = 601. The amplitude |ψj(t)| [cf. Eq. (4.8)] is shown by a gradation
of plot colors indicated in the color bar. The x-axis represents time t, and the
y-axis represents the site j. Different panels (a-d) correspond to different values
of disorder strength W ; W = 0.0, 0.8, 1.6, 2.4, respectively, for panels (a–d). θ0
is fixed at θ0 = 0 (i.e., no disorder averaging). Taken from Fig. 1 of Ref. [74].
©2022 American Physical Society.

Let us first consider the Hermitian case. The four panels of Fig. 4.1 show
the distribution of |ψj(t)| in the Hermitian case for different values of W . At
site j (the y-axis) and at time t (the x-axis), the amplitude of |ψj(t)| is specified
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Figure 4.2: Single-particle dynamics in the non-Hermitian case: g = 1.4. Time
evolution of the initial wave packet under the same condition as in Fig. 4.1
with θ0 = 0, j0 = 580, and L = 601. The values of disorder strength W are
W = 0.4, 3.6, 8.0, and 10.0, respectively, for panels (a–d). Taken from Fig. 2 of
Ref. [74]. ©2022 American Physical Society.

by a variation of the plot color indicated in the color bar. In the clean limit
[Fig. 4.1(a)], the wave packet spreads symmetrically in two directions. As W
increases (Fig. 4.1(b), (c)), spreading of the wave packet is weakly suppressed.
Finally, beyond the critical disorder strength (Fig. 4.1(d)), the wave packet ceases
to spread. The four panels of Fig. 4.2 show the distribution of |ψj(t)| in the case
of g = 1.4 (L = 601, j0 = 580) for different values of W . Unlike the Hermitian
case 3 (Fig. 4.1), the four panels show that the wave packet does not spread at
least in the regime of weak W [cases of panels (a–b)], 4 but rather slides in the
direction imposed by the non-reciprocity g.

In the non-Hermitian case, the wave packet shows unique unidirectional mo-
tion in the weakly disordered regime W ≪ Wc [panels (a–b)] [42]; however the
Hermitian-like (cascade-like) wave packet spreading reappears in the vicinity of
the localization transition point W ∼ Wc [panel (c)]. Beyond the critical dis-

3In the Hermitian limit (g = 0) the wave packet spreads with time, unless disorder W is
not too strong (W/J < 2); see e.g., Fig. 2 of Ref. [42]. In a non-Hermitian system (g ̸= 0),
the wave packet does not show the cascade-like spreading seen in the Hermitian case. In any
case, the dynamics becomes very different from the Hermitian case. Here, we further clarify
this point.

4At least in the short time scale; in the long time regime at which the imaginary part Im ϵn
comes into play, |ψ(t)⟩ decays into a single eigenstate with a maximal Im ϵn; see Appendix C
for details. In such a long time scale the wave packet may spread in time, but not in the sense
considered here.
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order strength W > Wc, the wave packet suddenly ceases to spread, thereby
exhibiting shows localization tendency [panel (d)]. Comparing the three cases
on the delocalized side [panels (a-c)], one also notices that the sliding velocity
of the wave packet tends to increase as W is increased [42].

To understand why in the non-Hermitian case the wave-packet dynamics
become substantially different from that in the standard Hermitian case, the
clean limit, W = 0, must be considered first. In this limit, the eigenstates are
plane waves ⟨j|k⟩ = eikj/

√
L, so that

|ψ(t)⟩ =
∑
k

e−iϵkt|k⟩⟨k|j0⟩

(
≡
∑
k

ψk(t)|k⟩

)
=

1√
L

∑
j

∑
k

e−iϵkt+ik(j0−j)|j⟩, (4.10)

where |ψ(t)⟩ is expressed as a superposition of the plane waves. At site j, each
contribution to |Ψ(t)⟩ is expressed in the form of a phase factor

eiϕ(k) = e−iϵkt+ik(j0−j). (4.11)

At t = 0 and j ̸= j0, such contributions are out of phase and cancel each other,
while at j = j0 they add up in phase to form the peak of the initial wave packet.
Similarly, at t > 0, the only non-vanishing contributions [in the summation over
k in Eq. (4.10)] are those from the neighborhood of k = k at which the phase
ϕ(k) becomes stationary; i.e., ϕ′(k) = 0, or

2Γ0 sin k t = j − j0. (4.12)

Since | sin k| ≤ 1, |j − j0| = 2Γ0t ≡ vf t defines the position of the wave front,
or a “light cone” [42]. In the Hermitian limit the initially localized wave packet
spreads linearly in time as ∆x(t) ∝ t (i.e., ∆x(t) ∼ tσ) with the exponent σ ≃ 1,
where

∆x(t) =

√∑
j

(j − j0)2|ψj(t)|2 (4.13)

represents the spread of the light cone. In fact, the stationary phase condition
correctly characterizes the free particle motion. Further details are shown in
Appendix B. The addition of disorder W suppresses the wave-packet spreading;
as shown in Fig. 2 of Ref. [42], the velocity v = ∆x(t)/t characterizing the
spreading of wave packet decreases linearly with W and vanishes at W = Wc.

Upon the addition of non-Hermiticity g ̸= 0, a different mechanism or a
principle governs the wave-packet dynamics of Eq. (4.10), since the eigenenergies
ϵk become complex:

ϵk = −2Γ0 cos(k − ig), (4.14)

which in the complex energy plane, takes values on an ellipse:( Re ϵk
Γ0 cosh g

)2
+
( Im ϵk
Γ0 sinh g

)2
= 1. (4.15)

Among the k values satisfying Eq. (4.15), those with maximal or near maximal
Im ϵk become important in the superposition (4.10). In case of Eq. (4.14), such
values of k are found near

k0 = −π/2. (4.16)
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Figure 4.3: Single-particle dynamics; profile of the wave function in k-space. The
Fourier transform |ψk(t)| [Eq. (4.10)] of the wave packet is plotted as a function
of k at different time slices t = 0, 1, 2, 3, 5, 30, and 100 as indicated in the inset
of panel (a). Panels (a–d) and the inset of panel (d) correspond, respectively, to
different values of disorder strength W = 0, 0.4, 3.6, 8.0, and 12.0 with g = 1.4
and θ0 = 0. Other settings follow those of Fig. 4.2. Taken from Fig. 3 of Ref. [74].
©2022 American Physical Society.

Thus, in the non-Hermitian free-particle dynamics, the initial state (4.7) dis-
solves in the course of time evolution (4.10) into a Gaussian wave packet:

|ψ(t)⟩ ≃
∑
j

|j⟩ exp(−((j0 − j) + 2(cosh g)t)2

4(sinh g)t
)

×e2(sinh g)t/
√
4(sinh g)t, (4.17)

which are composed of plane waves with k values found near k0. As for the
derivation of Eq. (4.17), see Eq. (C.2) and related arguments in Appendix C.
The resulting Eq. (4.17) is a wave packet that slides in the direction imposed
by g, and its expanse gradually increases as time evolves. The aforementioned
argument is summarized in a guiding principle:

i the survival of Max Im ϵk has priority over

ii the stationary phase condition [cf. Eq. (4.12) in the Hermitian case].

The non-Hermitian (free-particle) dynamics is fully governed by principle (i),
which is replaced with principle (ii) when principle (i) tends to be ineffective.
In Fig. 4.3, panel (a) the distribution of |ψk(t)| at certain fixed values of t are
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shown. |ψk(t)| shows a Gaussian-type distribution centered at k = k0, and its
width tends to become narrower as t evolves [cf. Appendix C].

Panels (b–e) of Fig. 4.3 show how the addition of disorder W affects and
eventually destroys this peak structure of ψk. In panel (b), two side peaks
appear at k = k1 and k2, which reflect the quasi-periodic nature of the potential
(4.2); Bloch waves of these k values are quasi-commensurate with the potential.
AsW is increased, such side peaks multiply [panel (c)], and the system gradually
evolves into the cascade regime represented by panel (d), where the distribution
of |ψk(t)| is almost uniform, but still there are plenty of tiny peaks, while in the
localized regime [inset of panel (d)], the distribution becomes flat and smooth.

Figure 4.4: Single-particle dynamics; velocity and density fluctuation profiles
averaged over 50 samples with different θ0. Panel (a) and (b) represent the sliding
velocity vG = [xG(t)−xG(0)]/t and the density fluctuation σ(t) = ∆x(t)−∆x(0)
in the (W, g)-plane by a variation of plot colors indicated in the color bar. These
quantities are evaluated at t = t1 = 20 in the same initial state as in Figs. 4.2
and 4.3. Taken from Fig. 4 of Ref. [74]. ©2022 American Physical Society.

To further quantify features specific to the non-Hermitian wave packet dy-
namics, we must focus on

1. how speedily the center of gravity

xG(t) =
∑
j

j|ψj(t)|2 (4.18)

of the wave packet moves, and

2. to what extent the wave packet is spread around xG(t).

xG(t) ≃ xG(0) + vGt, so that the velocity of xG(t) is given by vG. In panel (a)
of Fig. 4.4, the magnitude of vG is plotted based on the variation of plot color,
where vG is determined by evaluating xG(t) at t = t1

5 ) as changing the set of
parameters (W, g), and is indicated by a variation of plot color. The plot shows
that vG is finite in the extended phase W < Wc, while it practically vanishes

5The measurement time t1 has been chosen to be a value (t = t1 = 20 in Fig. 4.4) such
that the wave packet does not travel across the (periodic) boundary.
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in the localized phase W > Wc. The location of the phase boundary (4.6), or
equivalently,

g = log
W

2
(4.19)

is indicated by a broken curve in the panel. On the side of the extended phase
W < Wc, vG continues to take a relatively large value, until approaching the
phase transition; at a fixed value of g, it rather tends to increase as W increases,
until it abruptly falls at the phase transition.

Panel (b) shows a similar plot for the quantity: σ(t) = ∆x(t) −∆x(0) at a
certain time t = t1, where ∆x(t) has been redefined as

∆x(t) =

√∑
j

(j − xG(t))2|ψj(t)|2. (4.20)

The quantity σ(t) is expected to measure the extent to which the density ρj(t)
is spread around xG(t). The plot shows that similar to the behavior of vG in
panel (a), the spread of the wave packet also exhibits a sharp distinction in the
extended (W < Wc) and localized (W > Wc) phases. ∆x(t) takes a finite value
on the side of the extended phase: W < Wc, and the appearance of a peak as W
is increased toward and close to the localization transition (4.19) at a fixed value
of g. We interpret that this enhancement of σ(t) slightly before the localization
transition reflects the cascade-like explosion of the wave packet observed in the
density profile in panel (c) of Fig. 4.2.

4.2 Case of an interacting system

Here, we consider how the presence of interaction affects the above non-interacting
case. As a concrete model, we have employed the following bosonic tight-binding
model with the nearest neighbor inter-particle interaction V :

H = −
L−1∑
j=0

(
ΓLb

†
jbj+1 + ΓRb

†
j+1bj

)
+

L−1∑
j=0

(
V n̂jn̂j+1 +Wjn̂j

)
, (4.21)

where b†j (bj) creates (annihilates) a boson at site j, while n̂j = b†jbj counts the
particle number nj at site j. This is the bosonic version of a hybrid consisting
of Hatano–Nelson and Aubry–André models. Following Refs. [36] and [37], we
assume that our particles are hard-core bosons: nj = 0, 1. 6 Figure 4.5 shows
examples of multi-particle dynamics in this system. The initial state is prepared
in the following domain wall state:

|Ψ(t = 0)⟩ = |00 · · · 011 · · · 1⟩, (4.22)

6If they are true fermions, anticommutation of bj and b†j may lead to a quantitatively
different result under a periodic boundary condition, particularly in the delocalized regime;
see Appendix D for details.
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(i)

(ii)

Figure 4.5: Multi-particle dynamics; evolution of the initial wave packet chosen
to be in a domain wall form expressed in Eq. (4.22). The eight panels show
the evolution of the particle density nj(t) at site j and at time t = t1 based
on the gradation of plot colors indicated in the color bar, where t1 is chosen
as t1 = 2.2 with L = 25, g = 1.4, and θ0 = 0. Panels (a–d) correspond to
W = 0.4, 3.6, 8.0, and 10.0, respectively, for panels (a–d). The four upper panels
in case (i) represent the non-interacting case: V = 0, while those in case (ii)
represent an interacting case: V = 2. Taken from Fig. 5 of Ref. [74]. ©2022
American Physical Society.

i.e., bosons occupy the last Nb sites
7 : Nb represents the number of bosons, and

here we have chosen Nb = 3. At time t, the initial state (4.22) evolves as

|Ψ(t)⟩ =
∑
µ

cµe
−iEµt|µ⟩, (4.23)

7In the actual simulation, we have shifted the domain of occupied sites; i.e., Πj=L
j=L−2b

†
j |0⟩ →

Πj=L−1
j=L−3b

†
j |0⟩ so that the wave function does not spread across the boundary.
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where |µ⟩ is the eigenstate of the Hamiltonian expressed in Eq. (4.21) and Eµ

is the corresponding eigenenergy: H|µ⟩ = Eµ|µ⟩. Here, cµ = ⟨⟨µ|Ψ(t = 0)⟩.
Here, ⟨⟨µ| with ⟨⟨µ| representing the left eigenstate defined by ⟨⟨µ|H = Eµ⟨⟨µ|,
where ⟨⟨µ| ̸= |µ⟩†. We impose the biorthogonal condition, i.e., ⟨⟨µ|ν⟩ = δµ,ν ,
analogous to the single-particle case. As the single-particle eigenenergy ϵn is
complex in general, the many-body eigenenergy Eµ is also complex. As a result,
the time-evolved wave packet |Ψ(t)⟩ as expressed in Eq. (4.23) tends to grow
exponentially. To avoid this computational difficulty, we rescale (renormalize)
|Ψ(t)⟩ in the same manner as in Eq. (4.9) at every interval ∆t ≃ 10−4 − 10−1 in
the actual computation. The eight panels of Fig. 4.5 show the evolution of the
particle density

nj(t) = ⟨Ψ(t)|n̂j|Ψ(t)⟩ (4.24)

at site j at time t based on color variation; the higher the density, the brighter
the color. The system size L is set as L = 25. The four panels in the upper
case (i) represent the non-interacting case: V = 0, while those in the lower case
(ii) represent an interacting case: V = 2. In these panels one can still see the
tendency observed in the single-particle dynamics; e.g., the cascade-like feature
in wave packet spreading can be seen in panel (c) [both in (i) and (ii)].

Figure 4.6 represents the distribution of vG and σ(t) = ∆x(t)−∆x(0) in the
parameter space: (W, g); the two figures correspond, respectively, to the cases
of V = 0 and V = 2. vG and σ(t) are calculated similarly in the single-particle
case as follows:

xG(t) =
∑
j

jnj(t) ≃ xG(0) + vGt,

∆x(t) =

√∑
j

(j − xG(t))2nj(t)/
∑
j

nj(t). (4.25)

In both the figures, both vG and σ(t) take a finite value on the side of the ex-
tended phase: W < Wc, while they vanish on the localized side: W > Wc. In
σ(t) [panels (b)], an enhancement is also observed before the localization transi-
tion. In single-particle dynamics, as shown in Fig. 4.2, the wave packet spreading
in non-Hermitian systems shows the specific and unusual features. Figure 4.5
shows that these features found in single-particle dynamics are essentially main-
tained in multi-particle dynamics though somewhat masked by the inter-particle
interaction V .
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Figure 4.6: Multi-particle dynamics; velocity and density fluctuation profiles
averaged over 50 samples with different θ0. Panels (a) and (c) show distribution
of vG in the (W, g)-plane, while panels (b), (d) represent a similar plot for σ(t) =
∆x(t) − ∆x(0). vG and ∆x(t) are evaluated using in Eq. (4.25) in the multi-
particle case with the same initial state as in Fig. 4.5. Panels (a–b) represent
the non-interacting case: V = 0, panels (c–d) an interacting case: V = 2. Taken
from Fig. 6 of Ref. [74]. ©2022 American Physical Society.
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Chapter 5

Non-Hermitian entanglement dynamics

5.1 Entanglement dynamics

The entanglement entropy Stot(t) is defined for a quantum system consisting of
two subsystems so that it can measure how the two subsystems are quantum-
mechanically entangled. This can be rephrased as follows: Stot(t) measures the
complexity of a given quantum state by using a reduced density matrix for each
subsystem. Hence, it also characterizes spreading of a wave packet [39, 40, 41],
since such spreading tends to enhance the complexity of the given state. Let us
consider the time evolution of Stot(t) for an initial state. In a non-interacting
system, Stot(t) increases as the corresponding wave function spreads in the sys-
tem. The initial growth of the number entropy Snum(t) in the quench dynamics
is essentially due to this effect (Fig. 5.1 and Fig. 5.4). In Hermitian systems with
reciprocal hopping, an initially localized wave packet spreads symmetrically in
two directions in the clean limit and, after a duration t, the wave function ex-
tends to a region of width ∆x ∼ 2vf t, where vf is the velocity of the wave
front: vf ≃ J [42]. Consequently, the entanglement entropy also increases as
Stot(t) ∝ ∆x ∼ 2vf t. In interacting systems, the same argument applies if vf
is replaced with the Lieb-Robinson velocity [75]. The interaction also modifies
the superposition of eigenstates in a nontrivial manner in the time evolution
of a wave packet, leading to the generation of entanglement. In the presence
of disorder W , as its strength is increased, wave packet spreading tends to be
suppression; vf decreases and at a certain critical value W = Wc, vf vanishes.
When W > Wc, the wave function is localized, and the wave packet spreading
is essentially suppressed. As for the behavior of Stot(t), a rapid growth in the
extended (delocalized) phase is experienced, while such growth is considerably
suppressed in the localized phase [see Fig. 5.1, panel (a)] [22].

Considering how a wave packet spreads in non-Hermitian systems with non-
reciprocal hopping, we proceed to the analysis of how the entanglement entropy
Stot(t) evolves over time in such systems. We employ the same many-body
Hamiltonian (4.21) as in the analysis of wave packet spreading, while the initial
state is prepared as the following density wave form (or Néel form in the pseudo-
spin language [38]):

|Ψ(t = 0)⟩ = |101010 · · · ⟩, (5.1)

where on the right hand side of the equation we have employed the computational
basis |ν⟩ = |n1n2 · · ·nL⟩; nj = 0, 1 represents occupation of the jth site. 1

1We assume that our particles are hard-core bosons unless otherwise mentioned; cf. Ap-
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5.2 Entanglement entropy in the non-interacting limit:
wave packet spreading versus entanglement entropy

Figure 5.1: Entanglement dynamics in the non-interacting case V = 0. Three
panels (a), (e), and (i) in the first column represent the Hermitian case g = 0,
while the other panels represent non-Hermitian cases g ̸= 0; g = 0.8 for panels
(b), (f), and (j) in the second column (Wc ≃ 4.5), g = 1.4 for panels (c), (g),
and (k) in the third column (Wc ≃ 8.1), g = 2 for panels (d), (h), and (l) in
the fourth column (Wc ≃ 14.8). Panels (a)–(d) in the first row represent the
evolution of Stot(t), while panels (e)–(h) in the second row and panels (i)–(l) in
the third row represent Snum(t) and Sconf(t), respectively. They are evaluated
based on the average over 50 samples with different θ0 in the system of L = 12
with the initial state (5.1). Taken from Fig. 7 of Ref. [74]. ©2022 American
Physical Society.

Figure 5.1 shows time evolution of the entanglement entropy for the initial
state (5.1) in non-interacting systems with a variable strength of non-Hermiticity
g. Panels (a), (e), and (i) represent Stot(t), Snum(t), and Sconf(t), respectively,
in the Hermitian case g = 0. The characteristic of the Hermitian limit in the
delocalized regime is that particles initially spread in two hopping directions, and
thereafter, the system eventually reaches an equilibrium state [76, 77] resulting
from the interference of many plane waves [cf. Eq. (4.10)]. The entanglement
entropies show a rapid initial growth and approach a saturated value in such
weak W regime, while they are strongly suppressed as W is further increased in
the localized regime. In panel (e) we focus on the behavior of Snum(t). In the
two cases of W = 0.4 and 1.6 in the weak disorder regime, Snum(t) first rapidly
grows and approaches the same value subsequently. In any case, particles spread
in the delocalized regime, and the system reaches equilibrium after a sufficiently
long time although this time lengthens as W increases. Sconf(t) also grows in the
delocalized regime; however, the growth is slightly delayed compared with that
of Snum(t) [see Fig. 5.1 (i)]. As W exceeds the critical value Wc = 2, both the
number and configuration entropies decrease, but remain finite. This is because

pendix D.
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even in the localized phase, the localization length ξ is finite [78]. This effect
is not negligible particularly if W is not exceedingly large and the system is not
far from the transition point (see Appendix E).

As shown in Chapter 4, the addition of non-Hermiticity g ̸= 0 renders a more
drastic impact on wave packet dynamics; it breaks the symmetrical propagation
of particles. In the presence of g ̸= 0, the wave packet ceases to spread but
starts to slide because non-reciprocal hopping strongly suppresses the interfer-
ence of a wave function (see Appendix C). We have also discussed in the previous
section that as W increases, this sliding velocity often increases, and when W
is further increased and approaches the critical value Wc, the wave packet also
begins to spread, exhibiting a cascade-like feature as in the Hermitian case at
weak W . In the presence of random potential, different scattering paths are
expected to interfere despite the presence of non-reciprocal hopping, i.e., quan-
tum interference is partially recovered in this case. In the Hermitian case, the
entanglement entropies diminish with an increase in W . In contrast, as g in-
creases, this tendency becomes uncertain and is finally immediately reversed,
as can be observed in panels (b)–(d) of Fig. 5.1. This result indicates that the
total entanglement entropy is generated by disorder, exhibiting a maximum at
finite W = W̃c, subsequently decreasing. 2 We argue that this maximum of the

(a) (b)

Figure 5.2: Distribution of the maximal entanglement entropy, Max Stot(t), in
the (W, g)-plane derived from the data used to draw Figs. 5.1 and 5.4. Max
Stot(t) in the time evolution is plotted in the (a) non-interacting case of V = 0
(the corresponding time evolution is plotted in Fig. 5.1) and (b) interacting
case of V = 2 (id. in Fig. 5.1). The location of the delocalization–localization
transition point in the non-interacting case: g = logW/2 [as given in Eq. (4.19)]
is indicated by a broken curve (in white) as a guide for the eyes. Taken from
Fig. 8 of Ref. [74]. ©2022 American Physical Society with slight modification.

entanglement entropies is related to the delocalization–localization transition.
In Fig. 5.2 (a), the maximal value Max Stot(t)

3 of the entanglement entropy is
plotted in the (W, g)-plane. The distribution of Max Stot(t) resembles closely to
that of σ(t) = ∆x(t) − ∆x(0) [see Fig. 4.4 (b)], exhibiting a peak close to the
boundary of the localized phase expressed by Eq. (4.19), if observed from the

2Number and configuration entropies also show similar behavior [see e.g., panels (f)–(h)
and (j)–(l) of Fig. 5.1].

3Here, the maximal refers to maximal in the time evolution for a given g and W .
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weak W (delocalized) side. That is, “the maximum of Max Stot(t)” coincides
with the regime where a cascade-like expansion of wave packet occurs in the
density dynamics. In other words, the maximum of Max Stot(t) occurs close to
the delocalization-localization transition point: W = Wc. The unusual behavior
of entanglement entropies in the non-Hermitian non-reciprocal system is thus
revealed to be directly related to a highly specific methodology through which a
wave packet spreads or does not spread in this system.

Figure 5.3: Damped oscillatory behavior in the density profile nj(t). The magni-
tude of nj(t) at site j (abscissa) at time t (ordinate) is expressed by a variation of
plot color indicated in the color bar. The data is obtained for the density–wave
type initial state of Eq. (5.1) with g = 0.8, W = 0.4, θ0 = 0, and L = 12. Taken
from Fig. 9 of Ref. [74]. ©2022 American Physical Society.

Finally, let us comment on the number and configuration entropies. Panels
(f)–(h) of Figs. 5.1 show the time evolution of the number entropy. In the delo-
calized phase, the number entropy rapidly grows in an initial stage in a manner
that is almost independent of W and subsequently exhibits a damped oscilla-
tion. The damped oscillation is caused by the convergence of the initial state
to a single eigenstate |µ0⟩ with the maximal imaginary part of eigenenergy Eµ0 ,
which also affects the time evolution of the density profile shown in Fig. 5.3.
Note that the state with the maximal imaginary part should be regarded as a
non-equilibrium steady state. This also leads to the suppression of configuration
entropy, as shown in panels (j)–(l) in Fig. 5.1. The convergence to a single des-
tined eigenstate |µ0⟩ implies the loss of superposition; the configuration entropy
is significantly reduced in this regime of W ≃ 0. The destined eigenstate is delo-
calized, so that after a certain time, the initial density wave pattern of Eq. (4.22)
is almost erased; (Fig. 5.3), while the number and configuration entropies exhibit
a damped oscillation before converging to a finial value. Beyond the critical dis-
order strengthWc, the number and configuration entropies significantly fluctuate
as in the Hermitian case.

5.3 Case of V ̸= 0 and g ̸= 0: non-monotonic behavior

Considering the interaction: V ̸= 0. Panels (a), (e), and (i) of Fig. 5.4 show the
evolution of the entanglement entropy in the Hermitian limit: g = 0; panels (a),
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Figure 5.4: Entanglement dynamics in the interacting case (V = 2). Three
panels (a), (e), and (i) in the first column represent the Hermitian case g = 0,
while the other panels represent non-Hermitian cases g ̸= 0; g = 0.8 for panels
(b), (f), and (j) in the second column, g = 1.4 for panels (c), (g), and (k) in
the third column, g = 2 for panels (d), (h), and (l) in the fourth column. The
precise value of Wc is unknown in the interacting case (V ̸= 0); however, it is
not far from (slightly larger than) the non-interacting values given in the main
text and caption of Fig. 5.1. Except for the value of V , the other conditions are
the same as shown in Fig. 5.1. Taken from Fig. 10 of Ref. [74]. ©2022 American
Physical Society.

(e), and (i) represent Stot(t), Snum(t), and Sconf(t), respectively. Comparing these
panels with the corresponding panels in the non-interacting case [Fig. 5.1 (a),
(e), and (i)], the total entanglement entropy Stot(t) [panel (a)] exhibits a speedy
initial growth until reaching approximately 2–5×101, subsequently the growth
deaccelerates and smoothly crosses over to a linear regime (in the logarithmic
time scale). Comparing these behaviors in panel (a) with the ones in panels (e)
and (i), the rapid initial growth arises from the number entropy Snum(t), while
the second slow growth forming a linear regime stems from the configuration
entropy Sconf(t) in panel (i).

As the non-Hermiticity g is also introduced (the remaining panels of Fig. 5.4),
the entanglement dynamics changes its behavior as in the non-interacting case;
cf. corresponding panels in Fig. 5.1. In contrast to the non-interacting case, a
characteristic entanglement behavior appears in the interacting case; the second
slow growth of Stot begins to decay after a certain time scale, i.e., a characteristic
non-monotonic behavior appears. The non-monotonic behavior appears in the
intermediate regime of W ; however, it is unclear whether it emerges from the
delocalized phase or localized phase. To elucidate this, we employ the maximal
value of the entropies, which are expected to be maximal at 4 Wc close to the
delocalization–localization transition as in the non-interacting case. In panel (b)
of Fig. 5.2, the maximal value Max Stot(t) in the time evolution is plotted in the
(W, g)-plane, exhibiting a broader maximum in contrast to the non-interacting

4Especially, the magnitude of configuration entropy Sconf(t) [panel (l)] is sensitive to the
change of W .
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case [panel (a)], while the location of the peak is slightly shifted to the side of
larger W from the non-interacting value (indicated by a white broken curve).
The location of the phase boundary estimated from the peak of Max Stot(t) in
Fig. 5.2 (b) is consistent with an earlier numerical result: Wc ≃ 6–7 at g = 0.5
in Ref. [37]. Comparing Fig. 5.2 with Fig. 5.4, the non-monotonic behavior
appears in the delocalized side closely near the delocalization–localization tran-
sition point Wc.

The non-monotonic evolution of Stot is a consequence of the competition
between two mechanics: (i) dephasing and (ii) convergence of the superposition
[Eq. (4.23)] into a single non-equilibrium steady state |µ0⟩ with the maximal
imaginary part of the eigenenergy Eµ0 [38]. In the absence of mechanism (ii),
the mechanism (i) leads to a slow but unbounded growth of the configuration
entropy, where it is typically logarithmic in the MBL phase [22]. For mechanism
(ii) to be operational, the eigenenergy must have a finite imaginary part Im
Eµ. Panels (j)–(l) of Fig. 5.4 show the evolution of configuration entropy for
different sets of parameters. In the localized regime, the non-monotonic behavior
of the entanglement entropy (panels (b)–(d) of Fig. 5.4) stems mainly from the
configuration entropy. Note that dephasing enhances the configuration entropy,
whereas the convergence suppresses it. In the localized regime, these two effects
compete, leading to a non-monotonic entanglement evolution. Contrastingly, no
non-monotonic behavior appears in the delocalized phase because convergence
dominates dephasing. In the non-interacting case of V = 0, the localization
transition is believed to coincide with the real-complex transition [33, 34, 54],
while in the interacting case of V ̸= 0, whether the superposition (4.23) converges
to a non-equilibrium steady state on the MBL side is a more subtle issue.

Finally, we discuss the behavior of number entropy. In the delocalized phase,
the damped oscillatory behavior mentioned earlier is more obvious. As W in-
creases, the damped oscillation disappears and is replaced with a non-monotonic
behavior with a broader maximum. On top of the non-monotonic behavior, a
speedy oscillatory component is also recognized. Such an oscillatory component
is also obvious in the non-interacting case, particularly in the localized regime.
In the non-interacting limit the disappearance of damped oscillation coincides
with the localization transition. Here, we have shown that this is also the case
in an interacting system.

5.4 Effect of finite size and nonequilibrium steady state

Let us comment on the effects of system size. In the three rows of panels in
Fig. 5.5, we compare the evolution of the entanglement entropies: (a)–(d) Stot(t),
(e)–(h) Snum(t), and (i)–(l) Sconf(t) for systems of different system size L. Note
that the entropies are normalized by the “Page value” [79], given in the case of
NA = NB = L/2 as

SPage =
L

2
log 2− 1

2
. (5.2)

Note that SPage is proportional to the size L of the system, If the entanglement
entropies calculated at different system size L are size independent, then it im-
plies that they obeys the volume law over the range of parameters in question.
In the Hermitian case, the magnitude of Stot(t) is size independent [25, 80] at
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Figure 5.5: Time evolution of the entanglement entropies obtained by the average
over 50 samples with different θ0 in the density–wave type initial state. The
first row [panels (a)–(d)], second row [panels(e)–(h)], and third row [panels (i)–
(l)] represent Stot(t), Snum(t), and Sconf(t), respectively. The system is both
non-Hermitian g = 0.6 and interacting V = 2. Each column represents data
at W = 1.6, 4.0, 6.4, 8.8 from left to right. Curves plotted in different colors
correspond to different system sizes as indicated in the inset of panel (a). Taken
from Fig. 11 of Ref. [74]. ©2022 American Physical Society.

the stage of rapid initial growth (area law), while its saturation value after a
sufficiently long time is size-dependent (∝ L), obeying a volume law [21, 22]. In
the first row of Fig. 5.5, where different panels correspond to different strengths
of disorder W with g = 0.6, the total entanglement entropy Stot(t)/SPage is plot-
ted for different system sizes L. The magnitude of Stot(t)/SPage clearly decreases
with an increase in L in panel (a), implying an area-law behavior. In panels (b)
and (c), it becomes size-independent at its maximum (t ≃ 3–7×101), suggesting
a volume-law behavior. For W = 4.0 in panel (b) and W = 6.4 in panel (c),
both values of W are assumed to be not far from Wc at V = 2. As W is further
increased [panel (d): W = 8.8], the second growth of Stot(t) (a linear growth
region in the logarithmic time scale) lasts longer, and the maximum of Stot(t) is
not really achieved in the time scale shown in the panel.

Comparing panels (a), (e), and (i), the area-law behavior of Stot stems from
that of Snum, while comparing panels (c), (g), and (k), the volume-law behav-
ior of Max Stot results from an interplay of the number and configuration en-
tropies. The insensitivity of Max Stot to the system size L suggests that the non-
monotonic evolution of the entanglement entropy specific to the non-Hermitian
many-body system will also occur in case of a larger system size L.

For further clarifying this point in panel (a) of Fig. (5.6), we have plotted
the ratio

fIm = DIm/D, (5.3)

where DIm is the number of eigenenergies with a nonzero (|ImEµ| > 10−13) imag-
inary part Im Eµ, while D is the dimension of the Hilbert space, i.e., the total
number of eigenenergies. The existence of nonzero Im Eµ leads to suppression
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(a) (b)

(c) (d)

Figure 5.6: Size dependence of the (a) fraction of imaginary eigenvalues: fIm
[cf. Eq. (5.3)], (b) Max(Im Eµ), (c) multifractal dimension D2, and (d) its
fluctuation: ∆D2. Data acquired for the interacting case: V = 2 (connected
by solid lines) is compared with the non-interacting case: V = 0 (connected
by broken lines). Different colors correspond to different system sizes: L =
10, 12, 14, and 16. The θ0-average is obtained over 50 samples. Taken from
Fig. 12 of Ref. [74]. ©2022 American Physical Society with slight modification.

of the superposition (4.23), leading to the suppression of the entanglement en-
tropies. The delocalized eigenstates are susceptible to the non-reciprocity g of
hopping, generating a finite imaginary part in the eigenenergy. Thus, the quan-
tity fIm measures the fraction of delocalized eigenstates in the total ensemble of
eigenstates. Panel (a) of Fig. 5.6 exhibits the evolution of the fraction fIm as a
function of W for systems of different sizes L. As W is increased, fIm decreases,
first gradually and subsequently swiftly: the more drastic this tendency, the
larger the size L. Furthermore, the curves corresponding to a different system
size L practically crosses at the same point at a value of W = Wc ≃ 7 at least in
the interacting case of V = 2 corresponding to the solid curves in panel (a). 5 In
a sufficiently large system of size L, the curve fIm(W ) tends to become a sharply

5In the non-interacting case of V = 0 corresponding to dashed curves in panel (a) of Fig. 5.6,
the change of fIm(W ) becomes too drastic, so that one cannot really see the crossing itself,
but the overall behavior of fIm(W ) is similar to this interacting case.
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edged function: fIm(W ) ≃ 1 for W < Wc, while fIm(W ) → 0 for W > Wc. In
this case, all the eigenstates, including the highly excited states, experience a
complex-to-real transition of eigenvalues at W = Wc.

In panel (b) of Fig. 5.6, we compare the (ensemble-averaged) maximal value of
Im Eµ in the cases of V = 0 and V = 2. As expected, in the non-interacting case:
V = 0, the magnitude of Max(Im Eµ) experiences a sudden fall at the crossing
(size-independent) point: W = Wc ≃ 3 − 4. On the two sides of this transition
point, the behavior of Max(Im Eµ) exhibits a clear change that tends to magnify
as the system size L increases. In particular, in the localized phase (W > Wc),
the magnitude of Im Eµ tends to vanish as L increases. In the interacting case
(V ̸= 0) [Fig. 5.6 (b) solid curves], the ensemble-average of Max(Im Eµ) does
not exhibit a sudden fall; instead, it gradually decays over a broad range of
W . It exhibits no clear signature in the ETH–MBL crossover/transition regime:
W ≃ Wc. Additionally, it exhibits no dependence on the system size L. Based
on these observations, we guess that generically, Im Eµ remains finite even on
the MBL side: W > Wc; i.e., the superposition (4.23) converges to a non-
equilibrium steady state |µ⟩ = |µ0⟩, which has the maximal Im Eµ, although it
may consume a sufficiently long time. 6 To understand the nature of this steady
state |µ0⟩, it is important to understand if it really is in a localized state. This
question arises, because one usually associates the imaginary part of Eµ with
an extended state, as explained in Section 2.3. To clarify this point, we have
estimated the multi-fractal dimension

Dµ
2 = − log(

∑D
ν=1 |cµν |4)

log(D)
, (5.4)

encoding the (de)localized nature of the eigenstate |µ⟩; Dµ
2 = 1 (= 0) corresponds

to a fully delocalized (localized) eigenstate. cµν ’s is the amplitude of computa-
tional basis |ν⟩ = |n1n2 · · ·nL⟩ of the µth eigenstate, and D is the dimension of

the many-body Hilbert space. In panel (c) of Fig. 5.6, disorder averaged Dµ0

2

(represented by solid lines) is compared with the disorder and all eigenstates
averaged D2 (represented by broken lines).

The plots show that in the deep MBL regime, the eigenstates |µ0⟩ exhibit
a localized tendency, even though its eigenenergy E exhibit a finite imaginary
part; to be precise, the state |µ0⟩ is less localized than the other eigenstates.
Panel (d) of Fig. 5.6 exhibits the variance ∆D2 of the multi-fractal dimension as
a function of W , which suggests a qualitatively different behavior in the ETH–
MBL crossover regime for ∆D2 and ∆Dµ0

2 . To summarize, the superposition
(4.23) indeed converges to a non-equilibrium steady state |µ0⟩ even in the deep
MBL phase, while the destined state |µ0⟩ shows a spatially localized signature.

5.5 Profile of the reduced density matrix

Let us finally visualize how different stages in the time evolution of the entan-
glement entropy can be understood from the behavior of the reduced density

6The authors of Ref. [36] have reported that max Im(Eµ) also shows the real-complex
transition. In fact, in a sufficiently large disorder strength (W ∼ 10), in panel (b) of Fig. 5.6,
max Im(Eµ) also weakly shows size-dependent behavior. However, study for max Im(Eµ)
remains an underway, so that we have concluded that max Im(Eµ) is finite in the numerically
accessible system size.
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Figure 5.7: Evolution of the reduced density matrix in the wave-packet dy-
namics. The first, second, and third row, respectively, show the results in the
non-interacting (V = 0) and Hermitian (g = 0) case, those in the interacting
(V ̸= 0) and Hermitian (g = 0) case, and those in the non-interacting (V = 0)
and non-Hermitian (g ̸= 0) case. The same initial state as in Fig. 5.1 is used
and the θ0-average is obtained over 50 samples. Taken from Fig. 13 of Ref. [74].
©2022 American Physical Society.

matrix ΩA(t). In the twelve panels of Fig. 5.7, we have plotted the elements of
ΩA(t) at different times to visualize its time evolution. We note that there are
4–5 characteristic stages in the evolution of ΩA(t).

In the first row of Fig. 5.7, we start with the Hermitian case (g = 0) with
no interaction (V = 0). At t = 0, the initial state |Ψ(t)⟩ is chosen to be a
simple product state, so that the reduced density matrix ΩA(t = 0) includes a
single finite element (= 1) in one of the diagonals. As time passes by, the region
of a finite matrix element (represented by bright spots in the panels) spreads.
However, for a while, most of the amplitudes are limited within the same diagonal
block in certain ΩNj

(Nj = 0, 1, · · · , 5, 6) [cf. Eq. (3.27)] 7 as is seen in the
first panel from the left (t = 0.002). From the start of quench dynamics, the
system is susceptible to the process of wave packet spreading; however, as far
as Nj is kept unchanged, such dynamics does not lead to an immediate increase
of the number entropy. After a certain time, bright spots start to appear in
the neighboring blocks as is seen in the second panel (t = 0.5), and they finally
become distributed almost equally in all the blocks as is observed in the third and
fourth panels (t = 9.5, 485). It is expected that the number entropy experiences
a rapid growth over this period and becomes saturated afterwards.

Next, we consider interaction (V ̸= 0)). The corresponding results are shown

7Recall that the reduced density matrix ΩA is block diagonalized as in Eq. (3.27) with ΩNj

representing a block in which the number of particles is restricted to Nj .
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in the second row of Fig. 5.7. In the first two panels, the evolution of ΩA(t)
appears similar to the non-interacting case, that is, bright spots tend to spread
over all different blocks as time passes by, and meanwhile the number entropy
tends to be saturated. In the third and fourth panels, the bright spots are
distributed equally across all the blocks as in the noninteracting case; however,
here they converge on the diagonals inside each block ΩNj

. 8 This is due to
dephasing [22]. Due to interaction V ̸= 0, off-diagonal matrix elements tend to
acquire a random phase and vanish on average after certain time. Dephasing
leads to increase of the configuration entropy Sconf(t); thus, in the present case
after the number entropy is saturated, the total entanglement entropy Stot(t)
continues to increase with no systematic bound, except the one due to the size
of the system.

In the non-interacting (V = 0) and non-Hermitian (g ̸= 0) case (see the third
row of Fig. 5.7), the overall behavior of the evolution of the reduced density
matrix ΩA(t) resembles the Hermitian case in the first row except that here the
pattern of the matrix elements appears considerably regular inside each block
ΩNj

, while the pattern appears random in the Hermitian case (g = 0). The
reason is the following: in the regime of weak W , the eigenenergy E is typically
complex, so that in the time evolution of a many-body wave packet |Ψ(t)⟩ in
Eq. (4.23), a single eigenstate |µ0⟩ with the maximal imaginary part Im Eµ

tends to predominate in the superposition. This tendency in the evolution of
the entanglement entropy Stot(t) (cf. Fig. 5.1) has already been observed; in the
regime of weak W , Stot(t) speedily converges to a fixed value and practically
shows no fluctuation.

8In the non-interacting case (first row), on contrary, the bright spots spread over all parts
of the matrix almost randomly in each block ΩNj

.
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Chapter 6

Concluding remarks

A century has passed, since quantum mechanics first appeared in the history
of mankind. In its one-century-long history, quantum mechanics has been ap-
plied to the description of sub-atomic objects in various of circumstances. The
discrete quantized spectrum of eigenenergies (the eigenvalues of the Hamilto-
nian 1) for electrons trapped in the atom is a hallmark of quantum mechanics.
The corresponding eigenfunctions take a spatial profile that can be naturally
interpreted as a bound state. Quantum mechanics has been widely applied to
the description of matter, leading to the birth of the field of condensed-matter
physics, wherein matter is analyzed from a microscopic perspective. In this
subfield, roles of periodic crystalline structure, fermionic/bosonic statistics, dis-
order in the form of a random potential, and many-body effects stemming from
interparticle interaction have been extensively studied.

In this thesis, I have focused on the fact that the (eigen) wave functions tend
to be localized in the presence of a random potential, and how this phenomenon,
also known as Anderson localization, is modified by the presence of interparticle
interaction. 2 I have also considered the fact that in generic circumstances, our
system is inevitably influenced by the environment. Namely, we regard our
system as an open quantum system, i.e., a closed quantum mechanical system
(described by a Hermitian Hamiltonian) coupled to an environment. Following
the standard procedure to determine an effective Hamiltonian, we trace out
the environment, and typically establish a non-Hermitian Hamiltonian as an
effective model. Finally, I have focused not only on the eigenstates of such an
effective Hamiltonian, but also on quantum dynamics, i.e., the time evolution of
a given initial state. Particular attention is paid to the entanglement entropy
that quantifies the complexity of the state as a function of time.

In Chapter 2, we have reviewed the so-called localization phenomena that
occur in the presence of random potentials. We naturally started with the Her-
mitian case, and subsequently considered the non-Hermitian case as well. As
an illustrative example, we have discussed in detail the case of the so-called AA
model, in which a quasi-periodic potential mimics the random potential. In this
case, a duality argument enables us to analytically determine the localization–
delocalization point. Naturally, we have numerically checked the validity of this
argument by demonstrating how an eigenstate localizes as disorder strength in-

1The Hamiltonian is presumed to be Hermitian [81].
2In the interacting case, eigenstate thermalization hypothesis (ETH) and many-body local-

ization (MBL) have been the two competing key paradigms; at least in the Hermitian case.
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creases. We have subsequently introduced the so-called Hatano–Nelson model
(i.e., a one-dimensional tight-binding model with non-reciprocal hopping) as
a prototypical example of a non-Hermitian effective Hamiltonian. We have de-
scribed how a localization–delocalization transition becomes possible in this spa-
tially one-dimensional 3 but non-Hermitian model. We have also emphasized
that the wave-packet dynamics in this model is also extremely peculiar.

In Chapter 3, we have reviewed many-body localization, which is the local-
ization phenomenon in an interacting many-body system. A remarkable feature
of interacting systems is the appearance of a delocalized phase even in one di-
mension. A many-body delocalized phase generally satisfies ETH that justifies
thermalization in an isolated many-body quantum system. We have introduced
the definition of thermalization in an isolated many-body system and shown
how the ETH justifies such thermalization. We have also introduced the phe-
nomenological picture of MBL and shown the breaking of the ETH. Thereafter,
we introduced the concrete procedures for calculating Stot and more subdivided
Stot, i.e., Snum and Sconf . We reviewed how Stot characterizes the static and
dynamical properties of the ETH and MBL phases. For static property, ETH-
MBL transition involves the transition of Stot from a volume-law (ETH phase)
to an area-law (MBL phase). For dynamical property, Stot exhibits a power-law
growth with time in the ETH phase while a logarithmic growth in the MBL
phase. Based on the behavior of Stot in the Hermitian systems, we reviewed
the dynamical behavior of Stot in the non-Hermitian system with non-reciprocal
hopping and emphasized the open problem which may be overlooked.

In Chapter 4, we have highlighted the nature of the unusual wave packet
spreading in a non-Hermitian system with non-reciprocal hopping (Hatano–
Nelson model) [Eqs. (4.1) and (4.21)]. Disorder has been modeled by a quasi-
periodic potential (Aubry–André model) [Eq. (4.2)]. In a Hermitian system, a
wave packet spreading is gradually suppressed by disorder. Contrastingly, in a
non-Hermitian system, it does not occur even in the clean limit, at least in the
Hermitian way. The wave packet rather slides instead of spreading. The disorder
tends to localize a wave function, whereas the non-reciprocity tends to delocal-
ize it. Weak disorder exerts negligible effect on this sliding behavior. When
the disorder becomes comparable to non-reciprocity, this characteristic behavior
tends to be replaced with a cascade-like wave packet spreading analogous to the
Hermitian case. We have clearly demonstrated the mechanism [see Eq. (4.17),
and related arguments] why the wave packet slides instead of spreading in our
system and how this behavior tends to be destroyed by the quasi-periodic po-
tential (cf. Fig. 4.3). In the non-Hermitian case, the fundamental principle that
governs the wave packet spreading is different from that in the Hermitian case.

In Chapter 5, we have seen how such unusual wave packet spreading in the
non-Hermitian model leads to anomalous behaviors in the entanglement behav-
ior. 4 First, the specific wave packet spreading mentioned leads to strong sup-
pression of the entanglement entropy, especially, in the delocalized phase as the
non-Hermiticity g increases. Second, in the presence of interaction, a finite imag-
inary part of the eigenenergy combined with the logarithmic growth (effect of

3A localization-delocalization transition usually does not occurs under such low dimension-
ality.

4As for another anomalous feature in the entanglement dynamics in a non-Hermitian PT
model, see Refs. [82, 83].
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dephasing) leads to a characteristic non-monotonic behavior of the entanglement
entropy. We have observed that the maximum value of entanglement in the time
evolution becomes maximal at (or at least near) the delocalization–localization
transition, thus containing information regarding the location of the transition.
This, in turn, signifies that the non-reciprocity g can be used as a probe for
determining the localization length ξ in the Hermitian system [73], since g is di-
rectly related to ξ; i.e., ξ = g−1 [see Eq. (4.5), and related footnote on it]. Note
that identifying the critical localization length ξc is a key to reveal the nature
of the ETH–MBL transition [67]. The size dependence of the entanglement dy-
namics shows that the entanglement entropy Stot(t) at its maximum in the time
evolution [i.e., Max Stot(t)] obeys the volume law, while under other circum-
stances (typically, in the delocalized phase) Stot(t)/SPage tends to decrease with
an increase in L, suggesting an area law. Thus, the entanglement entropy in a
non-Hermitian system exhibits an unusual area–volume–area law type crossover
as a result of the interplay between non-Hermiticity and the interaction.

As shown in Ref. [38], collapse of the superposition in the initial state and
convergence to a single destined eigenstate |µ0⟩ with maximal Im Eµ0 play a
central role in the behavior of the entanglement entropy in this non-Hermitian
system. Here, we have verified this point through analyses of the entanglement
using different indices (e.g., number and configuration entropies) and in a wide
range of parameter regimes. In the localized side, most of the eigenstates are
localized; however, a few eigenstates still include a small but finite imaginary
part Im E, sufficient to compete with the logarithmic growth (dephasing) at least
over an extremely long time scale, leading to the characteristic non-monotonic
behavior of Stot(t).

Finally, extending the analyses performed in this study to systems of larger
size is challenging. In Hermitian systems, Krylov-based time evolution [25] and
tensor network techniques [72, 84, 45] are known to be applicable to deal with
large-sized systems. The extension of these techniques to the non-Hermitian case
is a potential direction of future work.
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Appendix A

Notes on the choice of the boundary
condition

The non-Hermitian system with non-reciprocal hopping is extremely sensitive
to the choice of the boundary condition. Under the open boundary condition
(OBC), all the bulk wave functions tend to localize near a boundary of the
system. This is referred to as non-Hermitian skin effect [85, 86]. All the eigen-
values are real in this case. Contrastingly, under the periodic boundary condition
(PBC), wave functions extend over the entire system (i.e., no non-Hermitian skin
effect), and eigenvalues become complex.

The sensitivity of the system to the boundary condition has already been
recognized in the original stusies of Hatano and Nelson [33, 34]. Recent intensive
discussions on non-Hermitian topological insulators have revealed its further
consequences. In topological insulators, the bulk topology under the PBC is
in one-to-one correspondence with the appearance/disappearance of topological
boundary states under the OBC (the bulk-boundary correspondence). In a non-
Hermitian system that is subjected to the non-Hermitian skin effect, the eigen
wave functions are localized under the OBC, whereas they are extended under
the PBC. This sharp difference results in the breaking of the bulk-boundary
correspondence [85, 86, 87, 88]. As another remark, the non-Hermitian skin
effect is proposed to be topological; its occurrence under the OBC is protected by
a specific winding property of the complex energy spectrum under the PBC [89].

Under the PBC, the eigenenergies of the system takes complex values; partic-
ularly, the system exhibits a complex spectrum in the clean limit. The complex
nature of the spectrum (Im E ̸= 0) is closely related to the plane wave nature of
the eigen wave function. Under the OBC, this is no longer true even in the clean
limit. In the presence of weak disorder, the eigen wave functions are extended as
far as it is not exceedingly strong and that is sufficient for maintaining the com-
plex spectrum. Exceedingly strong disorder causes the eigen wave function to be
localized, pushing the spectrum toward the real axis. Thus, the delocalization–
localization transition in this system inevitably accompanies a spectral transition
from complex to real. In an interacting system V ̸= 0, one can expect that this
still holds. Indeed, based on the observation that numerically estimated critical
points of the ETH–MBL and complex–real transitions are close, the authors of
Ref. [36] conjecture that the two transitions actually coincide in the thermody-
namic limit. This is also reinforced by certain analytic arguments. In addition
to the conjectured double transition, the authors of Ref. [37] highlighted the
third topological transition, which is described in the last paragraph as“ at the
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double transition, the winding property of the complex spectrum under the PBC
also changes, which is in one-to-one correspondence with the disappearance of
the non-Hermitian skin effect under the OBC” [37].
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Appendix B

Free particle wave-packet dynamics in a
Hermitian system

The stationary phase approximation is the guiding principle describing the spread-
ing of a wave packet in the Hermitian limit. An explanation of this is given in
this Appendix. The Hamiltonian

Hhs =
∑
j

−J(|j⟩⟨j + 1|+ |j + 1⟩⟨j|), (B.1)

which is equivalent to Eq. (4.1) at g = 0 and W = 0, is used below. Its
eigenenergy and eigenvector specified by a wave number k are ϵk = −2J cos(k)
and |k⟩ = 1√

L

∑
j exp(ikj)|j⟩, respectively. Let us consider the time evolution

of the wave packet with an initial state that is localized at site j0. Its time
evolution is expressed as

|Ψ(t)⟩ =
∑
k

ei2J cos(k)t|k⟩⟨k|Ψ(t = 0)⟩

=
1√
L

∑
k,j

ei2J cos(k)teik(j0−j)|j⟩

∼ 1

2π

∑
x

∫ 2π

0

dkei2J cos(k)teikx|x⟩

=
1

2π

∑
x

ix
∫ π

−π

e−i2J sin(k)teikxdk|x⟩ =
∑
x

ixJ̃x(2Jt)|x⟩, (B.2)

where J̃x(2Jt) is the Bessel function.
Figure B.1(a) shows the time evolution of |Ψ(j, t)| at site j (abscissa) at time

t (ordinate) expressed by a variation of plot colors indicated in the color bar,
where Ψ(j, t) is defined as |Ψ(t)⟩ =

∑
j Ψ(j, t)|j⟩. One observes that the wave

packet symmetrically spreads in the entire system. This indicates that |Ψ(j0, t)|
approaches 0 in the limit of t→ ∞, exhibiting the delocalization tendency. That
is quantified by the return probability (RP) defined by

RP = |⟨Ψ(t = 0)|Ψ(t)⟩|2. (B.3)

In the limit of t→ ∞, RP assumes 0 in the delocalized phase, while it assumes a
finite value in the localized phase. Hence, one can characterize the localization–
delocalization transition by using RP. In the delocalized phase, the wave packet
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spreads throughout the system, so that |⟨Ψ(t = 0)|Ψ(t)⟩| becomes 0 in the limit
of t→ ∞. In contrast, in the localized phase, a large portion of the wave packet
remains in the initial state, so that |⟨Ψ(t = 0)|Ψ(t)⟩| remains finite even in the
limit of t→ ∞. The free particle case belongs to the delocalized phase. This can

(a) (b)

Figure B.1: Free particle dynamics in the Hermitian case: (a)|Ψ(j, t)| and (b)
RP as a function of time. Data are obtained in the system of L = 601 with the
initial state localized at j0 = 301. The black dotted line in panel (b) represents
the line of RP= 1.

be seen in the asymptotic behavior of ⟨Ψ(t = 0)|Ψ(t)⟩ by using the stationary
phase approximation. This result is

⟨Ψ(0)|Ψ(t)⟩ =
1

2π

∫ 2π

0

dkei2J cos(k)t

∼ 1

2π

∫ ∞

−∞
dk(ei2Jt(1+

1
2
(k−1)2) + ei2Jt(−1− 1

2
(k−1)2))

=
1√
4t
(ei2Jt−

iπ
4 + e−i2Jt−+ iπ

4 )

=
1√
t
cos(2Jt− π

4
), (B.4)

where the stationary phase points are k = 0 and k = π. RP is immediately
obtained as

RP = |⟨Ψ(0)|Ψ(t)⟩|2 ∼ 1

t
, (B.5)

which vanishes in the limit of t → ∞. Figure B.1(b) shows that RP in the
free particle case decreases as time increases. This behavior is consistent with
the asymptotic solution expressed in Eq. (B.5), indicating that the stationary
phase approximation correctly characterizes the wave-packet dynamics in the
Hermitian limit.
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Appendix C

Free particle wave-packet dynamics in a
non-Hermitian system with Im ϵk ̸= 0

Figure C.1: g dependence of the sliding velocity vG = [xG(t) − xG(0)]/t in the
case of W = 0. From the results shown in Fig. 4.4 (a), data at W = 0 is
extracted and replotted as a function of g. The solid line represents Eq. (C.3).
Data are obtained in the system of L = 601 and θ0 = 0 (no disorder averaging)
and with the initial state localized at j0 = 580. Taken from Fig. 14 of Ref. [74].
©2022 American Physical Society.

Let us consider a free particle motion prescribed by the Hamiltonian (4.1).
For simplicity, we switch off the quasi-periodic potential (4.2); W = 0. In this
disorder-free case, the eigenstates of the Hamiltonian (4.1) under the PBC take
the form of a plane wave eik, while the corresponding eigenenergies ϵk become
complex; refer to Eqs. (4.14) and (4.15). considering the initial state |ψ(t = 0)⟩
as shown in Eq. (4.7), we consider its time evolution Eq. (4.10). Considering the
limit L → ∞, we replace the summation over k in the last line of Eq. (4.10) by
an integral:

|ψ(t)⟩ =
∑
j

|j⟩
∫ 2π

0

dk
1√
2π
e2i cos(k−ig)t+ik(j0−j). (C.1)
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The one-body spectrum ϵ = ϵk is complex as in Eq. (4.14), and its imaginary
part Im ϵk becomes maximal at k = k0 = −π

2
. Accordingly, in the integral over

k in Eq. (C.1), the dominant contributions governing the long time dynamics
stem from those near k = k0;

|ψ(t)⟩ ≃
∑
j

|j⟩
∫ −π

2
+δk

−π
2
−δk

dk
1√
2π
e2i cosh(g)(k+

π
2
)t

×e2 sinh(g)(1−
1
2
(k+π

2
)2)t+i(k+π

2
)(j0−j)

≃
∑
j

|j⟩
∫ ∞

−∞
dk

1√
2π
e2i cosh(g)kt

×e2 sinh(g)(1−
k2

2
)t+ik(j0−j)

=
∑
j

|j⟩ exp(−((j0 − j) + 2 cosh(g)t)2

4 sinh(g)t
)

×e2 sinh(g)t/
√
4 sinh(g)t. (C.2)

Based on the last expression, one can read the group velocity of the wave packet
as

vG = 2 cosh(g), (C.3)

which is consistent with our calculations (Fig. C.1). Note that vG increases with
the increase in g. The last expression takes the form of a Gaussian wave packet
that slides in the direction imposed by g. The expanse ∆x of the wave packet
gradually increases in real space in the course of time as ∆x ≃ 2

√
sinh(g)t, while

the corresponding width ∆k ∼ 1/∆x in the reciprocal space tends to diminish
[see Fig. 4.3 (a)]. The above features are also quite manifest in panels (a) and
(b) of Fig. 4.2, although the data shown in this figure is obtained in a weak
disorder case. In time evolution, the state |ψ(t)⟩ as expressed in Eq. (C.1) tends
to be governed by the eigenstates with maximal Im ϵk [see Eq. (4.17)], while the
individual eigenstates take the form of a plane wave.

Note that the form of the Gaussian wave packet (C.2) suggests that it obeys a
square-root scaling typical to classical diffusion dynamics. Of course, we consider
the coherent quantum dynamics of the wave function ψ(x, t) that is governed
by the Schrödinger equation. However, in the present non-Hermitian setup,
the non-reciprocal nature of the hopping strongly suppresses the interference of
the complex wave function ψ(x, t), characteristic to the Schrödinger quantum
dynamics. As a result, the wave function ψ(x, t) as expressed in Eq. (C.2)
effectively obeys the classical diffusion dynamics.
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Appendix D

Effects of anticommutation relation on
entanglement dynamics

(a)

(b)

hard-core boson

fermion

Figure D.1: Time evolution of the entanglement entropy in the (a) hard-core
boson and (b) fermion models. We employ the same numerical parameters as in
Fig. 5.4. Taken from Fig. 15 of Ref. [74]. ©2022 American Physical Society.

Thus far we have considered systems of hard-core bosons; cf. Refs. [36] and
[37]. In a system of true fermions, the anticommutation of bj and b†j leads to a
subtle sign difference at the periodic boundary. Here, we examine whether this
sign difference results in a significant consequence in entanglement dynamics.
Figure D.1 (a) shows selected plots from Fig. 5.4 (b), which demonstrates time
evolution of the entanglement entropy in the case of g = 0.8 in the hard-core
boson model. Figure D.1 (b) represents the corresponding data in the fermion
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model under the same condition. In the critical and localized regimes, W > 3–4,
the wave functions are not extended, and the corresponding fermion states are
expected to be immune to the sign difference. The result of our simulation in
the fermionic case confirms that the entanglement entropy exhibits essentially
the same behavior in the two models, that is, the anticommutation relation
plays no role in this regime. In the delocalized regime (W < 3–4), the wave
functions are extended over the entire system, so that the resulting fermion state
may be influenced by the statistics. In this regime, the entanglement entropy
exhibits an oscillatory behavior in the intermediate time scale: a simple damped
oscillation in the case of hard-core boson model. In the fermionic case, one can
still recognize a similar oscillatory pattern; however, it does not take any longer
than a simple damped oscillation and also survives longer than in the hard-core
boson case. Thus, the anticommutation relation influences the behavior of the
entanglement entropy in the delocalized regime at a quantitative level; however,
the qualitative statements regarding its behavior in the hard-core boson model
can still be applide to the fermionic case. The behavior of the entanglement
entropy is essentially unchanged in the critical and localized regimes.
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Appendix E

The entanglement entropy in the ETH
and MBL phases (Hermitian case)

Let us comment on the relation between the entanglement entropy and the local-
ization length. The multifractal dimension D2 expressed in Eq. (5.4) measures
the extent to which the eigenstates are localized in Hilbert space; this is related
to the extent to which the wave functions are localized in real space. Thus, in
the regime of strong disorder in the Hermitian case: g = 0, D2 behaves asymp-
totically as D2 ∼ log(ξ) [67], where ξ represents the localization length in real
space. This implies that the true Fock space-localization D2 = 0 is generally
never achieved [43, 90, 91], since ξ is generally finite in the localized phase,
except in the limit W → ∞.

Fock-space localization effectively restricts the available Hilbert space, thus
affecting the maximal value of the entanglement entropy; cf. in the free case, it
expressed as Eq. (5.2). In a more generic case with a finite D2, it becomes [92]

Stot ∼ Dent
L

2
log(2), (E.1)

where Dent is a quantity related to D2:

Dent =

{
1, D2 ≥ 1/2

2D2, D2 < 1/2.
(E.2)

In the ETH side of D2 > 1/2, the reduction of the multifractal dimension D2

due to a finite W does not lead to reduction of the entanglement entropy Stot,
while in the MBL side of D2 < 1/2, Stot decreases linearly with a decrease in
D2. Stot does not exhibit a finite jump at the ETH–MBL transition point of
D2 = 1/2 and gradually crosses over from the ETH side to the MBL side. In
the time evolution of Stot(t) plotted in Fig. 5.1 (a), its saturated value in the
long time scale remains the same in the delocalized phase of W ≤ 2, while in
the localized phase of W > 2, it decreases continuously from this value with an
increase in W .
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