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Abstract

Methods for Robust Training of Deep Neural Networks in the Pres-

ence of Noisy Labels

誤りを含む教師信号からの深層学習の頑健な訓練法

In recent years, deep neural networks have achieved significant results in a variety of

machine learning domains, including computer vision, natural language processing, and

recommendation systems. Despite their efficacy, deep neural networks require a signifi-

cant amount of data to train the models effectively. To solve this issue, some in-expensive

data collection techniques such as web crawling have been developed. However, there is

a risk that these data collection techniques may generate incorrect labels. When deep

neural networks models for image classification are trained on datasets with such noisy

labels, their generalization performance is significantly hindered. This problem is referred

to as Learning with Noisy Labels (LNL).

To mitigate the degradation of generalization performance caused by noisy labels, we pro-

posed three different methods to prevent a model from over-fitting to such noisy labels

for image classification. The first approach utilizes feature vectors of training samples

extracted from the hidden layer of a deep neural network model to construct an affinity

graph based on the similarity between pairs of feature vectors. The model is then ro-

bustly trained by iteratively correcting noisy labels through graph label propagation on

the affinity graph and updating the network parameters.

The second approach is based on one of the recent researches in LNL, known as DivideMix[33],
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Abstract iv

which effectively partitions the dataset into samples with clean labels and those with noisy

labels by modeling the loss distribution of all training samples with a two-component Mix-

ture Gaussian model (GMM). The divided dataset is then treated as labeled and unlabeled

samples and the classification model is trained in a semi-supervised manner. However,

since the selected samples have lower loss values and are easy to classify, the training

models are in risk of over-fitting to the simple patterns during training. To train the

classification model without overfitting to the simple patterns, we propose to introduce

consistency regularization on the selected samples by GMM. The consistency regulariza-

tion perturbs input images and encourages the model to output consistent values to the

perturbed images and original images. The classification model simultaneously receives

the samples selected as clean and their perturbed ones, and it achieves higher generaliza-

tion performance with less over-fitting to the selected samples.

The third approach exploits the property that deep neural networks are robust to noisy

labels in the early stages of learning. Recent studies have shown that deep neural networks

are robust to the noisy labels in the early stage of learning before over-fitting to noisy

labels, as deep neural networks learn the simple patterns first. Therefore deep neural

networks tend to output true labels for samples with noisy labels during the early stage

of learning, and the number of false predictions for samples with noisy labels is higher

than for samples with clean labels. Based on these observations, we propose a new sample

selection approach for LNL utilizing the number of false predictions. Our method peri-

odically collects records of false predictions during training and select samples with a low

number of false predictions from recent records. Then our method iteratively performs

sample selection and trains a deep neural networks model using the updated dataset. As

the model is trained with more clean samples and records more accurate false predictions

for sample selection, the generalization performance of the model gradually increases.

We demonstrate that our methods yield superior performance compared to the baseline

and several state-of-the-art methods in image classification tasks with noisy labels
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Chapter 1

Introduction

1.1 Impact of Deep Neural Networks on Society

Artificial intelligence is an attempt to artificially imitate the functions of the human brain,

and in recent years it has rapidly begun to proliferate in many areas of our lives. One of

the fundamental technologies for achieving artificial intelligence is machine learning, which

utilizes training data to discover patterns and automatically determine the parameters of a

model. Machine learning is a highly valuable tool, and is applied to essential technologies

and services such as cameras, smartphones, and social media [31]. Specific applications

of machine learning include e-commerce recommendation systems, object recognition in

images, face detection, automatic language translation, speech to text, and matching

between products and users. In all of these applications, the use of deep neural networks

(DNNs) which have evolved with the availability of large scale datasets and advancements

in computational resources, plays an important role.

DNNs are a machine learning model that consists of multiple hierarchical processing

layers, enabling the learning of representations of data at multiple levels of abstraction

[31]. Each layer of the DNN tunes the parameters of the model to output the target

signal based on the representation of the input data obtained from the lower layers. The

enormous combination of such transformations allows DNNs to learn and represent highly

1



Introduction 2

complex functions that can perform pattern recognition tasks. The strength of DNNs

is that it can learn such complex functions from data automatically, without requiring

careful engineering and significant expertise. DNNs outperformed conventional methods

in image classification accuracy in the ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC) 2012 [27], and since then has attracted worldwide attention as a superior

machine learning method. Since then, DNNs have continued to solve problems that

artificial intelligence has faced over the years, such as image recognition[27, 30, 61, 64]

and speech recognition [19, 40, 56], and are expected to achieve greater success in the

near future.

1.2 Preparation of training dataset for DNNs

DNNs is used in diverse fields such as information retrieval [47, 48, 77], computer vision

[27, 29, 52, 53], speech recognition [19, 40, 56], and natural language processing [11, 20, 57].

One drawback of DNNs is that it requires a large amount of accurately labeled training

data in order to train DNNs stably. The label of a data sample refers to the category to

which the sample belongs and is mainly used for classification training. Usually, in order

to prepare those data sets, we ask experts to label them accurately, but the problem is

that it takes an enormous amount of time and money to label all the samples. To al-

leviate such high costs, non-expert technologies have been developed, such as Amazon’s

mechanical Turk, which generates data by asking anonymous amateurs to fill out ques-

tionnaires, and web crawling, which automatically collects labels for data from keywords

surrounding images on the web [63, 68, 69]. An example of a dataset collected with these

techniques is ImageNet, a dataset containing 15 million high-resolution images in 22,000

categories, which was used to train AlexNet, the winner of image classification compe-

tition ILSVRC2012 [27]. T.Xiao et al.[68] collected 10 million images of clothing from

various online shopping websites and automatically categorized the clothing based on key-

words surrounding the images. This dataset, titled "Clothing1M," is primarily utilized
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Figure 1.1: Examples of Labeling Strategies

for image classification of clothing. Fig.1.1 shows some examples of labeling strategies for

data collection.

1.3 DNNs and Noisy Labels

1.3.1 Introduction to Noisy Labels

Non-expert data collection techniques such as crowdsourcing have contributed greatly to

the development of DNNs by creating large datasets. However, the labels assigned by

these non-experts are inaccurate compared to those assigned by experts, and the assigned

labels may contain errors [6, 8, 39, 49, 59, 63, 68, 69, 72]. For example, in ImageNet

collected by Amazon Mechanical Turk, incorrect labels are generated due to insufficient

knowledge of workers and insufficient explanation of label assignment [74]. Even when

labels are assigned by experts, mislabeling occurs when the quality of the data provided

to the experts is poor or when samples are difficult to discriminate [14]. The medical

imaging datasets can also have problems with mislabeling due to different criteria for

judging abnormalities depending on the skill of the physicians [23]. Label errors may
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Figure 1.2: Examples of Source of Noisy Labels

also occur simply due to data encoding errors or communication problems [14]. These

mislabeled labels, which differ from the ground-truth, are called "noisy labels". Since

it is difficult for humans to accurately label all data when they are involved in labeling,

noisy labels are a practically unavoidable problem in real-world applications of machine

learning. Fig.1.2 shows some examples of source of noisy labels. In fact, analyses of real-

world datasets containing noisy labels have reported that the percentage of samples with

noisy labels ranges from 8.0% to 38.5% [32, 34, 59, 60, 68].

1.3.2 Impact of noisy labels on classification with machine learn-

ing and DNNs

One of the tasks in which machine learning has been particularly successful is classification

learning. This is the problem of training a model to learn patterns for each category from

training data and to predict the category to which a sample of test data belongs. However,

the performance of machine learning models depends on the quality of the labeled dataset,

and if the teacher signals (labels) are incorrect, the performance will be significantly

degraded. Since noisy labels are an inherent problem, learning methods robust against
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Figure 1.3: In this thesis, we focus on the case where noise is present in the teacher
signal, rather than the case where noise is present in the input space. Above figure shows
an example of robust learning for noisy input. The lower figure shows an example of
robust learning with noise in the teacher signal, which is the subject of this thesis.

the noisy labels are crucial for machine learning. Let y be the category to which the

input data sample x truly belongs. Let ỹ be the label incorrectly assigned to sample x.

If a machine learning classifier is trained with noisy labels, it learns the wrong posterior

probability p(ỹ|x) rather than the true posterior probability p(y|x). Consequently, the

classifier makes incorrect predictions on the test images. In this thesis, we assume that

the training data (x, ỹ) is sampled from the wrong distribution and there is noise in the

labels, but no noise in the input data features. Fig.1.3 clearly illustrates the distinction

between general robust learning for input noise and the robust learning examined in this

thesis. In general robust learning, the classifier is trained to correctly output the value of

the teacher signal even if there are missing or noisy samples in the input space. In this

thesis, we assume that the noise is not in the input space, but rather in the teacher signals

of some of the input samples. As shown in the lower part of Fig.1.3, the input image has

no noise, but the teacher signal contains errors.
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Figure 1.4: This figure shows the classification accuracy on a testset performed by DNNs
models trained on a dataset with noisy labels with different noise rates. The y-axis and
x-axis represent the classification accuracy on test set and the number of training epochs
during training, respectively, and NR denotes the noise rate in training set.

In particular, DNNs models have been reported to overfit easily to label noise because

of the large number of parameters in the model and the ability to represent any complex

function [2, 25]. When DNNs models overfit to noisy labels, generalization performance

deteriorates, resulting in poor performance on test data [75]. This property of DNNs

that tends to overfit label noise is called the memorization effect [2, 37]. Analysis of

the memorization effect revealed that DNNs learn simple patterns of the input data in

the early stages of learning, resulting in high generalization performance. After learning

those patterns, DNNs start overfitting to samples with noisy labels and deteriorates its

performance.

Fig.1.4 shows the classification accuracy on the test set of DNNs using the CIFAR-10

dataset as training data with artificial noisy labels. NR denotes noise rate, and is the

percentage of samples with noisy labels in the training dataset. The noisy labels were
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assigned by randomly selecting NR% of the training samples and randomly assigning new

labels to them. The training model is a DNNs, and model parameters are tuned by the

stochastic gradient descent. The accuracy curve with 0% NR corresponds to the classifi-

cation accuracy of a model trained on a clean dataset and maintains higher classification

accuracy during training. However, as the value of NR increases, the proportion of noisy

labels in the training data increases, simultaneously decreasing classification accuracy. It

is clear that label noise has a negative impact on the generalization performance of DNNs,

indicating that a robust learning method against noisy labels is required for applications

of DNNs. In this thesis, we describe our proposed methods that reduce the effects of label

noise and robustly train the DNNs models.

1.4 Structure of This Thesis

Chapter 2 first provides an overview of image classification and DNNs, where the structure

and learning algorithm of DNNs are explained. This is followed by a definition of noisy

labels and a description of the problem setup for classification problem using DNNs. In

addition, previous studies on label noise using DNNs will be discussed. Chapters 3, 4,

and 5 introduce research methods for reducing gaps in generalization performance caused

by the presence or absence of noisy labels in image classification problems. Finally, we

conclude this thesis by summarizing the contributions of this study and discussing future

issues to be addressed in Chapter 6.

1.4.1 Label Noise Removal by Graph Label Propagation

The method described in Chapter 3 [44] proposes a method to update noisy labels to clean

labels during the training of DNNs model in order to alleviate the noisy labels problem.

The proposed method extracts feature vectors of all training samples from the hidden layer

of the DNNs model before the model starts overfitting to noisy labels, and constructs a

similarity graph between training samples. Noisy labels are removed by performing label
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propagation on the graph. The model training is then resumed using the updated data

set. By alternatively performing label updates and parameter updates, we achieved a

training method that is robust to noisy labels.

We evaluated the performance of the proposed method on MNIST, a handwritten

numeric character dataset, and CIFAR-10, a 10-class image dataset, by conducting com-

parative experiments using artificial label noise. It is found that the proposed method

does not overfit to the noisy labels and maintains a high accuracy rate compared to other

methods.

1.4.2 Consistency Regularization on Clean Samples

In Chapter 4, we applied the self-supervised learning technique and proposed a method

for robustly learning models in the presence of noisy labels in image classification [45].

In the prior study, DivideMix [33] focused on the error value of each sample given by a

DNNs model and successfully partitioned the dataset into a clean dataset and a dataset

with noisy labels by training a two-component mixture Gaussian model on the distribu-

tion of error values. DivideMix treats samples with small error values as clean samples,

but samples with small error values tend to have simple patterns that are easy to clas-

sify. If a training model focuses on these samples, the model will overfit to the simple

patterns and ignore the samples with clean labels but difficult to classify. Therefore, we

introduced Consistency Regularization (CR) for samples selected as clean by DivideMix

and succeeded in learning clean samples that are difficult to classify, while preventing

overfitting to simple patterns.

Artificial label noise was applied to the benchmark image classification datasets CIFAR-

10 and CIFAR-100 and our method is compared with DivideMix and State-of-the-art

methods. The test set achieved a better classification accuracy than both methods, indi-

cating that CR contributes to the improvement of generalization performance. We also

varied the coefficient of CR in the loss function and showed that as the coefficient of CR

increased, the classification error for the selected sample increased, indicating that CR is
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effective in preventing model from overfitting to the clean samples.

1.4.3 Number of False Predictions for Sample Selection

Chapter 5 describes a novel sample selection method for robustly training DNNs in the

presence of noisy labels in image classification [46]. DNNs are robust to noisy labels

in the early stages of learning because it learns simple patterns first. In other words,

since the model predicts the true label for each sample in the early stages of learning,

the model makes predictions that are inconsistent with the label given to samples with

label noise. For samples with label noise, the total number of false predictions that occur

during training is higher than for clean samples. From prior experiments, we observed

that the number of false predictions for clean samples is lower than for samples with label

noise. Therefore, we proposed a new sample selection method that takes into account the

number of false predictions for samples.

Comparative experiments were conducted using CIFAR-10 and CIFAR-100 with artifi-

cial label noise. The proposed method achieved a superior classification accuracy than the

state-of-the-art sample selection methods, indicating that it is one of the effective sample

selection methods. The quality of sample selection during training was also measured by

F-score, which showed an improvement in sample selection during training.



Chapter 2

Learning with Noisy Labels

In this chapter, we describe image classification, deep neural networks (DNNs), the defi-

nition of noisy labels, and related works on the proposed method described in this thesis.

2.1 Image Classification

Image classification is the problem of predicting the category to which an object in an

input image x belongs by feeding the input image x into a classification model. Image

classification is one of the most popular problems in the field of machine learning, and

various methods, not limited to DNNs, have been used to solve this problem. To perform

image classification, a large dataset of images containing objects of the desired categories

is typically prepared, and each image is labeled based on its category. The machine

learning model for image classification receives an image as input and outputs a vector of

posterior probabilities that the image belongs to each category. Fig.2.1 shows an example

of image classification where a general machine learning model receives an image as input

and outputs category prediction. The category corresponding to the highest posterior

probability in the output vector should match the given label, but this is rarely achieved

before training. The difference between the output predicted category and the given

label is measured by an error function, and the adjustable parameters within the machine

10
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Figure 2.1: This figure shows how image classification works with a image classifier
(DNNs). The image classifier receives an image as input and predicts the class to which
the image belongs. The error function measures whether the prediction matches the given
label, and the parameters of the model are tuned to reduce the value of the error function.

learning model are tuned to reduce the error value. This tunable parameter is a real value

called a weight, which is responsible for adjusting the input-output function of the model.

In the case of DNNs, there are hundreds of millions of these tunable weights inside, and

a huge amount of training data is required to tune the them.

2.2 Deep Neural Networks

2.2.1 Model of a Simple Perceptron

Perceptron was proposed as a classifier of pattern recognition by learning weights of a

model from training samples using linear threshold unit [28, 55]. The linear threshold

unit is a model of a neuron in its simplest form and can be described as follows: A neuron

receives inputs xj (j = 1, · · · ,M) from other neurons and fires when the sum of these

inputs multiplied by the weight w exceeds a certain threshold value (f(x) = 1), and

does not fire when it does not exceed the threshold value (f(x) = 0). Fig.2.2 visualizes

the linear threshold unit. The simple perceptron computes the output f(x) for input
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Figure 2.2: A linear threshold unit

x = (x1, · · · , xM)T as follows:

f(x) = σ(η(x)) (2.1)

η(x) =
M∑
j=1

wjxj − h = wTx− h (2.2)

where σ is a threshold function, wi is a weight from the i-th unit to the output unit and h

is the bias. The value of f(x) from the output unit is defined by the following threshold

function σ:

σ(η) =


1, if η ≥ 1

0, otherwise
(2.3)

This threshold function divides the input feature space into regions where the output of

the perceptron is 1 and regions where the output of the perceptron is 0. In other words,

the perceptron is a classifier that discriminates the feature space into two classes.

There is an "error correction learning" algorithm [55] for learning to estimate the

parameters of a simple perceptron that performs two-class classification. In the algorithm,

the simple perceptron receives one of the training data and the parameters of model are

updated if its output results differ from the teacher signal. Let {(xi, ti)|i = 1, · · · , N} be

a dataset of size N , where the samples are pairs of an input vector xi and a teacher signal
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Figure 2.3: Multilayer Perceptron

ti. The equations for updating the parameters of parameters given a randomly selected

training sample (xi, ti) are as follows.

w ⇐ w + α(ti − f(xi))xi = w + αδixi (2.4)

h⇐ h− α(ti − f(xi)) = h− αδi (2.5)

The value of δi = ti− f(xi) is 0 if the output from perceptron matches the teacher signal

and ±1 if they differ. α is a small positive real number called the learning rate.

2.2.2 Multilayer Perceptron

Simple perceptron is effective for linearly discriminative tasks, but they must be used in

combination to solve more complex tasks [28]. In fact, the brain has an enormous amount

of neurons that are connected to each other to achieve complex information processing.

A network that mimics this brain mechanism by combining multiple perceptrons in a
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hierarchical structure is called a MultiLayer Perceptron (MLP). Many networks achieve

complex input-output mappings by introducing nonlinear functions called activation func-

tions, which reproduce the firing of neurons, to the outputs of each layer. Fig.2.3 shows

an example of a multilayer perceptron consisting of three layers: an input layer, an inter-

mediate layer, and an output layer. The number of units in the input, intermediate and

output layers are I, J and K, respectively. Let z be the output vector when the input

vector x is input to the MLP. Each element of the vectors in the intermediate and output

layers is obtained as follows:

zk = o(
J∑

j=1

w
(2)
jk yj) (2.6)

yj = h(
I∑

i=1

w
(1)
ij xi) (2.7)

where wij(1) and wjk(2) are the weight from the i-th element of the input vector x to the

j-th unit of the intermediate layer, and the weight from the j-th unit of the intermediate

layer to the k-th unit of the output layer, respectively. h and o are the activation and

output functions of the intermediate and output layers, respectively. When propagating

information from one layer to the next, each unit computes a weighted sum of the inputs

from the previous layer and passes the result through a nonlinear function. A network

that propagates the information of sample x in one direction from the input layer to the

intermediate layer and then to the output layer is called a feed-forward neural network.

For classification problem, the output function is generally the softmax function. The

multilayer perceptron is expressive enough to approximate any continuous function, how-

ever, it is difficult to tune the parameters manually due to the large number of parameters.

To solve this problem, a learning method by backpropagation has been proposed as an al-

gorithm to tune appropriate weights from training data. The backpropagation algorithm

finds the gradient of the objective function with respect to the inputs to each unit in the

model by the chain rule of derivatives. The backpropagation repeatedly propagates gradi-
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ent from the upper layer to the lower layer to obtain the gradient for all units. Once these

gradients are computed, the gradient for the weights of each unit can be computed. Let

{(xn, tn)|n = 1, · · · , N} be the sample set for training, and define the objective function

L of the network output z and the teacher signal t as follows:

L =
1

2

K∑
k

(tk − zk)2 (2.8)

Since the backpropagation method requires computing the partial derivative of the

loss function L, the activation function must be differentiable. The activation function

frequently used in the past is a sigmoid function defined as follows:

h(z) =
1

1 + exp(−z)
(2.9)

Currently, the most used activation function is Relu, which is defined as follows:

h(z) = max(0, z) (2.10)

The partial derivative of the error function L with respect to the w(2)
j,k and w

(1)
i,j of the

model in the figure is obtained as follows:

∂L
∂w

(2)
j,k

=
∂L
∂zk

∂zk

∂w
(2)
j,k

(2.11)

= δk
∂zk

∂w
(2)
i,j

(2.12)

∂L
∂w

(1)
i,j

=
K∑
k

∂L
∂zk

∂zk

∂w
(1)
i,j

(2.13)

=
K∑
k

∂L
∂zk

∂zk
∂yj

∂yj

∂w
(1)
i,j

(2.14)

=
K∑
k

δk
∂zk
∂yj

∂yj

∂w
(1)
i,j

(2.15)
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where the value of δk is defined as follows:

δk = tk − zk (2.16)

Using the partial derivatives of the obtained error function L with respect to the weights,

each parameter of the model is updated as follows:

w
(2)
j,k ← w

(2)
j,k − α

∂L
∂w

(2)
j,k

(2.17)

w
(1)
i,j ← w

(1)
i,j − α

∂L
∂w

(1)
i,j

(2.18)

Since calculating the gradient using all training samples and updating parameters is com-

putationally expensive, there is a method in which a single piece of data is randomly

selected and the gradient is calculated. This method is called stochastic gradient descent.

In actual applications, it is common to input a subset of the samples into the model as a

mini-batch and calculate the gradient.

2.3 Convolutional Neural Network (CNN)

Deep Neural Networks (DNNs) is a multilayers perceptron with multiple layers and has

attracted attention due to its high discrimination performance in image recognition tasks.

DNNs used in ILSVRC2012 is called Convolutional Neural Network (CNN), which is

based on the visual information processing of the brain and is constructed using local

connections, weight sharing, pooling, and the use of multiple layers [27, 28, 31, 58].

The architecture of a typical CNN (Fig.2.4) differs from a simple multilayer perceptron

in that the lower and upper layers have different processing roles. The lower layers closer

to the input consist of two types of layers: convolutional layers and pooling layers. Let

X(i) ∈ Rc×h×h be the input to the i-th convolutional layer and let F be the set of weight

filters, called filter bank of the convolutional layer. X denotes feature maps of size h× h
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Figure 2.4: CNN

in height and width and c in number of channels. If X is an RGB image, the value of c is

3. For the output of the hidden layer, the value of c is set arbitrarily. F contains the cout

filters, and the size of the j-th filter W (i,j) is f×f×c. f×f is the vertical and horizontal

size of the filter W (i,j), cout is the number of channels in the output feature map from

the CNN. Each unit in the convolution layer are locally connected through a filter to the

feature maps output from the previous layer. The j-th filter W (i,j) slides over the input

feature map and performs a weighted transform for each patch region of size f × f . The

result of the linear transformation of the input feature map by the j-th filter is the feature

map U (i,j). The units in the feature map U (i,j) are computed by the same filter W (i,j),

and a different filter is used to obtain other feature maps. The area where the filter is

applied is a local area, imitating the receptive field that stimulates the neurons. Weight

Sharing, in which the same filter is used in sliding fashion regardless of its position in the

image, has the effect of reducing the number of parameters. The obtained feature map

U (i,j) is transformed by an activation function σ such as Relu to obtain the input to the

next layer.

X(i+1,j) = σ(U (i,j)) (2.19)



Learning with Noisy Labels 18

While the role of the convolution layer is to detect local features of the previous layer’s

features, the role of the pooling layer is to merge semantically similar features into one.

The pooling layer downsamples the feature map by dividing the feature map into small

regions and converting each local region to a scalar value. Since the relative positions of

the features forming an object vary slightly, a coarse look at the position of each feature

can be used to reliably detect the feature. Various pooling methods have been proposed,

but a typical pooling unit is a method that outputs the maximum value of one local

region. Another pooling method is average pooling, which outputs the average value of

each local region.

The structure of CNNs consists of several iterations of convolution layers, activation

functions, and pooling layers, followed by a fully connected layer. The full-connected

layer (FC) receives the vectorized output x of the previous layer and performs a linear

transformation using the weights W .

y =Wx ∈ Rk (2.20)

where k is a number of classes. The posterior probability that the input data belongs to

the i-th class is obtained using a softmax function as follows:

pi =
exp yi∑k
i exp yi

(2.21)

When classifying classes, the index that has the largest posterior probability in the output

vector from the softmax function is used as the predicted class.

When training a CNN, the gradients can be computed using the backpropagation

algorithm and the weights of filter bank can be tuned using stochastic gradient descent,

as in the usual multilayer perceptron. In the i-class classification problem, the cross

entropy loss using the posterior probabilities of all training samples obtained by feeding
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N samples into the model and the teacher signal t can be written as follows:

L = − 1

N

N∑
n

k∑
i

tn,i log pn,i (2.22)

where pn = (pn,1, · · · , pTn,k) is a posterior probability of n-th sample and pn = (pn,1, · · · , pn,k)T

is a teacher signal of n-th sample. This is the error function for classification learning.

pn,i and tn,i are the probability that the n-th training sample belongs to class i and the

i-th element of the teacher signal tn for that sample, respectively. The teacher signal tn

is a one-hot vector representing the class to which the training sample belongs, tn,i = 1

if the class to which the training sample belongs is i, otherwise tn,i = 0. As in the case

of MLP, CNNs are generally SGD with mini-batches rather than optimization with all

samples.

2.4 Definition and Taxonomy of Noisy Label, and Prob-

lem Setting

This section describes the definition and classification of label noise. In addition, label

noise targeted by the proposed method presented in this thesis is described.

2.4.1 Definition of Noisy Labels

In this thesis, sample labels that are assigned differently from the ground-truth labels

are defined as noisy labels. While noisy labels simply occur during the process of label

assignment, in other cases, the relationship between the features of the input samples and

the class labels affects the probability of noisy labels occurrence. This thesis focuses on

noisy labels which are independent from the features of input, but noisy labels which are

instance-dependent have also been studied. When we refer to noisy labels in this thesis,

we imply that the noise is present only in the labels and not in the input feature.
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2.4.2 Taxonomy of label noise

Instance-independent noisy labels

Label noise that is generated independently from the input features is referred to as

instance-independent label noise [42, 50, 75]. This label noise is generated by the noise

transition matrix with noise rate r, and is modeled as follows: In k-class classification

problem, the noise transition matrix is T ∈ [0, 1]k×k, where each element Tij = p(ỹ =

j|y = i) represents the probability that a sample belonging to class i incorrectly assigned

to class j. The most used type of noise is symmetric label noise, which randomly reassigns

true labels to one of the classes with equal probability [7]. Symmetric label noise can be

of two types: one in which all classes are randomly assigned, and another in which all but

the true label are randomly assigned, and the former is used in this study. Symmetric

label noise is less practical label noise, but it is the label noise used as a baseline in many

studies on noisy labels [60].

Another type of label noise is asymmetric label noise [50], which assigns sample label

only to a particular class. For example, flip labels between classes with visually similar

information, such as dogs and cats, cars and trucks. This property is similar to the

label noise that occurs in the real world. Fig.2.5 visualizes examples of noise transition

matrices for symmetric label noise and asymmetric label noise. In this thesis, experiments

are conducted on these two types of artificial noisy labels.

Instance-dependent noisy labels

This label noise differs from the above label noise in that the input x has an effect on the

probability of label noise occurrence as well. The probability of occurrence of this label

noise depends on the input feature x and is closer to the label noise that occurs in the

real world [16, 68].



Learning with Noisy Labels 21

Figure 2.5: k is number of classes, and r is noise rate. Each plot shows an example of
the noise transition matrix where k = 4: (a) symmetric label noise, (b) asymmetric label
noise

2.4.3 Problem Setting: Classification with Noisy Labels

Here we will introduce the problem setting and the notation of symbols used in this thesis.

Column vectors and matrices are denoted in bold font (e.g. x ) and capitals (e.g. X),

respectively. Specifically, let 1 be a vector whose elements are all 1. In supervised image

classification problem with k classes, we denote a set of n training samples with clean

labels as DGT = {(xi,y
GT
i )}ni=1 = {X ,YGT} where xi is a training image and yGT

i is

a one-hot vector representation of the ground truth label for the image xi. We define

the set of hard-labels as {yi : yi ∈ {0, 1}k , 1⊤yi = 1}ni=1 and the set of soft-labels as

{yi : yi ∈ [0, 1]k , 1⊤yi = 1}ni=1. The objective function to be minimized with the true

labels is the cross-entropy loss defined as:

L = − 1

n

n∑
i=1

k∑
j=1

yGT
ij log sj(θ,xi), (2.23)

where θ denotes the parameters of DNNs and s is the output vector from the k-class

softmax layer of the model.

In this thesis, we denote a set of n training samples with noisy labels as D̃ =
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{(xi, ỹi)}ni=1 = {X , Ỹ}. Training a classification model by minimizing the objective

function Eq.(2.23) with D̃ deteriorates its generalization performance and classification

accuracy. Also we assume that a small set of clean samples are always available with a

minimum effort by experts. We denote a small set of clean samples as Dc = {(xc
i ,y

c
i)}n

c

i=1 =

{X c,Yc}, where nc is the number of clean samples and n ≫ nc. The small amount of

clean data Dc is used in Chapter 3.

2.5 Related Works

2.5.1 Label Correction

This section describes prior works on noisy labels with label cleaning, which is related to

the method proposed in Chapter 3. Manually correcting labels for all samples is expensive.

Therefore, several algorithms have been proposed to automatically correct labels. Most

label correction methods feed samples into a deep learning model and use the model’s

predictions during training to correct labels. By removing label noise many times during

training, the robustness of the model against label noise is gradually improved. [54]

substitutes the noisy labels to softmax outputs or linear combination of given labels and

predicted labels after some warm-up training epochs. Since the model is robust in early

learning phase, prediction probability from the softmax layer of DNNs is more reliable

label than the noisy labels. The joint optimization framework [62] minimizes the error

function by alternating updating labels by predicting models in training and updating

models by SGD. In order to prevent the updated classes from being concentrated in one

class, regularization is used to equalize the posterior probabilities of the labels. A similar

method [71] adds compatibility loss to preserve information on originally clean samples

while preventing the updated labels from deviating from the original labels. Han et al.

[18] determines a prototype sample in each class and corrects label noise by measuring the

difference between each sample and the prototype of the class to which it belongs. Yao
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et al. [70] introduced quality embedding, a hidden variable that expresses the reliability

of the assigned labels, and an additional network to extract the true labels. When there

are missing labels in multi-label classification, Durand et al. [12] prepared two networks,

where one network detects and corrects the missing labels, and the second network is

trained with the corrected labels.

2.5.2 Robust Loss

Robust loss function approaches design a new loss function or use regularization to ro-

bustly train classification models for noisy labels. The goal is to design an loss function

that performs as well as the trained model in the noiseless case. Although there are several

prior studies on robust loss, performance degradation due to label noise is inevitable even

with robust loss functions [14]. The results of [38] showed that nonconvex loss functions

such as 0-1 loss are robust against noise. However, since the 0-1 loss is nonconvex and

non-differentiable, a surrogate loss for the 0-1 loss has been proposed [3]. However, this

loss is still affected by label noise.Mean Absolute Error (MAE) is empirically shown to

be more noise tolerant than widely used cross-entropy (CE) loss [15]. CE is sensitive

to abnormal samples and may overfit to label noise. MAE is robust to noise because

it treats all data equally, but it may underfit to training data. Then IMAE [66], which

improves the weighting of the MAE for each sample, has been proposed. Generalized

Cross Entropy [78] is an integrated method of MAE and CE to leverage the advantages of

both losses. Early learning regularization (ELR) [36] keeps the loss value of clean samples

large enough for training after the early learning phase by adding a regularization. Some

other approaches utilize the estimated noise transition matrix of classes to modify the loss

function to let the model recognize which classes tend to have noisy labels while training

[16, 50] .
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2.5.3 Sample Selection

The sample selection method selects samples to be fed into the model, allowing the model

to learn robustly without having to learn samples with noisy labels. They monitor the

output of the model during training and select samples to be trained at the next epoch.

These methods operate outside of existing systems and can be easily incorporated into

the existing systems. Curriculum learning [4] is a learning method that starts with easy

samples and gradually gives harder samples to the learning model. In learning with

noisy labels, clean samples are considered easy samples and samples with noisy labels are

considered hard samples. The model starts learning with reliable clean samples, and when

it finishes learning those samples, it gradually learns samples that are suspected to have

label noise. In the teacher-student model approach [22], the teacher model selects clean

samples and the student model learns them. Instead of using a predefined curriculum,

the teacher constantly updates the curriculum according to the student’s output.

Some methods exploit the robustness in the early learning phase to detect samples

with noisy labels since the value of loss function on samples with noisy labels tend to be

higher than ones with correctly labeled. Co-teaching [17] prepares two networks and each

network selects samples with lower loss value as clean samples. Then each network is

trained with a subset of samples selected by another network to prevent overfitting. Co-

teaching+ [73] is an improved version of Co-teaching by adopting disagreements between

the networks, where only samples predicted differently by the two networks as clean

samples. Topofilter [67] detects noisy labels by k-nearest neighbor analysis based on the

distance between pre-logits feature of each sample.

2.5.4 Other Approaches

Some other approaches perform a combination of label correction and iterative sample

selection [1, 33, 59]. Most notably, DivideMix [33] uses two networks like Co-teaching and

performs sample selection by fitting a two-component Gaussian Mixture Models (GMMs)
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at each network to the loss distribution of all training samples. Then prepares clean

samples and noisy samples as labeled samples and unlabeled samples to train the networks

with the semi-supervised learning technique called MixMatch [5]. Recently, AugDesc[43]

has been proposed which utilizes weak augmentation of images for sample selection and

strong augmentation for parameter updates.



Chapter 3

Robust Training of DNNs with Noisy

Labels by Graph Label Propagation

3.1 Introduction

We proposed a method for robustly training deep neural networks (DNNs) in the presence

of noisy labels in image classification problems [44]. Due to the large number of parameters

in DNNs, there is a problem of overfitting to noisy labels. To solve this problem, we

proposed a method to update noisy labels to clean labels by graph label propagation

during training of DNNs.

Fig.3.1 describes the abstract of our method. Our method iteratively performs label

update by constructing a similarity graph and parameter updates of model. At first, our

classification model is trained for some epochs with cross entropy loss before over-fittiting

to the noisy labels. This training period is called warmup period, during which the

model obtains the ability to function as a feature extractor. The model learns the simple

patterns of training samples first, and is robust to the noisy labels. At the start epoch

of label update, our proposed method constructs a similarity graph between the feature

vectors output from a hidden layer of DNNs of all samples. Since the model obtained

robustness against the noisy labels, samples belong to the same ground-truth class have

26
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Figure 3.1: The illustration of first proposed method. Training dataset contains im-
ages and noisy labels. After training the model for some epochs, a similarity graph is
constructed based on the similarity of feature vectors. Right lower graph shows the simi-
larity graph, where each node represents a sample and each color on a node represents a
noisy label. After the label propagation on the graph, training labels are updated.

higher similarity features. Then we assumed that label propagation on the graph would

remove noisy labels. Then it resumes training the model with the updated label. By

repeating these steps during training, the proposed method trains the DNNs robustly and

cleans up the noisy labels simultaneously. In this study, we show that the proposed method

successfully removes the noisy labels and robustly train the DNNs. We evaluated the

performance of the proposed method by conducting comparative experiments on MNIST,

a handwritten numeric character data set, and CIFAR-10, a 10-class image data set with

artificial label noise. We found that the proposed method does not overfit to the noisy

labels and maintains a high classification accuracy compared to other methods. We also

analyze the label noise removal by visualizing the eigenvectors used for label update and

the neighborhood of each sample in the feature space.
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3.2 Related Works of Label Propagation

One of the representative methods of machine learning with label propagation based on

the similarity between samples is Zhou et al. [79]. The label propagation was used for the

semi-supervised learning problem with labeled and unlabeled samples. There are several

derivatives of Zhou et al. [79] that use label propagation on graphs in image classification

problem with noisy labels [13, 65]. These methods differ from the proposed method in

that they are trained using handmade feature extraction methods such as Bag-of-Visual-

Words, rather than deep learning features during the training process. A semi-supervised

learning method for label propagation on the feature space of deep learning is proposed

in [21], but this method does not consider the noisy labels.

3.3 Proposed method

In this chapter, an one-hot vector representation of a noisy training label is denoted as

ỹ, and the matrix representation of all training noisy labels is denoted as Ỹ . In the same

way, the matrix representation of clean labels is denoted as Ỹ c

3.3.1 Iterative Label Correcting Algorithm

In this subsection, we describe how to train the parameters of the DNNs model robustly

against the noisy labels. The noisy labels are corrected by using graph label propagation

on the feature space. To make the model more robust to noisy labels, we add a small

subset of clean samples to each mini-batch during training of the model with the stochastic

gradient descent (SGD) on the loss function. The overall procedure of the proposed

method is summarized in Algorithm 1.
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Algorithm 1 Training DNNs by iteratively updating θ and Y
Input: D = {X , Ỹ}, Dc = {X c,Yc}, network parameter θ, epoch tstart, tmax;

1: for t = 1, 2, . . . tmax do
2: Update θ(t+1) by SGD on L(θ(t)|X ,X c, Ỹ(t),Yc);
3: if t ≥ tstart then
4: Extract all feature vectors {hi}n

′
i=1 from X and X c;

5: Construct the similarity matrix W (t) of the feature vectors;
6: Compute the Graph Laplacian L = I −D−1/2WD−1/2 where Dii =

∑n′

j=1Wij

7: Finds ϕ1,ϕ2, . . . ,ϕp, the p eigenvectors with smallest eigenvalue of L(t);
8: Update Ỹ(t+1) by a linear combination of the eigenvectors.
9: end if

10: end for
Output: θ(tmax), Y (tmax)

Training DNNs with Noisy Labels for Some Epochs

Usually DNNs model in the early stage of training in classification problem is robust

against the noisy labels because it only learns simple patterns before it over-fits to the

noisy labels. Therefore our proposed scheme trains DNNs model on training dataset with

the noisy labels for some epochs (t < tstart), and starts correcting the labels before it

over-fits (t ≥ tstart).

Graph Label Propagation on Feature Space

This graph-based label propagation approach is inspired by the semi-supervised method

[13]. After the label update starts (t ≥ tstart), we extract the feature vectors of all training

and clean images from the hidden layer of DNNs, specifically the fully-connected layer.

The set of feature vectors is denoted as H = {hi}n
′

i=1 where hi is the extracted feature of

i-th image and n′ = n+ nc.

Then we compute a sparse affinity graph A ∈ Rn′×n′ whose elements Aij are non-
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negative pairwise similarities between hi and hj as follows:

Aij =


exp (−∥hi − hj∥/σ2) if i ̸= j ∧ hj ∈ NNm(i)

0, otherwise
(3.1)

where NNm denotes a set of m nearest neighbors in H, and σ is the hyper-parameter of

RBF kernel. Then we define W = AT + A as a sparse symmetric adjacency matrix with

zero diagonal. The normalized graph Laplacian L is defined as L = I − D 1
2WD

1
2 with

diagonal matrix D whose diagonal elements are Dii =
∑

j Wij.

Let f ∈ Rn′ be any real valued function on the graph defined above. The smoothness

of the function is measured by the following loss function:

fTLf =
1

2

∑
i,j

Wij(
1√
Dii

fi −
1√
Djj

fj)
2. (3.2)

Let ψ ∈ Rn′ be any real valued target function on the graph. Then we minimize the

following criterion to get f which is a smooth function with respect to graph and agrees

with the target signal ψ:

J(f) = fTLf + (
n′∑
i=1

µi(fi − ψi)
2) (3.3)

= fLf + (f −ψ)TM(f −ψ) (3.4)

where M is a diagonal matrix whose diagonal elements Mii = µi assign the importance

of i-th sample. In the experiment, we assign larger value to the µ of clean sample.

Solving the above problem (Eq.3.4) requires expensive computational costs for large n.

We can reduce the computational costs by working with a small number of eigenvectors

of the graph Laplacian. We denote the sets of p eigenvectors and eigenvalues of the graph

Laplacian as {ϕi, λi}
p
i=1. Note that the smoothness of the eigenvector ϕi on the graph is

measured by ϕT
i Lϕi = λi. Therefore the eigenvector with smaller eigenvalue is smoother



Robust Training of DNNs with Noisy Labels by Graph Label Propagation 31

function on the graph. Since any function f ∈ Rn′ can be written as f =
∑

i αiϕi, the

function will be a linear combinations of the eigenvectors and with smallest eigenvalue.

Therefore we can reduce the dimension of the function by a linear combination of the

eigenvectors f = Uα where U is a n′ × p matrix whose columns are p eigenvectors with

smallest eigenvalues. Then we substitute the reduced function into Eq.(3.4):

J(α) = αTΛα+ (Uα−ψ)TM(Uα−ψ) (3.5)

where Λii = λi. The optimal α solves the following p× p system of equations:

(Λ + UTMU)Tα = UTMψ (3.6)

Then the prediction signals are computed by f = Uα.

In our experimental setting, we denote the concatenated matrix of the training and

clean one-hot labels as (Y ′)T = (Ỹ T |(Y c)T ). Each column of Y ′ is a real valued vector

whose elements are in [0, 1]. Then we solve the following criterion for matrix A to obtain

the smooth functions on the graph for each class j:

(Σ + UTMU)TA = UTMY ′ (3.7)

After we obtain the k smooth functions F ∈ Rn′×k on the graph by F = UA, each row of

training labels Ỹ is updated as follows:

ỹij =


1, if j = argmaxj′ Fij′

0, otherwise
(3.8)

While updating the noisy label ỹi, we used the average predicted labels of the past some

epochs as the final updated labels ỹi to stabilize the variability of the update labels. The

averaged labels are soft-labels and capture the degree of confidence of each sample belongs
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to a certain class.

Loss function

The proposed method trains the DNNs model with the following loss function constructed

by three terms:

L = Ln(θ|X , Ỹ) + αLc(θ|X c,Yc) + βLe(θ|X ) (3.9)

where Ln, Lc, Le denote the two classification losses and regularization loss respectively,

and α and β are hyper-parameters. In this study, we use the Kullbuck-Leibler(KL)

divergence for Ln and Lc as follows:

Ln(θ|X , Ỹ) =
1

n

n∑
i=1

DKL(ỹi∥s(xi,θ)) (3.10)

=
1

n

n∑
i=1

k∑
j=1

ỹij log

(
ỹij

sj(θ,xi)

)
(3.11)

Lc(θ|X c,Yc) =
1

nc

nc∑
i=1

DKL(y
c
i∥s(xc

i ,θ)) (3.12)

=
1

nc

nc∑
i=1

k∑
j=1

ycij log

(
ycij

sj(θ,xc
i)

)
(3.13)

Le is the regularization term that concentrates the probability distribution of each soft-

label to a single class as follows:

Le(θ|X ) = −
1

n

n∑
i=1

k∑
j=1

sj(θ,xi) log sj(θ,xi) (3.14)

Because the regularization enforces the soft-label of each image to belong to a single

class, each feature vector also tends to belong to a single class and increases the similarity

between samples belonging to the same class.
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3.4 Experiments

3.4.1 Datasets and Settings

Table 3.1: Summary of datasets used in the experiments.

# of training # of clean # of validation # of test # of class
Two-Moon 1000 10 200 200 2

MNIST 20000 100 900 10000 10
CIFAR10 45000 1000 4000 10000 10

We use Two-moon dataset, MNIST and CIFAR10 with noisy labels to evaluate the

proposed method. The sizes of training, clean, validation, and test set for each dataset

are shown in Table3.1.

We added artificial label noise to these datasets for evaluation. To add 40% label

noise to the Two-Moon dataset, we randomly select 40% training samples of the dataset

and flip their labels to another class. The left and right images in Fig.3.2 are the original

Two-Moon and the noisy version of Two-Moon, respectively. For MNIST and CIFAR10

dataset, we select r% training samples from each dataset and randomly assign their labels

to one of the ten classes. We added 40% and 80% label noise to each dataset and the

label accuracies before label update are summarized in Table 3.4.

3.4.2 Experiments with Two-Moon dataset

In the experiment with Two-Moon, we used a 4-layers MLP with 100 units in each hidden

layer. To prevent the overfitting, weight decay is introduced and dropout with rate of

0.2 is applied to each hidden layer. The objective function (Eq.3.9) is optimized by SGD

with the learning rate 0.01 for 50 epochs. The hyper-parameters of the label propagation

and the loss function are set as follows: {σ2 = 0.02,m = 10, p = 10, α = 1.0, β =

0.4, tstart = 15}. As a comparison method, we used the 4-layers MLP trained on the

loss function (Eq.3.9) without the label update. Our proposed method and the baseline

method achieved 99.5% and 95.5% accuracy on the test set, respectively. The pseudo
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Figure 3.2: Images of Two-Moon experiments. Left: Original Two-Moon without noisy
labels. The large dot point indicate where the cleans samples are present. Right: Two-
Moon dataset with noisy labels

labels output by our proposed method during training are shown in the plots of Fig.3.3

and we can verify that our method successfully clean the noisy labels in the noisy version

of Two-Moon dataset. Each plot in Fig.3.3 shows the pseudo labels given by our method

during 14th epoch and 25th epoch. At the 15th epoch, the first pseudo labels are given

and they are incorrect near the decision boundary between the two moons as shown in

Fig.3.3. However, the pseudo labels near the decision boundary gradually get corrected

as training progresses.
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Figure 3.3: Each plot shows pseudo labels at each epoch after label update starts.
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Visualizing Eigenvectors on the Input

In this experiment, we have visualized the eigenvectors ϕi ∈ Rn′ output during the process

of our method to understand how their linear combination cleans up the noisy labels. The

eigenvectors in Fig.3.4 and Fig.3.5 were obtained at the beginning of the label update and

end of training, respectively. Each figure shows the first 10 eigenvectors with smallest

eigenvalue and the eigenvector with the second smallest eigen value divides the dataset

into two classes in the input space. Comparing the two figures, we see that the second

eigenvector in Fig.3.4 ambiguously classifies the two classes at the boundary of the two

clusters, while the second eigenvector in Fig.3.5 clearly separates the two clusters. This

suggests that the two clusters are clearly separated in the feature space of the MLP at

the end of training.
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Figure 3.4: The first 10 eigenvectors with smallest eigenvalues of the graph laplacian
visualized on the input at the start of the label update.
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Figure 3.5: The first 10 eigenvectors with smallest eigenvalues of the graph laplacian
visualized on the input at the end of training.
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3.4.3 Experiments with MNIST and CIFAR10

The MNIST digit dataset consists of 28×28 gray-scale images and the CIFAR-10 dataset

consists of 32 × 32 color images. We randomly split training set of each dataset into

training, clean, and validation set as shown in Table 3.1.

We implement the 4-layers MLP for MNIST and the 9-layers CNN for CIFAR-10. We

compare our proposed method (Ours) with the following approaches that have the same

architecture as the proposed method and do not update the labels: a model trained on

Ln only (Baseline), a model trained on Ln + Lc (Baseline+clean), and a model trained

on Ln + Lc + Le (Baseline+clean+reg).

In the both datasets, all images are normalized to in range of [−1, 1] and data augmen-

tation by vertical and horizontal random flip and random crops after padding 4 pixels.

The size of random crop is 28× 28 for MNIST and 32× 32 for CIFAR-10.

The loss function for DNNs is optimized by SGD with a momentum of 0.9, a weight

decay of 10−4, a learning rate of 0.01. In the both datasets, the batch size of the training

samples with noisy labels was 100, and the batch size of clean samples were set to 5 and

30 for MNIST and CIFAR-10, respectively. The models were trained for 100 epochs for

MNIST, and 400 for CIFAR-10. In the both datasets, we set 0.2 for σ2, 100 for m, 50 for

p. The values of α, β, tstart are given by the grid search over the following hyper-parameter

spaces: α = {0.0, 0.1, 1.0, 10.0}, β = {0.0, 0.1, 1.0, 10.0}, tstart = {no update, 20, 40, 60}

for MNIST, tstart = {no update, 100, 200, 300} for CIFAR-10. The obtained values are

summarized in Table.3.2.

Table.3.3 shows the classification accuracy of the proposed method and the other

methods for the test set. These results are calculated from the average of five trials of the

experiment. It was confirmed that the proposed method achieves better accuracy than the

other methods for any noisy rate in all datasets. Table.3.4 reports the label accuracy before

and after updating the labels. It shows that the proposed method succeeds in removing

the label noise in the both datasets. Therefore the proposed method is trained on the
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more accurate labels after the label update and achieves higher classification accuracy on

the test set.

Table 3.2: The hyperparameters for experiments.

Dataset MNIST CIFAR-10
noise rate (%) 40% 80% 40% 80%

α 0.0 1.0 0.1 0.1
β 1.0 1.0 1.0 1.0
tstart 20 20 300 200

Table 3.3: The classification accuracy on the test set.

# Method Test Accuracy (%)
Dataset MNIST CIFAR10

noise rate (%) 0 40 80 0 40 80
#1 Baseline 97.61 83.58 44.34 88.95 66.94 29.70
#2 Baseline+clean 97.60 81.53 42.34 89.39 68.39 50.57
#3 Baseline+clean+reg - 84.67 59.28 - 76.84 64.04
#4 Ours - 96.26 89.58 - 86.05 77.78

Table 3.4: Label accuracy before and after label update.

# noise rate (%) Label Accuracy (%)
Dataset MNIST CIFAR10

Label update before after before after
#1 40% 64.05 97.12 64.01 90.03
#2 80% 28.05 89.34 28.02 80.57

Accuracy curves on the validation set, train set with true labels, and pseudo

labels

We plot the validation accuracy of the both datasets for each epoch in Fig.3.6a, 3.6b, 3.7a

and 3.7b. The transparent colored area is the standard deviation of the validation accuracy

at each epoch. In the case of MNIST, the Fig.3.6a and Fig.3.6b plot the validation

accuracy with noise rate of 40% and 80%, respectively. While other baseline approaches

cause overfitting and gradually reduce the validation accuracy as the training progresses,

the validation accuracy of the proposed method remains high after label update. In the
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case of CIFAR-10, the Fig.3.7a and Fig.3.7b plot the validation accuracy with noise rate

of 40% and 80%, respectively. The proposed method achieves higher accuracy than the

other approaches at the end of training. In the both figures, we can confirm that the

validation accuracy spikes immediately after the label update. It was confirmed that the

classification accuracy in the validation data was recovered by correcting the label noise.

We also plot the training accuracy with respect to the true labels of training samples in

Fig.3.6c, 3.6d, 3.7c and 3.7d. In the all cases, the training accuracy with true labels spikes

immediately after label update as shown in validation accuracy curve. This means that

our method allows the DNNs model to learn the correct, labels rather than overfitting the

noisy labels of training samples. In addition, we plot the accuracy of updated labels given

by the graph label propagation during training on the both dataset in Fig.3.6e, 3.6e, 3.7e

and 3.7f. It is observed that the accuracy of pseudo labels increases immediately after the

start of label updating, and high accuracy of pseudo labels is maintained until the end of

training, except in the case of CIFAR-10 with noise rate of 40% in Fig.3.7e. In Fig.3.7e,

the label accuracy gradually decreases after the start of label update. We deduce that

this is the result of an accumulation of errors in updated labels and overfitting of training

model to the errors.

Sensitivity of our methods with hyper-parameters

In our experiments, the value of each hyper-parameter is set as follows: α = {0.0, 0.1, 1.0, 10.0},

β = {0.0, 0.1, 1.0, 10.0}, tstart = {no update, 20, 40, 60} for MNIST, and tstart =

{no update, 100, 200, 300} for CIFAR-10. Fig.3.8a, 3.8b, 3.9a, and 3.9b show the sensitiv-

ity of our method to α, β and tstart by visualizing validation accuracy at the end of training

in various noise settings on each dataset. There are four bar plots in the four figures and

the value of tstart is different in each plot. Each plot shows a grouped bar chart and each

group represents the value of β, and each color of bar represents the value of α. In each

figure, our method is less sensitive to the value of tstart and produces excellent results,

except when there is no label update. In Fig.3.8a and 3.8b, for larger values of α, the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7
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performance of our method deteriorates, and there is no critical difference in performance

for α = 0.0, α = 0.1 and α = 1.0. This indicate that the value of α is not important to

achieve the superior results in the case of MNIST. This result may be due to the fact that

MNIST is an easy dataset for image classification and some of the clean samples are not

critical to the performance of our method. When α = 10.0, the training model overfits

to the small portion of dataset, and deteriorates the performance. The value of β is not

important for performance of our method, except for β = 10.0. Higher value of β = 10.0

may prevent model from learning the label information of MNIST dataset. In Fig.3.9a

and 3.9b, α = 10.0 and α = 0.0 lower the performance of our method in CIFAR10. In

all experimental settings, the best performance is obtained when the value of α = 0.1

except when there is no label update. This indicates that for the CIFAR10 data set, a

small amount of clean data set is effective in improving the performance of this method,

but a large value of α causes overfitting to the clean set and degrades generalization per-

formance. The value of β is also not important for performance of our method, except

for β = 10.0. As in the MNIST case, higher value of β = 10.0 may prevent model from

learning the label information of CIFAR10.

Visualizing the neighborhoods of samples in the feature space

To see what samples each vertex on the graph has as its neighbors, we visualize the closest

neighbors of each sample in the feature space. we used CIFAR-10 dataset which has the

noisy labels with a noisy rate of 80%. At the end of training, we saved the graph W and

randomly picked up 6 samples as queries. In Fig.3.10, we visualize the top 7 neighbors

closest to the each query on W . The color of bounding box of each image represents its

true label. We can confirm that the true class of the neighbors is almost same as the

corresponding query and that the visual appearance of the neighbors is similar to the

corresponding query at the end of training.
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3.5 Discussion

Table.3.3 shows that the proposed method achieves superior classification accuracy than

baseline methods. The accuracy curves in Fig.3.6 and 3.7 show that the proposed method

maintains higher classification acuracy during training, while the other methods overfit to

noisy labels and test accuracy decreases. This indicates the effectiveness of the algorithm

for label correction during training. In other words, label propagation on the graph

based on similarity between feature vectors extracted from DNNs was effective in label

correction. In the datasets used in this study, it was confirmed that the similarity of

samples that truly belong to the same class was high in the early stages of learning. The

label noise elimination of the proposed method depends on the robustness of DNNs in

the early stages of learning, it is not clear whether DNNs can achieve robustness on other

datasets, such as datasets with a large number of classes or imbalanced classes, and this

needs to be verified.

In Fig.3.8 and 3.9, each plot shows a decrease in classification accuracy for large values

of α. This is a result of the model overfitting to a small amount of clean data. The best

accuracy for both datasets and noise ratios are achieved for non-negative values of β,

suggesting that regularization is effective in robustness to noisy labels. In addition, the

best starting epoch of label update is different for each data set and noise ratio, requiring

careful hyperparameter tuning. When the data set or model is large, the computational

cost is expensive.

Fig.3.10 visualizes the samples that exist in the neighborhood in the feature space at

the end of training. It was observed that samples with similar visual features exist in the

neighborhood regardless of whether they truly belong to the same class or not. The fact

that the label accuracy after label update is not 100% suggests that the constructed graph

does not correctly reflect the similarity between samples belong to same class. Since the

similarity of features of samples that truly belong to the same class should be close even

if the visual similarity is different, it is necessary to devise a way to reduce the intra-class
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variance of the features of samples belong to the same ground-truth class.
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Figure 3.10: The leftmost image in each row is the query and the other seven images
are neighbors on the feature space of the query. The color of the bounding box of each
image represents the true class.



Chapter 4

Consistency Regularization on Clean

Samples

4.1 Introduction

Analysis of the memorization effects revealed that deep learning model trained on dataset

with noisy labels first learns simple patterns then gradually overfits to the training samples

with noisy labels, resulting in good generalization performance in the early learning phase

[2]. Taking advantage of this property, several approaches have been proposed to tackle

the problem of learning with noisy labels (LNL) [17, 50, 62]. In particular, DivideMix

[33] achieves excellent results on baseline datasets with noisy labels by modeling the loss

distribution to select clean samples and training a classification model in a semi-supervised

manner.

Following the results of DivideMix’s successful selection of clean samples, we propose

to adopt a consistency regularization on the selected samples during training for prevent-

ing a classification model from overfitting to the simple patterns of the selected samples

[45]. The consistency regularization is one of the machine learning techniques developed

in the field of semi-supervised learning. In our problem setting, the consistency regular-

ization encourages model to make consistent predictions on the perturbed images that

50
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match the predictions to the original images. Since the selected samples tend to be easy

to classify, the sample selection may overlook samples that have the correct label but

are difficult to classify. The consistency regularization on clean samples mitigates this

drawback by adding noise to samples with simple patterns to reduce overfitting. In recent

years, several approaches for data augmentation have been proposed, and we use one of

them, RandAugment[10], to perturb the selected samples. An overview of our method is

shown in Fig.4.1.

The contributions of this study are summarized as follows. (1) We introduce the

consistency regularization on the samples selected as clean as an extension of DivideMix.

(2) Extensive evaluation on CIFAR-10 and CIFAR-100 with synthetically generated label

noise is performed to confirm that DivideMix with the consistency regularization yields

comparably or better than state-of-the-art methods. (3) We performed the ablation study

on the value of hyperparameter for consistency regularization based on dataset with noisy

labels and confirmed that consistency regularization contributes to the generalization

performance of model.

Figure 4.1: Diagram of DivideMix with consistency regularization. After the samples
are divided into a set of labeled samples Dθ and a set of unlabeled samples D̄θ by GMM
(green box), each set is fed into the model θ (bottom) and compute the loss function of
MixMatch following DivideMix [33]. At the same time, RandAugment is applied only to
the labeled samples Dθ (top) to obtain modified samples DCR

θ and is fed into θ to compute
the cross entropy loss as a consistency regularization. The model θ is trained on the total
loss consists of the loss of MixMatch and the consistency regularization.
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4.2 Related works

4.2.1 Dividemix

Dividemix[33] selects training samples with lower loss value as a set of labeled data and the

rest of the samples are treated as a set of unlabeled data, and train the model in a semi-

supervised learning manner. Dividemix fits a two-components Gaussian Mixture Model

(GMM) [51] to the loss distribution of all training samples to find the clean probability

of each sample then the samples, and divides the samples based on that probability.

Let D = {X , Ỹ} = {(xi, ỹi)}Ni=1 denote the training samples with noisy labels where

xi is an image and ỹi is an one-hot vector represents label over k classes. Suppose the

parameters of a deep learning model are denoted as θ and the objective function for

training is the cross entropy loss ℓ(θ) as follows:

ℓ(θ) = {ℓi}Ni=1 =
{
−

k∑
l=1

ỹki log(p
k
model(xi, θ))

}N

i=1
(4.1)

where pk
model is a softmax output from the model for class k. After ℓ is computed

for all training samples, a two-component GMM is fitted to ℓ using the Expectation-

Maximization algorithm. Probability that a sample being clean is defined as wi and

equals to the posterior probability p(g|ℓi) for each sample from the Gaussian component

g with smaller mean.

At each epoch, training data is divided into a labeled set X and an unlabeled set U

by setting a threshold τ on wi given by GMM of one network, and the other network

is trained on the divided set in a semi-supervised manner. By alternating the roles of

the two networks, they teach an estimated set of clean samples each other and avoid

accumulating confirmation bias.

After dataset is divided into two sets, and a mini-batch of labeled set {(xb, ỹb, wb); b ∈
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(1, · · · , B)} is given, label refinement is performed as follows:

ȳb = wbỹb + (1− wb)pb (4.2)

where ȳb is a refined label, pb is a network’s prediction (averaged across multiple aug-

mentations of xb) and wb is a clean probability given by the other network. And given a

mini-batch of unlabeled set {ub; b ∈ (1, · · · , B)}, predictions on unlabeled samples from

two networks are averaged to estimate their labels q̂b. Each ȳb and q̄b are transformed

by sharpening function to reduce their temperature and obtain ŷb and q̂b.

Given X̂ and Û , MixUp[76] is applied to them where each sample is interpolated with

another sample randomly chosen from the combined mini-batch of X̂ and Û . The trans-

formed sets are denoted as X ′ and U ′. Finally, semi-supervised method called MixMatch[5]

is applied to the augmented dataset X ′ and U ′.

The loss on X ′ is the cross entropy loss LX and the loss on U ′ is the mean squared

error LU as follows:

LX = − 1

|X ′|
∑

x,p∈X ′

∑
k

pk log(pk
model(x;θ)) (4.3)

LU = − 1

|U ′|
∑

x,p∈U ′

∥p− pmodel(x;θ)∥22 (4.4)

where p is a mixed label for input x. With the addition of another regularization term

Lreg which prevents assigning all samples to a single class, the final total error is:

L = LX + λULU + λrLreg (4.5)

where λr is set to 1 for all experiments and λU is set to the same value as used in the

experiment of DivideMix [33].
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4.2.2 RandAugment

Data augmentation is a widely used technique to increase the number of training samples

to enhance the generalization performance of image classification model. Typical data

augmentation methods for images include rotation, flipping, cropping, etc. In general,

data augmentation methods require expertise in each domain to apply plausible transfor-

mations to each sample. Recently, several approaches [9, 35] have been developed that

learn optimal policies on a small proxy task for automatically designing augmentation

strategies without prior knowledge of each domain. However, these approaches require a

huge computational cost to find the optimal hyperparameters in their search space.

Instead of searching for hyperparameters in a proxy task, RandAugment [10] performs

a grid search on the validation set to determine the best hyperparameters with drastically

reduced computational cost. RandAugment is a simple data augmentation method using

hyperparameters n and m, where n controls the number of transformations to be applied

to a single sample and m controls the magnitude of each transformation. RandAugment

selects n transformation from the following transformations with uniform probability for

every image in every minibatch.

• identity • autoContrast • equalize
• rotate • solarize • color
• posterize • contrase • brightness
• sharpness • shear-x • shear-y
• translate-x • translate-y

4.3 Consistency Regularization on Selected Samples

Our proposed method is based on DivideMix [33] which is an excellent approach for

learning with noisy labels by modeling the loss distribution and selecting clean samples.

Since recent studies show that a deep learning model in the early learning phase is robust

against the noisy labels[2, 36], DivideMix selects samples with small loss values that are

easy to classify as clean samples. In other words, DivideMix may overfit to the samples
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with simple patterns and fail to select samples with true labels but hard to classify.

Our method prevents DivideMix from overfitting to the samples with simple patterns

by introducing a consistency regularization, which is widely used in semi-supervised learn-

ing (SSL). In SSL, consistency regularization encourages the training model to output the

same values to the perturbed version of the unlabeled sample as to the original sample.

In our method, consistency regularization is applied to selected samples by GMM and it

encourages predictions on perturbed selected samples to be consistent with predictions on

the original ones. This prevents training model from overfitting to the simple patterns,

and encourages the model to learn samples with true labels but hard to classify by trans-

forming easier samples by perturbation. While DivideMix uses only random cropping and

horizontal flipping as data augmentation methods, our method uses RandAugment [10]

as a method for adding perturbation to training images. The abstract of our method is

summarized in Fig.4.1 .

At first, we train two networks θ1, θ2 on the original noisy dataset D̃ = {X , Ỹ} =

{(xi, ỹi)}Ni=1 for a few epochs. This training period comes from the belief about robustness

of deep learning in the early learning phase. After the warmup period, all training samples

are fed into θ1 and θ2 and a two-components GMM is fit to these loss distributions.

Then select a set of clean samples as a set of labeled samples Dθ1 ,Dθ2 and define a

complementary set as a set of unlabeled samples D̄θ1 , D̄θ2 based on the output from a

two-components GMM. If a clean probability wi of each sample i exceeds τ , i is selected

as clean. As shown in DivideMix, compute the refined labels ȳb and q̄b of each sample

from Dθl
and D̄θl

for l ∈ {1, 2}. After transforming each label, MixUp and MixMatch

transforms each dataset into D′
θl

and D̄′
θl

. The loss on D′
θl

is the cross entropy loss LX

and the loss on D̄′
θl

is the mean squared error LU as follows:

LX = − 1

|D′
θl
|

∑
x,p∈D′

θl

∑
k

pk log(pk
model(x;θl)) (4.6)
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LU = − 1

|D̄′
θl
|

∑
x,p∈D̄′

θl

∥p− pmodel(x;θl)∥22 (4.7)

where p is a mixed label for input x. In addition to these two terms, the loss for MixMatch

consists of a regularization term as in Eq.4.5

Given a set of selected samples Dθl
= {Xθl

,Yθl
} where l = {1, 2} be a set of clean

samples for each network (θ1,θ2) at each epoch, each label yb is refined to ŷb by label

refinement and sharpening of DivideMix. Then for each (xb, ŷb) ∈ Dθl
for b ∈ (1, · · · , B),

RandAugment is applied to xb to convert the easy to classify samples into the hard

to classify samples and a modified sample and modified sets of samples are denoted as

xCR
b and DCR

θl
= {XCR

θl
,YCR

θl
} = {XCR

θl
, Ŷθl
} where yCR

b ∈ YCR
θl

of each sample is equal

to the ŷb of original samples Dθl
. In terms of the consistency regularization, a sample

(xb, ŷb) ∈ Dθl
corresponds to original sample and (xCR

b , ŷb) ∈ DCR
θl

corresponds to the

perturbed sample. Then the consistency on selected samples for l-th network is defined

as follows:

Lc = −
1

|DCR
θl
|

∑
xc,ŷ∈DCR

θl

∑
k

ŷk · log(pk
model(x

CR;θl)) (4.8)

For the consistency regularization, we did not apply MixUp for further modification

of inputs. LX modifies Dθl
by MixUp, where MixUp is a linear interpolation between a

sample of Dθl
and the other sample. Therefore LX maintains information that the label

of xb is ŷb. Then the total loss for each network is a sum of the loss of MixMatch and the

consistency regularization:

L = LX + λULU + λrLreg + λcLc (4.9)

where λc is a hyperparameter.

In Algorithm 2, we summarized the entire computational procedure. In later chapters,
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in addition to the comparison between the proposed method and existing methods, we

will discuss the change in the value of the error function for the selected samples and the

change in the accuracy of sample selection by consistency regularization.

4.3.1 Extension of Consistency Regularization

For further improvement of our method, we introduced a consistency regularization aver-

aged over multiple inputs. The new consistency regularization is defined as follows:

Lc = −
1

I · |DCR
θl
|

I∑
i=1

∑
xCR,ŷ∈DCR,(i)

θl

∑
l

ŷk log(pk
model(x

CR;θ))

(4.10)

where I is the number of trials that create augmented version of Dθl
by RandAugment.

DCR,(i)
θl

is the augmented dataset at i-th trial. Lc encourages model to receive different

representations of xc with consistent label ŷ over I trials.

4.4 Experiments

First, we performed an evaluation on a dataset containing synthetically generated label

noise, and then conducted a comparison experiment with state-of-the-art approaches. In

later subsections, we evaluate the sensitivity of the model to the hyperparameter λc in

test accuracy and check the effect of consistency regularization on the value of the loss

function for the selected sample.

4.4.1 Datasets and Implementation Details

We used CIFAR-10 and CIFAR-100 [26] dataset for training and validating our proposed

method. Both dataset contains 50K training images and 10K test images of size 32× 32.

We extract 5K samples from training samples as a validation set. Following the prior
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works[33][17], we add synthetically generated label noise with various noise rate to each

dataset for evaluating our method. The type of label noise is symmetric noise, which

randomly flips the labels of the training samples to one of the categories with a certain

probability.

We used a 18-layers PreAct Resnet for CIFAR-10 and CIFAR-100 experiments. We

trained each model using SGD with a moment of 0.9, a weight decay of 1.0e − 4, and a

batch size of 128. The total number of training epochs is 300. The initial learning rate

is 0.02 and it’s multiplied by 0.1 at every 10 epochs after 150-th epoch. According to Di-

videMix, the other hyperparameters are set as follows: J = 2, T = 0.5, α = 4 and τ = 0.5.

α and τ are the hyperparameter for beta distribution of MixMatch and clean probability

threshold for GMM, respectively. λU is set as 25 except for 20% noise ratio when it is set

as 0 in the CIFAR10 experiment, and is set as 150 except for 20% noise ratio when it is

set at 25 in the CIFAR-100 experiment. The warmup period is set to 10 for CIFAR-10

and set to 30 for CIFAR-100. The hyperparameters of RandAugment is determined by

the classification accuracy on the validation set and summarized in Table.4.2.

4.4.2 Comparison with State-of-the-art Methods

We compared our method with DivideMix[33] and Augment Descent (AugDesc)[43], which

is the current state-of-the-art for learning with noisy labels through sample selection and

data augmentation, using the same network architecture. AugDesc defines the common

random flip and crop image augmentation as weak data augmentation, and AutoAugment

[9] as strong data augmentation. AugDesc models loss distribution on weakly or strongly

augmented training samples by a two-component GMM to divide the dataset into a la-

beled set and an unlabeled set. Then AugDesc trains a classification model on strongly

augmented training samples in a semi-supervised manner following training procedures of

DivideMix. AugDesc-SAW (AugDesc-WAW) trains model with strong (weak) data aug-

mentation during warmup period. The proposed method and AugDesc are quite similar

in terms of sample selection and data augmentation strategy, but AugDesc is a method
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that learns only with perturbed samples for parameter updates, whereas our proposed

method imposes constraints on classification model to ensure that the outputs for per-

turbed samples are similar to ones for original samples. This means that AugDesc does

not obtain information of original samples and our proposed method receives samples

selected as clean more frequently than AugDesc. In Table.4.1, Cross-Entropy denotes

baseline model trained with Cross-Entropy loss using the same network architecture. We

report the best test accuracy obtained during training and mean test accuracy averaged

across the last 10 training epochs. The results with different levels of symmetric label

noise on CIFAR-10 and CIFAR-100 are summarized in the Table.4.1 and the results given

by our method (Ours (I = 1)) is compared with the above state-of-the-art approaches,

where I is the number of augmented samples used in the consistency regularization. We

also report the results from a variants of our method: consistency regularization with 2

trials of data augmentation (Ours (I = 2)). As the number of I increases, the model

receives more augmented samples for stronger effect on preventing overfitting. At the

same time, learning the original samples in the classification loss (LX ) becomes more

difficult. We prepared these variants to explore the appropriate number of augmented

samples in the consistency regularization. Our method (Ours (I = 1)) achieves superior

results on CIFAR-10 with 50% label noise and CIFAR-100 with 20% label noise than the

state-of-the-art approaches. When the noise rate of CIFAR-100 is 80%, AugDesc-WAW

achieves better results than the other methods. Our method (Ours (I = 2)), which per-

forms multiple trials of data augmentation to input, yields results comparative to or lower

than ours with I = 1.

4.4.3 Analysis of the Effectiveness of Consistency Regularization

Table.4.3 shows the results of the analysis of the effect of the hyperparameter λc on the

performance of the model(Ours(I = 1)) on datasets with label noise. The value of λc is

one of {0.1, 0.5, 1.0, 1.5} in the experiment and Table.4.3 shows that the performance of

model is sensitive to λc when the noise rate is high (80%) on both datasets. For higher
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noise rate (80%), the model with smaller λc yields better results. On the contrary, the

results on the different noise rate are less sensitive to the value of λc.

Fig.4.3 shows how the value of LX with different value of λc changes as learning

progresses on both datasets. We observe the value of LX to confirm the effect of the

consistency regularization by changing the value of λc. Y-axis of each plot shows the

average value of LX for each epoch. The value of λc is one of {0.0, 0.1, 0.5, 1.0, 1.5}, and

the top row is the result of CIFAR-10 and the bottom row is the result of CIFAR-100. LX

is the loss of MixMatch on selected sample by GMM, and measures how well the model

fits those samples. In all plots, the value of LX with larger λc is greater than the ones with

smaller λc. Since the best classification accuracy of our method is given when the value

of λc is nonzero, we can deduce that the larger value of LX is better for generalization

performance, and the consistency regularization prevents model from overfitting to the

selected samples. However, if the value of λc is too large, LX also becomes large. This

causes the learning model to underfit the selected sample, resulting in poor generalization

performance as shown in Table.4.3.

Fig.4.4 and 4.5 shows the number of selected samples as clean and Area Under

the Curve (AUC) for clean/noisy sample classification at each epoch on CIFAR-10 and

CIFAR-100 training data with various λc ∈ {0.0, 0.1, 0.5, 1.0, 1.5} when the noise rate

is 20% or 80%. In results on both CIFAR-10 and CIFAR-100, if λc > 0, the number

of selected samples is greater than the case with λc = 0 while AUC is comaparative or

better. This means that the loss distribution given by model trained with consistency

regularization selects the more samples with correct labels more accurately. One possible

explanation for less accurate sample selection with λc = 0 is that the model overfits to

the samples with simple patterns and regards the samples with correct labels but hard to

classify as corrupted data.
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4.4.4 Discussion

Table.4.1 shows that our method achieves superior results than DivideMix[33] (baseline

model) in all cases, and better than or comparative to the results given by AugDesc[43]

except for 80% symmetric label noise on CIFAR-100 dataset. One possible explanation

for this shortage is that the number of selected sample for each class is small by GMM for

high noise rate, while AugDesc applies strong data augmentation to all training samples.

Fig.4.6 shows that the number of selected samples by GMM at each epoch and the number

of selected samples decreases as the noise rate in the dataset increases. Hyper-parameter

setting used in this experiments are shown in Table.4.2. Therefore our method does

not consider the consistency on the enormous unlabeled (not selected) samples during

training when the noise rate is high. For further improvements of our methods, we should

address the consistency on the unlabeled (not selected) samples during training. And we

compared two variants of our method (Ours(I = 1) and Ours(I = 1)) in Table.4.1. As

the value of I increases, the model receives more augmented samples, which is expected

to have a stronger effect on preventing overfitting, but on the other hand, learning the

original samples in LX becomes more difficult. Experimental results show that I = 1 is

sufficient for learning.

Training model with consistency regularization receives the perturbed selected samples

and their original ones at the same time. Then model does not overfit to the selected

samples. As shown in Fig.4.3 for both datasets with various noise rates, the classification

loss on the selected samples LX increases as the λc increases in both datasets with various

noise rates, indicating that the model using consistency regularization does not overfit to

the selected samples during training. Also our method with nonzero λc achieved the best

classification accuracy, it’s provably showed that preventing the model from fitting to the

selected samples is benefiting for higher generalization performance. Since the samples

selected by fitting GMM to the loss distribution have simple patterns and tend to be easy

to classify [2], our consistency regularization contributes to preventing the model from
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overfitting to the simple patterns and results in higher generalization performance.

Fig.4.4 and 4.5 showed that the number of selected samples and the value of AUC

of classification accuracy for noisy/clean labels given by our method is larger than the

baseline (λc = 0) during training when noise rate is small (20%) in both datasets. This

means that the model correctly outputs high loss value to the samples with noisy labels

and the model was able to be trained with more correctly labeled samples during training.

When the noise rate is 80% in CIFAR-100, the results are also better than the baseline.

However, when the noise rate is 80% in CIFAR-10, the number of selected samples and

AUC given by our method is almost equal to the baseline. As shown in Table.4.1, the

classification accuracy is also equal to the baseline. These results also support the claim

that our method is less effective when the noise rate is large, because the number of

samples to which consistency regularization is applied is small. One possible improve-

ment is to generate accurate pseudo-labels for unlabeled samples, and apply consistency

regularization to them as well.
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Algorithm 2 Training with Consistency Regularization
Input: Dataset with noisy labels D̃ = {X , Ỹ} = {(xi, ỹi)}Ni=1, Two networks θ1, θ2,
sharpening temperature T , unsupervised loss weight λU , regularization term weight λc,
λr = 1, Beta distribution α for MixMatch, Number of augmentations J
1: // Training stage
2: θ1,θ2 = WarmUp(D̃,θ1,θ2)
3: while e < MaxEpoch do
4: W2 = GMM(D̃,θ1)
5: W1 = GMM(D̃,θ2)
6: for l = 1, 2 do
7: D(l)

θl,e
= {(xi,yi, wi)|wi ≥ τ, ∀(xi,yi, wi) ∈ (D̃,Wl)}

8: D̄(l)
θl,e

= {xi|wi < τ, ∀(xi, wi) ∈ (D̃,Wl)}
9: for iter = 1 to num_iter do

10: Draw a mini-batch {(xb,yb, wb)}Bb=1 from Dθl,e

11: Draw a mini-batch {(ub)}Bb=1 from D̄θl,e

12: for b = 1 to B do
13: xCR

b = RandAugment(xb|N,M)
14: for j = 1 to J do
15: x̂b,j = Augment(xb)
16: ûb,j = Augment(ub)
17: end for
18: pb =

1
J

∑
j pmodel(x̂b,j;θk)

19: ŷb = wbyb + (1− wb)pb
20: ŷb = Sharpen(ȳb, T )
21: q̄b =

1
2J

∑
j(pmodel(ûb,j;θ1) + pmodel(ûb,j;θ2))

22: q̂b = Sharpen(q̄b, T )
23: end for
24: X̂ = {(x̂b,j, ŷb); b ∈ (1, · · · , B), j ∈ (1, · · · , J)}
25: Û = {(ûb,j, q̂b); b ∈ (1, · · · , B), j ∈ (1, · · · , J)}
26: LX ,LU = MixMatch(X̂ , Û)
27: D(l),CR

θl,e
= {(x,y)|x ∈ xCR,y ∈ ŷ}

28: Lc = ConsistencyRegularization(D(l),CR
θl,e

)
29: L = LX + λULU + λrLreg + λcLc

30: θl = SGD(L,θl)
31: end for
32: end for
33: end while
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Table 4.2: The value of RandAugment hyperparameters N and M used in Table.4.1
with CIFAR-10 and CIFAR-100 at different levels of noise rate.

CIFAR-10 CIFAR-100
Noise Rate 20% 50% 80% 20% 50% 80%
N 2 1 2 1 1 2
M 2 4 4 2 2 2
λc 0.5 0.5 0.1 0.5 0.5 0.1
λU 0 25 25 25 150 150

Table 4.3: Test accuracy on CIFAR-10 and CIFAR-100 with noisy labels with different
various on Attention module. The mean accuracy and its standard deviation are computed
over three noise realizations

CIFAR-10 CIFAR-100
Noise 20% 50% 80% 20% 50% 80%

λc = 0.1
Best 96.67 95.86 94.17 79.90 76.31 60.94
Last 96.36 95.51 93.91 79.40 75.89 60.57

λc = 0.5
Best 96.79 96.35 93.77 80.69 77.18 60.14
Last 96.48 96.09 93.52 80.38 76.79 60.01

λc = 1.0
Best 96.30 95.92 91.59 79.88 75.49 56.63
Last 96.09 95.74 91.21 79.48 75.83 56.29

λc = 1.5
Best 96.16 95.79 90.38 79.14 74.51 54.87
Last 95.76 95.52 90.19 78.73 74.02 54.45
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Figure 4.2: Test Accuracy on CIFAR-10 and CIFAR-100 dataset with different values
of lambda. Each row shows different noise rate (20%, 50%, 80%).
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Figure 4.3: Results of LX on CIFAR-10 and CIFAR-100 dataset with different values
of lambda. Each row shows different noise rate (20%, 50%, 80%). Right column: LX vs
number of epochs on CIFAR-10; Left column: LX vs number of epochs on CIFAR-100.
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Figure 4.4: Results of the number of selected samples by GMM and AUC of classification
accuracy for noisy/clean labels at each epoch on CIFAR-10. Left column: Each plot shows
number of samples selected as clean vs. Number of epochs. Right column: Each plot shows
Area Under the Curve (AUC) for clean/noisy classification vs number of epochs.
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Figure 4.5: Results of the number of selected samples by GMM and AUC of classification
accuracy for noisy/clean labels at each epoch on CIFAR-100. Left column: Each plot
shows number of samples selected as clean vs. Number of epochs. Right column: Each plot
shows Area Under the Curve (AUC) for clean/noisy classification vs number of epochs.
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Figure 4.6: Top and bottom plot show the number of selected samples vs number of
epochs on CIFAR-10 and CIFAR-100 with different label noise ratio over five trials.



Chapter 5

Sample selection approach with number

of false predictions

5.1 Introduction

Figure 5.1: Visualization of total number of false predictions during training for each
sample of CIFAR-10 dataset with 50% symmetric label noise. The model is trained for
120 epochs, and count the false prediction at each epoch. Red and Blue show the samples
with clean labels and ones with noisy labels, respectively.

Analysis of the memorization effect revealed that DNNs are robust against the noisy

labels in the early stage of learning before overfitting to the noisy labels [2]. During train-

71



Sample selection approach with number of false predictions 72

Figure 5.2: At first, we prepare a copy of original noisy dataset D̃ as D̃T . SSFP trains
DNNs with training dataset D̃T and performs sample selection with D̃. At epoch t during
training, we record the false predictions vj based on the model output ŷ with D̃. For
sample selection, SSFP collect only W recent records of false predictions to summarize
recent records as qWt . Then SSFP fits a two-components Gaussian Mixture Models to qWt
and perform clean sample selection to update the training dataset D̃T to D̃c. We resume
training the DNNs with the updated dataset D̃T .

ing with the stochastic gradient descent, DNNs tend to predict true labels of samples

with noisy labels in the early phase due to its robustness, and then gradually predict the

assigned noisy labels, whereas the model frequently predicts the true label of a sample

with a clean label throughout the training. From these observations, we call an incorrect

prediction for a given label a false prediction, and assume that the number of false pre-

dictions for each sample during training reflects whether the sample has a noisy label or

not.

To intuitively understand how the number of false predictions are different for samples

with noisy labels and samples with clean labels, we trained ResNet-34 with the cross

entropy loss on a noisy dataset for 120 epochs and recorded false prediction for each

sample at each epoch. Here we prepared CIFAR-10 dataset and flip the labels of randomly
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chosen 50% training samples to one of the 10 classes. Fig.5.1 visualizes the total number

of false predictions during training of each samples, where x-axis and y-axis show the total

number of false predictions and the number of samples, respectively. As shown in Fig.5.1,

samples with clean labels tend to have lower number of false predictions whereas samples

with noisy labels have higher number of false predictions. From these observations, we

propose a new sample selection approach for LNL utilizing the number of false predictions

during training [46]. Our method iteratively performs sample selection based on the some

past records of false predictions and updating model parameters with the selected samples.

An overview of our method is shown in Fig.5.2.

The contribution of this study are summarized as follows: (1) We propose SSFP, a

new Sample Selection approach using the number of False Predictions for each sample

during training. (2) Extensive evaluation on CIFAR-10 and CIFAR-100 with syntheti-

cally generated noisy labels is performed to validate that SSFP is better or comparative

to the current state-of-the-art approaches. (3) We performed ablation study on hyper-

parameters of SSFP to understand how we should set them for various label noise settings.

5.2 Related works

5.2.1 FINE and F-coteaching

FINE [24] is a novel noise detector for selecting clean samples from noisy dataset. FINE

utilizes the principal components of latent feature representations of DNNs produced by

the eigen decomposition for splitting dataset into clean set and noisy set. FINE first

creates a gram matrix of feature vectors of training samples for each class, then conduct

the eigen decomposition on the matrix to find the first principal components with the

largest eigen value. Then FINE measures the similarity between the feature vector of

each sample and the eigenvector with the largest eigen value to give the alignment score.

This eigenvector is a class-representative vector and FINE treats the samples with higher
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alignment score as clean data, and samples with lower score as noisy data. After scores

of all samples are obtained, FINE fits a two-component Gaussian Mixture Model to the

distribution of scores to divide the samples into clean set and noisy set. The samples

belong to a cluster having a larger mean value treated as a clean set. A sample selection

method with FINE trains the DNNs with the selected samples as clean and periodically

update the clean set during training. F-coteaching is an improved version of Co-teaching,

where sample selection step is substituted to FINE.

5.3 Proposed method

5.3.1 Preliminary knowledge

Let D = {(xi,yi)}Ni denotes a set of N training samples, where x ∈ X is an image and

y ∈ Y is an one-hot vector of ground truth label for k classes of x. Suppose we have a

DNNs model for image classification task with model parameters θ, we formulate the loss

function for image classification, known as cross entropy loss ℓ(θ), as follows:

ℓ(θ) = −
N∑
i=1

k∑
c=1

yci log(p
c(f(xi,θ))) (5.1)

where f(xi,θ) is a logit outputs from the last fully connected layer of DNNs with θ, and

pc(f(xi,θ)) is c-th element of output from the softmax function. In our problem setting,

training dataset with noisy labels is denoted as D̃ and the observed label for i-th sample

is denoted as ỹi. Training model θ on D̃ = {xi, ỹi}Ni by minimizing Eq.(5.1) significantly

deteriorates the generalization performance. Our proposed method trains the model θ

robustly with a novel sample selection approach and achieves higher generalization per-

formance.
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Algorithm 3 Training with false predictions

Require: Dataset with noisy labels D̃ = {(xi, ỹi)}Ni=1, Network parameter θ, Record
frequency F , Sample selection frequency K, Window size W , Total epochs T , set of
records V , clean probability threshold γ, mini-batch size B

1: // Initialization
2: V ← {} # empty set for records
3: m = 0 # batch count
4: j = 0 # record count
5: D̃T = D̃ # training dataset
6: // Training stage
7: θ = WarmUp(D̃, θ)
8: while t < T do
9: if (t mod K == 0) and (t > warmup) then

10: Collect recent records : qWt =
∑J

j=J−W v
j

11: Fit a GMM to qWt
12: Clean probability : ot = p(g1|qWt )
13: Update training dataset : D̃T = {(xi, ỹi)|oi ≥ γ}Ni=1 where D̃T ∈ D̃
14: end if
15: for iter = 1 to

⌈
|D̃T |/B

⌉
do

16: m = m+ 1
17: Draw a mini-batch D̃T

B from D̃T

18: L = CrossEntropy(D̃T
B,θ)

19: θ = SGD(D̃T
B,θ)

20: if m mod F == 0 then
21: Obtain false prediction vj by evaluating D̃
22: V ← vj

23: j = j + 1
24: end if
25: end for
26: end while

5.3.2 Number of False Predictions

Suppose a DNNs model is trained for T epochs by the Stochastic Gradient Descent (SGD)

with the mini-batch size of B. During training, we record whether the model’s predic-

tion matches the given label for each sample at every some constant mini-batches using

the original dataset D̃. This constant value is defined as Frequency of mini-batches for

recording, and is denoted as F . Suppose that the predicted label of the i-th sample by
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the model is formulated as follows:

ŷi = arg max
c

p(f(xi,θ))) (5.2)

Let vj ∈ ZN store the information whether model’s prediction is correct or not for each

training sample at j-th record and formulated as follows:

vji :=


1 if ŷi ̸= arg max

c
ỹi,

0 otherwise
(5.3)

This record for all training samples vj is defined as False Predictions and the set of

these past records represents the long term confidence of model’s prediction with the

given labels. The learning characteristics of DNNs in the early stages shows that the

training model tends to predicts the true labels of training samples rather than the noisy

labels and takes a while to over-fit to the noisy labels. Therefore, we assume that the

model produces more false predictions for samples with noisy labels than for those with

clean labels. Based on this assumption, we utilize the number of false predictions for

each sample, which reflects the long term confidence of model’s prediction, to classify

the training samples into samples with noisy and clean labels. In order to save the

computational cost, we record vj at every F mini-batches instead of every mini-batch.

5.3.3 Clean sample probability and adaptive updates

SSFP, our proposed method trains a DNNs model on a training dataset D̃T , which is a

copy of the original dataset D̃, for a few epochs as before start splitting the dataset. This

step is necessary in order to tune the model as a feature extractor. After the warm-up

phase, SSFP periodically divides the samples D̃ into clean set D̃c and noisy set D̃n at

every K epoch and updates the training dataset as D̃T = D̃c which only contains the

selected clean samples.
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Here we introduce a new term Window, denoted asW . This is a constant that indicates

how many past records of false predictions are used for sample selection. Despite that

the total number of false predictions after training is also useful for sample selection as

shown in Fig.5.1, SSFP adopts an adaptive approach which only uses the recent records

for sample selection. Since SSFP periodically updates the training dataset by removing

samples with noisy labels, it prevents performance degradation of the model due to noisy

labels. Therefore false predictions given by recent model are more reliable and SSFP only

considers recent W records.

Suppose at some epoch point t for sample selection, J records are collected by eval-

uating the original dataset D̃: V = {v1, · · · ,vJ}. SSFP only uses recent W records of

false predictions: VW = {vJ−W ,vJ−W+1 · · · ,vJ−1,vJ}. Then the sum of number of false

prediction for i-th sample with recent W records at t-th epoch is calculated as follows:

qWt,i =
J∑

j=J−W

vji (5.4)

qWt represents the sum of W records at t-th epoch for all training samples. Then a two-

components GMM [51] is fit to qWt using the Expectation-Maximization algorithm. Let

g1 and g2 be means of GMM and g1 ≤ g2, then clean probability that a sample has clean

label is defined as oi and equals to the posterior probability p(g1|qWt,i ) from the Gaussian

component g1. Then i-th sample is included in the clean set D̃c if oi exceeds a threshold

γ (oi ≥ γ). Then the training dataset is updated with the clean set: D̃T = D̃c. After the

sample selection, SSFP resumes training DNNs with the new dataset. SSFP iteratively

performs sample selection and parameters update until training is completed. Algorithm.3

summarizes our proposed method. In the experiment, we evaluated various combination

of record frequency F and window size W .
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5.4 Experiments

In this section, we explain experimental setting for validating SSFP and show the results

of comparison between SSFP with the state-of-the-art approaches. In addition, we eval-

uate the sensitivity of SSFP to the values of window size W and frequency F for clean

probability calculation on classification accuracy. We also visualize the distribution of

false predictions about for sample selection at some epoch point and monitor how the

F-score for sample selection changes during training with various window sizes.

5.4.1 Datasets and Implementation Details

SSFP is validated using CIFAR-10 and CIFAR-100, which are baseline datasets for image

classification. Both datasets consist of 50k training images and 10k test images. For

hyper-parameters tuning with validation set, we split the original training images into 45k

training set and 5k validation set. In our problem setting, training dataset contains noisy

labels whereas validation and test set do not. In order to validate our method, artificially

synthesized noisy labels with two different noise types (Symmetric and Asymmetric) and

different noise rates r are added to CIFAR-10 and CIFAR-100. Symmetric label noise flips

the labels of r% training samples randomly to one of the classes with a specific noise rate

r, while Asymmetric label noise only flips the labels of r% training samples to a specific

class. For CIFAR-10, Asymmetric noise are applied according to the following mapping

rules: TRUCK→AUTOMOBILE, BIRD→AIRPLANE, DEER→Horse, CAT↔DOG. In

the case of CIFAR-100, 20 hyper-classes are prepared and label of leaf classes in each

hyper-class is flipped to one of the leaf classes. We tested 20%, 50%, and 80% noise rates

for symmetric noise and 40% noise rate for asymmetric noise.

We used the model architecture and hyper-parameter settings following the setup of

[24]. The baseline model architecture is 34-layers ResNet for all experiments. We train

each model using SGD with a moment of 0.9, a weight decay of 1.0e − 3, and a batch

size of 128. Total number of training epochs for CIFAR-10 and CIFAR-100 are 120 and
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150, respectively. The initial learning rate is 0.02, which is multiplied by 0.1 after 40-th

and 80-th epochs for CIFAR-10, and 80-th and 120-th epochs for CIFAR-100. Threshold

on clean probability for sample selection is γ = 0.5. Initial training period of 40-epochs

is warm-up phase, and sample selection for dateset update is performed every 10 epochs

after the warm-up. The window size W is set to one of {1, 5, 10, 50, 100, 200} and the

value of frequency F is set to one of {50, 100, 150}. The best values of W and F for each

noise setting are selected based on the validation accuracy.

5.4.2 Comparison with State-of-the-art Methods

Table.5.1 shows the performance of our method, denoted as SSFP, on CIFAR-10 and

CIFAR-100 dataset with different levels of symmetric and asymmetric label noise. In

Table.5.1, we compare our method with the following conventional approaches: Boot-

strap [54], Forward [50], Co-teaching [17], Co-teaching+ [73], TopoFIlter [67], CRUST

[41]. FINE is the current state-of-the-art for learning with noisy labels through sample

selection. F-coteaching is an improved version of Co-teaching by substituting its sample

selection method with FINE algorithm. F-coteaching prepares two networks and each

network teaches each other the selected sample as clean by FINE algorithm. Inspired by

F-coteaching, SSFP is also adopted to Co-teaching, denoted as ’SSFP+co’ in Table.5.1.

’SSFP+co’ also prepares two networks and each network teaches clean samples each other

by our adaptive sample selection approach. The two hyper-parameters of ’SSFP’ and

’SSFP+co’, F and W are summarized in Table.5.2 and 5.3. Table.5.1 summarizes the

average test accuracy over three trials of different sample selection approaches on various

label noise settings, and the results of FINE and F-coteaching are reproduced by their

official implementation while the other results are taken from [24]. For the most part, our

methods yields better results than the other state-of-the-art approaches, or comparative

results in several noise settings. In the case of CIFAR-10, our methods yields compara-

ble accuracy to F-coteaching in 20% and 50% symmetric label noise. And our methods

achieves better results than the other methods in 80% symmetric noise and 40% asym-
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metric noise. In the case of CIFAR-100, our methods yields comparable accuracy to the

other methods in 50% symmetric noise and 40% asymmetric noise. And our methods

outperform the other methods in 20% and 80% symmetric noise.

5.4.3 Sensitivity of our methods with Window size and Frequency

In our experiments, size window W is set to one of {1, 5, 10, 50, 100, 200} and the value

of Frequency F is set to one of {50, 100, 150}. Fig.5.3 and 5.4 show the sensitivity of

SSFP+co to W and F by visualizing validation accuracy in various noise settings. As

shown in Fig.5.3, SSFP+co is less sensitive to the size of window when the noise rate is low,

while is highly sensitive when the noise rate is high, such as 50% and 80% symmetric label

noise on the both datasets. The value of F in each noise setting in in Fig.5.3 is fixed to the

setup in Table.5.2 and 5.3. When the label noise is symmetric 20%, validation accuracy

remains unchanged for different values of W . In the case of 50% and 80% symmetric

noise, smaller value of W achieves higher validation accuracy and higher W deteriorates

the classification performance on the both datasets. In the case of 40% asymmetric label

noise, lower value of W is better for CIFAR-10 and higher value of W is better for CIFAR-

100. While our method is sensitive to W , less sensitive to the value of F as shown in

Fig.5.4. The validation accuracy does not change by changing the value of F . In Fig.5.4,

the value of W is also fixed as shown in Table.5.2 and 5.3 in each noise setting.

5.4.4 Visualizing the number of false predictions during training

Fig.5.5 and 5.6 show the distribution of total number of false prediction for each training

sample at 40-th training epoch with various value of W . Fig.5.5 shows the results on

CIFAR-10 dataset with 20%, 50%, 80% symmetric label noise and Fig.5.6 shows the the

results on CIFAR-100 with 20%, 50%, 80% symmetric label noise. The number of false

predictions is collected after 40-th epoch. The color of each bar represents whether sample

is noisy or clean. As shown in each plot, histograms show that two clusters are formed,
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(a)

(b)

Figure 5.3: Validation accuracy of SSFP+co with different size of Window W . (a)
and (b) show the results on CIFAR-10, and CIFAR-100, respectively. Each dashed line
corresponds to the noise setting with same color and shows the best validation accuracy.
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(a) (b)

Figure 5.4: Validation accuracy of SSFP+co with different Frequency F . (a) and (b)
show the results on CIFAR-10, and CIFAR-100, respectively. Each dashed line corre-
sponds to the noise setting with same color and shows the best validation accuracy.
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one mainly containing clean samples and the other mainly containing noisy samples while

the value of W changes. And therefore we can suspect that the samples are intuitively

classified into clean set and noisy set. However, after fitting a two-compoenent GMMs, we

can see that F-score about binary classification for sample selection is different for each

value of W . The F-score is the harmonic mean of the accuracy and recall, where accuracy

is the fraction of clean samples out of all samples predicted to be clean, and recall is the

fraction of clean samples correctly predicted out of all clean samples. On top of each plot

in Fig.5.5 and 5.6, we show the value of W and F-score after fitting the GMMs. While

each plot shows the two clusters, F-score after fitting the GMM is slightly different for

each W . In these cases, training with W which yields highest F-score achieves highest

validation accuracy as shown in Fig.5.3.

5.4.5 F-score of sample selection during training

Fig.5.7 shows how F-score of sample selection changes as training of SSFP+co progresses.

Each plot shows different noise settings in the both datasets and each line plot represents

the different size of W . In each plot, the bold line shows the W which achieves the highest

validation accuracy at the end of training as shown in Fig.5.5 and 5.6. In CIFAR-10 with

20% symmetric label noise, W = 100 achieves the highest validation accuracy although

the F-score during training is relatively low. However, in the higher noise rate setting

such as 50% and 80% symmetric label noise, smaller size of window such as W = 5

which achieves the best validation accuracy and yields higher F-score during training.

In CIFAR-100, some best W settings do not give higher F-score at the initial stage of

training such as 50% symmetric noise, but F-score gradually increases during training,

and W which achieves best validation accuracy also yields higher F-score at the end of

training.
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Figure 5.7: Visualization of how the F-score of clean sample selection changes during
training SSFP+co with the various size of W . x-axis of each plots corresponds to the
number of training epochs and y-axis corresponds F-score for sample selection. Plots
on top row and plots on bottom row show the results in CIFAR-10 and CIFAR-100,
respectively. On top of each plot, we show the label noise setting. Each plot corresponds
to the size of Window W and bold line shows the W achieves the highest validation
accuracy at the end of training.
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5.4.6 Fitting a two-component Beta Mixture Model

In order to verify if there is a better distribution for sample selection, we modeled the

number of false predictions by fitting a two-component Beta Mixture Model (BMM) in-

stead of GMM. The beta distribution allows modeling the skewed distribution and we

compared how the test accuracy varied with the BMM. Fig.5.8 shows the fitting results

of BMM and GMM to the number of false predictions on CIFAR-10 dataset with 20%

symmetric label noise at 40th epoch. The solid line shows the pdf of BMM and the dot-

ted line shows the pdf of GMM. Both learned models capture well the distribution of the

number of false predictions. Table.5.4 and 5.5 show the performance comparison of our

method with GMM or BMM, denoted as SSFP(GMM) and SSFP(BMM), on CIFAR-10

and CIFAR-100 dataset with different levels of symmetric and asymmetric label noise.

The mean accuracy and its standard deviation are computed over three noise realiza-

tions. These results show that in CIFAR-10, the GMM-based method achieves better or

comparable results to the BMM-based method; in CIFAR-100, the GMM-based method

achieves superior results, except for the asymmetric label noise case. In summary, it can

be said that GMM was superior to or comparable to BMM for sample selection in this

ablation study.

5.4.7 Sensitivity of our methods with gamma

γ determines the threshold on posterior distribution of binary classification for selecting

clean samples. We have tested SSFP on noisy CIFAR-10 and CIFAR-100 with various

values of γ and recorded test accuracy at the end of training to check how SSFP is sensitive

to γ. Table.5.6 summarizes the results. The value of γ was varied between 0.1 and 0.9, but

severe performance degradation was not observed. These results show that our method

is less sensitive to the value of γ.
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Figure 5.8: Visualization of total number of false predictions for each sample of CIFAR-
10 dataset with 20% symmetric label noise at 40-th epoch, and fitted two-component
GMM and BMM at 40-th. Red and Blue bars indicate the samples with clean labels and
ones with noisy labels, respectively. The dotted line represents the pdf of GMM and the
solid line represents the pdf of BMM.

5.4.8 Performance of SSFP on text data

To validate SSFP in text data, we evaluated SSFP in a sentence classification task using

the AG News dataset. The labels of AG News dataset are “World”, “Sports”, “Business”,

and “Sci/Tec”. We artificially synthesized 20% and 50% symmetric noisy labels. At first

we built a vocabulary table, which identifies the index of each token in a sentence, from

the training dataset. Each sentence is converted into a list of tokens, which are then

converted into a list of integers.

Our classification model is composed of an embedding layer and 4 fully-connected

layers. We prepare weight vectors for each token in the embedding layer. The embedding

layer collects weight vectors identified by a list of integers and passes the mean vector of
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the collected vectors to the next fc layer.

In this experiment, the length of each weight vector is 128, and the number of weight

vectors in the embedding layer is equal to the length of the vocabulary table. The number

of training, validation, and test sets are 108000, 12000, and 7600, respectively. The model

is trained for 30 epochs; the value of K is set to 1, the window size W is one of {1, 10, 100},

and the frequency F is one of {50, 100, 150}. SSFP starts sample selection after the 10th

epoch. For 20% label noise, W = 1 and F = 100, and for 50% label noise, W = 10 and

F = 50. Table.5.7 summarizes the performance of SSFP and the standard model without

sample selection. The experiments show that SSFT is an effective method for learning

with noisy labels in text classification.

5.4.9 Performance of SSFP with a small number of validation

samples.

In the real world setting, it is not always possible to collect large amounts of clean data

for validation. In this section, we reduced the number of validation samples from 5000

to 500 to see if the hyperparameters of SSFP could be adjusted with smaller number of

validation samples. The tuned values of W and F on large validation set are shown in

Table.5.2 and 5.3, and the tuned values of W and F on small validation set are shown

Table.5.8 and 5.9. Table.5.10 shows that SSFP(small) achieves comparable test accuracy

to SSFP(large). We found that tuning of hyperparameters of SSFP in CIFAR-10 and

CIFAR-100 is possible with a small validation set.

5.4.10 Discussion

The results given by our methods were better than or comparative to the state-of-the-art

methods in the various experimental settings. This means that proposed false predictions

is one of the useful measure to detect the noisy labels. Despite the achievements of

our methods, they are sensitive to hyper-parameter tuning based on validation accuracy,
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especially for W . As shown in Fig.5.3, when the noise rate is low such as 20% symmetric

label noise in CIFAR-10, validation accuracy does not change across various value of W .

However, in the higher noise setting such as 50% and 80% symmetric label noise setting,

validation accuracy is high when the size of W is small, and decreases as the size of W

increases. This indicates that records from recent models are more important than those

form past models in severe noise setting. On the other hand, larger size of W is more

effective in the case of 40% asymmetric label noise in CIFAR-100 as shown in Fig.5.3.

Fig.5.7 showed how the W changes the F-score for sample selection during training,

and the relationship between F-score and the best validation accuracy. In the case of

low noise rate setting such as 20% symmetric labels noise in CIFAR-10, the window size

that does not results in highest F-score yields the best validation accuracy. In this case,

selected samples with low F-score was accurate enough since noise rate is low and the

number of selected samples was sufficient for training. In other cases such as 50% and

80% symmetric label noise, the W which achieves higher F-score also achieves the highest

validation accuracy. This means that higher F-score during training is required to achieve

the higher validation accuracy in the severe noise settings. Furthermore, almost plots show

that each F-score gets better as learning progresses. This is because that false predictions

given by the model trained with selected samples accurately identify the samples with

noisy labels and iteratively improve the quality of sample selection during training.

One drawback of this method is that it is computationally more expensive than other

conventional methods because it records the false predictions of N training samples at

every F mini-batches. This method requires more time to complete training for a larger

total number of training samples or for a smaller value of F .
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Table 5.2: The value of hyperparameters W and F used in Table.5.1 on CIFAR-10
dataset at different levels of noise rate.

Noise Type Symmetric Asymmetric
Noise Rate 20% 50% 80% 40%

SSFP W 200 10 10 5
F 100 150 100 100

SSFP+co W 100 5 5 5
F 100 150 150 100

Table 5.3: The value of hyperparameters W and F used in Table.5.1 on CIFAR-100
dataset at different levels of noise rate.

Noise Type Symmetric Asymmetric
Noise Rate 20% 50% 80% 40%

SSFP W 10 5 5 200
F 100 50 100 50

SSFP+co W 10 1 5 50
F 150 50 100 50

Table 5.4: Performance comparison of our method with GMM or BMM on CIFAR-10
dataset at different levels of noise rate in test accuracy (%).

Noise Type Sym. Asym.
Noise Rate 20% 50% 80% 40%
SSFP(GMM) 91.5 ± 0.0 87.3 ± 0.2 72.5 ± 1.2 91.1 ± 0.3
SSFP(BMM) 91.5 ± 0.0 87.3 ± 0.2 70.5± 1.4 88.9± 3.2

Table 5.5: Performance comparison of our method with GMM or BMM on CIFAR-100
dataset at different levels of noise rate in test accuracy (%).

Noise Type Sym. Asym.
Noise Rate 20% 50% 80% 40%
SSFP(GMM) 71.4 ± 0.2 60.3 ± 0.6 29.6 ± 2.0 62.7± 0.6
SSFP(BMM) 70.0± 0.0 58.1± 0.5 28.8± 1.5 63.5 ± 0.7
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Table 5.6: Test accuracy of SSFP with different value of γ.

Dataset CIFAR-10 CIFAR-100
Noise Type Sym Asym Sym Asym
Noise Ratio 20% 50% 80% 40% 20% 50% 80% 40%
γ = 0.1 91.62 87.57 71.41 91.30 70.19 57.75 29.34 60.85
γ = 0.3 91.64 87.57 71.41 91.30 70.89 57.48 29.34 62.71
γ = 0.4 91.64 87.57 71.41 91.30 70.89 60.03 29.34 63.37
γ = 0.5 91.63 87.57 71.41 91.30 70.89 60.03 29.34 63.15
γ = 0.6 91.59 87.57 71.41 91.13 70.89 60.03 29.34 63.54
γ = 0.7 91.55 87.61 71.41 91.13 70.89 60.03 29.34 63.41
γ = 0.9 91.50 87.61 71.41 91.13 71.60 60.29 29.34 64.62

Table 5.7: Performance comparison of SSFP and standard method on AG News dataset
at different levels of noise rate in test accuracy (%). The mean accuracy and its standard
deviation are computed over three noise realizations.

Noise Type Sym.
Noise Rate 0% 20% 50%
Standard 88.9 ± 0.2 86.8± 0.4 81.2± 0.4
SSFP − 88.9 ± 0.1 87.1 ± 0.3

Table 5.8: The value of hyperparameters W and F used in Table.5.10 on CIFAR-10
dataset at different levels of noise rate.

Noise Type Symmetric Asymmetric
Noise Rate 20% 50% 80% 40%

SSFP W 1 5 5 1
F 50 50 150 50

Table 5.9: The value of hyperparameters W and F used in Table.5.10 on CIFAR-100
dataset at different levels of noise rate.

Noise Type Symmetric Asymmetric
Noise Rate 20% 50% 80% 40%

SSFP W 10 5 1 100
F 50 150 100 100
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Table 5.10: Comparison of SSFP with hyperparameters adjusted on a large validation
set (SSFP(large)) vs. SSFP with hyperparameters adjusted on a small validation set
(SSFP(small)) in test accuracy (%).

Dataset CIFAR-10 CIFAR-100
Noise Type Sym Asym Sym Asym
Noise Ratio 20% 50% 80% 40% 20% 50% 80% 40%
SSFP(large) 91.63 87.57 71.41 91.30 70.89 61.73 29.34 63.15
SSFP(small) 91.72 87.66 73.20 91.22 71.70 59.79 29.60 63.37



Chapter 6

Conclusion

6.1 Summary

In this study, we proposed three novel methods for robustly training deep neural networks

for image classification against the noisy labels. Chapter 1 provides an overview of the

development of deep neural networks in the field of machine learning, the problems caused

by the noisy labels, and the importance of robust methods for addressing them. The

problem of label noise is an inherent aspect of creating datasets for machine learning

models, and addressing it is crucial for improving the performance of deep neural networks

in various fields. We discussed the importance of the research results of this thesis as a

foundation for guiding artificial intelligence to the foundations of society. Chapter 2

details the mechanism of deep neural networks, defines the type of label noise studied in

this thesis, and presents a comprehensive review of previous research. In Chapter 3, we

proposed a method to eliminate label noise by constructing a graph between samples based

on similarity of sample features and using label propagation. By iteratively removing

label noise and updating model parameters, we were able to robustly train the model

while preventing overfitting to the noisy labels. In Chapter 4, we focused on the fact that

sample selection methods in previous studies selected samples with small error values

as clean samples, and introduced consistency regularization for those clean samples. As

95
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a result, we were able to obtain a model with high generalization performance while

preventing overfitting to clean samples with simple patterns. In Chapter 5, we proposed a

new sample selection method that exploits the robustness of deep neural networks against

noisy labels in the early stages of learning and selects clean samples based on the number of

false predictions for each sample during training. The new criterion reflects the difficulty

of learning each sample. We showed that our approaches were effective in preventing deep

neural networks from overfitting to noisy labels and improving generalization performance

using common benchmark datasets.

6.2 Findings

The proposed method described in Chapter 3 attempted to eliminate noisy labels by ex-

ploiting the robust property of deep neural networks against noisy labels in the early stage

of learning. By assuming that samples that truly belong to the same class are more similar

in the features extracted from the model before overfitting to noisy labels, we constructed

a similarity graph between samples. Our empirical results verified the effectiveness of

the proposed method, as we observed a significant reduction in the percentage of noisy

labels removed through label propagation on the similarity graph. This confirmed that

the similarity of samples that truly belong to the same class is high in the feature space.

Furthermore, the visualization of images in the feature space of the model trained with

CIFAR-10 confirmed the clustering of samples with similar visual features, suggesting

that our proposed method effectively performs label noise removal based on the visual

similarity of samples in image classification tasks.

In Chapter 4, we attempted to prevent the model from overfitting to clean samples

by perturbing the selected samples with image-specific data augmetation methods. By

intentionally perturbing the image, we were able to promote the model’s understanding

of invariances and, simultaneously, enhance its ability to learn representations of clean

examples that are difficult to classify. We observed an increase in the value of loss function
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on the selected clean sample when we applied consistency regularization to the selected

samples, indicating that this method effectively prevents overfitting to the clean samples.

The sample method proposed in Chapter 5 used criteria reflecting the difficulty of

each sample in learning, and learning with the selected samples achieved a superior clas-

sification accuracy compared to previous studies. In addition, performance was better

when sample selection was performed by aggregating the recent number of false predic-

tions, rather than using all the number of false predictions measured in the past. This is

because the model trained with the most recent clean sample estimates the true label of

each sample more accurately than the model immediately after the start of sample selec-

tion. This is because the model trained with the clean sample most recently estimates the

true label of each sample more accurately than the model trained with the clean sample

immediately after the start of sample selection.

6.3 Future Works

In Chapter 3, we constructed a graph based on the similarity in the feature space and

performed label noise elimination by label propagation. However, it can be challenging to

remove noisy labels from samples located near the classification boundary in the feature

space because their ground-truth class is unclear. To construct more accurate graphs

between samples, utilizing multiple types of graphs based on prior knowledge about the

similarity between each sample, independent of label noise, can be considered. This

prior knowledge refers to information about samples other than categories. One potential

application of this proposed method to other fields is sample reduction, which identifies

and removes redundant samples in the feature space for faster learning.

In Chapter 4, sample selection was performed, and perturbations were applied only to

clean samples to achieve robust learning. As a direction for further research, perturbations

could be applied to samples that were not selected as clean and monitor how generalization

performance changes. While the proposed method employed random data augmentation
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as a method of perturbing samples, it would be worthwhile to investigate the effect of

perturbations applied in the feature space and to determine which types of perturbations

are most effective in improving generalization performance.

In Chapter 5, we proposed a sample selection method that observes the model’s pre-

diction results across multiple training epochs and considers the consistency of predictions

over time. However, it is worth exploring other observations, beyond predictions, that are

effective for sample selection. For example, we can consider how samples in the neigh-

borhood change over time in the feature space and how the distance from samples in

other classes changes. A possible application of this method for other fields is scheduling

training samples for faster learning.

Each of these proposed methods presented in this study is independent and can be

utilized in combination. The findings obtained in this research are not limited to the label

noise problem, but have potential applications in other fields as well. Furthermore, the

investigation of noisy labels addressed in this thesis is closely related to the generalization

performance of deep neural networks. By clarifying the relationship between robustness

to label noise and generalization performance, we can gain a deeper understanding of

the fundamental principles of learning in artificial intelligence, potentially leading to new

breakthroughs in the field.
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