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Abstract

This thesis discusses the epistemic uncertainty estimation in reliability models

such as fault trees, Markov models and their hybrid models. The epistemic un-

certainty is the uncertainty of output of model propagated from the uncertainty

of input parameters. The uncertainty of input parameters are caused by the

statistical errors in estimating model parameters due to limited sample size.

In Chapter 2, we develop the moment-based approach for estimating the

epistemic uncertainty in hierarchical reliability models. The main point of the

epistemic uncertainty estimation is how to determine the distribution of output

of model. There are two approaches to obtain the distribution of output. One

approach is to get a closed form solution of the distribution based on mathe-

matical analysis. However, it is not always that the solution has a closed form.

Another approach is based on sampling. By collecting outputs of model with

the changes of input parameters, we obtain the distribution of output of model

numerically. But, such approaches require much computation cost, i.e., the

computation time tends to be longer when we want to get the highly-accurate

distribution. The moment-based approach for the epistemic uncertainty esti-

mation is known as the method to make a balance between computation speed

and accuracy. Since the moment-based needs the information on local sensitiv-

ity, i.e., the first two derivatives of output of model, it has been discussed in a

monolithic Markov chain whose first two derivatives are computed easily. This

thesis extends the applicability of moment-based approach to the hierarchical

reliability model. The hierarchical reliability model is defined as a hybrid model

with fault trees and Markov chains, and they are used in reliability evaluation

for complex system. The main idea behind our approach is to use the automatic

differentiation for BDD (binary decision diagram) representation of fault trees

and Markov chains. Numerical experiments are exhibited to estimate the un-

certainty propagation in both simple and complicated hierarchical models. By

comparing them with Bayes approach, we discuss the accuracy of moment-based

approximation.

In Chapter 3, we focus on the global sensitivity of epistemic uncertainty.

Although the local sensitivity is to estimate the magnitude of variation when

the input parameters are varied, the global sensitivity is an approach to reveal
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the main effect to produce the uncertainty. The well-known global sensitivity

is the variance-based sensitivity analysis that is similar to the variance analysis

in statistical models. Our main idea is to apply the moment-based approach to

obtain the variance-based sensitivity measure in Markov models. The presented

approach is much faster than the existing approach using Monte Carlo (MC)

simulation.

In Chapter 4, we discuss the computation method of information matrix

for phase-type (PH) approximation. The PH approximation is applied in non-

exponential models that involve the state transitions following non-exponential

distributions, and is to approximate the original model by replacing their non-

exponential distributions with PH distributions. Since PH distributions are

defined by Markov chains, the approximated model is regarded as a Markov

model. In this scheme, we need to determine the model parameters of PH dis-

tributions that fits to the non-exponential distribution. Since this is based on

the statistical estimation, the determined parameters of PH distribution involve

the uncertainty. In the epistemic uncertainty estimation, the uncertainty of

input parameters are estimated beforehand. In the context of PH approxima-

tion, the uncertainty of PH parameters should also be estimated. One of the

approach to estimate the uncertainty is the evaluation of information matrix.

By computing the information matrix with the estimated parameters, we ob-

tain the characteristics of uncertainty of parameters. However, the computation

of information matrix requires much computation effort. Especially, since PH

distributions have a lot of parameters, it is necessary to develop an effective

computation approach on information matrix. In Chapter 4, we propose an

effective algorithm for computing the information matrix of PH distribution

based on the uniformization technique.

Finally, we summary the contributions of this thesis are; (i) enhancement of

the moment-based approach for estimating epistemic uncertainty so that it can

be applied to in hierarchical models with the automatic differential technique.

(ii) application of moment-based approach to obtain the global sensitivity mea-

sure of epistemic uncertainty with the variance-based sensitivity analysis. (iii)

development of an effective algorithm for computing the information matrix of

PH distributions that is useful to estimate the uncertainty of input parameters.
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Chapter 1

Introduction

Model-based dependability evaluation is to estimate quantitative dependability

measures such as system reliability and availability by using stochastic models

and is quite useful for determining the system configuration in the design phase.

It is well-known that the Markov chain and fault tree (FT) play central roles in

the model-based dependability evaluation [1]. The drawback of model-based de-

pendability evaluation is to determine model parameters, because the model pa-

rameters are usually estimated from empirical data or the knowledge of experts.

However, since the estimated model parameters themselves involve uncertainty,

it is important to evaluate how much effect the uncertainty of model parameters

is on the dependability measures, which is called uncertainty propagation. More

specifically, the uncertainty propagation is categorized into aleatory uncertainty

and epistemic uncertainty [2]. The aleatory uncertainty generally results from

the effect of inherent randomness or unpredictable variability of the modeled

phenomenon. On the other hand, the epistemic uncertainty is due to the im-

perfect knowledge or incomplete information regarding values of parameters of

the underlying model [3]. There are several papers to achieve the estimation of

uncertainty propagation [4–8,10]. Singpurwalla et al proposed Bayes estimation

for handling epistemic uncertainty, but the requirement of closed-form equation

makes it only suitable for single structure model. Mishra et al. [7] considered the

sampling-based approach for epistemic uncertainty evaluation, taking advantage

of analysis without closed-form structure. However, the high computational cost

generated by simulation method should be further considered. In particular, Yin

et al. [5] introduced an approximation using Taylor series expansion of epistemic

1
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uncertainty propagation for reliability models. Okamura et al. [10] presented a

moment-based approximation approach using the Taylor series expansion for

the uncertainty propagation when the model is given by general Markov chains.

The moment-based approximation requires the first and second derivatives of

output measures of system respect to model parameters and can well address the

both closed-form and non-closed form situations [10] with efficiency. However,

the real systems are usually composed of complex structure, making it difficult

to evaluate the effects of uncertainty propagation. Since the traditional method

can not well be applied on complex system, we focus on the moment-based ap-

proximation for epistemic uncertainty propagation and improve the efficiency of

computing the first and second derivatives of complex system for this method.

In model-based dependability evaluation, the structure of complex system

is usually displayed through dependability models, which are often described

as hierarchical models [11, 15]. The hierarchical modeling is to combine FTs

and Markov chains, such as continuous-time Markov chains (CTMCs). The FT

represents the relationship between system failure and component failures, and

the Markov chain represents the dynamic behavior of components. Compared

with the monolithic Markov model representing the behavior of whole systems,

the hierarchical model has an advantage in reducing the number of system states.

In this dissertation, we first focus on the epistemic uncertainty propagation for

a hierarchical model consisting of FTs and CTMCs, and discuss a moment-

based approximation method to estimate the uncertainty propagation in the

hierarchical model. Furthermore, we also discussed this topic in another paper

which is under review [12].

Secondly, stochastic models including Markov chains can be highly com-

plex, as a result, the relationship between input parameters and output mea-

sure might be poorly understood. Because the model parameters are usually

estimated from empirical data or the knowledge of experts, that means the

value of model parameters contains uncertainty and even affects the output

measures. Due to the poor relationship between the inputs and outputs, it is

difficult to realize the uncertainty of output affected by input parameters. In

such a situation, it is not clear which component needs to be prioritized if we

want to improve system dependability. To address the above issues, sensitivity
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analysis, which acts as a critical role in quantifying uncertainty in the design

of computer systems, has been widely considered. In particular, a variance-

based global sensitivity analysis is often used to rank the importance of input

factors, based on their contribution to the variance of the output measure of

interest [13]. The variance-based sensitivity analysis relies on the computation

of conditional variances, is sampling-based, and therefore usually applies sim-

ulation methods such as Monte Carlo simulation. That means, the traditional

methods for variance-based sensitivity analysis based on simulation do not need

the analytic structure of the model to be analyzed, which can be regarded as

its major advantage. However, the simulation usually needs a huge number of

realizations until obtaining stable results, resulting in an undesired high com-

putational cost. Gan et al. [14] applied 10 different sensitivity analysis methods

on the Sacramento Soil Moisture Accounting (SAC-SMA) model. The cost of

methods is calculated by the number of samples, and most methods need more

than 1000 samples to achieve the same estimation purpose. To overcome this

problem, we consider the moment-based approximation, which can obtain the

expectation and variance of the output measure to achieve the formulation of

the variance-based sensitivity analysis.

On the other hand, epistemic uncertainty propagation occurs mainly from

the parameter estimation which follows non-exponential distribution and expo-

nential distribution [2]. Since non-exponential distribution is difficult to com-

pute, a widely used solution is applying phase-type (PH) distribution for approx-

imation. PH distribution is the distribution for an absorbing time in a CTMC,

and it is the fundamental part of PH expansion. In general, PH expansion [44]

is widely used to solve the problem that non-exponential distribution is difficult

to calculate. The main idea of PH expansion is replacing the non-exponential

distribution with PH distribution with high accuracy. And the calculation prob-

lem will turn to the calculation of the underlying CTMC of PH distribution. In

PH expansion, PH fitting [45] is considered to fit the PH parameters from the

target distribution. In general, PH parameters are estimated from (i) indepen-

dent and identically distributed (IID) samples or (ii) weighted samples from the

non-exponential distribution via the maximum likelihood (ML) estimation [46].

With PH fitting, the fitted PH distribution can be a very accurate approxi-
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mation of the original distribution. After expansion, the non-Markovian model

containing non-exponential distributions becomes PH expanded model, which is

essentially a CTMC. The PH expanded model can be used for evaluating system

performance/dependability measures, such as system reliability and availabil-

ity. However, model parameters typically involve estimation errors, so-called

uncertainty, especially in the phase expanded models where the number of PH

parameters and states of underlying CTMC grows significantly as an increasing

phase [47]. It results in estimation error in the performance/dependability mea-

sure, so it is crucial to analyze the parameter uncertainty [10,38]. To solve the

above issue, one can use the Fisher information matrix to obtain the variance

and covariance information of model parameters [48]. In the context of ML esti-

mation [49], the Fisher information matrix is given by the second derivatives of

log-likelihood function (LLF) in terms of parameters. The variance/covariance

matrix is computed by the inverse of the Fisher information matrix. It is easy to

obtain the Fisher information matrix when the model contains few parameters.

But as we mentioned, PH fitting can bring a lot of parameters so that the cal-

culation speed would be so low, and the computational cost would be extremely

high. So, the motivation of this paper is to improve the calculation speed of the

Fisher information matrix with a large number of model parameters.

The organization of this dissertation is as follows. The moment-based ap-

proximation for epistemic Uncertainty propagation in hierarchical reliability

models is shown in Chapter 2. Chapter 3 introduces the details of variance-

based sensitivity analysis for Markov models and the experiments of them.

Chapter 4 describes the contents of the efficient computation of information

matrix in phase-type fitting. Chapter 5 gives the conclusions and the future

work.



Chapter 2

Moment-Based Approach
for Estimating Epistemic
Uncertainty

2.1 Introduction

It is well-known that model-based approach such as FT, Markov chain, Hier-

archical model plays the center role in dependability evaluation. However, the

usage of model-based approach requires the estimation of model parameters,

which is usually derived from data samples and expert’s knowledge. Due to the

statistical errors called uncertainty in the model parameters, the output mea-

sure of system can be affected. So it is important to evaluate how much effect

the uncertainty of model parameters is on the dependability measures, which is

called uncertainty propagation.

In this chapter, we focus on the epistemic uncertainty propagation for a hi-

erarchical model consisting of FTs and CTMCs, and discuss a moment-based

approximation method to estimate the uncertainty propagation in the hierar-

chical model. The moment-based approximation requires the first and second

derivatives of output measures concerning model parameters, but it is not easy

to obtain them for an FT in practice. [38]. To address this issue, we present the

binary decision diagram (BDD) approach for the computation of the first and

second derivatives in FT and extend this method to hierarchical models. The

presented approach is scalable with respect to the number of parameters. The

main contributions of this chapter are summarized as follows:

5
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• Proposal of a feasible approach for epistemic uncertainty propagation

in hierarchical reliability models by using moment-based approximation

method.

• BDD-based computation for the first and second derivatives of the FTs

and hierarchical models,

• Validation and evaluation of the proposed approach on both simple and

complicated hierarchical models.

2.2 Related Work

In reliability engineering, probabilistic models are used to evaluate the quan-

titative measures of a system, such as system reliability and availability, since

the failure event involves randomness. In such a probabilistic model, the ran-

domness is generally modeled by parametric distributions and is called aleatory

uncertainty. These probabilistic models are represented with fixed parameter

values of these aleatory distributions, and the outputs thus obtained clearly

depend upon the values of the parameters used.

The parameters of the aleatory model are estimated from experimental data

such as field failure data, maintenance logs, and other sources of observed data.

Since the number of observations is finite, the sampling errors affect the esti-

mated model parameter values. Also, even if the parameter values are given by

expert guesses, the uncertainty may be included in the values. This parametric

uncertainty arising out of incomplete information about the parameters is called

epistemic uncertainty [2].

In the context of uncertainty analysis, Lei et al. [4] proposed a strategy

for modeling uncertainty propagation. Compared with the typical uncertainty

propagation methods such as first-order analysis, sensitivity analysis, statistical

linearization, and Monte Carlo (MC) analysis, they introduced a pathway of

parameter uncertainty propagation analysis based on validity, simplicity, and

computational requirements. Jean et al. [6] considered an MC method to eval-

uate properly the influence of residual parameters with prior uncertainty on

the covariance of fitting parameters. Their work showed that propagating the

uncertainties is crucial to understanding the parameter relative influences on
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Table 2.1: Epistemic uncertainty propagation for different aleatory model types

Epistemic uncertainty propagation method

Solutions Closed-form
integration

Numerical
integration

Moment-
based

Sampling-
based

Closed-form solu-
tion

Applicable
(simple ex-
pressions)

Applicable
(a few pa-
rameters)

Applicable Applicable

Analytic-numeric
solution

Not applicable Applicable
(a few pa-
rameters)

Applicable Applicable

Simulative solution Not applicable Applicable
(a few pa-
rameters)

Applicable
(numerical
differentiation
is needed)

Applicable

theoretical model calculations.

The natural way to handle epistemic uncertainty is to treat the parameters

of the aleatory probabilistic model as random variables (r.v.s). This concept is

closely related to Bayes theorem [16] and leads to some difficulties in terms of

numerical computation. Mishra et al. [7, 8] classified the epistemic uncertainty

evaluation techniques into three categories; analytic closed-form integration,

numerical integration, and sampling-based method. Table 2.1 summarizes the

applicability of various epistemic uncertainty propagation methods for different

types of aleatory models. Specifically, the analytic closed-form integration can

be applied in the case of aleatory models that can be analytically solved to

get the model output as simple closed-form expressions of input parameters.

Zhanget al. [9] considered the epistemic uncertainty propagation in fault tree,

discussing the effects of uncertainty on the importance measure. For more

complex expressions of model output, i.e., in the case where the value of output

metric is evaluated numerically with software packages like SHARPE [17] or

SPNP [18], numerical integration and sampling-based approximation [19, 20]

are applicable. In [5], the moment-based approach for a simple reliability model

was presented. Okamura et al. [10] extended the moment-based uncertainty

computation to general CTMC models. Also, Harverkort et al. [21] discussed

the uncertainty propagation with the moments of parameter distribution for

general Markov-reward models. However, in the work by Harverkort et al. [21],

the moment-based approach could not be applied to a complex Markov-reward

model due to the limitation of computational power at that time.

Other analytic methods for parametric epistemic uncertainty propagation,
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mostly based on algebraic manipulations of model output and exploiting proper-

ties and transformations of expectation and variance (for simple non-state space

reliability models), have been studied by Sarkar [22], Leiberman and Ross [23],

and Coit [24]. Several recent papers have applied these ideas to high-speed rail-

ways reliability models [25], power consumption models [26], and system on a

chip [27]. Particularly, the paper considering the system on a chip also extended

the analysis to the case of Weibull aleatory distributions.

2.3 Hierarchical Reliability Model

A hierarchical reliability model is a mixture of non-state-space models and state-

space models. The non-state-space model is a combinatorial model representing

a static relationship between component failures and system failure. The typical

non-state-space model is the FT. On the other hand, the state-space model rep-

resents a dynamic behavior of the system state and a history of state transitions

when the system has failed. The typical state-space model is the Markov chain.

In general, the representation of the state-space model covers one of the non-

state-space models mathematically; thus, the state-space model may be enough

to represent the system failure mechanism. However, when we model a complex

system with many components, the state-space representation causes the state

explosion. For example, for the system consisting of n components, each of

which is modeled by the binary states; UP (the component works normally)

and DOWN (the component is failed), the number of system states is 2n and

increases exponentially as the number of components increases.

The hierarchical reliability model mitigates such a state explosion problem

in reliability evaluation. Concretely, the hierarchical reliability model is con-

structed by a non-state-space model, where a state-space model models the

dynamics of each component. In this chapter, we focus on the typical hierar-

chical reliability model, composed of an FT at the system level and CTMCs at

the component level.

2.3.1 Fault Tree

The system failure is modeled by an FT with n basic events. Each basic event

indicates a probabilistic event occurrence related to the system failure, e.g.,
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(a) AND gate (b) OR gate (c) k-out-of-n gate

Figure 2.1: Example of Fault-tree.

component failure. Let Xi, i = 1, . . . , n be indicator r.v.s representing whether

a respective event happens or not. The basic events are connected by logical

gates and form a tree whose root (parent) event becomes a composite event trig-

gered by basic events. Then the gate gives a condition to the root event occur-

rence. Typically, AND, OR, and k-out-of-n gates are widely-used in reliability

assessment. For example, Fig. 2.1(a) shows an AND gate, which represents the

relationship of Event C when Event A and Event B have occurred. Figure 2.1(b)

is an OR gate, indicating that Event C occurs when at least one of Event A

and Event B occurs. Also, Fig. 2.1(c) represents a 2-out-of-3 gate, where the

root event occurs only when two or more basic events occur. In fact, the FT

model has a hierarchical structure of AND/OR/k-out-of-n gates to describe the

conditions of the top event occurrence.

From the mathematical point of view, an FT model can be represented by

a structure function. The structure function is a 0-1 value function with an

output and n inputs. The output means the state of top event occurrence, and

the inputs are the states of basic events. Let xi, i = 1 . . . , n, and y be the binary

states to represent n basic events and the top event, respectively, we have

y = F (x1, . . . , xn). (2.1)

In the above F (·) represents the structure function. For example, the structure

functions of Figs. 2.1(a) and (b) are given by

y = xAxB , (2.2)

y = 1− (1− xA)(1− xB). (2.3)
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Using F (·), the top-event occurrence probability ps is expressed as follows.

ps = F (p1, p2, · · · , pn), (2.4)

where pi is a probability that the i-th basic event occurs.

2.3.2 Markov Chain

Since FT is a static model to express the relationship between the top event

and basic events, it cannot basically represent the dynamic behavior, such as

an order of basic event occurrences. For example, in Fig. 2.1(a), there is a case

where the root event C occurs only when an order of basic event occurrences;

A → B. To express such a dynamic behavior, the dynamic FT (DFT) has been

presented [28]. The DFT is an extension of FT by introducing several dynamic

gates, such as priority AND gate, which can indicate the order of basic event

occurrences causing the root event. However, the representation ability of DFT

is restricted, and there is the dynamic behavior that any DFT cannot express.

In the chapter, we consider using the Markov chain to represent the system’s

dynamic behavior, i.e., the hierarchical model whose top level is given by a static

FT, and the basic event occurrence follows a Markov chain.

A Markov chain is a stochastic process with discrete state space on either a

discrete-time or continuous-time domain. The hierarchical model generally deals

with discrete-time and continuous-time Markov chains. This chapter focuses

only on the CTMC, i.e., the system behaves in the continuous-time domain.

The same approach can be applied to the case of a discrete-time Markov chain.

Suppose that the state space associated with i-th basic event is defined by

the discrete state; Si. In this chapter, these states are called phases. Besides,

all the phases can be divided into two sets Ui and Di where Ui ∩ Di = ϕ and

Ui ∪ Di = Si. When the current phase is in Ui, the state of i-th basic event is

0, i.e., the component i is working. Also, the phase is in Di means the state of

i-th basic event is 1, i.e., the component i is failed. Note that if both the sizes

of phases Ui and Di are 1, the hierarchical model is an ordinary FT model. Let

{Xi(t); t ≥ 0} be the CTMC process on Si and πn(t) = P (Xi(t) = n) denotes

the state probability vector that the current phase is n ∈ Si at time t. Then
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the probability that i-th basic event occurs is given by

pi =
∑
n∈Di

πn(t). (2.5)

DefineQi as an infinitesimal generator ofXi(t). We have the following difference-

differential equations (alternatively, Kolmogorov forward equation):

d

dt
πi(t) = πi(t)Qi, (2.6)

where πi(t) is a row vector whose entries are πn(t), n ∈ Si. Similarly, we

sometimes encounter the case where the basic event occurrence probability is

given from the steady-state probability vector of CTMC, such as steady-state

availability. In such a case, the i-th basic event occurrence probability is written

as

pi =
∑
n∈Di

π̃n, (2.7)

where π̃n is the n-th entry of steady-state probability vector π̃ satisfying

π̃iQi = 0,
∑
n∈Si

π̃n = 1. (2.8)

As an example of the hierarchical model, we consider the equivalent expres-

sion to the DFT. Figure 2.2 shows a DFT that uses a priority AND gate. The

system consists of three non-repairable components; A, B, and C. Each com-

ponent has two states; UP and DOWN. The system failure occurs only when

components A and B fail in the order A → B or the failure of component C

occurs. In the hierarchical model expression, we consider subsystem A′ compos-

ites the components A and B. The phases (i.e., states) to be considered for the

subsystem A′ are given in Table 2.2. The corresponding infinitesimal generator

matrices becomes

QA′ =


−(λA + λB) λA λB 0

0 −λB 0 λB

0 0 0 0

0 0 0 0

 , (2.9)

QC =

−λC λC

0 0

 . (2.10)
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TE

C A A B

C

A B

Figure 2.2: PAND gate DFT.

A'

Figure 2.3: PAND gate DFT.

Table 2.2: Phases of the subsystem A′ compositing the components A and B

Phase Description

(UP, UP) Both components A and B are operational.

(UP, DOWN) Component A is operational and B is failed.

(DOWN, UP) Component A is failed and B is operational.

(DOWN, DOWN) Both components A and B are failed.

In such a case, the DFT reduces to the FT in Fig. 2.3, whose basic events are

represented by CTMCs in Eqs. (2.9) and (2.10).

Generally, we suppose a hierarchical model consisting of a static FT with

n basic events and corresponding n CTMC models. Let θi be a parameter

vector of the i-th CTMC. Note that θ1, . . . ,θn are not necessarily mutually

disjointed sets and may have common parameters. Also, we denote pi(θ) as the

event occurrence probability of the i-th basic event because it depends on the

model parameter of the corresponding CTMC. Then the top-event occurrence
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probability is given by

ps(θs) = F (p1(θ1), p2(θ2), . . . , pn(θn)), (2.11)

where θs is a parameter vector of hierarchical model; that is, θs = ∪n
i=1θi.

2.4 Moment-based Epistemic Uncertainty Eval-
uation

2.4.1 Epistemic Uncertainty Propagation

The epistemic uncertainty propagation is the phenomenon that the (statistical)

errors of input parameters affect the output measure. Let M(θ) be an output

measure of an aleatory probabilistic model, where θ = (θ1, . . . , θl) is a (column)

vector of input parameters needed to compute the output measure. In the

epistemic uncertainty propagation, the model parameters are assumed randomly

distributed, i.e., the parameter vector is defined as a vector of random variables

Θ = (Θ1, . . . ,Θl). When the joint epistemic density fΘ(θ) of parameters is

given, the cumulative distribution function (c.d.f.) of output measure is given

by a l-dimensional integration:

FM (m) =

∫
I(M(Θ) ≤ m)fΘ(θ)dθ, (2.12)

where I(E) is the indicator variable of an event E. Meanwhile, the integration

in the above equation is generally the multiple integrations with respect to the

parameter vector. Thus, the unconditional expected value of M(Θ) can be

computed through the following equation:

E[M(Θ)] =

∫
M(θ)fΘ(θ)dθ. (2.13)

And the second moment of M(Θ) is given by

E[M(Θ)2] =

∫
M(θ)2fΘ(θ)dθ. (2.14)

In [16], the unconditional expected value of reliability has been termed as sur-

vivability.

There are two key issues in the epistemic uncertainty propagation: (i) how

to determine the joint epistemic density fΘ(θ), and (ii) how to compute the

multiple integrations. The former issue is essentially a statistical problem; thus
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well-known statistical approaches are available to determine fΘ(θ). For exam-

ple, denote D as observed data to estimate the model parameters. In the Bayes

context, the joint epistemic density can be estimated as follows.

fΘ(θ|D) =
p(D|θ)fΘ(θ)∫
p(D|θ)fΘ(θ)dθ

, (2.15)

where p(D|θ) is a probability density or mass function of D for a given pa-

rameter vector θ, which corresponds to a likelihood function of θ for the given

data D. The densities fΘ(θ|D) and fΘ(θ) are called posterior and prior, re-

spectively. Since the posterior density is updated by using the observed data,

fΘ(θ|D) is regarded as the estimated joint epistemic density. However, it is not

common for analysts to know the observed data D, and in general, the avail-

able information on model parameters may be a confidence interval. That is,

the joint epistemic density should be determined from such incomplete infor-

mation. In [7], based on the Bayes theorem, Mishra and Trivedi assumed that

the posterior formed Erlang or beta densities and determined the parameters of

these densities from the confidence intervals. Also, in [29], another approach to

uncertainty propagation was proposed when a characteristic function gives the

parameter distribution. On the other hand, there is also the case where some

statistics, such as point estimates and their confidence interval, are available

only instead of observed data. For such a case, it is difficult to obtain the joint

density fΘ(θ) itself.

The latter issue is a computation of multiple integrations. The methods to

obtain a value of multiple integrations are classified into analytic and numerical

methods. The analytic method is to obtain the integration symbolically and is

generally applied to specific problems only. The work in [7] presented several

instances where the integration can be solved analytically. In the numerical

method, the sampling-based approximation approach, i.e., Monte Carlo inte-

gration, is well-known to be effective for solving such multiple integrations. Let

(θ1, . . . ,θn) be a set of samples drawn from the joint epistemic density fΘ(θ).

The Monte Carlo integration is based on the following approximation:∫
M(θ)fΘ(θ)dθ ≈ 1

n

n∑
i=1

M(θi). (2.16)

The variants of Monte Carlo integration are the quasi-Monte Carlo method [30],

the Markov chain Monte Carlo (MCMC) method [31], the Latin hypercube
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sampling [32], and other variance reduction methods. In particular, the MCMC

can combine the Bayes estimation of joint epistemic density and the computation

of multiple integrations. The survey of sampling-based methods was presented

by [33]. It should be noted that the simulation-based approach can be applied

to the situation where the joint density fΘ(θ) can be obtained.

2.4.2 Moment-based Approach

This chapter focuses on the moment-based approach for epistemic uncertainty

evaluation in [10]. The main idea behind the approach is to use the first two

moments of estimates of model parameters instead of the joint density of model

parameters.

Suppose that the column vector of the point estimate of model parameters

θ̂ = (θ̂1, . . . , θ̂m)T holds the unbiasedness θ̂ = E[Θ]. By taking a Taylor series

expansion of the expected value of the output measure at θ̂, we have

E[M(Θ)] = M(θ̂) + E[M ′(θ̂)T(Θ− θ̂)]

+
1

2
E[(Θ− θ̂)TM ′′(θ̂)(Θ− θ)] + · · · , (2.17)

where

M ′(θ) =
∂M(θ)

∂θ

∣∣∣∣
θ=θ̂

=
(

∂M(θ)
∂θ1

∣∣∣
θ=θ̂

· · · ∂M(θ)
∂θm

∣∣∣
θ=θ̂

)T
, (2.18)

and

M ′′(θ) =
∂2M(θ)

∂θ2

∣∣∣∣
θ=θ̂

=


∂2M(θ)

∂θ2
1

∣∣∣
θ=θ̂

· · · ∂2M(θ)
∂θ1∂θm

∣∣∣
θ=θ̂

...
. . .

...

∂2M(θ)
∂θm∂θ1

∣∣∣
θ=θ̂

· · · ∂2M(θ)
∂θ2

m

∣∣∣
θ=θ̂

 . (2.19)

In the above, M ′(θ) and M ′′(θ) are the first and second derivatives of output

measure with respect to model parameters, i.e., they mean the parametric local

sensitivity. Finally, we obtain the approximation by considering the first two
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moments of the above:

E[M(Θ)] ≈ M(θ̂) +
1

2
E[(Θ− θ̂)TM ′′(θ̂)(Θ− θ)]

= M(θ̂) +
1

2
(

m∑
i=1

M ′′
i,i(θ̂)Var[Θi]

+ 2

m∑
i=1

i−1∑
j=1

M ′′
i,j(θ̂)Cov[Θi,Θj ]), (2.20)

where M ′′
i,j(θ̂) is the (i, j)-entry of M ′′(θ̂).

If Θ1, . . . ,Θm are mutually independent, then Cov[Θi,Θj ]) = 0 for i ̸= j,

we have

E[M(Θ)] ≈ M(θ̂) +
1

2

n∑
i=1

M ′′
i,i(θ̂)Var[Θi], (2.21)

and similarly, taking a Taylor series expansion of M(Θ)2 at θ̂ leads to

E
[
M(Θ)2

]
≈ M(θ̂)2

+

m∑
i=1

(
M ′

i(θ̂)
2 +M(θ̂)M ′′

i,i(θ̂)
)
Var[Θi]

+ 2

m∑
i=1

i−1∑
j=1

(
M ′

i(θ̂)M
′
j(θ̂) +M(θ̂)M ′′

i,j(θ̂)
)
Cov[Θi,Θj ]. (2.22)

Then the variance of output measure with respect to errors of estimates of model

parameters can be simplified as follows.

Var[M(Θ)] ≈
m∑
i=1

M ′
i(θ̂)

2Var[Θi]−
1

4

(
m∑
i=1

M ′′
i,i(θ̂)Var[Θi]

)2

. (2.23)

In the above, we need not the joint density of estimates but only the variance

and covariances of estimates. Therefore it can be applied to the case where it is

difficult to obtain the joint density such that we know point estimates and their

confidence intervals. On the other hand, we need the information on the first

two derivatives of the output measure with respect to the input parameters and

efficient computation algorithms for these derivatives, i.e., the local sensitivity

algorithms are required. In [10], the computation for the local sensitivity of the

CTMC model has been discussed.
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2.5 Local Sensitivity Algorithms

2.5.1 Automatic Differentiation for Hierarchical Model

From the analysis in Sec. 2.4.2, we know the first two derivatives of output mea-

sure with respect to model parameters are required for achieving the moment-

based approximation. This section considers the automatic differentiation for

the computation of the hierarchical model. Automatic differentiation is a com-

putation of derivatives of a function based on the chain rule of differentiation.

In general, there are two types of automatic differentiation; bottom-up and top-

down methods [34]. This chapter focuses on the top-down type of automatic

differentiation.

Suppose that the output measure is given by the event probability of the

top event of FT in the hierarchical model. Given the structure function F (·)

of FT, the output measure is expressed by Eq. (2.11). As aforementioned, θi,

i = 1, . . . , n, are CTMC parameters representing the dynamic behavior of the

phases of i-th basic event, respectively, and θs = ∪n
i=1θi. The main objectives

are to compute the first and second derivatives of ps(θs); that is, ∂ps(θs)/∂θs

and ∂2ps(θs)/∂θ
2
s.

According to the chain rule of differentiation, the first derivative of ps(θs)

with respect to a certain model parameter θ becomes

∂

∂θ
ps(θs) =

n∑
i=1

∂F (p1(θ1), p2(θ2), . . . , pn(θn))

∂pi(θi)

∂pi(θi)

∂θ
. (2.24)

From Eq. (2.6), if pi(θi) is given by the steady-state probability vector, In the

above, the first derivative ∂pi(θi)/∂θ is written in the form:

∂pi(θi)

∂θ
=

∂πi

∂θ
ri,

∂πi

∂θ
Qi + πi

∂Qi

∂θ
= 0,

∂πi

∂θ
1 = 0, (2.25)

where ri is a (column) reward vector with the following k-th entry

[ri]k =

{
0 k ∈ Ui,

1 k ∈ Di.
(2.26)

Equation (2.25) is essentially the local sensitivity of CTMC. Similarly, in the

case of the transient solution of CTMC, we can apply the existing technique to

compute the local sensitivity for the transient solution of CTMC [41].
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On the other hand, in the same manner to Eq. (2.24), the second derivative

of ps(θs) with respect to θx and θy is given by

∂2

∂θx∂θy
ps(θs) =

n∑
i=1

n∑
j ̸=i

∂2

∂pi(θi)∂pj(θj)
F (p1(θ1), p2(θ2),

. . . , pn(θn))
∂pi(θi)

∂θx

∂pj(θj)

∂θy

+

n∑
i=1

∂

∂pi(θi)
F (p1(θ1), p2(θ2),

. . . , pn(θn))
∂2pi(θi)

∂θx∂θy
, (2.27)

where the second derivative of pi(θi) is also obtained by solving the following

linear equations when πi, ∂πi/∂θx and ∂πi/∂θy are given:

∂2pi(θi)

∂θx∂θy
=

∂2πi

∂θx∂θy
ri,

∂2πi

∂θx∂θy
Qi +

∂πi

∂θx

∂Qi

∂θy
+

∂πi

∂θy

∂Qi

∂θx
+ πi

∂2Qi

∂θx∂θy
= 0,

∂2πi

∂θx∂θy
1 = 0. (2.28)

The remaining problem is how to efficiently compute the local sensitivity for

the part of FT because the computation cost to obtain the structure function

of FT explicitly is not low. One main contribution of this chapter is to present

the local sensitivity of FT with BDD representation.

2.5.2 BDD Representation of FT

A BDD is a compact representation of a Boolean function by a directed acyclic

graph based on the Shannon decomposition [35]. Generally, we consider a

Boolean function ϕ(x1, . . . , xn). Using the Shannon decomposition, the Boolean

function can be rewritten as

ϕ(x1, . . . , xn) =

x1ϕ(1, x2, . . . , xn) + (1− x1)ϕ(0, x2, . . . , xn). (2.29)

In the above, the Boolean functions ϕ(1, x2, . . . , xn) and ϕ(0, x2, . . . , xn) can also

be decomposed by applying the Shannon decomposition to one of the remaining

n − 1 variables. Eventually, we make a binary tree in which the left and right

edges from the i-th level (depth) node correspond to xi and 1−xi, respectively,
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AND

Figure 2.4: An example of a BDD for an AND gate.

and each node represents the decomposed Boolean function like ϕ(1, x2, . . . , xn)

and ϕ(0, x2, . . . , xn). The fundamental idea of BDD is to merge any isomorphic

subgraphs of such a binary tree and to eliminate any node whose two children

are isomorphic so that it can provide a compact representation for a Boolean

function. More details on the BDD can be found in [1]. Figure 2.4 illustrates

an example of the BDD representation for a given FT composed by an AND

gate.

Given a BDD representation of FT, we can compute the probability of top-

event occurrence with an algorithm, which is to traverse all the nodes of BDD

according to the following recursive formula:

ps(p1, . . . , pn) = F (p1, . . . , pn)

= p1F{p1=1}(p2, . . . , pn)

+ (1− p1)F{p1=0}(p2, . . . , pn), (2.30)

where F{A}(·) is the structure function provided that the variables are assigned

with A. The algorithm drastically reduces computation costs using a cache for

the intermediate computation.

2.5.3 Automatic Differentiation of FT with BDD

Consider the automatic differentiation of BDD representation. The idea be-

hind our algorithm is the differentiation of the recursive formula ps(θs). Using
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Eq. (2.30), the first derivative of the recursive formula becomes

∂

∂θ
ps(θs) =

∂F (p1(θ1), p2(θ2), . . . , pn(θn))

∂θ

=
∂p1(θ1)

∂θ
F{p1=1}(p2(θ2), . . . , pn(θn))

+ p1(θ1)
∂

∂θ
F{p1=1}(p2(θ2), . . . , pn(θn))

− ∂p1(θ1)

∂θ
F{p1=0}(p2(θ2), . . . , pn(θn))

+ (1− p1(θ1))
∂

∂θ
F{p1=0}(p2(θ2), . . . , pn(θn)), (2.31)

where ∂pi(θi)/∂θ is given by Eq. (2.25). The linear equation can be solved when

the steady-state probability of CTMC πi is given.

The second derivative of structure function in Eq. (2.27) is also computed

based on the formula which is obtained by taking the differentiation of Eq. (2.31)

under the BDD representation, that is

∂2

∂θx∂θy
ps(θs) =

∂2p1(θ1)

∂θx∂θy
F{p1=1}(p2(θ2), . . . , pn(θn))

+
∂p1(θ1)

∂θx

∂

θy
F{p1=1}(p2(θ2), . . . , pn(θn))

+
∂p1(θ1)

∂θy

∂

∂θx
F{p1=1}(p2(θ2), . . . , pn(θn))

+ p1(θ1)
∂2

∂θx∂θy
F{p1=1}(p2(θ2), . . . , pn(θn))

− ∂2p1(θ1)

∂θx∂θy
F{p1=0}(p2(θ2), . . . , pn(θn))

− ∂p1(θ1)

∂θx

∂

∂θy
F{p1=0}(p2(θ2), . . . , pn(θn))

− ∂p1(θ1)

∂θy

∂

∂θx
F{p1=0}(p2(θ2), . . . , pn(θn))

+ (1− p1(θ1))
∂2

∂θx∂θy
F{p1=0}(p2(θ2), . . . , pn(θn)). (2.32)

Although the number of terms is large in the case of the second derivative

formula, the computation cost can be drastically reduced by storing the com-

putation results ∂F{A}(·)/∂θx and ∂F{A}(·)/∂θy as cache.

2.6 Numerical Experiments

This section illustrates two numerical experiments to solve uncertainty prop-

agation in the hierarchical reliability models. The first experiment considers
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AND OR 2 out of 3

Figure 2.5: Three hierarchical reliability models.

uncertainty propagation in three simple hierarchical models and validates the

accuracy of the proposed moment-based approximation method using Bayes es-

timation. In the second experiment, we apply the proposed approach to a real

case study with the IBM SIP application server cluster [11]. These experiments

are conducted on macOS 12.0 with the chip Apple M1 for computation.

2.6.1 Experiment I

Figure 2.5 depicts three simple hierarchical reliability models, whose upper levels

are represented by FTs, and the lower levels are described by the CTMCs. The

gates of the three models are AND gate, OR gate, and 2-out-of-3, respectively.

In the lower level, each component is supposed to have two states; UP and

DOWN. Note that the component will be replaced if failed in each hierarchical

model.

In the experiment, the moment-based approximation is used to evaluate

the uncertainty propagation in the hierarchical models. Also, to validate the

accuracy of the proposed moment-based approach, the well-known uncertainty

analysis method, Bayes estimation, is considered for comparison.

Assume that the time to failure of a single component follows the exponential

distribution with parameter λ, thus the system reliability of the component at

time t can be expressed by R(t;λ) = e−λt. Suppose that D = (t1, · · · , tn) are
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independent and identically distributed (i.i.d.) samples as observed failure times

for the component and the prior density of the failure rate Λ follows a gamma

distribution with shape parameter α and rate β as follows.

fΛ(λ) =
βαλα−1e−βλ

Γ(α)
. (2.33)

By using Bayes theory, the posterior density of the failure rate fΛ(λ|D) is also

a gamma distribution with shape parameters n+ α and rate parameters s+ β,

where s =
∑n

i=1 ti. Then the mean of R(t;λ) becomes

E[R(t;λ)] =

∫ ∞

0

e−λtfΛ(λ|D)dλ

= (1 +
λ̂t

n+ α
)−(n+α), (2.34)

where λ̂ = E[Λ] =
n+ α

s+ β
. At the same time, the variance of R(t;λ) is given by

Var[R(t;λ)] = (1 +
2λ̂t

n+ α
)−(n+α)

− (1 +
λ̂t

n+ α
)−2(n+α). (2.35)

On the other hand, using the moment-based method, we have the following

approximation formula:

E[R(t;λ)] ≈ e−λ̂t +
1

2
t2e−λ̂tVar[Λ]

= (1 +
1

2
t2Var[Λ])e−λ̂t, (2.36)

and

Var[R(t;λ)] ≈ t2e−2λ̂tVar[Λ]− 1

4
t4e−2λ̂tVar[Λ]2

= Var[Λ](1− 1

4
t2Var[Λ])t2e−2λ̂t. (2.37)

Besides, we set λa = 1.0e-5, λb = 2.5e-5, λc = 4.0e-5 as the real failure rates

of components A, B, and C whose failure times follow exponential distributions.

Commonly, uncertainty occurs when the sample size is limited, which can be

reflected in variance. To control the variance of failure rates, five cases are

considered for comparison; that is, sample size n = 2, 5, 10, 20, and 30. Thus,

the mean value of outputs can be obtained through posterior density and the

moment-based approximation method. In particular, prior hyperparameters are
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Table 2.3: System reliabilities under different structures (t = 10)

n
AND

Exact Plug-in Moment Bayes

2 9.98252e-1 9.96316e-1 9.96317e-1 9.96317e-1

5 9.98252e-1 9.97544e-1 9.97545e-1 9.97545e-1

10 9.98252e-1 9.97242e-1 9.97242e-1 9.97242e-1

20 9.98252e-1 9.98272e-1 9.98272e-1 9.98272e-1

30 9.98252e-1 9.98161e-1 9.98161e-1 9.98161e-1

n
OR

Exact Plug-in Moment Bayes

2 9.99999e-1 9.99998e-1 9.99998e-1 9.99998e-1

5 9.99999e-1 9.99999e-1 9.99999e-1 9.99999e-1

10 9.99999e-1 9.99998e-1 9.99998e-1 9.99998e-1

20 9.99999e-1 9.99999e-1 9.99999e-1 9.99999e-1

30 9.99999e-1 9.99999e-1 9.99999e-1 9.99999e-1

n
2-out-of-3

Exact Plug-in Moment Bayes

2 9.99996e-1 9.99986e-1 9.99987e-1 9.99985e-1

5 9.99996e-1 9.99993e-1 9.99996e-1 9.99993e-1

10 9.99996e-1 9.99995e-1 9.99995e-1 9.99995e-1

20 9.99996e-1 9.99996e-1 9.99996e-1 9.99996e-1

30 9.99996e-1 9.99996e-1 9.99996e-1 9.99996e-1

set as α = 0 and β = 0 to make this similar to Jeffery’s prior. Meanwhile, the

time t is divided into 10 and 1,000 as system conditions under two different

scenarios.

The results are shown in Table 2.3 and Table 2.4, where Exact means the

system reliability computed by using the preset failure rates directly, Plug-in

indicates the system reliability computed through point estimation, whereas

Moment and Bayes correspond the system reliabilities obtained by moment-

based approximation and Bayes estimation, respectively. In the case of t = 10,

it seems that the results of moment-based approximation are very close to those
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Table 2.4: System reliabilities under different structures (t = 1000)

n
AND

Exact Plug-in Moment Bayes

2 9.65605e-1 9.52012e-1 9.52407e-1 9.52402e-1

5 9.65605e-1 9.60454e-1 9.60540e-1 9.60539e-1

10 9.65605e-1 9.46257e-1 9.46342e-1 9.46341e-1

20 9.65605e-1 9.66009e-1 9.66024e-1 9.66024e-1

30 9.65605e-1 9.63864e-1 9.63877e-1 9.63877e-1

n
OR

Exact Plug-in Moment Bayes

2 9.99754e-1 9.99629e-1 9.99634e-1 9.99634e-1

5 9.99754e-1 9.99639e-1 9.99641e-1 9.99641e-1

10 9.99754e-1 9.99382e-1 9.99384e-1 9.99384e-1

20 9.99754e-1 9.99708e-1 9.99708e-1 9.99708e-1

30 9.99754e-1 9.99744e-1 9.99744e-1 9.99744e-1

n
2-out-of-3

Exact Plug-in Moment Bayes

2 9.98415e-1 9.97409e-1 9.98351e-1 9.97456e-1

5 9.98415e-1 9.99082e-1 9.99190e-1 9.99086e-1

10 9.98415e-1 9.98258e-1 9.98366e-1 9.98263e-1

20 9.98415e-1 9.98350e-1 9.98406e-1 9.98353e-1

30 9.98415e-1 9.98774e-1 9.98780e-1 9.98775e-1

of Bayes estimation and has a slight difference from the exact results in the

AND gate structure. With the increase of data samples, the results of Plug-

in, Moment, and Bayes approximate the exact results. This indicates that the

moment-based approximation method is highly accurate even when the sample

size is small. Apart from AND gate structure, the uncertainty has minimal

effects when the model is composed of the OR gate. In the OR gate structure,

the results of each method in different sample sizes are very close to the exact

results. While in the 2-out-of-3 structure, only when the sample size is 2 or 5,

the differences in the results among all methods become small. However, when
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Figure 2.6: IBM SIP application server cluster [11].

the sample size increases, the results of these methods are close to the exact

results gradually.

In the case of t = 1000, the effects of uncertainty become apparent. Similar

to the case where t = 10, the computation results of the moment-based ap-

proximation are different from Bayes estimation when the sample size is small

but close to each other with the sample size increase. In Table 2.3, Bayes es-

timation is closer to the exact result than the moment-based approximation in

most situations. However, from Table 2.4, Moment and Bayes have a significant

difference regardless of the sample size.

As a result, the moment-based approximation can evaluate the uncertainty

in model parameters with high accuracy. Also, compared with the Bayes esti-

mation, the moment-based approximation has another advantage; Note that in

Bayes estimation, the closed-form of the system reliability is necessary, but in

the moment-based approximation, the system reliability can be computed if the

system structure is known, which will be discussed in the following experiment.

2.6.2 Experiment II

In this subsection, we deal with the hierarchical availability model for the IBM

SIP application server cluster introduced by Trivedi et al. [11], and evaluate its
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Table 2.5: Parameters for node operating system (OS) (4)

Description Value

Mean time for OS failure 4, 000 hr

Mean time to detect the OS failure 1 hr

Mean time for node reboot 10 min

Mean time to repair OS 1 hr

epistemic uncertainty propagation as a real case study. Since the accuracy of

the moment-based approximation method has been validated through Experi-

ment I, here we will discuss the application and performance of the proposed

approach to a real system compared with the simulation method. The system

configuration is shown in Fig. 2.6. The hierarchical availability model for the

cluster consists of FTs and CTMCs, and can be divided into three levels; the

top-level FT for the whole system failure, the middle-level FTs for chassis faults

and node hardware failures, and the bottom level are CTMCs describing the

dynamic behaviors of individual subsystems, such as the midplane, blade CPU,

power domain, cooling subsystem, application server, proxy, etc. In this experi-

ment, the minimum number of failed application servers for system unavailabil-

ity is given by 6, and the model contains one 6-out-of-12 gate, 15 AND gates,

and 71 OR gates representing the failure relationship between 182 leaf nodes,

each node is represented by CTMCs with 3 to 10 states. The entire state of the

whole system is 3.0e+56. More details on the hierarchical availability model

can be referenced in [11]. Tables 2.5 through 2.8 summarize the model parame-

ters, which are purely hypothetical (but reasonable) in nature [11]. The model

parameters are from the application/proxy server, node OS, and hardware mod-

els. For example, 18 mean time-related parameters exist in the application and

proxy servers and 23 in the hardware models. Particularly, the corresponding

coverage factors are given in Table 2.8. The total number of model parameters

is 58.

In the experiment, aiming to evaluate the performance of the proposed ap-

proach on the large-size and complicated hierarchical model, we compare the

results of the moment-based approach with the commonly-used method, the
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Table 2.6: Parameters for application (app.) and proxy servers (18)

Description Value

Mean time to hangup (app.) 2, 920 hr

Mean time to server failure (app.) 2, 920 hr

Mean time for workload manager failure detection (app.) 2 s

Mean time for node agent failure detection (app.) 2 s

Mean time for manual failure detection (app.) 10 min

Mean time for automatic process restart (app.) 10 s

Mean time for manual process restart (app.) 60 s

Mean time for manual node reboot (app.) 10 min

Mean time for manual repair (app.) 8 hr

Mean time to hangup (proxy) 2, 920 hr

Mean time to server failure (proxy) 2, 920 hr

Mean time for workload manager failure detection (proxy) 2 s

Mean time for node agent failure detection (proxy) 2 s

Mean time for manual failure detection (proxy) 10 min

Mean time for automatic process restart (proxy) 10 s

Mean time for manual process restart (proxy) 60 s

Mean time for manual node reboot (proxy) 10 min

Mean time for manual repair (proxy) 8 hr

Monte Carlo (MC) simulation. Although MC simulation is a practical and flex-

ible method in modeling and analyzing real-world systems and situations, the

accuracy of this method strongly depends on the simulation times, which means

achieving a highly accurate result usually incurs a high computational cost.

Firstly, like [11], we consider the case without considering the parameter

uncertainty; that is, the values of model parameters in Tables 2.5 through 2.8

are directly applied for computing the system unavailability. The obtained

system unavailability using the moment-based approach is 2.015e-6 with the

computational time is 0.0697 seconds, which is close to the result evaluated

in [11] (i.e., 2.2e-6).

Then, we discuss the cases where uncertainty propagation is considered. The
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Table 2.7: Parameters for hardware models (23)

Description Value

Mean time for mid-plane failure 106 hr

Mean time for blower failure 106 hr

Mean time for power module failure 106 hr

Mean time for processor failure 106 hr

Mean time for Base failure 106 hr

Mean time for ethernet switch failure 106 hr

Mean time for network interface card (NIC) failure 106 hr

Mean time for memory DIMM failure 106 hr

Mean time for hard disk failure 106 hr

Mean time for failure detection plus repair person arrival 2.5 hr

Mean time to repair mid-plane 1 hr

Mean time to repair blower 1 hr

Mean time to repair two blowers 1.5 hr

Mean time to repair power module 1 hr

Mean time to repair two power modules 1.5 hr

Mean time to repair processor 1 hr

Mean time to repair Base 1 hr

Mean time to repair the ethernet switch 1 hr

Mean time to repair NIC 1 hr

Mean time to repair memory bank 1 hr

Mean time to repair hard disk 1 hr

Mean time to repair two hard disks 1.5 hr

Mean time to copy disk data 10 min

simulation times are set at 10,000 to ensure the accuracy of the MC simulation

method. In particular, the confidence interval at 95% is considered for MC

simulation. Besides, the data sample size is set as n = 20. In the moment-based

approximation, the computational time mainly depends on the computation of

the second derivative of the output measure given in Eq. (2.19); in other words,

the number of model parameters significantly affects the computational time.
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Table 2.8: Coverage factors for application server, proxy server, node OS, and
hardware models (13)

Description Value

Coverage factor for WLM detection (app.) 0.95

Coverage factor for node agent detection
(app.)

0.95

Coverage factor for auto process restart (app.) 0.95

Coverage factor for manual process restart
(app.)

0.95

Coverage factor for manual node restart (app.) 0.95

Coverage factor for WLM detection (proxy) 0.95

Coverage factor for node agent detection
(proxy)

0.95

Coverage factor for auto process restart
(proxy)

0.95

Coverage factor for manual process restart
(proxy)

0.95

Coverage factor for manual node restart
(proxy)

0.95

Coverage factor for node reboot to recover OS 0.95

Coverage factor for power module failure 0.99

Probability of mid-plane common mode fail-
ure

0.001

Thus to investigate such an effect regarding parameter number, we consider the

following four cases:

• Case I: Consider the uncertainty propagation in all model parameters

except the coverage factors.

• Case II: Consider the uncertainty propagation in all model parameters

except the coverage factors and the parameters related to the application

server.

• Case III: Only consider the uncertainty propagation in both node OS and

hardware models.
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• Case IV: Only consider the uncertainty propagation in the hardware mod-

els.

Table 2.9: System unavailability and corresponding computational time

Cases
Number of

uncertain parameters
System unavailability Computational time

Moment MC Moment MC

Case I 45 2.34421e-6 2.34421e-6 ± 0.01245e-6 25.27 35.07

Case II 36 2.34421e-6 2.35467e-6 ± 0.01222e-6 18.46 35.21

Case III 27 2.34421e-6 2.33183e-6 ± 0.01231e-6 12.51 35.15

Case IV 23 2.35269e-6 2.35922e-6 ± 0.01198e-6 8.85 35.12

The computational results are demonstrated in Table 2.9. Obviously, in

all cases, the obtained system unavailabilities using the moment-based approx-

imation method lay in the confidence interval range estimated from the MC

simulation. That means the moment-based approximation method is well per-

formed despite the decrease in uncertain parameters. Furthermore, as the num-

ber of uncertain model parameters decreases, the computational speed of the

moment-based approach improves a lot; for example, in the case of 23 uncertain

parameters, the computational time is 8.85 seconds, which is only one-third

of the value for 46 parameters. However, the change in the parameter num-

ber brings almost no impact on the computational speed of the MC simulation

method, and its computational time is around 35 seconds. In summary, the

moment-based approach has a good performance with high accuracy, close to

the estimation result of MC simulation, but significantly reduces the computa-

tional cost when the number of uncertain parameters is small compared with

the MC simulation. For example, under Case IV, the computational time of the

MC simulation is four times longer than the moment-based method.



Chapter 3

Variance-Based Sensitivity
for Epistemic Uncertainty

3.1 Introduction

Variance-based global sensitivity analysis is often used to rank the importance of

input factors, based on their contribution to the variance of the output measure

of interest [13]. The variance-based sensitivity analysis relies on the computa-

tion of conditional variances, is sampling-based, and therefore usually applies

simulation methods such as Monte Carlo simulation.

In this chapter, we present an analytic approach to compute the variance-

based sensitivity based on moment approximation, this topic is also discussed

in [39]. More specifically, we formulate the output measure of CTMC and inves-

tigate the relationship between input parameters and output measure through

variance-based sensitivity analysis. In numerical experiments, the effects of

model parameters in both parallel and series system configurations are evalu-

ated to validate the proposed approach. In particular, the discussion of the

approach on complex system is also taken into account.

3.2 Markov Reward Model (MRM)

Consider a CTMC {X(t); t ≥ 0} with discrete state space S = {1, 2, · · · , n}.

The transient state probability (row) vector is defined as π(t) = [P (X(t) =

i)]i=1,··· ,n. Given the initial state probability vector π(0), the state probability

vector π(t) at any time t can be obtained by solving the following differential

31
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equation:

d

dt
π(t) = π(t)Q, (3.1)

where Q is called the infinitesimal generator matrix and is a square matrix

whose (i, j)-element represents the transition rate from state i to state j. By

defining the reward vector r as below:

[r]i =

{
1 System is up

0 System is failed
(3.2)

in which [·]i is the i-th element of r. Then, one significant dependability measure

of interest, that is the system reliability, can be obtained by

R(t) = π(t)r. (3.3)

On the other hand, when time t → ∞ the stationary state probability vector

πss = limt→∞π(t) is obtained by solving the following linear equations:

πssQ = 0, πss1 = 1, (3.4)

where 0 and 1 are row and column vectors whose entries are 0 and 1, respectively.

Given the reward vector r, the steady-state system availability Ass is

Ass = πssr. (3.5)

3.3 Variance-based Sensitivity Analysis

Variance-based sensitivity analysis also called Sobol method is a popular mea-

sure for sensitivity analysis. The variance of output is decomposed into the

conditional variance provided a set of input variables, which is similar to the

analysis of variance [40]. Let y = f(x) be a system where x = (x1, · · · , xd) is a

vector of input variables and y is an output measure. When the input variables

are given by a random vector X = (X1, · · · , Xd), the output measure also fol-

lows a random variable Y , i.e, Y = f(X). For the sake of simplicity, suppose

that X is uniformly distributed in a unit hypercube, i.e., Xi follows a uniform

distribution. Now we assume that Y is decomposed as follows.

Y = g0 +

d∑
i=1

gi(Xi) +

d∑
i<j

gi,j(Xi, Xj)

+

d∑
i<j<k

gi,j,k(Xi, Xj , Xk) + · · ·+ g1,2,··· ,d(X1, · · · , Xd), (3.6)
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where ∫ 1

0

gi(Xi)dXi = 0, (3.7)∫ 1

0

gi,j(Xi, Xj)dXidXj = 0, (3.8)

...

By taking expectation, we have

g0 = E[Y ], (3.9)

gi(Xi) = E[Y |Xi]− g0, (3.10)

gi,j(Xi, Xj) = E[Y |Xi, Xj ]− g0 − gi(Xi)− gj(Xj), (3.11)

...

Based on these above equations, the variance of output Y can also be decom-

posed as follows.

Var[Y ] =

d∑
i=1

Vi +

d∑
i<j

Vi,j +

d∑
i<j<k

Vi,j,k + · · ·+ V1,2,··· ,d, (3.12)

where

Vi = E[Var[Y |Xi]], (3.13)

Vi,j = E[Var[Y |Xi, Xj ]]− Vi − Vj , (3.14)

...

One important index of the sensitivity analysis is the main effect or the

first-order sensitivity defined below:

Si =
Vi

Var[Y ]
, (3.15)

which indicates the contribution to the output variance of the main effect of Xi.

Also, in general, for random variables X and Y , it holds

Var[Y ] = E[Var[Y |X]] + Var[E[Y |X]]. (3.16)

Then the main effect of Xi is given by

Si =
Vi

Var[Y ]
=

Var[Y ]−Var[E[Y |Xi]]

Var[Y ]
. (3.17)
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The value of the main effect determines the importance of the input pa-

rameters. The larger the main effect is, the more important the parameter is.

As an index to measure parameters, main effect also implies the contribution

of parameters to the system dependability or performance. It is based on the

conditional variance of other parameters, so when considering the higher or-

der interaction main effects Si,j , Si,j,k and so on, the following relationship is

obtained,

d∑
i=1

Si +

d∑
i<j

Si,j + · · ·+ S1,2,··· ,d = 1. (3.18)

In general, when input variables are independent with each other, the relation-

ship between main effects can be simplified through
∑d

i=1 Si = 1. Otherwise,

the higher order interaction main effects should be taken into account. From

Eq. (3.17), it is clear that the computation of Var[Y ] and E[Y |X] are required

for evaluating the main effect of X. As aforementioned in the introduction,

the normal simulation is hard to fit a general formula. To address the above

issue, this chapter considers the moment-based approximation method in the

next section.

3.4 Moment-based Approximation Method

Let M(θ) be an output measure of an aleatory probability model, e.g., the

dependability measures such as system reliability, where θ = (θ1, . . . , θl) is a

column vector of input parameters needed to compute the output measure.

Since the input parameters are estimated from data samples, there would be

statistical errors so-called uncertainty exists in estimation. The traditional way

is applying the Bayes theorem, which regards the input parameters as the ran-

dom variables. Hereby, we suppose that these model parameters are randomly

distributed, i.e., the parameter vector is defined as a vector of random variables

Θ = (Θ1, . . . ,Θl). When the prior density functions of input parameters are

given, the joint epistemic density which is also the posterior density fΘ(θ) of

parameters can be obtained with samples D. Then the conditional expected

value of M(Θ) can be obtained with

E[M(Θ)] =

∫
M(θ)fΘ(θ|D)dθ, (3.19)
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The Moment-based approximation who has the merit of simplifying the integral,

by taking a Taylor series expansion of the expected value of the output measure,

we have the following equation [10]:

E[M(Θ)] = M(θ̂) + E[M ′(θ̂)T (θ − θ̂)]

+
1

2
E[(θ − θ̂)TM ′′(θ̂)(θ − θ̂)] + · · · , (3.20)

where θ̂ is the point estimate value. Since θ̂ = E[Θ], the second term of Taylor

series expansion becomes 0. We have the following approximation

E[M(Θ)] ≈ M(θ̂) +
1

2
E[(θ − θ̂)TM ′′(θ̂)(θ − θ̂)]

= M(θ̂) +
1

2

l∑
i=1

M ′′
i,i(θ̂)Var[Θi]

+

l∑
i=1

i−1∑
j=1

M ′′
i,j(θ̂)Cov[Θi,Θj ]. (3.21)

In particular, when (Θi, · · · ,Θl) are mutually independent, that is Cov[Θi,Θj ] =

0 for i ̸= j, the above equation becomes

E[M(Θ)] ≈M(θ̂) +
1

2

l∑
i=1

M ′′
i,i(θ̂)Var[Θi]. (3.22)

Similarly, the Taylor series expansion of the second moment of M(Θ) can also

be obtained as

E[M(Θ)2] = M(θ̂)2 + E[2M(θ̂)M ′(θ̂)T (θ − θ̂)]

+ E[(θ − θ̂)T (M ′(θ̂)M ′(θ̂)T

+M(θ̂)M ′′(θ̂))(θ − θ̂)] + · · · , (3.23)

and it approximation is given by

E[M(Θ)2] ≈ M(θ̂)2

+

l∑
i=1

(
M ′

i(θ̂)
2 +M(θ̂)M ′′

i,i(θ̂)
)
Var[Θi]

+ 2

l∑
i=1

i−1∑
j=1

(
M ′

i(θ̂)M
′
j(θ̂) +M(θ̂)M ′′

i,j(θ̂)
)
Cov[Θi,Θj ]. (3.24)

In the case of mutually independent (Θi, · · · ,Θl), the above equation reduces

E[M(Θ)2] ≈ M(θ̂)2

+

l∑
i=1

(
M ′

i(θ̂)
2 +M(θ̂)M ′′

i,i(θ̂)
)
Var[Θi], (3.25)
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where

M ′
i(θ̂) =

∂M(θ)

∂θi

∣∣∣∣∣
θ=θ̂

, M ′′
i,j(θ̂) =

∂2M(θ)

∂θi∂θj

∣∣∣∣∣
θ=θ̂

. (3.26)

Moreover, since Var[M(Θ)] = E[M(Θ)2]− E[M(Θ)]2, we then have

Var[M(Θ)] ≈
l∑

i=1

M ′
i(θ̂)

2Var[Θi]

− 1

4
(

l∑
i=1

M ′′
i,i(θ̂)Var[Θi])

2. (3.27)

The above approximations require the first two derivatives of the output

measure M(θ) with respect to the input parameters. They can be computed

by parametric sensitivity analysis [41, 42]. On the other hand, the necessary

information on the joint density are their expectations, variances, and covari-

ances only, which means the actual form of density distribution is not necessary.

Meanwhile, the variance-based sensitivity analysis needs previous information

such as expectations and variances. Based on moment-based approximation

method, the formulation of variance-based sensitivity analysis can be achieved.

3.5 Variance-based Sensitivity Analysis for MRMs

Suppose that M(θ) is the output measure such as the system reliability of an

MRM and Θ = (Θ1, . . . ,Θn) is the vector of random variables for parameter

vector θ = (θ1, . . . , θn). The conditional expectation of M(Θ) becomes

E[M(Θ)|θl] ≈ M(θ̂) +M ′
l (θ̂)(θl − θ̂l)

+
1

2

n∑
i=1,i̸=l

M ′′
i,i(θ̂)Var(Θi) +

1

2
M ′′

l,l(θl − θ̂l)
2. (3.28)

Also we have

E[M(Θ)|θ̂l] ≈ M(θ̂) +
1

2

n∑
i=1,i̸=l

M ′′
i,i(θ̂)Var(Θi), (3.29)

∂

∂θl
E[M(Θ)|θ]

∣∣∣∣∣
θl=θ̂l

≈ M ′
l (θ̂), (3.30)

∂2

∂θ2l
E[M(Θ)|θ]

∣∣∣∣∣
θl=θ̂l

≈ M ′′
l,l(θ̂). (3.31)
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The second moment of E[M(Θ)|θl] is approximated by

E[E[M(Θ)|θl]2] ≈ E

[
E[M(Θ)|θ̂l]2

+ 2E[M(Θ)|θ̂l]M ′
l (θ̂)(θl − θ̂l)

+
(
M ′

l (θ̂)
2 + E[M(Θ)|θ̂l]M ′′

l,l(θ̂)
)
(θl − θ̂l)

2

]
= E[M(Θ)|θ̂l]2

+
(
M ′

l (θ̂)
2 + E[M(Θ)|θ̂l]M ′′

l,l(θ̂)
)
Var[Θl]

= (E[M(Θ)]− 1

2
M ′′

l,l(θ̂)Var[Θl])
2

+
(
M ′

l (θ̂)
2 + E[M(Θ)|θ̂l]M ′′

l,l(θ̂)
)
Var[Θl]

= E[M(Θ)]2 − E[M(Θ)]M ′′
l,l(θ̂)Var[Θl]

+
1

4
M ′′

l,l(θ̂)
2Var[Θl]

2 +
(
M ′

l (θ̂)
2

+ E[M(Θ)|θ̂l]M ′′
l,l(θ̂)

)
Var[Θl]. (3.32)

Therefore, the main effect can be obtained by

Si =
Vi

Var[M(Θ)]
=

Var[M(Θ)]−Var[E[M(Θ)|θl]]
Var[M(Θ)]

. (3.33)

In the above equation Var[M(Θ)] can be obtained by using Eq. (3.27). The

main objective now is to compute Var[E[M(Θ)|θl]]. According to Var[M(Θ)] =

E[M(Θ)2]− E[M(Θ)]2, we have

Var[E[M(Θ)|θl]] = E[E[M(Θ)|θl]2]− E[E[M(Θ)|θl]]2

= E[E[M(Θ)|θl]
2]− E[M(Θ)]2. (3.34)

In summary, in order to compute the main effect of system parameters, the

information required are: (i) variance of model parameters; (ii) expectation and

variance of output measure; and (iii) conditional expectation and variance of

output measure with respect to model parameters.

3.6 Numerical Experiments

In this section, we illustrate the variance-based sensitivity analysis based on the

moment-based approximation via two experiments below to evaluate the main

effects of model parameters, aiming at investigating the relationship between
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Figure 3.1: Parallel system with two single components.

input parameters and output measures and the application of the analytic ap-

proach. Note that the main effect here is the contribution of system parameters

devoted to the system reliability with considering uncertainty. The experiments

are divided as follows.

• Experiment I: Both parallel and series system configurations with two

identical single components A and B, aiming at investigating the effects

of a component in different configurations;

• Experiment II: A complex series-parallel system composed of five identical

single components {A, B, C, D, E}, for the evaluation of the main effects

of components in a complex system.

3.6.1 Experiment I

In this subsection, the failure rates of two components are given by λ1 = 1.0×

10−5 and λ2 = 2.0× 10−5, respectively. Note that the two systems contain the

components with the same failure rates. For instance, component A in parallel

system has the same failure rate as the one in series system. The dynamics of

both parallel and series systems are captured by CTMCs, which are depicted in

Figs. 3.1 and 3.2. In these figures, the white state means the system is available,

whereas the gray state means the system is failed. Each state is denoted by two

characters; if a component is available, its state is denoted by ”U”, otherwise it

is ”D”. More details on the state notation are given in Tables 3.1 and 3.2.

To get the variance of failure rates, we apply the Bayes estimation as the

estimation method. Basically, both the failure rates for components A and B are

estimated by using data samples drawn from exponential distribution with pre-
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Figure 3.2: Series system with two single components.

Table 3.1: State notation in the CTMC (parallel system).

State Description

U1U2 Both components A and B are opera-
tional.

D1U2 Component A is failed and the system
is still available.

U1D2 Component B is failed and the system
is still available.

D1D2 Both two components are failed and the
system becomes unavailable.

Table 3.2: State notation in the CTMC (series system).

State Description

U1U2 Both components A and B are opera-
tional.

D1U2 Component A is failed and the system
becomes unavailable.

U1D2 Component B is failed and the system
becomes unavailable.
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set failure rates. For example, D = (t1, · · · , tn) are defined as a set of observed

failure times, which are identical and independently distributed (i.i.d.) samples

drawn from exponential distribution. When the prior density of the failure rate

is a gamma distribution with hyper parameters (α, β), the posterior distribution

is also gamma with parameters (α + n, β + s) where s =
∑n

i=1 ti. The mean

and variance of estimated failure rates are λ̂i = (α + n)/(β + s) and Var[λ̂i] =

(α+ n)/(β + s)2 for i ∈ {1, 2}. By applying the point estimation when sample

size is 5, we obtain the variances of two components as var1 = 9.5718× 10−12,

var2 = 6.7584 × 10−11. The output measure we estimated in the experiments

is the system reliability. When t = 50, the system reliability of parallel and

series systems are Rparallel(50;λ1, λ2) = 0.999999365 and Rseries(50;λ1, λ2) =

0.998212759. Because the parameters are independent from each other, for the

main effect we can just consider the following relationship;

S1 + S2 = 1. (3.35)

Table 3.3 demonstrates the main effects of two failure rates devoted to system

reliability in both parallel and series configurations. From the table, it is clear

that two components in the parallel system have the almost same contribution

to the system reliability through main effect. However, in the case of series

system, the effect of λ1 is much larger than λ2. This is because in the series

configuration, the system failure occurs when any component fails, which means,

the system reliability mainly depends on the component which has relatively

higher reliability so that the large variation in the failure time of the component

will affect remarkably the system reliability. On the other hand, since two

systems have the components with the same failure rates, it is clarified that

even if different systems are composed of the same components, components

will make different contributions due to their different system structures. And

in the parallel system, although the variance of two components has a relatively

large difference it has no significant impact on main effect. But in the series

system, the gap between the two components becomes more obvious. Based

on the main effect, if we consider the uncertainty in parallel system, both the

components should be considered. But for series system, we can give priority

to the uncertainty analysis of component with relatively lower failure rate, to

improve the system reliability effectively. Because the calculation results meet
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Table 3.3: Main effects of failure rates in both parallel and series systems.

Parallel Series

λ1 0.49962 0.87594

λ2 0.50038 0.12406

Figure 3.3: Series-parallel model with five single components.

the verification conditions of main effect, the formulaic method can be used

normally and effectively.

In summary, the components with same failure rates in different configura-

tions denote different contributions. When in the same configuration, compo-

nent with large variance has more effects on system reliability.

3.6.2 Experiment II

Here we focus on a complex series-parallel system whose structure is depicted

in Fig. 3.3. The system parameters are set as λ1 = 1.0× 10−5, λ2 = 2.0× 10−5,

λ3 = 7.0 × 10−5, λ4 = 6.0 × 10−5, and λ5 = 5.0 × 10−5, respectively. The

dynamics of this system is also captured by the CTMC given in Fig. 3.4, with

the state notation in Table 3.4. To inject uncertainty, the system parameters

are estimated from data samples. The estimated variances are var1 = 9.3047×

10−12, var2 = 3.8422 × 10−09, var3 = 3.3522 × 10−09, var4 = 2.3712 × 10−09,

and var5 = 5.6426 × 10−10. Thus, the relationship of main effects changes to

be;

S1 + S2 + S3 + S4 + S5 = 1. (3.36)

The main effects of model parameters for components are listed as in Ta-

ble 3.5. From the table, it is obvious that component B has the largest value of

main effect. Although series-parallel system contains the features of both par-

allel and series systems in configuration, the results of main effects with respect

to parameters indicate that the contributions of components are different from
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Table 3.4: State notation in the CTMC for the series-parallel system.

State Description

U1U2U3U4U5 All components are operational.

D1U2U3U4U5 Component A is failed, system is still available.

U1D2U3U4U5 Component B is failed, system is still available.

U1U2D3U4U5 Component C is failed, system is still available.

U1U2U3D4U5 Component D is failed, system is still available.

U1U2U3U4D5 Component E is failed, system is still available.

D1D2U3U4U5 Components A, B are failed, system is still
available.

D1U2D3U4U5 Components A, C are failed, system is still
available.

D1U2U3D4U5 Components A, D are failed, system is still
available.

D1U2U3U4D5 Components A, E are failed, system is still
available.

U1D2D3U4U5 Components B, C are failed, system is still
available.

U1D2U3D4U5 Components B, D are failed, system is still
available.

U1D2U3U4D5 Components B, E are failed, system is still
available.

U1U2D3D4U5 System is unavailable due to components C,
D’ failures.

U1U2D3U4D5 System is unavailable due to components C, E’
failures.

D1D2D3U4U5 Components A, B, C failed, the system is still
available.

D1D2U3D4U5 System is unavailable due to components A,
B, D’ failures.

D1D2U3U4D5 System is unavailable due to components A,
B, E’ failures.

D1U2D3D4U5 System is unavailable due to components A,
C, D’ failures.

D1U2D3U4D5 System is unavailable due to components A,
C, E’ failures.

U1D2D3D4U5 System is unavailable due to components B, C,
D’ failures.

U1D2D3U4D5 System is unavailable due to components B, C,
E’ failures.

D1D2D3D4U5 System is unavailable due to components A,
B, C, D’ failures.

D1D2D3U4D5 System is unavailable due to components A,
B, C, E’ failures.
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Figure 3.4: CTMC of Series-parallel system.

Table 3.5: Main effects of failure rates in series-parallel systems.

Series-parallel

λ1 0.00092

λ2 0.37895

λ3 0.33062

λ4 0.23387

λ5 0.05565
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the single configuration. For example, although component A has a parallel

relationship with component B, the main effect of component A devotes itself

to having the smallest value. By comparing the variances of all parameters,

we found component A with λ1 has the smallest variance, which implies that

the effects on the main effect are different from the situation in parallel system.

Since component B has the largest value among all components, it should pay

more attention to the estimation of λ2 whose uncertainty will have a significant

impact on the system reliability. Note that when the system consists of both

series and parallel structures, the variance of components plays the central role

in the final main effect. In other words, the variance of system parameters

should be estimated well, especially for the components with large main effects.

And combined with the results in experiment I, it is clear that components with

the same failure rates have different contributions in the system with differ-

ent structures, which means evaluating the main effects of model parameters is

meaningful.



Chapter 4

Computation for
Information Matrix of PH
Distribution

4.1 Introduction

In the context of ML estimation [49], the Fisher information matrix is given by

the second derivatives of log-likelihood function (LLF) in terms of parameters.

The variance/covariance matrix is computed by the inverse of the Fisher infor-

mation matrix. It is easy to obtain the Fisher information matrix when the

model contains few parameters. But as we mentioned, PH fitting can bring a

lot of parameters so that the calculation speed would be so low, and the com-

putational cost would be extremely high. So, the motivation of this chapter

is to improve the calculation speed of the Fisher information matrix with a

large number of model parameters. In this chapter, we focus on the computa-

tion of the Fisher information matrix in PH fitting based on the uniformization

method. The uniformization is to compute transient solutions of a finite-state

CTMC by approximating the continuous process using a discrete-time Markov

chain (DTMC) [50]. Also, this topic is discussed in other paper [43]. For brevity,

the contributions of this chapter are summarized as follows.

• Computation of first and second derivatives of LLF in PH fitting with two

types of information: IID samples and the probability density function

(p.d.f.).

• Proposal of an efficient computation algorithm to enhance the computa-

45



46 CHAPTER 4. COMPUTATION FOR INFORMATION MATRIX

tion speed of the information matrix.

4.2 Related Work

The ML estimation as one of the valuable methods contributes a lot to estimate

PH parameters. The main idea of ML estimation is to estimate the parameters

with maximum LLF. The LLF can be a function representing the probability,

mass, or density of the observed data. Several papers discussed the ML estima-

tion for PH distribution. Panchenko et al. [51] presented a PH fitting approach

trying to aggregate the large data-trace to the small number of weighted samples

based on ML estimation. And Bobbio et al. [52] attempted to obtain a stan-

dard form of ML estimation for PH distribution using optimization techniques.

Another method called moment matching is also widely discussed. The major

of moment matching is making moment equate match the empirical moment.

But usually, the accuracy of moment matching would be based on the number

of moments. In such a case, Osogami et al. [53] introduced a useful moment

matching method based on three moments with a simple formula.

But unfortunately, the trade-off of accuracy and computation speed of PH

fitting is difficult to avoid. One of the main issues is how to achieve PH fitting

with high precision and speed. To address the above issue, the ML estimation

is more worthy of consideration. Asmussen et al. [54] proposed an expectation-

maximization (EM) algorithm for PH distributions. The EM algorithm is a

general framework for calculating ML estimation under incomplete samples [55].

However, the proposed EM algorithm does not match the situation when there

are many parameters. To overcome this problem, Okamura et al. [56] improved

the EM algorithm of Asmussen et al. [54] from the aspect of scalability of the

number of phases, which provides high computation speed for the estimation in

the case of a large number of phases.

As abovementioned in Chapter 1, another aspect of improving the compu-

tation speed is improving the computation speed of the transient solution of

the Markov chain. In reliability theory, the higher-order derivatives are like the

sensitivity of the transient solution of CTMC. Ramesh et al. [41] considered the

sensitivity of transient solutions of Markov models. Specifically, they provided

a uniformization method for obtaining these transient solutions by converting
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CTMC into DTMC. This chapter also applies the uniformization method to

compute the information matrix in PH fitting efficiently.

4.3 PH Fitting

4.3.1 PH Distribution

The PH distribution is the distribution for an absorbing time in a finite Markov

chain with an absorbing state. Basically, the classification of PH distribution

would be continuous and discrete PH distributions. In this chapter, we focus

on the continuous PH distribution. Without loss of generality, the infinitesimal

generator Q of CTMC is defined as follows:

Q =

 T τ

0 0

 , (4.1)

where T and τ represent the transition rate between transients and the exit

rates from the transient state to the absorbed state, respectively. Let α be the

initial probability vector of the transient states, the c.d.f. and p.d.f. of PH

distribution can be obtained

F (t) = 1−α exp(T t)1, f(t) = α exp(T t)τ , (4.2)

where 1 is a column vector whose elements are all 1. The exit rate vector has

the relationship can be obtained by τ = −T1. In particular, the transient states

here are marked as phases.

There are several subclasses of PH distribution according to the structure

of T (e.g., [57]). In particular, the acyclic PH distribution (APH) is the most

extensive class of mathematically treatable PH distributions. Cumani [57] de-

rived Canonical Forms (CFs) as the minimum representation of APH with the

smallest number of free parameters. CF1 (canonical form 1) is defined as follows.

α =
(

α1 α2 · · · αm

)
, (4.3)

T =



−β1 β1 O

−β2 β2

. . .
. . .

−βm−1 βm−1

O −βm


, (4.4)
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where αi ≥ 0,
∑

i αi = 1 and 0 < β1 ≤ · · · ≤ βm.

4.3.2 Parameter Estimation

The PH fitting is a parameter estimation of PH distribution so that it fits given

information. In general, the loss function used for the estimation depends on the

type of information. In this chapter, we introduce PH fitting with the following

two types of information: IID samples and the p.d.f..

Suppose that D = {t1, t2, . . . , tK} are IID samples drawn from a general

distribution. Without loss of generality, assuming that 0 = t0 < t1 < t2 < · · · <

tK . The likelihood function is defined by

L(α,T , τ ;D) =

N∏
n=1

f(tn) =

N∏
n=1

α exp(T tn)τ , (4.5)

and the corresponding LLF is given by

logL(α,T , τ ;D) =

K∑
k=1

logα exp(T tk)τ . (4.6)

The PH parameters can be obtained as the parameters maximizing the LLF.

In the case where the p.d.f. for a general distribution is explicitly given, we

use Kullback-Leibler (KL) divergence to determine PH parameters. The KL

divergence KL(f, g) for p.d.f.’s f(t) and g(t) is given by

KL(f, g) =

∫ ∞

0

f(t) log
f(t)

g(t)
dt

=

∫ ∞

0

f(t) log f(t)dt−
∫ ∞

0

f(t) log g(t)dt. (4.7)

In the context of PH fitting, f(t) is a general distribution and g(t) is a PH

distribution approximating the general distribution. Then the purpose is finding

g(t) maximizing
∫∞
0

f(t) log g(t)dt.

By applying a suitable numerical integration technique, we have the following

relationship. ∫ ∞

0

f(t) log g(t)dt ≈
J∑

i=1

νif(ti) log g(ti), (4.8)

where wi is a weight. The discretized points and their associated weights are

determined by the numerical quadrature, e.g., the double exponential formula

(see [58]). Eq. (4.8) implies that the PH parameters can be determined by
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maximizing the LLF with the weighted samples (t1, ν1f(ti)), . . . , (tK , νJf(tJ))

[59].

Finally, to obtain concrete estimates of PH parameters, we use the algorithm

presented in [59]. The algorithm in [59] is based on expectation-maximization

(EM) algorithm for PH distribution which is originally discussed in [54]. The

computation speed is further enhanced by using the sparsity of the generator

matrix T . Thus the algorithm in [59] can handle CF1 with a few hundred

number of phases to provide the highly-accurate PH approximation.

4.4 Computation of Information Matrix in PH fit-
ting

4.4.1 Uniformization

Before discussing the computation of the information matrix, we introduce nu-

merical computation techniques for CTMC used in our algorithm.

Consider a CTMC with the infinitesimal generator Q. Let π0 be the initial

probability (row) vector and π(t) denote the transient probability vector at time

t. Then π(t) can be computed by solving the following Kolmogorov differential

equations

dπ(t)

dt
= π(t)Q, π(0) = π0. (4.9)

Equivalently, the expression with the matrix exponential becomes

π(t) = π0 exp(Qt). (4.10)

Uniformization is one of the methods used to perform the above transient anal-

ysis of CTMCs. In uniformization, the CTMC reduces to a DTMC with a

uniformization rate q such that q ≥ maxi,j |qi,j | where qi,j is the (i, j)-th entry

of Q. Then the probability transition matrix of the uniformized DTMC can be

written by

P = I +
Q

q
, (4.11)

where I is an identity matrix. The transient state probability vector at time t

is given by

π(t) = π0

∞∑
i=0

Poi(i; qt)P i, (4.12)
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where Poi(i; qt) is the Poisson distribution with mean qt. From the above for-

mula, it can be seen that the computation time of uniformization is shorter as

t is small.

Next, we consider the first and second derivatives of π(t) with respect to

model parameters. For the simplification, we suppose that the infinitesimal

generator Q and the initial vector π0 consisting of model parameters (θ1, θ2).

By considering the derivative of Eq. (4.9) with respect to θ1, we have

d

dt

∂

∂θ1
π(t) =

∂

∂θ1
π(t)Q+ π(t)

∂

∂θ1
Q,

∂

∂θ1
π(0) =

∂

∂θ1
π0. (4.13)

Also the second derivative becomes

d

dt

∂2

∂θ1∂θ2
π(t) =

∂2

∂θ1∂θ2
π(t)Q+

∂

∂θ1
π(t)

∂

∂θ2
Q

+
∂

∂θ2
π(t)

∂

∂θ1
Q+ π(t)

∂2

∂θ1∂θ2
Q,

∂2

∂θ1∂θ2
π(0) =

∂2

∂θ1∂θ2
π0

(4.14)

Based on Eqs. (4.9), (4.13) and (4.14), we have the following differential equation

d

dt
s(t) = s(t)Λ, s(0) =

(
π0

∂
∂θ1

π0
∂

∂θ2
π0

∂2

∂θ1∂θ2
π0

)
, (4.15)

where

s(t) =
(
π(t) ∂

∂θ1
π(t) ∂

∂θ2
π(t) ∂2

∂θ1∂θ2
π(t)

)
, (4.16)

Λ =


Q ∂

∂θ1
Q ∂

∂θ2
Q ∂2

∂θ1∂θ2
Q

Q ∂
∂θ2

Q

Q ∂
∂θ1

Q

Q

 . (4.17)

The above differential equation is similar to Eq. (4.9). Thus we can apply the

uniformization to obtain the first and second derivatives of π(t) concerning

model parameters.

4.4.2 Computation of LLF and Fisher Information Matrix

Here we present the computation algorithm of the Fisher information matrix in

PH fitting. In the context of ML estimation, the Fisher information matrix is

often given by the second derivatives of LLF. In other words, the computation

of LLF is fundamental even for calculating the Fisher information matrix.



4.4. COMPUTATION OF INFORMATION MATRIX IN PH FITTING 51

Consider the computation of LLF with weighed IID samples. The com-

putation of LLF with IID samples can be obtained by substituting 1 into all

the weights. Suppose that D = {(t1, w1), (t2, w2), . . . , (tK , wK)} are weighted

IID samples where 0 = t0 < t1 < t2 < · · · < tK are ordered time points and

w1, . . . , wK are corresponding weights. Then the LLF is defined by

logL(α,T , τ ;D) =

K∑
k=1

wk logα exp(T tk)τ . (4.18)

As shown in the uniformization, the computation cost becomes less if tn is

short. Therefore, the chapter focuses on the time difference between two time

points, i.e., ∆tk = tk − tk−1. Then the LLF can be rewritten by

logL(α,T , τ ;D) =
K∑

k=1

wk log fkτ , (4.19)

where f0 = α, fk = fk−1 exp(T∆tk). Based on this formula, the pseudo-code

for the computation of LLF with uniformization is given as follows.

1: llf = 0

2: f[0] = alpha

3: for k = 1:K

4: f[k] = unif(f[k-1], T, Delta[k])

5: llf += w[k] * log(f[k] * tau)

6: end

where alpha, T, tau, w[k], Delta[k] are, α, T , τ , wk, ∆tk. Also, the function

unif(f[k-1], T, Delta[k]) corresponds to the uniformization algorithm to

compute fk = fk−1 exp(T∆tk).

Next we present the computation algorithm for the information matrix, i.e.,

the second derivatives of LLF.

∂2

∂θi∂θj
logL(α,T , τ ;D)

=

K∑
k=1

wk

∂2

∂θi∂θj
fkτ + ∂

∂θi
fk

∂
∂θj

τ + ∂
∂θj

fk
∂
∂θi

τ + fk
∂2

∂θi∂θj
τ

fkτ

−
K∑

k=1

wk

( ∂
∂θi

fkτ + fk
∂
∂θi

τ )( ∂
∂θj

fkτ + fk
∂

∂θj
τ )

(fkτ )
2

. (4.20)

Note that the first and second derivatives of fk can be computed with Eq. (4.15).
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Finally, the pseudo-code for the computation of the information matrix is

given as follows.

1: llf = 0

2: f[0] = alpha

3: for i = 1:n

4: s[i] = 0; df[0][i] = dalpha[i]

5: for j = 1:i

6: F[i,j] = 0; ddf[0][i,j] = ddalpha[i,j]

7: end

8: end

9: f[0], df[0], ddf[0] = alpha, dalpha, ddalpha

10: for k = 1:K

11: f[k], df[k], ddf[k] = unif(f[k-1],df[k-1],ddf[k-1); Delta[k])

12: llf += w[k] * log(f[k] * tau)

13: for i = 1:n

14: s[i] += w[k] * (f[k] * dtau[i] + df[i][k] * tau) \

/ (f[k] * tau)

15: for j = 1:i

16: F[i,j] += w[k] * (ddf[k][i,j] * tau \

+ df[k][i] * dtau[j] + df[k][j] * dtau[i] \

+ f[k] * ddtau[i,j]) / (f[k] * tau) \

- w[k] * (df[k][i] * tau + f[k] * dtau[i]) \

* (df[k][j] * tau + f[k] * dtau[j]) \

/ (f[k] * tau)^2

17: end

18: end

19: end

where dalpha, ddalpha, dtau, ddtau are the first and second derivatives of

the initial probability vector α and the exit vector τ . It should be noted that

they are an array of vectors. Also s and F are the first and second derivatives

of LLF, i.e., the score function and the information matrix. In the algorithm,

the function unif(f[k-1], df[k-1], ddf[k-1]; Delta[k]) is to provide the

first and second derivatives of fk from the first and second derivatives of fk−1.
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In this function, the next step vectors can be computed by using the uniformed

matrix consisting of the first and second derivatives of T like Eq. (4.17).

4.5 Numerical Experiments

In this section, we evaluate the computational time for calculating the informa-

tion matrix in PH fitting with two types of information: IID samples and the

p.d.f., by using the uniformization method. In the experiment, the IID sam-

ples of observed data are drawn from Weibull distribution with the probability

density function as follows:

f(t;β, η) =
β

η
(
x

η
)β−1e−( x

η )β , (4.21)

where β > 0 and η > 0 are the shape parameter and scale parameter, respec-

tively. In particular, we set β = 1.5, η = 1.0 and first generate 10 samples from

Weibull distribution.

To investigate the effect of the number of phases on the computational time,

two cases of phases are considered, i.e., phases are 2 and 4. As an example,

when the number of phases is 2, the corresponding PH parameters after PH

fitting are

α =
(

α1 1− α1

)
, T =

 −β1 β1

0 −β2

 , (4.22)

where α is the initial probability vector of transition states and T is the in-

finitesimal generator of the underlying CTMC. Then, according to Eq. (4.20),

letting

I(θ) =
∂2

∂α2
1
logL(α,T , τ ;D) ∂2

∂α1∂β1
logL(α,T , τ ;D) ∂2

∂α1∂β2
logL(α,T , τ ;D)

∂2

∂β1∂α1
logL(α,T , τ ;D) ∂2

∂β2
1
logL(α,T , τ ;D) ∂2

∂β1∂β2
logL(α,T , τ ;D)

∂2

∂β2∂α1
logL(α,T , τ ;D) ∂2

∂β2∂β1
logL(α,T , τ ;D) ∂2

∂β2
2
logL(α,T , τ ;D)

 ,

(4.23)

the information matrix can be obtained by I(θ), where θ = {α1, β1, β2} and A

is the inverse of matrix I(θ). The variance of θi corresponds to the (i, i)-element

of A while the covariances of θi and θj corresponds to the (i, j)-element. We
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Table 4.1: Comparison of computational time between common method and
uniformization-based method.

#. of phases Common method Uniformization

2 0.049969 0.002384

4 8.153741 0.005044

Table 4.2: Computational time of information matrix in PH fitting (5 phases).

# of samples
IID samples the p.d.f.

first second first second

50 0.000552 0.014600 0.005391 0.121645

100 0.000941 0.026586 0.008195 0.122906

500 0.004028 0.098346 0.030713 0.129557

1000 0.006594 0.174501 0.058552 0.130411

Table 4.3: Computational time of information matrix in PH fitting (10 phases).

# of samples
IID samples the p.d.f.

first second first second

50 0.001558 0.082790 0.029265 1.031466

100 0.002347 0.118382 0.039976 0.995568

500 0.010192 0.449630 0.108468 0.992346

1000 0.026296 0.807612 0.196954 0.994312

estimate the computational time based on common method and uniformization-

based method. The main idea of common method is computing the second

derivative of LLF concerning PH parameters by using matrix exponential (see

Eq. (4.10)). The unit of computational time is sec in the experiment. The results

of the Comparison are shown in Table 4.1. From the table, it can be seen that

the uniformization-based method outperforms the common method with lower

computational time, especially in the case of 4 phases, the computational time of

uniformization-based method is about 0.005 seconds (s), which is only 0.061% of

that of common method. This shows the uniformization-based method improved

a lot of computational speed.

Next, to evaluate the effect of the number of data samples on the compu-
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tational time of the uniformization-based method, we generate 50,100,500,1000

data samples fromWeibull distribution for both 5 and 10 phases cases. Table 4.2

shows the results of computational time of calculating information matrix in the

case of 5 phases, while Table 4.3 gives the results when the number of phases

is 10. From these tables, first and second represent the computational time

of the first derivative and second derivative of the information matrix, respec-

tively. Specifically, for IID samples, in the case of 5 phases, the computational

time is much lower than that in the case of 10 phases. And the computational

time increases with the number of samples. At the same time, it takes more

time to calculate the second partial derivative, compared with the first partial

derivative. On the other hand, for the p.d.f., the computational time becomes

much larger than that of IID samples case. However, with the increase in the

number of data samples, the computational time of the second derivative of

the p.d.f. was almost the same. Since the computation involves the PH fitting

using EM algorithm, the above results indicate that the EM algorithm is more

stable in finding quadratic partial derivatives. In addition, it is obvious that the

computational time grows when the number of phases increases.
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Chapter 5

Conclusion

This dissertation contains four folds, around the the effects and the evaluation of

uncertainty propagation, we discussed the uncertainty propagation in fault tree

and hierarchical reliability models, respectively. From a point view of variance-

based sensitivity analysis, we proposed an analytical approach to evaluate the

uncertainty in the model parameters through the variance from data samples.

To evaluate the uncertainty in the non-exponential stochastic models, the PH

fitting technique is considered for approximation and an efficient algorithm for

efficiently computing the Fisher information matrix is proposed for getting the

variance and covariance of estimators.

In Chapter 2, we introduced a moment-based approximation method for eval-

uating epistemic uncertainty propagation in hierarchical reliability models. The

moment-based approximation requires the first and second derivatives of system

dependability measure with respect to model parameters, but obtaining them

for an FT in practice is not easy. To overcome such a limit, the BDD-based com-

putation for the first and second derivatives of the FTs and the hierarchical mod-

els was presented. Two experiments with both simple and complicated systems

were conducted to validate and evaluate the proposed moment-based approxi-

mation method. Specifically, Bayes estimation helped validate the effectiveness,

and MC simulation was used to evaluate the performance of the proposed ap-

proach. Numerical results showed that the moment-based approximation not

only achieved good performance with high accuracy but also significantly im-

proved the computational speed compared with the existing approaches. In the

future, we will automate the calculation of the proposed approach and provide
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an efficient tool to assess the uncertainty propagation in hierarchical reliability

models.

In Chapter 3, the variance-based sensitivity analysis for CTMCs was dis-

cussed. Since the sensitivity analysis requires the formulation of the target

model and the CTMC model seldom has the formulation method, thus the

moment-based approximation method was applied. With the aid of moment-

based approximation, we provided an explicit formulation of variance-based

sensitivity analysis and obtained the main effects of components by decompos-

ing the variance of the model output into fractions attributed to inputs. Our

first experiment illustrated the main effects of components with the same failure

rates in parallel/series systems and the results showed that the same compo-

nents with different system structures can devote different contributions to the

system reliability. The second experiment indicated that the proposed approach

can also be applied to complex system. In particular, components in the system

composed of both series and parallel structure own the relationship different

from the single parallel or series system. To figure out the contribution of each

component, the importance of system parameters can be judged via their main

effects, so as to know the components that need to be focused on. The im-

portance rank of components in terms of main effects can bring insight on the

effective system reliability improvement. At the same time, if we consider the

impact of parameter uncertainty on the system reliability, we can also give pri-

ority to the components with high contribution. In the future, we will apply this

formulation method to a real system to consider the uncertainty propagation.

In Chapter 4, we proposed an efficient algorithm for computing the infor-

mation matrix in PH fitting using uniformization. In particular, two types of

PH fitting were considered; that is, PH parameters were estimated from IID

samples and the p.d.f. information, respectively. The uniformization method

was applied for simplifying the computation process of the matrix exponential of

the underlying CTMC of PH distribution. In the experiments, we compared the

computational time between the common method and the uniformization-based

method. To investigate the effects of the number of phases on the computational

time, two cases with different numbers of phases were taken into account. In

particular, we further evaluated the effect of the number of data samples. Our
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numerical results showed that the uniformization-based method improved a lot

of the computational speed and can be considered an efficient and promising

method for computing the information matrix in the PH fitting. However, the

data samples we used in this paper were all point data. Actually, in addition to

point data, the group data are also widely used for PH fitting. In the case of

group data, the situation will be different. In the future, we will consider the

computation of the information matrix based on group data.

The main contributions of this dissertation are proposing several analytical

methods of solving uncertainty propagation. We initially considered the uncer-

tainty propagation in the FT, using the BDD representation help the compu-

tation of first and second derivatives. As the extension of the previous topic,

we discussed the uncertainty propagation in the hierarchical reliability models

through the moment-based approximation. Though the experiments, the ac-

curacy of moment-based approximation had been proven and the computation

efficiency is proved better than simulation method especially when the number

of parameters is small.
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[48] S. Retout and F. Mentré, “Further developments of the Fisher information

matrix in nonlinear mixed effects models with evaluation in population

pharmacokinetics,” Journal of Biopharmaceutical Statistics, vol. 13, no. 2,

pp. 209-227, 2003. DOI: 10.1081/BIP-120019267

[49] W. A. Scott, “Maximum likelihood estimation using the empirical fisher

information matrix,” Journal of Statistical Computation and Simulation,

vol. 72, no. 8, pp. 599-611, 2002. DOI: 10.1080/00949650213744

[50] O. Ibe, Markov Processes for Stochastic Modeling. Elsevier, 2013.
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