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Abstract

In the typical waterfall development model, the software development process

consists of 5 steps: (i) requirement/specification analysis, (ii) preliminary and

detailed design, (iii) coding, (iv) testing/verification, and (v) maintenance. In

the testing phase especially, software faults are detected and removed as much

as possible to meet high software reliability requirements. In other words, the

success of software testing leads to guaranteeing the quality of software. Since

software reliability is considered as one of the most fundamental and significant

attributes of software quality, considerable attention has been paid to improving

software testing. At the same time, since software testing is quite expensive, the

quantification of software reliability is also another important issue in the ver-

ification phase. The quantitative software reliability is generally defined as the

probability that software failures caused by faults do not occur in a given time

interval after the release. It is common to describe the probabilistic behavior of

the fault-detection process in testing phases by any stochastic counting process.

The software reliability defined in the above cannot be measured directly in

the field, so that stochastic models, which are called software reliability models

(SRMs), can be utilized to assess the quantitative software reliability. In fact, a

great number of SRMs have been developed to control/monitor software testing

processes as well as to evaluate the quantitative software reliability during the

last four decades.

In this thesis, we propose numerous novel SRMs, based on the homogeneous

Markov processes (HMPs) and non-homogeneous Markov processes (NHMPs).

We formulate the maximum likelihood (ML) estimation of our SRMs and per-

form the software reliability analysis with the fault count time-interval data

(group data), fault count time-domain data, and time-dependent software met-

rics data, which can be observed in the software industry. By comparing our

SRMs with the representative existing SRMs, we evaluate the performances of

models comprehensively. In Chapter 1, we introduce the definition of HMP

and NHMP-based software reliability modeling, including the well-known non-

homogeneous Poisson process (NHPP)-based modeling framework. In Chapter

2, we focus on the pure birth process (HMP) to describe software fault counts,

called geometric de-eutrophication SRM. We provide some useful results to han-
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dle the software fault count group data. Two types of SRMs are considered;

Moranda SRM (1975) and Gaudoin-Soler SRM (1992), where the former is a

modification of the well-known Jelinski-Moranda SRM (1972), having a soft-

ware fault detection rate with geometrically decreasing reduction, the latter

is an extension of Moranda SRM having another software fault detection rate

with exponential decay. Chapter 3 primarily focuses on the finite-failure (type-

I) NHPP-based SRMs and infinite-failure (type-II) NHPP-based SRMs. For

describing the software fault-detection time distribution, we postulate 29 rep-

resentative probability distribution functions that can be categorized into the

generalized exponential distribution family, the extreme-value distribution fam-

ily, the Burr-type distribution family, and the Lindley-type distribution family.

We verify the usefulness of our type-I and type-II NHPP-based SRMs and con-

firm how well they make decisions in software reliability assessment, We compare

the goodness-of-fit and predictive performances with the representative existing

NHPP-based SRMs. In Chapter 4, we propose local polynomial SRMs, which

can be categorized into a semi-parametric modeling framework. Our models

belong to the common NHPP-based SRMs but possess a flexible structure to

approximate an arbitrary mean value function by controlling the polynomial de-

gree. More specifically, we develop two types of local polynomial NHPP-based

SRMs; finite-failure and infinite-failure SRMs, which are substantial extensions

of the existing NHPP-based SRMs in a similar category. Chapter 5 discusses

the so-called proportional intensity-based software reliability models (PI-SRMs),

which are extensions of the common NHPP-based SRMs, and describe the prob-

abilistic behavior of the software fault-detection process by incorporating the

time-dependent software metrics data observed in the development process. In

Chapter 6, we focus on NHMPs, which are generalizations of the well-known

HMPs and NHPPs, and compare two SRMs that can be classified into a gen-

eralized binomial processes (GBPs) and generalized Polya processes (GPPs).

GBP and GPP are also characterized respectively as a Markov inverse death

process and a Markov birth process, with state- and time-dependent transition

rates, respectively. We develop a unified software reliability modeling frame-

work based on the NHMPs and apply them to the software reliability predic-

tion. Throughout numerical examples with the fault count data observed in
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actual closed-source software (CSS) and open-source software (OSS) develop-

ment projects, we compare two NHMP-based SRMs (GBP and GPP) in terms

of the goodness-of-fit and predictive performances, in addition to the quantita-

tive software reliability assessment. We also consider software release problems

with these generalized SRMs and, investigate the impact on the software release

decision. Finally, some conclusions and remarks are given in Chapter 7.
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Chapter 1

Introduction

1.1 Summary of Existing Software Reliability
Modeling Frameworks

Throughout software development processes, software reliability models (SRMs)

have been extensively used in the verification and validation phase to quan-

tify the software reliability, which is defined as the probability that software

faults are not detected in the remaining testing period or that software failure

caused by software faults do not occur in the operational phase after the release

to the user or market. During the almost last five decades, a great number

of SRMs have been developed by many authors [1, 2, 3]. Especially, the ho-

mogeneous Markov process (HMP)-based SRMs and non-homogeneous Poisson

process (NHPP)-based SRMs have gained much popularity for describing the

stochastic behavior of the cumulative number of software faults detected in the

testing phase, because of their tractability and goodness-of-fit performance.

The majority of SRMs developed in the past is estimable and, possesses the

so-called Markov property. For instance, the most classical SRMs by Jelinski and

Moranda [4], Moranda [5], Xie [6] are categorized into HMPs with different state-

dependent transition rates (equivalently, pure Markov inverse death process and

pure Markov birth process). The NHPP-based SRMs [7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20] are also Markov processes with different time-dependent

transition rates.

1
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1.1.1 HMP-based Software Reliability Modeling

Let {N(t), t ≥ 0} denote the cumulative number of software faults detected up

to the system testing time t. Since the software fault counting process N(t) can

be considered as a non-decreasing stochastic point process taking non-negative

integer values, it is useful to describe the dynamic behavior by using a Markov

counting process. Let

Pn(t) = Pr {N(t) = n|N(0) = 0} , n = 0, 1, 2, · · · (1.1)

be the steady-state transition probability. The HMP is described by the state-

dependent transition rate λn (n = 0, 1, 2, · · · ). Suppose that there exist N

software faults remaining in a software before the system testing, and that the

software fault count process is given by an inverse birth process (see Fig. 1.1

(a)) with an absorbing state n = N . Jelinski and Moranda [4] considered this

type of HMP with termination and assumed the transition rate λn = (N −

n)b (n = 0, 1, . . . , N − 1), where N is the residual number of software faults

before the testing (non-negative integer) and b is the constant fault-detection

rate when each of software fault-detection times in N population is independent

and identically distributed exponential random variable. Since the Kolmogorov

forward equations are given by

d

dt
P0(t) = −λ0P0(t), (1.2)

d

dt
Pn(t) = λn−1Pn−1(t)− λnPn(t), n = 1, 2, · · · , N − 1, (1.3)

d

dt
PN (t) = λN−1PN−1(t) (1.4)

with the boundary conditions P0(0) = 1 and Pn(0) = 0 (n = 1, . . . , N), it is

straightforward to obtain the probability mass function (p.m.f.) [107]:

Pn(t) =

(
N

n

)
{1− e−bt}ne−b(N−n)t, n = 0, 1, · · · , N, (1.5)

which is a binomial p.m.f. Hence the process N(t) terminates at n = N with

probability one.

Moranda [5] assumed another transition rate λn = abn under the assumption

of N →∞, where a and b are two model parameters with apparently no physical

interpretation, and proposed the so-called the geometric de-eutrophication type
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SRM to describe the software fault-count process. Since it is a pure birth process

(see Fig. 1.1 (b)), the Kolmogorov forward equations are given by

d

dt
P0(t) = −λ0P0(t), (1.6)

d

dt
Pn(t) = λn−1Pn−1(t)− λnPn(t), n = 1, 2, · · · (1.7)

with the boundary conditions P0(0) = 1 and Pn(0) = 0. From the well-known

nature of the pure birth process type of HMP, it holds (see e.g., [21]) that the

p.m.f. is a unique solution of

Pn(t) = λn−1e
−λnt

∫ t

0

eλnxPn−1(x)dx, (1.8)

if
∑∞

n=0 λ
−1
n = ∞. Boland and Singh [22] obtained a closed form of the c.d.f.

with λn = abn for Moranda’s geometric de-eutrophication type SRM. Fig. 1.2

(a) and (b) show the schematic illustrations of the transition rates in Jelinski

and Moranda SRM [4] and Moranda SRM [5], respectively.

(a) HMP with termination.

(b) HMP without termination.

(c) NHPP.

Figure 1.1: Transition diagrams.
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1.1.2 NHPP-based Software Reliability Modeling

As a well-known Markov process, NHPP is regarded as an alternative to the

classical homogeneous Poisson process (HPP). If the intensity at time point t

in the definition of HPP is given by a function λ(t) with respect to t, then an

HPP can be described by an NHPP. More specifically, if a stochastic counting

process {N(t), t ≥ 0} is non-negative and non-decreasing, it becomes an NHPP

under the following assumptions.

• NHPP has independent increments, so the number of occurrences in a

specific time interval depends on only the current time t and does not

on the past history of the process, which is also known as the Markov

property.

• Initial state of the process is given by N(0) = 0.

• The occurrence probability of one event in a given time period [t, t+∆t)

for an NHPP is defined by Pr{N(t+∆t)−N(t) = 1} = o(∆t) + λ(t)∆t.

The function λ(t) is an absolutely continuous function, which is named

the intensity function of NHPP, and ∆t is recognized as an infinitesimal

period of time.

• NHPP has negligible probability for two or more events occurring in [t, t+

∆t), i.e., Pr{N(t + ∆t) − N(t) ≥ 2} = o(∆t), where lim∆t→0
o(∆t)
∆t = 0

and o(∆t) is the higher-order term of ∆t.

For an arbitrary non-negative and absolutely continuous function of time,

λ(t), consider the Kolmogorov forward equations:

d

dt
P0(t) = −λ(t)P0(t), (1.9)

d

dt
Pn(t) = λ(t)Pn−1(t)− λ(t)Pn(t), n = 1, 2, · · · . (1.10)

By solving the above difference-differential equations with the initial conditions

P0(0) = 1 and Pn(0) = 0 (n = 1, 2, . . .), it is immediate to derive

Pn(t) =
M(t)

n

n!
e−M(t), n = 0, 1, 2, · · · , (1.11)

so that N(t) is a non-homogeneous Poisson process (NHPP) with the mean

value function:

E[N(t)] = M(t) =

∫ t

0

λ(x)dx. (1.12)
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From the Poisson nature, it holds that E[N(t)] = Var[N(t)]. This unusual

feature without apparent empirical interpretation is called the equity-dispersion,

so the expected cumulative number of software faults must be exactly same as its

variance in this modeling assumption. The time-dependent transition rate λ(t)

in Equations (1.9) and (1.10) is called the intensity function in the NHPP and

is independent of the state n. In Fig. 1.1 (c), we depict the transition diagram

of the NHPP with time-dependent transition rate λ(t). If the function λ(t) is

decreasing (increasing) in t, then the software tends to be reliable (unreliable)

as the testing time goes on (see Fig.1.2 (c) and (d)). This model does not focus

on the microscopic behavior of each software fault count, but describes the

time-dependent macroscopic trend in the software fault intensity. By modeling

the software failure time, Kuo and Yang [23] classified NHPP-based SRMs into

general order statistics SRMs and record value statistics SRMs. The same

authors [23] referred an alternative and simpler classification by dividing NHPP-

based SRMs into two types; finite-failure (type-I) and infinite-failure (type-II)

NHPP-based SRMs with the mean value functions, which are defined as the

expected cumulative number of software failures.

1.1.3 Maximum Likelihood Estimation

Once the intensity function (transition rate) is determined in HMP- and NHPP-

based SRMs, the commonly used technique to estimate the model parameters is

the maximum likelihood estimation by maximizing the log likelihood function

(LLF). In general, there are two types of software fault count data; time data

and group data. The time data can be also called the fault count time-domain

data. For t0 = 0, we observe m fault detection times, ti (i = 1, 2, · · · ,m),

where te (≥ tm) denotes the observation (censoring) point of time. For the

time-domain data (t1, t2, · · · , tm; te), the likelihood functions of the HMP- and

NHPP-based SRMs with the time truncation are given by

L(θ) =

m∏
i=1

λi(θ)e
−λi(θ)(ti−ti−1)e−λm(θ)(te−tm)

= exp[−λm(θ)te]

m∏
i=1

λi(θ), (1.13)
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(a) Jelinski-Moranda SRM (HMP): λn = (N − n + 1)b
with a constant downward jump.

(b) Moranda SRM (HMP): λn = abn (0 < b < 1) with
a decreasing upward jump.

(c) NHPP-based SRM with decreasing intensity func-
tion.

(d) NHPP-based SRM with increasing intensity func-
tion.

Figure 1.2: Representative baseline models in SRMs.
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and

L(θ) =

m∏
i=1

λ(ti;θ)e
−
∫ ti
ti−1

λ(x;θ)dx
e−
∫ te
tm

λ(x;θ)dx

= exp[−M(te;θ)]

m∏
i=1

λ(ti;θ), (1.14)

respectively, where θ is the model parameter vector. In the failure truncation,

say te = tm, the corresponding likelihood functions are given by replacing te by

tm in Equations (1.13) and (1.14). Taking the logarithm of Equations (1.13)

and (1.14), we obtain the log likelihood functions:

lnL(θ) =
m∑
i=1

lnλi(ti;θ)− λm(te;θ), (1.15)

lnL(θ) =
m∑
i=1

lnλ(ti;θ)−M(te;θ). (1.16)

By maximizing the log likelihood function lnL(θ) with respect to θ, we obtain

the maximum likelihood estimates θ̂.

When the group data (τi, ni) (i = 0, 1, · · · ,m) with (τ0, n0) = (0, 0) are

available, for HMP-based SRMs, the likelihood function is represented by

L(θ) = Pr
{
N(τ1) = n1, N(τ2) = n2, · · · , N(τm) = nm

}
=

m∏
i=1

Pr{N(τi) = ni | N(τi−1) = ni−1}, (1.17)

from the Markov property. So, if the conditional transition probability Pr{N(τi) =

ni | N(τi−1) = ni−1} (i = 1, 2, · · · ,m) is available for HMP-based SRMs, the

corresponding likelihood function is obtained explicitly. For instance, the like-

lihood function for Jelinski and Moranda SRM [4] is given by

L(θ) =
m∏
i=1

(
N − ni−1

ni − ni−1

)
{1− e−bτi}ni−ni−1e−b(N−ni)τi (1.18)

for θ = (N, b), but the likelihood functions for Moranda SRM [5] and Xie SRM

[6] have to be calculated algorithmically.

The likelihood function for the unknown parameters θ for NHPP-based

SRMs is given by

L(θ) =
m∏
i=1

[
[M(τi;θ)−M(τi−1;θ)]

ni−ni−1

(ni − ni−1)!

]
× e−[M(τi;θ)−M(τi−1;θ)], (1.19)
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so that the log likelihood function is represented as

lnL(θ) =
m∑
i=1

{
(ni − ni−1) ln[M(τi;θ)−M(τi−1;θ)]

− ln[(ni − ni−1)!]
}
−M(τm;θ). (1.20)

In the above way, the maximum likelihood estimation for NHPP-based SRMs

is trivial even for both time and group data. However, it is not always easy to

handle the group data for HMP-based SRMs if the analytical forms of transition

rates are not available.

1.2 Software Fault Count Data

Most observable software testing data in the industry are fault count data, as

it is common to test/debug software in the distributed testing environment.

Generally, it is possible to observe software fault count data in two categories;

software fault count time-domain data and software fault count time-interval

data (group data). In this thesis, we employ thirteen time-domain data sets for

closed-source software (CSS) systems and twelve group data sets for eight CSS

and four open-source software (OSS) systems on the software fault count. A

set of fault detection times measured with CPU time is called the fault count

time-domain data. Suppose that m software faults are detected, where the time

sequence is given by D = {t1, t2, . . . , tm}. On the other hand, a group data

I = {(τi, ni), i = 1, 2, . . . ,m} consists of the number of faults detected in fixed

time intervals measured with the calendar time, (τi−1, τi] (i = 1, 2, . . . ,m). Each

record of the group data (τi, ni) is given by a pair of the observation time τi and

the cumulative number of software faults detected by time τi. In this thesis, we

list these data in order from DS1 to DS25. We show the details of these data

sets in Table 1.1. In Chapter 5, we also consider an extension of the common

NHPP-based SRM and describe the probabilistic behavior of the software fault

detection process by incorporating software time-dependent metric data. In

Table 1.1 (iv), we show the four software time-dependent metric data we used,

DS26∼DS29. It is not difficult to find that DS26 and DS8, DS27 and DS14,

DS28 and DS15, and DS29 and DS5 come from the same source, respectively.
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Table 1.1: Software Fault Count Data Sets.

(i) Time-domain data (CSS development projects).

Data set No. faults Testing length (CPU time) Source Nature of system

DS1 54 108708 SYS2 [24] Real time command and control system

DS2 38 233700 S10 [24] Real time command and control system

DS3 38 67362 SYS3 [24] Real time command and control system

DS4 41 4312598 S27 [24] Military application

DS5 53 52422 SYS4 [24] Real time command and control system

DS6 73 5090 Project J5 [1] Real time command and control system

DS7 101 19572126 S17 [24] Real time command and control system

DS8 136 88682 SYS1 [24] Real time command and control system

DS9 24 1095.88 S14C [24] Real time commercial subsystem

DS10 129 89040 SRC2 [1] Single-user workstation

DS11 197 50236822 SS4 [24] Operating system

DS12 104 15369.5 SRC3 [1] Single-user workstation

DS13 397 108890 SRC1 [1] Single-user workstation

(ii) Group data (CSS development projects).

Data set Testing weeks No. faults Source Nature of system

DS14 17 54 SYS2 [24] Real time command and control system

DS15 14 38 SYS3 [24] Real time command and control system

DS16 19 120 Release2 [25] Tandem software system

DS17 12 61 Release3 [25] Tandem software system

DS18 14 9 NASA -supported project [26] Inertial navigating system

DS19 20 66 DS1 [27] Embedded application for printer

DS20 33 58 DS2 [27] Embedded application for printer

DS21 30 52 DS3 [27] Embedded application for printer

(iii) Group data (OSS development projects).

Data set Operating months No. faults Source Project

DS22 121 379 [28] Video game emulation for macOS

DS23 107 381 [29] JavaScript framework for building web interfaces

DS24 62 260 [30] Screenshot software for Windows

DS25 96 367 [31] Math typesetting for the web

(iv) Time-dependent metric data (CSS development projects).

Data set No. Faults Testing weeks Source Nature of system

DS26 136 21 SYS1 [24] Real time command and control system

DS27 54 17 SYS2 [24] Real time command and control system

DS28 38 14 SYS3 [24] Real time command and control system

DS29 53 16 SYS4 [24] Real time command and control system

Metrics Data: Failure identification work, Execution time, Computer time-failure identification.
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Chapter 2

HMP-based Software
Reliability Models (SRMs)
with group data

In this chapter, we focus on a pure birth process to describe software fault count,

called the geometric de-eutrophication SRM, and provide some useful results to

handle the software fault count group data. Two types of SRMs are considered;

Moranda SRM [32, 33], (M-SRM) and Gaudoin-Soler SRM [34] (G & S-SRM),

where the former is a modification of the well-known J&M-SRM [4] having a

software fault detection rate with geometrically decreasing reduction, the latter

is an extension of M-SRM [32, 33] having another software fault detection rate

with exponential decay. First, we note that these two SRMs; M-SRM and G&S-

SRM, are essentially identical. Unfortunately, it is emphasized that the group

data analysis with the geometric de-eutrophication SRM has not been done yet

in the literature, so M-SRM [32, 33] and G&S-SRM [34] handled only the time

domain data. Boland and Singh [35] and Vasanthi and Arulmozhi [36] gave the

fundamental results to characterize M-SRM[32, 33], but did not apply their re-

sults to the maximum likelihood estimation with the group data. In other words,

the geometric de-eutrophication SRM has not been fully proven whether it could

accurately describe the software fault detection behavior in the testing phase of

the actual software development project. This fact is really surprising because

M-SRM [32, 33] is one of the most classical SRMs and has not been investi-

gated in the viewpoint of quantification of software reliability in the plausible

group data circumstance for several decades.

11
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2.1 Preliminary

Jelinski and Moranda [4] proposed the earliest SRM, which is called J&M-SRM,

and described the software fault count process as a homogeneous Markov death

process, where the software fault-detection rate is proportional to the remaining

number of faults in a software program. They dealt with the time-domain

data and estimated the model parameters by means of the maximum likelihood

method. Shanthikumar [38] and Xie [39] showed that J&M-SRM is essentially

the same as a binomial process in terms of stochastic counting processes and

estimated the model parameters with the group data. Miller [40] also showed

that J&M-SRM could be derived from exponential order statistics. In this way,

the most well-known J&M-SRM can be handled with both time-domain and

group data. Another representative SRMs are the NHPP-based SRMs, which

can also deal with both time domain data and group data (see Musa, Iannino

and, Okumoto [2]).

In this chapter, we focus on a pure birth process to describe software fault

count, called the geometric de-eutrophication SRM, and provide some useful

results to handle the software fault count group data. Two types of SRMs

are considered; Moranda SRM [32, 33] (M-SRM) and Gaudoin-Soler SRM [34]

(G&S-SRM), where the former is a modification of the well-known J&M-SRM [4]

having a software fault detection rate with geometrically decreasing reduction,

the latter is an extension of M-SRM [32, 33] having another software fault

detection rate with exponential decay. First, we note that these two SRMs; M-

SRM and G&S-SRM, are essentially identical. Unfortunately, it is emphasized

that the group data analysis with the geometric de-eutrophication SRM has not

been done yet in the literature, so M-SRM [32, 33] and G&S-SRM [34] handled

only the time domain data. Boland and Singh [35] and Vasanthi and Arulmozhi

[36] gave the fundamental results to characterize M-SRM [32, 33], but did not

apply their results to the maximum likelihood estimation with the group data.

In other words, the geometric de-eutrophication SRM has not been fully proven

whether could accurately describe the software fault detection behavior in the

testing phase of the actual software development project. This fact is really

surprising because M-SRM [32, 33] is one of the most classical SRMs and has

not been investigated in the viewpoint of quantification of software reliability
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in the plausible group data circumstance for several decades.

2.2 De-eutrophication SRMs

In de-eutrophication SRMs, we suppose the non-increasing state-based fault de-

tection (transition) rate in monotone time-homogeneous Markov processes such

as pure birth process and pure death process, where the underlying assumption

is that all the software faults detected are perfectly corrected, and no new faults

are created through the system testing phase. In [37], the authors call this kind

of model de-eutrophication SRM because the behaviour of removing software

faults from a software program is very similar to the behaviour of cleaning pol-

lutants from an enclosed body of water. In this sense, the well-known J&M-SRM

[4] is also recognized as the earliest de-eutrophication SRM. More specifically,

let N be the total number of inherent faults in a software program before the

software testing. Then the failure rate in J&M-SRM, which is interpreted as

the fault detection rate between the n-th and (n+1)-st software faults, is given

by

λn = b(N − n), n = 0, 1, 2, . . . , N − 1, (2.1)

where b (> 0) means a constant amount of contribution for software fault detec-

tion rate. Hence, the inter-fault-detection time intervals, Xn, are described by

statistically independent exponential random variables with mean 1/λn (> 0).

Let N(t) be the cumulative number of software faults detected by time t (≥ 0).

Then the probability mass function for J&M-SRM is given by [38, 39];

Pn(t) = Pr{N(t) = n | N(0) = 0} =
(
N

n

)
{1−e−bt}ne−b(N−n)t, i = 0, 1, · · · , N,

(2.2)

which is an elementary binomial distribution. Hence, the mean value function

of N(t) is given by E[N(t)] = N{1− e−bt}.

On the other hand, M-SRM [32] assumes that the software faults detected

in the early stage of software testing may be more serious than the others, and

these faults may cause software failures that occurred in the beginning of testing.

With the passage of time, it is assumed that the software fault-detection rate

decreases geometrically. Based on these assumptions, the failure rate in M-SRM
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is given by

λn = bkn, n = 0, 1, 2, . . . , (2.3)

where b (> 0) and k ∈ (0, 1) are constants. It is obvious that λn decreases

monotonically but does not terminate at n = N − 1 dissimilar to J&M-SRM.

This implies implicitly that an infinite number of software faults are contained

in a software program. The main reason why M-SRM is called geometric de-

eutrophication SRM is that λn in Equation (2.3) decreases geometrically as n

increases. For the general pure birth process with transition rate λn (n =

0, 1, 2, . . .), let Pn(t) = Pr{N(t) = n | N(0) = 0} denote the probability mass

function or equivalently the steady-state transition probability. Then it holds

that
∑∞

n=0 Pn(t) = 1 if and only if
∑∞

n=0(1/λn) = ∞, so it turns out that

M-SRM satisfies
∑∞

n=0 Pn(t) = 1, and does not cause an explosion over a finite

time t, say,
∑∞

n=0 Pn(t) < 1. Let Tn denote the n-th software fault detection

time with Tn =
∑n

l=1 Xl, where Xn is the time interval between the n-th and

(n + 1)-st software faults. Then, the sequence Xn, n = 0, 1, . . ., constitutes a

geometric process [41]. From the exponential assumption, it is easy to derive the

probability density function of Xn as fXn (t) = bkn exp (−bknt) with t (≥ 0).

Figure 1.1 (b) shows a schematic illustration of the fault-detection rate in M-

SRM [32].

Gaudoin and Solar [34] considered another pure birth process with the failure

rate;

λn = b exp (−n · a), n = 0, 1, 2, . . . , (2.4)

where a (> 0) and b (> 0) both specify the quality of the software debugging.

If a = 0 in Equation (2.4), then the software fault detection rate becomes con-

stant. If it is greater than 0, then the software fault detection rate decreases

with time, and the reliability of software increases as more software faults are

detected and corrected. In a fashion similar to M-SRM [32] the probability den-

sity function is given by fXn (t) = b exp (−na) exp (−b exp (−na) t). However,

looking at Equations.(2.3) and (2.4), it can be seen that G&S-SRM is equiv-

alent to M-SRM when k = exp(−a). Hereafter, we refer to M/G&S-SRM for

the geometric de-eutrophication SRM. Next, we are interested in the cumula-

tive number of software faults detected up to t (≥ 0) for M/G&S-SRM. Let

Qn (t) = Pr {N (s+ t)−N (s) = n|N(s) = m} be the conditional probability
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Figure 2.1: Transition diagram of the pure birth process without termination.

during the time interval [s, s+ t). The Kolmogorov forward equations are given

by [35, 36]:

d

dt
Q0 (t) = −λmQ0 (t) , (2.5)

d

dt
Qn (t) = −λm+nQn (t) + λm+n−1Qn−1 (t) , n = 1, 2, . . . . (2.6)

In Figure 2.1, we depict the transition diagram of a pure birth process with

transition rate λn(n = m,m + 1, . . .). Then the general solution in Equations

(2.5) and (2.6) can be expressed by

Qn(t) =

n−1∏
j=0

λm+j

n∑
j=0

exp(−λm+jt)∏n
l=0,l ̸=j(λm+l − λm+j)

. (2.7)

It is not so difficult to get the above result because the general solution of the

ordinary linear differential equation can be provided. For the linear differential

equation in Equation (2.6), the solution of Qn(t) satisfies the following recursive

formula;

Qn(t) = exp(−λm+nt)

∫ t

0

λm+n−1Qn−1(u) exp(λm+nu− λmu)du. (2.8)

From the initial condition Q0(t) in Equation (2.5) with n = 0, we have

Q0 (t) = exp(−λmt). (2.9)

Next, when n = 1, from Equation (2.8), we get

Q1(t) = exp(−λm+1t)

∫ t

0

λmQ0(u) exp(λm+1u)du

= exp(−λm+1t)

∫ t

0

λm exp(−λmu) exp(λm+1u)du

= exp(−λm+1t)
λm

λm+1 − λm
(exp((λm+1 − λm)t)− 1)

= λm

(
exp(−λmt)

λm+1 − λm
+

exp(−λm+1t)

λm − λm+1

)
. (2.10)
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For n = 2, we obtain

Q2(t) = exp(−λm+2t)

∫ t

0

λm+1Q1(u) exp(λm+2u)du

= exp(−λm+2t)λm+1λm

{(
1

λm+1 − λm

)∫ t

0

exp((λm+2 − λm)u)du

+

(
1

λm − λm+1

)∫ t

0

exp((λm+2 − λm+1)u)du

}
= exp(−λm+2t)λm+1λm

{(
1

λm+1 − λm

)(
exp(λm+2t− λmt)− 1

λm+2 − λm

)
+

(
1

λm − λm+1

)(
exp(λm+2t− λm+1t)− 1)

λm+2 − λm+1

)}

=


1∏

j=0

λm+j

 exp(−λm+2t)

{
(exp(λm+2t− λmt)− 1)

(λm+1 − λm)(λm+2 − λm)

+
(exp(λm+2t− λm+1t)− 1)

(λm − λm+1)(λm+2 − λm+1)

}

=


1∏

j=0

λm+j


{
exp(−λmt)− exp(−λm+2t)

(λm+1 − λm)(λm+2 − λm)

+
exp(−λm+1t)− exp(−λm+2t)

(λm − λm+1)(λm+2 − λm+1)

}

=


1∏

j=0

λm+j


1∑

j=0

exp(−λm+jt)− exp(−λm+2t)∏2
l=0,l ̸=j(λm+l − λm+j)

. (2.11)

For any n ∈ N, we can confirm that the following equation holds:

Qn(t)

=


n−1∏
j=0

λm+j


n−1∑
j=0

exp(−λm+jt)− exp(−λm+nt)∏n,l ̸=j
l=0 (λm+l − λm+j)

=


n−1∏
j=0

λm+j




n−1∑
j=0

exp(−λm+jt)∏n
l=0,l ̸=j(λm+l − λm+j)

−
n−1∑
j=0

exp(−λm+nt)∏n
l=0,l ̸=j(λm+l − λm+j)

 .

(2.12)

Since the above expression is a little complicated, we try to get a simpler ex-

pression. Following Gat [42], it holds that

n∑
j=0

1∏n
l=0,l ̸=j(λm+l − λm+j)

= 0. (2.13)

Finally, we can derive the general solution of the conditional probability Qn(t)

in Equation (2.6). Based on the result, the steady-state transition probabilities
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in M/G&S-SRMs are given by

Qn(t) =

n∑
j=0

k
n(n−1)

2 exp(−bkm+jt)∏n
l=0,l ̸=j(k

l − kj)
, (2.14)

and

Qn(t) =

n∑
j=0

exp
[
−
(
b exp(−(m+ j)at) + n(n−1)

2 a
)]

∏n
l=0,l ̸=j [exp (−la)− exp (−ja)]

, (2.15)

respectively. When s = 0 and m = 0, we have Qn (t) = Pn (t) = Pr[N (t) =

n|N(0) = 0], which is known as the p.m.f..

Once the p.m.f. Pn(t) is obtained, the mean value function E[N(t)] can be

calculated numerically. Boland and Singh [35] corrected a mistake on the mean

value function in M-SRM in the standard textbook [2], and suggested applying

the probability generating function P (s, t) =
∑∞

n=0 Pn(t)s
n with t (> 0) and

s ∈ (0, 1). We also use their result directly to obtain the mean value functions

for M/G&S-SRMs;

E [N (t)] = bt+

∞∑
j=2

(−1)j−1 (bt)
j

j!

j−1∏
n=1

(1− kn), (2.16)

E [N(t)] = bt+

∞∑
j=2

(−1)j−1 (bt)
j

j!

j−1∏
n=1

[1− exp (−an)] , (2.17)

respectively. It is worth mentioning that the above expressions are based on

infinite series. Since the computation of Equations (2.16) and (2.17) is rather

unstable, we need to evaluate the termwise calculation with verified computation

carefully.

2.3 Parameter Estimation

Suppose that software fault count group data are available and consist of a pair

of the time interval from τ = 0 and the cumulative number of software faults;

(τi, ni) , i = 1, 2, . . .m. Then the likelihood function is given as the product

of conditional probabilities Qi(τ) (i = 1, 2, . . . ,m) by

L (ν) =
m∏
i=1

P [N (τi)−N (τi−1) = ni − ni−1|N(s) = ni−1], (2.18)
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where ν is a free parameter vector involved in the failure detection rate. From

Equation (2.2), the log-likelihood function for J&M-SRM ν = (N, b) is given by

lnL (ν) =
m∑
i=1

ln
{(

N − ni−1

)
!− (ni − ni−1)!−

(
N − ni

)
!
}

−
m∑
i=1

((N − ni) a (τi − τi−1)) +

m∑
i=1

{
(ni − ni−1) ln

[
1− e−a(τi−τi−1)

]}
.

(2.19)

The maximum likelihood estimate of model parameter ν is given by the maxi-

mize ν̂ for lnL (ν).

For the M/G&S-SRMs, we obtain the log-likelihood functions:

lnL (ν) =
m∑
i=1

ln


ni−ni−1∑

j=0

(−1)j exp
[
−b(τi − τi−1)k

(ni−1+j)
] j∏
l=1

(
1

kl − 1

)

×
ni−ni−1−j∏

l=1

(
k(l−1)

kl − 1

)}
(2.20)

and

lnL (ν) =
m∑
i=1

{
− (ni − ni−1) (ni − ni−1 − 1)

2
a

+ ln

ni−ni−1∑
j=0

exp [−b (τi − τi−1) exp (−(ni−1 + j)a)]∏ni−ni−1

l=0,l ̸=j [exp (−la)− exp (−ja)]

 , (2.21)

for ν = (b, k) and ν = (a, b), respectively. Hence, the problem is to derive the

optimal ν by maximizing lnL (ν) with ν = (b, k) or ν = (a, b).

2.4 Numerical Experiments

In our numerical experiments, we use a total of eight data sets of software fault

count group (time-interval) data; (τi, ni) , i = 1, 2, . . .m, which were collected

from actual software development projects, where ni is the cumulative number

of faults detected by each time point ti. The data sources and features of the

target software systems are summarized in Table 1.1 (b). In this chapter, we

re-name them from GDS1 to GDS8.
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2.4.1 Goodness-of-fit Performance

First, we attempt to investigate the goodness-of-fit performance of the J&M-

SRM and M/G&S-SRM for the group data in Table 1.1. In Figure2.2, we depict

the behavior of the cumulative number of software faults in GDS1 and the mean

value functions of J&M-SRM and M/G&S-SRM. From this figure, it is not easy

to find out the remarkable difference between the two de-eutrophication SRMs.

For the model selection, we apply the Akaike information criterion (AIC) and

the mean squares error (MSE). Once the maximum log-likelihood lnL(ν̂) is

given with the maximum likelihood estimate ν̂, AIC is defined by

AIC = −2× lnL (ν̂) + 2× (the number of parameters). (2.22)

Since AIC is an approximate distance between the assumed SRM and the real

(but unknown) SRM behind the underlying data, the smaller AIC implies the

better SRM. As an alternative goodness-of-fit measure, we define MSE, which

is a vertical distance between the assumed SRM and the underlying data;

MSE =

∑m
i=1{ni − E [N(τi); ν̂]}2

m
. (2.23)

Of course, the smaller MSE is the better SRM in terms of the goodness-of-fit

to the underlying data. In Table 2.1, we compare J&M-SRM with M/G&S-

SRM in terms of AIC, where the case with the minimum AIC is marked with

bold font in each data set. From these results, it is seen that M/G&S-SRM

outperformed in GDS5, GDS6, GDS7, and GDS8, but J&M-SRM was better in

GDS2, GDS4, and GDS6. The important thing is that the differences between

J&M-SRM and M/G&S-SRM are not so significant in terms of AIC in GDS1,

GDS2, GDS3, GDS4, GDS5, and GDS6, because the differences are at most 2

in AIC. However, in GDS7 and GDS8, M/G&S-SRM gave rather smaller AICs

than J&M-SRM. Looking at MSEs, the differences between two SRMs seem to

be large, but we confirm that SRM with smaller AIC provides smaller MSE as

well.

2.4.2 Predictive Performance

Next, we investigate the predictive performances of J&M-SRM and M/G&S-

SRM with group data. In our experiment, we set three observation points;
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Testing time

Figure 2.2: Behavior of the cumulative number of software faults detected in
GDS1.

Table 2.1: Goodness-of-fit performances based on AIC/MSE

.

J&M-SRM M/G&S-SRM

AIC MSE AIC MSE

GDS1 86.339 25.432 87.139 30.181

GDS2 61.393 53.018 61.579 53.317

GDS3 62.521 28.620 65.437 63.684

GDS4 29.323 0.339 29.440 0.356

GDS5 110.498 59.943 109.679 33.262

GDS6 141.905 51.109 141.088 43.316

GDS7 174.011 176.123 114.129 91.165

GDS8 190.336 232.109 159.063 116.366
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20%, 50%, and 80% points of the whole data set, and are interested in exam-

ining the prediction ability of the SRMs in the early, middle and late software

testing phases. Figures 2.3, 2.4 and 2.5 show the prediction results with GDS1

from 30%, 50%, 80% observation points. In Figures 2.3 ∼ 2.5, we can observe

that the prediction result of M/G&S-SRM is better than J&M-SRM, but the

difference seems to be slightly small. For a more precise comparison of the pre-

dictive performances, we calculate the predictive mean squares error (PMSE)

and the predictive log-likelihood (PLL). Suppose that (τi, ni), i = 1, 2, . . . l

are observed at the observation point (τl, nl). For all the data set (τi, ni), i =

1, 2, . . .m (l < m), PMSE is given by

PMSE =

m∑
i=l+1

(E [N (τi) ; ν̂]− ni)
2
/(m− l). (2.24)

The smaller PMSE means the better SRM. On the other hand, PLLs are derived

as

PLL (ν̂) =
m∑

i=l+1

ln
{(

N̂ − ni−1

)
!− (ni − ni−1)!−

(
N̂ − ni

)
!
}

−
m∑

i=l+1

((
N̂ − ni

)
θ (τi − τi−1)

)
+

m∑
i=l+1

{
(ni − ni−1) ln

[
1− e−â(τi−τi−1)

]}
,

(2.25)

PLL (ν̂) =

m∑
i=l+1

ln


ni−ni−1∑

j=0

(−1)j exp
[
−b̂(τi − τi−1)k̂

(ni−1+j)
] j∏
s=1

(
1

k̂s − 1

)

×
ni−ni−1−j∏

s=1

(
k̂(s−1)

k̂s − 1

)}
, (2.26)

for J&M-SRM and M/G&S-SRM, respectively, where ν̂ = (N̂ , â) and ν̂ = (b̂, k̂)

are the maximum likelihood estimates with (τi, ni), i = 1, 2, . . . l. The larger

PLL means the better SRM in teams of prediction.

In the comparison based on PMSE and PLL, it is found that J&M-SRM

over-estimated the future trend of the cumulative number of software faults,

but M/G&S-SRM could make the better prediction of the unknown patterns in

the future. In Tables 2.2, 2.3 and 2.4, we compare J&M-SRM with M/G&S-

SRM in terms of PMSE and PLL. In the early testing phase at 20% observation
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point, M/G&S-SRM could outperform in 6 out of 8 data sets, but J&M-SRM

could make the better prediction in only GDS2 and GDS5 from the viewpoints

of PMSE and PLL. In the middle testing phase with 50% observation point,

M/G&S-SRM gave the smaller PMSE (larger PLL) in 6 (7) data sets except in

GDS5 and GDS8 (GDS5). In the later testing phase at 80% observation point,

M/G&S-SRM provided the smaller PMSE and larger PLL in 5 data sets except

in GDS2, GDS5, and GDS8. The lesson learned from the experiment suggests

that geometric de-eutrophication SRM (M/G&S-SRM) could outperform the

J&M-SRM in terms of predictive performances in many cases.
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Figure 2.3: Behavior of the cumulative number of software faults detected in
GDS1 (20% observation point).

2.4.3 Software Reliability Assessment

Finally, we concern to quantify the software reliability. Let R(x) denote the

software reliability, which is the probability that the software is fault-free in the

time interval (t, t+ x], where x (> 0) is an operational time interval after the

release (prediction length);

R(x) = Pr{N (t+ x)−N (t) = 0|N(t) = n}. (2.27)
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Figure 2.4: Behavior of the cumulative number of software faults detected in
GDS1 (50% observation point).
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Table 2.2: Comparison of PMSE/PLL with de-eutrophication SRMs (20% ob-
servation point).

J&M-SRM M/G&S-SRM

PMSE PLL PMSE PLL

GDS1 296.612 -31.845 62.819 -24.181

GDS2 32.027 -16.354 57.589 -27.863

GDS3 1263.475 -124.200 227.240 -4.978

GDS4 5.268 -12.553 0.459 -8.937

GDS5 414.531 -96.417 802.693 -138.406

GDS6 513.294 -113.024 450.582 -70.066

GDS7 1139.899 -106.504 1005.682 -105.597

GDS8 184.676 -77.006 160.628 -48.841

Table 2.3: Comparison of PMSE/PLL with de-eutrophication SRMs (50% ob-
servation point).

J&M-SRM M/G&S-SRM

PMSE PLL PMSE PLL

GDS1 90.149 -22.282 36.942 -16.548

GDS2 58.912 -199.399 9.389 -14.171

GDS3 1000.483 -18.869 236.564 -13.891

GDS4 1.141 -6.300 0.419 -6.123

GDS5 400.128 -85.149 967.386 -131.751

GDS6 80.156 -34.379 64.218 -33.706

GDS7 331.748 -33.7145 22.942 -21.911

GDS8 50.536 -46.7612 146.080 -33.137
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Table 2.4: Comparison of PMSE/PLL with de-eutrophication SRMs (80% ob-
servation point).

J&M-SRM M/G&S-SRM

PMSE PLL PMSE PLL

GDS1 37.717 -8.368 5.991 -7.115

GDS2 3.116 -4.370 18.614 -6.123

GDS3 570.037 -10.308 68.933 -6.123

GDS4 2.347 -3.573 1.117 -2.971

GDS5 6.167 -7.348 64.781 -11.292

GDS6 41.702 -12.387 8.373 -9.806

GDS7 30.209 -10.065 19.773 -6.955

GDS8 12.904 -12.538 33.019 -12.648

For the release time tl, since the time intervals between l-th and (l + 1)-st

fault-detection time is exponentially distributed with parameters b̂(N̂ − 1) for

J&M-SRM and b̂k̂l for M/G&S-SRM, the software reliability functions for the

respective de-eutrophication SRMs are given by

R(x) = exp(−b̂(N̂ − l + 1)x), (2.28)

R(x) = exp(−b̂k̂lx). (2.29)

In our experiment, we set the prediction length x as the exact same testing

time measured by calendar time in each group data. Table 2.5 presents the

quantitative software reliability with the group data sets, where we denote the

larger software reliability value with the bold font. It is seen that J&M-SRM

provided the larger software reliability values in 6 data sets. In other words, the

well-known J&M-SRM tends to give the more optimistic decision in software

reliability evaluation. If we can suppose that all the projects succeeded and no

software faults were reported after the release, J&M-SRM seems to be more

reliable than M/G&S-SRM in software release decisions. However, it is worth

mentioning that the resulting software reliability values are all small. This

implies that all the software products should continue being tested further.

So, we can conclude that in this chapter, we have performed the group

data analysis for a de-eutrophication SRM based on a pure birth process and
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Table 2.5: Comparison of software reliability.

J&M-SRM M/G&S-SRM

GDS1 1.576E-17 2.516E-20

GDS2 1.553E-06 5.112E-09

GDS3 1.272E-15 1.037E-14

GDS4 2.756E-03 2.275E-03

GDS5 1.655E-10 8.191E-12

GDS6 6.693E-23 3.401E-22

GDS7 5.059E-17 8.919E-21

GDS8 9.621E-33 3.345E-36

compared it with the well-known J&M-SRM in terms of goodness-of-fit and pre-

dictive performances. As we have already emphasized, the group data analysis

for a de-eutrophication SRM had been left in the software reliability research for

a long time. In numerical examples with 8 actual software development project

data sets, we have shown that the geometric de-eutrophication SRM was much

more attractive to make the software reliability prediction, although the seminal

J&M-SRM based on the linear death process has been used more frequently.



Chapter 3

Extension of NHPP-based
SRMs

Among the existing SRMs, the NHPP-based SRMs are recognized as an essential

class because of their mathematical tractability and high applicability, and have

been widely used to describe the behavior of the cumulative number of software

faults. Almost all representative existing NHPP-based SRMs are developed based

on the finite-failure assumption and are characterized by a mean value function

that is proportional to the cumulative distribution function (c.d.f.) of the soft-

ware fault-detection time. But, only a few NHPP-based SRMs have also been

proposed under the infinite-failure assumption. It is worth noting that the c.d.f.s

are the representative lifetime distribution functions to model the time to failure

in reliability engineering. On one hand, up to the present stage, we have known

that no unique SRM, which could fit every software fault count data, was found

yet, and that the best SRM strongly depended on the kind of software fault count

data. Hence, in this chapter, we have two research questions; ”Are there some

novel time distribution families that are more applicable to describe software

fault detection times?” and “Are infinite-failure NHPP-based SRMs really use-

ful?”. More specifically, we developed 11 infinite-failure (type-II) NHPP-based

SRMs by introducing some representative software fault-detection time distri-

butions (e.g., generalized exponential distributions family, extreme-value distri-

bution family) into the infinite-failure assumption. On the other hand, we in-

troduce the Burr-type and Lindley-type distributions into NHPP-based software

reliability modeling, and develop several finite-failure (type-I) and infinite-failure

27
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(type-II) NHPP-based SRMs. We compare our proposed SRMs with the existing

NHPP-based SRMs in terms of goodness-of-fit and predictive performances.

3.1 NHPP-based Software Reliability Modeling

As we know, most textbooks [1, 2, 3] have pointed out that when the mean value

function was used to characterize the cumulative number of software failures

by time t, there were two types of NHPP-based SRMs; finite-failure (type-I)

NHPP-based SRMs and infinite-failure (type-II) NHPP-based SRMs.

3.1.1 Existing Type-I NHPP-based SRMs

In the software reliability modeling framework under the type-I NHPP assump-

tion, before the testing, the remaining number of software faults is assumed

to obey a Poisson distribution with a positive mean ω. Each software fault is

assumed to be detected at independent and identically distributed (i. i. d.) ran-

dom time, and is fixed immediately just after it is detected. For any t ∈ (0,+∞),

F (t;α), a non-decreasing function, is applied to describe the time distribution

of each fault detection during the software testing phase, which is also known

as the c.d.f. In the expression, α indicates the free parameter vector in the

c.d.f. Then, a binomial distributed random variable with probability F (t;α)

with a Poisson distributed population with parameter ω is employed to char-

acterize the resultant software fault-detection process. From a simple algebraic

manipulation, the mean value function of NHPP can be derived as

M(t;θ) = ωF (t;α), (3.1)

which can also be recognized as the cumulative number of faults detected by the

software testing at time point t with θ = (ω,α) and limt→∞ M(t;θ) = ω (> 0).

This property is consistent with the assumption of software reliability modeling

for type-I NHPP in which the number of initial remaining faults before the soft-

ware testing is finite. The best-known type-I NHPP-based SRM was proposed

by Goel and Okumoto [10], where they assumed the exponential distribution as

the fault-detection time distribution in the software testing. The mean value

function there is in proportion to the cumulative distribution function (c.d.f.) of

the exponential distribution. After that, by postulating the other fault-detection
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time distributions, several type-I NHPP-based SRMs have been proposed in the

literature, such as, the truncated-normal NHPP-based SRM [17], the log-normal

NHPP-based SRM [8, 17], the truncated-logistic NHPP-based SRM [15], the log-

logistic NHPP-based SRM [13], the extreme-value NHPP-based SRMs [12, 16],

the gamma NHPP-based SRM [19, 20], and the Pareto NHPP-based SRM [7].

In Table 3.1, we summarize 11 existing type-I NHPP-based SRMs with their as-

sociated c.d.f.s and bounded mean value functions, which were employed in the

software reliability assessment tool on the spreadsheet (SRATS) by Okamura

and Dohi [43].

Even though the type-I NHPP-based SRMs are recognized as plausible mod-

els in terms of software reliability growth phenomena, it has to be acknowledged

that reliability engineers sometimes feel discomfort when handling the type-

I NHPPs, since the inter-failure time distributions in the type-I NHPP-based

SRMs are defective [44]. Let us suppose that the random variables T1, T2, ..., Tn

represent the first, second, ..., n-th failure times that occurred since the software

testing starts at T0 = 0. Let the random variables, X1, X2, ..., Xn, denote the

inter-failure times between two consecutive failures;

Tn =

n∑
j=1

Xj = Tn−1 +Xn, n = 0, 1, 2, .... (3.2)

From Equations (1.11) and (3.2), the c.d.f. of Tn can be obtained as

Gn(t;θ) = P{Tn ≤ t (the n-th failure occurs up to t)}

= P{Nt ≥ n (at least n failures occur before time t)}

=

∫ t

0

λ(x;θ) [M(x;θ)]
n−1

(n− 1)!
exp (−M(x;θ))dx

=

∞∑
j=n

[M(t;θ)]
j

j!
exp (−M(t;θ))

= 1−
n−1∑
j=0

[M(t;θ)]
j

j!
exp (−M(t;θ)). (3.3)

Then, it is straightforward to see in the type-I NHPP-based SRMs that

limt→∞ Gn(t;θ) < 1 for an arbitrary n. In other words, even if the testing

time tends to be infinite, there still exists a positive probability of the n-th fail-

ure not occurring. It is obvious that the c.d.f. of Tn is defective. Similarly, for

realizations of Ti (i = 1, 2, ..., n), t1, t2, ..., tn, we can obtain the c.d.f. of the
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inter-failure time Xn in the time interval (tn−1, tn−1 + x) as follows.

Fn(x;θ) = 1− Pr{N(tn−1 + x)−N(tn−1) = 0 | N(tn−1) = n− 1}

= 1− exp (− (M(tn−1 + x;θ)−M(tn−1;θ))), (3.4)

where Pr{N(tn−1 + x) − N(tn−1) = 0 | N(tn−1) = n − 1} denotes the proba-

bility that no failure occurs in time interval (tn−1, tn−1 + x). Since the mean

value function is bounded, i.e., limt→∞ M(t;θ) = ω, when x is infinite , Equa-

tion (3.4) can be reduced to 1 − e−(ω−M(tn−1;θ)) < 1. It means that regardless

of the number of previous failures, the probability that the software fails over

an infinite time horizon is always non-zero. Hence, the inter-failure time c.d.f.

of type-I NHPP is also defective. For the type-I NHPP-based SRMs, it is not

meaningful to discuss some reliability metrics like mean time between failures

(MTBF), because the finite moments of Tn and Xn always diverge.
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3.1.2 Type-II NHPP-based SRMs with Representative
Software Fault-detection Time Distributions

Type-II NHPP assume that a new software fault was not inserted at each

software debugging. However, this assumption may be somewhat specific, be-

cause the so-called imperfect debugging may occur in the actual software testing

phases. When the possibility of imperfect debugging is considered, the assump-

tion of finiteness in the type-I NHPP-based SRMs seems to be rather strong.

Similar to the classical preventive maintenance modeling [45], if each software

failure is minimally repaired through the debugging, the mean value function of

the software fault-detection process is unbounded and is given by

M(t;α) = − ln(1− F (t;α)), (3.5)

where limt→∞ M(t;α)→∞. It is obvious that the c.d.f.s, Gn(t;θ) and Fn(x;θ)

in Equations (3.3) and (3.4) are not defective, say, limt→∞ Gn(t;θ) = 1 and

limx→∞ FXi(x;θ) = 1. Hence, it becomes significant to consider important

metrics such as MTBF. In this modeling framework, investigating the residual

number of software faults before testing has no significant meaning, because it

may increase by imperfect debugging through the software testing.

As far as we know, the Cox-Lewis process [46] is one of the earliest type-

II NHPPs. The unbounded mean value function of this model is given by

M(t;α) = (exp (µ1+µ2t)−exp (µ1))
c with the extreme-value distribution F (t;α) =

1 − exp (exp (µ1 + µ2t)− exp (µ1)) /µ2. This distribution is also referred to

as truncated extreme-value minimum distribution in [43]. Another well-

known type-II NHPP-based SRM is referred to as a power-law process model

[11, 47, 48], where mean value function and c.d.f. are given by M(t;α) =

(µ2/µ1) t(1/µ1) and F (t;α) = 1 − exp
(
− exp

(
−µ2+ln(t)

µ1

))
, respectively. The

latter is also recognized as the log-extreme-value minimum distribution in [43].

Besides the above two representative NHPPs, the well-known logarithmic Pois-

son execution time SRM [2, 14] belongs to the type-II category, too. The mean

value function of this model is given by M(t;α) = µ2 ln ((1 + t)/µ1) with the

Pareto distribution F (t;α) = 1− (µ1/(t+ µ1))
µ2 in [43].
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Table 3.2: Type-II NHPP-based SRMs.

SRMs & Time Distributions F (t;α) & M(t;α)

Exp (HPP)

(Exponential distribution)

F (t;α) = 1− exp (−µ1t)

M(t;α) = µ1t

Gamma

(Gamma distribution)

F (t;α) =
∫ t

0

µ
µ1
2 sµ1−1 exp (−µ2s)

Γ(µ1)
ds

M(t;α) = ln(Γ(µ1))− ln
(
Γ
(
µ1,

t
µ2

))
Pareto (Musa-Okumoto) [2],[14]

(Pareto distribution)

F (t;α) = 1− ( µ1

t+µ1
)µ2

M(t;α) = −µ1(ln(µ2)− ln(µ2 + t))

Tnorm

(Truncated normal distribution)

F (t;α) = 1√
2πµ1

∫ t

−∞ exp
(
− (s−µ2)

2

2µ2
1

)
ds

M(t;α) = ln
(
erf
(

µ2√
2µ1

)
+ 1
)
− ln

(
erf
(

µ2−t√
2µ1

)
+ 1
)

Lnorm

(Log-normal distribution)

F (t;α) = 1√
2πµ1

∫ t

−∞ exp
(
− (s−µ2)

2

2µ2
1

)
ds

M(t;α) = ln(2)− ln
(
erf
(

µ2−ln(t)√
2µ1

)
+ 1
)

Tlogist

(Truncated logistic distribution)

F (t;α) = 1−exp (−µ1t)
1+µ2 exp (−µ2t)

M(t;α) = ln (exp (µ2/µ1) + exp (t/µ1))− ln (exp (µ2/µ1) + 1)

Llogist

(Log-logistic distribution)

F (t;α) = 1−exp (−µ1t)
1+µ2 exp (−µ2t)

M(t;α) = ln
(
exp (µ2/µ1) + t1/µ1

)
− µ2

µ1

Txvmax

(Truncated extreme-value max distribution)

F (t;α) = exp
(
− exp

(
− t−µ2

µ1

))
M(t;α) = ln (1− exp (− exp (µ2/µ1)))− ln

(
1− exp

(
− exp

(
µ2−t
µ1

)))
Lxvmax

(Log-extreme-value max distribution)

F (t;α) = exp
(
− exp

(
− t−µ2

µ1

))
M(t;α) = − ln

(
1− exp

(
− exp

(
µ2−ln(t)

µ1

)))
Txvmin (Cox-Lewis) [46]

(Truncated extreme-value min distribution)

F (t;α) = exp
(
− exp

(
− t−µ2

µ1

))
M(t;α) = − ln (exp (− exp (µ2/µ1) (exp (t/µ1)− 1)))

Power-law [11],[47],[48]

(Log-extreme-value min distribution)

F (t;α) = exp
(
− exp

(
− t−µ2

µ1

))
M(t;α) = µ2/µ1 t(1/µ1)

3.1.3 Parameter Estimation

Suppose that the total number of faults observed in the testing phase is m by

the time observation point tm, where the time sequence consisting of the time

points at which each fault is detected is given by D = {t1, t2, . . . , tm}. This kind

of time series is called software fault-count time-domain data. Generally, CPU

time is used to measure the time-domain data in software testing. Then, from

Equation (1.14), for a time-domain data set D = {t1, t2, . . . , tm}, the likelihood

function of NHPP is as follows.

L(θ or α;D) = exp(−M(tm;θ or α))

m∏
i=1

λ(ti;θ or α). (3.6)



34

Taking logarithm of both sides in Equation (3.6), the log-likelihood function is

obtained as

lnL(θ or α;D) =

m∑
i=1

lnλ(ti;θ or α)−M(tm;θ or α). (3.7)

The ML estimate, θ̂ or α̂, is given by argmaxθlnL(θ; I) or argmaxαlnL(α; I).

On the other hand, when the group data I = {(ti, ni), i = 1, 2, . . . ,m}

is available, from Equation (1.19), the likelihood function and log likelihood

function of NHPP are given by

L(θ or α; I) = exp−[M(ti;θ or α)−M(ti−1;θ or α)]
m∏
i=1

[
[M(ti;θ or α)−M(ti−1;θ or α)]ni−ni−1

(ni − ni−1)!

]
, (3.8)

and

lnL(θ or α; I) =
m∑
i=1

(ni − ni−1) ln{M(ti;θ or α)−M(ti−1;θ or α)} −
m∑
i=1

ln{(ni − ni−1)!}

−M(tm;θ or α), (3.9)

respectively. The ML estimate, θ̂ or α̂, is given by argmaxθlnL(θ; I) or

argmaxαlnL(α; I).

3.1.4 Numerical Experients

In our numerical experiments, we select the well-known benchmark software

fault count data sets in software reliability engineering, that are observed in

mission-critical systems. Although the evolution of these systems may be

slower than that of business-oriented systems, effects of failure are much greater.

Hence, reliability is particularly important for the developers of these mission-

critical systems. In our numerical experiments, we analyzed a total of eight

time-domain data sets (DS1 ∼ DS8 in Table 2.1 (i)), labeled TDDS1∼TDDS8,

and eight group data sets (DS15∼DS21 in Table 2.1 (ii)), called TIDS1∼TIDS8.

3.1.4.1 Goodness-of-fit Performances

Suppose that the parameters of SRMs have been estimated by the maximum

likelihood estimation. In the first experiment, we employ two criteria for eval-

uating the goodness-of-fit performance of 11 type-I and type-II NHPP-based
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SRMs; AIC and MSE. For time-domain data and group data, the MSE is given

by

MSE(θ̂ or α̂;D) =

∑m
i=1(i−M(ti; θ̂ or α̂))2

m
(3.10)

and

MSE(θ̂ or α̂; I) =

∑m
i=1(ni −M(ti; θ̂ or α̂))2

m
, (3.11)

respectively. The AIC with ML estimates generally represents an approximation

of the Kullback–Leibler divergence between our proposed SRM and the empirical

stochastic process behind the fault count data, while the direct application of

MSE exhibits a vertical distance between the estimated mean value function

and the fault count data. The smaller the AIC/MSE indicates that the SRM

has the better goodness-of-fit performance (the better the fit to the underlying

data).
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Figure 3.1: Behavior of mean value functions in TDDS1.

Figures 3.1 and 3.2 plot the behavior of the mean value functions of type-

I and type-I SRMs in the time-domain data, with TDDS1 and TIDS6. The

red curve and the orange curve are plotted as the best SRMs selected from

11 type-II SRMs and 11 type-I SRMs based on their AICs, respectively. Not

surprisingly, the two modeling frameworks show slightly different growth trends.

More specifically, the type-I (orange curve) always fits better with the actual

data in the tail segment, for both the time-domain and group data. However,
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Figure 3.2: Behavior of mean value functions in TIDS6.

we still cannot make a comprehensive assessment of which SRM can exhibit a

better fitting ability over the whole data set. This is the reason why we need to

think about AIC as well as MSE as the goodness-of-fit criteria. In Table 3.3, we

make a more precise comparison between our proposed type-II and the existing

type-I on AIC and MSE. Without the comparison from each other, we can find

that in the vast majority of cases, the best models in the type-I SRMs are given

by the extreme-value distributions. On the contrary, the type-II Pareto (Musa-

Okumoto) SRM performs better than the other SRMs. In the next step, by

comparing the best type-I and the best type-II SRMs for each data set, it is not

difficult to find that in 3 cases (TDDS1, TDDS2 and TDDS5), the type-II SRMs

could provide the smaller AIC than the type-I SRMs. However, in all the data

sets, the type-I SRMs could provide the smaller MSE than our type-II SRMs. In

Table 3.4, we compared the best SRMs of our type-II NHPP with the existing

type-I NHPP-based SRMs in 8 group data sets. It can be seen that our type-

II SRMs could guarantee the smaller AIC than the existing type-I in 3 cases

(TIDS2, TIDS5 and TIDS6), but at the same time, it still cannot outperform

the type-I from the viewpoint of MSE for any group data set. We can therefore

draw the conclusion that the type-II NHPP-based SRMs could not consistently

outperform the existing type-I NHPP-based SRMs in terms of goodness-of-fit

performance, but in some cases, especially in the time-domain data, the three
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Table 3.3: Goodness-of-fit results in time-domain data.

Type-I Type-II

Best SRM AIC MSE Best SRM AIC MSE

TDDS1 Lxvmax 896.666 1.950 Pareto (Musa-Okumoto) 895.305 2.315

TDDS2 Lxvmax 598.131 1.705 Pareto (Musa-Okumoto) 596.501 1.809

TDDS3 Lxvmin 1938.160 6.570 Pareto (Musa-Okumoto) 1939.600 8.052

TDDS4 Txvmin 759.579 3.747 Txvmin (Cox-Lewis) 759.948 5.509

TDDS5 Exp 757.869 18.985 Power-law 757.031 19.315

TDDS6 Lxvmax 721.928 1.442 Txvmin (Cox-Lewis) 726.052 2.803

TDDS7 Lxvmax 1008.220 5.970 Pareto (Musa-Okumoto) 1007.100 7.039

TDDS8 Pareto 2504.170 47.404 Pareto (Musa-Okumoto) 2503.370 63.699

existing type-II NHPP-based SRMs; Musa-Okumote, Cox-Lewis, and power-law

SRMs, could indicate the better experimental results.

Table 3.4: Goodness-of-fit results in group data.

Type-I Type-II

Best SRM AIC MSE Best SRM AIC MSE

TIDS1 Llogist 73.053 4.115 Tlogist 85.339 48.269

TIDS2 Lxvmax 61.694 3.239 Llogist 60.674 3.557

TIDS3 Tnorm 87.267 6.151 Txvmin (Cox-Lewis) 91.919 31.232

TIDS4 Tlogist 51.052 1.968 Txvmin (Cox-Lewis) 63.556 27.199

TIDS5 Exp 29.911 0.118 Exp 27.953 0.186

TIDS6 Lxvmax 108.831 22.514 Llogist 107.211 24.394

TIDS7 Txvmin 123.265 2.122 Tlogist 138.029 24.847

TIDS8 Llogist 117.470 9.408 Llogist 148.438 45.178

3.1.4.2 Predictive Performances

Notably, according to previous studies, it turns out that SRMs with better

goodness-of-fit do not necessarily provide excellent predictive performance. In

other words, investigating the predictive performance of the type-I and type-II

NHPP-based SRMs is of significant importance. Hence, in our second experi-

ment, we employ the PMSE to measure the predictive performance of our type-II
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SRMs, where

PMSE(θ̂ or α̂;D) =

∑m+l
i=m+1{i−M(ti; θ̂ or α̂)}2

l
, (3.12)

and

PMSE(θ̂ or α̂; I) =

∑m+l
i=m+1{ni −M(ti; θ̂ or α̂)}2

l
, (3.13)

for the time-domain and group data respectively. Support thatm or nm software

faults have been observed in (0, tm], and the prediction length is given by

l (= 1, 2, · · · ). θ̂ and α̂ are the ML estimates at observation time tm for the type-

I and type-II NHPP-based SRMs, respectively. Similar to MSE, PMSE is also a

metric that evaluates the mean squared distance between the predicted number

of detected faults and its (unknown) realization for each prediction length. For a

comprehensive investigation of the predictive performance of SRMs at different

software testing phases, three observation points were set at 20%, 50% and 80%

of the total length of each data set, to represent the early, middle and late phases

of software testing and to predict the total number of software faults at the

remaining 80%, 50% and 20% of the length of time periods. Then, we calculate

the PMSE for the type-I and type-II NHPP-based SRMs. It is immediate to

see that the larger the observation point, the shorter the prediction length.
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Figure 3.3: Behavior of fault prediction in TDDS1 (20% observation point).

In Figure 3.3 to Figure 3.5, we plot the predictive behavior of the best existing

type-I and the best type-II NHPP-based SRMs in time-domain data, TDDS1 at
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Figure 3.4: Behavior of fault prediction in TDDS1 (50% observation point).

three different observation points. The red curve in each figure represents our

best type-II NHPP, while the orange curve denotes the best type-I NHPP. All

the best SRMs were taken from the type-I NHPP-based SRMs and the type-

II NHPP-based SRMs with their smaller PMSEs in TDDS1. It can be seen

that both type-I and type-II tend to give almost the same number of predicted

software faults in the early and late testing phases. However, after the mid-

term of testing, the type-I NHPP-based SRM tended to make more optimistic

software fault predictions. In Figure 3.6 to Figure 3.8, we also plot the predictive

behavior of the best existing type-I and the best type-II NHPP-based SRMs

in group data, TIDS6. It can be seen that the type-I still tended to miss-

predict the number of software faults in the early and middle testing phases.

More specifically, in Figure 3.6 and Figure 3.7, while the type-II NHPP-based

SRMs could show an increasing trend, the opposite is true for the type-I, whose

predictive trend for future phases becomes very flat. However, in Figure 3.8,

both the type-I and type-II show more similar predictive trends. In general,

prediction of unknown trend changes over longer periods of time in the future

is essentially difficult for either the type-I NHPP nor the type-II NHPP. In

contrast, the prediction of trend changes over a short period of time is relatively

easy, but absolute accuracy cannot be guaranteed.

In Table 3.5, we present the PMSEs of the best type-I SRM compared to
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Figure 3.5: Behavior of fault prediction in TDDS1 (80% observation point).

the best type-II SRM in each set of time-domain data. We compare the PM-

SEs in 11 type-I SRMs and 11 type-II SRMs by selecting the models with their

smaller PMSEs as the best SRMs at each observation point. It can be seen

that, at 20% observation point, our type-II SRMs could provide the less PMSEs

than the existing type-I in 3 cases (TDDS5, TDDS6, and TDDS8). During the

middle testing phase (at 50% observation point), we observed that our type-II

SRMs outperformed the type-I SRMs in 4 data sets (TDDS3, TDDS7, TDDS5

and TDDS8). As the test proceeded to the late phases (at 80% observation

point), the type-II SRMs were able to guarantee the smaller PMSE in TDDS1,

TDDS7, and TDDS8. On the other hand, it is found that the best type-II

SRMs with better predictive performance than the type-I were the logistic dis-

tribution, Musa-Okumoto SRM, and power-law SRM. By comparing PMSE in

time-domain data, we believe that the type-II SRMs could become a good al-

ternative to the type-I SRMs. In Table 3.6, when the testing phase is early (at

20% observation point), it can be immediately noticed that our type-II SRMs

showed the smaller PMSE than the type-I SRMs in 7 out of 8 group data sets

(except in TIDS2). In addition to logistic-based SRM, Musa-Okumoto SRM

and power-law SRM, which were proven to perform better in Table 3.5, we

observed that Cox-Lewis SRM is also appropriate in some cases of group data

(TIDS7 and TIDS8) in terms of predictive performance. At 50% observation
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Figure 3.6: Behavior of fault prediction in TIDS6 (20% observation point).

point, we found that the type-II SRMs could guarantee the better predictive

performance than the type-I SRMs in 3 cases (TIDS2, TIDS4 and TIDS6). For

the late testing phase (at 80% observation point), in only TIDS2, our Tlogist

type-II SRMs gave the smallest PMSE in the future prediction phase. In the

group data, the predictive performance of the type-II SRMs decreases as the

software testing proceeds. Hence, it is possible to summarize that the type-II

NHPP-based SRMs outperformed the existing type-I NHPP-based SRMs for

software fault detection prediction in the early testing phase when the group

data were available.

3.1.4.3 Software Reliability Assessment

Our final research question for NHPP-based type-II SRMs is how to utilize

them to quantitatively assess the software reliability. In general, in the NHPP

software reliability modeling, the reliability of software at a given time point tr

can be calculated by R(tr;θ or α), that is, the probability that the software

will be failure-free during time interval (tm, tr], which can be written as

R(tr;θ or α) = Pr[N(tr)−N(tm) = 0]

= exp (− [M(t+ x;θ or α)−M(t;θ or α)]). (3.14)

tr is defined as the observation point after a certain time of software release,

and tm is the total time for software testing. m is the total number of detected
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Figure 3.7: Behavior of fault prediction in TIDS6 (50% observation point).

faults before the time point tm. In this numerical experiment, we assume that

tr = tm. The software reliability in each software development project was

predicted quantitatively by importing the mean value functions of type-I NHPP

and type-II NHPP into Equation 3.14.

In Table 3.7 and Table 3.8, we compare the quantitative software reliability

of the best type-I SRMs and the best type-II SRMs in the time-domain data

and group data. We select the type-I SRM and the type-II SRM with their

smaller AIC in respective time domain and group data sets as the best SRMs.

We can see that in almost all data sets (except in TDDS1 and TIDS6), the type-

I SRMs tend to give the higher software reliability than our type-II SRMs. In

other words, during the time period (tm, tr], the probability of software failure

predicted by the type-II NHPP is much higher than that by the type-I NHPP.

This observation indicates that our type-II SRMs tend to make more conser-

vative decisions than the type-I SRMs in software reliability assessment. It is

important to note that optimistic reliability estimates are often undesirable.

This is because software faults are additionally detected as the ex-post results

after each observation point in all the data sets.

Finally, we can conclude in this chapter that, under the infinite-failure as-

sumption, in addition to the well-known Musa-Okumoto model, Cox-Lewis

model and power-law model, we proposed alternative 8 type-II NHPP-based
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Figure 3.8: Behavior of fault prediction in TIDS6 (80% observation point).

SRMs with 8 different software fault detection time c.d.f.s. By analyzing 8

software fault count time-domain data and 8 software fault count time-interval

data (group data), we have investigated the goodness-of-fit performance and

predictive performance of our SRMs. We have also compared these SRMs with

11 existing type-I NHPP-based SRMs under the finite-failure assumption. The

important point to note is that the type-I and type-II NHPP-based SRMs con-

sidered in this chapter have the almost similar software fault detection c.d.f.s.

This observation has never been addressed in the past literature.

The experimental results have confirmed that our type-II NHPP-based SRMs

could show the better goodness-of-fit performance in some cases. On the other

hand, for the group data, the type-II NHPP-based SRMs have exhibited rather

better predictive ability than the existing type-I NHPP-based SRMs in the early

testing phase. But as the software testing progresses, it has been known that the

advantages of type-II NHPP in terms of predictive performance were diminished.

Hence, we can conclude that the type-II NHPP-based SRMs cab be considered

as the good complements to the type-I NHPP-based SRMs for describing the

fault-detection process of software systems. At the same time, they have a

greater potential in the early software testing phase. On the other hand, we

have also confirmed that the type-II NHPP tended to make more conservative

predictions than the type-I NHPP in software reliability assessment.
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3.2 Lindley-type NHPP-based Software Relia-
bility Modeling

3.2.1 Lindley-type Distribution

Under Fiducial and Bayesian statistics, a meaningful one-parameter continuous

probability distribution called the Lindley distribution was proposed by Den-

nis Victor Lindley [50]. Recently, the Lindley-type distributions have attracted

extensive attention. In order to replace the common exponential distribution,

Lindley-type distributions have been applied to the life data analysis of several

products [51]. Subsequently, several authors extended basic Lindley distribution

in a variety of ways. Mazucheli and Achcar [52] assumed the Lindley distribu-

tion to analyze competing risks lifetime data. The power Lindley distribution

was proposed by Ghitany et al. [53] and applied to the analysis of tensile data

in carbon fibers. When the relevant two random variables obey the Lindley dis-

tribution, Al-Mutairi et al. [54] considered an estimation of the stress-strength

parameters.

Nadarajah et al. [55] studied the exponentiated Lindley distribution, where

the gamma, log normal and Weibull distributions are used to compare with

the original Lindley distribution in term of lifetime data analysis. After that,

Ashour and Eltehiwy [56] developed the exponentiated power Lindley distribu-

tion which can be regarded as the combination of the power Lindley distribution

[53] and the exponentiated Lindley distribution [55]. The gamma Lindley dis-

tribution was further studied by Nedjar and Zeghdoudi [57], by applied to the

failure time data of electronic components and the number of cycles to failure

for specimens of yarn. In order to analyze the failure time of electronic devices

and the failure stresses of carbon fibers, Ghitany et al. [58] and Mazucheli et

al. [59] also proposed the weighted Lindley distribution. Recently, the Gom-

pertz Lindley distribution was carefully examined by Baqer [60], and several

candidate distributions were compared with it. We name these probability dis-

tributions developed from basic Lindley the Lindley-type distributions. Over the

recent years, Xiao et al. [49] utilized seven Lindley-type distributions in type-I

NHPP-based software reliability modeling and investigated the goodness-of-fit

and predictive performances in several fault count time-interval data which were
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collected in the actual software development projects.

The original Lindley distribution is defined by the c.d.f:

F (t) = 1−
(
1 +

at

a+ 1

)
exp(−at), t > 0, a > 0. (3.15)

It is consists of an exponential distribution with scale a and a gamma distribu-

tion having shape parameter 2 and scale parameter a with the mixing proportion

a/(a + 1) [50]. Hence, as a two-component mixture, the corresponding proba-

bility density function (p.d.f.), f(t) = dF (t)/dt, when a < 1, is shown as

f(t) =
a2

a+ 1
(1 + t) exp(−at) (3.16)

with f(0) = a2/(a + 1) and f(∞) = 0. This also shows that the p.d.f. of

Lindley distribution increases in t or unimodal in t. Figure 3.9 depicts the p.d.f.

of the Lindley distribution for different scale a values. Since the c.d.f. and p.d.f

are given, it is easy to confirm that an increasing failure rate (IFR) of Lindley

distribution is shown, where thefailure rate is given by

Figure 3.9: The probability density function of Lindley distribution.

h(t) =
f(t)

1− F (t)
=

a2(1 + t)

a+ 1 + at
, (3.17)

with h(0) = a2/(a+ 1) and h(∞) = a.

Next, to represent the fault-detection time distribution, we focus on several

variations of the Lindley distribution. Set a (> 0), b (> 0) and c (> 0) as
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three arbitrary parameters. Then, a total of six extensions of Lindley-type

distributions are presented as follows.

(i) Gamma-Lindley Distribution [57] is a generalized Lindley distribution which

is composed of the common Lindley distribution and a mixture of Gamma (2, a):

F (t) = 1− {(ab+ b− a)(at+ 1) + a} exp(−at)
b(1 + a)

. (3.18)

The p.d.f. of Gamma-Lindley Distribution is given by

f(t) =
a2{(ab+ b− a)t+ 1} exp(−at)

b(1 + a)
. (3.19)

(ii) Exponentiated Lindley Distribution [55] is considered as the closed form of

the hazard rate with the Weibull and exponentiated exponential distributions.

The c.d.f. and p.d.f. are given as:

F (t) =
{
1− 1 + a+ at

1 + a
exp(−at)

}c

, (3.20)

f(t) =
ca2

1 + a
(1 + t)

{
1− 1 + a+ at

1 + a
exp(−at)

}c−1

e−at. (3.21)

It is obvious that Equation (3.21) has two parameters, a and c, shown as a

mixture of Weibull, exponentiated exponential and gamma distributions. Ex-

ponentiated Lindley distribution is reduced to the common Lindley distribution

when c = 1.

(iii) Power Lindley Distribution [53] was considered as a power transformation

t = x
1
b to Equation (3.16) where the c.d.f. and p.d.f. are given as:

F (x) = 1−
(
1 +

axb

1 + a

)
exp(−axb), (3.22)

f(x) =
ba2

1 + xb
xb−1 exp(−axb). (3.23)

It is shown as a mixture of generalized gamma distribution with shape param-

eters 2 and Weibull distribution with scale parameter a and shape parameter

b.

(iv) Exponentiated Power Lindley Distribution [56] is defined as a three-

component mixture. it involves the common Lindley distribution, Exponen-

tiated Lindley distribution and Power Lindley distribution. This distribution is
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considered as more flexible than each component in describing different types

of actual data.

F (t) = 1−
{
1−

(
1 +

atb

1 + a

)
exp(−atb)

}c

. (3.24)

f(t) =
ca2btb−1

a+ 1
(1 + tb)e−atb

[
1−

(
1 +

atb

a+ 1

)
e−atb

]c−1

. (3.25)

(v) Gompertz Lindley Distribution [60]:

F (t) = 1−
( a2

1 + a

) a+ exp(bt)

(a− 1 + exp(bt))2
. (3.26)

(vi) Weighted Lindley Distribution [58],[59]:

F (t) = 1− (a+ b)Γ2(b, at) + (at)b exp(−at)
(a+ b)Γ1(b)

, (3.27)

f(t) =
ab+1tb−1(1 + t) exp(−at)

(a+ b)Γ1(b)
, (3.28)

where Γ1(a) =
∫∞
0

xa−1e−xdx and Γ2(a, b) =
∫∞
b

xa−1e−xdx. Note that when

b = 1, the weighted Lindley distribution reduces to the Lindley distribution.

3.2.2 Type-I and Type-II Lindley-type NHPP-based
SRMs

In the previous subsection, we have shown that it was possible to obtain

two quite different NHPP-based SRMs; type-I NHPP-based SRM and type-II

NHPP-based SRM, by importing any software fault-detection time distribution

into the type-I and type-II NHPP-based software reliability modeling assump-

tions. Hence, we can obtain the corresponding type-I and type-II Lindley-type

NHPP-based SRMs, by considering seven Lindley-type time distributions c.d.f.s

shown in Equations (3.15), (3.18), (3.20), (3.22), (3.24), (3.26) and (3.27). The

mean value functions of type-I and type-II Lindley-type NHPP-based SRMs are

shown in Table 3.9 and Table 3.10.

3.2.3 Numerical Experiments

3.2.3.1 Goodness-of-fit Performances

The plot for the best Lindley-type SRM and the best SRATS SRM with TDDS1

and TIDS1 are illustrated in Figure 3.10 (a) and (b), respectively. At first glance,

in TDDS1, it can be seen that the four SRMs are similar in Figure 3.10 (a). It is
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Figure 3.10: Cumulative number of software faults detected by type-I and type-
II Lindley-type and existing NHPP-based SRMs.
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difficult to identify a specific SRM with a better performance on the goodness-

of-fit in this situation. But in contrast, in Figure 3.10 (b), in TDDS1, we can

obviously find that two type-I NHPP-based SRMs can show more accurate and

complex software fault-detection behavior. The main objectives of our numerical

experiments are to derive the maximum likelihood estimates of the parameters of

11 existing type-I NHPP-based SRMs, which are showed in Table 3.1, 3 existing

type-I NHPP-based SRMs (Musa-Okumoto SRM, Cox-Lewis SRM and Duane

SRM), and 14 type-I and type-II Lindley-type NHPP-based SRMs considered

in this section. We investigate and compare the goodness-of-fit and predictive

performances of the above NHPP-based SRMs under several criteria based on

the likelihood estimation in a total of 16 actual software fault count data sets.

In Table 3.11 and Table 3.12, we make a comparison of the best type-I and

type-II Lindley-type SRMs with the best existing type-I and type-II NHPP-

based SRMs in terms of AIC and MSE with time-domain data and group data.

The best AIC/MSE in each data set is represented in bold font. From Table

3.11, it is obvious that the existing type-I NHPP-based SRMs could outperform

our type-I and type-II Lindley-type SRMs in AIC and MSE in almost all cases.

Only in TIDS3, and TIDS2, TIDS3, and TIDS5, the type-I Lindley-type SRMs

could guarantee almost similar or better AIC and MSE than the existing type-I

NHPP-based SRMs. Note that although the type-II Gompertz Lindley SRM

outperformed the seven type-II Lindley-type SRMs in almost all cases, it hardly

guarantee better AIC or MSE in comparison with the other three type of NHPP-

based SRMs.

In Table 3.12, our Lindley-type SRMs could provide the better AIC in half

of the cases (TDDS3∼TDDS6), and MSE in TDDS3, TDDS4 and TDDS5. In

the group data, the result suggests that the Gompertz Lindley distribution and

Lindley distribution tend to be the best fault-detection time distribution in

the type-I and type-II Lindley-type NHPP-based software reliability modeling.

Hence, we are optimistic to claim that Lindley-type SRMs still have a better

potential ability to describe software fault count data. On one hand, we also be-

lieve that it is still of great significance to investigate the predictive performance

of the Lindley-type SRMs, because, as well as we know, the goodness-of-fit per-

formance and the predictive performance do not have an inevitable connection.
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3.2.3.2 Predictive Performances

In the second experiment, we focus on the predictive performance of the Lindley-

type SRMs. Figure 3.11 depicts the predicted number of detected faults after

20%, 50%, and 80% observation points in TDDS1 by the existing type-I and

type-II NHPP-based SRMs, and the type-I and type-II Lindley-type SRMs with

minimum PMSE. In Figure 3.11 (a), (b) and (c), the type-I Exp power Lindley-

type SRM in Table 3.9, Log-extreme-value max distribution NHPP-based SRM

[16], Pareto NHPP-based SRM [7] and Musa-Okumoto SRM [2, 14] provided

more accurate predictive performances at 20%, 50% and 80% points in TDDS1.

On one hand, we can observe that the type-II Gompertz Lindley-type SRM in

Table 3.10 SRMs can not accurately predict the future trend of software debug-

ging. But we still need a more specific investigation to evaluate the predictive

performance of our Lindley-type NHPP-based SRMs in both time-domain and

group data.
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Table 3.5: Prediction results in time-domain data.

20% observation point

NHPP-based Type-I NHPP-based Type-II

Best SRM PMSE Best SRM PMSE

TDDS1 Lxvmax 5.073 Pareto (Musa-Okumoto) 6.420

TDDS2 Tnorm 42.104 Pareto (Musa-Okumoto) 145.648

TDDS3 Lxvmax 32.131 Power-law 1417.110

TDDS4 Lnorm 56.477 Pareto (Musa-Okumoto) 198.490

TDDS5 Exp 9177.670 Tlogist 467.320

TDDS6 Txvmin 83.964 Llogist 79.614

TDDS7 Lxvmax 32.217 Llogist 207.592

TDDS8 Lxvmax 1852.520 Lnorm 1474.020

50% observation point

TDDS1 Pareto 6.118 Pareto (Musa-Okumoto) 6.420

TDDS2 Txvmin 5.874 Llogist 11.747

TDDS3 Pareto 11.712 Pareto (Musa-Okumoto) 10.283

TDDS4 Tlogist 103.504 Txvmin (Cox-Lewis) 106.282

TDDS5 Llogist 193.903 Tlogist 77.498

TDDS6 Lxvmax 10.493 Llogist 30.944

TDDS7 Exp 4480.620 Llogist 18.425

TDDS8 Txvmin 3569.230 Pareto (Musa-Okumoto) 45.344

80% observation point

TDDS1 Lxvmax 5.772 Power-law 3.432

TDDS2 Lxvmax 0.588 Pareto (Musa-Okumoto) 0.819

TDDS3 Lxvmax 9.419 Power-law 19.992

TDDS4 Txvmin 4.253 Txvmin (Cox-Lewis) 4.258

TDDS5 Lxvmax 21.715 Power-law 51.677

TDDS6 Lxvmax 2.041 Lxvmax 3.697

TDDS7 Txvmin 6.875 Power-law 4.291

TDDS8 Lxvmax 57.901 Power-law 9.268
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Table 3.6: Prediction results in group data.

20% observation point

NHPP-based Type-I NHPP-based Type-II

Best SRM PMSE Best SRM PMSE

TIDS1 Gamma 220.732 Power-law 218.763

TIDS2 Lxvmax 29.244 Llogist 47.377

TIDS3 Gamma 820.049 Gamma 171.702

TIDS4 Exp 142.854 Tlogist 86.083

TIDS5 Pareto 2.628 Pareto (Musa-Okumoto) 2.625

TIDS6 Tlogist 98.903 Llogist 25.613

TIDS7 Exp 387.694 Txvmin (Cox-Lewis) 67.730

TIDS8 Txvmin 448.935 Txvmin (Cox-Lewis) 423.360

50% observation point

TIDS1 Tlogist 96.992 Pareto (Musa-Okumoto) 159.545

TIDS2 Txvmin 30.786 Power-law 3.722

TIDS3 Lxvmax 564.782 Gamma 849.736

TIDS4 Exp 101.303 Pareto (Musa-Okumoto) 101.258

TIDS5 Exp 0.344 Pareto (Musa-Okumoto) 0.347

TIDS6 Pareto 365.493 Gamma 18.825

TIDS7 Lxvmax 22.894 Gamma 27.045

TIDS8 Txvmin 29.097 Llogist 156.329

80% observation point

TIDS1 Lnorm 1.762 Llogist 8.736

TIDS2 Exp 0.464 Txvmin (Cox-Lewis) 0.464

TIDS3 Tnorm 0.331 Txvmin (Cox-Lewis) 41.228

TIDS4 Tnorm 1.850 Llogist 18.985

TIDS5 Tnorm 0.224 Tlogist 0.090

TIDS6 Lnorm 3.432 Llogist 6.144

TIDS7 Txvmin 6.118 Llogist 17.300

TIDS8 Lxvmax 0.864 Llogist 6.333
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Table 3.7: Software reliability assessment in time-domain data.

Type-I Type-II

Best SRM Reliability Best SRM Reliability

TDDS1 Lxvmax 2.631E-06 Pareto (Musa-Okumoto) 2.674E-06

TDDS2 Lxvmax 3.283E-04 Txvmin (Cox-Lewis) 4.694E-08

TDDS3 Lxvmax 3.687E-03 Pareto (Musa-Okumoto) 3.751E-07

TDDS4 Lxvmax 2.453E-04 Pareto (Musa-Okumoto) 2.398E-04

TDDS5 Txvmin 4.573E-01 Txvmin (Cox-Lewis) 3.231E-03

TDDS6 Exp 1.035E-05 Power-law 2.596E-08

TDDS7 Pareto 8.971E-06 Pareto (Musa-Okumoto) 7.736E-06

TDDS8 Lxvmin 4.592E-05 Pareto (Musa-Okumoto) 2.516E-10

Table 3.8: Software reliability assessment in group data.

Type-I Type-II

Best SRM Reliability Best SRM Reliability

TIDS1 Llogist 4.152E-03 Tlogist 2.217E-25

TIDS2 Lxvmax 7.236E-05 Llogist 6.264E-05

TIDS3 Tnorm 3.865E-02 Txvmin (Cox-Lewis) 2.203E-23

TIDS4 Tlogist 2.816E-01 Txvmin (Cox-Lewis) 3.221E-27

TIDS5 Exp 9.832E-04 Exp 1.234E-04

TIDS6 Lxvmax 1.939E-07 Llogist 3.892E-07

TIDS7 Txvmin 9.633E-01 Tlogist 1.280E-27

TIDS8 Llogist 6.373E-01 Llogist 4.052E-10
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Table 3.9: Type-I Lindley-type NHPP-based SRMs.

SRM Mean value function

Type-I Lindley M(t;θ) = ω
(
1−

(
1 + at

a+1

)
exp(−at)

)
Type-I Gamma Lindley M(t;θ) = ω

(
1− {(ab+b−a)(at+1)+a} exp(−at)

b(1+a)

)
Type-I Exp Lindley M(t;θ) = ω

({
1− 1+a+at

1+a exp(−at)
}c)

Type-I Power Lindley M(t;θ) = ω
(
1−

(
1 + atb

1+a

)
exp(−atb)

)
Type-I Exp Power Lindley M(t;θ) = ω

(
1−

{
1−

(
1 + atb

1+a

)
exp(−atb)

}c)
Type-I Gompertz Lindley M(t;θ) = ω

(
1−

(
a2

1+a

)
a+exp(bt)

(a−1+exp(bt))2

)
Type-I Weighted Lindley M(t;θ) = ω

(
1− (a+b)Γ2(b,at)+(at)b exp(−at)

(a+b)Γ1(b)

)

Table 3.10: Type-II Lindley-type NHPP-based SRMs.

SRM Mean value function

Type-II Lindley M(t;α) = at− ln(at+ a+ 1) + ln(a+ 1)

Type-II Gamma Lindley
M(t;α) = − ln((ab− a+ b)(at+ 1) + a)

+at+ ln(a+ 1) + ln(b)

Type-II Exp Lindley M(t;α) = − ln
(
1−

(
1−

(
at

a+1 + 1
)
e−at

)c)
Type-II Power Lindley M(t;α) = − ln

(
atb + (a+ 1)

)
+ at+ ln(a+ 1)

Type-II Exp Power Lindley M(t;α) = − ln
(
1−

(
1−

(
atb

a+1 + 1
)
e−atb

)c)
Type-II Gompertz Lindley

M(t;α) = 2 ln(a+ ebt − 1)− ln(a+ ebt)
−2 ln(a) + ln(a+ 1)

Type-II Weighted Lindley
M(t;α) = − ln

(
e−at(at)b + (a+ b)Γ(b, at)

)
+ ln(a+ b) + ln(Γ(b))
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Testing time

(a) 20% observation point.

Testing time

(b) 50% observation point.

Testing time

(c) 80% observation point.

Figure 3.11: Predicted the cumulative number of software faults in TDDS1.
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To investigate the predictive performance, we apply the performance metrics;

predictive mean squared error (PMSE). For the time-domain data, suppose

that the observed software fault time sequence consists of (t1, t2, ..., tm), and

l (= 1, 2, · · · ), where l is the predictive time length and is a positive integer. In

the sense of predictive performance, PMSE and MSE have the same evaluation

scale; the smaller the result, the better the SRM.

The minimum PMSE in the existing NHPP-based SRMs and the Lindley-

type NHPP-based SRMs for time-domain data are shown in Tables 3.13,

3.14 and 3.15, where the best SRMs are calculated by the future data

(tm+j , nm+j) (j = 1, 2, · · · , l) obtained ex post facto. As demonstrated in Fig-

ure 3.11, the predictive performance of our type-II Lindley-type NHPP-based

SRM in TDDS1 is not as good as expected. In the early and middle prediction

phases, only one case in TDDS6 at 20% observation point and TDDS5 at 50%

observation point shows that the Lindley-type SRM predicts the number of de-

tected faults more accurately than the existing type-I and type-II NHPP-based

SRMs. However, as the testing time goes on, except in 2 cases with TDDS5

and TDDS6, the existing NHPP-based SRMs show the smaller PMSE in almost

all cases than the Lindley-type SRMs. In the later prediction phase (at 80%

observation point), the type-II Lindley-type SRM is even less able to guarantee

the smaller PMSE in all data sets. But on the other hand, we observed that

the type-I Lindley-type SRMs could provide the smaller PMSE in three cases

(TDDS1, TDDS5 and TDDS8) at 20% observation point, three cases (TDDS2,

TDDS4 and TDDS ) at 50% observation point, and three cases (TDDS4, TDDS5

and TDDS6) at 80% observation point.

In Tables 3.16, 3.17 and 3.18, the PMSE of the type-I and type-II Lindley-

type SRMs and the existing NHPP-based SRMs are also compared when the

group data are available. We can observe that our type-II Lindley-type SRMs

could provide the lower PMSE in some cases; i.e., half of the data sets at 20%

observation point, 3 out of 8 data sets at 50% observation point and one case

at 80% observation point. On the other hand, the type-I Lindley-type SRMs

outperformed the existing NHPP-based SRMs in 2 data sets at 20% observation

point, 3 out of 8 data sets at 50% observation point and 3 out of 8 data sets at

80% observation point.
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Hence, we can summarize that our type-II Lindley-type SRMs have better

prediction accuracy at the early of software fault prediction, but that prediction

accuracy continuously diminishes as the testing process proceeds. The type-II

Lindley-type SRMs, on the other hand, performed more smoothly. Therefore,

overall, our Lindley-type NHPP-based SRMs have the better predictive per-

formance than the existing NHPP-based SRMs in the group data, because the

Lindley-type NHPP-based SRMs could guarantee smaller PMSEs in more than

half of the data sets regardless of the phase of software fault-detection pre-

diction. Since, generally, PMSE is recognized as the most plausible prediction

metric, we believe that for software fault prediction, the Lindley-type SRMs can

be considered as attractive as the existing NHPP-based SRMs.
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3.2.3.3 Software Reliability Assessment

Through the experiments of goodness-of-fit and predictive performances, we are

not asserting that our Lindley-type SRMs could outperform the existing NHPP-

based SRMs, but, it should be emphasised that, in the NHPP-based software

reliability modeling, except for the existing SRMs [43], the Lindley-type SRMs

could also be good candidates. In describing the software fault-detection time

distribution, the Lindley-type distributions should be good choices.

Hence, we also concern quantifying the software reliability by our Lindley-

type SRMs. We define R(x) as the probability that software dose contain no

faults detected during a time interval (t, t+ x], when the software test is stopped

at time t where x is the software operational time. We set as 1 time of each

testing length in CPU time unit for the time-domain data or calendar time

(week) for the group data.

Tables 3.19 and 3.20 present the quantitative software reliability with the

time-domain and group data sets, respectively. We utilize the type-I and type-II

Lindley-type SRMs and the existing NHPP-based SRMs that could provide the

best AIC in the time period (0, t). We indicate the software reliability value that

is more close to 1 with the bold font. It can be seen that the type-I Lindley-type

SRMs could provide larger software reliability than the existing NHPP-based

SRMs in 5 of 8 time-domain data sets and half of the group data sets. On the

other hand, Our type-II Lindley-type SRMs could not show the larger reliabil-

ity in all the cases. Hence, based on these results, we can’t fully claim that

the Lindley-type NHPP-based SRMs can provide more optimistic quantifica-

tion in software reliability assessment. However, the software reliability based

on all the NHPP-based SRMs suggests that none of software projects in our

experiments can be recommended for immediate market release, because, the

reliability estimates are close to zero.
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Hence, we can conclude that in this section, we have proposed 7 novel type-

II Lindley-type NHPP-based SRMs over the type-II software reliability model-

ing assumption. We have investigated their goodness-of-fit and predictive per-

formances, and made comparisons under the type-I Lindley-type NHPP-based

SRMs, 11 existing type-I and 3 existing NHPP-based SRMs. In most of the time-

domain and group data sets, the Lindley-type NHPP-based SRMs were difficult

to provide the smaller AIC when their parameters were given by the maximum

likelihood estimation. However, in the group data set, the Lindley-type NHPP-

based SRMs demonstrated nice predictive performances that outperform the

existing NHPP-based SRMs at any phase of software testing.

3.3 Burr-type NHPP-based Software Reliability
Modeling

3.3.1 Burr-Type Distributions

For a continuous random variable X with the support (−∞,+∞), let F (x;α)

and f(x;α) be the c.d.f. and the probability density function (p.d.f.), respec-

tively, where F (x;α) is an absolutely continuous non-decreasing function from

F (−∞;α) = 0 to F (∞;α) = 1. For arbitrary a and b (a < b), Pr{a ≤ X ≤

b} = F (b;α) − F (a;α) =
∫ b

a
f(x;α)dx with F (x;α) =

∫ x

−∞ f(x;α)dx and

f(x;α) = dF (x;α)/dx. Burr [61] introduced a new family of c.d.f.s which

satisfy the following differential equation;

dF (x;α)

dx
= F (x;α)(1− F (x;α))g(x, F (x;α)), (3.29)

where g(x, F (x;α)) is an arbitrary positive function with 0 ≤ F (x;α) ≤ 1. If

g(x, F (x;α)) =
(
b1 + b2x+ b3x

2
)−1

and if F (x;α) and 1−F (x;α) are replaced

by f(x) and (b0 − x), respectively, with arbitrary constants b0, b1, b2, and b3,

then Equation (3.29) is reduced to the differential equation for the well-known

Pearson system;
df(x;α)

dx
=

f(x;α)(b0 − x)

(b1 + b2x+ b3x2)
, (3.30)

which leads to many popular c.d.f.s, such as Pearson-type I (beta distribution),

Pearson-type III (gamma distribution), Pearson-type VIII (power distribution),

Pearson-type X (exponential distribution) and Pearson-type XI (a particular

class of Pareto distribution).
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Burr [61] considered a special case of g(x, F (x;α)) = g(x;α). By solving

Equation (3.29), we obtain

F (x;α) =
1[

e−
∫
g(x;α)dx + 1

] . (3.31)

It should be noted that the selection of the function g(x;α) makes the c.d.f.

F (x;α) increase monotonously from 0 to 1 within a specified time x. The

above statement is often called the Burr hypothesis. Finally, Burr [61] derived

12 Burr-type distributions I∼XII by considering 12 kinds of g(x;α) functions.

Table 3.21 lists the Burr-type distributions proposed in [61].

Table 3.21: Burr-type distributions.

Type c.d.f. Domain of x

I F (x;α) = x (0, 1)

II F (x;α) = (e−x + 1)−b (−∞,+∞)

III F (x;α) = (1 + (x)−a)
−b

(0,+∞)

IV F (x;α) =
(
((c− x)/x)

1/c
+ 1
)−b

(0, c)

V F (x;α) = (ae− tan x + 1)
−b

(−π/2, π/2)

VI F (x;α) =
(
ae−csinh(x) + 1

)−b
(−∞,+∞)

VII F (x;α) = 2−b (1 + tanh (x))
b

(−∞,+∞)

VIII F (x;α) = (arctan(ex)2/π)
b

(−∞,+∞)

IX F (x;α) = 1− 2
(
a
(
(1 + ex)

b − 1
)
+ 2
)−1

(−∞,+∞)

X F (x;α) =
(
1− e−(x)2

)b
(0,+∞)

XI F (x;α) = (x− (1/2π) sin 2πx)
b

(0, 1)

XII F (x;α) = 1− (1 + xa)
−b

(0,+∞)

(ω>0, a>0, b>0, c>0)

3.3.2 Type-I Burr-Type NHPP-based SRMs

The Burr-type III, X, and XII distributions were applied to describe the software

fault-detection time distribution in the past literature, where these c.d.f.s have

positive support (0,∞). In other words, from Table 3.21, it is immediate to

see that the Burr-type I, IV, V, and XI distributions are not appropriate in

modeling the software fault-detection time. In addition to the Burr-type III

distribution [74, 75, 76, 77], the Burr-type X distribution [79], the Burr-type
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XII distribution [64, 66, 67, 68, 69, 70, 71, 72, 73] with the positive support

x ∈ (0,∞), it is possible to transform the c.d.f. with support (−∞,+∞) to the

log Burr-type distributions and the truncated Burr-type distributions with the

support x ∈ (0,∞) by taking exp(x) and truncating x at the origin, respectively.

So, we consider the log Burr-type II, VI, VII, VIII, IX distributions and the

truncated Burr-type II, VI, VII, VIII, IX distributions to represent the mean

value function of the NHPP-based SRM by

M(t;θ) = ωF (ln t;α), (3.32)

and

M(t;θ) = ω
F (t;α)− F (0;α)

1− F (0;α)
, (3.33)

respectively. The underlying idea of the log Burr-type distribution comes from

the log-normal NHPP-based SRM [8, 17] and the log-logistic NHPP-based SRM

[13]. In fact, it is known that the logarithmic Burr-type II distribution is reduced

to the log-logistic distribution [62]. The truncation at the origin for the Burr

II, VI, VII, VIII, IX distributions with the support (−∞,+∞) is inspired by

the truncated normal NHPP-based SRM [17] and the truncated logistic NHPP-

based SRM [15]. Table 2.2 presents the type-I Burr-type NHPP-based SRMs

considered in this section, where we applied generalized Burr-type III, VI, VII,

VIII, IX, X, and XII distributions by introducing an additional scale parameter

d. That is to say, if d = 1, then the Burr-type distributions in Table 3.22 become

the original form in Table 3.21.

3.3.3 Type-II Burr-Type NHPP-based SRMs

In the previous subsection, we have specifically introduced the type-I NHPP-

based SRM with Burr-type distributions. Hence, by substituting the underlying

Burr-type III, VI, VII, VIII, IX, X, and XII software fault-detection time c.d.f.s

(in Table 3.21) into Equation (3.5), we can derive 11 novel Burr-type NHPP-

based SRMs, say, type-II Burr-type NHPP-based SRMs. Note that the mean

value function of the type-II log Burr-type SRMs and the type-II truncated

Burr-type SRMs should be modified from Equations (3.32) and (3.33) to

M(t;α) = − ln(1− F (ln t;α)) (3.34)

M(t;α) = − ln

(
1− F (t;α)− F (0;α)

1− F (0;α)

)
, (3.35)
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Table 3.22: Type-I Burr-type NHPP-based SRMs.

Models Mean value function

Burr-type III M(t;θ) = ω (1 + (t/d)−a)
−b

Log Burr-type VI M(ln t;θ) = ω
(
ae−csinh(ln t/d) + 1

)−b

Truncated (Tru)

Burr-type VI
M(t;θ) = ω

(
(ae−csinh(t/d)+1)

−b−(ae−csinh(0)+1)
−b

1−(ae−csinh(0)+1)
−b

)
Log Burr-type VII M(ln t;θ) = ω2−b (1 + tanh (ln t/d))

b

Truncated (Tru)

Burr-type VII
M(t;θ) = ω

(
2−b(1+tanh(t/d))b−2−b(1+tanh(0))b

1−2−b(1+tanh(0))b

)
Log Burr-type VIII M(ln t;θ) = ω

(
arctan(eln t/d)2/π

)b
Truncated (Tru)

Burr-type VIII
M(t;θ) = ω

(
(arctan(et/d)2/π)

b−(2/πarctan(1))b

1−(2/πarctan(1))b

)
Log Burr-type IX M(ln t;θ) = ω

(
1− 2

(
a
((

1 + eln t/d
)b − 1

)
+ 2
)−1

)
Truncated (Tru)

Burr-type IX
M(t;θ) = ω

(
(2b+1)

−1−
(
(1+et/d)

b
+1
)−1

(2b+1)−1

)

Burr-type X M(t;θ) = ω
(
1− e−(t/d)2

)b
Burr-type XII M(t;θ) = ω

(
1−

(
1

1 + (t/d)a

)b
)

(ω>0, a>0, b>0, c>0, d>0)
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respectively. We also utilize the generalized Burr-type III, VI, VII, VIII, IX, X

and XII distributions with the introduction of an additional scale parameter d.

The details of these SRMs are shown in Table 3.23.

Table 3.23: Type-II Burr-type NHPP-based SRMs.

Models Mean value function

Burr-type III M(t;α) = − ln

(
1−

((
t
d

)−b
+ 1
)−c

)
Log Burr-type VI M(ln t;α) = − ln

(
1−

(
b e−d sinh( ln(t)

f ) + 1
)−c

)
Truncated (Tru)

Burr-type VI
M(t;α) = − ln

 (b+1)c

(
1−
(
be

−d sinh( t
f )+1

)−c
)

(b+1)c−1


Log Burr-type VII M(ln t;α) = − ln

(
1− 2−b

(
tanh

(
ln(t)
c

)
+ 1
)b)

Truncated (Tru)

Burr-type VII
M(t;α) = − ln

(
2b−(tanh( t

c )+1)
b

2b−1

)

Log Burr-type VIII M(ln t;α) = − ln

(
1−

(
2 tan−1(exp( ln(t)

c ))
π

)b
)

Truncated (Tru)

Burr-type VIII
M(t;α) = − ln

(
2b−( 4

π )
b
tan−1(et/c)

b

2b−1

)
Log Burr-type IX M(ln t;α) = − ln

(
2

b((exp( ln(t)
d )+1)

c
−1)+2

)
Truncated (Tru)

Burr-type IX
M(t;α) = − ln

(
b(2c−1)+2

b((et/d+1)
c−1)+2

)
Burr-type X M(t;α) = − ln

(
1−

(
1− exp

(
−
(
t
c

)2))b)
Burr-type XII M(t;α) = − ln

((
1

( t
d )

b
+1

)c)
(a>0, b>0, c>0, d>0)

3.3.4 Numerical Experiments

3.3.4.1 Goodness-of-fit Performances

We also utilize the maximum likelihood estimation for the parameter estima-

tion of our type-I and type-II Burr-type NHPP-based SRMs. By maximizing

lnL(θ or α;D) with respect to θ or α, ML estimate θ̂ or α̂ can be obtained.

In numerical experiments, we analyze a total of 8 time-domain data sets

(DS1 ∼ DS8 in Table 2.1 (i)), labeled TDDS1∼TDDS8, and 8 group data sets



74

(DS15 ∼ DS21 in Table 2.1 (ii)), called TIDS1∼TIDS8.

We compare the goodness-of-fit performances of our type-I Burr-type SRMs,

and type-II Burr-type SRMs with 3 existing type-II NHPP-based SRMs (Cox-

Lewis, Duane and Musa-Okumoto SRMs) and 11 existing type-I NHPP-based

SRMs in [43] (see Table 3.1). We apply AIC and MSE to investigate the

goodness-of-fit performances of our type-I and type-II Burr-type NHPP-based

SRMs. In Figure 3.12 (a) and (b), we depict the plot for the best existing
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Figure 3.12: Behavior of cumulative number of software faults with the best
type-II Burr-type and the best existing type-II NHPP-based SRMs.

type-I NHPP-based SRM (blue curve), the best existing type-II NHPP-based
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SRM (red curve), the best type-I Burr-type SRM (green curve), and the best

type-II Burr-type SRM (orange curve) in TDDS1 and TIDS1. At first glance,

in Figure 3.12 (a), 4 SRMs exhibit almost similar behavior. However, in Fig-

ure 3.12 (b), the best existing type-I NHPP and type-I Burr-type SRMs show

strong abilities to fit the underlying fault count data. More specifically, in Ta-

ble 3.24 and Table 3.25, we compare the best SRMs of our type-I and type-II

Burr-type NHPP-based SRMs with the other two type of best SRMs; existing

type-I and type-II NHPPs in time-domain data and group data, respectively.

The bold font and underline indicate the SRMs with the minimum AIC and

MSE in each data set. It’s worth noting that the significant difference in terms

of AIC might be regarded as more than 2 according to the definition of AIC.

From Table 3.24, it can be seen that our type-II Burr-type SRMs could guaran-

tee the smaller AIC than the other three type of existing NHPP-based SRMs in

five cases (TDDS2, TDDS4, TDDS5, TDDS7, TDDS8), but the difference was

significant in only TDDS4 and TDDS8. We also noted that the best type-II

Burr-type that can guarantee the smallest AIC or MSE are all given by the

truncated Burr-type SRMs. Although the AICs and MSEs show that our SRMs

still cannot be fully replaced by the existing NHPP-based SRMs, our Burr-type

NHPP-based SRMs should be a better candidate for selecting the best SRM in

terms of goodness-of-fit.

In the group data sets (see Table 3.25), in TIDS2, TIDS5 and TIDS6, our

type-II Burr-type SRMs (Log burr-type VIII and Burr-type XII) could provide

the smaller AIC, but could not beat the other three type of SRMs in terms

of MSE. Only TIDS1 showed a significant difference in AIC between our SRM

and the other existing SRMs. On the other hand, we also notice that the type-

I Burr-type SRMs provided the smallest AIC in four cases (TIDS1, TIDS3,

TIDS4 and TIDS8) and the smallest MSE in 5 cases (TIDS1, TIDS3, TIDS4,

TIDS5 and TIDS8). The type-I and type-II Burr-type NHPP-based SRMs

completely outperform the existing type-I and type-II NHPP-based SRMs in

terms of goodness-of-fit performance in group data. Even though the smallest

AIC and MSE are still given by the existing NHPP-based SRM (Lxvmax) in

TIDS7, but a comparison with the best type-I Burr-type in the same data set

shows that the differences are quite insignificant.
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3.3.4.2 Predictive Performances

Here, we investigate the predictive performance of our type-I and type-II Burr-

type NHPP-based SRMs. The predictive performance is also measured by the

PMSE to evaluate the average squared distance between the predicted cumu-

lative number of software faults and its (unknown) realization per prediction

length. Our experiments set three observation points; 20%, 50%, and 80% of

the whole data set, predict the cumulative number of software faults for the

remaining period, say, 80%, 50%, and 20% lengths, and calculate the PMSEs

in all the cases with all SRMs. The prediction length becomes shorter as the

observation point is larger.

In Figures 3.13 and 3.14, we show examples of predictive behavior of the

cumulative number of software faults with the Burr-type and existing SRMs in

TDDS1 and TIDS1, respectively, where the dotted line denotes the prediction

point. In these figures, we plot the best predictive SRMs with the minimum

PMSE. In Figure 3.13, since the underlying fault-detection time behaves like an

exponential curve, both SRMs; the Burr-type NHPP-based SRM and the ex-

isting NHPP-based SRM, could show a similar prediction trend. On the other

hand, the group data in Figure 3.14 represents the S-shaped curve, and both

SRMs resulted in the miss-prediction in the early testing phases. The trend

change in the future causes these poor predictive performances. More specifi-

cally, in Figure 3.14 (a), both SRMs could not predict the S-shaped increasing

trend. In Figure 3.14 (b), they failed to predict the 3 steps-increasing trends.

From these results, we can understand that the prediction of the future un-

known trend change is essentially difficult, even though the prediction length is

relatively short.

Tables 3.26 and 3.27 present the comparison results on the PMSE in time-

domain data sets and group data sets, respectively, where we select the best SRM

with the smallest PMSE from both the type-I and type-II Burr-type NHPP-

based SRMs, and the existing NHPP-based SRMs. For the time-domain data

in Table 3.26, it is seen that except in the 20% observation, the type-I and type-

II Burr-type NHPP-based SRMs could guarantee the smaller PMSE than the

existing NHPP-based SRMs in almost cases. When the testing phase is early

(20%), the Burr-type NHPP-based SRMs also provided the smaller PMSE in 5
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(b) 50% observation point.
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(c) 80% observation point.

Figure 3.13: Predictive behavior of the cumulative number of software faults
with the Burr-type and existing SRMs in TDDS1.
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Figure 3.14: Predictive behavior of the cumulative number of software faults
with the Burr-type and existing SRMs in TIDS1.
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Table 3.26: Predictive performances based on PMSE (time-domain data).

(i) Prediction from the 20% observation point

Data Type-I Burr-type Type-II Burr-type Existing NHPP

Set Best SRM PMSE Best SRM PMSE Best SRM PMSE

TDDS1 Burr-type III 3.951 Burr-type XII 19.991 Lxvmax 5.073

TDDS2 Burr-type XII 270.380 Log Burr-type IX 141.815 Tnorm 42.104

TDDS3 Log Burr-type VI 28.422 Burr-type XII 650.939 Lxvmax 32.131

TDDS4 Burr-type III 59.027 Burr-type XI 91.960 Lnorm 56.477

TDDS5 Tru Burr-type VI 2022.990 Log Burr-type VIII 789.554 Exp 9177.670

TDDS6 Burr-type XII 51.861 Burr-type XII 50.112 Txvmin 83.964

TDDS7 Log Burr-type VII 88.338 Log Burr-type VII 193.368 Lxvmax 32.217

TDDS8 Burr-type III 2401.850 Burr-type III 1700.110 Lxvmax 1852.520

(ii) Prediction from the 50% observation point

TDDS1 Log Burr-type VI 9.009 Burr-type XII 4.501 Pareto 6.118

TDDS2 Tru Burr-type IX 3.749 Tru Burr-type VIII 0.717 Tlogist 14.890

TDDS3 Tru Burr-type IX 259.988 Tru Burr-type VIII 475.366 Pareto 11.712

TDDS4 Tru Burr-type VIII 121.671 Tru Burr-type VII 94.254 Tlogist 103.504

TDDS5 Log Burr-type VIII 252.978 Tru Burr-type VI 110.137 Llogist 193.903

TDDS6 Log Burr-type VIII 4.358 Burr-type XII 7.727 Lxvmax 10.493

TDDS7 Tru Burr-type IX 37.702 Burr-type XII 3909.47 Exp 4480.620

TDDS8 Tru Burr-type VI 194.841 Log Burr-type IX 361.550 Lxvmax 32375.500

(iii) Prediction from the 80% observation point

TDDS1 Log Burr-type VIII 5.720 Tru Burr-type VI 5.050 Lxvmax 5.772

TDDS2 Log Burr-type VIII 0.583 Burr-type XII 0.590 Lxvmax 0.588

TDDS3 Tru Burr-type VI 7.997 Burr-type XII 15.694 Lxvmax 9.419

TDDS4 Log Burr-type IX 2.867 Tru Burr-type VIII 4.742 Txvmin 4.253

TDDS5 Tru Burr-type VI 32.079 Burr-type XII 59.795 Lxvmax 21.715

TDDS6 Burr-type III 2.032 Burr-type XII 2.753 Lxvmax 2.041

TDDS7 Burr-type XII 9.161 Log Burr-type IX 5.879 Lxvmax 10.498

TDDS8 Burr-type XII 46.212 Tru Burr-type VII 20.561 Lxvmax 57.901
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Table 3.27: Predictive performances based on PMSE (group data).

(i) Prediction from the 20% observation point

Data Type-I Burr-type Type-II Burr-type Existing NHPP

Set Best SRM PMSE Best SRM PMSE Best SRM PMSE

TIDS1 Burr-type XII 219.067 Burr-type XII 205.956 Gamma 220.732

TIDS2 Log Burr-type VI 9.149 Burr-type XII 5.784 Lxvmax 29.244

TIDS3 Log Burr-type IX 429.795 Tru Burr-type IX 330.014 Gamma 820.049

TIDS4 Burr-type XII 791.335 Tru Burr-type IX 129.764 Exp 142.854

TIDS5 Log Burr-type VII 3.535 Tru Burr-type IX 0.275 Pareto 2.628

TIDS6 Log Burr-type IX 41.897 Burr-type XII 30.254 Tlogist 98.903

TIDS7 Tru Burr-type IX 552.996 Tru Burr-type IX 233.833 Exp 387.694

TIDS8 Tru Burr-type VI 423.360 Tru Burr-type IX 964.738 Txvmin 448.935

(ii) Prediction from the 50% observation point

TIDS1 Burr-type III 26.557 Log Burr-type IX 18.145 Tlogist 157.837

TIDS2 Burr-type XII 45.793 Log Burr-type VII 15.789 Txvmin 30.786

TIDS3 Log Burr-type VIII 346.721 Tru Burr-type VIII 838.510 Lxvmax 564.782

TIDS4 Log Burr-type VIII 340.914 Tru Burr-type VIII 80.646 Exp 101.303

TIDS5 Log Burr-type IX 0.300 Log Burr-type VI 0.094 Exp 0.344

TIDS6 Log Burr-type IX 327.310 Tru Burr-type IX 28.673 Pareto 365.493

TIDS7 Burr-type III 22.561 Tru Burr-type IX 32.780 Lxvmax 22.894

TIDS8 Tru Burr-type IX 20.613 Tru Burr-type VIII 307.124 Txvmin 29.110

(iii) Prediction from the 80% observation point

TIDS1 Log Burr-type VIII 4.676 Burr-type XII 19.559 Lnorm 1.762

TIDS2 Log Burr-type VI 0.455 Log Burr-type VII 0.802 Exp 0.464

TIDS3 Tru Burr-type IX 0.230 Burr-type XII 0.232 Tnorm 0.331

TIDS4 Tru Burr-type IX 0.695 Tru Burr-type IX 5.532 Tnorm 1.850

TIDS5 Log Burr-type VI 0.152 Log Burr-type VII 0.070 Tnorm 0.224

TIDS6 Burr-type III 1.710 Log Burr-type IX 1.315 Lnorm 3.432

TIDS7 Burr-type X 21.403 Tru Burr-type IX 71.140 Txvmin 6.118

TIDS8 Log Burr-type VIII 0.862 Log Burr-type IX 9.686 Lxvmax 0.864
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out of 8 cases. In the group data analysis (see Table 3.27), at 20% observation

point, our type-II Burr-type NHPP-based SRMs outperformed the other SRMs

in 7 out of 8 data sets. Note that this advantage diminishes as the testing process

progresses (5 cases at 50% observation point, 2 cases at 80% observation point).

But similar to the experimental results in Table 3.26, our Burr-type SRMs can

also outperform the existing NHPPs in almost all datasets.

It should be noted that the best SRM with the minimum PMSE depends

on the data sets in modeling frameworks; the type-I Burr, the type-II Burr and

the existing NHPP. Of course, the best SRM with the minimum PMSE cannot

be known in advance at each observation point. In this sense, we have to say

that the comparison in Tables 3.26 and 3.27 is not feasible at each prediction

point. In Tables 3.28∼3.30, we compare the predictive performances of SRMs

with the minimum AIC at each observation point in the time-domain data sets.

In the time-domain data, only in TDDS5 and TDDS7, our type-II Burr-type

SRMs could show both the smaller AIC and PMSE. This case also appeared

in TDDS2 of the existing NHPP. When the testing phase is middle (50%), the

Burr-type NHPP-based SRMs could provide both the smaller AIC and smaller

PMSE than the existing NHPP-based SRMs in TDDS7 and TDDS8, and no

existing NHPP-based SRMs could realize the similar results. When the testing

phase is later (80%), the Burr-type NHPP-based SRMs could show the best

goodness-of-fit performance in the observation phase and ensure the minimum

PMSE in the future prediction phase in TDDS1, TDDS7, and TDDS8.

For group data, in Tables 3.31∼3.33, it is observed that the Burr-type NHPP-

based SRMs provided both the smaller AIC and smaller PMSE at the same time

in some cases; i.e., 4 cases out of 8 data sets in (ii) and 4 cases out of 8 data

sets in (iii). These results confirm that the Burr-type NHPP-based SRMs have

the higher prediction ability than the existing NHPP-based SRMs, especially in

the late software testing phase.

In both time-domain and group data sets, when we compare the PMSEs

between the best Burr-type NHPP-based SRM and the best existing NHPP-

based SRM, we find out that our Burr-type NHPP-based SRMs could guarantee

smaller PMSEs than the existing NHPP-based SRMs in many cases; 10 out of

16 cases at 20% observation, 14 out of 16 cases at 50% observation and 12 out
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of 16 cases at 80% observation.

We never claim here that the Burr-type NHPP-based SRMs are always better

than the existing SRMs in the literature. However, we emphasize that the

Burr-type NHPP-based SRMs should be the possible candidates in selecting

the best SRM in terms of goodness-of-fit and predictive performances. Also,

another new finding is that the logarithmic and truncated Burr-type NHPP-

based SRMs gave better goodness-of-fit and prediction results in many cases

than the existing Burr-type III, X, and XII SRMs. This would be useful to

assuming the competitors of SRMs.
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3.3.4.3 Software Reliability Assessment

Finally, we evaluate the software reliability quantitatively with our Burr-type

NHPP-based SRMs and compare them with the existing NHPP-based SRMs

in SRATS. Let R(x) be the software reliability with the software operational

period (prediction length) x = tm+l − tm or l when the software is released at

time t = tm. Since R(x) is defined as the probability that software is fault-free

during the time interval (t, t+ x], it is easily obtain that

R(x) = Pr(N(t+ x)−N(t) = 0 | N(t) = m)

= exp (− [M(t+ x;θ)−M(t;θ)]) , (3.36)

where m is the cumulative number of software faults detected up to time t in the

time-domain data (m in Equation 3.36 is replaced by nm in the group data). In

our subsequent examples, we suppose that the prediction length x is equivalent

to the testing length experienced before, say, t = x.

Tables 3.34 and 3.35 present the quantitative software reliability. We assume

the Burr-type NHPP-based SRM and the SRATS NHPP-based SRM with the

minimum AIC in the fault-detection time-domain and group data sets, where

the bold font denotes the case with a greater reliability estimate. Looking at

these results, it is seen that our Burr-type NHPP-based SRMs could show larger

software reliability estimates than the existing NHPP-based SRMs in 3 out of 8

cases (time-domain data) and 4 out of 8 cases (group data). This feature tells

us that the Burr-type NHPP-based SRMs tend to make more optimistic deci-

sions in software reliability assessment than the SRATS NHPP-based SRMs. It

is worth noting in all the data sets that after each observation point, software

faults were additionally detected as the ex-post results. Hence, the optimistic

reliability estimation is not preferable. Figure 3.15 (a) and (b) show the soft-

ware reliability estimates with the Burr-type NHPP-based SRM and the SRATS

NHPP-based SRM in TDDS1 and TIDS1, respectively. In both cases, the soft-

ware reliability values dropped down to zero level rapidly, and two NHPP-based

SRMs showed similar reliability values as well. From these results, we find out

that both SRMs gave the false alarm to release the current software at respec-

tive observation points and request more testing for attaining the requirement

level of software reliability.
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Figure 3.15: Predictive software reliability assessment with the best Burr-type
and SRATS NHPP-based SRMs.

Figure 3.16: Software release decision based on virtual testing time.
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Table 3.34: Software reliability assessment with the best AIC (time-domain
data).

Burr-type Existing NHPP

Best Burr Reliability Best SRM Reliability

TDDS1 Log Burr-type VIII 2.631E-06 Lxvmax 2.674E-06

TDDS2 Log Burr-type VIII 3.687E-03 Lxvmax 3.751E-03

TDDS3 Burr-type X 4.592E-05 Lxvmin 2.516E-10

TDDS4 Tru Burr-type IX 1.244E-01 Pareto 1.000E-00

TDDS5 Burr-type X 1.035E-05 Exp 2.596E-08

TDDS6 Log Burr-type VIII 3.283E-04 Lxvmax 4.694E-03

TDDS7 Log Burr-type VII 2.453E-04 Lxvmax 2.398E-04

TDDS8 Tru Burr-type VI 6.158E-10 Pareto 7.736E-06

Next, we introduce the concept of virtual testing time, whose idea comes

from Zhao et al. [82] to consider a more realistic and plausible software release

decision. When the software testing is terminated at a given observed time

point, we set the so-called virtual testing time period when no software fault is

found. If this hypothesis is correct, we check whether the software reliability

can achieve a given requirement level at the end of the virtual testing time and

release the software product with a satisfactory level at the end of the virtual

testing time period. Otherwise, i.e., if at least one software fault was found,

we reset the observation point to the fault detection/fixing time and redefine

the virtual testing time from that point. Under the hypothesis that no fault

is found during the virtual testing time, the maximum likelihood estimation is

made with zero fault count. In the time-domain data, the likelihood function is

given by

L(θ;D) = exp(−M(tmT
+ tv;θ))

mT∏
i=1

M(ti;θ), (3.37)

where tv is the virtual testing time (see Figure 3.16). In the group data, the

likelihood function is given by

L(θ; I) =
mG+v∏
i=1

[
[M(ti;θ)−M(ti−1;θ)]

ni−ni−1

(ni − ni−1)!

]
× e−[M(ti;θ)−M(ti−1;θ)], (3.38)
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Table 3.35: Software reliability assessment with the best AIC (group data).

Burr-type Existing NHPP

Best Burr Reliability Best SRM Reliability

TIDS1 Log Burr-type IX 1.065E-02 Llogist 4.152E-03

TIDS2 Log Burr-type IX 1.353E-05 Lxvmax 7.236E-05

TIDS3 Log Burr-type VI 3.751E-02 Tnorm 3.865E-02

TIDS4 Tru Burr-type IX 4.504E-01 Tlogist 2.816E-01

TIDS5 Log Burr-type IX 6.548E-03 Exp 9.832E-04

TIDS6 Log Burr-type IX 1.928E-08 Lxvmax 1.939E-07

TIDS7 Burr-type III 8.667E-01 Txvmin 9.633E-01

TIDS8 Log Burr-type IX 6.679E-01 Llogist 6.373E-01

where (ti, ni) = (tmi , nmG
) (i = mI + 1,mI + 2, . . . ,mI + v) with the virtual

testing time length v (integer value). Hence, it is obvious that the maximum

likelihood estimates depend on the length of virtual testing time tv or v so in-

creasing virtual testing time leads to increasing quantitative software reliability.

Then the problem is to determine an appropriate virtual testing time (t∗v or v∗)

satisfying that the software reliability with a given operational period is greater

than a specified requirement lever, e.g., such as 90%.

In our numerical experiments, we focus on the time-domain and group data

and set 15 different lengths of virtual testing time (10% to 150% of tmD
(tmI

)),

where the operational period x is given by x = tr = tmD
or tmI

and each tmD

or tmI
is given in Table 1.1 (i) and (ii). Tables 3.36, 3.37, 3.37 and 3.38 present

the software reliability prediction with the Burr-type NHPP-based SRM and

SRATS NHPP-based SRM with the minimum AIC in the time-domain data

and group data, when the virtual testing time is given by 10% to 150% length

of the testing time tmT
or tmG

. In almost all cases, it is seen that the longer the

virtual testing period, the closer the software reliability value to unity. Based on

the assumption that no software fault is found during the virtual testing time,

NHPP-based SRMs could provide much higher software reliability estimates

than the results in Tables 3.34 and 3.35. In other words, it is impossible to

guarantee a satisfactory software reliability estimate without setting up the

virtual testing time long enough, which implies the belief that the software
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product is reliable. In Tables 3.36, 3.37, 3.37 and 3.38, we seek the virtual

testing time when the specified reliability level is given by 90%. For instance, in

TIDS1, we find that the virtual testing time when the reliability is greater than

90% becomes 130% and 180% of the testing time for the Burr-type NHPP-based

SRM and the SRATS NHPP-base SRM, respectively, so that longer virtual

testing time with zero fault count than the testing length is required to achieve

the requirement because the quantitative software reliability itself is the belief

by the tester. In some cases, it is seen that 90% software reliability requirement

seems to be unrealistic because the virtual testing time with zero fault count

must be dozens of times tmD
or tmI

, i.e., in TDDS1, TDDS2, TDDS6, TDDS7,

and TIDS6. On one hand, in TDDS4 and TIDS7, the 90% requirement level is

achieved after the software testing when SRATS NHPP-based SRM is used. Of

course, the software release decision considered here is based on the existence

of virtual testing time with zero fault count. If any software fault was detected

during the period, the observation point to trigger the virtual testing is changed

step by step.
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3.4 Numerical Comparison between All Para-
metric NHPP-based SRMs

Finally, we summarize the numerical experimental results of the novel NHPP-

based SRMs we proposed in this chapter. A comparison among the existing

type-I NHPP-based SRMs, the type-II NHPP-based SRMs with representative

fault-detection time distribution, the Lindley-type NHPP-based SRMs, and the

Burr-type NHPP-based SRMs is performed to confirm which SRM can guar-

antee the best goodness-of-fit and predictive performances. In Tables 3.40 and

3.41, we compare the AIC of these 4 types of NHPP-based SRMs in the time-

domain data and group data, respectively. It is observed that our Burr-type

NHPP-based SRMs outperformed the other SRMs in most cases, in both the

time-domain data and group data. The existing type-I NHPP-based SRMs

could only guarantee the smaller AIC in TDDS6 and TIDS7. Then, we focus

on the PMSE in Tables 3.42 and 3.43 to investigate the predictive performance

among 4 types of NHPP-based SRMs. At this point, it is obvious that the

Burr-type NHPP-based SRM that could show the smaller AIC, no longer guar-

antees a smaller PMSE. It indicates that the SRM that performs well in terms

of goodness-of-fit does not necessarily have a superior software fault predic-

tion capability. However, there is no denying that software testers still tend

to choose SRMs with better goodness-of-fit performance to predict the number

of software faults in future phases. Hence, we compare the PMSEs of 4 types

of NHPP-based SRMs in Tables 3.42 and 3.43 for the time-domain data and

group data, respectively. For the time-domain data, at 50 % and 80 % obser-

vation points, the novel NHPP-based SRMs we propose in this chapter could

completely outperform the existing type-I NHPP-based SRMs, while even at

20% observation points, the existing type-I NHPPs guaranteed smaller PMSEs

in TDDS2, TDDS4, and TDDS7. For the group data, at each observation point,

our Lindley-type and Burr-type NHPP-based SRMs were able to guarantee the

smaller PMSE at least in general cases at every observation point. Hence, we

can conclude that our proposed new NHPP-based SRMs could be essentially

replaced by the existing NHPP-based SRMs in many cases.
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Table 3.42: Predictive performances based on PMSE (time-domain data).

(i) Prediction from the 20% observation point

Data Set Existing type-I NHPP Type-II NHPP Lindley-type Burr-type

TDDS1 5.073 6.420 4.610 3.951

TDDS2 42.104 145.648 229.840 141.815

TDDS3 32.131 1417.110 177.420 28.422

TDDS4 56.477 198.490 137.850 59.027

TDDS5 9177.670 467.320 194.330 789.554

TDDS6 83.960 79.614 80.900 50.112

TDDS7 32.217 207.592 71.490 88.338

TDDS8 1852.520 1474.020 723.310 1700.110

(ii) Prediction from the 50% observation point

TDDS1 6.118 6.420 10.080 4.501

TDDS2 14.890 11.747 3.700 0.717

TDDS3 11.712 10.283 455.740 259.988

TDDS4 103.504 106.282 68.140 94.254

TDDS5 193.903 77.498 41.100 110.137

TDDS6 10.493 30.944 18.820 4.358

TDDS7 4480.620 18.425 322.720 37.702

TDDS8 3569.230 45.344 146.700 194.841

(iii) Prediction from the 80% observation point

TDDS1 5.772 3.432 4.440 5.050

TDDS2 0.588 0.819 0.600 0.583

TDDS3 9.419 19.992 33.830 7.997

TDDS4 4.253 4.258 3.900 2.867

TDDS5 21.715 51.677 5.020 32.079

TDDS6 2.041 3.697 1.590 2.032

TDDS7 10.498 4.291 13.470 5.879

TDDS8 57.901 9.268 59.170 20.561
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Table 3.43: Predictive performances based on PMSE (group data).

(i) Prediction from the 20% observation point

Data Set Existing type-I NHPP Type-II NHPP Lindley-type Burr-type

TIDS1 220.732 218.763 93.000 205.956

TIDS2 29.244 47.377 36.260 5.784

TIDS3 820.049 171.702 123.010 300.014

TIDS4 142.854 86.083 66.570 129.764

TIDS5 2.628 2.625 0.330 0.275

TIDS6 98.903 25.613 117.590 30.2254

TIDS7 387.694 67.730 52.320 233.833

TIDS8 448.935 423.360 311.520 423.360

(ii) Prediction from the 50% observation point

TIDS1 157.837 159.545 20.740 18.145

TIDS2 30.786 3.722 14.800 15.789

TIDS3 564.782 849.736 184.010 346.721

TIDS4 101.303 101.258 95.310 80.646

TIDS5 0.344 0.347 0.140 0.094

TIDS6 365.493 18.825 20.650 28.673

TIDS7 22.894 27.045 17.290 22.561

TIDS8 29.110 156.329 125.440 20.613

(iii) Prediction from the 80% observation point

TIDS1 1.762 8.736 3.200 4.676

TIDS2 0.464 0.464 0.360 0.455

TIDS3 0.331 41.228 0.340 0.230

TIDS4 1.850 18.985 0.410 0.695

TIDS5 0.224 0.090 0.080 0.070

TIDS6 3.432 6.144 1.100 1.315

TIDS7 6.118 17.300 30.110 21.403

TIDS8 0.864 6.333 2.690 0.862



Chapter 4

NHPP-based Software
Reliability Modeling with
Local Polynomial Debug
Rate

In this chapter, we propose local polynomial SRMs, which can be categorized

into a semi-parametric modeling framework. Our models belong to the common

NHPP-based SRMs but possess a flexible structure to approximate an arbitrary

mean value function by controlling the polynomial degree. More specifically, we

develop two types of local polynomial NHPP-based SRMs; type-I and type-II

SRMs, which are substantial extensions of the existing NHPP-based SRMs in a

similar category.

4.1 Preliminary

As we know, the practical experiences suggest no unique SRM exists, which

could fit every software fault-count data, so in parametric software reliability

modeling based on the representative software fault-detection time distribution,

the selection of the fault-detection time c.d.f. is always required. Since the

goodness-of-fit and predictive performances for the parametric SRMs strongly

depend on the software fault-count data, it is quite important to apply the

so-called semi-parametric SRMs without specifying the software fault-detection

time c.d.f. The gamma-mixture NHPP-based SRM [83] can be regarded as

an intuitively convinced semi-parametric SRM to unify the existing NHPP-

105
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based SRMs approximately. Okamura and Dohi [84] extended the gamma-

mixture NHPP-based SRM [83], and developed the phase-type NHPP-based

SRMs by assuming the phase-type distribution in the software fault-detection

time c.d.f.. Since the phase-type distribution can approximate an arbitrary

c.d.f. with arbitrary accuracy by designing the phase structure of the underlying

continuous-time Markov chain, it seems to involve all NHPP-based SRMs in

the modeling framework. However, it should be noted that finding the optimal

phase structure is almost impossible. So, we still encounter serious problems in

determining the phase structure and the model freedom indicating the number

of phases when the phase-type NHPP-based SRMs are considered. Nafreen and

Fiondella [85] concerned the software debug rate and overviewed several NHPP-

based SRMs with bathtub-shaped debug rate by dealing with a low-order local

polynomial function called the quadratic model.

In this chapter, the fundamental idea comes from the assumption that the

software debug rate, which is equivalent to the hazard rate function of software

fault-detection time, is approximated by an arbitrary local polynomial function.

This idea seems well-motivated to provide a feasible semi-parametric NHPP-

based SRM, because one does need neither to select a parametric c.d.f. nor to

determine the phase structure. The main feature of the local polynomial NHPP-

based SRMs is to improve the goodness-of-fit by controlling the polynomial

degree. More precisely, we determine the polynomial degree by AIC and select

the best local polynomial debug rate. We treat the type-I and type-II NHPP-

based SRMs as well with high-order local polynomial debug rate and investigate

both the goodness-of-fit and predictive performances of our semi-parametric

NHPP-based SRMs through comprehensive experiments with actual software

development project data.

4.2 Software Debug Rate

4.2.1 Introduction

In addition to viewing the NHPP-based SRMs with the mean value function

(see Chapter 3), Yamada and Osaki [86] also characterized the NHPP-based

SRMs with the software debug rate. It implies the instantaneous fault-detection



4.2. SOFTWARE DEBUG RATE 107

rate per fault at time t as follows.

d(t;α) =
dM(t;θ)/dt

ω −M(t;θ)
=

f(t;α)

{1− F (t;α)}
, (4.1)

where f(t;α) = dF (t;α)/dt is the probability density function (p.d.f.). Hence,

the software debug rate is equivalent to the hazard rate of the fault-detection

time c.d.f. F (t;α), as well as the intensity function in Equation (1.12). In

Table 1.1, we summarize the c.d.f., mean value function and software debug

rate function for the 11 existing type-I NHPP-based SRMs in Table 3.1, and the

3 existing type-II NHPP-based SRMs (Musa-Okumoto, Cox-Lewis and Duane

SRMs).

4.2.2 Polynomial Software Debug Rate

Probability distributions with a local polynomial hazard rate function have been

used for modeling lifetimes in reliability engineering. Apart from the NHPP-

based software reliability modeling, several authors concerned the polynomial

hazard rate models in the traditional lifetime data analysis. Bain [87], Bal-

akrishnan and Malik [88], Mahmoud and Al-Nagar [89] considered a low-order

polynomial model called the linear exponential distribution in the lifetime data

analysis. Lawless [90] gave some examples of the least-squares estimation and

the maximum likelihood estimation for the fundamental polynomial hazard rate

models and their variants with censoring and grouped data. Krane [91] applied

the polynomial model to the multiple regression analysis. Kogan [92] proposed

a computation algorithm to obtain the moments from the order statistics of

lifetime data with generalized bathtub hazard rate. Csenki [93] derived the

Laplace transform of the continuous random variable with a local polynomial

hazard rate function and applied it to estimate the polynomial coefficients from

the sample moments of the c.d.f. Bagkavos and Patil [94] proposed a local

polynomial fitting by means of the kernel method in failure rate estimation.

Suppose in the NHPP-based software reliability modeling that

d(t;α) = µ0 + µ1t+ µ2t
2 + · · ·+ µmtm, (4.2)

where α = (µ0, µ1, . . . , µm) ∈ Rm+1. Then the c.d.f. is expressed as

F (t;α) = 1− exp

− m∑
j=0

µjt
j+1

j + 1

 . (4.3)
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Table 4.1: The representative existing NHPP-based SRMs.

Type-I NHPP-based SRMs

Time distribution & SRM Debug rate function

Exponential dist. (Exp) d(t;α) = b

Gamma dist. (Gamma) d(t;α) = cbtb−1e−ct

Γ(b)−
∫ t
0
sb−1e−csds

Pareto dist. (Pareto) d(t;α) = b
c+t

Truncated normal dist. (Tnorm) d(t;α) = −
√

2
π e

− (c−t)2

2b2

b
(
erfc

(
c−t√

2b

)
−2
)

Log-normal dist. (Lnorm) d(t;α) =

√
2
π e

− (c−log(t))2

2b2

bt
(
erfc

(
c−log(t)√

2b

)
−2
)

Truncated logistic dist. (Tlogist) d(t;α) = et/b

bec/b+bet/b

Log-logistic dist. (Llogist) d(t;α) = t
1
b
−1

b(ec/b+t1/b)

Truncated extreme-value max dist. (Txvmax) d(t;α) = e
c−t
b

b

(
ee

c−t
b −1

)
Log-extreme-value max dist. (Lxvmax) d(t;α) = ec/bt−

b+1
b

b
(
ee

c/bt−1/b−1
)

Truncated extreme-value min dist. (Txvmin) d(t;α) = e
c+t
b

b

Log-extreme-value min dist. (Lxvmin) d(t;α) = ec/bt
1
b
−1

b

Type-II NHPP-based SRMs

Pareto dist. (Muse-Okumoto) d(t;α) = b
c+t

Truncated extreme-value min dist. (Cox-Lewis) d(t;α) = eb+ct

Log-extreme-value min dist. (Duane) d(t;α) = ec/bt
1
b
−1

b

Γ(·) : standard gamma function

erfc(·) : complementary error function

ln(·) : natural logarithmic function

The above c.d.f. with m + 1 degrees is interpreted as a probability model on

the minimum of m + 1 independent Weibull random variables if α ∈ Rm+1
+ ,

where j-th of them has a scale parameter j+1
√

(j + 1)/µj and shape parameter

j+1. The above probability distribution is called the poly-Weibull distribution.

Berger and Sun [95], Davison and Louzaada-Neto [96] established the Bayesian

estimation for the poly-Weibull distribution. Freels et al. [97] considered the

maximum likelihood estimation for the poly-Weibull distribution. Demiris et

al. [98] applied the poly-Weibull distribution to investigate the effectiveness of

cardio-thoracic transplantation in the survivor analysis. However, the related
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works mentioned above made the strong assumption of α ∈ Rm+1
+ , so that α is

a non-negative vector.

In our NHPP-based SRM, once the local polynomial hazard rate function

is determined, from Equations (3.1) and (3.5), the mean value functions of the

type-I local polynomial NHPP-based SRM and the type-II local polynomial

NHPP-based SRM can be obtained as

M(t;θ) = ω

1− exp

− m∑
j=0

µjt
j+1

j + 1

 (4.4)

and

M(t;α) =

m∑
j=0

µjt
j+1

j + 1
, (4.5)

respectively. As the special cases of type-I local polynomial NHPP-based SRM,

when m = 0 and m = 1, the hazard rate functions become d(t;α) = µ0 and

d(t;α) = µ0+µ1t, respectively. When m = 1, the associated c.d.f. becomes the

linear exponential distribution [87, 88, 89]. Nafreen and Fiondella [85] consid-

ered a type-I NHPP-based SRM with the linear exponential distribution for the

purpose to develop a bathtub-shaped software debug rate. Hence, it is evident

that Equation (4.2) is a general form to express the software debug rate.

If we assume that α ∈ Rm+1
+ , i.e., (µ0, µ1, . . . , µm) are all positive real num-

bers, it always holds that d(t;α) ≥ 0 and F (t;α) is increasing hazard rate (IHR).

However, dissimilar to hardware reliability, it is well known that the software

reliability growth phenomenon can be observed in software testing. In other

words, the IHR assumption seems to be rather strong and not to be plausible to

explain the software reliability growth. Hence the polynomial parameters may

be negative except for µ0, because µ0 ≥ 0 is a necessary condition of d(t;α) ≥ 0.

In fact, it is not so easy to find out α ∈ Rm with µ0 ≥ 0 to satisfy the constraint

d(t;α) ≥ 0.

4.3 Parameter Estimation

In this chapter, we consider only the software fault count group data, which

consists of the number of detected faults in a set of calendar-time-based intervals

[ti−1, ti) (i = 1, 2, . . . , k). The likelihood function and log likelihood function

are shown in Equations (3.8) and (3.9).
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Then the maximum likelihood (ML) estimate in the estimation phase, θ̂ ∈

(ω̂, α̂), can be obtained as argmaxθ or αlnL(θ or α) in Equation (3.8), subject

to d(ti, α̂) = µ̂0 + µ̂1ti + µ̂2t
2
i + · · ·+ µ̂mtmi ≥ 0 with i = 1, 2, . . . , k.

In what follows, we consider the following two cases;

• Case I: α = (µ0, µ1, . . . , µm) ∈ Rm+1
+ are all positive real numbers.

• Case II: µ0 ≥ 0 and (µ1, . . . , µm) ∈ Rm are real numbers.

It is evident that Case I is rather restrictive because the software debug rate is al-

ways increasing over time t. However, the maximum likelihood estimation is eas-

ily made because of d(ti, α̂) ≥ 0 for all the observation data ti (i = 1, 2, . . . , k).

In Case II, we consider all the combinations of µj ∈ R+ and µj ∈ R− for all

j = 1, 2, . . . ,m, say 2m combinations, and solve the maximization problems

with constraint d(ti,α) ≥ 0. Note that the general-purpose optimization solver

such as Mathematica and MATLAB enables solving the above problem when the

search space for each polynomial coefficient is limited in the positive or negative

region.

Figure 4.1 illustrate the behaviors of our polynomial debug rates d(ti, α̂)

with degree m = 1, 2, . . . , 6 in group data TIDS1 (see Table 1.1 (ii) TIDS14) in

Case I. It is seen that all the software debug rates are increasing in time. On one

hand, in Figure 4.2, we plot the behaviors of software debug rates with TIDS1 in

Case II. As the polynomial degree m increases, the polynomial software debug

rates fluctuate and can represent much more complex behaviors. It is possible

to represent the non-increasing behaviors of software debug rate by relaxing the

assumption of α ∈ Rm+1
+ and to increase the log-likelihood function as well.

Note that our purpose here is not to compare Case I with Case II, because Case I

is involved as a special case of Case II. We aim to investigate the estimation effect

between Case I and Case II, and compare our type-I and type-II local polynomial

NHPP-based SRMs with the existing parametric NHPP-based SRMs.

4.4 Numerical Experiments

In numerical experiments, we use 8 software fault-detection group data sets

(TIDS1∼TIDS8) (see Table 1.1 (ii) DS14∼DS21). All data sets were observed

in actual mission-critical software development projects.
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Figure 4.1: Behavior of software debug rates with TIDS1 in Case II.

4.4.1 Goodness-of-fit Performance

To investigate the goodness-of-fit performances quantitatively, we calculate the

ML estimates of the model parameters, θ̂ or α̂, for our type-I local polynomial

NHPP-based SRM and type-II local polynomial NHPP-based SRM by

argmaxθ or αlnL(θ or α; ti, i = 1, · · · , k)

s.t. d(ti; α̂) ≥ 0, i = 1, ..., k. (4.6)

AIC and MSE are used as measures for goodness-of-fit. The smaller AIC/MSE

is the better SRM in terms of the goodness-of-fit to the underlying fault count

data. Algorithm 1 shows an optimization procedure to find the best polynomial

degree in our local polynomial NHPP-based SRMs in each data set.

Figure 4.3 plots the behavior of the mean value functions of our local poly-

nomial and the existing NHPP-based SRMs with the group data set TIDS1.

The best SRMs with minimum AIC were selected from the type-I and type-
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Figure 4.2: Behavior of software debug rates with TIDS1 in Case II.

II local polynomial NHPP-based SRMs in all combinations of m = 1, 2, . . . , 6

for both Case I and Case II, and compared with the best existing type-I and

type-II NHPP-based SRMs in terms of minimization of AIC. At first look, both

the type-I and type-II local polynomial NHPP-based SRMs could show more

accurate estimations close to actual software fault counts. More specifically,

in Table 4.2, we present the AICs/MSEs of our local polynomial NHPP-based

SRMs, where the polynomial degree changed from m = 1 to m = 6, and the

best NHPP-based SRMs were determined with the minimum AIC. First, we no-

tice that as the polynomial degree increases, the number of free parameters also

increases and that our local polynomial NHPP-based SRMs with high-degree

of polynomials could not always lead to the smaller AIC results. In fact, we

examined the AIC values with m = 7, 8, . . . in our preliminary experiments, and

observed that m = 6 is enough as the maximum polynomial degree from the

viewpoint of minimization of AIC.
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Algorithm 1Maximum likelihood estimation for local polynomial NHPP-based
SRMs in estimation phase.

Input: {I = (t1, n1), · · · , (tk, nk), where each ti ∈ R+ and ni ∈ R+} k: testing
time

Output: Parameter estimates α̂ = (µ̂0, µ̂1, . . . , µ̂m) for m ∈ R+, AIC
1 Parameter initialise α = (µ0, µ1, . . . , µm) for m ∈ R+

µ0 ∈ R+, (µ1, . . . , µm) ∈ Rm−1

for i← 1 to k do
2 α← argmaxαlnL(α)

Compute d(ti; α) by (9)
if d(ti; α) > 0 then

3 α̂← α
Compute AIC by (15)
else

4 for j ← 1 to m do
5 Set the parameter range: µj ∈ R− or µj ∈ R+

Parameter combinations labeled from 1 to 2m

for s← 1 to 2j do
6 αs ← argmaxαs

lnL(αs)
Compute d(ti; αs)s by (9)
Compute AICs by (15)
if AICs has minimum value and d(ti; α)s > 0 then

7 α̂← αs

AIC ← AICs

8 end

9 end

10 end

11 end

12 end

13 end

By comparing our local polynomial NHPP-based SRMs with the existing

NHPP-based SRMs in Table 4.2, it can be seen that the type-I local polynomial

NHPP-based SRM in Case II could provide the smaller AIC in only TIDS4, but

at the same time, it could outperform the other NHPP-based SRMs from the

viewpoint of MSE in 6 cases (TIDS1 ∼ TIDS4, TIDS5, and TIDS6). On the

other hand, the type-II local polynomial NHPP-based SRM in Case II could

provide the smaller AIC in TIDS1 and TIDS5. Though the existing type-I

NHPP-based SRM guaranteed the smaller AIC in a total of 5 cases, by check-

ing Equations (4.4) and (4.5) in addition to Table 4.1, it is immediately obvious

that the number of free parameters of our type-I and type-II local polynomial

NHPP-based SRMs is consistent with almost all NHPP-based NHPPs (except

type-I exp SRM) when m = 2 and m = 3, respectively. In other words, for each
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subsequent increase in degree m, the difference in AIC between the local polyno-

mial NHPP-based SRMs and the existing type-I NHPP-based SRMs increases

by 2. On one hand, MSE exhibits the vertical distance between the estimated

mean value function and the cumulative number of software fault counts, so we

understood that the MSE is a more visual criterion in this comparative study.

We also notice that as the special case of our local polynomial NHPP-based

SRM in Case-II, the one in Case-I could not show the better goodness-of-fit

performance in any data set. It illustrates that in actual software testing, the

software debug rate will not be monotonically increasing, but will fluctuate

according to the difficulty of software fault fixing.

4.4.2 Predictive Performances

It is worth mentioning that the better goodness-of-fit to the past observation

does not always lead to the better performance for future prediction. Since

assessing the quantitative software reliability is equivalent to predicting the

fault-free probability during a future testing/operational period, it is important

to investigate the predictive performance of the NHPP-based SRMs with local

polynomial software debug rate. When k and nk, software fault count data,

are available, and the prediction length is given by l (= 1, 2, · · · ), we utilize the

PMSE:

PMSE =

√∑k+l
i=k+1{ni −M(ti; α̂ or θ̂)}2

l
(4.7)

for the group data, where θ̂ or α̂ is the ML estimate obtained at tk with con-

straint d(ti,α) ≥ 0 (i = 1, 2, . . . , k, . . . , k + l). It is worth noting that in the

prediction phase at software testing time tk, the maximum likelihood estimates

must also satisfy d(ti,α) ≥ 0 (i = k+ 1, . . . , k+ l) additionally, because the fu-

ture prediction has to guarantee the non-negativeness of d(ti,α). In this sense,

the maximum likelihood estimation in the prediction phase is modified as

argmaxθ or αlnL(θ or α; ti, i = 1, · · · , k)

s.t. d(ti;α) ≥ 0, i = 1, ..., k, k + 1, · · · , k + l, (4.8)

which is slightly different from Equation (4.6) We give Algorithm 2 as the

pseudo-code for the maximum likelihood estimation in the prediction phase

of model parameters.
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Algorithm 2Maximum likelihood estimation for local polynomial NHPP-based
SRMs in prediction phase.

Input: {I = (t1, n1), · · · , (tk, nk), · · · , (tk+l, nk+l), where each ti ∈ R+ and
ni ∈ R+} k: testing time before observation point l: prediction time
length

Output: Parameter estimates α̂ = (µ̂0, µ̂1, . . . , µ̂m) for m ∈ R+, PMSE
14 Parameter initialise α = (µ0, µ1, . . . , µm) for m ∈ R+

µ0 ∈ R+, (µ1, . . . , µm) ∈ Rm−1

for i← 1 to k do
15 α← argmaxαlnL(α)

for i← 1 to k + l do
16 Compute d(ti; α) by (9)

if d(ti; α) > 0 then
17 α̂← α

Compute PMSE by (18)
else

18 for j ← 1 to m do
19 Set the parameter range: µj ∈ R− or µj ∈ R+

Parameter combinations labeled from 1 to 2m

for s← 1 to 2j do
20 αs ← argmaxαs

lnL(αs)
Compute d(ti; αs)s by (9)
Compute AICs by (15)
Compute PMSEs by (18)
if AICs has minimum value and d(ti; α)s > 0 then

21 α̂← αs

PMSE ← PMSEs

22 end

23 end

24 end

25 end

26 end

27 end

28 end

We set the observation point k at 20%, 50% and 80% points of the whole

time series data. That is, we predict the future behavior of software fault counts

at tk+1, tk+2, . . . , tk+l from the training data; t1, t2, . . . , tk for the group data.

Figure 4.4 shows the prediction results for the cumulative number of software

faults in TIDS1 for our type-I and type-II local polynomial NHPP-based SRMs,

and the existing type-I and type-II NHPP-based SRMs. As we emphasized in

Chapter 3, the mean value function of type-I NHPP is bound while that of type-

II NHPP is unbound, so that all type-II NHPP-based SRMs are divergent while

the type-I NHPP-based SRMs are convergent, in Figure 4.4 (a), (b) and (c).
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The long-term prediction at the 20% observation point is not accurate enough,

but the type-II NHPP-based SRMs gave slightly higher prediction accuracy. In

contrast, the type-I NHPP-based SRMs performed better in the medium- and

short-term predictions. Tables 4.3, 4.4 and 4.5 present the prediction results at

each observation point based on the minimum PMSE in group data sets, where

we select the best SRM with the smallest PMSE from our type-I and type-II local

polynomial NHPP-based SRMs with m = 1, 2, . . . , 6 in both Case I and Case

II, and the existing type-I/type-II NHPP-based SRMs. It is seen that when the

testing phase is early (20%), our type-I local polynomial SRM in Case II could

guarantee the smaller PMSE than the existing NHPP-based SRMs in TIDS1

and TIDS8, and our type-II local polynomial SRM could provide the smaller

PMSE than the existing NHPP-based SRMs in 2 out of 8 cases (TIDS3 and

TIDS4). When the testing phase is middle (50%), the type-I local polynomial

SRM in Case I tended to give the better predictive performance in 5 cases of

data sets (TIDS1, TIDS3, TIDS4, TIDS7 and TIDS8), and the type-II local

polynomial SRM in Case I could provide the smaller PMSE in TIDS6. When

the testing phase is later (80%), our type-I local polynomial SRM outperformed

the existing NHPP-based SRMs in 4 cases of data sets (TIDS4, TIDS6, TIDS7

and TIDS8), and the type-II local polynomial NHPP-based SRM in Case II

could provide the smaller PMSE in only TIDS2.

It can be noticed that our best local polynomial SRMs in Case I and Case II

show the exactly same best degree and PMSE value in many data sets at each

observation point. It indicates that the minimum PMSEs are provided by the

local polynomial NHPP-based SRM with α̂ = (µ0, µ1, . . . , µm) ∈ Rm+1
+ in both

Case I and Case II, even if we consider all the parameter combinations with

µ0 ≥ 0 and (µ1, . . . , µm) ∈ Rm in the parameter estimation in Case II. This

again supports the fact that Case I is involved as a special case of Case II in

the local polynomial NHPP-based SRMs, as we mentioned in Section 4.3.

The lesson learned is that both type-II local polynomial NHPP-based SRM

and type-I local polynomial NHPP-based SRM are quite competitive with the

existing NHPP-based SRMs in prediction for the unknown future pattern on

software fault detection in the early and later software testing phases, respec-

tively. On one hand, our type-I local polynomial NHPP-based SRM has a high
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Figure 4.4: Predictive behavior of cumulative number of software faults in
TIDS1.



120

potential to provide more accurate predictions of the number of residual soft-

ware faults in the middle of the software testing phase. Although quite a few

of the best PMSEs are guaranteed in the local polynomial NHPP-based SRMs

with m = 1, it is not difficult to observe that the PMSEs for some local polyno-

mial NHPP-based SRMs which outperformed the existing NHPP-based SRMs

are given by the higher polynomial degree such as m = 3 ∼ 6, through the com-

parison with the existing NHPP-based SRMs, in 20 % observation point with

TIDS4, 50 % observation point with TIDS6 and TIDS8, and 80 % observation

point with TIDS7.
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Note that there is no uniquely best NHPP-based SRM in Tables 4.3, 4.4

and 4.5 that can always guarantee the best predictive performance. In other

words, it is not possible to know in advance which SRM gives the most accurate

software fault prediction capability. The more common approach is to predict

the future behavior of software faults using the best SRM fitted to the software

fault count data observed up to the observation point if no overfitting occurs. In

Tables 4.6, 4.7 and 4.8 we select the local polynomial NHPP-based SRMs and the

existing NHPP-based SRMs, which gave the minimum AIC, and compared their

associated predictive performances. It is obvious that all NHPP-based SRMs

could not guarantee the smallest AIC and PMSE simultaneously. In TIDS3

at 50% observation point, TIDS1 and TIDS3 at 80% observation point, our

type-I local polynomial NHPP-based SRM and the exiting type-I NHPP-based

SRMs could provide the smaller AIC and PMSE at the same time. When we

focus on only the AIC, it can be found that our type-I local polynomial NHPP-

based SRMs could guarantee the smaller AIC in TIDS3 at 50% observation

point, TIDS4 and TIDS6 at 80% observation point. Also, our type-II local

polynomial NHPP-based SRMs could guarantee the smaller AIC in TIDS1 and

TIDS5 at 20% observation point, TIDS5 at 80% observation point. In this

realistic scenario that the best prediction model is unknown at the observation

point, we can clearly find that our local polynomial NHPP-based SRMs could

guarantee the smaller PMSE in at least half of the cases, regardless of the

observation point, where the PMSEs of TIDS1 in Table 4.6, TIDS1, TIDS3 and

TIDS4 in Table 4.7 and TIDS4 in Table 4.8 have the more significant differences

when compared with the existing NHPP-based SRMs.
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Chapter 5

Proportional
Intensity-based SRMs

This chapter focuses on the so-called proportional intensity-based software re-

liability models (PI-SRMs), which are extensions of the common NHPP-based

SRMs, and describe the probabilistic behavior of software fault-detection pro-

cess by incorporating the time-dependent software metrics data observed in the

development process. The PI-SRM is proposed by Rinsaka et al. in the paper

”PISRAT: Proportional Intensity-Based Software Reliability Assessment Tool”

in 2006. Specifically, we generalize this seminal model by introducing eleven

well-known fault-detection distributions.

5.1 Preliminary

The existing common NHPP-based SRMs are generally characterized by the

mean value functions or the c.d.f.s of software fault-detection time. Hence, they

can quantitatively represent the typical software reliability growth phenomena

and the software debugging scenarios during the software testing phase. In other

words, the above approach is categorized into a black-box approach, where the

software fault-detection time distribution is estimated with only the fault count

data and does not depend on the knowledge/learning effects of the software

product, test resources, and the process information. It should be noted that

the common NHPP-based SRMs are quite simple in software reliability measure-

ment and fault prediction but miss out on several software development/testing

metrics of data collected throughout the software development process.
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In this chapter, we summarize the so-called proportional intensity-based soft-

ware reliability models (PI-SRMs) by Rinsaka et al. [99], which are extensions of

the common NHPP-based SRMs, As an extension of the common NHPP-based

SRMs, this chapter summarizes the so-called proportional intensity-based soft-

ware reliability models (PI-SRMs), and describes the probabilistic behavior of

the software fault-detection process by incorporating the time-dependent soft-

ware metrics data observed in the development process. In the subsequent pa-

per, Shibata et al. [100] develop a software reliability assessment tool, PI-SRAT,

to automate the parameter estimation and quantify the software reliability. We

generalize the seminal PI-SRM in [99] by introducing several well-known fault-

detection time distributions because the work in [99] limited a few kinds of

software fault-detection time distributions. The advantage of PI-SRMs is to

combine a regression formula to represent the dependence of software metrics

data with a stochastic counting process for the software fault counts. Similar to

the well-known software reliability assessment tool in SRATS [43], we introduce

eleven parametric models (see Table 5.1) (baseline intensity functions) in the

PI-SRM and comprehensively evaluate the potential performances.

5.2 Proportional Intensity Model

5.2.1 Model Description

Suppose that l types of software metrics data, xk = (xk1, · · · , xkl) (k =

1, 2, . . . , n), are observed at each testing time tk (= 0, 1, 2, . . . , n). For ana-

lytical purposes, we assume that each software metric xk is dependent on the

cumulative testing time tk, and can be considered as a time-dependent func-

tion, denoted by xk(tk). In fact, this sort of parameter is referred to as a time-

dependent covariate [101, 102] in statistics and has been widely investigated in

the context of the Cox regression-based proportional hazard model (PHM). We

define the intensity function for our PI-SRM by:

λx(tk,xk;θ,β) = λ0(tk;θ)g(xk;β), (5.1)

with the regression coefficients β = (β1, . . . , βl) and the baseline intensity

λ0(tk;θ) (> 0), and the covariate function g(xk;β) (> 0). When g(xk;β) = 1

for any xk, the PI-SRMs are reduced to the NHPP-based SRMs with the base-
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Table 5.1: The baseline intensity function of existing NHPP-based SRMs.

SRM λ(t; θ)

Exponential distribution

(exp)
λ(t;θ) = ωbe−bt

Gamma distribution

(gamma)
λ(t;θ) = ω

e−
t
c ( t

c )
b−1

cΓ(b)

Pareto distribution

(pareto)
λ(t;θ) =

ωbc( c
c+t )

b−1

(c+t)2

Truncated normal distribution

(tnorm)
λ(t;θ) = ωe

− (c−t)2

2b2

√
2πb
(
1− 1

2 erfc
(

c√
2b

))
Log-normal distribution

(lnorm)
λ(t;θ) = ωe

− (c−log(t))2

2b2√
2πbt

Truncated logistic distribution

(tlogist)
λ(t;θ) = ωe−

t−c
b

b
(
1− 1

ec/b+1

)(
e−

t−c
b +1

)2

Log-logistic distribution

(llogist)
λ(t;θ) = ωe−

log(t)−c
b

bt

(
e−

log(t)−c
b +1

)2

Truncated extreme-value maximum distribution

(txvmax)
λ(t;θ) = ωe−

t−c
b

−e
− t−c

b

b
(
1−e−ec/b

)
Log-extreme-value max maximum distribution

(lxvmax)
λ(t;θ) =

ωce
−( t

b )
−c

( t
b )

−c−1

b

Truncated extreme-value minimum distribution

(txvmin)
λ(t;θ) = ωe−

−c−t
b

−e
−−c−t

b +ec/b

b

Log-extreme-value minimum distribution

(lxvmin)
λ(t;θ) = ωe−

−c−log(t)
b

−e
−−c−log(t)

b

bt
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line intensity λ0(t;θ). Based on the idea of common Cox regression PHM, it is

appropriate to assume the following exponential form for the covariate function:

g(xk;β) = exp(xkβ). (5.2)

In the literature [101, 102, 103], the above form is widely accepted to make

the analysis easy and flexible. Lawless [104] also analyzed the event count data

in actual medical applications with the same exponential covariate function.

Note that the time-independent covariates considered by Lawless [104] were

the binary data taking 0 or 1. Rinsaka et al. [99] proposed an intuitive but

reasonable model to deal with the effect of the cumulative number of software

faults and the software metrics in the covariate function. Define the mean value

function for the given data (tk, yk,xk) (k = 1, 2, . . . , n) by:

Mp(t1;θ,β) =

∫ t1

0

λ0(u;θ) exp(x1β)du, (5.3)

Mp(t2;θ,β) =

∫ t2

t1

λ0(u;θ) exp(x2β)du+Mp(t1;θ,β), (5.4)

...

Mp(tk;θ,β) =

k∑
i=1

exp(xiβ)

∫ ti

ti−1

λ0(u;θ)du

=

k∑
i=1

exp(xiβ)× [M0(ti;θ)−M0(ti−1;θ)] , (5.5)

where M0(ti;θ) =
∫ ti
0

λ0(u;θ)du. It is seen again that the PI-SRM can be

reduced to the common NHPP-based SRM when βj = 0 for all j (= 1, 2, · · · , l).

By introducing Mp(t;θ,β), we confirm that the monotone property of the mean

value function with respect to testing time r can be guaranteed. Substituting

the intensity function in Table 5.1 into the baseline intensity λ0(t;θ), we obtain

the eleven PI-SRMs corresponding to the NHPP-based SRMs in SRATS [43].

5.2.2 Maximum Likelihood Estimation

We also utilize the maximum likelihood estimation to estimate the parameter

vectors θ and β of PI-SRM. For the fault count data (tk, yk) and software metrics

data xk = (xk1, · · · , xkl) (k = 1, 2, . . . , n), we define the likelihood function by:

L(θ,β) =
n∏

k=1

{Mp(tk;θ,β)−Mp(tk−1;θ,β)}yk−yk−1

(yk − yk−1)!
exp(−Mp(tn;θ,β)), (5.6)
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so that the log-likelihood function of PI-SRM can be written as:

lnL(θ,β) =

n∑
k=1

ln [Mp(tk;θ,β)−Mp(tk−1;θ,β)] (yk − yk−1)

−
n∑

k=1

ln [(yk − yk−1)!]−Mp(tn;θ,β). (5.7)

By maximizing Equation (5.7) with the Newton–Raphson method, we obtain

the maximum likelihood estimates (θ̂, β̂) of PI-SRM.

5.3 Numerical Examples

In our numerical examples, four software fault count data with software metrics

are used, where these data are measured in the real-time command and control

system development projects [24]. We re-name these data as GDS1 ∼ GDS4.

Details are shown in Table 1.1 (iv), in which three software metrics data: failure

identification work, execution time, and computer time-failure identification, are

involved in addition to the cumulative number of software faults detected at each

testing time (calendar week in [24]). We quantitatively evaluate the goodness-of-

fit performances of eleven PI-SRMs and evaluate the predictive performances via

the above four time-dependent metrics data as the covariates. In the following

discussion, we consider two patterns in dealing with software metrics. One is to

input the software metrics as the cumulative xk = (xk1, · · · , xkl), the other as

the difference xk =
(
xk1 − x(k−1)1, · · · , xkl − x(k−1)l

)
, where l is the number of

time-dependent metrics data in each data set and k = 0, 1, 2, · · · , n. The main

concern here is to investigate the effects of cumulative values of software metrics

on the contribution to the software fault count. For instance, we examine the

difference between the cumulative length of test execution time by the present

testing time and the test execution time spend on the same testing time.

5.3.1 Goodness-of-fit Performances

For our PI-SRMs, we assume eleven baseline intensity functions in Table 5.1 and

compare them to investigate the effects of each time-dependent software metric

data on the stochastic behavior of the cumulative number of software faults

detected in the testing phase. We calculate the maximum likelihood estimates

(θ̂, β̂) of covariate g(xk;β) = exp(xkβ) for all combinations of software metrics
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Figure 5.1: Behavior of estimated cumulative number of software faults in GDS1.

data in Table 1.1 (iv) and consider a total of 7 combinations, as shown in Table

5.2. By deriving the corresponding log likelihood function, the AIC and MSE

are used to evaluate the goodness-of-fit performances of our PI-SRMs.

Table 5.2: Combination of covariates g(xkl;β).

g(xkl;β)(l = 1, 2, 3)

Combination I exp(β0 + xk1β1)

Combination II exp(β0 + xk2β2)

Combination III exp(β0 + xk3β3)

Combination IV exp(β0 + xk1β1 + xk2β2)

Combination V exp(β0 + xk1β1 + xk3β3)

Combination VI exp(β0 + xk2β2 + xk3β3)

Combination VII exp(β0 + xk1β1 + xk2β2 + xk3β3)

xk1 : Execution time, xk2 : Failure identification work.

xk3 : Computer time-failure identification.

In Figure 5.1, we plot the cumulative number of detected software faults in

GDS1 and the estimated mean value functions in the best-fitted SRMs, where

we select the best model with the minimum AIC for the common NHPP-based

SRMs without software metrics (orange curve) in SRATS [43], PI-SRM with
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cumulative software metrics (red curve), and PI-SRM with non-cumulative soft-

ware metrics (blue curve), among eleven intensity functions. At first glance, it

can be seen that the three curves exhibit similar behavior, but a closer look

reveals that our PI-SRMs can show more complex behaviors than the existing

NHPP-based SRMs without software metrics. Figure 5.2 illustrates the behav-

ior of the estimated number of detected fault counts at each testing time interval

in GDS1, where the same models as Figure 5.1 are used for comparison, and the

orange bar-chart represents the actual number of software faults in each testing

week. The result explains that our two PI-SRMs could show better goodness-of-

fit performances than the existing NHPP-based SRM without software metrics

and could catch up with the detailed trend on the software fault count.

Propotional intensity SRM 

(non-cumulative metrics data) 

Propotional intensity SRM 

(cumulative metrics data)

NHPP-based SRM (tlogist)

(no metrics data)

5 10 15 20

5

10

15

20

Figure 5.2: Behavior of estimated number of software faults in each time interval
in GDS1.

To compare our PI-SRMs with the common NHPP-based SRMs without

software metrics more precisely, we present the best AIC results for four time-

dependent metrics data in Table 5.3. By comparing our two PI-SRMs with

cumulative/non-cumulative metrics values, we investigate how to deal with the

software metrics data in software fault data analysis. From the results in Ta-

ble 5.3, it is found that our PI-SRMs are more appealing in software reliabil-

ity modeling and outperform the existing NHPP-based SRMs without software

metrics in terms of goodness-of-fit. In the comparison of two patterns with

cumulative/non-cumulative metric data, it is seen that the non-cumulative soft-
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ware metrics tend to show better fitting results except in GDS4. Note that

the difference of AIC between cumulative/non-cumulative metric patterns is

minimal and negligible. Therefore, our conclusion on the goodness-of-fit per-

formance is that the PI-SRM with non-cumulative software metric data should

be better. Furthermore, in Table 5.3, it is observed that both the execution

time and failure identification work could contribute to the goodness-of-fit per-

formance in the PI-SRMs. Hence, the measurement of test execution time and

failure identification work can help to understand the software fault count in

the testing phase more accurately and is useful to monitor the software testing

progress.
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5.3.2 Predictive Performances

Next, we are concerned with investigating the predictive performances of our

PI-SRMs. In each observation point n′ (1 ≤ n′ < n) when 50% or 80% of

the whole data are available, we predict the future behavior of the cumulative

number of software faults. To assess the predictive ability, we apply the PMSE

as the predictive performance measure, where:

PMSE =
1

n− ń

√√√√ n∑
k=ń+1

[
yk −Mp(tk; θ̂, β̂)

]2
. (5.8)

The smaller the PMSE, the better the prediction performance of the model. As

expected, when we predict the number of software faults detected in the future,

both the software metrics xk (k = 1, 2, . . . , n) and the regression coefficient β

must be estimated. The regression coefficients are available by applying the

plug-in estimates (maximum likelihood estimates) with the past observation.

However, the difficulty when the PI-SRMs are used arises since we have to pre-

dict the software metrics themselves in the future. In our numerical experiments,

we consider the following three cases:

Case I: All the test/development metric data are completely known through

the testing phase in advance, so the software testing expenditures are

exactly given in the testing.

Case II: The test/development metrics data do not change from the observa-

tion point to the future.

Case III: The test/development metrics data experienced in the future are re-

garded as independent random variables and predictable by any statistical

method.

Case I corresponds to the case where the software test plan is established and

there is no confusion in the software testing phase. Case II implicitly assumes

that the observation point is regarded as the release point of software because no

testing effort will be spent in the operational phase. Case III would be the most

plausible case in software testing. In this case, we are requested to introduce any

statistical model to investigate the test/development metrics data. We employ

two elementary regression methods, linear regression and exponential regression,
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to predict the future software metrics data. More specifically, we assume that the

metric data xk before the observation point n′ and the corresponding time point

tk have been observed with k = 1, 2, . . . , n′. Next, our goal is to calculate the

predictive value of the metric data x̂k between a given time interval (tn′+1, tn),

by introducing the independent variable T = {tn′+1, tn′+2, ...tn} into the linear

regression equation:

x̂k = δ1 + δ2tk (5.9)

with intercept δ1 and coefficient δ2, where:

δ1 =

(∑n′

k=1 xk

)(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)(∑n′

k=1 tkxk

)
n′
(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)2 (5.10)

and

δ2 =
n′
(∑n′

k=1 tkxk

)
−
(∑n′

k=1 tk

)(∑n′

k=1 xk

)
n′
(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)2 . (5.11)

Similar to the linear regression method, we can also obtain the predictive values

of the metric data x̂k by importing variable T = {tn′+1, tn′+2, ...tn} into the

exponential regression equation:

x̂k = δ3δ4
tk , (5.12)

where the coefficients δ3 and δ4 are given by:

δ3 = exp


(∑n′

k=1 lnxk

)(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)(∑n′

k=1 tk lnxk

)
n′
(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)2
 (5.13)

and,

δ4 = exp

n′
(∑n′

k=1 tk lnxk

)
−
(∑n′

k=1 tk

)(∑n′

k=1 lnxk

)
n′
(∑n′

k=1 tk
2
)
−
(∑n′

k=1 tk

)2
 (5.14)

respectively. Note that with Equations (5.13) and (5.14), it can be easily found

that the exponential regression is not appropriate for making the prediction

when the non-cumulative metric data in PI-SRMs are used, because the variable

may take 0, and the correlation coefficient may not be calculated theoretically.

Therefore, we totally consider seven patterns of estimated development/test

metrics data in the future phase in the above three cases, and investigate the

predictive performances of our PI-SRMs.
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Figures 5.3 and 5.4 depict the prediction results of the cumulative number of

software faults in GDS1 at 50% observation and 80% observation, respectively.

It is not difficult to find that our two PI-SRMs could show a completely differ-

ent predictive trend than the common NHPP-based SRMs. However, we can

recognize that the closer increasing trend to the underlying software fault count

data, no matter whether the prediction length is long or short, especially in the

testing phase after 50% and 80% observation points. The quantitative compar-

ison in terms of predictive performance is investigated in Tables 5.4 and 5.5,

where we present the PMSE in four data sets at 50% observation point and

80 % observation point, respectively. Here we select the best SRMs with the

smallest PMSE in PI-SRMs with cumulative/non-cumulative software metric

data in CASE I, CASE II, and CASE III, and the existing NHPP-based SRMs.

From these results, it is immediate to see that our PI-SRMs could still outper-

form the existing NHPP-based SRMs in all the data sets. We also find that

utilizing the estimated metrics data in Case II, i.e., when the test/development

metrics data do not change in the future, tends to give better predictive perfor-

mances than the other two cases in many cases (GDS1 50%, GDS2 50%, GDS3

50%, GDS4 50%, and GDS4 80%). So in 5 out of 8 (GDS2 50%, GDS4 50%,

GDS2 80%, GDS3 80%, and GDS4 80%); our PI-SRMs with non-cumulative

metric data could provide the minimum PMSE. More specifically, Combination

II of software metrics in Table 2.2 gives the minimum PMSEs in GDS1 80%,

GDS3 80%, and GDS4 80% data sets with non-cumulative software metric data

and GDS1 50%, GDS2 50% with cumulative software metric data, respectively.

The remaining three minimum PMSEs were given in the PI-SRMs with Combi-

nations V, VI, and VII in Table 5.3. Finally, by carefully checking the prediction

results in Tables 5.4 and 5.5, we conclude that the failure identification work

is the most important development metric in prediction and leads to improving

the software fault prediction accurately.
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Figure 5.3: Behavior of the predicted cumulative number of software faults with
PI-SRMs and common NHPP-based SRM in GDS1 (50% observation point).
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Figure 5.4: Behavior of the predicted cumulative number of software faults with
PI-SRMs and common NHPP-based SRM in GDS1 (80% observation point).
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Table 5.4: Predictive performance based on PMSE at 50% observation point.

GDS1

Best model PMSE

Case I (cumulative) tlogist-III 6.409

Case I (non-cumulative) tlogist-II 4.014

Case II (cumulative) lxvmax-II 2.160

Case II (non-cumulative) txvmax-IV 4.931

Case III (cumulative): Linear regression exp-IV 4.146

Case III (cumulative):

Exponential regression
txvmin-V 19.213

Case III (non-cumulative): Linear regression txvmax-II 3.916

SRATS tnorm 3.408

GDS2

Best model PMSE

Case I (cumulative) tlogist-II 0.816

Case I (non-cumulative) tnorm-III 0.799

Case II (cumulative) gamma-II 0.742

Case II (non-cumulative) txvmax-II 0.407

Case III (cumulative): Linear regression tlogist-IV 0.616

Case III (cumulative):

Exponential regression
tnorm-III 1.644

Case III (non-cumulative): Linear regression tlogist-IV 0.780

SRATS tlogist 1.769

GDS3

Best model PMSE

Case I (cumulative) tlogist-II 2.676

Case I (non-cumulative) txvmax-III 0.481

Case II (cumulative) exp-VII 0.467

Case II (non-cumulative) pareto-VI 1.506

Case III (cumulative): Linear regression llogist-II 0.748

Case III (cumulative): Exponential regression lxvmax-VI 1.842

Case III (non-cumulative): Linear regression lxvmax-VII 1.769

SRATS exp 1.836

GDS4

Best model PMSE

Case I (cumulative) tlogist-III 2.088

Case I (non-cumulative) pareto-II 1.506

Case II (cumulative) exp-I 0.495

Case II (non-cumulative) tnorm-VI 0.425

Case III (cumulative): Linear regression txvmax-VI 1.139

Case III (cumulative): Exponential regression exp-II 0.688

Case III (non-cumulative): Linear regression lxvmin-I 0.703

SRATS tlogist 1.754



5.3. NUMERICAL EXAMPLES 143

Table 5.5: Predictive performance based on PMSE at 80% observation point.

GDS1

Best model PMSE

Case I (cumulative) tnorm-II 2.482

Case I (non-cumulative) txvmax-III 1.768

Case II (cumulative) txvmax-VII 2.142

Case II (non-cumulative) txvmax-V 2.903

Case III (cumulative): Linear regression tnorm-II 1.033

Case III (cumulative): Exponential regression tlogist-VII 3.159

Case III (non-cumulative): Linear regression txvmax-VII 3.916

SRATS txvmin 1.218

GDS2

Best model PMSE

Case I (cumulative) pareto-IV 0.488

Case I (non-cumulative) gamma-V 0.277

Case II (cumulative) lnorm-VII 0.399

Case II (non-cumulative) pareto-I 0.466

Case III (cumulative): Linear regression exp-IV 0.455

Case III (cumulative): Exponential regression llogist-VI 0.499

Case III (non-cumulative): Linear regression llogist-IV 0.508

SRATS lnorm 0.531

GDS3

Best model PMSE

Case I (cumulative) tnorm-II 0.326

Case I (non-cumulative) txvmax-II 0.150

Case II (cumulative) txvmax-IV 0.330

Case II (non-cumulative) lxvmax-II 0.982

Case III (cumulative): Linear regression lxvmin-I 0.340

Case III (cumulative): Exponential regression txvmin-VI 1.484

Case III (non-cumulative): Linear regression pareto-III 0.293

SRATS exp 0.295

GDS4

Best model PMSE

Case I (cumulative) exp-I 0.213

Case I (non-cumulative) lxvmin-V 0.227

Case II (cumulative) tnorm-IV 0.220

Case II (non-cumulative) tnorm-II 0.206

Case III (cumulative): Linear regression tlogist-II 0.207

Case III (cumulative): Exponential regression lxvmax-III 0.273

Case III (non-cumulative):

Linear regression
tlogist-VII 0.220

SRATS gamma 0.230
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5.3.3 Software Reliability Assessment

In the previous argument, we have confirmed that our PI-SRMs could show

better predictive performances than the existing NHPP-SRMs in all cases.

In the next step, we wish to quantify the software reliability, which is de-

fined as the probability that the software after release is fault-free. Let

R(tl | tm) = Pr{N(tm) − N(tl) = 0 | N(tl) = n} denote the software reli-

ability in the operational phase (tl, tm], where tl is the release point. Then,

from the NHPP assumption, it is easy to obtain:

R(tl | tm) = exp
[
Mp(tm; θ̂, β̂)−Mp(tl; θ̂, β̂)

]
. (5.15)

In our numerical example, we set tm = 2tl, say, the operational period is twice

the length, and assume that the software metrics xk = (xk1, xk2, xk3) are con-

stant in the time interval (tl, tm], since the software product has not been tested

after the release time tl. We assess the software reliability quantitatively with

the best PI-SRMs, which are selected with the minimum AIC at the release

time point tl = tn.

Table 5.6 presents the comparison results of our PI-SRMs with the existing

NHPP-based SRMs. It can be seen that our PI-SRMs with cumulative/non-

cumulative software metrics could provide larger software reliability than the

common NHPP-based SRMs without software metrics. This result implies that

if the PI-SRMs are reliable in goodness-of-fit and predictive performances, they

are more inclined to provide positive decisions in terms of software reliability

assessment, and the NHPP-based SRMs without software metrics tend to un-

derestimate the software reliability. On the other hand, we also note that in

all four data sets, the software reliability estimated by almost all of the SRMs,

except in txvmin-II PI-SRM in GDS3 and txvmin NHPP-based SRM in GDS4,

are not promising. This observation also implies that in time interval (tl, tm],

these SRMs tend to give false alarms from the viewpoint of safety, so that the

software products under testing seem to require more tests to meet the software

reliability requirement.
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Table 5.6: Software reliability assessment with best SRM (minimum AIC).

(i) Best proportional intensity model (cumulative metrics data)

Model Reliability

GDS1 tlogist-VI 2.969 × 10−2

GDS2 tlogist-III 9.260 × 10−1

GDS3 txvmin-II 9.998 × 10−1

GDS4 exp-I 5.455 × 10−3

(ii) Best proportional intensity model (non-cumulative metrics data)

GDS1 txvmin-II 4.393 × 10−1

GDS2 llogist-II 1.984 × 10−2

GDS3 gamma-II 2.945 × 10−1

GDS4 exp-VI 4.324 × 10−1

(iii) Best SRATS (no metrics data)

GDS1 tlogist 6.977 × 10−5

GDS2 llogist 4.152 × 10−3

GDS3 lxvmax 7.236 × 10−5

GDS4 txvmin 9.559 × 10−1
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Chapter 6

Non-homogeneous Markov
Process-based Software
Reliability Models

In this chapter, we focus on non-homogeneous Markov processes (NHMPs),

which are generalizations of the well-known HMP- and NHPP-based SRMs, and

propose a unified approach to treat the software reliability prediction and its

related problems. More specifically, we pay our attention to two subclasses of

NHMP; a generalized binomial process (GBP) and a generalized Polya process

(GPP), where GBP and GPP can be characterized respectively as a Markov

inverse death process [105] and a Markov birth process [106], with state- and

time-dependent transition rates. Shanthikumar [107] first considered a GBP-

based SRM to unify two well-known SRMs; Goel and Okumoto exponential

NHPP-based SRM [10] and an inverse death process-based SRM by Jelinski and

Moranda [4]. Since then, NHMP-based SRMs have not been discussed suffi-

ciently in the literature, in spite of its flexibility and applicability in software

reliability modeling. The main purpose of this chapter is to provide a unified

framework based on both GBP and GPP, to study their features in software reli-

ability modeling, and to compare the goodness-of-fit and predictive performances

of those SRMs in a comprehensive empirical study with real software fault count

data.

147
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6.1 Preliminary

NHMPs are straightforward extensions of HMPs and NHPPs in the sense that

the transition rate depends on both state and time, but possess a more general

representation ability to describe the underlying stochastic nature than both of

them. In reliability engineering, Smotherman and Zemoude [108] and Smoth-

erman and Geist [109] analyzed component-based phased-mission systems with

NHMP and non-homogeneous Markov reward process, respectively. Cosulic et

al. [110] evaluated the system reliability of a multi-voltage high-speed train

with a simple three-state NHMP. Koutras et al. [111, 112] described intertem-

poral behaviors of the amount of free physical memory in a software system

and of the allocation of server resources in a server client system by NHMPs,

respectively. Gokhale et al. [113, 114, 115] considered a software fault detection

and removal process with NHMPs and applied a piecewise constant approxima-

tion to calculate the expected number of fixed software faults. However, it is

worth mentioning that the above references completely lacked a discussion on

statistical inference. Since the likelihood-based methods are commonly used to

estimate the model parameters from software fault count data, a class of NHMP-

based SRMs, which can be used for the data analysis, are rather limited. Our

purpose here is to develop estimable NHMP-based SRMs with software fault

count data. For numerical computation methods, including the ordinary differ-

ential equation method and the uniformization of NHMPs, see Chapter 13 in

Trivedi and Bobbio [21].

To our best knowledge, Schick and Wolverton [116, 117] and Wagoner [118]

treated NHMP-based SRMs for the first time, though they wrongly mentioned

that their models were categorized into semi-Markov processes. They extended

the seminal Jelinski and Moranda HMP-based SRM [4] by introducing the time-

dependent hazard rates, and analyzed only the time-domain data on the soft-

ware fault count. As another significant contribution following Jelinski and

Moranda [4], Littlewood [119, 120] proposed a series of Bayesian SRMs in the

so-called hazard rate modeling framework for the time-domain data analysis on

the software fault count. Although the statistical inference scheme in [119, 120]

is based on the Bayesian approach, the posterior transition rate is time- and

state-dependent, and can be viewed as an NHMP. It is shown that the above
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SRMs are all classified into the hazard rate type SRMs in some well-referenced

text books [2, 3], but belong to a wide class of NHMP-based SRMs.

Shanthikumar [107] attempted to unify two well-known SRMs; Jelinski and

Moranda HMP-based SRM [4] and Goel and Okumoto exponential NHPP-based

SRM [10] by introducing a Markov process under an exponential fault-detection

time assumption, and derived the likelihood function with the time-domain data

and group data. This unified SRM is often called the Markovian SRM or the

binomial SRM in the literature [2, 3], but its mathematical basis was originally

given by Kendall [105]. In the subsequent paper [121], it was recognized as a

subset of NHMP under an exponential distribution assumption, but we refer

to as a generalized binomial process (GBP) in this chapter. We develop new

GBP-based SRMs by relaxing the exponential assumption [107, 121]. Another

important subclass of NHMP is a generalized Polya process (GPP). Konno [122]

argued three Polya processes which denote mixed Poisson processes with gamma

mixture [123]. Cha [124] further gave more general mathematical results related

to reliability theory in an elegant fashion. We also apply the GPPs to software

reliability modeling and develop new GPP-based SRMs as well.

6.2 NHMP-based Software Reliability Model-
ing

A natural extension of the HMP- and the NHPP-based SRMs is to consider the

transition rate depending on both state and time, say, λn(t) (n = 0, 1, 2, · · · ).

We call such a stochastic process the non-homogeneous Markov process (NHMP)

in this chapter. Inspired from the existing HMP-based SRMs with and without

termination in Figure 1.1 (a) and (b), we consider two types of NHMP-based

SRMs. Figure 6.1 (a) and (b) are the transition diagrams of the NHMP with

and without an absorving state N . In general, it is difficult to get an analytical

solution of the associated Kolmogorov forward equations for an arbitrary λn(t).

Then we need to specify the functional form of the transition rate. The most

plausible assumption is the decomposition between the state-dependent term

and the time-dependent term, so we suppose the following two linear transition
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(a) NHMP with termination.

(b) NHMP without termination.

Figure 6.1: Transition diagrams of NHMPs.

rates:

λn(t) = (ζ − ϵn)κ(t), n = 0, 1, 2, · · · ,γϵ,ζ , (6.1)

λn(t) = (ϵn+ ζ)κ(t), n = 0, 1, 2, · · · , (6.2)

where ϵ (≥ 0) and ζ (≥ 0) are non-negative real parameters, κ(t) is an arbitrary

continuous function of t, γϵ,ζ = ⌈ζ/ϵ⌉, and ⌈x⌉ is the ceiling function which is

the largest integer less than x. In this chapter we call κ(t) and Λ(t) =
∫ t

0
κ(x)dx

the baseline intensity function and the cumulative baseline intensity function,

respectively. The above linear NHMPs have been discussed by Kendall [105]

and Konno [122]. Especially, we call the transition rates in Equations (6.1) and

(6.2) the generalized binomial process (GBP) and the generalized Polya process

(GPP) respectively.

6.2.1 GBP-based SRMs

Under a specific exponential assumption, Shanthikumar [107, 121] considered

an inverse death-process type of NHMP with λn(t) = (ζ − ϵn)κ(t) (n =

0, 1, 2, · · · ,γϵ,ζ) and κ(t) = ωb exp(−bt). The Kolmogorov forward equations
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in our generalized case are given by

d

dt
P0(t) = −ζκ(t)P0(t), (6.3)

d

dt
Pn(t) =

{
ζ − ϵ(n− 1)

}
κ(t)Pn−1(t),

−
{
ζ − ϵn

}
κ(t)Pn(t),

n = 0, 1, · · · ,γϵ,ζ (6.4)

d

dt
Pγϵ,ζ

(t) =
{
ζ − ϵ(γϵ,ζ − 1)

}
κ(t)Pγϵ,ζ−1(t). (6.5)

Solving the difference-differential equations in Equations (6.3) ∼ (6.5) with the

boundary conditions; P0(0) = 1 and Pn(0) = 0 for arbitrary n (= 1, 2, · · · ,γϵ,ζ),

yields

Pn(t) =

(
γϵ,ζ

n

)
A(t)γϵ,ζ−n(1−A(t))n, n = 0, 1, · · · ,γϵ,ζ , (6.6)

where

A(t) = e−ϵΛ(t) (6.7)

and

Λ(t) =

∫ t

0

κ(x)dx. (6.8)

It is worth noting that the distribution in Equation (6.6) is also a binomial

distribution having

E [N(t)] = γϵ,ζ

{
1− e−ϵΛ(t)

}
, (6.9)

Var [N(t)] = γϵ,ζ

{
1− e−ϵΛ(t)

}
e−ϵΛ(t). (6.10)

From Equations (6.9) and (6.10), it always holds that E [N(t)] > Var [N(t)],

so that GBP has the under-dispersion property. This is because the variance

in Equation (6.10) is decreasing in t and the uncertainty after elapsing the

software testing time is reduced. It is obvious that when ϵ = 0 and κ(t) = 1 the

p.m.f.s in Equation (6.6) are essentially reduced to ones of NHPP-based SRM

with intensity function κ(t) and HMP-based SRM by Jelinski and Moranda [4],

respectively. Table 6.1 presents the baseline models considered in the GBP-based

SRMs, which are referred to as the mean value function in type-I NHPP in Table
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3.1. The last SRM in Table 6.1 was recently introduced in [9] as a generalization

of the well-known inflection S-shaped NHPP-based SRM [15]. However, this

model is identical to Xiao’s SRM [18], where the underlying fault-detection time

distribution is given by a Marshall-Olkin type of Weibull distribution [125]. By

substituting the baseline model in Table 6.1 with Λ(t) in Equation (6.8), we can

obtain fourteen GBP-based SRMs corresponding to the existing NHPP-based

SRMs.

If the cumulative baseline intensity function Λ(t) is bounded, i.e.,

limt→∞ Λ(t) = ω, then limt→∞ E[N(t)] = γϵ,ζ{1 − exp(−ϵω)} and

limt→∞ Var[N(t)] = γϵ,ζ exp(−ϵω){1 − exp(−ϵω)}, otherwise, i.e. if

limt→∞ Λ(t) → ∞, then limt→∞ E[N(t)] = γϵ,ζ and limt→∞ Var[N(t)] = 0.

Noting that the GBP terminates in N(t) = γϵ,ζ in the sense of sample path,

it is seen for the bounded cumulative baseline intensity function Λ(t) that

limt→∞ Pγϵ,ζ
(t) = {1 − exp(−ϵω)}γϵ,ζ , so there exists a positive probability

that all inherent software faults cannot be detected over an infinite testing time.

More precisely, it can be found that each transition time distribution from state

n to n+1 (n = 0, 1, . . . ,γϵ,ζ − 1) is defective similar to the NHPP-based SRMs

with bounded mean value function. In the bounded case, the stochastic process

N(t) asymptotically converges to γϵ,ζ , say, limt→∞ N(t) = γϵ,ζ with probabil-

ity one. Hence γϵ,ζ{1− exp(−ϵω)} is interpreted as the net cumulative number

of detectable software faults. On the other hand, in the unbounded cumula-

tive baseline intensity function, N(t) converges to γϵ,ζ from the law of large

number. The following example, enables us to understand how the unbounded

cumulative intensity function was applied in the existing SRMs.

The well-known SRMs by Schick and Wolverton [117] and Wagoner [118]

belong to the GBP-based SRMs. In the power-law type baseline model Λ(t) =

atb in Table 6.1, we have κ(t) = (a/(1 + b))tb+1 and λn(t) = (ζ − ϵn)(a/(1 +

b))tb+1. Putting b′ = 1 + b, ζ ′ = (a/b′)ζ and ϵ′ = (a/b′)ϵ, we get λn(t) =

(ζ ′ − ϵ′n)tb
′
. When b′ = 2 (b = 1) and b′ > 2 (b > 1), the underlying intensity

functions coincide Schick and Wolverton SRM [117] and Wagoner SRM [118],

respectively. Littlewood [119, 120] considered a pareto type software fault-

detection time, and obtained the posterior representation of the transition rate;

λn(t) = (ζ−ϵn)/(γ+t) (n = 0, 1, 2, · · · ,γϵ,ζ). It is obvious that Littlewood SRM
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[119, 120] is also defined as a GBP, where κ(t) = (t+γ)−1 and Λ(t) = ln(1+t/γ),

which can be viewed as an extension of the logarithmic Poisson execution time

SRM [14]. In this case, the expected cumulative number of software faults is

given by E[N(t)] = γϵ,ζ{1− γ(γ + t)ϵ}.

6.2.2 GPP-based SRMs

Next, we consider the case with λn(t) = (ϵn+ ζ)κ(t) (n = 0, 1, 2, · · · ). Konno

[122] considered a birth-process type of NHMP and formulated the Kolmogorov

forward equations:

d

dt
P0(t) = −ζκ(t)P0(t), (6.11)

d

dt
Pn(t) =

{
ϵ(n− 1) + ζ

}
κ(t)Pn−1(t)

−
{
ϵn+ ζ

}
κ(t)Pn(t), n = 1, 2, · · · . (6.12)

By solving the difference-differential equations with the initial conditions

P0(0) = 1 and Pn(0) = 0, it turns out that

Pn(t) =

(
n+ ζ

ϵ − 1

n

)
A(t)

ζ
ϵ (1−A(t))n, n = 0, 1, · · · . (6.13)

Hence, the resulting p.m.f. is a negative binomial distribution with

E [N(t)] = γϵ,ζ

{
eϵΛ(t) − 1

}
, (6.14)

Var [N(t)] = γϵ,ζe
ϵΛ(t)

{
eϵΛ(t) − 1

}
. (6.15)

Konno [122] and Gat [126] called this NHMP the generalized Polya process

(GPP) and the generalized Yule process, respectively. In this chapter, we refer

to it as GPP as an alternative of GBP. From Equations (6.14) and (6.15), it

is seen that E [N(t)] < Var [N(t)], so that GBP possesses the over-dispersion

property which is the plausible feature to describe the uncertainty in the time

series analysis.

If limt→∞ Λ(t) = ω, then limt→∞ E[N(t)] = γϵ,ζ{exp(ϵω) − 1} and

limt→∞ Var[N(t)] = γϵ,ζ exp(ϵω){exp(ϵω) − 1}, otherwise, limt→∞ E[N(t)] =

limt→∞ Var[N(t)] → ∞. Although the GPP does not have an absorbing state,

it is interesting to find in the bounded cumulative baseline intensity case that the

expected cumulative number of software faults approaches to γϵ,ζ{exp(ϵω)−1},

instead of limt→∞ Λ(t) = ω in the NHPP-based SRMs. It should be noted that
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GPP is also an extension of a mixed Poisson process model by Okamura and

Dohi [123].

It is obvious that GBP and GPP are generalizations of HMP and NHPP

so far. Since the p.m.f.s in Equations (6.6) and (6.13) are continuous at ϵ = 0

(see [126]), HMP and NHPP are special cases of GBP and GPP, respectively,

when κ(t) = 1 and ϵ = 0. Figure 6.2 shows the schematic behaviors of intensity

functions λn(t) based on GBP and GPP in a testing period. We can clearly

find that whenever software faults have been found, the intensity functions are

described as piecewise continuous functions with upward/downward jumps.

6.2.3 Maximum Likelihood Estimation

Here we derive the log likelihood functions of GBP and GPP when the time-

domain data or the group data is observed. Let θ be a free parameter vector in-

volved in the baseline functions κ(t) = κ(t;θ) and Λ(t) = Λ(t;θ). Suppose that

the fault-detection time-domain data (t1, t2, · · · , tm; te) with censoring point te

are available. Then, the likelihood function of GBP is given by

L(θ) =
m∏
i=1

{ζ − ϵ(i− 1)}κ(ti;θ)× e−
∫ te
0

{ζ−ϵm}κ(x;θ)dx. (6.16)

From a few algebraic manipulations, we have

∫ te

0

{ζ − ϵm}κ(x;θ)dx

=

m∑
i=1

∫ ti

ti−1

{ζ − ϵ(i− 1)}κ(x;θ)dx+

∫ te

tm

{ζ − ϵm}κ(x;θ)dx

= ζΛ(te;θ)− ϵ

[
mΛ(te;θ)−

m∑
i=1

Λ(ti;θ)

]
. (6.17)

Also, the factorial part in Equation (6.16) becomes

m∏
i=1

{ζ − ϵ(i− 1)}κ(ti;θ) =
Γ
(
γϵ,ζ + 1

)
Γ
(
γϵ,ζ −m

)ϵm m∏
i=1

κ(ti;θ). (6.18)
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From Γ(k + 1) = kΓ(k) with k > 0, we derive the likelihood function and its

logarithm:

L(θ)

=

{
m∏
i=1

κ(ti;θ)

}
Γ
(
γϵ,ζ + 1

)
Γ
(
γϵ,ζ −m

)ϵm × e−ζΛ(te;θ)+ϵ[mΛ(te;θ)−
∑m

i=1 Λ(ti;θ)]

=

{
m∏
i=1

κ(ti;θ)e
ϵΛ(ti;θ)

}
Γ
(
γϵ,ζ + 1

)
Γ
(
γϵ,ζ −m

)ϵme(ϵm−ζ)Λ(te;θ), (6.19)

and

lnL(θ)

=

[
m∑
i=1

lnκ(ti;θ) +

m∑
i=1

ϵΛ(ti;θ)

]
+ ln[

(
γϵ,ζ

)
!−
(
γϵ,ζ −m− 1

)
!]

+m ln(ϵ) + [(ϵm− ζ)Λ(te;θ)] . (6.20)

In the failure truncation case, i.e. te = tm, we have

L(θ) =
m∏
i=1

{ζ − ϵ(i− 1)}κ(ti;θ)× e−{ζ−ϵ(i−1)}{Λ(ti;ϵ,θ)−Λ(ti−1;ϵ,θ)}, (6.21)

and

lnL(θ) =
m∑
i=1

ln{ζ − ϵ(i− 1)}+
m∑
i=1

lnκ(ti;θ)−
m∑
i=1

{ζ − ϵ(i− 1)}

×
{
Λ(ti;θ)− Λ(ti−1;θ)

}
. (6.22)

Then, the problem is to maximize the log likelihood function lnL(ϵ, ζ,θ) with

respect to (ϵ, ζ,θ).

When the group data (τi, ni) (i = 0, 1, · · · ,m) are available, from Equa-

tion (6.6) we obtain

L(θ) =
m∏
i=1

(
γϵ,ζ − ni−1

ni − ni−1

)
× [e−ϵ{Λ(τi;θ)−Λ(τi−1;θ)}]γϵ,ζ−ni

× [1− e−ϵ{Λ(τi;θ)−Λ(τi−1;θ)}]ni−ni−1 , (6.23)

and

lnL(θ) =
m∑
i=1

ln
{(

γϵ,ζ − ni−1

)
!− (ni − ni−1)!−

(
γϵ,ζ − ni

)
!
}

−
m∑
i=1

{
γϵ,ζ − ni

}
× ϵ
{
Λ(τi;θ)− Λ(τi−1;θ)

}
+

m∑
i=1

(ni − ni−1)× ln
[
1− e−ϵ{Λ(τi;θ)−Λ(τi−1;θ)}

]
. (6.24)



156

Next, we consider the likelihood functions for GPP. Given the fault-detection

time-domain data with the censoring point te, the likelihood function and its

logarithm are, in a fashion similar to Equations (6.19) and (6.20), given by

L(θ) =

{
m∏
i=1

κ(ti;θ)e
ϵΛ(ti;θ)

}
Γ
(
γϵ,ζ + 1

)
Γ
(
γϵ,ζ −m

) ϵm

e(ϵm+ζ)Λ(te;θ)
, (6.25)

lnL(θ) =

[
m∑
i=1

lnκ(ti;θ) +

m∑
i=1

ϵΛ(ti;θ)

]
+ ln[

(
γϵ,ζ

)
!

−
(
γϵ,ζ −m− 1

)
!] + (m ln(ϵ)− [(ϵm+ ζ)Λ(te;θ)]) . (6.26)

The above results are due to Asfaw and Lindqvist [127]. In the failure truncation

case, i.e. te = tm, we have

L(θ) =
m∏
i=1

{ϵ(i− 1) + ζ}κ(t;θ)× e−{ϵ(i−1)+ζ}{Λ(ti;ϵ,θ)−Λ(ti−1;ϵ,θ)}, (6.27)

and

lnL(θ) =
m∑
i=1

ln{ϵ(i− 1) + ζ}+
m∑
i=1

lnκ(ti;θ)

−
m∑
i=1

{ϵ(i− 1) + ζ}
{
Λ(ti;θ)− Λ(ti−1;θ)

}
. (6.28)

On the other hand, when the group data (τi, ni) (i = 0, 1, · · · ,m) with GPP

are available, then, from Equation (6.13), we get

L(θ) =
m∏
i=1

(
ni + γϵ,ζ − 1

ni − ni−1

)
× [e−ϵ{Λ(τiθ)−Λ(τi−1;θ)}]

ζ
ϵ+ni−1

× [1− e−ϵ{Λ(τi;θ)−Λ(τi−1;θ)}]ni−ni−1 ,

(6.29)

and

lnL(θ) =
m∑
i=1

ln
{(

ni + γϵ,ζ − 1
)
!− (ni − ni−1)!−

(
ni−1 + γϵ,ζ − 1

)
!
}

−
m∑
i=1

{
γϵ,ζ + ni−1

}
× ϵ
{
Λ(τi;θ)− Λ(τi−1;θ)

}
+

m∑
i=1

(ni − ni−1)

× ln
[
1− e−ϵ{Λ(τi;θ)−Λ(τi−1;θ)}

]
. (6.30)
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6.3 Performance Comparisons

6.3.1 Data Sets

In numerical experiments, we analyze eight data sets of software fault count

time-domain data (see Table 1.1 (i) DS1, DS4, DS8 ∼ DS13) from CSS develop-

ment projects, eight data sets of group data (see Table 1.1 (ii) DS14 sim DS21)

from CSS development projects and four data sets (see Table 1.1 (iii) DS22 ∼

DS25) from OSS development projects. We re-name these data from DS1 to

DS20. Especially, it is worth noting that in the OSS development projects, soft-

ware fault counts are made in accordance with the bug reports provided by the

software users. Based on the fourteen models in Table 6.1, we derive the max-

imum likelihood estimates of the model parameters and obtain the maximum

likelihood function lnL(ϵ̂, ζ̂, θ̂) in NHPP-, GBP- and GPP-based SRMs.

6.3.2 Goodness-of-fit Performances

As a goodness-of-fit measure, we apply the well-known AIC, where lnL(ϵ̂, ζ̂, θ̂)

is the maximized log likelihood function. The smaller AIC is the better SRM in

terms of the goodness-of-fit to the underlying fault count data. Note that the

difference on the number of free parameters between NHPP and GBP/GPP is

at most 1 for each baseline model in Table 6.1. Hence, if the difference of AIC is

greater than 2, we can recognize that GBP/GPP is significantly different from

NHPP.

In Figure 6.3, we plot the temporal behavior of the cumulative number

of software faults with CSS development project (time-domain data) in DS1,

CSS development projects (group data) in DS9, and OSS development projects

(group data) in DS17, respectively. Looking at the curves (fitted mean value

functions), almost all SRMs could catch up the average trend of the cumulative

number of software faults detected in the testing phase, but a few SRMs failed

to describe realization of the underlying stochastic counting process.

More specifically, in Table 6.2, we compare three modeling frameworks;

NHPP, GBP and GPP, in terms of the AICs, where the bold font denotes

the best SRM among three modeling frameworks. For the CSS development

projects (time-domain data), it is seen that the common NHPP-based SRMs

showed better results than both GBP- and GPP-based SRMs with ϵ > 0 in
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five data sets but the difference was significant in only DS7. In the other data

sets, GBP-based SRM outperformed the NHPP-based SRM and gave the sig-

nificantly better goodness-of-fit in DS8. Since GBP and GPP reduce to the

corresponding NHPP when ϵ = 0, we can conclude that NHPP-, GBP- and

GPP-based SRMs show almost similar goodness-of-fit performances in many

cases when the CSS projects (time-domain data) are available. For the group

data, GBP-based SRM provided the significantly better result in DS11 with

ϵ > 0, but the difference on AIC between NHPP-based SRM and GBP/GPP-

based SRM was not so remarkable in the remaining data sets. On the other

hand, in half of the OSS development projects, GBP performed better than the

remaining two frameworks, but only showed a significant difference in DS17.

Next we focus on the best baseline models in Table 6.2. In five out of eight

cases in the CSS development projects (time-domain data), four out of eight

cases in the CSS development projects (CSS project (group data)) and two out of

four cases in the OSS development projects (CSS project (group data)), the best

baseline models with minimum AIC are exactly same for three different modeling

frameworks. This suggests that the extreme type distributions such as Lxvmax

and Txvmin tend to be the best baseline model, and that the classical SRMs

like Exp, Llogist and Log are still valid even though GBP/GPP-based SRMs are

considered. Meanwhile, we believe that Gtlogist should also be a good selection

for the baseline model, as some SRMs based on this probability distribution

have shown the superiority of fit for the OSS development projects. Eventually,

we find that eight baseline models are enough among fourteen baseline model

candidates in Table 6.2, if we are interested in the goodness-of-fit performance

with the full data.

6.3.3 Predictive Performances

Next, we investigate the predictive performance of our GBP/GPP-based SRMs

with different baseline models. To compare the predictive performance quanti-

tatively, we use the PMSE and set the observation point l at 20%, 50% and 80%

points of the whole time series data. Figures 6.4, 6.5, and 6.6 are the predicted

results of the cumulative number of software faults in DS1, DS9, and DS17,

respectively. As easily expected, the long-term prediction from 20% observation
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point is not accurate enough because the trend change may occur in the remain-

ing testing period. Table 6.3 presents the prediction results at each observation

point based on the minimum PMSE, where the best SRM with the minimum

PMSE in each data set is represented with bold font. For the CSS development

projects (time-domain data), when the testing phase is early (20%) and middle

(50%), GBP/GPP-based SRMs provided the minimum PMSEs in six cases. In

the late stage of testing (80%), GPP-based SRM could show the better predic-

tive performances in seven cases than the NHPP-based one, although five data

sets were equivalent in prediction performance. Comparing Table 6.3 with Table

6.2, it is seen that the best baseline models on the goodness-of-fit criterion are

rather different from ones minimizing PMSE at each observation point. The

baseline model; Lxvmax at 20% observation in DS4 and DS6, and Lxvmax at

80% observation in DS8, was selected as the best for three different modeling

frameworks.

In Table 6.4, we summarize the minimum PMSE with the CSS development

projects (group data), and compare three modeling frameworks for fourteen

baseline models. It is pointed out that the number of cases where NHPP-based

SRM strictly outperformed GBP-, GPP-based SRMs was only three (DS10 at

20%, DS14 at 50% and 80%). In the CSS projects (time-domain data), GPP-

based SRM tended to give the better predictive performance in many cases (five

cases at 20%, four cases at 50%, six cases at 80%). From these results, we rec-

ognize that the GPP-based SRMs could show the best prediction performances

for both CSS projects (time-domain data) and CSS projects (group data). It

is worth mentioning that the GPP-based SRMs have not been fully discussed

in the literature. The lesson learned from our numerical experiments suggests

that there are no remarkable differences on goodness-of-fit performance in three

modeling frameworks, but our GPP-based SRMs have the potential ability to

make the accurate prediction for the unknown future pattern on fault detection.

On the best baseline models, we found that Plaw in DS15 at 20% and Lxvmax

in DS15 and DS16 at 50% are identical for three modeling frameworks.

Focusing on the OSS development projects, we observe the minimum PMSE

for each modeling framework in Table 6.5 and provide a comparison of the three

modeling frameworks. It can be noticed that GPP-based SRM could guaran-
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tee the better predictive performance in three out of the four data sets during

the early operational stage (20%) after the OSS was released. However, when

the operational phase is gradually extended, GBP- and GPP-based SRMs have

hardly outperformed NHPP-based SRMs in terms of predictive performance.

They only gave one set of better predicted performance at 50% and 80% ob-

servation point, respectively (DS18 at 50% and DS17 at 80%). Similar to the

case of the best baseline model shown in Table 6.2, Table 6.5 pointed out that

the three modeling frameworks do not often guarantee the same best baseline

model in terms of predictive performance for OSS data. Some of the classic

baseline models; Log (DS19 at 20% and DS17 at 50%), Plaw (DS20 at 20%,

50% and 80%), Pareto (DS17 at 80%) and Gamma (DS19 at 80%) are still

superior enough, even though we had a total of fourteen baseline models.

In Tables 6.3, 6.5 and 6.5, we compared the best SRM with the minimum

PMSE in respective data sets. However, It should be noted that one cannot

know the best baseline model in advance before making the prediction. The

commonly applied method is to make the prediction of the future behavior of

software faults by using the best fitted SRM to the past observation, if it was

not overfitted. Hence, it is plausible to compare the predictive performances

with three modeling frameworks using SRMs having the minimum AIC. Tables

6.6∼6.12 present the predictive performances when the baseline model was se-

lected with the minimum AIC at each observation point, in the CSS projects

(time-domain data), CSS projects (group data) and OSS projects (group data),

respectively. For the CSS development projects, it could be confirmed that

NHPP-based SRMs gave the minimum AIC values in almost all cases except

in DS7 at 50%, DS3, DS6 and DS8 at 80% in the time-domain data, DS12 at

20%, DS10, DS11 and DS16 at 50%, DS9, DS11, DS12, DS16 at 80% in group

data. However, for the OSS development projects (group data), NHPP-based

SRMs only guaranteed the minimum AIC in half or less of the cases, at either

observation point. On the other hand, the number of cases where NHPP-based

SRM gave both minimum AIC and PMSE was eleven out of twenty four (DS4,

DS6 and DS8 at 20%, DS1, DS2, DS7 at 50%, DS1, DS2, DS4, DS5, DS6, DS7

at 80%) in the CSS projects (time-domain data), three out of fifteen (DS10 at

20%, DS9 at 50%, DS10 at 80%) in the CSS projects (group data) and two out
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of five (DS18, DS19 at 80%) in the OSS projects (group data). Hence, it is

obvious that selecting the best SRM in terms of AIC does not lead to the best

SRM with highest prediction ability.

It is worth pointing out in Tables 6.6∼6.12 that the best baseline models in

the respective modeling frameworks based on NHPP, GBP or GPP were rather

similar. That is to say, if we select the best baseline model among NHPP-based

SRMs and apply the same baseline model for prediction with NHMP-based

SRMs, GBP and GPP provided the best predictive performance seven cases

and nine cases, respectively in the CSS projects (time-domain data). In the CSS

projects (group data), GBP and GPP resulted the best predictive performances

in seven cases and eleven cases, respectively. In the OSS projects (group data),

NHMP could achieve the best prediction performance in eight cases. Though

there is no significant difference between NHPP- and GBP/GPP-based SRMs,

when NHMP-based SRMs were applied to the same baseline model in the best

NHPP-based SRM for the prediction, GBP- and GPP-based SRMs provided

the minimum PMSE (including the equivalent cases to the NHPP-based SRMs)

in seven and nine cases in the CSS projects (time-domain data), in seven and

eleven cases in CSS projects (group data), in two and seven cases in OSS projects

(group data). So, it is recommended to select the best baseline model by NHPP-

based SRM and to predict the number of software faults detected/reported in

the future by GBP- or GPP-based SRM with the same baseline model. At the

first look, GPP-based SRM seems to have advantages in terms of the number

of better cases, especially in the long-term prediction of OSS projects (group

data) (see PMSEs at 20% in Table 6.12), but, for CSS projects, may lead to

extremely worse results (see DS2 at 20% in Table 6.6, DS13 and DS16 at 20%

in Table 6.9. It is obvious that in the mid-term of software testing, GBP-based

SRMs are the better alternative. For both CSS and OSS projects, GBP-based

SRMs guaranteed the better predictive performance in at least half of the cases.

Finally, we can conclude that our generalized modeling frameworks based on

GBP and GPP are superior to the common NHPP-based SRMs in terms of the

predictive performance even in actual situations without knowing the real best

baseline model at each observation point.
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6.3.4 Software Reliability Assessment

Next, we concern to quantify the software reliability. Since the quantitative

software reliability, Rt(x), is defined as the probability that software is fault-free

in the time interval (t, t+ x], provided that the software in the CSS development

project is released at time t (≥ 0). On the other hand, in the OSS development

project, the time t (≥ 0) is regarded as the operational time length of the

software since its release. In our NHMP-based modeling framework, we define

the software reliability as

Rt(x) = Pr(N(t+ x)−N(t) = 0 | N(t) = m), (6.31)

where m is the cumulative number of software faults detected/reported by time

t. For an infinitesimal time △x, we have

Rt(x+△x)

= Pr(N(t+ x+△x)−N(t) = 0 | N(t) = m)

= Pr(N(t+ x+△x)−N(t+ x) = 0 |

N(t+ x)−N(t) = 0, N(t) = m)

× Pr(N(t+ x)−N(t) = 0 | N(t) = m)

= Pr(N(t+ x+△x)−N(t+ x) = 0 | N(t+ x) = m)

× Pr(N(t+ x)−N(t) = 0 | N(t) = m), (6.32)

which is due to the Markov property. From Equations (6.1) and (6.2), we get

Rt(x+△x)−R(x)

= (ζ − ϵm)κ(t+ x)△xR(x) + o(△x) (6.33)

and

Rt(x+△x)−R(x)

= (ϵm+ ζ)κ(t+ x)△xR(x) + o(△x), (6.34)

for GBP- and GPP-based SRMs, respectively, where lim△x→0 o(△x)/△x = 0.

Then, the differential equations which satisfy the quantitative software reliabil-

ity functions for GBP- and GPP-based SRMs are given by

d

dx
R(x) = −(ζ − ϵm)κ(t+ x)R(x) (6.35)
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and

d

dx
R(x) = −(ϵm+ ζ)κ(t+ x)Rt(x), (6.36)

respectively. By solving Equations (6.35) and (6.36) with Rt(0) = 0, we obtain

R(x) = exp {−(ζ − ϵm) [Λ(t+ x)− Λ(t)]} , (6.37)

R(x) = exp {−(ϵm+ ζ) [Λ(t+ x)− Λ(t)]} (6.38)

for GBP- and GPP-based SRMs.

Table 6.13 presents the quantitative software reliability with the CSS devel-

opment projects (time-domain data), CSS development projects (group data)

and OSS development projects (group data), respectively, where we select the

best baseline model in terms of the minimum AIC at the observation time

points; tm and τm. In these examples, for CSS development projects (time-

domain data), we set the operational time x as ten times of the testing time

length tm in CPU time. For CSS development projects (group data) and OSS

development projects (group data), we set the operational time x as one year

(fifty three weeks or twelve months). In Table 6.13, we denote the largest soft-

ware reliability value in three modeling frameworks with bold font. It can be

seen that the resulting software reliability values were too small. This is be-

cause, for CSS development projects (time-domain data) and CSS development

projects (group data), we implicitly assume that the software was released to

the market just after the observation point, where almost all software faults

were detected by the release points in the underlying development projects. On

the other hand, for OSS project, the software in the OSS development project

is release, and new source code is available through versioning up.

In Figure 6.7 (a), we illustrate the software reliability as a function of the

operational time x when DS13 is assumed. It can be observed that the software

reliability value drops down to the zero level immediately, even for a relatively

short operational time interval. It is clear that such a reliability measure will

not be useful to make the release decision. In comparison of three modeling

frameworks, it is remarkable that GPP-based SRMs tended to make optimistic

estimation of software reliability in most of the cases. If no fault is detected after

the observation time points; tm and τm, the smaller reliability is more realistic.
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In this sense, the software reliability assessment based on Equations (6.37) and

(6.38) seem to be quite problematic. Then, we consider the virtual testing

time to make more realistic software reliability assessment. At each observation

point on software testing progress, we see the virtual testing time in the future.

Define the hypothesis: no software fault is experienced during the operational

time period. If this subjective hypothesis was true after continuing software

testing during the (virtual) software testing time period, then we will release

the software at the end of the virtual testing time, and the software operational

phase starts from the release point. Otherwise, i.e., if any fault was found during

the virtual testing period, then we reset the starting point of the virtual testing

time (observation point) after correcting the detected faults. On the other hand,

we did not consider this problem for the OSS development projects because there

does not exist the testing time for operational phase of the OSS. Let sv denote

the virtual testing time length. Then, the total testing time one expects is

given by t = tm + sv and t = τm + sv for the CSS development projects (time-

domain data) and CSS development projects (group data), respectively, where

no software fault will not be found in (tm, tm + sv] and (τm, τm + sv], under the

hypothesis. In other words, we suppose no fault count from tm to te = tm+sv for

the CSS development projects (time-domain data) and from τm to τm+sv for the

CSS development projects (group data), where (τm+j , nm+j) = (τm+j , nm) (j =

0, 1, 2, . . .) during (τm, τm + sv]. Note that the maximum likelihood estimation

is repeatedly made by substituting the truncation time te or the zero fault count

data (τm+j , nm+j) = (τm+j , nm) (j = 0, 1, 2, . . .) in the log likelihood functions.

In Figure 6.7 (a), (b), (c), (d), we compare the predictive software reliability

when the virtual testing time lengths are 0%, 50%, 100% and 150% of the whole

testing period in DS13. Comparing with Figure 6.7 (a), the software reliability

functions in (b), (c) and (d) gradually decrease. It is evident that the higher

software reliability is caused by the fact that the virtual testing time length

without fault detection is long enough. This observation gives us a reality such

that the experience of tester leads to the reliable software program. When the

virtual testing time length is given by a half length of the previous testing time

period in (b), the predictive software reliability functions in three modeling

frameworks show the similar behavior. However, when the virtual testing time
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length was exactly same and 150% of the previous testing time period in (c)

and (d), it is found that the GPP-based SRM tends to give a more optimistic

prediction of quantitative software reliability. We concentrate only the CSS

projects (group data), hereafter. Table 6.14 presents the software reliability

prediction under the hypothesis by three different SRMs, when the virtual test

time is given by 50%, 100% and 150% of the previous testing time length, where

the group data sets DS9 ∼ DS16 were analyzed. Compared to Table 6.13, the

estimated software reliability value is close to unity under the hypothesis that

no software fault was found during the virtual testing time. We also recognize

here that the higher software reliability is caused by the experience of zero

fault count for the system testing period. Our experiments suggest that the

user/customer test should be performed during more than the system testing

time on the development side, if the software reliability requirement level is high

enough.

6.4 Software Release Decision

In this section, we consider the software release problem. As we have introduced

the virtual testing time in previous section, the software release timing can

be determined by controlling the virtual testing time so as to satisfy a given

reliability requirement level. Following [128, 129, 130, 131, 132], we consider the

so-called software cost model to determine the software release timing with three

kinds of modeling framework; NHPP-, GBP- and GBP-based SRMs. Similar

to the software reliability assessment with virtual testing time, the software

release decision for the OSS is related with the vision up, but not to terminate

the software testing. Hence, we consider only the CSS development projects

for the software release problems. Since the seminal work by Okumoto and

Goel [130], many software cost models have been discussed in the literature

(see e.g., [131] and [132]). Let c1, c2 and c3 denote the system testing cost per

unit of time, debugging cost to remove a software fault in the testing phase, and

debugging cost to remove a software fault in the operational phase, respectively,

where without any loss of generality, c3 > c2. Suppose that the software system

test starts at time t = 0 and terminates at time t = t0, so that t0 is regarded as

the software release timing to the user or market. Let M(t) = E[N(t)] be the
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expected cumulative number of software faults detected by time t. Then, the

expected total software cost, C(t0), is formulated as

C (t0) = c1t0 + c2M(t0) + c3 [M (TLC + t0)−M (t0)] , (6.39)

where TLC is the software life cycle. Then the problem is to derive the optimal

software release time, which minimizes C(t0):

min
0≤t0≤t0

C(t0), (6.40)

where t0 is an upper limit of t0, which may be interpreted as an arbitrary release

bound, say 0 < t0 ≤ t0 < TLC .

The underlying optimization problem in Equation (6.40) is well-defined, be-

cause it takes account of the trade-off relationship between the testing cost and

the debugging cost. If the release time t0 is much shorter, then we may en-

counter the situation where a number of failures caused by faults occur in the

operational phase. On one hand, if the release time t0 is much longer, the test-

ing cost proportional to the testing time length and the debugging cost in the

testing phase increase.

For a cumulative intensity function Λ(t) in NHMP-based SRMs, the ex-

pected cumulative numbers of software faults detected by time t are given by

M(t) = γϵ,ζ{1 − exp(−ϵΛ(t))} and M(t) = γϵ,ζ{exp(ϵΛ(t)) − 1}, respectively,

for GBP- and GPP-based SRMs, from Equations (6.9) and (6.14). Since Λ(t)

is monotonically increasing in t, M(t) is also increasing in both cases. Further

if limt→∞ Λ(t)→∞, then M(t)→ γϵ,ζ in GBP and M(t)→∞ in GPP, other-

wise, M(t) is bounded in both cases. From the above insights, the expected total

software cost, C(t0), has different properties in respective modeling frameworks.

Here, we analyze an actual CSS development project (group data) DS15,

where the total number of software faults was 58 and the system testing length

was 33 weeks. We estimate the model parameters for 3 × 14 SRMs by means

of the maximum likelihood estimation, and derive the maximum likelihood es-

timates of the expected cumulative number of software faults M(t). In our

numerical experiment, the parameter of each cost component and software life

cycle are cited from Okumoto and Goal [130]; c1 = 10 (USD per week), c2 = 1

(USD per fault), c3 = 5 (USD per fault), and TLC = 100 (weeks). For each

SRM, we select the best baseline function with the minimum AIC, and calculate
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the optimal software release time and its associated expected total software cost

numerically.

Table 6.15 presents the comparison results of the optimal software release

policies and their associated expected total software costs. We still use bold font

to show the best modeling framework (NHPP, GBP or GPP) in the optimal soft-

ware release time which minimizes most the expected total software cost. The

results show that the minimum expected total software cost strongly depends

on the kind of framework. Looking at the difference of baseline models, the

minimum expected total software costs were rather different from each other.

In our example, we assume to predict the expected total software cost at 33rd

week and want to know when stopping the software testing. In this sense, the

feasible SRMs were just 10 models; NHPP (Exp), NHPP (Log), GBP (Pareto),

GBP (Lnorm), GBP (Lxvmax), GBP (Log), GPP (Exp), GPP (Pareto), GPP

(Lxvmax), because the corresponding optimal software release times were less

than 33 weeks. From Table 6.2, we know that the baseline model Txvmax was

the best for three modeling frameworks and the goodness-of-fit performances

were almost similar. In this situation, since the optimal software release times

were all less than 33 weeks in Table 6.15, it is easily checked that the expected

total software cost increases in t0. To this end, the optimal decision is to stop

the software testing at the 33-rd week in our example.
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(a) Piecewise increasing intensity function of GBP-based
model with downward jump.

(b) Piecewise decreasing intensity function of GBP-based
model with downward jump.

(c) Piecewise increasing intensity function of GPP-based
model with upward jump.

(d) Piecewise decreasing intensity function of GPP-based
model with upward jump.

Figure 6.2: Behavior of intensity function λn(t) in the NHMP-based SRMs.
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Table 6.2: Goodness-of-fit performances based on AIC.

CSS development projects (time-domain data)

NHPP GBP GPP

Best Model AIC Best Model AIC Best Model AIC

DS1 Log 895.305 Plaw 896.668 Log 897.305

DS2 Plaw 234.967 Tlogist 235.343 Plaw 236.967

DS3 Log 1007.100 Log 1007.723 Log 1009.100

DS4 Lxvmax 1822.000 Lxvmax 1823.876 Lxvmax 1824.000

DS5 Txvmin 5296.620 Txvmin 5296.000 Txvmin 5298.620

DS6 Lxvmin 1938.160 Plaw 1936.541 Lxvmin 1940.160

DS7 Log 1203.523 Log 1205.529 Log 1205.093

DS8 Lxvmax 4720.070 Lxvmax 4715.180 Lxvmax 4722.070

CSS development projects (group data)

NHPP GBP GPP

Best Model AIC Best Model AIC Best Model AIC

DS9 Llogist 73.053 Txvmax 73.187 Llogist 75.053

DS10 Lxvmax 61.695 Plaw 62.878 Lxvmax 63.695

DS11 Tlogist 87.275 Txvmin 84.881 Tlogist 87.277

DS12 Tlogist 51.057 Plaw 52.576 Tlogist 53.057

DS13 Exp 29.535 Exp 31.323 Exp 31.956

DS14 Lxvmax 108.831 Lxvmax 110.815 Lxvmax 110.831

DS15 Txvmin 123.265 Txvmin 124.742 Txvmin 125.265

DS16 Llogist 117.475 Llogist 115.963 Llogist 119.475

OSS development projects (group data)

NHPP GBP GPP

Best Model AIC Best Model AIC Best Model AIC

DS17 Lxvmax 665.276 Lxvmax 662.558 Lxvmax 667.280

DS18 Gtlogist 451.112 Txvmax 450.308 Gtlogist 451.541

DS19 Txvmin 329.766 Txvmin 330.390 Txvmin 331.759

DS20 Gtlogist 540.588 Gtlogist 542.021 Plaw 541.604
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(c) DS17.

Figure 6.3: Behavior of the cumulative number of software faults with CSS
development projects and OSS development project.
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(a) 20% observation point.
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(b) 50% observation point.
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(c) 80% observation point.

Figure 6.4: Behavior of the predicted cumulative number of software faults in
DS1.
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(b) 50% observation point.
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(c) 80% observation point.

Figure 6.5: Behavior of the predicted cumulative number of software faults in
DS9.
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(c) 80% observation point.

Figure 6.6: Behavior of the predicted cumulative number of software faults in
DS17.
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Table 6.3: Predictive performance based on PMSE with with CSS development
projects (time-domain data).

20% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS1 Lxvmax 0.323 Exp 3.051 Lxvmax 0.252

DS2 Log 0.743 Pareto 0.729 Log 0.742

DS3 Lxvmax 1.371 Log 1.574 Lxvmax 1.592

DS4 Lxvmax 1.973 Lxvmax 2.778 Lxvmax 1.973

DS5 Llogist 0.389 Tnorm 0.354 Llogist 0.385

DS6 Lxvmax 1.361 Lxvmax 1.640 Lxvmax 1.978

DS7 Lnorm 6.270 Pareto 0.618 Lxvmax 5.495

DS8 Llogist 7.756 Lxvmax 8.995 Llogist 7.756

50% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS1 Pareto 0.406 Lxvmax 1.984 Pareto 0.428

DS2 Txvmin 0.930 Tnorm 1.085 Txvmin 0.933

DS3 Log 13.937 Txvmin 5.167 Exp 15.115

DS4 Gtlogist 1.581 Lnorm 1.231 Llogist 1.338

DS5 Log 1.743 Log 1.131 Exp 2.153

DS6 Log 0.383 Log 0.389 Pareto 0.359

DS7 Log 0.350 Pareto 3.183 Log 0.349

DS8 Tnorm 5.764 Tlogist 2.877 Tnorm 5.729

80% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS1 Plaw 0.511 Lxvmax 0.667 Plaw 0.511

DS2 Log 1.239 Log 1.234 Exp 1.243

DS3 Plaw 0.621 Tlogist 0.807 Plaw 0.621

DS4 Lxvmax 0.655 Log 0.352 Lxvmax 0.655

DS5 Log 0.682 Pareto 0.684 Log 0.681

DS6 Lxvmax 0.563 Log 1.028 Lxvmax 0.560

DS7 Lxvmax 0.529 Pareto 0.567 Lxvmax 0.529

DS8 Lxvmax 0.401 Txvmax 1.741 Lxvmax 0.401
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Table 6.4: Predictive performance based on PMSE with CSS development
projects (group data).

20% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS9 Plaw 3.689 Gamma 3.686 Plaw 3.572

DS10 Lxvmax 1.441 Lxvmax 1.595 Gamma 1.728

DS11 Tlogist 3.343 Tlogist 3.177 Tlogist 2.754

DS12 Exp 3.436 Log 3.436 Exp 3.210

DS13 Pareto 0.432 Log 0.432 Exp 0.427

DS14 Tlogist 2.340 Log 1.847 Lxvmax 4.487

DS15 Plaw 0.957 Plaw 3.871 Plaw 0.945

DS16 Txvmin 4.032 Tlogist 3.532 Tnorm 3.687

50% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS9 Tnorm 0.893 Lxvmin 0.921 Tnorm 0.891

DS10 Plaw 0.638 Tlogist 2.047 Plaw 0.635

DS11 Lxvmax 6.832 Lxvmax 6.100 Log 10.777

DS12 Exp 3.522 Exp 3.443 Log 4.207

DS13 Exp 0.194 Pareto 0.193 Pareto 0.193

DS14 Log 2.047 Log 5.719 Plaw 2.223

DS15 Lxvmax 1.096 Lxvmax 1.117 Lxvmax 1.081

DS16 Txvmin 1.131 Lxvmin 1.022 Txvmin 1.133

80% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS9 Lnorm 0.531 Plaw 1.071 Lnorm 0.531

DS10 Exp 0.295 Tlogist 0.295 Tlogist 0.294

DS11 Tnorm 0.230 Gtlogist 0.645 Tnorm 0.228

DS12 Tnorm 0.589 Tlogist 0.781 Tnorm 0.589

DS13 Plaw 0.169 Llogist 0.169 Gtlogist 0.169

DS14 Txvmax 0.741 Lxvmax 0.943 Lxvmax 0.945

DS15 Txvmin 0.818 Tlogist 0.143 Txvmin 0.817

DS16 Lxvmax 0.325 Lxvmax 0.325 Lxvmax 0.314
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Table 6.5: Predictive performance based on PMSE with OSS development
projects (group data).

20% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS17 Lnorm 3.978 Lnorm 3.977 Lnorm 3.961

DS18 Gtlogist 12.661 Log 24.459 Log 21.657

DS19 Plaw 9.353 Gamma 9.333 Log 4.672

DS20 Plaw 13.436 Lxvmax 17.963 Plaw 13.415

50% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS17 Log 2.594 Log 3.763 Log 2.630

DS18 Lxvmin 1.756 Lxvmin 1.030 Lxvmin 3.711

DS19 Gtlogist 16.528 Gtlogist 16.563 Gtlogist 16.558

DS20 Gtlogist 2.004 Gtlogist 1.974 Plaw 1.759

80% Observation Point

NHPP GBP GPP

Best Model PMSE Best Model PMSE Best Model PMSE

DS17 Pareto 0.698 Pareto 0.782 Pareto 0.696

DS18 Tlogist 0.207 Tnorm 0.207 Tnorm 0.463

DS19 Gamma 5.346 Lxvmin 5.387 Llogist 5.378

DS20 Plaw 2.428 Lxvmin 2.428 Gamma 2.436
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Table 6.6: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (20% time-domain data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS1
141.591

(Log)
1.577

142.559

(Plaw)
3.599

143.591

(Log)
1.575

DS2
35.327

(Plaw)
2554.640

37.055

(Plaw)
1.408

37.327

(Plaw)
1.091E+10

DS3
187.583

(Plaw)
4.817

189.398

(Plaw)
1.769

189.583

(Plaw)
4.791

DS4
291.964

(Llogist)
5.375

292.373

(Txvmax)
5.624

293.965

(Llogist)
5.375

DS5
1046.910

(Plaw)
0.464

1048.895

(Plaw)
0.427

1048.910

(Plaw)
0.470

DS6
311.745

(Plaw)
3.573

313.358

(Plaw)
4.116

313.745

(Plaw)
3.576

DS7
191.169

(Plaw)
11.723

193.027

(Plaw)
2.485

193.169

(Plaw)
11.805

DS8
752.937

(Txvmax)
9.350

753.232

(Txvmax)
9.784

754.937

(Txvmax)
9.350
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Table 6.7: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (50% time-domain data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS1
403.240

(Log)
0.471

403.655

(Plaw)
2.369

405.240

(Log)
0.471

DS2
123.241

(Plaw)
0.990

124.923

(Plaw)
1.366

125.241

(Plaw)
0.990

DS3
445.124

(Plaw)
33.395

447.172

(Tlogist)
5.389

446.531

(Plaw)
35801.400

DS4
764.771

(Lxvmax)
4.111

766.231

(Plaw)
3.311

766.771

(Lxvmax)
4.113

DS5
2601.980

(Plaw)
2.834

2604.140

(Plaw)
2.418

2603.510

(Plaw)
5.771

DS6
859.945

(Plaw)
3.884

861.832

(Plaw)
2.052

861.945

(Plaw)
3.886

DS7
527.080

(Exp)
2.993

525.815

(Plaw)
3.800

529.068

(Exp)
3.069

DS8
1900.550

(Plaw)
89.228

1901.390

(Plaw)
9.748

1902.550

(Plaw)
89.200
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Table 6.8: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (80% time-domain data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS1
690.114

(Log)
0.702

690.889

(Plaw)
1.37

692.114

(Log)
0.702

DS2
176.266

(Tlogist)
8.489

178.264

(Tlogist)
8.607

177.889

(Txvmin)
14.386

DS3
769.639

(Log)
0.829

768.020

(Tlogist)
0.807

771.641

(Log)
0.831

DS4
1372.520

(Lxvmax)
0.655

1374.290

(Lxvmax)
0.751

1374.520

(Lxvmax)
0.655

DS5
4203.050

(Exp)
0.683

4204.420

(Plaw)
0.698

4205.050

(Exp)
0.683

DS6
1478.500

(Llogist)
0.943

1477.230

(Plaw)
1.343

1479.313

(Tlogist)
2.368

DS7
920.101

(Log)
0.536

922.031

(Log)
0.608

922.101

(Log)
0.536

DS8
3465.000

(Llogist)
3.212

3449.830

(Txvmax)
1.741

3467.000

(Llogist)
3.212
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Table 6.9: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (20% group data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS9
10.807

(Plaw)
3.689

12.637

(Plaw)
6.167

12.807

(Plaw)
3.572

DS10
10.864

(Plaw)
2.145

12.378

(Plaw)
2.219

12.865

(Plaw)
327.513

DS11
17.199

(Plaw)
6.764

19.031

(Plaw)
12.026

19.199

(Plaw)
6.758

DS12
10.649

(Plaw)
8.017

10.629

(Exp)
11.14

12.649

(Plaw)
7.981

DS13
6.000

(Plaw)
2.415E+11

7.976

(Plaw)
7.979

8.000

(Plaw)
3.606E+6325M

DS14
20.660

(Lnorm)
34.922

21.781

(Tlogist)
5.540

22.660

(Lnorm)
5.146

DS15
16.959

(Txvmin)
6.600

18.953

(Txvmin)
6.599

18.959

(Txvmin)
6.601

DS16
6.709

(Plaw)
2.081E+13

8.696

(Plaw)
3.369

8.730

(Plaw)
2.825E+4245M
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Table 6.10: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (50% group data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS9
34.645

(Tlogist)
1.437

33.667

(Txvmin)
3.531

36.649

(Tlogist)
1.437

DS10
31.051

(Lxvmax)
2.633

29.471

(Plaw)
3.455

33.048

(Lxvmax)
2.633

DS11
49.161

(Gtlogist)
20.583

51.099

(Gtlogist)
18.316

49.107

(Plaw)
20.559

DS12
30.560

(Tlogist)
22.973

33.087

(Plaw)
7.684

31.685

(Plaw)
20.962

DS13
16.878

(Plaw)
0.796

19.911

(Plaw)
0.732

18.882

(Plaw)
0.770

DS14
40.521

(Lxvmax)
5.643

40.768

(Lxvmax)
5.813

42.521

(Lxvmax)
5.642

DS15
70.521

(Plaw)
1.790

72.332

(Plaw)
1.051

72.521

(Plaw)
1.768

DS16
65.713

(Txvmin)
1.131

60.151

(Gtlogist)
11.712

67.127

(Txvmin)
1.133
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Table 6.11: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (80% group data).

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS9
55.069

(Tlogist)
1.406

53.232

(Txvmax)
1.651

57.069

(Tlogist)
18.845

DS10
52.523

(Lxvmax)
0.417

54.251

(Plaw)
0.655

54.526

(Lxvmax)
0.419

DS11
75.292

(Txvmin)
0.887

73.881

(Tlogist)
1.485

77.293

(Txvmin)
0.887

DS12
42.548

(Txvmin)
0.828

40.788

(Tnorm)
1.242

44.548

(Txvmin)
0.827

DS13
24.272

(Exp)
0.286

25.495

(Exp)
0.664

26.272

(Gtlogist)
0.169

DS14
96.179

(Lxvmax)
0.945

98.179

(Lxvmax)
0.943

98.172

(Lxvmax)
0.945

DS15
111.458

(Plaw)
4.137

112.304

(Tlogist)
0.143

113.458

(Plaw)
4.137

DS16
100.326

(Tlogist)
0.855

99.291

(Tlogist)
1.022

102.326

(Tlogist)
0.855
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Table 6.12: Predictive performance based on the baseline model with minimum
AIC in OSS development projects (group data).

20% Observation Point

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS17
274.813

(Llogist)
5.318

275.993

(Llogist)
5.457

276.813

(Llogist)
5.317

DS18
66.096

(Exp)
23.276

66.984

(Plaw)
27.710

68.096

(Exp)
23.221

DS19
37.998

(Plaw)
9.353

39.999

(Plaw)
9.434

39.996

(Plaw)
7.937

DS20
128.249

(Lxvmax)
17.784

129.620

(Lxvmax)
17.963

130.249

(Lxvmax)
17.784

50% Observation Point

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS17
466.733

(Llogist)
4.692

459.369

(Txvmax)
3.868

468.733

(Llogist)
4.692

DS18
256.109

(Txvmin)
10.354

255.906

(Txvmax)
10.183

257.261

(Txvmin)
9.715

DS19
87.808

(Plaw)
17.761

89.809

(Exp)
17.782

89.809

(Plaw)
17.726

DS20
294.681

(Gtlogist)
2.004

296.677

(Gtlogist)
1.974

292.542

(Gtlogist)
6.267

80% Observation Point

NHPP GBP GPP

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

AIC

(Best Model)
PMSE

DS17
606.600

(Lxvmax)
0.869

603.489

(Lxvmax)
1.063

608.610

(Lxvmax)
0.881

DS18
407.140

(Gtlogist)
0.495

407.330

(Txvmax)
0.588

408.607

(Tlogist)
57.194

DS19
249.980

(Tlogist)
8.102

251.978

(Tlogist)
8.160

251.759

(Tlogist)
37.377

DS20
438.472

(Gtlogist)
3.691

440.477

(Gtlogist)
3.668

435.822

(Gtlogist)
7.141
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Table 6.13: Software reliability assessment with NHPP-, GBP- and GPP-based
SRMs.

(i) CSS development projects (time-domain data).

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS1 Log 1.092E-17 Plaw 1.411E-33 Log 1.071E-17

DS2 Plaw 7.081E-138 Tlogist 1.097E-28 Plaw 8.886E-138

DS3 Log 4.254E-15 Log 1.076E-11 Log 2.098E-15

DS4 Lxvmax 5.567E-15 Lxvmax 1.310E-15 Lxvmax 6.599E-15

DS5 Txvmin 0.000E+00 Txvmin 0.000E+00 Txvmin 0.000E+00

DS6 Lxvmin 1.529E-16 Plaw 2.802E-88 Lxvmin 1.552E-16

DS7 Log 5.148E-40 Log 5.681E-40 Log 1.601E-43

DS8 Lxvmax 2.939E-48 Lxvmax 1.193E-51 Lxvmax 2.612E-48

(ii) CSS development projects (group data).

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS9 Llogist 1.530E-03 Txvmax 3.876E-02 Llogist 1.531E-03

DS10 Lxvmax 5.730E-09 Plaw 4.962E-22 Lxvmax 6.585E-09

DS11 Tlogist 2.628E-03 Txvmin 5.166E-56 Tlogist 2.629E-03

DS12 Tlogist 2.801E-01 Plaw 1.830E-19 Tlogist 2.808E-01

DS13 Exp 5.021E-09 Exp 4.961E-09 Exp 1.413E-15

DS14 Lxvmax 1.601E-12 Lxvmax 1.052E-12 Lxvmax 1.613E-12

DS15 Txvmin 9.633E-01 Txvmin 9.610E-01 Txvmin 9.593E-01

DS16 Llogist 6.326E-01 Llogist 8.012E-01 Llogist 6.327E-01

(iii) OSS development projects (group data).

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS17 Lxvmax 8.578E-03 Lxvmax 1.209E-02 Lxvmax 8.497E-03

DS18 Gtlogist 1.156E-01 Txvmax 7.438E-02 Gtlogist 8.825E-02

DS19 Txvmin 3.005E-35 Txvmin 1.162E-79 Txvmin 1.110E-34

DS20 Gtlogist 4.229E-29 Gtlogist 3.686E-29 Plaw 8.540E-29
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(a) No virtual testing time.

(b) 50% virtual testing time.

(c) 100% virtual testing time.

(d) 150% virtual testing time.

Figure 6.7: Inference of software reliability with virtual testing time (DS13).
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Table 6.14: Reliability prediction with virtual testing time.

(i) 50% virtual testing time.

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS9 Llogist 3.488E-01 Txvmax 8.727E-01 Llogist 3.490E-01

DS10 Lxvmax 3.986E-03 Plaw 7.591E-18 Lxvmax 4.108E-03

DS11 Tlogist 8.007E-01 Txvmin 1.000E+00 Tlogist 8.021E-01

DS12 Tlogist 9.761E-01 Plaw 4.137E-38 Tlogist 9.761E-01

DS13 Exp 3.909E-01 Exp 3.860E-01 Exp 4.040E-01

DS14 Lxvmax 1.417E-04 Lxvmax 2.546E-01 Lxvmax 1.495E-04

DS15 Txvmin 1.000E+00 Txvmin 1.000E+00 Txvmin 1.000E+00

DS16 Llogist 9.660E-01 Llogist 9.659E-01 Llogist 9.663E-01

(ii) 100% virtual testing time.

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS9 Llogist 7.237E-01 Txvmax 9.919E-01 Llogist 7.255E-01

DS10 Lxvmax 6.004E-02 Plaw 8.753E-12 Lxvmax 6.234E-02

DS11 Tlogist 9.890E-01 Txvmin 1.000E+00 Tlogist 9.888E-01

DS12 Tlogist 9.994E-01 Plaw 1.325E-23 Tlogist 9.994E-01

DS13 Exp 8.162E-01 Exp 8.124E-01 Exp 9.603E-01

DS14 Lxvmax 9.523E-03 Lxvmax 9.059E-03 Lxvmax 9.554E-03

DS15 Txvmin 1.000E+00 Txvmin 1.000E+00 Txvmin 1.000E+00

DS16 Llogist 9.887E-01 Llogist 9.887E-01 Llogist 9.887E-01

(iii) 150% virtual testing time.

NHPP GBP GPP

Best Model Reliability Best Model Reliability Best Model Reliability

DS9 Llogist 9.992E-01 Txvmax 9.992E-01 Llogist 8.487E-01

DS10 Lxvmax 1.749E-01 Plaw 7.365E-09 Lxvmax 1.761E-01

DS11 Tlogist 9.992E-01 Txvmin 1.000E+00 Tlogist 9.992E-01

DS12 Tlogist 1.000E+00 Plaw 3.319E-17 Tlogist 1.000E+00

DS13 Exp 9.434E-01 Exp 9.922E-01 Exp 9.930E-01

DS14 Lxvmax 5.360E-02 Lxvmax 5.319E-02 Lxvmax 5.376E-02

DS15 Txvmin 1.000E+00 Txvmin 1.000E+00 Txvmin 1.000E+00

DS16 Llogist 9.985E-01 Llogist 9.985E-01 Llogist 9.985E-01
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Table 6.15: Comparison of optimal software release policies with respect to
baseline models.

NHPP GBP GPP

t∗0 (week) C(t∗0) t∗0 (week) C(t∗0) t∗0 (week) C(t∗0)

Exp 38.036 896.408 32.001 752.058 264.257 7197.580

Gamma 0.209 68.806 6.094 140.536 5.389 125.808

Pareto 23.425 561.992 48.679 2912.980 39.723 2011.950

Tnorm 5.459 122.150 5.458 122.208 5.447 121.178

Lnorm 3.766 208.500 4.731 111.081 7.201 177.402

Tlogist 4.813 114.309 4.813 114.306 4.817 114.310

Llogist 7.030 179.993 4.598 108.406 7.030 179.981

Txvmax 5.538 138.525 3.691 114.149 3.911 115.186

Lxvmax 0.448 139.218 4.913 114.619 18.891 740.077

Txvmin 1.133 316.220 4.279 101.959 4.262 101.907

Lxvmin 4.812 112.380 4.844 112.808 4.807 112.310

Log 48.676 2983.410 43.820 1085.980 1.429E-10 6038.370

Plaw 1.429E-10 9746.260 3.429E-08 291.993 1.429E-10 10809.900

Gtlogist 4.599 109.430 4.602 109.387 4.598 109.278



Chapter 7

Conclusions

In this thesis, we comprehensively studied the Markov process-based software

reliability modeling frameworks. We first complemented the study of some

well-known HMP-based SRMs by handling software fault counting group data.

Then, We developed dozens of novel parametric and semi-parametric NHPP-

based SRMs and proposed two novel software reliability modeling frameworks;

GBP and GPP.

In Chapter 2, we have performed the group data analysis for a de-

eutrophication SRM based on a pure birth process and compared it with the

well-known J&M-SRM in terms of goodness-of-fit and predictive performances.

As we have already emphasized, the group data analysis for a de-eutrophication

SRM has been left in the software reliability research for a long time. In nu-

merical examples with 8 actual software development project data sets, we have

shown that the geometric de-eutrophication SRM was much more attractive to

make the software reliability prediction, although the seminal J&M-SRM based

on the linear death process has been used more frequently.

In Chapter 3, under the finite-failure and infinite-failure assumptions, we

proposed 18 novel type-I NHPP-based SRMs and 26 novel type-II NHPP-based

SRMs by considering several representative probability distributions (e.g., gen-

eralized exponential distributions family or extreme-value distribution family),

Lindley-type distributions and Burr-type distributions as the software fault-

detection time c.d.f.s. By analyzing 8 software fault count time-domain data

and 8 software fault count group data, we have investigated the goodness-of-fit

performance and predictive performance of our SRMs. We have also compared

189
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these SRMs with 11 existing type-I NHPP-based SRMs under the finite-failure

assumption. The important point to note is that the type-I and type-II NHPP-

based SRMs considered in Chapter 3 have the same software fault detection

c.d.f.s, which have never been addressed in the past literature.

The lessons learned from our numerical examples are given in the following:

(i) Our Type-II NHPP-based SRMs could hardly satisfy the goodness-of-fit

performance, when compared with the type-I NHPPs.

(ii) Our Type-II NHPP-based SRMs outperformed the existing type-I NHPP-

based SRMs for software fault-detection prediction in the early testing

phase when group data were available.

(iii) Burr-type NHPP-based SRMs could provide the better goodness-of-fit per-

formances than the other NHPP-based SRMs (including our proposed

other NHPP-based SRMs in Chapter 3) in 11 out of 16 data sets.

(iv) Based on PMSE, our Burr-type and Lindley-type NHPP-based SRMs had

the better potential for accurate prediction on unknown future fault de-

tection than the existing NHPP-based SRMs in the half of group data

sets.

(v) In three observation points of group data sets, our Burr-type NHPP-based

SRMs were superior to the existing NHPP-based SRMs in terms of the

predictive performance in many cases on the scenario that the best model

is selected in terms of the minimum AIC.

(vi) In the software reliability assessment, when we consider goodness-of-fit as

the model selection criterion, our type-II NHPP-based SRMs tend to make

more conservative predictions than the type-I NHPPs in most cases.

The main contribution of Chapter 3 is to suggest that the Lindley-type and Burr-

type NHPP-based SRMs are quite attractive SRMs to describe the software

fault-detection processes and should be the possible candidates in selecting the

best SRM in terms of goodness-of-fit and predictive performances. Meanwhile,

we also confirmed that both finite-failure and infinite-failure assumptions are

necessary to be considered in the NHPP-based modeling assumptions. This

fact has not been known during the last four decades.
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In Chapter 4, we have proposed type-I and type-II local polynomial NHPP-

based SRMs, where the software debug rate was given by a local polynomial

function. We proposed algorithms to obtain the maximum likelihood estimates

of polynomial coefficients in two phases; the estimation phase to investigate the

goodness-of-fit and the prediction phase to the inference of an unknown num-

ber of software faults in the future. In numerical examples, we have made a

comparison of our local polynomial NHPP-based SRMs with the 11 existing

type-I and the 3 existing type-II NHPP-based SRMs and confirmed that our

type-I local polynomial SRMs could not always provide better goodness-of-fit

on AIC, but could outperform the existing NHPP-based SRMs in terms of MSE

in almost all cases. On the other hand, in many cases, our local polynomial

NHPP-based SRMs outperformed the existing NHPP-based SRMs in terms of

predictive performance. From the comprehensive experiments with actual soft-

ware fault data, our novel NHPP-based SRMs with local polynomial software

debug rates are good candidates without determining a specific c.d.f. of the

software fault-detection time. However, we have also found that the increase in

polynomial degree does not necessarily improve the goodness-of-fit performance

of the SRM.

Chapter 5 presented the proportional intensity NHPP-based SRMs (PI-

SRMs) with eleven representative baseline intensity functions, which could in-

corporate multiple time-dependent cumulative/non-cumulative software devel-

opment/test metrics data. In our numerical experiments with actual software

project data, we have quantitatively evaluated the goodness-of-fit and predic-

tive performances of our PI-SRMs and compared them with the common NHPP-

based SRMs with the same baseline intensity functions. Finally, we have verified

that our SRMs performed well in all data sets and had the excellent potential

ability on prediction. By carefully checking the regression coefficients, we have

also confirmed that failure identification work was the most important test-

ing metric that could contribute to software debugging, and could improve the

goodness-of-fit and predictive performances.

In Chapter 6, we have developed two NHMP-based modeling frameworks

to describe the software fault counting processes, where GBP was a binomial

type of inverse death process and GPP was a negative binomial type of birth
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process. We have derived the log likelihood functions for GBP- and GPP-based

SRMs with an arbitrary baseline intensity function for the CSS development

projects (time-domain data), CSS development projects (group data) and OSS

development projects (group data), and investigated the goodness-of-fit and

predictive performances with twenty actual software fault count data sets. The

comparison has been made from the viewpoint of difference from the common

NHPP-based SRMs with fourteen baseline models. Further, we have discussed

how to assess the quantitative software reliability in our NHMP-based SRMs and

the software release decision. The lessons learned from numerical experiments

are summarized in the following:

(i) Three modeling frameworks; NHPP, GBP and GPP, showed almost similar

goodness-of-fit performances for an arbitrary baseline intensity function in

CSS development projects (time-domain data), CSS development projects

(group data) and OSS development projects (group data) data.

(ii) Our generalized modeling frameworks based on GBP and GPP were supe-

rior to the common NHPP-based SRMs in terms of the prediction per-

formance in many cases in the scenario that the best baseline model is

selected in terms of the minimum AIC.

(iii) By introducing the virtual testing time, we inferred the quantitative soft-

ware reliability in a reasonable way, under the assumption that no software

fault was detected during the virtual testing time period. It was shown

that GPP-based SRMs tend to make optimistic estimations of software

reliability.

The approach to generalizing the well-known NHPP-based SRMs was some-

what straightforward, but it has not been done sufficiently during the last five

decades. The contribution of Chapter 6 was to describe the software fault count

processes with a wide class of Markov processes; GBP and GPP, and to enable

the group data analysis. These problems have been left in the software reliabil-

ity community for a long time. As an interesting insight, it can be pointed out

that a great number of baseline models are not needed anymore. Instead, the

generalization from the standpoint of the underlying stochastic process would

be acceptable to get a more accurate prediction of software faults.
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In the future, it is beneficial to implement the de-eutrophication SRM, fi-

nite (type-I) and infinite (type-II) Lindley-type, Burr-type, local polynomial

NHPP-based SRMs on the well-established software reliability assessment tool.

Although SRATS [43] contains 11 well-known NHPP-based SRMs, the main

feature is to guarantee the global convergence of model parameters in comput-

ing the ML estimates, where the EM (Expectation-Maximization) algorithms

are implemented for the respective SRMs. In order to implement reliable and

automated ML prediction for the Burr-type NHPP-based SRMs, we need to

design the EM algorithms for our proposed SRMs.

Then, we will discuss whether the Lindley-type distribution family can be

generalized from the viewpoint of mathematical theory. More specifically, we

will try to find whether there exists a relation between the c.d.f. and the p.d.f.

to unify the Lindley-type distribution as to the Burr-type distribution family

(see Equation (3.29)). If such a differential equation can be derived, then, we

may be able to obtain different Lindley-type distributions for describing software

fault detection times, as the Burr-type distributions.

Third, we will propose other PI-SRMs with different baseline intensity func-

tions. As we know, some metrics that are more easily observed as time-

dependent or non-time-dependent during the testing of software engineering

(e.g., the total number of operators, number of program volume, number of

lines of comments, number of lines of code, number of lines of executable source

code), were missed in the thesis. Therefore, we will continue to propose and

investigate novel PI-SRMs in the near future by using the above-mentioned

metrics data as well as software fault count data.

Finally, it is attractive to extend GBP- and GPP-based SRMs by introduc-

ing nonlinear structures in the transition rates of NHMP, although both GBP

and GPP suppose linear structures to represent the state-dependent term. Also,

we will develop a numerical inference scheme by solving the Kolmogorov for-

ward equations numerically, without knowing the explicit form of the likelihood

function, even when the transition rate in NHMP does not have the decompo-

sition between the state-dependent term and the time-dependent term. It is

really a challenging issue to provide the most comprehensive software reliability

modeling framework.
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