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Abstract

In the typical waterfall development model, the software development process
consists of 5 steps: (i) requirement/specification analysis, (ii) preliminary and
detailed design, (iii) coding, (iv) testing/verification, and (v) maintenance. In
the testing phase especially, software faults are detected and removed as much
as possible to meet high software reliability requirements. In other words, the
success of software testing leads to guaranteeing the quality of software. Since
software reliability is considered as one of the most fundamental and significant
attributes of software quality, considerable attention has been paid to improving
software testing. At the same time, since software testing is quite expensive, the
quantification of software reliability is also another important issue in the ver-
ification phase. The quantitative software reliability is generally defined as the
probability that software failures caused by faults do not occur in a given time
interval after the release. It is common to describe the probabilistic behavior of
the fault-detection process in testing phases by any stochastic counting process.
The software reliability defined in the above cannot be measured directly in
the field, so that stochastic models, which are called software reliability models
(SRMs), can be utilized to assess the quantitative software reliability. In fact, a
great number of SRMs have been developed to control/monitor software testing
processes as well as to evaluate the quantitative software reliability during the
last four decades.

In this thesis, we propose numerous novel SRMs, based on the homogeneous
Markov processes (HMPs) and non-homogeneous Markov processes (NHMPs).
We formulate the maximum likelihood (ML) estimation of our SRMs and per-
form the software reliability analysis with the fault count time-interval data
(group data), fault count time-domain data, and time-dependent software met-
rics data, which can be observed in the software industry. By comparing our
SRMs with the representative existing SRMs, we evaluate the performances of
models comprehensively. In Chapter 1, we introduce the definition of HMP
and NHMP-based software reliability modeling, including the well-known non-
homogeneous Poisson process (NHPP)-based modeling framework. In Chapter
2, we focus on the pure birth process (HMP) to describe software fault counts,

called geometric de-eutrophication SRM. We provide some useful results to han-
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dle the software fault count group data. Two types of SRMs are considered;
Moranda SRM (1975) and Gaudoin-Soler SRM (1992), where the former is a
modification of the well-known Jelinski-Moranda SRM (1972), having a soft-
ware fault detection rate with geometrically decreasing reduction, the latter
is an extension of Moranda SRM having another software fault detection rate
with exponential decay. Chapter 3 primarily focuses on the finite-failure (type-
I) NHPP-based SRMs and infinite-failure (type-II) NHPP-based SRMs. For
describing the software fault-detection time distribution, we postulate 29 rep-
resentative probability distribution functions that can be categorized into the
generalized exponential distribution family, the extreme-value distribution fam-
ily, the Burr-type distribution family, and the Lindley-type distribution family.
We verify the usefulness of our type-I and type-II NHPP-based SRMs and con-
firm how well they make decisions in software reliability assessment, We compare
the goodness-of-fit and predictive performances with the representative existing
NHPP-based SRMs. In Chapter 4, we propose local polynomial SRMs, which
can be categorized into a semi-parametric modeling framework. Our models
belong to the common NHPP-based SRMs but possess a flexible structure to
approximate an arbitrary mean value function by controlling the polynomial de-
gree. More specifically, we develop two types of local polynomial NHPP-based
SRMs; finite-failure and infinite-failure SRMs, which are substantial extensions
of the existing NHPP-based SRMs in a similar category. Chapter 5 discusses
the so-called proportional intensity-based software reliability models (PI-SRMs),
which are extensions of the common NHPP-based SRMs, and describe the prob-
abilistic behavior of the software fault-detection process by incorporating the
time-dependent software metrics data observed in the development process. In
Chapter 6, we focus on NHMPs, which are generalizations of the well-known
HMPs and NHPPs, and compare two SRMs that can be classified into a gen-
eralized binomial processes (GBPs) and generalized Polya processes (GPPs).
GBP and GPP are also characterized respectively as a Markov inverse death
process and a Markov birth process, with state- and time-dependent transition
rates, respectively. We develop a unified software reliability modeling frame-
work based on the NHMPs and apply them to the software reliability predic-

tion. Throughout numerical examples with the fault count data observed in



actual closed-source software (CSS) and open-source software (OSS) develop-
ment projects, we compare two NHMP-based SRMs (GBP and GPP) in terms
of the goodness-of-fit and predictive performances, in addition to the quantita-
tive software reliability assessment. We also consider software release problems
with these generalized SRMs and, investigate the impact on the software release

decision. Finally, some conclusions and remarks are given in Chapter 7.
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Chapter 1

Introduction

1.1 Summary of Existing Software Reliability
Modeling Frameworks

Throughout software development processes, software reliability models (SRMs)
have been extensively used in the verification and validation phase to quan-
tify the software reliability, which is defined as the probability that software
faults are not detected in the remaining testing period or that software failure
caused by software faults do not occur in the operational phase after the release
to the user or market. During the almost last five decades, a great number
of SRMs have been developed by many authors [1, 2, 3]. Especially, the ho-
mogeneous Markov process (HMP)-based SRMs and non-homogeneous Poisson
process (NHPP)-based SRMs have gained much popularity for describing the
stochastic behavior of the cumulative number of software faults detected in the

testing phase, because of their tractability and goodness-of-fit performance.

The majority of SRMs developed in the past is estimable and, possesses the
so-called Markov property. For instance, the most classical SRMs by Jelinski and
Moranda [4], Moranda [5], Xie [6] are categorized into HMPs with different state-
dependent transition rates (equivalently, pure Markov inverse death process and
pure Markov birth process). The NHPP-based SRMs [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20] are also Markov processes with different time-dependent

transition rates.



1.1.1 HMP-based Software Reliability Modeling

Let {N(t),t > 0} denote the cumulative number of software faults detected up
to the system testing time t. Since the software fault counting process N (t) can
be considered as a non-decreasing stochastic point process taking non-negative
integer values, it is useful to describe the dynamic behavior by using a Markov

counting process. Let
P,(t) =Pr{N(t) =n|N(0) =0}, n=0,1,2,--- (1.1)

be the steady-state transition probability. The HMP is described by the state-
dependent transition rate A, (n = 0,1,2,---). Suppose that there exist N
software faults remaining in a software before the system testing, and that the
software fault count process is given by an inverse birth process (see Fig. 1.1
(a)) with an absorbing state n = N. Jelinski and Moranda [4] considered this
type of HMP with termination and assumed the transition rate A\, = (N —
n)b (n = 0,1,...,N — 1), where N is the residual number of software faults
before the testing (non-negative integer) and b is the constant fault-detection
rate when each of software fault-detection times in IV population is independent
and identically distributed exponential random variable. Since the Kolmogorov

forward equations are given by

d

&Po(t) = —XoFo(t), (1.2)
%Pn(t) A1 Paa(E) = AnPa(t), n=1,2,-- N — 1, (1.3)
%PN(t) — Av_1Pya(t) (1.4)

with the boundary conditions Py(0) = 1 and P,(0) =0 (n = 1,...,N), it is
straightforward to obtain the probability mass function (p.m.f.) [107]:

N
Pn(t) = <7’l) {1 - eibt}neib(Nin)tv n= 07 ]-a T 7N7 (15)

which is a binomial p.m.f. Hence the process N(t) terminates at n = N with
probability one.

Moranda [5] assumed another transition rate A,, = ab™ under the assumption
of N — oo, where a and b are two model parameters with apparently no physical

interpretation, and proposed the so-called the geometric de-eutrophication type



1.1. SUMMARY OF EXISTING SOFTWARE RELIABILITY MODELING FRAMEWORKS3

SRM to describe the software fault-count process. Since it is a pure birth process

(see Fig. 1.1 (b)), the Kolmogorov forward equations are given by

d

apo(t) = —XoFo(t), (1.6)
%Pn(t) A 1 Pa 1 (E) = APa(t), = 1,2, (1.7)

with the boundary conditions Py(0) = 1 and P,(0) = 0. From the well-known
nature of the pure birth process type of HMP, it holds (see e.g., [21]) that the

p-m.f. is a unique solution of
t
P, (t) = ,\7,,_16*M/ TP,y (x)dx, (1.8)
0

it Y02 At = co. Boland and Singh [22] obtained a closed form of the c.d.f.
with A\, = ab™ for Moranda’s geometric de-eutrophication type SRM. Fig. 1.2
(a) and (b) show the schematic illustrations of the transition rates in Jelinski

and Moranda SRM [4] and Moranda SRM [5], respectively.

(c) NHPP.

Figure 1.1: Transition diagrams.



1.1.2 NHPP-based Software Reliability Modeling

As a well-known Markov process, NHPP is regarded as an alternative to the
classical homogeneous Poisson process (HPP). If the intensity at time point ¢
in the definition of HPP is given by a function A(t) with respect to ¢, then an
HPP can be described by an NHPP. More specifically, if a stochastic counting
process {N(t),t > 0} is non-negative and non-decreasing, it becomes an NHPP

under the following assumptions.

e NHPP has independent increments, so the number of occurrences in a
specific time interval depends on only the current time ¢ and does not
on the past history of the process, which is also known as the Markov
property.

e Initial state of the process is given by N(0) = 0.

e The occurrence probability of one event in a given time period [t,t + At)
for an NHPP is defined by Pr{N(t + At) — N(¢t) = 1} = o(At) + A\(t)At.
The function A(¢) is an absolutely continuous function, which is named
the intensity function of NHPP, and At is recognized as an infinitesimal

period of time.

e NHPP has negligible probability for two or more events occurring in [t, ¢+

At), ie., Pr{N(t + At) — N(t) > 2} = o(At), where limas 0 282 = 0

and o(At) is the higher-order term of At.

For an arbitrary non-negative and absolutely continuous function of time,

A(t), consider the Kolmogorov forward equations:

SR(0) = AR (1), (19)
CPu(1) = MO P (1) = AOPA(D), n =12, (1.10)

By solving the above difference-differential equations with the initial conditions

Py(0) =1and P,(0) =0 (n=1,2,...), it is immediate to derive

Pu(t) = MO -mw) = 0,1,2,---, (1.11)

so that N(t) is a non-homogeneous Poisson process (NHPP) with the mean

value function:

E[N(t)]:M(t):/O Aa)dz. (1.12)
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From the Poisson nature, it holds that E[N(t)] = Var[N(¢)]. This unusual
feature without apparent empirical interpretation is called the equity-dispersion,
so the expected cumulative number of software faults must be exactly same as its
variance in this modeling assumption. The time-dependent transition rate A(t)
in Equations (1.9) and (1.10) is called the intensity function in the NHPP and
is independent of the state n. In Fig. 1.1 (c¢), we depict the transition diagram
of the NHPP with time-dependent transition rate A(¢). If the function A(¢) is
decreasing (increasing) in ¢, then the software tends to be reliable (unreliable)
as the testing time goes on (see Fig.1.2 (c) and (d)). This model does not focus
on the microscopic behavior of each software fault count, but describes the
time-dependent macroscopic trend in the software fault intensity. By modeling
the software failure time, Kuo and Yang [23] classified NHPP-based SRMs into
general order statistics SRMs and record value statistics SRMs. The same
authors [23] referred an alternative and simpler classification by dividing NHPP-
based SRMs into two types; finite-failure (type-I) and infinite-failure (type-II)
NHPP-based SRMs with the mean value functions, which are defined as the

expected cumulative number of software failures.

1.1.3 Maximum Likelihood Estimation

Once the intensity function (transition rate) is determined in HMP- and NHPP-
based SRMs, the commonly used technique to estimate the model parameters is
the maximum likelihood estimation by maximizing the log likelihood function
(LLF). In general, there are two types of software fault count data; time data
and group data. The time data can be also called the fault count time-domain
data. For tg = 0, we observe m fault detection times, t; (i = 1,2,---,m),
where t. (> t,,) denotes the observation (censoring) point of time. For the
time-domain data (t1,ta,- - ,tm;te), the likelihood functions of the HMP- and
NHPP-based SRMs with the time truncation are given by

m

E(e) — H)\i(0)6_)\i(e)(ti_ti—l)e_)\rn(e)(te_tm)
i=1
= exp[-Am(0)t] [T Ni(6), (1.13)
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1.1. SUMMARY OF EXISTING SOFTWARE RELIABILITY MODELING FRAMEWORKS7

and
L£(O) = H A(ti;0)e” JE L Mai8)da — [fe A(wi6)da
i=1
= exp[-M(t;;0)| [[ Mt::0), (1.14)
i=1

respectively, where 0 is the model parameter vector. In the failure truncation,
say te = t.;,, the corresponding likelihood functions are given by replacing t. by
t, in Equations (1.13) and (1.14). Taking the logarithm of Equations (1.13)
and (1.14), we obtain the log likelihood functions:

In£(0) = zm:hl)\i(ti; 0) — \n(te; 9), (1.15)
InL(0) = iln/\(ti;e) — M(te;0). (1.16)

By maximizing the log likelihood function In £(0) with respect to 8, we obtain
the maximum likelihood estimates 6.
When the group data (7;,n;) (i = 0,1,---,m) with (79,n9) = (0,0) are

available, for HMP-based SRMs, the likelihood function is represented by
£(0) = Pr{N(ﬁ) =n1,N(12) =ng, -+, N(Tsp) = nm}
= [[Pr{N(m:) = ni | N(ri_1) = nia}, (1.17)
i=1

from the Markov property. So, if the conditional transition probability Pr{N(r;) =
n; | N(ri—1) = ni—1} (1 = 1,2,--- ,m) is available for HMP-based SRMs, the
corresponding likelihood function is obtained explicitly. For instance, the like-
lihood function for Jelinski and Moranda SRM [4] is given by
/N —n;_
E(G) _ H ( n 1) {1 _ e_bTi,}ni_ni—le_b(N_ni)T% (118)

Mn; — Nj—
=1 7 1—1

for @ = (N, b), but the likelihood functions for Moranda SRM [5] and Xie SRM
[6] have to be calculated algorithmically.

The likelihood function for the unknown parameters @ for NHPP-based
SRMs is given by

L£(0) = H [[M(Ti;a) (7 M(7i_1; @)]ni—ni-1

n; — 7712;1)!

1=1
« ef[M(Ti;G)*M(Ti—Ue)]’ (119)



so that the log likelihood function is represented as

m

I £(6) =Y~ { (n: — niza) WM (7::0) — M(7i1:0)]
~Inf(n; — nH)l]} — M(7m; 6). (1.20)

In the above way, the maximum likelihood estimation for NHPP-based SRMs
is trivial even for both time and group data. However, it is not always easy to
handle the group data for HMP-based SRMs if the analytical forms of transition

rates are not available.

1.2 Software Fault Count Data

Most observable software testing data in the industry are fault count data, as
it is common to test/debug software in the distributed testing environment.
Generally, it is possible to observe software fault count data in two categories;
software fault count time-domain data and software fault count time-interval
data (group data). In this thesis, we employ thirteen time-domain data sets for
closed-source software (CSS) systems and twelve group data sets for eight CSS
and four open-source software (OSS) systems on the software fault count. A
set of fault detection times measured with CPU time is called the fault count
time-domain data. Suppose that m software faults are detected, where the time
sequence is given by D = {t1,t2,...,tm}. On the other hand, a group data
I={(r,n;),i=1,2,...,m} consists of the number of faults detected in fixed
time intervals measured with the calendar time, (7;_1, 7] (¢ = 1,2,...,m). Each
record of the group data (7, n;) is given by a pair of the observation time 7; and
the cumulative number of software faults detected by time 7;. In this thesis, we
list these data in order from DS1 to DS25. We show the details of these data
sets in Table 1.1. In Chapter 5, we also consider an extension of the common
NHPP-based SRM and describe the probabilistic behavior of the software fault
detection process by incorporating software time-dependent metric data. In
Table 1.1 (iv), we show the four software time-dependent metric data we used,
DS26~DS29. It is not difficult to find that DS26 and DS8, DS27 and DS14,
DS28 and DS15, and DS29 and DS5 come from the same source, respectively.



1.2. SOFTWARE FAULT COUNT DATA

Table 1.1: Software Fault Count Data Sets.

(i) Time-domain data (CSS development projects).

Data set | No. faults | Testing length (CPU time) Source Nature of system
DS1 54 108708 SYS2 [24] Real time command and control system
DS2 38 233700 S10 [24] Real time command and control system
DS3 38 67362 SYS3 [24] Real time command and control system
DS4 41 4312598 S27 [24] Military application
DS5 53 52422 SYS4 [24] Real time command and control system
DS6 73 5090 Project J5 [1] | Real time command and control system
DS7 101 19572126 S17 [24] Real time command and control system
DS8 136 88682 SYS1 [24] Real time command and control system
DS9 24 1095.88 S14C [24] Real time commercial subsystem
DS10 129 89040 SRC2 [1] Single-user workstation
DS11 197 50236822 SS4 [24] Operating system
DS12 104 15369.5 SRC3 [1] Single-user workstation
DS13 397 108890 SRC1 [1] Single-user workstation

(ii) Group data (CSS development projects).

Data set | Testing weeks | No. faults Source Nature of system

DS14 17 54 SYS2 [24] Real time command and control system
DS15 14 38 SYS3 [24] Real time command and control system
DS16 19 120 Release2 [25] Tandem software system

DS17 12 61 Release3 [25] Tandem software system

DS18 14 9 NASA -supported project [26] Inertial navigating system

DS19 20 66 DS1 [27] Embedded application for printer
DS20 33 58 Ds2 [27] Embedded application for printer
DS21 30 52 DS3 [27] Embedded application for printer

(iii) Group data (OSS development projects).

Data set | Operating months | No. faults | Source Project
DS22 121 379 [28] Video game emulation for macOS
DS23 107 381 [29] JavaScript framework for building web interfaces
DS24 62 260 [30] Screenshot software for Windows
DS25 96 367 [31] Math typesetting for the web
(iv) Time-dependent metric data (CSS development projects).
Data set No. Faults | Testing weeks Source Nature of system
DS26 136 21 SYS1 [24] | Real time command and control system
DS27 54 17 SYS2 [24] | Real time command and control system
DS28 38 14 SYS3 [24] | Real time command and control system
DS29 53 16 SYS4 [24] | Real time command and control system
Metrics Data: | Failure identification work, Execution time, Computer time-failure identification.
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Chapter 2

HMP-based Software
Reliability Models (SRMs)
with group data

In this chapter, we focus on a pure birth process to describe software fault count,
called the geometric de-eutrophication SRM, and provide some useful results to
handle the software fault count group data. Two types of SRMs are considered;
Moranda SRM [32, 33], (M-SRM) and Gaudoin-Soler SRM [34] (G & S-SRM),
where the former is a modification of the well-known JEM-SRM [4] having a
software fault detection rate with geometrically decreasing reduction, the latter
is an extension of M-SRM [32, 33] having another software fault detection rate
with exponential decay. First, we note that these two SRMs; M-SRM and G&S-
SRM, are essentially identical. Unfortunately, it is emphasized that the group
data analysis with the geometric de-eutrophication SRM has not been done yet
in the literature, so M-SRM [32, 83] and G&S-SRM [34] handled only the time
domain data. Boland and Singh [35] and Vasanthi and Arulmozhi [36] gave the
fundamental results to characterize M-SRM[32, 83], but did not apply their re-
sults to the maximum likelihood estimation with the group data. In other words,
the geometric de-eutrophication SRM has not been fully proven whether it could
accurately describe the software fault detection behavior in the testing phase of
the actual software development project. This fact is really surprising because
M-SRM [32, 33] is one of the most classical SRMs and has not been investi-
gated in the viewpoint of quantification of software reliability in the plausible

group data circumstance for several decades.

11
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2.1 Preliminary

Jelinski and Moranda [4] proposed the earliest SRM, which is called J&M-SRM,
and described the software fault count process as a homogeneous Markov death
process, where the software fault-detection rate is proportional to the remaining
number of faults in a software program. They dealt with the time-domain
data and estimated the model parameters by means of the maximum likelihood
method. Shanthikumar [38] and Xie [39] showed that J&M-SRM is essentially
the same as a binomial process in terms of stochastic counting processes and
estimated the model parameters with the group data. Miller [40] also showed
that J&M-SRM could be derived from exponential order statistics. In this way,
the most well-known J&M-SRM can be handled with both time-domain and
group data. Another representative SRMs are the NHPP-based SRMs, which
can also deal with both time domain data and group data (see Musa, Iannino
and, Okumoto [2]).

In this chapter, we focus on a pure birth process to describe software fault
count, called the geometric de-eutrophication SRM, and provide some useful
results to handle the software fault count group data. Two types of SRMs
are considered; Moranda SRM [32, 33] (M-SRM) and Gaudoin-Soler SRM [34]
(G&S-SRM), where the former is a modification of the well-known J&M-SRM [4]
having a software fault detection rate with geometrically decreasing reduction,
the latter is an extension of M-SRM [32, 33] having another software fault
detection rate with exponential decay. First, we note that these two SRMs; M-
SRM and G&S-SRM, are essentially identical. Unfortunately, it is emphasized
that the group data analysis with the geometric de-eutrophication SRM has not
been done yet in the literature, so M-SRM [32, 33| and G&S-SRM [34] handled
only the time domain data. Boland and Singh [35] and Vasanthi and Arulmozhi
[36] gave the fundamental results to characterize M-SRM [32, 33], but did not
apply their results to the maximum likelihood estimation with the group data.
In other words, the geometric de-eutrophication SRM has not been fully proven
whether could accurately describe the software fault detection behavior in the
testing phase of the actual software development project. This fact is really
surprising because M-SRM [32, 33] is one of the most classical SRMs and has

not been investigated in the viewpoint of quantification of software reliability
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in the plausible group data circumstance for several decades.

2.2 De-eutrophication SRMs

In de-eutrophication SRMs, we suppose the non-increasing state-based fault de-
tection (transition) rate in monotone time-homogeneous Markov processes such
as pure birth process and pure death process, where the underlying assumption
is that all the software faults detected are perfectly corrected, and no new faults
are created through the system testing phase. In [37], the authors call this kind
of model de-eutrophication SRM because the behaviour of removing software
faults from a software program is very similar to the behaviour of cleaning pol-
lutants from an enclosed body of water. In this sense, the well-known J&M-SRM
[4] is also recognized as the earliest de-eutrophication SRM. More specifically,
let N be the total number of inherent faults in a software program before the
software testing. Then the failure rate in J&M-SRM, which is interpreted as
the fault detection rate between the n-th and (n + 1)-st software faults, is given

by

A =b(N=-n), n=0,1,2,....,N—1, (2.1)

where b (> 0) means a constant amount of contribution for software fault detec-
tion rate. Hence, the inter-fault-detection time intervals, X,,, are described by
statistically independent exponential random variables with mean 1/\, (> 0).
Let N(t) be the cumulative number of software faults detected by time ¢ (> 0).
Then the probability mass function for J&M-SRM is given by [38, 39];

P,(t) =Pr{N(t) =n | N(0) =0} = (ZZ) {1—e tt)me b(N=1)t "y —0,1,.-- | N,

(2.2)
which is an elementary binomial distribution. Hence, the mean value function
of N(t) is given by E[N(t)] = N{1 — e~%*}.

On the other hand, M-SRM [32] assumes that the software faults detected
in the early stage of software testing may be more serious than the others, and
these faults may cause software failures that occurred in the beginning of testing.
With the passage of time, it is assumed that the software fault-detection rate

decreases geometrically. Based on these assumptions, the failure rate in M-SRM
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is given by

A =bk", n=0,1, 2,..., (2.3)

where b (> 0) and k& € (0,1) are constants. It is obvious that A, decreases
monotonically but does not terminate at n = N — 1 dissimilar to J&M-SRM.
This implies implicitly that an infinite number of software faults are contained
in a software program. The main reason why M-SRM is called geometric de-
eutrophication SRM is that A, in Equation (2.3) decreases geometrically as n
increases. For the general pure birth process with transition rate A, (n =
0,1,2,...), let P,(t) = Pr{N(t) = n | N(0) = 0} denote the probability mass
function or equivalently the steady-state transition probability. Then it holds
that Y07 ) P,(t) = 1 if and only if 7 (1/X,) = oo, so it turns out that
M-SRM satisfies >~ P,(t) = 1, and does not cause an explosion over a finite
time ¢, say, .- Pa(t) < 1. Let T,, denote the n-th software fault detection
time with 7,, = 3" | X, where X, is the time interval between the n-th and
(n + 1)-st software faults. Then, the sequence X,,, n =0, 1,..., constitutes a
geometric process [41]. From the exponential assumption, it is easy to derive the
probability density function of X,, as fx, (t) = bk™ exp (—bk™t) with t (> 0).
Figure 1.1 (b) shows a schematic illustration of the fault-detection rate in M-
SRM [32].

Gaudoin and Solar [34] considered another pure birth process with the failure
rate;

A =bexp(—m-a), n=0, 1, 2,..., (2.4)

where a (> 0) and b (> 0) both specify the quality of the software debugging.
If @ = 0 in Equation (2.4), then the software fault detection rate becomes con-
stant. If it is greater than 0, then the software fault detection rate decreases
with time, and the reliability of software increases as more software faults are
detected and corrected. In a fashion similar to M-SRM [32] the probability den-
sity function is given by fx_ (t) = bexp (—na)exp (—bexp (—na)t). However,
looking at Equations.(2.3) and (2.4), it can be seen that G&S-SRM is equiv-
alent to M-SRM when k = exp(—a). Hereafter, we refer to M/G&S-SRM for
the geometric de-eutrophication SRM. Next, we are interested in the cumula-
tive number of software faults detected up to t (> 0) for M/G&S-SRM. Let
Qn(t) = Pr{N (s+1t) — N (s) =n|N(s) = m} be the conditional probability
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Am /1711+1 Am+n—1 l‘WL'{"I’l
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Figure 2.1: Transition diagram of the pure birth process without termination.

during the time interval [s, s +t). The Kolmogorov forward equations are given

by [35, 36]:

d
&Qo(t) = —AnQo(t), (2.5)
%Qn(t) = AninQn )+ Anin-1Qn_1(t),n=1,2,.... (2.6)

In Figure 2.1, we depict the transition diagram of a pure birth process with
transition rate A, (n = m,m + 1,...). Then the general solution in Equations

(2.5) and (2.6) can be expressed by

exp(—Am+jt)
Am . 2.7
H +J Z Hl 0 176-] )\ i ( )

m—+l — Am—&-j)

It is not so difficult to get the above result because the general solution of the
ordinary linear differential equation can be provided. For the linear differential
equation in Equation (2.6), the solution of @, (¢) satisfies the following recursive

formula;
t
Qn(t) = exp(—Amint) / Amtn—1Qn—1(u) exp(Apmnt — Apu)du. (2.8)
0
From the initial condition Q(¢) in Equation (2.5) with n = 0, we have
Qo (t) = exp(—Ant). (2.9)
Next, when n = 1, from Equation (2.8), we get
t
@1(t) = exp(-Amrt) [ AnQolu) exp(Asru)du
0
t
= eXp(fAm+1t) / Am exp(fAmu) eXp()\7n+1U)dU
0

= exp(—Am+1t) s (exp((Amt1 — Am)t) — 1)

exp(_/\mt) eXp(_/\m-i-lt)
= . 2.1
Am <)\m+1 - )\m + )\m - )\erl ( 0)
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For n = 2, we obtain
t
Q2(t) = exp(—)\m+2t)/ Am+1Q1 (1) exp(Amp2u)du
0

1 t
= exp(—Am42) Amt1Am { <> / exp((Am+2 — Am)u)du
)\m+1 - )\m 0

1 t
I .~ m - m d
+()\m_)\m+1)/0 exp((Am42 = Amg1)u) U}

_ 1 eXp(Am-l-Qt _ /\mt) -1
= exp( )\m+2t))\m+1/\m { <>\m+1 — )\m) ( >\m+2 — )\m

n ( 1 ) <8XP()\m+2t — Amgat) — 1))}
Am, - )\m+1 Am,+2 - )\m+1
{ (exp(Ampat — Amt) — 1)
(>\m+1 - /\m)(/\m+2 - >\m)

H )\m+j exp(_>\m+2t)
=0
(exp(Amyat — Amyat) — 1) }
()‘ - /\m+1)(/\m+2 - )‘m+1)

_ H N {exp( Amt) — exp(—Aprat)
it m+1 - )\m)()\m+2 - )\m)

exp(—Ami1t) — exp(—Apat) }
(>‘ - )‘m+1)()‘m+2 - >\m+1)

+

7=0

1
H - exp(—Am4;t) — exp(—Apm4at) (2.11)
m+j E . )

j=0 Hl 0,l#£j (/\m-i-l )‘m+j)

For any n € N, we can confirm that the following equation holds:
Qn(t)

n— 1
_ H _— Z exp(—Am45t) — exp(—Amant)
- mTj n,l#£j

j= 0 l;(?éj ()‘7n+l - )‘m+j)

j=

n—1

ke exp m+jt) eXp<_)‘m+nt)
H ! Z l 0 l;éj m+l /\m-i-j) jgo Hl:o,z¢j(/\m+l - )\m+j)

(2.12)

Since the above expression is a little complicated, we try to get a simpler ex-

pression. Following Gat [42], it holds that

n 1
=0 H?:O,l;éj()‘mﬂ - /\m+j)

=0. (2.13)

Finally, we can derive the general solution of the conditional probability Q. (t)

in Equation (2.6). Based on the result, the steady-state transition probabilities



2.3. PARAMETER ESTIMATION 17

in M/G&S-SRMs are given by

n n(n—1) .
= exp(—bk™TIt)

n(t) = = — 2.14

) Z IT0,; (K —K9) (2.14)

Jj=0

and

n_exp [— (bexp(—(m + j)at) + @a)}
@)= e el 19

respectively. When s = 0 and m = 0, we have Q,, (t) = P, (t) = Pr[N (t) =
n|N(0) = 0], which is known as the p.m.f..

Once the p.m.f. P, (t) is obtained, the mean value function E[N(¢)] can be
calculated numerically. Boland and Singh [35] corrected a mistake on the mean
value function in M-SRM in the standard textbook [2], and suggested applying
the probability generating function P(s,t) = >  P,(t)s™ with ¢ (> 0) and
s € (0,1). We also use their result directly to obtain the mean value functions

for M/G&S-SRMs;

E[N@®)] = bt+Y (1) (b;,)j i (1—k"), (2.16)
j=2 " on=1
0o j -1

E[N(t)] = bt—i—Z(—l)j—l (b]’,? [1 —exp (—an)], (2.17)

respectively. It is worth mentioning that the above expressions are based on
infinite series. Since the computation of Equations (2.16) and (2.17) is rather
unstable, we need to evaluate the termwise calculation with verified computation

carefully.

2.3 Parameter Estimation

Suppose that software fault count group data are available and consist of a pair
of the time interval from 7 = 0 and the cumulative number of software faults;
(i, ny),i =1, 2, ...m. Then the likelihood function is given as the product
of conditional probabilities Q;(7) (i = 1,2,...,m) by

L) =]]PIN(r) = N(ri-1) = n; — ni_1|N(s) = n;_1], (2.18)

i=1
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where v is a free parameter vector involved in the failure detection rate. From

Equation (2.2), the log-likelihood function for J&M-SRM v = (N, b) is given by

InL(v)=
gln{ (N — ni—1)! —(ny —ni—)! = (N — ﬂz)'}
_i N —n)a(ri—Ti_1) —i—i{ P =i 1n[1_€ a(n_n_l)”.

(2.19)
The maximum likelihood estimate of model parameter v is given by the maxi-
mize ¥ for In £ (v).

For the M/G&S-SRMs, we obtain the log-likelihood functions:

InL(v)=
m n;—Ni—1 J
Zln Z (_1).7 exp |:_b(7-i — Ti_ k(”z 1+J):| H (kl 1)
i=1 Jj=0 =t R

ni—ni—1—J k(l—l)
T (k:l—l) (2.20)
=1
and

InL(v)=
i {_(nz —ni—1) (i —ni—1 — l)a
: 2
=1
iy Sebbriongep (ot Dal Lo g )

= I1Z00%" lexp(—la) — exp (—ja)]
for v = (b,k) and v = (a,b), respectively. Hence, the problem is to derive the
optimal v by maximizing In £ (v) with v = (b, k) or v = (a, b).

2.4 Numerical Experiments

In our numerical experiments, we use a total of eight data sets of software fault
count group (time-interval) data; (7;, n;),¢ =1, 2, ...m, which were collected
from actual software development projects, where n; is the cumulative number
of faults detected by each time point ¢;. The data sources and features of the
target software systems are summarized in Table 1.1 (b). In this chapter, we

re-name them from GDS1 to GDSS.
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2.4.1 Goodness-of-fit Performance

First, we attempt to investigate the goodness-of-fit performance of the J&M-
SRM and M/G&S-SRM for the group data in Table 1.1. In Figure2.2, we depict
the behavior of the cumulative number of software faults in GDS1 and the mean
value functions of J&M-SRM and M/G&S-SRM. From this figure, it is not easy
to find out the remarkable difference between the two de-eutrophication SRMs.
For the model selection, we apply the Akaike information criterion (AIC) and
the mean squares error (MSE). Once the maximum log-likelihood In £L(2) is

given with the maximum likelihood estimate &, AIC is defined by
AIC = -2 xInL(P) + 2 X (the number of parameters). (2.22)

Since AIC is an approximate distance between the assumed SRM and the real
(but unknown) SRM behind the underlying data, the smaller AIC implies the
better SRM. As an alternative goodness-of-fit measure, we define MSE, which
is a vertical distance between the assumed SRM and the underlying data;

MSE — Yo An — f)n[N(Ti); ’9}}2. (2.23)

Of course, the smaller MSE is the better SRM in terms of the goodness-of-fit
to the underlying data. In Table 2.1, we compare J&M-SRM with M/G&S-
SRM in terms of AIC, where the case with the minimum AIC is marked with
bold font in each data set. From these results, it is seen that M/G&S-SRM
outperformed in GDS5, GDS6, GDS7, and GDS8, but J&M-SRM was better in
GDS2, GDS4, and GDS6. The important thing is that the differences between
J&M-SRM and M/G&S-SRM are not so significant in terms of AIC in GDS1,
GDS2, GDS3, GDS4, GDS5, and GDS6, because the differences are at most 2
in AIC. However, in GDS7 and GDS8, M/G&S-SRM gave rather smaller AICs
than J&M-SRM. Looking at MSEs, the differences between two SRMs seem to
be large, but we confirm that SRM with smaller AIC provides smaller MSE as

well.

2.4.2 Predictive Performance

Next, we investigate the predictive performances of J&M-SRM and M/G&S-

SRM with group data. In our experiment, we set three observation points;
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Figure 2.2: Behavior of the cumulative number of software faults detected in
GDS1.

Table 2.1: Goodness-of-fit performances based on AIC/MSE

J&M-SRM M/G&S-SRM

AIC MSE AIC MSE
GDS1 86.339 25.432 87.139 30.181
GDS2 61.393 53.018 61.579 53.317
GDS3 62.521 28.620 65.437 63.684
GDS4 29.323 0.339 29.440 0.356
GDS5 110.498 59.943 109.679 33.262
GDS6 141.905 51.109 141.088 43.316
GDS7 174.011 176.123 114.129 91.165
GDSS8 190.336 232.109 159.063 116.366
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20%, 50%, and 80% points of the whole data set, and are interested in exam-
ining the prediction ability of the SRMs in the early, middle and late software
testing phases. Figures 2.3, 2.4 and 2.5 show the prediction results with GDS1
from 30%, 50%, 80% observation points. In Figures 2.3 ~ 2.5, we can observe
that the prediction result of M/G&S-SRM is better than J&M-SRM, but the
difference seems to be slightly small. For a more precise comparison of the pre-
dictive performances, we calculate the predictive mean squares error (PMSE)
and the predictive log-likelihood (PLL). Suppose that (7;, n;), i =1, 2, ...1
are observed at the observation point (7;,n;). For all the data set (7;, n;),i =
1, 2, ...m (I <m), PMSE is given by

PMSE = Y (E[N(r:); #] —n;)* /(m —1). (2.24)
i=l+1

The smaller PMSE means the better SRM. On the other hand, PLLs are derived

PLL () =
i 1n{ (N — 7%‘-1)! —(ny —ny—1)! — (N —_ nz)'}
i=1+1
_ Z ((N — m) 0 (m; — Ti71)) + Z {(nz — 1) ln[l _ e—a(n—ﬂ-,l)} } 7
o o (2.25)
PLL (0) =

m T —Ni—1 !
Z In Z (—1) exp [_B(T’i - Ti—l)k(m_ﬁj)} H (l%bl_ 1)

i=l+1 j=0 s=1

ni—ni—1—3 /7
L(s—1)
X = , 2.26
(i) 20

for J&M-SRM and M/G&S-SRM, respectively, where & = (N, @) and & = (b, k)

are the maximum likelihood estimates with (7;, n;),s =1, 2, ...l. The larger
PLL means the better SRM in teams of prediction.

In the comparison based on PMSE and PLL, it is found that J&M-SRM
over-estimated the future trend of the cumulative number of software faults,
but M/G&S-SRM could make the better prediction of the unknown patterns in
the future. In Tables 2.2, 2.3 and 2.4, we compare J&M-SRM with M/G&S-
SRM in terms of PMSE and PLL. In the early testing phase at 20% observation
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point, M/G&S-SRM could outperform in 6 out of 8 data sets, but J&M-SRM
could make the better prediction in only GDS2 and GDS5 from the viewpoints
of PMSE and PLL. In the middle testing phase with 50% observation point,
M/G&S-SRM gave the smaller PMSE (larger PLL) in 6 (7) data sets except in
GDS5 and GDS8 (GDS5). In the later testing phase at 80% observation point,
M/G&S-SRM provided the smaller PMSE and larger PLL in 5 data sets except
in GDS2, GDS5, and GDS8. The lesson learned from the experiment suggests
that geometric de-eutrophication SRM (M/G&S-SRM) could outperform the

J&M-SRM in terms of predictive performances in many cases.
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Figure 2.3: Behavior of the cumulative number of software faults detected in
GDS1 (20% observation point).

2.4.3 Software Reliability Assessment

Finally, we concern to quantify the software reliability. Let R(z) denote the
software reliability, which is the probability that the software is fault-free in the
time interval (¢,¢+ x|, where x (> 0) is an operational time interval after the

release (prediction length);

R(z) = Pr{N (t + z) — N (t) = O|N(t) = n}. (2.27)
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Figure 2.4: Behavior of the cumulative number of software faults detected in

GDS1 (50% observation point).
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Figure 2.5: Behavior of the cumulative number of software faults detected in

GDS1 (80% observation point).
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Table 2.2: Comparison of PMSE/PLL with de-eutrophication SRMs (20% ob-

servation point).

J&M-SRM M/G&S-SRM
PMSE PLL PMSE PLL

GDS1 296.612 -31.845 62.819 -24.181
GDS2 32.027 -16.354 57.589 -27.863
GDS3 1263.475 -124.200 227.240 -4.978
GDS4 5.268 -12.553 0.459 -8.937
GDS5 414.531 -96.417 802.693 -138.406
GDS6 513.294 -113.024 450.582 -70.066
GDS7 1139.899 -106.504 1005.682 -105.597
GDS8 184.676 -77.006 160.628 -48.841

Table 2.3: Comparison of PMSE/PLL with de-eutrophication SRMs (50% ob-

servation point).

J&M-SRM M/G&S-SRM
PMSE PLL PMSE PLL

GDS1 90.149 -22.282 36.942 -16.548
GDS2 58.912 -199.399 9.389 -14.171
GDS3 1000.483 -18.869 236.564 -13.891
GDS4 1.141 -6.300 0.419 -6.123

GDS5 400.128 -85.149 967.386 -131.751
GDS6 80.156 -34.379 64.218 -33.706
GDS7 331.748 -33.7145 22.942 -21.911
GDS8 50.536 -46.7612 146.080 -33.137




2.4. NUMERICAL EXPERIMENTS 25

Table 2.4: Comparison of PMSE/PLL with de-eutrophication SRMs (80% ob-
servation point).

J&M-SRM M/G&S-SRM
PMSE PLL PMSE PLL

GDS1 37.717 -8.368 5.991 -7.115
GDS2 3.116 -4.370 18.614 -6.123

GDS3 570.037 -10.308 68.933 -6.123
GDS4 2.347 -3.573 1.117 -2.971
GDS5 6.167 -7.348 64.781 -11.292
GDS6 41.702 -12.387 8.373 -9.806
GDS7 30.209 -10.065 19.773 -6.955
GDS8 12.904 -12.538 33.019 -12.648

For the release time ¢;, since the time intervals between [-th and (I + 1)-st
fault-detection time is exponentially distributed with parameters b(N — 1) for
J&M-SRM and bk! for M/G&S-SRM, the software reliability functions for the

respective de-eutrophication SRMs are given by

R(z) = exp(—=b(N — 1+ 1)z), (2.28)

R(z) = exp(—bk'z). (2.29)

In our experiment, we set the prediction length = as the exact same testing
time measured by calendar time in each group data. Table 2.5 presents the
quantitative software reliability with the group data sets, where we denote the
larger software reliability value with the bold font. It is seen that J&M-SRM
provided the larger software reliability values in 6 data sets. In other words, the
well-known J&M-SRM tends to give the more optimistic decision in software
reliability evaluation. If we can suppose that all the projects succeeded and no
software faults were reported after the release, J&M-SRM seems to be more
reliable than M/G&S-SRM in software release decisions. However, it is worth
mentioning that the resulting software reliability values are all small. This
implies that all the software products should continue being tested further.

So, we can conclude that in this chapter, we have performed the group

data analysis for a de-eutrophication SRM based on a pure birth process and
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Table 2.5: Comparison of software reliability.

J&M-SRM M/G&S-SRM
GDS1 1.576E-17 2.516E-20
GDS2 1.553E-06 5.112E-09
GDS3 1.272E-15 1.037E-14
GDS4 2.756E-03 2.275E-03
GDS5 1.655E-10 8.191E-12
GDS6 6.693E-23 3.401E-22
GDS7 5.059E-17 8.919E-21
GDS8 9.621E-33 3.345E-36

compared it with the well-known J&M-SRM in terms of goodness-of-fit and pre-
dictive performances. As we have already emphasized, the group data analysis
for a de-eutrophication SRM had been left in the software reliability research for
a long time. In numerical examples with 8 actual software development project
data sets, we have shown that the geometric de-eutrophication SRM was much
more attractive to make the software reliability prediction, although the seminal

J&M-SRM based on the linear death process has been used more frequently.



Chapter 3

Extension of NHPP-based
SR Ms

Among the existing SRMs, the NHPP-based SRMs are recognized as an essential
class because of their mathematical tractability and high applicability, and have
been widely used to describe the behavior of the cumulative number of software
faults. Almost all representative existing NHPP-based SRMs are developed based
on the finite-failure assumption and are characterized by a mean value function
that is proportional to the cumulative distribution function (c.d.f.) of the soft-
ware fault-detection time. But, only a few NHPP-based SRMs have also been
proposed under the infinite-failure assumption. It is worth noting that the c.d.f.s
are the representative lifetime distribution functions to model the time to failure
in reliability engineering. On one hand, up to the present stage, we have known
that no unique SRM, which could fit every software fault count data, was found
yet, and that the best SRM strongly depended on the kind of software fault count
data. Hence, in this chapter, we have two research questions; ”Are there some
novel time distribution families that are more applicable to describe software
fault detection times?” and “Are infinite-failure NHPP-based SRMs really use-
ful?”. More specifically, we developed 11 infinite-failure (type-1I) NHPP-based
SRMs by introducing some representative software fault-detection time distri-
butions (e.g., generalized exponential distributions family, extreme-value distri-
bution family) into the infinite-failure assumption. On the other hand, we in-
troduce the Burr-type and Lindley-type distributions into NHPP-based software

reliability modeling, and develop several finite-failure (type-I1) and infinite-failure

27
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(type-1I) NHPP-based SRMs. We compare our proposed SRMs with the existing
NHPP-based SRMs in terms of goodness-of-fit and predictive performances.

3.1 NHPP-based Software Reliability Modeling

As we know, most textbooks [1, 2, 3] have pointed out that when the mean value
function was used to characterize the cumulative number of software failures
by time ¢, there were two types of NHPP-based SRMs; finite-failure (type-I)
NHPP-based SRMs and infinite-failure (type-II) NHPP-based SRMs.

3.1.1 Existing Type-I NHPP-based SRMs

In the software reliability modeling framework under the type-I NHPP assump-
tion, before the testing, the remaining number of software faults is assumed
to obey a Poisson distribution with a positive mean w. Each software fault is
assumed to be detected at independent and identically distributed (i. i. d.) ran-
dom time, and is fixed immediately just after it is detected. For any t € (0, +00),
F(t; ), a non-decreasing function, is applied to describe the time distribution
of each fault detection during the software testing phase, which is also known
as the c.d.f. In the expression, a indicates the free parameter vector in the
c.d.f. Then, a binomial distributed random variable with probability F(t; o)
with a Poisson distributed population with parameter w is employed to char-
acterize the resultant software fault-detection process. From a simple algebraic

manipulation, the mean value function of NHPP can be derived as
M(t;0) = wF(t; o), (3.1)

which can also be recognized as the cumulative number of faults detected by the
software testing at time point ¢ with 6 = (w, ) and lim;_,.c M (¢;0) = w (> 0).
This property is consistent with the assumption of software reliability modeling
for type-I NHPP in which the number of initial remaining faults before the soft-
ware testing is finite. The best-known type-I NHPP-based SRM was proposed
by Goel and Okumoto [10], where they assumed the exponential distribution as
the fault-detection time distribution in the software testing. The mean value
function there is in proportion to the cumulative distribution function (c.d.f.) of

the exponential distribution. After that, by postulating the other fault-detection
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time distributions, several type-I NHPP-based SRMs have been proposed in the
literature, such as, the truncated-normal NHPP-based SRM [17], the log-normal
NHPP-based SRM [8, 17], the truncated-logistic NHPP-based SRM [15], the log-
logistic NHPP-based SRM [13], the extreme-value NHPP-based SRMs [12, 16],
the gamma NHPP-based SRM [19, 20], and the Pareto NHPP-based SRM [7].
In Table 3.1, we summarize 11 existing type-I NHPP-based SRMs with their as-
sociated c.d.f.s and bounded mean value functions, which were employed in the
software reliability assessment tool on the spreadsheet (SRATS) by Okamura
and Dohi [43].

Even though the type-I NHPP-based SRMs are recognized as plausible mod-
els in terms of software reliability growth phenomena, it has to be acknowledged
that reliability engineers sometimes feel discomfort when handling the type-
I NHPPs, since the inter-failure time distributions in the type-I NHPP-based
SRMs are defective [44]. Let us suppose that the random variables T, Ts, ..., T},
represent the first, second, ..., n-th failure times that occurred since the software
testing starts at Ty = 0. Let the random variables, X1, Xo,..., X, denote the

inter-failure times between two consecutive failures;

n
To=> X;=Tp1+Xn, n=012,.. (3.2)

Jj=1

From Equations (1.11) and (3.2), the c.d.f. of T}, can be obtained as

G, (t;0) = P{T,, <t (the n-th failure occurs up to t)}

= P{N; > n (at least n failures occur before time t)}

" Nz z0))" !
:/O Al "9)(7[5‘{(13!9)] exp (— M (z; 0))da

=5 PO ey (-ar(es0))

j=n

=1- i M 0) exp (—M(t; 9)). (3.3)

Then, it is straightforward to see in the type-I NHPP-based SRMs that
lim; y00 Gn(t;0) < 1 for an arbitrary n. In other words, even if the testing
time tends to be infinite, there still exists a positive probability of the n-th fail-
ure not occurring. It is obvious that the c.d.f. of T}, is defective. Similarly, for

realizations of T; (i = 1,2,...,n), t1, to,...,t,, we can obtain the c.d.f. of the
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inter-failure time X, in the time interval (¢,_1, t,—1 + ) as follows.

Fo(x;0)=1—-Pr{N(tp—1+z) — N(tn—1) =0]| N(tn—1) =n—1}

— 1 —exp (= (M(tn_1 +2560) — M(ty_1;6)), (3.4)

where Pr{N(t,—1 + ) — N(t,—1) = 0| N(t,—1) = n — 1} denotes the proba-
bility that no failure occurs in time interval (¢,—1, t,—1 + x). Since the mean
value function is bounded, i.e., lim; o, M (¢t;0) = w, when z is infinite , Equa-
tion (3.4) can be reduced to 1 — e~ (@~ M{En-1:6)) < 1. Tt means that regardless
of the number of previous failures, the probability that the software fails over
an infinite time horizon is always non-zero. Hence, the inter-failure time c.d.f.
of type-1 NHPP is also defective. For the type-I NHPP-based SRMs, it is not
meaningful to discuss some reliability metrics like mean time between failures

(MTBF), because the finite moments of T}, and X, always diverge.
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3.1.2 Type-II NHPP-based SRMs with Representative
Software Fault-detection Time Distributions

Type-II NHPP assume that a new software fault was not inserted at each
software debugging. However, this assumption may be somewhat specific, be-
cause the so-called imperfect debugging may occur in the actual software testing
phases. When the possibility of imperfect debugging is considered, the assump-
tion of finiteness in the type-I NHPP-based SRMs seems to be rather strong.
Similar to the classical preventive maintenance modeling [45], if each software
failure is minimally repaired through the debugging, the mean value function of

the software fault-detection process is unbounded and is given by

M(t; @) = —In(1 — F(t; ), (3.5)

where lim;_, o, M (t; &) — oo. It is obvious that the c.d.f.s, G, (t; 0) and F,(x;6)
in Equations (3.3) and (3.4) are not defective, say, lim;_,o, G, (¢;0) = 1 and
lim, o Fx,(x;0) = 1. Hence, it becomes significant to consider important
metrics such as MTBF. In this modeling framework, investigating the residual
number of software faults before testing has no significant meaning, because it

may increase by imperfect debugging through the software testing.

As far as we know, the Cox-Lewis process [46] is one of the earliest type-

II NHPPs. The unbounded mean value function of this model is given by

M(t; o) = (exp (p1+pat)—exp (p1))

. with the extreme-value distribution F(t;a) =

1 — exp (exp (p1 + pat) —exp (p1)) /p2.  This distribution is also referred to
as truncated extreme-value minimum distribution in [43].  Another well-
known type-II NHPP-based SRM is referred to as a power-law process model
[11, 47, 48], where mean value function and c.d.f. are given by M(t;a) =
(pa/p1) t/#) and F(t;a) = 1 — exp (— exp (—%in(t))), respectively. The
latter is also recognized as the log-extreme-value minimum distribution in [43].
Besides the above two representative NHPPs, the well-known logarithmic Pois-
son execution time SRM [2, 14] belongs to the type-II category, too. The mean
value function of this model is given by M (t; ) = poIn ((1+1t)/p1) with the

Pareto distribution F(t; ) =1 — (p1 /(¢ 4 p1))H2 in [43)].
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Table 3.2: Type-II NHPP-based SRMs.

SRMs & Time Distributions F(t; o) & M(t; )
Exp (HPP) F(t;a) =1 —exp (—puit)
(Exponential distribution) M(t; ) = pst
Gamma F(ta) = fo[ M#da
(Gamma distribution) M(t; ) =In(T(p1)) — In (F (,ul, t))
Pareto (Musa-Okumoto) [2],[14] F(to) =1—(#4-)8
(Pareto distribution) M(t; ) = —pa (In(p2) — In(ps +t))
t s—pi2)?
Tnorm Ft;a) = \/%M f—oo exp (—(T:l?)—)ds
(Truncated normal distribution) M(t;a) =1n (erf ( \;%:]) + 1) —In <erf (%;i) + 1)
ca)— L[t (s=12)%\ 4g
Lnorm Ft;a) = o .Loo exp (7 50 )d.s
(Log-normal distribution) M(t; ) =In(2) —In (crf (“2\}271:](”) + 1)
e . _l—exp(—puit)
Tlogist Fltio) = 5 o onen
(Truncated logistic distribution) M(t;a) = In (exp (p2/p1) +exp (t/p1)) — In (exp (p2/p1) + 1)
Llogist F(t;a) = 141;?2;7%
(Log-logistic distribution) M(t; o) = In (exp (po/p) + t1/11) — m
Txvmax F(t; ) = exp (— exp (—%))
(Truncated extreme-value max distribution) | M (t; ) =In (1 — exp (—exp (p2/p1))) — In (1 —exp (7 exp (“Z?ﬁ))
Lxvmax F(t;o) = exp (— exp (— ’;‘1‘2))
(Log-extreme-value max distribution) M(t;a) = —1In (1 —exp (7 exp (“21711"“))))
Txvmin (Cox-Lewis) [46] F(t; ) = exp (7 exp (7t’:“‘2))
(Truncated extreme-value min distribution) M(t; ) = —In (exp (— exp (p2/p1) (exp (t/p1) — 1))
Power-law [11],[47],[48] F(t; o) = exp (7 exp (7%))
(Log-extreme-value min distribution) Mt a) = po/m +(1/11)

3.1.3 Parameter Estimation

Suppose that the total number of faults observed in the testing phase is m by
the time observation point ¢,,, where the time sequence consisting of the time
points at which each fault is detected is given by D = {¢1,ta,...,t,, . This kind
of time series is called software fault-count time-domain data. Generally, CPU
time is used to measure the time-domain data in software testing. Then, from
Equation (1.14), for a time-domain data set D = {¢1,ta, ..., }, the likelihood
function of NHPP is as follows.

L(0 or a; D) = exp(—M (t,; 0 or a)) H A(t;;0 or ). (3.6)
i=1
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Taking logarithm of both sides in Equation (3.6), the log-likelihood function is
obtained as
InL(6 or a; D) = Zln A(ti;0 or @) — M (t; 0 or o). (3.7
i=1

The ML estimate, 0 or é, is given by argmaxglnl(0; I) or argmax,InL(a; I).

On the other hand, when the group data I = {(¢t;,n;),i = 1,2,...,m}
is available, from Equation (1.19), the likelihood function and log likelihood
function of NHPP are given by

L(0 or a; I) =exp —[M(t;;0 or o) — M (t;-1;0 or a)]

f[l [[M(ti; 6 or o) (;Lijvi(:i_l;)? or a)]”'i_"“} 7 (3.8)
and
(8 or a; I) =
zm:(n,; i) In{M(£:6 or &) — M(t;_1:0 or a)} — iln{(m !
i—:1]\4(tm; 0 or a), - (3.9)

respectively. The ML estimate, 8 or &, is given by argmaxglnf(6;I) or

argmax,Inl(o; I).
3.1.4 Numerical Experients

In our numerical experiments, we select the well-known benchmark software
fault count data sets in software reliability engineering, that are observed in
mission-critical systems. Although the evolution of these systems may be
slower than that of business-oriented systems, effects of failure are much greater.
Hence, reliability is particularly important for the developers of these mission-
critical systems. In our numerical experiments, we analyzed a total of eight
time-domain data sets (DS1 ~ DS8 in Table 2.1 (i)), labeled TDDS1~TDDSS,
and eight group data sets (DS15 ~ DS21 in Table 2.1 (ii)), called TIDS1~TIDSS8.

3.1.4.1 Goodness-of-fit Performances

Suppose that the parameters of SRMs have been estimated by the maximum
likelihood estimation. In the first experiment, we employ two criteria for eval-

uating the goodness-of-fit performance of 11 type-I and type-II NHPP-based
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SRMs; AIC and MSE. For time-domain data and group data, the MSE is given
by

iy (i = M(t;;0 or &))?

MSE(8 or &; D) = 2
m

(3.10)

and
m o Ny ) )2
MSE(8 or &; I) = iz (1 Ai(t“ 0 or &))" (3.11)

respectively. The AIC with ML estimates generally represents an approximation
of the Kullback—Leibler divergence between our proposed SRM and the empirical
stochastic process behind the fault count data, while the direct application of
MSE exhibits a vertical distance between the estimated mean value function
and the fault count data. The smaller the AIC/MSE indicates that the SRM
has the better goodness-of-fit performance (the better the fit to the underlying
data).
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Figure 3.1: Behavior of mean value functions in TDDS1.

Figures 3.1 and 3.2 plot the behavior of the mean value functions of type-
I and type-I SRMs in the time-domain data, with TDDS1 and TIDS6. The
red curve and the orange curve are plotted as the best SRMs selected from
11 type-II SRMs and 11 type-I SRMs based on their AICs, respectively. Not
surprisingly, the two modeling frameworks show slightly different growth trends.
More specifically, the type-I (orange curve) always fits better with the actual

data in the tail segment, for both the time-domain and group data. However,
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Figure 3.2: Behavior of mean value functions in TIDS6.

we still cannot make a comprehensive assessment of which SRM can exhibit a
better fitting ability over the whole data set. This is the reason why we need to
think about AIC as well as MSE as the goodness-of-fit criteria. In Table 3.3, we
make a more precise comparison between our proposed type-II and the existing
type-I on AIC and MSE. Without the comparison from each other, we can find
that in the vast majority of cases, the best models in the type-I SRMs are given
by the extreme-value distributions. On the contrary, the type-IT Pareto (Musa-
Okumoto) SRM performs better than the other SRMs. In the next step, by
comparing the best type-I and the best type-II SRMs for each data set, it is not
difficult to find that in 3 cases (TDDS1, TDDS2 and TDDS5), the type-1I SRMs
could provide the smaller AIC than the type-I SRMs. However, in all the data
sets, the type-I SRMs could provide the smaller MSE than our type-II SRMs. In
Table 3.4, we compared the best SRMs of our type-II NHPP with the existing
type-I NHPP-based SRMs in 8 group data sets. It can be seen that our type-
IT SRMs could guarantee the smaller AIC than the existing type-I in 3 cases
(TIDS2, TIDS5 and TIDS6), but at the same time, it still cannot outperform
the type-I from the viewpoint of MSE for any group data set. We can therefore
draw the conclusion that the type-II NHPP-based SRMs could not consistently
outperform the existing type-I NHPP-based SRMs in terms of goodness-of-fit

performance, but in some cases, especially in the time-domain data, the three
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Table 3.3: Goodness-of-fit results in time-domain data.
Type-1 Type-11

Best SRM AIC MSE Best SRM AIC MSE
TDDS1  Lxvmax 896.666 1.950  Pareto (Musa-Okumoto) 895.305  2.315
TDDS2  Lxvmax 598.131 1.705  Pareto (Musa-Okumoto) 596.501  1.809
TDDS3  Lxvmin  1938.160 6.570 Pareto (Musa-Okumoto)  1939.600  8.052
TDDS4  Txvmin 759.579  3.747 Txvmin (Cox-Lewis) 759.948 5.509
TDDS5 Exp 757.869 18.985 Power-law 757.031 19.315
TDDS6  Lxvmax 721.928 1.442 Txvmin (Cox-Lewis) 726.052 2.803
TDDS7  Lxvmax 1008.220  5.970  Pareto (Musa-Okumoto) 1007.100  7.039
TDDS8 Pareto 2504.170  47.404 Pareto (Musa-Okumoto) 2503.370 63.699

existing type-II NHPP-based SRMs; Musa-Okumote, Cox-Lewis, and power-law

SRMs, could indicate the better experimental results.

Table 3.4: Goodness-of-fit results in group data.

Type-I Type-II

Best SRM AIC MSE Best SRM AIC MSE
TIDS1 Llogist 73.053 4.115 Tlogist 85.339  48.269
TIDS2  Lxvmax 61.694 3.239 Llogist 60.674 3.557
TIDS3 Tnorm 87.267 6.151 Txvmin (Cox-Lewis)  91.919  31.232
TIDS4 Tlogist 51.052  1.968 Txvmin (Cox-Lewis)  63.556  27.199
TIDS5 Exp 29.911 0.118 Exp 27.953 0.186
TIDS6  Lxvmax 108.831  22.514 Llogist 107.211  24.394
TIDS7  Txvmin 123.265 2.122 Tlogist 138.029  24.847
TIDSS8 Llogist 117.470 9.408 Llogist 148.438  45.178

3.1.4.2 Predictive Performances

Notably, according to previous studies, it turns out that SRMs with better

goodness-of-fit do not necessarily provide excellent predictive performance. In

other words, investigating the predictive performance of the type-I and type-11

NHPP-based SRMs is of significant importance. Hence, in our second experi-

ment, we employ the PMSE to measure the predictive performance of our type-I1
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SRMs, where
ml . 0 AN 2
~ . - M ti; 0
PMSE(@ or & D) — 2zizms1t! l (16 or &)} (3.12)
and o R )
A m i M ti; 0 A
PMSE(@ or & I) — 2zttt = M(0::0 or &)} (3.13)

] )
for the time-domain and group data respectively. Support that m or n,, software
faults have been observed in (0, t,,], and the prediction length is given by
I(=1,2,---). 0 and & are the ML estimates at observation time ¢, for the type-
I and type-IT NHPP-based SRMs, respectively. Similar to MSE, PMSE is also a
metric that evaluates the mean squared distance between the predicted number
of detected faults and its (unknown) realization for each prediction length. For a
comprehensive investigation of the predictive performance of SRMs at different
software testing phases, three observation points were set at 20%, 50% and 80%
of the total length of each data set, to represent the early, middle and late phases
of software testing and to predict the total number of software faults at the
remaining 80%, 50% and 20% of the length of time periods. Then, we calculate
the PMSE for the type-I and type-II NHPP-based SRMs. It is immediate to
see that the larger the observation point, the shorter the prediction length.
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Figure 3.3: Behavior of fault prediction in TDDS1 (20% observation point).

In Figure 3.3 to Figure 3.5, we plot the predictive behavior of the best existing
type-I and the best type-II NHPP-based SRMs in time-domain data, TDDS1 at
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Figure 3.4: Behavior of fault prediction in TDDS1 (50% observation point).

three different observation points. The red curve in each figure represents our
best type-II NHPP, while the orange curve denotes the best type-I NHPP. All
the best SRMs were taken from the type-I NHPP-based SRMs and the type-
II NHPP-based SRMs with their smaller PMSEs in TDDS1. It can be seen
that both type-I and type-II tend to give almost the same number of predicted
software faults in the early and late testing phases. However, after the mid-
term of testing, the type-I NHPP-based SRM tended to make more optimistic
software fault predictions. In Figure 3.6 to Figure 3.8, we also plot the predictive
behavior of the best existing type-1 and the best type-II NHPP-based SRMs
in group data, TIDS6. It can be seen that the type-I still tended to miss-
predict the number of software faults in the early and middle testing phases.
More specifically, in Figure 3.6 and Figure 3.7, while the type-II NHPP-based
SRMs could show an increasing trend, the opposite is true for the type-I, whose
predictive trend for future phases becomes very flat. However, in Figure 3.8,
both the type-I and type-II show more similar predictive trends. In general,
prediction of unknown trend changes over longer periods of time in the future
is essentially difficult for either the type-I NHPP nor the type-II NHPP. In
contrast, the prediction of trend changes over a short period of time is relatively

easy, but absolute accuracy cannot be guaranteed.

In Table 3.5, we present the PMSEs of the best type-I SRM compared to
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Figure 3.5: Behavior of fault prediction in TDDS1 (80% observation point).

the best type-II SRM in each set of time-domain data. We compare the PM-
SEs in 11 type-I SRMs and 11 type-II SRMs by selecting the models with their
smaller PMSEs as the best SRMs at each observation point. It can be seen
that, at 20% observation point, our type-II SRMs could provide the less PMSEs
than the existing type-I in 3 cases (TDDS5, TDDS6, and TDDS8). During the
middle testing phase (at 50% observation point), we observed that our type-II
SRMs outperformed the type-I SRMs in 4 data sets (TDDS3, TDDS7, TDDS5
and TDDSS8). As the test proceeded to the late phases (at 80% observation
point), the type-II SRMs were able to guarantee the smaller PMSE in TDDSI1,
TDDS7, and TDDSS8. On the other hand, it is found that the best type-II
SRMs with better predictive performance than the type-I were the logistic dis-
tribution, Musa-Okumoto SRM, and power-law SRM. By comparing PMSE in
time-domain data, we believe that the type-II SRMs could become a good al-
ternative to the type-I SRMs. In Table 3.6, when the testing phase is early (at
20% observation point), it can be immediately noticed that our type-II SRMs
showed the smaller PMSE than the type-I SRMs in 7 out of 8 group data sets
(except in TIDS2). In addition to logistic-based SRM, Musa-Okumoto SRM
and power-law SRM, which were proven to perform better in Table 3.5, we
observed that Cox-Lewis SRM is also appropriate in some cases of group data

(TIDS7 and TIDS8) in terms of predictive performance. At 50% observation
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Figure 3.6: Behavior of fault prediction in TIDS6 (20% observation point).

point, we found that the type-II SRMs could guarantee the better predictive
performance than the type-I SRMs in 3 cases (TIDS2, TIDS4 and TIDS6). For
the late testing phase (at 80% observation point), in only TIDS2, our Tlogist
type-II SRMs gave the smallest PMSE in the future prediction phase. In the
group data, the predictive performance of the type-II SRMs decreases as the
software testing proceeds. Hence, it is possible to summarize that the type-II
NHPP-based SRMs outperformed the existing type-I NHPP-based SRMs for
software fault detection prediction in the early testing phase when the group

data were available.
3.1.4.3 Software Reliability Assessment

Our final research question for NHPP-based type-II SRMs is how to utilize
them to quantitatively assess the software reliability. In general, in the NHPP
software reliability modeling, the reliability of software at a given time point ¢,
can be calculated by R(t,;6 or «), that is, the probability that the software

will be failure-free during time interval (,,,t.], which can be written as
R(t,;0 or &) =Pr[N(t,) — N(tm) = 0]
=exp(— [M(t+ ;0 or &) — M(t;0 or a)]). (3.14)

t, is defined as the observation point after a certain time of software release,

and t,, is the total time for software testing. m is the total number of detected
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Figure 3.7: Behavior of fault prediction in TIDS6 (50% observation point).

faults before the time point ¢,,. In this numerical experiment, we assume that
t, = t;,. The software reliability in each software development project was
predicted quantitatively by importing the mean value functions of type-I NHPP
and type-II NHPP into Equation 3.14.

In Table 3.7 and Table 3.8, we compare the quantitative software reliability
of the best type-I SRMs and the best type-II SRMs in the time-domain data
and group data. We select the type-I SRM and the type-II SRM with their
smaller AIC in respective time domain and group data sets as the best SRMs.
We can see that in almost all data sets (except in TDDS1 and TIDS6), the type-
I SRMs tend to give the higher software reliability than our type-II SRMs. In
other words, during the time period (¢,,t,], the probability of software failure
predicted by the type-II NHPP is much higher than that by the type-I NHPP.
This observation indicates that our type-II SRMs tend to make more conser-
vative decisions than the type-I SRMs in software reliability assessment. It is
important to note that optimistic reliability estimates are often undesirable.
This is because software faults are additionally detected as the ex-post results
after each observation point in all the data sets.

Finally, we can conclude in this chapter that, under the infinite-failure as-
sumption, in addition to the well-known Musa-Okumoto model, Cox-Lewis

model and power-law model, we proposed alternative 8 type-II NHPP-based
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Figure 3.8: Behavior of fault prediction in TIDS6 (80% observation point).

SRMs with 8 different software fault detection time c.d.f.s. By analyzing 8
software fault count time-domain data and 8 software fault count time-interval
data (group data), we have investigated the goodness-of-fit performance and
predictive performance of our SRMs. We have also compared these SRMs with
11 existing type-I NHPP-based SRMs under the finite-failure assumption. The
important point to note is that the type-I and type-II NHPP-based SRMs con-
sidered in this chapter have the almost similar software fault detection c.d.f.s.

This observation has never been addressed in the past literature.

The experimental results have confirmed that our type-II NHPP-based SRMs
could show the better goodness-of-fit performance in some cases. On the other
hand, for the group data, the type-II NHPP-based SRMs have exhibited rather
better predictive ability than the existing type-I NHPP-based SRMs in the early
testing phase. But as the software testing progresses, it has been known that the
advantages of type-II NHPP in terms of predictive performance were diminished.
Hence, we can conclude that the type-II NHPP-based SRMs cab be considered
as the good complements to the type-I NHPP-based SRMs for describing the
fault-detection process of software systems. At the same time, they have a
greater potential in the early software testing phase. On the other hand, we
have also confirmed that the type-II NHPP tended to make more conservative

predictions than the type-I NHPP in software reliability assessment.
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3.2 Lindley-type NHPP-based Software Relia-
bility Modeling

3.2.1 Lindley-type Distribution

Under Fiducial and Bayesian statistics, a meaningful one-parameter continuous
probability distribution called the Lindley distribution was proposed by Den-
nis Victor Lindley [50]. Recently, the Lindley-type distributions have attracted
extensive attention. In order to replace the common exponential distribution,
Lindley-type distributions have been applied to the life data analysis of several
products [51]. Subsequently, several authors extended basic Lindley distribution
in a variety of ways. Mazucheli and Achcar [52] assumed the Lindley distribu-
tion to analyze competing risks lifetime data. The power Lindley distribution
was proposed by Ghitany et al. [53] and applied to the analysis of tensile data
in carbon fibers. When the relevant two random variables obey the Lindley dis-
tribution, Al-Mutairi et al. [54] considered an estimation of the stress-strength

parameters.

Nadarajah et al. [55] studied the exponentiated Lindley distribution, where
the gamma, log normal and Weibull distributions are used to compare with
the original Lindley distribution in term of lifetime data analysis. After that,
Ashour and Eltehiwy [56] developed the exponentiated power Lindley distribu-
tion which can be regarded as the combination of the power Lindley distribution
[63] and the exponentiated Lindley distribution [55]. The gamma Lindley dis-
tribution was further studied by Nedjar and Zeghdoudi [57], by applied to the
failure time data of electronic components and the number of cycles to failure
for specimens of yarn. In order to analyze the failure time of electronic devices
and the failure stresses of carbon fibers, Ghitany et al. [58] and Mazucheli et
al. [59] also proposed the weighted Lindley distribution. Recently, the Gom-
pertz Lindley distribution was carefully examined by Bager [60], and several
candidate distributions were compared with it. We name these probability dis-
tributions developed from basic Lindley the Lindley-type distributions. Over the
recent years, Xiao et al. [49] utilized seven Lindley-type distributions in type-I
NHPP-based software reliability modeling and investigated the goodness-of-fit

and predictive performances in several fault count time-interval data which were
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collected in the actual software development projects.
The original Lindley distribution is defined by the c.d.f:
at
a

F(t)=1— (1 + ?) exp(—at), t>0, a> 0. (3.15)

It is consists of an exponential distribution with scale a and a gamma distribu-
tion having shape parameter 2 and scale parameter a with the mixing proportion
a/(a+ 1) [50]. Hence, as a two-component mixture, the corresponding proba-
bility density function (p.d.f.), f(¢) = dF(t)/dt, when a < 1, is shown as

2

F(t) = a‘; - (14 1) exp(—at) (3.16)

with f(0) = a?/(a + 1) and f(co) = 0. This also shows that the p.d.f. of
Lindley distribution increases in ¢ or unimodal in t. Figure 3.9 depicts the p.d.f.
of the Lindley distribution for different scale a values. Since the c.d.f. and p.d.f
are given, it is easy to confirm that an increasing failure rate (IFR) of Lindley

distribution is shown, where thefailure rate is given by

(1)

Figure 3.9: The probability density function of Lindley distribution.

f) a*(1+t)
h(t)’l—F(t)*aJrHat’

(3.17)

with h(0) = a?/(a+ 1) and h(co) = a.
Next, to represent the fault-detection time distribution, we focus on several

variations of the Lindley distribution. Set a (> 0), b (> 0) and ¢ (> 0) as
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three arbitrary parameters. Then, a total of six extensions of Lindley-type

distributions are presented as follows.

(i) Gamma-Lindley Distribution [57] is a generalized Lindley distribution which

is composed of the common Lindley distribution and a mixture of Gamma (2, a):

{(ab+b —a)(at + 1) + a} exp(—at) .

F(t)=1- 1
) b(1+a) (3.18)
The p.d.f. of Gamma-Lindley Distribution is given by
a*{(ab+b—a)t + 1} exp(—at

b(1 + a)
(ii) Exponentiated Lindley Distribution [55] is considered as the closed form of

the hazard rate with the Weibull and exponentiated exponential distributions.

The c.d.f. and p.d.f. are given as:

Pt ={1- % exp(—at)} (3.20)
ca? a+a c—1
== a+nfi- % exp(—at)} e (3.21)

It is obvious that Equation (3.21) has two parameters, a and ¢, shown as a
mixture of Weibull, exponentiated exponential and gamma distributions. Ex-
ponentiated Lindley distribution is reduced to the common Lindley distribution
when ¢ = 1.

(iii) Power Lindley Distribution [53] was considered as a power transformation
t = 2% to Equation (3.16) where the c.d.f. and p.d.f. are given as:

b

Flz)=1— (1 n 1‘?_7 a) exp(—az®), (3.22)
_ ba® 4 b
f(z) = T2t exp(—ax”). (3.23)

It is shown as a mixture of generalized gamma distribution with shape param-
eters 2 and Weibull distribution with scale parameter a and shape parameter
b.

(iv) Exponentiated Power Lindley Distribution [56] is defined as a three-
component mixture. it involves the common Lindley distribution, Exponen-

tiated Lindley distribution and Power Lindley distribution. This distribution is



3.2. LINDLEY-TYPE NHPP-BASED SOFTWARE RELIABILITY MODELINGA47

considered as more flexible than each component in describing different types

of actual data.

b

Fiy=1-{1- (14 - a) exp(—atb)}c. (3.24)
f(t) = %(1 + th)eat’ {1 - (1 + aaj—b1> eat”rl. (3.25)

(v) Gompertz Lindley Distribution [60]:

2

B a a + exp(bt)
Flt)=1- (1 + a) (a—1+exp(bt))? (3:26)
(vi) Weighted Lindley Distribution [58],[59]:
a a2(b,a at)? exp(—a
Fig =1 (Ol - oot o
ft) = abT 11 (1 + t) exp(—at) (3.28)

(@ +0)L'1(b) 7
where I'1(a) = [}~ 2 'e""da and ['y(a,b) = [,° #* e *dz. Note that when

b =1, the weighted Lindley distribution reduces to the Lindley distribution.

3.2.2 Type-I and Type-II Lindley-type NHPP-based
SRMs

In the previous subsection, we have shown that it was possible to obtain
two quite different NHPP-based SRMs; type-I NHPP-based SRM and type-I1
NHPP-based SRM, by importing any software fault-detection time distribution
into the type-I and type-II NHPP-based software reliability modeling assump-
tions. Hence, we can obtain the corresponding type-I and type-II Lindley-type
NHPP-based SRMs, by considering seven Lindley-type time distributions c.d.f.s
shown in Equations (3.15), (3.18), (3.20), (3.22), (3.24), (3.26) and (3.27). The
mean value functions of type-I and type-II Lindley-type NHPP-based SRMs are
shown in Table 3.9 and Table 3.10.

3.2.3 Numerical Experiments

3.2.3.1 Goodness-of-fit Performances

The plot for the best Lindley-type SRM and the best SRATS SRM with TDDS1
and TIDS1 are illustrated in Figure 3.10 (a) and (b), respectively. At first glance,
in TDDSI, it can be seen that the four SRMs are similar in Figure 3.10 (a). It is
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difficult to identify a specific SRM with a better performance on the goodness-
of-fit in this situation. But in contrast, in Figure 3.10 (b), in TDDSI1, we can
obviously find that two type-I NHPP-based SRMs can show more accurate and
complex software fault-detection behavior. The main objectives of our numerical
experiments are to derive the maximum likelihood estimates of the parameters of
11 existing type-I NHPP-based SRMs, which are showed in Table 3.1, 3 existing
type-I NHPP-based SRMs (Musa-Okumoto SRM, Cox-Lewis SRM and Duane
SRM), and 14 type-I and type-II Lindley-type NHPP-based SRMs considered
in this section. We investigate and compare the goodness-of-fit and predictive
performances of the above NHPP-based SRMs under several criteria based on

the likelihood estimation in a total of 16 actual software fault count data sets.

In Table 3.11 and Table 3.12, we make a comparison of the best type-I and
type-II Lindley-type SRMs with the best existing type-I and type-II NHPP-
based SRMs in terms of AIC and MSE with time-domain data and group data.
The best AIC/MSE in each data set is represented in bold font. From Table
3.11, it is obvious that the existing type-I NHPP-based SRMs could outperform
our type-I and type-II Lindley-type SRMs in AIC and MSE in almost all cases.
Only in TIDS3, and TIDS2, TIDS3, and TIDS5, the type-I Lindley-type SRMs
could guarantee almost similar or better AIC and MSE than the existing type-1
NHPP-based SRMs. Note that although the type-II Gompertz Lindley SRM
outperformed the seven type-II Lindley-type SRMs in almost all cases, it hardly
guarantee better AIC or MSE in comparison with the other three type of NHPP-
based SRMs.

In Table 3.12, our Lindley-type SRMs could provide the better AIC in half
of the cases (TDDS3~TDDS6), and MSE in TDDS3, TDDS4 and TDDS5. In
the group data, the result suggests that the Gompertz Lindley distribution and
Lindley distribution tend to be the best fault-detection time distribution in
the type-I and type-II Lindley-type NHPP-based software reliability modeling.
Hence, we are optimistic to claim that Lindley-type SRMs still have a better
potential ability to describe software fault count data. On one hand, we also be-
lieve that it is still of great significance to investigate the predictive performance
of the Lindley-type SRMs, because, as well as we know, the goodness-of-fit per-

formance and the predictive performance do not have an inevitable connection.
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3.2.3.2 Predictive Performances

In the second experiment, we focus on the predictive performance of the Lindley-
type SRMs. Figure 3.11 depicts the predicted number of detected faults after
20%, 50%, and 80% observation points in TDDS1 by the existing type-I and
type-II NHPP-based SRMs, and the type-I and type-II Lindley-type SRMs with
minimum PMSE. In Figure 3.11 (a), (b) and (c), the type-I Exp power Lindley-
type SRM in Table 3.9, Log-extreme-value max distribution NHPP-based SRM
[16], Pareto NHPP-based SRM [7] and Musa-Okumoto SRM [2, 14] provided
more accurate predictive performances at 20%, 50% and 80% points in TDDSI.
On one hand, we can observe that the type-II Gompertz Lindley-type SRM in
Table 3.10 SRMs can not accurately predict the future trend of software debug-
ging. But we still need a more specific investigation to evaluate the predictive
performance of our Lindley-type NHPP-based SRMs in both time-domain and
group data.
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Table 3.5: Prediction results in time-domain data.

20% observation point

NHPP-based Type-1

NHPP-based Type-11

Best SRM PMSE Best SRM PMSE
TDDS1 | Lxvmax 5.073 Pareto (Musa-Okumoto) 6.420
TDDS2 Tnorm 42.104 Pareto (Musa-Okumoto) | 145.648
TDDS3 | Lxvmax 32.131 Power-law 1417.110
TDDS4 Lnorm 56.477 Pareto (Musa-Okumoto) | 198.490
TDDS5 Exp 9177.670 Tlogist 467.320
TDDS6 Txvmin 83.964 Llogist 79.614
TDDS7 | Lxvmax 32.217 Llogist 207.592
TDDSS8 | Lxvmax 1852.520 Lnorm 1474.020

50% observation point
TDDS1 Pareto 6.118 Pareto (Musa-Okumoto) 6.420
TDDS2 Txvmin 5.874 Llogist 11.747
TDDS3 Pareto 11.712 Pareto (Musa-Okumoto) 10.283
TDDS4 Tlogist 103.504 Txvmin (Cox-Lewis) 106.282
TDDS5 Llogist 193.903 Tlogist 77.498
TDDS6 Lxvmax 10.493 Llogist 30.944
TDDS7 Exp 4480.620 Llogist 18.425
TDDS8 | Txvmin 3569.230 | Pareto (Musa-Okumoto) | 45.344
80% observation point

TDDS1 | Lxvmax 5.772 Power-law 3.432
TDDS2 | Lxvmax 0.588 Pareto (Musa-Okumoto) 0.819
TDDS3 | Lxvmax 9.419 Power-law 19.992
TDDS4 | Txvmin 4.253 Txvmin (Cox-Lewis) 4.258
TDDS5 | Lxvmax 21.715 Power-law 51.677
TDDS6 | Lxvmax 2.041 Lxvmax 3.697
TDDS7 | Txvmin 6.875 Power-law 4.291
TDDS8 | Lxvmax 57.901 Power-law 9.268
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Table 3.6: Prediction results in group data.

20% observation point

NHPP-based Type-I

NHPP-based Type-I1

Best SRM PMSE Best SRM PMSE
TIDS1 Gamma 220.732 Power-law 218.763
TIDS2 | Lxvmax 29.244 Llogist 47.377
TIDS3 | Gamma 820.049 Gamma 171.702
TIDS4 Exp 142.854 Tlogist 86.083
TIDS5 Pareto 2.628 Pareto (Musa-Okumoto) | 2.625
TIDS6 Tlogist 98.903 Llogist 25.613
TIDS7 Exp 387.694 Txvmin (Cox-Lewis) 67.730
TIDS8 | Txvmin 448.935 Txvmin (Cox-Lewis) 423.360

50% observation point
TIDS1 Tlogist 96.992 Pareto (Musa-Okumoto) | 159.545
TIDS2 | Txvmin 30.786 Power-law 3.722
TIDS3 | Lxvmax 564.782 Gamma 849.736
TIDS4 Exp 101.303 Pareto (Musa-Okumoto) | 101.258
TIDS5 Exp 0.344 Pareto (Musa-Okumoto) 0.347
TIDS6 Pareto 365.493 Gamma 18.825
TIDS7 | Lxvmax 22.894 Gamma 27.045
TIDS8 | Txvmin 29.097 Llogist 156.329
80% observation point

TIDS1 Lnorm 1.762 Llogist 8.736
TIDS2 Exp 0.464 Txvmin (Cox-Lewis) 0.464
TIDS3 Tnorm 0.331 Txvmin (Cox-Lewis) 41.228
TIDS4 Tnorm 1.850 Llogist 18.985
TIDS5 Tnorm 0.224 Tlogist 0.090
TIDS6 Lnorm 3.432 Llogist 6.144
TIDS7 Txvmin 6.118 Llogist 17.300
TIDS8 | Lxvmax 0.864 Llogist 6.333
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Table 3.7: Software reliability assessment in time-domain data.

Type-1 Type-11

Best SRM Reliability Best SRM Reliability
TDDS1 Lxvmax 2.631E-06  Pareto (Musa-Okumoto) 2.674E-06
TDDS2 Lxvmax 3.283E-04 Txvmin (Cox-Lewis) 4.694E-08
TDDS3 Lxvmax 3.687E-03 Pareto (Musa-Okumoto)  3.751E-07
TDDS4 Lxvmax 2.453E-04 Pareto (Musa-Okumoto)  2.398E-04
TDDS5 Txvmin 4.573E-01 Txvmin (Cox-Lewis) 3.231E-03
TDDS6 Exp 1.035E-05 Power-law 2.596E-08
TDDS7 Pareto 8.971E-06 Pareto (Musa-Okumoto)  7.736E-06
TDDSS8 Lxvmin 4.592E-05 Pareto (Musa-Okumoto)  2.516E-10

Table 3.8: Software reliability assessment in group data.

Type-1 Type-11
Best SRM Reliability Best SRM Reliability
TIDS1 Llogist 4.152E-03 Tlogist 2.217E-25
TIDS2 Lxvmax 7.236E-05 Llogist 6.264E-05

TIDS3 Tnorm 3.865E-02 Txvmin (Cox-Lewis)  2.203E-23
TIDS4 Tlogist 2.816E-01 Txvmin (Cox-Lewis)  3.221E-27

TIDS5 Exp 9.832E-04 Exp 1.234E-04
TIDS6 Lxvmax 1.939E-07 Llogist 3.892E-07
TIDS7 Txvmin 9.633E-01 Tlogist 1.280E-27

TIDS8 Llogist 6.373E-01 Llogist 4.052E-10
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Table 3.9: Type-I Lindley-type NHPP-based SRMs.

SRM

Mean value function

Type-I Lindley

M(t;0) =w (1 — (1 + %) exp(—at))

Type-I Gamma Lindley

ab+b—a)(at+1)+a} exp(—a
Mi00) = (1 - ETl B

Type-I Exp Lindley

0 - (1 g et ]

Type-I1 Power Lindley

M(16) =w (1 - (1+ £) exp(—at?))

Type-1 Exp Power Lindley

[@

Yow—at) )

M(t0) =w (1= {1- (1422

Type-1 Gompertz Lindley

1+a
] . a2 a+exp(bt)
M(t;0) = w (1 - (ﬁ)W)

Type-1 Weighted Lindley

. _ (a+b)To(b,at)+(at)® exp(—at)
M(t;0) =w (1 - S R Y (R )

Table 3.10: Type-II Lindley-type NHPP-based SRMs.

SRM

Mean value function

Type-II Lindley

M(t;a) = at —In(at +a+ 1) + In(a + 1)

Type-II Gamma Lindley

M(t;a) = —In((ab — a + b)(at + 1) + a)
+at + In(a+ 1) + In(b)

Type-II Exp Lindley

M(t;a) = —In (1— (1_ (%+1) eiat)c)

Type-II Power Lindley

M(t;a) = —1In(at’ + (a+1)) + at + In(a + 1)

Type-1I Exp Power Lindley

M(t;a) = —In (1 - (1 — (;Ttbl + 1) e*atb)C)

Type-1I Gompertz Lindley

M(t; ) = 2In(a + € — 1) —In(a + %)
—2In(a) + In(a+ 1)

Type-1I Weighted Lindley

M(t;a) = —In (e~ (at)® + (a + b)['(b, at))
+In(a + b) + In(T'(b))
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Figure 3.11: Predicted the cumulative number of software faults in TDDS].
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To investigate the predictive performance, we apply the performance metrics;
predictive mean squared error (PMSE). For the time-domain data, suppose
that the observed software fault time sequence consists of (t1,ta,...,tm), and
1 (=1,2,--+), where [ is the predictive time length and is a positive integer. In
the sense of predictive performance, PMSE and MSE have the same evaluation

scale; the smaller the result, the better the SRM.

The minimum PMSE in the existing NHPP-based SRMs and the Lindley-
type NHPP-based SRMs for time-domain data are shown in Tables 3.13,
3.14 and 3.15, where the best SRMs are calculated by the future data
(tm+j, m+j) (7 =1,2,---,1) obtained ex post facto. As demonstrated in Fig-
ure 3.11, the predictive performance of our type-II Lindley-type NHPP-based
SRM in TDDS1 is not as good as expected. In the early and middle prediction
phases, only one case in TDDS6 at 20% observation point and TDDS5 at 50%
observation point shows that the Lindley-type SRM predicts the number of de-
tected faults more accurately than the existing type-I and type-II NHPP-based
SRMs. However, as the testing time goes on, except in 2 cases with TDDS5
and TDDSG6, the existing NHPP-based SRMs show the smaller PMSE in almost
all cases than the Lindley-type SRMs. In the later prediction phase (at 80%
observation point), the type-II Lindley-type SRM is even less able to guarantee
the smaller PMSE in all data sets. But on the other hand, we observed that
the type-I Lindley-type SRMs could provide the smaller PMSE in three cases
(TDDS1, TDDS5 and TDDSS) at 20% observation point, three cases (TDDS2,
TDDS4 and TDDS ) at 50% observation point, and three cases (TDDS4, TDDS5
and TDDS6) at 80% observation point.

In Tables 3.16, 3.17 and 3.18, the PMSE of the type-I and type-II Lindley-
type SRMs and the existing NHPP-based SRMs are also compared when the
group data are available. We can observe that our type-II Lindley-type SRMs
could provide the lower PMSE in some cases; i.e., half of the data sets at 20%
observation point, 3 out of 8 data sets at 50% observation point and one case
at 80% observation point. On the other hand, the type-I Lindley-type SRMs
outperformed the existing NHPP-based SRMs in 2 data sets at 20% observation
point, 3 out of 8 data sets at 50% observation point and 3 out of 8 data sets at

80% observation point.
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Hence, we can summarize that our type-II Lindley-type SRMs have better
prediction accuracy at the early of software fault prediction, but that prediction
accuracy continuously diminishes as the testing process proceeds. The type-11
Lindley-type SRMs, on the other hand, performed more smoothly. Therefore,
overall, our Lindley-type NHPP-based SRMs have the better predictive per-
formance than the existing NHPP-based SRMs in the group data, because the
Lindley-type NHPP-based SRMs could guarantee smaller PMSEs in more than
half of the data sets regardless of the phase of software fault-detection pre-
diction. Since, generally, PMSE is recognized as the most plausible prediction
metric, we believe that for software fault prediction, the Lindley-type SRMs can
be considered as attractive as the existing NHPP-based SRMs.
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3.2.3.3 Software Reliability Assessment

Through the experiments of goodness-of-fit and predictive performances, we are
not asserting that our Lindley-type SRMs could outperform the existing NHPP-
based SRMs, but, it should be emphasised that, in the NHPP-based software
reliability modeling, except for the existing SRMs [43], the Lindley-type SRMs
could also be good candidates. In describing the software fault-detection time
distribution, the Lindley-type distributions should be good choices.

Hence, we also concern quantifying the software reliability by our Lindley-
type SRMs. We define R(x) as the probability that software dose contain no
faults detected during a time interval (¢, ¢ + x|, when the software test is stopped
at time t where x is the software operational time. We set as 1 time of each
testing length in CPU time unit for the time-domain data or calendar time
(week) for the group data.

Tables 3.19 and 3.20 present the quantitative software reliability with the
time-domain and group data sets, respectively. We utilize the type-I and type-1I
Lindley-type SRMs and the existing NHPP-based SRMs that could provide the
best AIC in the time period (0,¢). We indicate the software reliability value that
is more close to 1 with the bold font. It can be seen that the type-I Lindley-type
SRMs could provide larger software reliability than the existing NHPP-based
SRMs in 5 of 8 time-domain data sets and half of the group data sets. On the
other hand, Our type-II Lindley-type SRMs could not show the larger reliabil-
ity in all the cases. Hence, based on these results, we can’t fully claim that
the Lindley-type NHPP-based SRMs can provide more optimistic quantifica-
tion in software reliability assessment. However, the software reliability based
on all the NHPP-based SRMs suggests that none of software projects in our
experiments can be recommended for immediate market release, because, the

reliability estimates are close to zero.
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Hence, we can conclude that in this section, we have proposed 7 novel type-
II Lindley-type NHPP-based SRMs over the type-1I software reliability model-
ing assumption. We have investigated their goodness-of-fit and predictive per-
formances, and made comparisons under the type-I Lindley-type NHPP-based
SRMs, 11 existing type-I and 3 existing NHPP-based SRMs. In most of the time-
domain and group data sets, the Lindley-type NHPP-based SRMs were difficult
to provide the smaller AIC when their parameters were given by the maximum
likelihood estimation. However, in the group data set, the Lindley-type NHPP-
based SRMs demonstrated nice predictive performances that outperform the

existing NHPP-based SRMs at any phase of software testing.

3.3 Burr-type NHPP-based Software Reliability
Modeling

3.3.1 Burr-Type Distributions

For a continuous random variable X with the support (—o0,400), let F(z; o)
and f(z; ) be the c.d.f. and the probability density function (p.d.f.), respec-
tively, where F(z; ) is an absolutely continuous non-decreasing function from
F(—o0;a) = 0 to F(oo;a) = 1. For arbitrary a and b (a < b), Pr{a < X <
b} = F(ba) — F(a;a) = f; f(z;a)de with F(z;a) = [* f(z;0)de and
f(z;a) = dF(z;)/dx. Burr [61] introduced a new family of c.d.f.s which
satisfy the following differential equation;

Q) pas )1 - Plas a))le, Flasa), (3.29)
where g(x, F(z;)) is an arbitrary positive function with 0 < F(z;a) < 1. If
g(z, F(z;0)) = (by + bow + b3:c2)71 and if F(z; ) and 1 — F(z; x) are replaced
by f(z) and (bg — z), respectively, with arbitrary constants by, b1, be, and bs,
then Equation (3.29) is reduced to the differential equation for the well-known
Pearson system;

df(z;0) _ fla;o)(bo — )

dr (b1 + bax + b3a?)’ (3.30)

which leads to many popular c.d.f.s, such as Pearson-type I (beta distribution),
Pearson-type III (gamma distribution), Pearson-type VIII (power distribution),
Pearson-type X (exponential distribution) and Pearson-type XI (a particular

class of Pareto distribution).
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Burr [61] considered a special case of g(z, F(z;)) = g(x; a). By solving
Equation (3.29), we obtain

1
[e*fg(r;a)dz 4 1] )

F(z;a) = (3.31)

It should be noted that the selection of the function g(x;a) makes the c.d.f.
F(z; &) increase monotonously from 0 to 1 within a specified time z. The
above statement is often called the Burr hypothesis. Finally, Burr [61] derived
12 Burr-type distributions I~XII by considering 12 kinds of g(z; &) functions.
Table 3.21 lists the Burr-type distributions proposed in [61].

Table 3.21: Burr-type distributions.

Type | c.d.f. Domain of x
I Flz;a) =z (0,1)

I Flr;a)=(e7®+1)7° (—o0, +00)
111 Fla;a) = (1+ (z)=) " (0, +00)

IV | F(z;a) = (((c —2)/z)e + 1)% 0, ¢)

A% F(z;a) = (ae= 07 4 1)7" (—7/2,7/2)
VI | F(z;0) = (aesinh@ 4 1)~ (—00, +00)
VII | F(z;a) =27 (1 + tanh (z))° (=00, +00)
VIII | F(z;a) = (arctan(e®)2/x)" (=00, +00)
X | Fza)=1-2 <(1,<(1+(3z)b— 1) +2>71 (—00, +00)
X F(z;a) = (1 — e*(""')2>b (0, +0)

XI F(z;0) = (z — (1/2) sin 27z)" (0,1)

XII | Flzsa)=1—(1+2%)" (0, +00)

(w>0,a>0,b>0,c>0)

3.3.2 Type-I Burr-Type NHPP-based SRMs

The Burr-type I11, X, and XII distributions were applied to describe the software
fault-detection time distribution in the past literature, where these c.d.f.s have
positive support (0,00). In other words, from Table 3.21, it is immediate to
see that the Burr-type I, IV, V, and XI distributions are not appropriate in
modeling the software fault-detection time. In addition to the Burr-type III
distribution [74, 75, 76, 77], the Burr-type X distribution [79], the Burr-type
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XII distribution [64, 66, 67, 68, 69, 70, 71, 72, 73] with the positive support
x € (0,00), it is possible to transform the c.d.f. with support (—oo, +00) to the
log Burr-type distributions and the truncated Burr-type distributions with the
support x € (0, 00) by taking exp(z) and truncating x at the origin, respectively.
So, we consider the log Burr-type II, VI, VII, VIII, IX distributions and the
truncated Burr-type II, VI, VII, VIII, IX distributions to represent the mean
value function of the NHPP-based SRM by

M(t;0) = wF(Int; ), (3.32)

and

F(t;a) — F(0; o)
1-F0;a)

respectively. The underlying idea of the log Burr-type distribution comes from

the log-normal NHPP-based SRM [8, 17] and the log-logistic NHPP-based SRM

M(t;0) = w (3.33)

[13]. In fact, it is known that the logarithmic Burr-type II distribution is reduced
to the log-logistic distribution [62]. The truncation at the origin for the Burr
II, VI, VII, VIII, IX distributions with the support (—oo,+00) is inspired by
the truncated normal NHPP-based SRM [17] and the truncated logistic NHPP-
based SRM [15]. Table 2.2 presents the type-I Burr-type NHPP-based SRMs
considered in this section, where we applied generalized Burr-type I11, VI, VII,
VIII, IX, X, and XII distributions by introducing an additional scale parameter
d. That is to say, if d = 1, then the Burr-type distributions in Table 3.22 become
the original form in Table 3.21.

3.3.3 Type-1I Burr-Type NHPP-based SRMs

In the previous subsection, we have specifically introduced the type-I NHPP-
based SRM with Burr-type distributions. Hence, by substituting the underlying
Burr-type 111, VI, VII, VIII, IX, X, and XII software fault-detection time c.d.f.s
(in Table 3.21) into Equation (3.5), we can derive 11 novel Burr-type NHPP-
based SRMs, say, type-II Burr-type NHPP-based SRMs. Note that the mean
value function of the type-II log Burr-type SRMs and the type-II truncated
Burr-type SRMs should be modified from Equations (3.32) and (3.33) to

M(t;a) = —In(1 — F(Int; ) (3.34)

F(t;a) — F(0; )
1— F(0; ) ) ’

M(t;a) = —1In (1 - (3.35)
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Table 3.22: Type-1 Burr-type NHPP-based SRMs.

Models Mean value function
Burr-type IIT M(t;0) = w (1 + (t/d)=) "
Log Burr-type VI M(Int;0) = w (ae~csinhnt/d) 4 1) 0
Truncated (Tru) M(t:0) = w ((aefcsmh(t/d)ﬂ)ibf(aefcss_u:x(oql)*b)
Burr-type VI 1—(aemestnh(041)
Log Burr-type VII M(Int;0) = w27° (1 + tanh (In t/d))b

Truncated (Tru)

- 0) = 27}7(1+ta“h(t/d))b—27b(1+tanh(0))b)
Burr-type VII M(t:0) =w ( 1—2-b(1+tanh(0))?

Log Burr-type VIII M(Int;0) = w (arctan(el‘”/d)2/7r)b
Truncated (TI‘U) ]\/[(t 0) o (arctan(et/dﬂ/ﬂ')b—(2/7rarctan(1))b
? =w 1—(2/marctan(1))®
Burr-type VIII

) -1
Log Burr-type IX | M(Int;0) = w (1 -2 (a ((1 +elnt/d)’ _ 1) + 2) )

Truncated (Tru 2b41) 1 et/d\b ) !
) M(t;0) = w ') (z(l,(jf)fl )S+1)
Burr-type IX
N
Burr-type X M(t;0) =w (1 _ o (t/d)?
b
1
Burr-type XII Mt:0)=w|l—|———
P a8 ( (1+<t/d>a))

(w>0,a>0,0>0,c>0,d>0)
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respectively. We also utilize the generalized Burr-type III, VI, VII, VIII, IX, X
and XII distributions with the introduction of an additional scale parameter d.

The details of these SRMs are shown in Table 3.23.

Table 3.23: Type-II Burr-type NHPP-based SRMs.

Models Mean value function
Burr-type III M(t;a) = —1n < ((é) + 1) >
7dsmh In(t ) -
Log Burr-type VI M(nt;a)=—In|1-— ( i + 1)
ety (- )
Truncated (Tru)
Mt o) = b+1

Burr-type VI

b
Log Burr-type VII  M(Int; ) = —1In (1 -2t (tanh (ln(t)> + 1) )

Truncated (Tru anh(t
(Tru) M(t;o) = —1In (2 —( 2: (f)H) )
Burr-type VII

2 tan (exp(m)) b
Log Burr-type VIII M(lnt;a) = —In |1 - (W)

Truncated (Tru b_(2)" tan—1(et/c)"
(Trw) M(t;a)_—hl(2 (”);bdl (=) >
Burr-type VIII

R 2
Log Burr-type IX M(Int;a) = —In (b((exp(‘“ff) )+1)°—1)+2>
Truncated (Tru) Mt a) = —In (W)
Burr-type IX 7 (etrr1) )42
b
Burr-type X M(t;a) = —In(1— (l—exp( (t)Q)) )

) . - _ 1
Burr-type XII M(t; o) In <((f1)b+1> )
(a>0,0>0,c>0,d>0)

3.3.4 Numerical Experiments

3.3.4.1 Goodness-of-fit Performances

We also utilize the maximum likelihood estimation for the parameter estima-

tion of our type-I and type-II Burr-type NHPP-based SRMs. By maximizing

InL(0 or a; D) with respect to 8 or o, ML estimate 6 or & can be obtained.
In numerical experiments, we analyze a total of 8 time-domain data sets

(DS1 ~ DS8 in Table 2.1 (i)), labeled TDDS1~TDDSS, and 8 group data sets
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(DS15 ~ DS21 in Table 2.1 (ii)), called TIDS1~TIDSS.

We compare the goodness-of-fit performances of our type-I Burr-type SRMs,
and type-II Burr-type SRMs with 3 existing type-II NHPP-based SRMs (Cox-
Lewis, Duane and Musa-Okumoto SRMs) and 11 existing type-I NHPP-based

SRMs in [43] (see Table 3.1).

We apply AIC and MSE to investigate the

goodness-of-fit performances of our type-I and type-II Burr-type NHPP-based

SRMs. In Figure 3.12 (a) and (b), we depict the plot for the best existing

Cumulative number of faults

Cumulative number of faults

405
305
20|

10}

e Actual data

Lxvmax

Musa - Okumoto -
Finite Log Burr-type VI
Infinite Burr-type XII

20000 40000 60000
Testing time

(a) TDDSL.

80000 100000

50,
305
205

10}

Llogist
Cox - Lewis |
Finite Log Burr - type IXH
Infinite Burr - type XIl []
o Actual data I

(b) TIDSI.

) .10
Testing time

15

Figure 3.12: Behavior of cumulative number of software faults with the best
type-II Burr-type and the best existing type-II NHPP-based SRMs.

type-I NHPP-based SRM (blue curve), the best existing type-II NHPP-based
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SRM (red curve), the best type-I Burr-type SRM (green curve), and the best
type-II Burr-type SRM (orange curve) in TDDS1 and TIDS1. At first glance,
in Figure 3.12 (a), 4 SRMs exhibit almost similar behavior. However, in Fig-
ure 3.12 (b), the best existing type-I NHPP and type-I Burr-type SRMs show
strong abilities to fit the underlying fault count data. More specifically, in Ta-
ble 3.24 and Table 3.25, we compare the best SRMs of our type-I and type-II
Burr-type NHPP-based SRMs with the other two type of best SRMs; existing
type-I and type-II NHPPs in time-domain data and group data, respectively.
The bold font and underline indicate the SRMs with the minimum AIC and
MSE in each data set. It’s worth noting that the significant difference in terms
of AIC might be regarded as more than 2 according to the definition of AIC.
From Table 3.24, it can be seen that our type-II Burr-type SRMs could guaran-
tee the smaller AIC than the other three type of existing NHPP-based SRMs in
five cases (TDDS2, TDDS4, TDDS5, TDDS7, TDDSS), but the difference was
significant in only TDDS4 and TDDS8. We also noted that the best type-1I
Burr-type that can guarantee the smallest AIC or MSE are all given by the
truncated Burr-type SRMs. Although the AICs and MSEs show that our SRMs
still cannot be fully replaced by the existing NHPP-based SRMs, our Burr-type
NHPP-based SRMs should be a better candidate for selecting the best SRM in
terms of goodness-of-fit.

In the group data sets (see Table 3.25), in TIDS2, TIDS5 and TIDS6, our
type-II Burr-type SRMs (Log burr-type VIII and Burr-type XII) could provide
the smaller AIC, but could not beat the other three type of SRMs in terms
of MSE. Only TIDS1 showed a significant difference in AIC between our SRM
and the other existing SRMs. On the other hand, we also notice that the type-
I Burr-type SRMs provided the smallest AIC in four cases (TIDS1, TIDS3,
TIDS4 and TIDS8) and the smallest MSE in 5 cases (TIDS1, TIDS3, TIDS4,
TIDS5 and TIDS8). The type-I and type-II Burr-type NHPP-based SRMs
completely outperform the existing type-I and type-II NHPP-based SRMs in
terms of goodness-of-fit performance in group data. Even though the smallest
AIC and MSE are still given by the existing NHPP-based SRM (Lxvmax) in
TIDS7, but a comparison with the best type-I Burr-type in the same data set

shows that the differences are quite insignificant.
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3.3.4.2 Predictive Performances

Here, we investigate the predictive performance of our type-I and type-II Burr-
type NHPP-based SRMs. The predictive performance is also measured by the
PMSE to evaluate the average squared distance between the predicted cumu-
lative number of software faults and its (unknown) realization per prediction
length. Our experiments set three observation points; 20%, 50%, and 80% of
the whole data set, predict the cumulative number of software faults for the
remaining period, say, 80%, 50%, and 20% lengths, and calculate the PMSEs
in all the cases with all SRMs. The prediction length becomes shorter as the
observation point is larger.

In Figures 3.13 and 3.14, we show examples of predictive behavior of the
cumulative number of software faults with the Burr-type and existing SRMs in
TDDS1 and TIDSI, respectively, where the dotted line denotes the prediction
point. In these figures, we plot the best predictive SRMs with the minimum
PMSE. In Figure 3.13, since the underlying fault-detection time behaves like an
exponential curve, both SRMs; the Burr-type NHPP-based SRM and the ex-
isting NHPP-based SRM, could show a similar prediction trend. On the other
hand, the group data in Figure 3.14 represents the S-shaped curve, and both
SRMs resulted in the miss-prediction in the early testing phases. The trend
change in the future causes these poor predictive performances. More specifi-
cally, in Figure 3.14 (a), both SRMs could not predict the S-shaped increasing
trend. In Figure 3.14 (b), they failed to predict the 3 steps-increasing trends.
From these results, we can understand that the prediction of the future un-
known trend change is essentially difficult, even though the prediction length is
relatively short.

Tables 3.26 and 3.27 present the comparison results on the PMSE in time-
domain data sets and group data sets, respectively, where we select the best SRM
with the smallest PMSE from both the type-I and type-II Burr-type NHPP-
based SRMs, and the existing NHPP-based SRMs. For the time-domain data
in Table 3.26, it is seen that except in the 20% observation, the type-I and type-
II Burr-type NHPP-based SRMs could guarantee the smaller PMSE than the
existing NHPP-based SRMs in almost cases. When the testing phase is early
(20%), the Burr-type NHPP-based SRMs also provided the smaller PMSE in 5



3.3. BURR-TYPE NHPP-BASED SOFTWARE RELIABILITY MODELINGT9

50 Burr-type Il . ® ° ]

Cumulative number of faults

0 20000 40000 60000 80000 100000
Testing time

® Actual data -

(a) 20% observation point.

Log Burr-type VI

40f

Cumulative number of faults
w
o

; ! ]
201 " 1
wy z
101 ]
O ® Actual data]

0 20000 40000 60000 80000 100000
Testing time

(b) 50% observation point.

607

50F

40 {.’
[ Log Burr- type Vil

w

Cumulative number of faults
w
o
%
[ ]
[ ]

® Actual datai

0 20000 40000 60000 80000 100000
Testing time

(c) 80% observation point.

Figure 3.13: Predictive behavior of the cumulative number of software faults
with the Burr-type and existing SRMs in TDDS1.
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Figure 3.14: Predictive behavior of the cumulative number of software faults
with the Burr-type and existing SRMs in TIDS1.
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Table 3.26: Predictive performances based on PMSE (time-domain data).

(i) Prediction from the 20% observation point

Data Type-I Burr-type Type-II Burr-type Existing NHPP
Set Best SRM PMSE Best SRM PMSE Best SRM PMSE
TDDS1 Burr-type II1 3.951 Burr-type XII 19.991 Lxvmax 5.073
TDDS2 Burr-type XII 270.380 Log Burr-type IX 141.815 Tnorm 42.104
TDDS3 | Log Burr-type VI 28.422 Burr-type XII 650.939 Lxvmax 32.131
TDDS4 Burr-type III 59.027 Burr-type XI 91.960 Lnorm 56.477
TDDS5 | Tru Burr-type VI | 2022.990 | Log Burr-type VIII | 789.554 Exp 9177.670
TDDS6 Burr-type XII 51.861 Burr-type XII 50.112 Txvmin 83.964
TDDS7 | Log Burr-type VII 88.338 Log Burr-type VII 193.368 Lxvmax 32.217
TDDS8 Burr-type III 2401.850 Burr-type III 1700.110 | Lxvmax 1852.520
(ii) Prediction from the 50% observation point
TDDS1 | Log Burr-type VI 9.009 Burr-type XII 4.501 Pareto 6.118
TDDS2 Tru Burr-type IX 3.749 Tru Burr-type VIII 0.717 Tlogist 14.890
TDDS3 | Tru Burr-type IX 259.988 | Tru Burr-type VIII 475.366 Pareto 11.712
TDDS4 | Tru Burr-type VIIT | 121.671 Tru Burr-type VII 94.254 Tlogist 103.504
TDDS5 | Log Burr-type VIII | 252.978 Tru Burr-type VI 110.137 Llogist 193.903
TDDS6 | Log Burr-type VIII 4.358 Burr-type XII 7.727 Lxvmax 10.493
TDDS7 | Tru Burr-type IX 37.702 Burr-type XII 3909.47 Exp 4480.620
TDDS8 | Tru Burr-type VI | 194.841 | Log Burr-type IX 361.550 Lxvmax | 32375.500
(iii) Prediction from the 80% observation point
TDDS1 | Log Burr-type VIII 5.720 Tru Burr-type VI 5.050 Lxvmax 5.772
TDDS2 | Log Burr-type VIII 0.583 Burr-type XII 0.590 Lxvmax 0.588
TDDS3 | Tru Burr-type VI 7.997 Burr-type XII 15.694 Lxvmax 9.419
TDDS4 | Log Burr-type IX 2.867 Tru Burr-type VIII 4.742 Txvmin 4.253
TDDS5 | Tru Burr-type VI 32.079 Burr-type XII 59.795 Lxvmax 21.715
TDDS6 Burr-type 111 2.032 Burr-type XII 2.753 Lxvmax 2.041
TDDS7 Burr-type XII 9.161 Log Burr-type IX 5.879 Lxvmax 10.498
TDDS8 Burr-type XII 46.212 Tru Burr-type VII 20.561 Lxvmax 57.901
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Table 3.27: Predictive performances based on PMSE (group data).

(i) Prediction from the 20% observation point

Data Type-I Burr-type Type-II Burr-type Existing NHPP
Set Best SRM PMSE Best SRM PMSE | Best SRM | PMSE
TIDS1 Burr-type XII 219.067 Burr-type XII 205.956 | Gamma 220.732
TIDS2 | Log Burr-type VI 9.149 Burr-type XII 5.784 Lxvmax 29.244
TIDS3 | Log Burr-type IX 429.795 Tru Burr-type IX | 330.014 | Gamma 820.049
TIDS4 Burr-type XII 791.335 Tru Burr-type IX | 129.764 Exp 142.854
TIDS5 | Log Burr-type VII 3.535 Tru Burr-type IX 0.275 Pareto 2.628
TIDS6 | Log Burr-type IX 41.897 Burr-type XII 30.254 Tlogist 98.903
TIDS7 | Tru Burr-type IX 552.996 Tru Burr-type IX | 233.833 Exp 387.694
TIDS8 | Tru Burr-type VI | 423.360 | Tru Burr-type IX 964.738 Txvmin 448.935
(ii) Prediction from the 50% observation point
TIDS1 Burr-type III 26.557 Log Burr-type IX 18.145 Tlogist 157.837
TIDS2 Burr-type XII 45.793 Log Burr-type VII 15.789 Txvmin 30.786
TIDS3 | Log Burr-type VIII | 346.721 | Tru Burr-type VIII | 838.510 Lxvmax 564.782
TIDS4 | Log Burr-type VIII | 340.914 | Tru Burr-type VIII | 80.646 Exp 101.303
TIDS5 | Log Burr-type IX 0.300 Log Burr-type VI 0.094 Exp 0.344
TIDS6 | Log Burr-type IX 327.310 Tru Burr-type IX 28.673 Pareto 365.493
TIDS7 Burr-type 11T 22.561 Tru Burr-type IX 32.780 Lxvmax 22.894
TIDS8 | Tru Burr-type IX 20.613 | Tru Burr-type VIII | 307.124 Txvmin 29.110
(iii) Prediction from the 80% observation point
TIDS1 | Log Burr-type VIII 4.676 Burr-type XII 19.559 Lnorm 1.762
TIDS2 | Log Burr-type VI 0.455 Log Burr-type VII 0.802 Exp 0.464
TIDS3 | Tru Burr-type IX 0.230 Burr-type XII 0.232 Tnorm 0.331
TIDS4 | Tru Burr-type IX 0.695 Tru Burr-type IX 5.532 Tnorm 1.850
TIDS5 | Log Burr-type VI 0.152 Log Burr-type VII 0.070 Tnorm 0.224
TIDS6 Burr-type 111 1.710 Log Burr-type IX 1.315 Lnorm 3.432
TIDS7 Burr-type X 21.403 Tru Burr-type IX 71.140 Txvmin 6.118
TIDS8 | Log Burr-type VIII 0.862 Log Burr-type IX 9.686 Lxvmax 0.864
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out of 8 cases. In the group data analysis (see Table 3.27), at 20% observation
point, our type-II Burr-type NHPP-based SRMs outperformed the other SRMs
in 7 out of 8 data sets. Note that this advantage diminishes as the testing process
progresses (5 cases at 50% observation point, 2 cases at 80% observation point).
But similar to the experimental results in Table 3.26, our Burr-type SRMs can

also outperform the existing NHPPs in almost all datasets.

It should be noted that the best SRM with the minimum PMSE depends
on the data sets in modeling frameworks; the type-I Burr, the type-1I Burr and
the existing NHPP. Of course, the best SRM with the minimum PMSE cannot
be known in advance at each observation point. In this sense, we have to say
that the comparison in Tables 3.26 and 3.27 is not feasible at each prediction
point. In Tables 3.28~3.30, we compare the predictive performances of SRMs
with the minimum AIC at each observation point in the time-domain data sets.
In the time-domain data, only in TDDS5 and TDDS7, our type-II Burr-type
SRMs could show both the smaller AIC and PMSE. This case also appeared
in TDDS2 of the existing NHPP. When the testing phase is middle (50%), the
Burr-type NHPP-based SRMs could provide both the smaller AIC and smaller
PMSE than the existing NHPP-based SRMs in TDDS7 and TDDSS, and no
existing NHPP-based SRMs could realize the similar results. When the testing
phase is later (80%), the Burr-type NHPP-based SRMs could show the best
goodness-of-fit performance in the observation phase and ensure the minimum

PMSE in the future prediction phase in TDDS1, TDDS7, and TDDSS.

For group data, in Tables 3.31~3.33, it is observed that the Burr-type NHPP-
based SRMs provided both the smaller AIC and smaller PMSE at the same time
in some cases; i.e., 4 cases out of 8 data sets in (ii) and 4 cases out of 8 data
sets in (iii). These results confirm that the Burr-type NHPP-based SRMs have
the higher prediction ability than the existing NHPP-based SRMs, especially in

the late software testing phase.

In both time-domain and group data sets, when we compare the PMSEs
between the best Burr-type NHPP-based SRM and the best existing NHPP-
based SRM, we find out that our Burr-type NHPP-based SRMs could guarantee
smaller PMSEs than the existing NHPP-based SRMs in many cases; 10 out of

16 cases at 20% observation, 14 out of 16 cases at 50% observation and 12 out
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of 16 cases at 80% observation.

We never claim here that the Burr-type NHPP-based SRMs are always better
than the existing SRMs in the literature. However, we emphasize that the
Burr-type NHPP-based SRMs should be the possible candidates in selecting
the best SRM in terms of goodness-of-fit and predictive performances. Also,
another new finding is that the logarithmic and truncated Burr-type NHPP-
based SRMs gave better goodness-of-fit and prediction results in many cases
than the existing Burr-type III, X, and XII SRMs. This would be useful to

assuming the competitors of SRMs.
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3.3.4.3 Software Reliability Assessment

Finally, we evaluate the software reliability quantitatively with our Burr-type
NHPP-based SRMs and compare them with the existing NHPP-based SRMs
in SRATS. Let R(z) be the software reliability with the software operational
period (prediction length) @ = t,,,1; — ¢, or [ when the software is released at
time ¢ = t,,. Since R(z) is defined as the probability that software is fault-free
during the time interval (¢,¢ + ], it is easily obtain that

R(z) = Pr(N({t+xz)—N(@E)=0|N(t)=m)
= exp(—[M(t+xz;60)— M(t;0)]), (3.36)

where m is the cumulative number of software faults detected up to time ¢ in the
time-domain data (m in Equation 3.36 is replaced by n,, in the group data). In
our subsequent examples, we suppose that the prediction length x is equivalent
to the testing length experienced before, say, t = x.

Tables 3.34 and 3.35 present the quantitative software reliability. We assume
the Burr-type NHPP-based SRM and the SRATS NHPP-based SRM with the
minimum AIC in the fault-detection time-domain and group data sets, where
the bold font denotes the case with a greater reliability estimate. Looking at
these results, it is seen that our Burr-type NHPP-based SRMs could show larger
software reliability estimates than the existing NHPP-based SRMs in 3 out of 8
cases (time-domain data) and 4 out of 8 cases (group data). This feature tells
us that the Burr-type NHPP-based SRMs tend to make more optimistic deci-
sions in software reliability assessment than the SRATS NHPP-based SRMs. It
is worth noting in all the data sets that after each observation point, software
faults were additionally detected as the ex-post results. Hence, the optimistic
reliability estimation is not preferable. Figure 3.15 (a) and (b) show the soft-
ware reliability estimates with the Burr-type NHPP-based SRM and the SRATS
NHPP-based SRM in TDDS1 and TIDS1, respectively. In both cases, the soft-
ware reliability values dropped down to zero level rapidly, and two NHPP-based
SRMs showed similar reliability values as well. From these results, we find out
that both SRMs gave the false alarm to release the current software at respec-
tive observation points and request more testing for attaining the requirement

level of software reliability.
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Table 3.34: Software reliability assessment with the best AIC (time-domain
data).

Burr-type Existing NHPP
Best Burr Reliability | Best SRM | Reliability

TDDS1 | Log Burr-type VIII 2.631E-06 Lxvmax 2.674E-06

TDDS2 | Log Burr-type VIII 3.687E-03 Lxvmax 3.751E-03

TDDS3 Burr-type X 4.592E-05 Lxvmin 2.516E-10
TDDS4 | Tru Burr-type IX 1.244E-01 Pareto 1.000E-00
TDDS5 Burr-type X 1.035E-05 Exp 2.596E-08

TDDS6 | Log Burr-type VIII 3.283E-04 Lxvmax 4.694E-03
TDDS7 | Log Burr-type VII | 2.453E-04 Lxvmax 2.398E-04

TDDS8 | Tru Burr-type VI 6.158E-10 Pareto 7.736E-06

Next, we introduce the concept of wirtual testing time, whose idea comes
from Zhao et al. [82] to consider a more realistic and plausible software release
decision. When the software testing is terminated at a given observed time
point, we set the so-called virtual testing time period when no software fault is
found. If this hypothesis is correct, we check whether the software reliability
can achieve a given requirement level at the end of the virtual testing time and
release the software product with a satisfactory level at the end of the virtual
testing time period. Otherwise, i.e., if at least one software fault was found,
we reset the observation point to the fault detection/fixing time and redefine
the virtual testing time from that point. Under the hypothesis that no fault
is found during the virtual testing time, the maximum likelihood estimation is
made with zero fault count. In the time-domain data, the likelihood function is
given by

mr
L(6; D) = exp(—M (tm, + 1,5 0)) [ [ M(t:;6), (3.37)
i=1
where t, is the virtual testing time (see Figure 3.16). In the group data, the

likelihood function is given by

mg+v . _ L. ni—ni—1

=1
% ef[ﬂf(ti;e)*M(ti—Ue)]’ (338)
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Table 3.35: Software reliability assessment with the best AIC (group data).

Burr-type Existing NHPP
Best Burr Reliability | Best SRM | Reliability
TIDS1 | Log Burr-type IX | 1.065E-02 Llogist 4.152E-03

TIDS2 | Log Burr-type IX | 1.353E-05 Lxvmax 7.236E-05

TIDS3 | Log Burr-type VI | 3.751E-02 Tnorm 3.865E-02
TIDS4 | Tru Burr-type IX | 4.504E-01 Tlogist 2.816E-01
TIDS5 | Log Burr-type IX | 6.548E-03 Exp 9.832E-04

TIDS6 | Log Burr-type IX | 1.928E-08 Lxvmax 1.939E-07

TIDS7 Burr-type III 8.667E-01 Txvmin 9.633E-01
TIDS8 | Log Burr-type IX | 6.679E-01 Llogist 6.373E-01

where (t;,n;) = (tm;sNmg) (@ = mr+ 1,my +2,...,my + v) with the virtual
testing time length v (integer value). Hence, it is obvious that the maximum
likelihood estimates depend on the length of virtual testing time ¢, or v so in-
creasing virtual testing time leads to increasing quantitative software reliability.
Then the problem is to determine an appropriate virtual testing time (¢} or v*)
satisfying that the software reliability with a given operational period is greater
than a specified requirement lever, e.g., such as 90%.

In our numerical experiments, we focus on the time-domain and group data
and set 15 different lengths of virtual testing time (10% to 150% of ty,,, (tm,)),
where the operational period x is given by z = t, = t,,,, or t,,, and each t,,,
Or ty,, is given in Table 1.1 (i) and (ii). Tables 3.36, 3.37, 3.37 and 3.38 present
the software reliability prediction with the Burr-type NHPP-based SRM and
SRATS NHPP-based SRM with the minimum AIC in the time-domain data
and group data, when the virtual testing time is given by 10% to 150% length
of the testing time t,,,. or t,,,. In almost all cases, it is seen that the longer the
virtual testing period, the closer the software reliability value to unity. Based on
the assumption that no software fault is found during the virtual testing time,
NHPP-based SRMs could provide much higher software reliability estimates
than the results in Tables 3.34 and 3.35. In other words, it is impossible to
guarantee a satisfactory software reliability estimate without setting up the

virtual testing time long enough, which implies the belief that the software
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product is reliable. In Tables 3.36, 3.37, 3.37 and 3.38, we seek the virtual
testing time when the specified reliability level is given by 90%. For instance, in
TIDS1, we find that the virtual testing time when the reliability is greater than
90% becomes 130% and 180% of the testing time for the Burr-type NHPP-based
SRM and the SRATS NHPP-base SRM, respectively, so that longer virtual
testing time with zero fault count than the testing length is required to achieve
the requirement because the quantitative software reliability itself is the belief
by the tester. In some cases, it is seen that 90% software reliability requirement
seems to be unrealistic because the virtual testing time with zero fault count
must be dozens of times ¢,,,, or t,,,, ¢e., in TDDS1, TDDS2, TDDS6, TDDS7,
and TIDS6. On one hand, in TDDS4 and TIDS7, the 90% requirement level is
achieved after the software testing when SRATS NHPP-based SRM is used. Of
course, the software release decision considered here is based on the existence
of virtual testing time with zero fault count. If any software fault was detected
during the period, the observation point to trigger the virtual testing is changed

step by step.
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3.4 Numerical Comparison between All Para-
metric NHPP-based SRMs

Finally, we summarize the numerical experimental results of the novel NHPP-
based SRMs we proposed in this chapter. A comparison among the existing
type-I NHPP-based SRMs, the type-II NHPP-based SRMs with representative
fault-detection time distribution, the Lindley-type NHPP-based SRMs, and the
Burr-type NHPP-based SRMs is performed to confirm which SRM can guar-
antee the best goodness-of-fit and predictive performances. In Tables 3.40 and
3.41, we compare the AIC of these 4 types of NHPP-based SRMs in the time-
domain data and group data, respectively. It is observed that our Burr-type
NHPP-based SRMs outperformed the other SRMs in most cases, in both the
time-domain data and group data. The existing type-I NHPP-based SRMs
could only guarantee the smaller AIC in TDDS6 and TIDS7. Then, we focus
on the PMSE in Tables 3.42 and 3.43 to investigate the predictive performance
among 4 types of NHPP-based SRMs. At this point, it is obvious that the
Burr-type NHPP-based SRM that could show the smaller AIC, no longer guar-
antees a smaller PMSE. It indicates that the SRM that performs well in terms
of goodness-of-fit does not necessarily have a superior software fault predic-
tion capability. However, there is no denying that software testers still tend
to choose SRMs with better goodness-of-fit performance to predict the number
of software faults in future phases. Hence, we compare the PMSEs of 4 types
of NHPP-based SRMs in Tables 3.42 and 3.43 for the time-domain data and
group data, respectively. For the time-domain data, at 50 % and 80 % obser-
vation points, the novel NHPP-based SRMs we propose in this chapter could
completely outperform the existing type-I NHPP-based SRMs, while even at
20% observation points, the existing type-I NHPPs guaranteed smaller PMSEs
in TDDS2, TDDS4, and TDDS7. For the group data, at each observation point,
our Lindley-type and Burr-type NHPP-based SRMs were able to guarantee the
smaller PMSE at least in general cases at every observation point. Hence, we
can conclude that our proposed new NHPP-based SRMs could be essentially
replaced by the existing NHPP-based SRMs in many cases.
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Table 3.42: Predictive performances based on PMSE (time-domain data).

(i) Prediction from the 20% observation point

Data Set | Existing type-I NHPP | Type-I1I NHPP | Lindley-type | Burr-type
TDDS1 5.073 6.420 4.610 3.951
TDDS2 42.104 145.648 229.840 141.815
TDDS3 32.131 1417.110 177.420 28.422
TDDS4 56.477 198.490 137.850 59.027
TDDS5 9177.670 467.320 194.330 789.554
TDDS6 83.960 79.614 80.900 50.112
TDDS7 32.217 207.592 71.490 88.338
TDDSS8 1852.520 1474.020 723.310 1700.110

(ii) Prediction from the 50% observation point
TDDS1 6.118 6.420 10.080 4.501
TDDS2 14.890 11.747 3.700 0.717
TDDS3 11.712 10.283 455.740 259.988
TDDS4 103.504 106.282 68.140 94.254
TDDS5 193.903 77.498 41.100 110.137
TDDS6 10.493 30.944 18.820 4.358
TDDS7 4480.620 18.425 322.720 37.702
TDDS8 3569.230 45.344 146.700 194.841

(iii) Prediction from the 80% observation point
TDDS1 5.772 3.432 4.440 5.050
TDDS2 0.588 0.819 0.600 0.583
TDDS3 9.419 19.992 33.830 7.997
TDDS4 4.253 4.258 3.900 2.867
TDDS5 21.715 51.677 5.020 32.079
TDDS6 2.041 3.697 1.590 2.032
TDDS7 10.498 4.291 13.470 5.879
TDDSS8 57.901 9.268 59.170 20.561
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Table 3.43: Predictive performances based on PMSE (group data).

(i) Prediction from the 20% observation point

Data Set | Existing type-I NHPP | Type-I1I NHPP | Lindley-type | Burr-type
TIDS1 220.732 218.763 93.000 205.956
TIDS2 29.244 47.377 36.260 5.784
TIDS3 820.049 171.702 123.010 300.014
TIDS4 142.854 86.083 66.570 129.764
TIDSH 2.628 2.625 0.330 0.275
TIDS6 98.903 25.613 117.590 30.2254
TIDS7 387.694 67.730 52.320 233.833
TIDSS8 448.935 423.360 311.520 423.360

(ii) Prediction from the 50% observation point
TIDS1 157.837 159.545 20.740 18.145
TIDS2 30.786 3.722 14.800 15.789
TIDS3 564.782 849.736 184.010 346.721
TIDS4 101.303 101.258 95.310 80.646
TIDSH 0.344 0.347 0.140 0.094
TIDS6 365.493 18.825 20.650 28.673
TIDS7 22.894 27.045 17.290 22.561
TIDS8 29.110 156.329 125.440 20.613

(iii) Prediction from the 80% observation point
TIDS1 1.762 8.736 3.200 4.676
TIDS2 0.464 0.464 0.360 0.455
TIDS3 0.331 41.228 0.340 0.230
TIDS4 1.850 18.985 0.410 0.695
TIDS5 0.224 0.090 0.080 0.070
TIDS6 3.432 6.144 1.100 1.315
TIDS7 6.118 17.300 30.110 21.403
TIDSS8 0.864 6.333 2.690 0.862




Chapter 4

NHPP-based Software
Reliability Modeling with
Local Polynomial Debug
Rate

In this chapter, we propose local polynomial SRMs, which can be categorized
into a semi-parametric modeling framework. Our models belong to the common
NHPP-based SRMs but possess a flexible structure to approximate an arbitrary
mean value function by controlling the polynomial degree. More specifically, we
develop two types of local polynomial NHPP-based SRMs; type-I and type-II
SRMs, which are substantial extensions of the existing NHPP-based SRMs in a

similar category.

4.1 Preliminary

As we know, the practical experiences suggest no unique SRM exists, which
could fit every software fault-count data, so in parametric software reliability
modeling based on the representative software fault-detection time distribution,
the selection of the fault-detection time c.d.f. is always required. Since the
goodness-of-fit and predictive performances for the parametric SRMs strongly
depend on the software fault-count data, it is quite important to apply the
so-called semi-parametric SRMs without specifying the software fault-detection
time c.d.f. The gamma-mixture NHPP-based SRM [83] can be regarded as

an intuitively convinced semi-parametric SRM to unify the existing NHPP-
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based SRMs approximately. Okamura and Dohi [84] extended the gamma-
mixture NHPP-based SRM [83], and developed the phase-type NHPP-based
SRMs by assuming the phase-type distribution in the software fault-detection
time c.d.f.. Since the phase-type distribution can approximate an arbitrary
c.d.f. with arbitrary accuracy by designing the phase structure of the underlying
continuous-time Markov chain, it seems to involve all NHPP-based SRMs in
the modeling framework. However, it should be noted that finding the optimal
phase structure is almost impossible. So, we still encounter serious problems in
determining the phase structure and the model freedom indicating the number
of phases when the phase-type NHPP-based SRMs are considered. Nafreen and
Fiondella [85] concerned the software debug rate and overviewed several NHPP-
based SRMs with bathtub-shaped debug rate by dealing with a low-order local

polynomial function called the quadratic model.

In this chapter, the fundamental idea comes from the assumption that the
software debug rate, which is equivalent to the hazard rate function of software
fault-detection time, is approximated by an arbitrary local polynomial function.
This idea seems well-motivated to provide a feasible semi-parametric NHPP-
based SRM, because one does need neither to select a parametric c.d.f. nor to
determine the phase structure. The main feature of the local polynomial NHPP-
based SRMs is to improve the goodness-of-fit by controlling the polynomial
degree. More precisely, we determine the polynomial degree by AIC and select
the best local polynomial debug rate. We treat the type-I and type-I1 NHPP-
based SRMs as well with high-order local polynomial debug rate and investigate
both the goodness-of-fit and predictive performances of our semi-parametric
NHPP-based SRMs through comprehensive experiments with actual software

development project data.

4.2 Software Debug Rate
4.2.1 Introduction

In addition to viewing the NHPP-based SRMs with the mean value function
(see Chapter 3), Yamada and Osaki [86] also characterized the NHPP-based

SRMs with the software debug rate. It implies the instantaneous fault-detection
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rate per fault at time t as follows.

o dM(t;0)/dt [t )
W)= M0 - T Fma))

where f(t; ) = dF (t; o) /dt is the probability density function (p.d.f.). Hence,

(4.1)

the software debug rate is equivalent to the hazard rate of the fault-detection
time c.d.f. F(t;a), as well as the intensity function in Equation (1.12). In
Table 1.1, we summarize the c.d.f., mean value function and software debug
rate function for the 11 existing type-I NHPP-based SRMs in Table 3.1, and the
3 existing type-II NHPP-based SRMs (Musa-Okumoto, Cox-Lewis and Duane
SRMs).

4.2.2 Polynomial Software Debug Rate

Probability distributions with a local polynomial hazard rate function have been
used for modeling lifetimes in reliability engineering. Apart from the NHPP-
based software reliability modeling, several authors concerned the polynomial
hazard rate models in the traditional lifetime data analysis. Bain [87], Bal-
akrishnan and Malik [88], Mahmoud and Al-Nagar [89] considered a low-order
polynomial model called the linear exponential distribution in the lifetime data
analysis. Lawless [90] gave some examples of the least-squares estimation and
the maximum likelihood estimation for the fundamental polynomial hazard rate
models and their variants with censoring and grouped data. Krane [91] applied
the polynomial model to the multiple regression analysis. Kogan [92] proposed
a computation algorithm to obtain the moments from the order statistics of
lifetime data with generalized bathtub hazard rate. Csenki [93] derived the
Laplace transform of the continuous random variable with a local polynomial
hazard rate function and applied it to estimate the polynomial coefficients from
the sample moments of the c.d.f. Bagkavos and Patil [94] proposed a local
polynomial fitting by means of the kernel method in failure rate estimation.

Suppose in the NHPP-based software reliability modeling that
d(t; &) = o + pat 4 pot® 4 - - - + ppt™, (4.2)

where o = (f1g, fi1, - - - » b ) € R™TL. Then the c.d.f. is expressed as

m pititt
Ft;a)=1—exp|—-) “Z1—]. (4.3)
=7 +1
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Table 4.1: The representative existing NHPP-based SRMs.
Type-I NHPP-based SRMs

Time distribution & SRM Debug rate function
Exponential dist. (Exp) d(t;a) =b
i bob—1_—ct
Gamma dist. (Gamma) dt;a) = W
Pareto dist. (Pareto) d(t; ) = CL_H
(c—1)?
2,7 T p2
Truncated normal dist. (Tnorm) d(t; ) = —%
b(erfc(ﬁb)72)
5 7((:—1;bg<t))
Log- 1 dist. (L ‘a)= Y=¢
og-normal dist. (Lnorm) d(t; o) bt(erfc(“;g“)—z)
Truncated logistic dist. (Tlogist) d(t; ) = %
.. . . p—1
Log-logistic dist. (Llogist) d(t;a) = m
=t
Truncated extreme-value max dist. (Txvmax) dt;a) = 25—
b(ec b1
o/, —EIT
Log-extreme-value max dist. (Lxvmax) d(t; ) = b(:c;:fifl/bb,l)
ot
Truncated extreme-value min dist. (Txvmin) d(t;a) = &
§ I
Log-extreme-value min dist. (Lxvmin) d(t; ) = eﬂ’ib i

Type-II NHPP-based SRMs

Pareto dist. (Muse-Okumoto) d(t;a) = Cit

Truncated extreme-value min dist. (Cox-Lewis) | d(t;a) = eb*¢t

I_
ec/byt 1

Log-extreme-value min dist. (Duane) d(t; o) = &

I'(+) : standard gamma function
erfe(+) : complementary error function

In(-) : natural logarithmic function

The above c.d.f. with m 4+ 1 degrees is interpreted as a probability model on
the minimum of m + 1 independent Weibull random variables if a € RTH,
where j-th of them has a scale parameter 7t /(j + 1)/p; and shape parameter
j+1. The above probability distribution is called the poly- Weibull distribution.
Berger and Sun [95], Davison and Louzaada-Neto [96] established the Bayesian
estimation for the poly-Weibull distribution. Freels et al. [97] considered the
maximum likelihood estimation for the poly-Weibull distribution. Demiris et
al. [98] applied the poly-Weibull distribution to investigate the effectiveness of

cardio-thoracic transplantation in the survivor analysis. However, the related
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works mentioned above made the strong assumption of a € RTH, so that a is
a non-negative vector.

In our NHPP-based SRM, once the local polynomial hazard rate function
is determined, from Equations (3.1) and (3.5), the mean value functions of the
type-I local polynomial NHPP-based SRM and the type-II local polynomial
NHPP-based SRM can be obtained as

. B m th]+1
M@;0)=w|1l—exp| — jgzo T (4.4)
and
m i1
pitt
M(t;a) = - , 4.5
o) =325 (15)

respectively. As the special cases of type-I local polynomial NHPP-based SRM,
when m = 0 and m = 1, the hazard rate functions become d(¢; o) = pp and
d(t; &) = po + pat, respectively. When m = 1, the associated c.d.f. becomes the
linear exponential distribution [87, 88, 89]. Nafreen and Fiondella [85] consid-
ered a type-I NHPP-based SRM with the linear exponential distribution for the
purpose to develop a bathtub-shaped software debug rate. Hence, it is evident
that Equation (4.2) is a general form to express the software debug rate.

If we assume that a € RTH, ie., (o, t1,-- -, m) are all positive real num-
bers, it always holds that d(¢; &) > 0 and F'(¢; ) is increasing hazard rate (IHR).
However, dissimilar to hardware reliability, it is well known that the software
reliability growth phenomenon can be observed in software testing. In other
words, the IHR assumption seems to be rather strong and not to be plausible to
explain the software reliability growth. Hence the polynomial parameters may
be negative except for pg, because pg > 0 is a necessary condition of d(¢; &) > 0.
In fact, it is not so easy to find out & € R™ with pg > 0 to satisfy the constraint

d(t;a) > 0.

4.3 Parameter Estimation

In this chapter, we consider only the software fault count group data, which
consists of the number of detected faults in a set of calendar-time-based intervals
[ti—1,t;) (1 = 1,2,...,k). The likelihood function and log likelihood function
are shown in Equations (3.8) and (3.9).
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Then the maximum likelihood (ML) estimate in the estimation phase, 6 c
(W, &), can be obtained as argmaxy ., oInL(0 or a) in Equation (3.8), subject
to d(t;, &) = fig + firt; + figt? + - + it > 0 with i = 1,2,... k.

In what follows, we consider the following two cases;
e Case I: = (g, i1, -+ fim) € RTH are all positive real numbers.
e Case II: pp > 0 and (u1,. .., tm) € R™ are real numbers.

It is evident that Case I is rather restrictive because the software debug rate is al-
ways increasing over time t. However, the maximum likelihood estimation is eas-
ily made because of d(t;, &) > 0 for all the observation data t; (i =1,2,...,k).
In Case II, we consider all the combinations of y; € Ry and p; € R_ for all
j = 1,2,...,m, say 2™ combinations, and solve the maximization problems
with constraint d(¢;, &) > 0. Note that the general-purpose optimization solver
such as Mathematica and MATLAB enables solving the above problem when the
search space for each polynomial coefficient is limited in the positive or negative
region.

Figure 4.1 illustrate the behaviors of our polynomial debug rates d(t;, &)
with degree m = 1,2,...,6 in group data TIDS1 (see Table 1.1 (ii) TIDS14) in
Case I. It is seen that all the software debug rates are increasing in time. On one
hand, in Figure 4.2, we plot the behaviors of software debug rates with TIDS1 in
Case II. As the polynomial degree m increases, the polynomial software debug
rates fluctuate and can represent much more complex behaviors. It is possible
to represent the non-increasing behaviors of software debug rate by relaxing the
assumption of a € RTH and to increase the log-likelihood function as well.
Note that our purpose here is not to compare Case I with Case II, because Case I
is involved as a special case of Case II. We aim to investigate the estimation effect
between Case I and Case I1, and compare our type-I and type-II local polynomial

NHPP-based SRMs with the existing parametric NHPP-based SRMs.

4.4 Numerical Experiments

In numerical experiments, we use 8 software fault-detection group data sets
(TIDS1~TIDS8) (see Table 1.1 (ii) DS14~DS21). All data sets were observed

in actual mission-critical software development projects.
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Figure 4.1: Behavior of software debug rates with TIDS1 in Case II.

4.4.1 Goodness-of-fit Performance

To investigate the goodness-of-fit performances quantitatively, we calculate the
ML estimates of the model parameters, 0 or &, for our type-I local polynomial

NHPP-based SRM and type-II local polynomial NHPP-based SRM by

argmaxy o, oInL(0 or a5 t;i=1,--- k)

stod(tip@) >0,i=1,.. k. (4.6)

AIC and MSE are used as measures for goodness-of-fit. The smaller AIC/MSE
is the better SRM in terms of the goodness-of-fit to the underlying fault count
data. Algorithm 1 shows an optimization procedure to find the best polynomial
degree in our local polynomial NHPP-based SRMs in each data set.

Figure 4.3 plots the behavior of the mean value functions of our local poly-
nomial and the existing NHPP-based SRMs with the group data set TIDSI.
The best SRMs with minimum AIC were selected from the type-I and type-
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Figure 4.2: Behavior of software debug rates with TIDS1 in Case II.

IT local polynomial NHPP-based SRMs in all combinations of m = 1,2,...,6
for both Case I and Case II, and compared with the best existing type-I and
type-II NHPP-based SRMs in terms of minimization of AIC. At first look, both
the type-I and type-II local polynomial NHPP-based SRMs could show more
accurate estimations close to actual software fault counts. More specifically,
in Table 4.2, we present the AICs/MSEs of our local polynomial NHPP-based
SRMs, where the polynomial degree changed from m = 1 to m = 6, and the
best NHPP-based SRMs were determined with the minimum AIC. First, we no-
tice that as the polynomial degree increases, the number of free parameters also
increases and that our local polynomial NHPP-based SRMs with high-degree
of polynomials could not always lead to the smaller AIC results. In fact, we
examined the AIC values with m = 7,8, ... in our preliminary experiments, and
observed that m = 6 is enough as the maximum polynomial degree from the

viewpoint of minimization of AIC.
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Algorithm 1 Maximum likelihood estimation for local polynomial NHPP-based
SRMs in estimation phase.

Input: {I = (t1,n1), -, (tk,nk), where each t; € R and n; € Rt} k: testing
time

Output: Parameter estimates & = (o, fi1, - - - , ) for m € RT AIC

Parameter initialise & = (g, pi1, - - - , fl) for m € RT

o € R+’ (/.Ll,...,/.l/m) eRm_l
for i < 1 to k do

a + argmax, InL(a)
Compute d(t;; ) by (9)
if d(t;; o) > 0 then
a—a
Compute AIC by (15)
else
for j < 1 to m do
Set the parameter range: u; € R_ or pu; € Ry
Parameter combinations labeled from 1 to 2™
for s < 1 to 2/ do
o < argmax,, InL(a)

Compute d(t;; as)s by (9)

Compute AIC; by (15)

if AIC; has minimum value and d(t;; o)s > 0 then

& — oy
AIC «+ AIC;
end
end
end
end
end
end

By comparing our local polynomial NHPP-based SRMs with the existing
NHPP-based SRMs in Table 4.2, it can be seen that the type-I local polynomial
NHPP-based SRM in Case II could provide the smaller AIC in only TIDS4, but
at the same time, it could outperform the other NHPP-based SRMs from the
viewpoint of MSE in 6 cases (TIDS1 ~ TIDS4, TIDS5, and TIDS6). On the
other hand, the type-II local polynomial NHPP-based SRM in Case II could
provide the smaller AIC in TIDS1 and TIDS5. Though the existing type-I
NHPP-based SRM guaranteed the smaller AIC in a total of 5 cases, by check-
ing Equations (4.4) and (4.5) in addition to Table 4.1, it is immediately obvious
that the number of free parameters of our type-I and type-II local polynomial
NHPP-based SRMs is consistent with almost all NHPP-based NHPPs (except
type-I exp SRM) when m = 2 and m = 3, respectively. In other words, for each
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subsequent increase in degree m, the difference in AIC between the local polyno-
mial NHPP-based SRMs and the existing type-I NHPP-based SRMs increases
by 2. On one hand, MSE exhibits the vertical distance between the estimated
mean value function and the cumulative number of software fault counts, so we
understood that the MSE is a more visual criterion in this comparative study.

We also notice that as the special case of our local polynomial NHPP-based
SRM in Case-II, the one in Case-I could not show the better goodness-of-fit
performance in any data set. It illustrates that in actual software testing, the
software debug rate will not be monotonically increasing, but will fluctuate

according to the difficulty of software fault fixing.

4.4.2 Predictive Performances

It is worth mentioning that the better goodness-of-fit to the past observation
does not always lead to the better performance for future prediction. Since
assessing the quantitative software reliability is equivalent to predicting the
fault-free probability during a future testing/operational period, it is important
to investigate the predictive performance of the NHPP-based SRMs with local
polynomial software debug rate. When k£ and ny, software fault count data,
are available, and the prediction length is given by I (= 1,2,---), we utilize the

PMSE:

N VI - Mt or 0))2
o l

for the group data, where 0 or é& is the ML estimate obtained at ¢ with con-

(4.7)

straint d(t;,«) > 0 (i = 1,2,...,k,...,k+1). It is worth noting that in the
prediction phase at software testing time ¢;, the maximum likelihood estimates
must also satisfy d(¢;,a) >0 (i = k+1,...,k+1) additionally, because the fu-
ture prediction has to guarantee the non-negativeness of d(t;, ). In this sense,

the maximum likelihood estimation in the prediction phase is modified as
argmaxy o, oInL(0 or a; t;,i=1,--- k)
st.d(t;a) >0i=1,..,kk+1,--- k+1, (4.8)

which is slightly different from Equation (4.6) We give Algorithm 2 as the
pseudo-code for the maximum likelihood estimation in the prediction phase

of model parameters.
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Algorithm 2 Maximum likelihood estimation for local polynomial NHPP-based
SRMs in prediction phase.

Input: {I = (t1,n1), -, (tk,nk)s -+ (tkas, nert), where each t; € RT and
n; € RT} k: testing time before observation point I: prediction time
length

Output: Parameter estimates & = (o, fi1, - - - , ) for m € RT, PMSE

Parameter initialise o = (g, i1, - - - , fhny) for m € RF

o € R, (ji1,. .., i) € R
for i <1 to k do
a + argmax, InL(a)
fori< 1tok+1[do
Compute d(t;; ) by (9)
if d(t;; a) > 0 then
a+—a
Compute PMSE by (18)
else
for j + 1 tom do
Set the parameter range: p; € R_ or p; € Ry
Parameter combinations labeled from 1 to 2™
for s < 1 to 27 do
o < argmax,, InL(a)
Compute d(t;; as)s by (9)
Compute AIC; by (15)
Compute PMSE; by (18)
if AIC, has minimum value and d(t;; a)s > 0 then
& — o
PMSE «+ PMSE,
end

end

end
end
end

end

end

We set the observation point k at 20%, 50% and 80% points of the whole
time series data. That is, we predict the future behavior of software fault counts
at tgp41,tkyo, ..., tk4r from the training data; ¢1,ts,...,t; for the group data.
Figure 4.4 shows the prediction results for the cumulative number of software
faults in TIDS1 for our type-I and type-II local polynomial NHPP-based SRMs,
and the existing type-I and type-II NHPP-based SRMs. As we emphasized in
Chapter 3, the mean value function of type-I NHPP is bound while that of type-
II NHPP is unbound, so that all type-II NHPP-based SRMs are divergent while
the type-I NHPP-based SRMs are convergent, in Figure 4.4 (a), (b) and (c).
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The long-term prediction at the 20% observation point is not accurate enough,
but the type-II NHPP-based SRMs gave slightly higher prediction accuracy. In
contrast, the type-I NHPP-based SRMs performed better in the medium- and
short-term predictions. Tables 4.3, 4.4 and 4.5 present the prediction results at
each observation point based on the minimum PMSE in group data sets, where
we select the best SRM with the smallest PMSE from our type-I and type-II local
polynomial NHPP-based SRMs with m = 1,2,...,6 in both Case I and Case
II, and the existing type-I/type-II NHPP-based SRMs. It is seen that when the
testing phase is early (20%), our type-I local polynomial SRM in Case IT could
guarantee the smaller PMSE than the existing NHPP-based SRMs in TIDS1
and TIDSS8, and our type-II local polynomial SRM could provide the smaller
PMSE than the existing NHPP-based SRMs in 2 out of 8 cases (TIDS3 and
TIDS4). When the testing phase is middle (50%), the type-I local polynomial
SRM in Case I tended to give the better predictive performance in 5 cases of
data sets (TIDS1, TIDS3, TIDS4, TIDS7 and TIDSS8), and the type-II local
polynomial SRM in Case I could provide the smaller PMSE in TIDS6. When
the testing phase is later (80%), our type-I local polynomial SRM outperformed
the existing NHPP-based SRMs in 4 cases of data sets (TIDS4, TIDS6, TIDS7
and TIDSS8), and the type-II local polynomial NHPP-based SRM in Case II
could provide the smaller PMSE in only TIDS2.

It can be noticed that our best local polynomial SRMs in Case I and Case 11
show the exactly same best degree and PMSE value in many data sets at each
observation point. It indicates that the minimum PMSEs are provided by the
local polynomial NHPP-based SRM with & = (o, 41, - - - fhm) € RTH in both
Case I and Case II, even if we consider all the parameter combinations with
o > 0 and (p1,...,m) € R™ in the parameter estimation in Case II. This
again supports the fact that Case I is involved as a special case of Case II in

the local polynomial NHPP-based SRMs, as we mentioned in Section 4.3.

The lesson learned is that both type-II local polynomial NHPP-based SRM
and type-I local polynomial NHPP-based SRM are quite competitive with the
existing NHPP-based SRMs in prediction for the unknown future pattern on
software fault detection in the early and later software testing phases, respec-

tively. On one hand, our type-I local polynomial NHPP-based SRM has a high
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Figure 4.4: Predictive behavior of cumulative number of software faults in

TIDSI.
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potential to provide more accurate predictions of the number of residual soft-
ware faults in the middle of the software testing phase. Although quite a few
of the best PMSEs are guaranteed in the local polynomial NHPP-based SRMs
with m = 1, it is not difficult to observe that the PMSEs for some local polyno-
mial NHPP-based SRMs which outperformed the existing NHPP-based SRMs
are given by the higher polynomial degree such as m = 3 ~ 6, through the com-
parison with the existing NHPP-based SRMs, in 20 % observation point with
TIDS4, 50 % observation point with TIDS6 and TIDSS8, and 80 % observation
point with TIDS7.
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Note that there is no uniquely best NHPP-based SRM in Tables 4.3, 4.4
and 4.5 that can always guarantee the best predictive performance. In other
words, it is not possible to know in advance which SRM gives the most accurate
software fault prediction capability. The more common approach is to predict
the future behavior of software faults using the best SRM fitted to the software
fault count data observed up to the observation point if no overfitting occurs. In
Tables 4.6, 4.7 and 4.8 we select the local polynomial NHPP-based SRMs and the
existing NHPP-based SRMs, which gave the minimum AIC, and compared their
associated predictive performances. It is obvious that all NHPP-based SRMs
could not guarantee the smallest AIC and PMSE simultaneously. In TIDS3
at 50% observation point, TIDS1 and TIDS3 at 80% observation point, our
type-I local polynomial NHPP-based SRM and the exiting type-I NHPP-based
SRMs could provide the smaller AIC and PMSE at the same time. When we
focus on only the AIC, it can be found that our type-I local polynomial NHPP-
based SRMs could guarantee the smaller AIC in TIDS3 at 50% observation
point, TIDS4 and TIDS6 at 80% observation point. Also, our type-II local
polynomial NHPP-based SRMs could guarantee the smaller AIC in TIDS1 and
TIDS5 at 20% observation point, TIDS5 at 80% observation point. In this
realistic scenario that the best prediction model is unknown at the observation
point, we can clearly find that our local polynomial NHPP-based SRMs could
guarantee the smaller PMSE in at least half of the cases, regardless of the
observation point, where the PMSEs of TIDS1 in Table 4.6, TIDS1, TIDS3 and
TIDS4 in Table 4.7 and TIDS4 in Table 4.8 have the more significant differences
when compared with the existing NHPP-based SRMs.
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4.4. NUMERICAL EXPERIMENTS
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Chapter 5

Proportional
Intensity-based SRMs

This chapter focuses on the so-called proportional intensity-based software re-
liability models (PI-SRMs), which are extensions of the common NHPP-based
SRMs, and describe the probabilistic behavior of software fault-detection pro-
cess by incorporating the time-dependent software metrics data observed in the
development process. The PI-SRM is proposed by Rinsaka et al. in the paper
"PISRAT: Proportional Intensity-Based Software Reliability Assessment Tool”
in 2006. Specifically, we generalize this seminal model by introducing eleven

well-known fault-detection distributions.

5.1 Preliminary

The existing common NHPP-based SRMs are generally characterized by the
mean value functions or the c.d.f.s of software fault-detection time. Hence, they
can quantitatively represent the typical software reliability growth phenomena
and the software debugging scenarios during the software testing phase. In other
words, the above approach is categorized into a black-box approach, where the
software fault-detection time distribution is estimated with only the fault count
data and does not depend on the knowledge/learning effects of the software
product, test resources, and the process information. It should be noted that
the common NHPP-based SRMs are quite simple in software reliability measure-
ment and fault prediction but miss out on several software development /testing

metrics of data collected throughout the software development process.
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In this chapter, we summarize the so-called proportional intensity-based soft-
ware reliability models (PI-SRMs) by Rinsaka et al. [99], which are extensions of
the common NHPP-based SRMs, As an extension of the common NHPP-based
SRMs, this chapter summarizes the so-called proportional intensity-based soft-
ware reliability models (PI-SRMs), and describes the probabilistic behavior of
the software fault-detection process by incorporating the time-dependent soft-
ware metrics data observed in the development process. In the subsequent pa-
per, Shibata et al. [100] develop a software reliability assessment tool, PI-SRAT,
to automate the parameter estimation and quantify the software reliability. We
generalize the seminal PI-SRM in [99] by introducing several well-known fault-
detection time distributions because the work in [99] limited a few kinds of
software fault-detection time distributions. The advantage of PI-SRMs is to
combine a regression formula to represent the dependence of software metrics
data with a stochastic counting process for the software fault counts. Similar to
the well-known software reliability assessment tool in SRATS [43], we introduce
eleven parametric models (see Table 5.1) (baseline intensity functions) in the

PI-SRM and comprehensively evaluate the potential performances.

5.2 Proportional Intensity Model

5.2.1 Model Description

Suppose that [ types of software metrics data, xr, = (vg1, - ,21) (K =
1,2,...,n), are observed at each testing time ¢; (= 0,1,2,...,n). For ana-
lytical purposes, we assume that each software metric xj is dependent on the
cumulative testing time ¢, and can be considered as a time-dependent func-
tion, denoted by @y (tr). In fact, this sort of parameter is referred to as a time-
dependent covariate [101, 102] in statistics and has been widely investigated in
the context of the Cox regression-based proportional hazard model (PHM). We
define the intensity function for our PI-SRM by:

Ao (b, 30, 8) = Xo(tr; 0)g(xk; B), (5.1)

with the regression coefficients 8 = (B1,...,0;) and the baseline intensity
Ao(tr; @) (> 0), and the covariate function g(xy;3) (> 0). When g(xy;8) =1
for any x, the PI-SRMs are reduced to the NHPP-based SRMs with the base-
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Table 5.1: The baseline intensity function of existing NHPP-based SRMs.

SRM

A(t;0)

Exponential distribution

A(t;0) = wbe™ "

(exp)
Gamma distribution ot (£)""
(gamma)
Pareto distribution A(t:0) = wbc(( ftt>)2b—1
’ c
(pareto)
Truncated normal distribution _le=p)?
A(t;0) = we 2t -
(tnorm) \/ﬂb(l—§erfc(ﬁ))
Log-normal distribution A(£:6) = we’leof?M
(Inorm) Vbt
Truncated logistic distribution _t—c
At; 0) = e
(tlogist) b(1-—A=) (e*TH)
Log-logistic distribution _log(t)—c
At;0) = —2
llogist bte™— 5 +1
(Logist) ( )
Truncated extreme-value maximum distribution _t—e 10

(txvmax)

Log-extreme-value max maximum distribution

(Ixvmax)

Truncated extreme-value minimum distribution

(txvmin)

—c—t
—e—t_ T T 5 gec/b

A(t:) = 2T

Log-extreme-value minimum distribution

(Ixvmin)

—c—log(t) 767%&%@)
b

A(t:0) = &<
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line intensity Ao(¢; @). Based on the idea of common Cox regression PHM, it is

appropriate to assume the following exponential form for the covariate function:
9(zi; B) = exp(ziB). (5.2)

In the literature [101, 102, 103], the above form is widely accepted to make
the analysis easy and flexible. Lawless [104] also analyzed the event count data
in actual medical applications with the same exponential covariate function.
Note that the time-independent covariates considered by Lawless [104] were
the binary data taking 0 or 1. Rinsaka et al. [99] proposed an intuitive but
reasonable model to deal with the effect of the cumulative number of software
faults and the software metrics in the covariate function. Define the mean value

function for the given data (¢, yx, xx) (k=1,2,...,n) by:
ty
My(136.8) = [ No(us6) explarB)du (53)
0

ta
My(1230.8) = [ Nolus6) explesBdu+ My (1:8.6), (54

ty

-
My(650.8) = Y- exp(@B) [ o(u6)du
i=1 ti

-1

k
= Zexp(wzﬁ) X [Mo(ti; 9) — Mo(tifl; 0)} y (55)
=1

where My(t;;0) = fot Ao(u; @)du. It is seen again that the PI-SRM can be
reduced to the common NHPP-based SRM when §; = 0 for all j (=1,2,---,1).
By introducing M, (t; 0, 3), we confirm that the monotone property of the mean
value function with respect to testing time 7 can be guaranteed. Substituting

the intensity function in Table 5.1 into the baseline intensity Ao (¢; @), we obtain

the eleven PI-SRMs corresponding to the NHPP-based SRMs in SRATS [43].

5.2.2 Maximum Likelihood Estimation

We also utilize the maximum likelihood estimation to estimate the parameter
vectors 8 and B of PI-SRM. For the fault count data (tx, yx) and software metrics

data xr = (g1, ,zr) (k=1,2,...,n), we define the likelihood function by:

£(0.8) = [[ Mol DM U ts0 D2 (1,00, 8)). (5.6
k=1

(Y — Yr—1)!
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so that the log-likelihood function of PI-SRM can be written as:

n

mL6,8) = > In[My(ty;0,8) — My(te—1;0,8)] (yr — yr—1)

k=1

= (e — yk)] = My(tn; 0, 8). (5.7)
k=1

By maximizing Equation (5.7) with the Newton—Raphson method, we obtain

the maximum likelihood estimates (6, 3) of PI-SRM.

5.3 Numerical Examples

In our numerical examples, four software fault count data with software metrics
are used, where these data are measured in the real-time command and control
system development projects [24]. We re-name these data as GDS1 ~ GDS4.
Details are shown in Table 1.1 (iv), in which three software metrics data: failure
identification work, execution time, and computer time-failure identification, are
involved in addition to the cumulative number of software faults detected at each
testing time (calendar week in [24]). We quantitatively evaluate the goodness-of-
fit performances of eleven PI-SRMSs and evaluate the predictive performances via
the above four time-dependent metrics data as the covariates. In the following

discussion, we consider two patterns in dealing with software metrics. One is to

input the software metrics as the cumulative @y = (xg1,- -+ ,zx), the other as
the difference @), = (1 — T(k—1)1,"** » Tkt — T(k—1)1), Where [ is the number of
time-dependent metrics data in each data set and k = 0,1,2,--- ,n. The main

concern here is to investigate the effects of cumulative values of software metrics
on the contribution to the software fault count. For instance, we examine the
difference between the cumulative length of test execution time by the present

testing time and the test execution time spend on the same testing time.

5.3.1 Goodness-of-fit Performances

For our PI-SRMs, we assume eleven baseline intensity functions in Table 5.1 and
compare them to investigate the effects of each time-dependent software metric
data on the stochastic behavior of the cumulative number of software faults
detected in the testing phase. We calculate the maximum likelihood estimates

(8, B) of covariate g(xx; 3) = exp(xx/3) for all combinations of software metrics
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140[
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100}

80+
F Propotional intensity SRM
60 [ (tlogist) ]
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Figure 5.1: Behavior of estimated cumulative number of software faults in GDS1.

data in Table 1.1 (iv) and consider a total of 7 combinations, as shown in Table
5.2. By deriving the corresponding log likelihood function, the AIC and MSE

are used to evaluate the goodness-of-fit performances of our PI-SRMs.

Table 5.2: Combination of covariates g(x; 3).

g(mkl;/g)(l =12, 3)

Combination I exp(Bo + zx181)
Combination II exp(fo + Tr22)
Combination IT1 exp(Bo + zr3/3)
Combination IV exp(Bo + k181 + Tr2B2)
Combination V exp(Bo + k101 + Tx3P3)
Combination VI exp(Bo + Tr2B2 + Tx303)
Combination VII exp(Bo + k181 + Tk2P2 + Tk353)

1 : Execution time, xyo : Failure identification work.

zk3 : Computer time-failure identification.

In Figure 5.1, we plot the cumulative number of detected software faults in
GDS1 and the estimated mean value functions in the best-fitted SRMs, where
we select the best model with the minimum AIC for the common NHPP-based
SRMs without software metrics (orange curve) in SRATS [43], PI-SRM with
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cumulative software metrics (red curve), and PI-SRM with non-cumulative soft-
ware metrics (blue curve), among eleven intensity functions. At first glance, it
can be seen that the three curves exhibit similar behavior, but a closer look
reveals that our PI-SRMs can show more complex behaviors than the existing
NHPP-based SRMs without software metrics. Figure 5.2 illustrates the behav-
ior of the estimated number of detected fault counts at each testing time interval
in GDS1, where the same models as Figure 5.1 are used for comparison, and the
orange bar-chart represents the actual number of software faults in each testing
week. The result explains that our two PI-SRMs could show better goodness-of-
fit performances than the existing NHPP-based SRM without software metrics

and could catch up with the detailed trend on the software fault count.

20 Propotional intensity SRM
(non-cumulative metrics data)

Propotional intensity SRM

= (cumulative metrics data)
15

N\
5 )
1

5 10 15 20

Figure 5.2: Behavior of estimated number of software faults in each time interval
in GDSI.

To compare our PI-SRMs with the common NHPP-based SRMs without
software metrics more precisely, we present the best AIC results for four time-
dependent metrics data in Table 5.3. By comparing our two PI-SRMs with
cumulative/non-cumulative metrics values, we investigate how to deal with the
software metrics data in software fault data analysis. From the results in Ta-
ble 5.3, it is found that our PI-SRMs are more appealing in software reliabil-
ity modeling and outperform the existing NHPP-based SRMs without software
metrics in terms of goodness-of-fit. In the comparison of two patterns with

cumulative/non-cumulative metric data, it is seen that the non-cumulative soft-
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ware metrics tend to show better fitting results except in GDS4. Note that
the difference of AIC between cumulative/non-cumulative metric patterns is
minimal and negligible. Therefore, our conclusion on the goodness-of-fit per-
formance is that the PI-SRM with non-cumulative software metric data should
be better. Furthermore, in Table 5.3, it is observed that both the execution
time and failure identification work could contribute to the goodness-of-fit per-
formance in the PI-SRMs. Hence, the measurement of test execution time and
failure identification work can help to understand the software fault count in
the testing phase more accurately and is useful to monitor the software testing

progress.
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5.3.2 Predictive Performances

Next, we are concerned with investigating the predictive performances of our
PI-SRMs. In each observation point n’ (1 < n’ < n) when 50% or 80% of
the whole data are available, we predict the future behavior of the cumulative
number of software faults. To assess the predictive ability, we apply the PMSE

as the predictive performance measure, where:

1

n—n

PMSE =

i [yk — My (tx; 9,3)}2. (5.8)

k=ri+1
The smaller the PMSE, the better the prediction performance of the model. As
expected, when we predict the number of software faults detected in the future,
both the software metrics @y (kK = 1,2,...,n) and the regression coefficient 3
must be estimated. The regression coefficients are available by applying the
plug-in estimates (maximum likelihood estimates) with the past observation.
However, the difficulty when the PI-SRMs are used arises since we have to pre-
dict the software metrics themselves in the future. In our numerical experiments,

we consider the following three cases:

Case I: All the test/development metric data are completely known through
the testing phase in advance, so the software testing expenditures are

exactly given in the testing.

Case II: The test/development metrics data do not change from the observa-

tion point to the future.

Case III: The test/development metrics data experienced in the future are re-
garded as independent random variables and predictable by any statistical

method.

Case I corresponds to the case where the software test plan is established and
there is no confusion in the software testing phase. Case II implicitly assumes
that the observation point is regarded as the release point of software because no
testing effort will be spent in the operational phase. Case III would be the most
plausible case in software testing. In this case, we are requested to introduce any
statistical model to investigate the test/development metrics data. We employ

two elementary regression methods, linear regression and exponential regression,
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to predict the future software metrics data. More specifically, we assume that the
metric data x) before the observation point n’ and the corresponding time point
t have been observed with &k = 1,2,...,n’. Next, our goal is to calculate the
predictive value of the metric data @) between a given time interval (¢, 41, t,),
by introducing the independent variable T' = {t,/ 41, tn 42, ...t, } into the linear
regression equation:

Ty = 01 + 0oty (59)

with intercept §; and coefficient J,, where:

. (i) (S0 66) = (Sl te) (Sl e (5.10)

v (Sin?) - (i)

and

P (i) - (SiZi) (S w’“). (5.11)

’ ’ 2
n' ( k=1 tkz) - ( k=1 tk)

Similar to the linear regression method, we can also obtain the predictive values

of the metric data @) by importing variable T' = {t, 41, tn/12,...tn} into the

exponential regression equation:
L1, = 0304, (5.12)
where the coefficients d3 and d, are given by:
(Ciiima) (21 02) - (S ) (S telna )
v (S 6) - (Sian)

03 = exp (5.13)

and,
n' (22;1 tiIn xk) - (22;1 tk) (22;1 In xk)
n (22;1 th) - ( fa tk)2

respectively. Note that with Equations (5.13) and (5.14), it can be easily found

04 = exp (5.14)

that the exponential regression is not appropriate for making the prediction
when the non-cumulative metric data in PI-SRMs are used, because the variable
may take 0, and the correlation coefficient may not be calculated theoretically.
Therefore, we totally consider seven patterns of estimated development/test
metrics data in the future phase in the above three cases, and investigate the

predictive performances of our PI-SRMs.
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Figures 5.3 and 5.4 depict the prediction results of the cumulative number of
software faults in GDS1 at 50% observation and 80% observation, respectively.
It is not difficult to find that our two PI-SRMs could show a completely differ-
ent predictive trend than the common NHPP-based SRMs. However, we can
recognize that the closer increasing trend to the underlying software fault count
data, no matter whether the prediction length is long or short, especially in the
testing phase after 50% and 80% observation points. The quantitative compar-
ison in terms of predictive performance is investigated in Tables 5.4 and 5.5,
where we present the PMSE in four data sets at 50% observation point and
80 % observation point, respectively. Here we select the best SRMs with the
smallest PMSE in PI-SRMs with cumulative/non-cumulative software metric
data in CASE I, CASE II, and CASE III, and the existing NHPP-based SRMs.
From these results, it is immediate to see that our PI-SRMs could still outper-
form the existing NHPP-based SRMs in all the data sets. We also find that
utilizing the estimated metrics data in Case II, i.e., when the test/development
metrics data do not change in the future, tends to give better predictive perfor-
mances than the other two cases in many cases (GDS1 50%, GDS2 50%, GDS3
50%, GDS4 50%, and GDS4 80%). So in 5 out of 8 (GDS2 50%, GDS4 50%,
GDS2 80%, GDS3 80%, and GDS4 80%); our PI-SRMs with non-cumulative
metric data could provide the minimum PMSE. More specifically, Combination
IT of software metrics in Table 2.2 gives the minimum PMSEs in GDS1 80%,
GDS3 80%, and GDS4 80% data sets with non-cumulative software metric data
and GDS1 50%, GDS2 50% with cumulative software metric data, respectively.
The remaining three minimum PMSEs were given in the PI-SRMs with Combi-
nations V, VI, and VII in Table 5.3. Finally, by carefully checking the prediction
results in Tables 5.4 and 5.5, we conclude that the failure identification work
is the most important development metric in prediction and leads to improving

the software fault prediction accurately.
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Figure 5.3: Behavior of the predicted cumulative number of software faults with
PI-SRMs and common NHPP-based SRM in GDS1 (50% observation point).
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Figure 5.4: Behavior of the predicted cumulative number of software faults with
PI-SRMs and common NHPP-based SRM in GDS1 (80% observation point).
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Table 5.4: Predictive performance based on PMSE at 50% observation point.

GDS1
Best model PMSE
Case I (cumulative) tlogist-I11 6.409
Case I (non-cumulative) tlogist-1I 4.014
Case IT (cumulative) Ixvmax-IT 2.160
Case II (non-cumulative) txvmax-IV 4.931
Case III (cumulative): Linear regression exp-1V 4.146
Case III (cumulative): .
txvmin-V 19.213
Exponential regression
Case III (non-cumulative): Linear regression  txvmax-II 3.916
SRATS tnorm 3.408
GDS2
Best model PMSE
Case I (cumulative) tlogist-11 0.816
Case I (non-cumulative) tnorm-III 0.799
Case II (cumulative) gamma-II 0.742
Case II (non-cumulative) txvmax-IT 0.407
Case III (cumulative): Linear regression tlogist-IV 0.616
Case III (cumulative): P Lo
Exponential regression
Case III (non-cumulative): Linear regression  tlogist-IV 0.780
SRATS tlogist 1.769
GDS3
Best model PMSE
Case I (cumulative) tlogist-11 2.676
Case I (non-cumulative) txvmax-IIT 0.481
Case II (cumulative) exp-VII 0.467
Case II (non-cumulative) pareto-VI 1.506
Case IIT (cumulative): Linear regression llogist-11 0.748
Case III (cumulative): Exponential regression —lxvmax-VI 1.842
Case III (non-cumulative): Linear regression  Ixvmax-VII 1.769
SRATS exp 1.836
GDS4
Best model PMSE
Case I (cumulative) tlogist-111 2.088
Case I (non-cumulative) pareto-I1 1.506
Case II (cumulative) exp-1 0.495
Case II (non-cumulative) tnorm-VI 0.425
Case IIT (cumulative): Linear regression txvmax-VI 1.139
Case III (cumulative): Exponential regression —exp-1I 0.688
Case III (non-cumulative): Linear regression  lxvmin-I 0.703

SRATS tlogist 1.754
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Table 5.5: Predictive performance based on PMSE at 80% observation point.

GDS1
Best model PMSE
Case I (cumulative) tnorm-II 2.482
Case I (non-cumulative) txvmax-IIT 1.768
Case II (cumulative) txvmax-VII 2.142
Case II (non-cumulative) txvmax-V 2.903
Case III (cumulative): Linear regression tnorm-II 1.033
Case III (cumulative): Exponential regression tlogist-VII 3.159
Case III (non-cumulative): Linear regression  txvmax-VII 3.916
SRATS txvmin 1.218
GDS2
Best model PMSE
Case I (cumulative) pareto-IV 0.488
Case I (non-cumulative) gamma-V 0.277
Case II (cumulative) Inorm-VII 0.399
Case II (non-cumulative) pareto-I 0.466
Case III (cumulative): Linear regression exp-1IV 0.455
Case III (cumulative): Exponential regression llogist-VI 0.499
Case III (non-cumulative): Linear regression  llogist-IV 0.508
SRATS Inorm 0.531
GDS3
Best model PMSE
Case I (cumulative) tnorm-II 0.326
Case I (non-cumulative) txvmax-11 0.150
Case II (cumulative) txvmax-IV 0.330
Case II (non-cumulative) Ixvmax-II 0.982
Case III (cumulative): Linear regression Ixvmin-I 0.340
Case III (cumulative): Exponential regression  txvmin-VI 1.484
Case III (non-cumulative): Linear regression  pareto-I11 0.293
SRATS exp 0.295
GDS4
Best model PMSE
Case I (cumulative) exp-1 0.213
Case I (non-cumulative) Ixvmin-V 0.227
Case II (cumulative) tnorm-IV 0.220
Case II (non-cumulative) tnorm-11 0.206
Case III (cumulative): Linear regression tlogist-11 0.207
Case III (cumulative): Exponential regression —lxvmax-III 0.273
Case III (non-cumulative): Hogist-VII 0.220

Linear regression

SRATS gamma 0.230
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5.3.3 Software Reliability Assessment

In the previous argument, we have confirmed that our PI-SRMs could show
better predictive performances than the existing NHPP-SRMs in all cases.
In the next step, we wish to quantify the software reliability, which is de-
fined as the probability that the software after release is fault-free. Let
R(t; | tm) = Pr{N(tm) — N(t;)) = 0 | N(t;) = n} denote the software reli-
ability in the operational phase (¢;,t,,], where ¢; is the release point. Then,

from the NHPP assumption, it is easy to obtain:
R(tr | tm) = exp [ My(tn3 0, 8) = My (t1:0,3)] (5.15)

In our numerical example, we set t,, = 2t;, say, the operational period is twice
the length, and assume that the software metrics @ = (xg1, Tko, Tr3) are con-
stant in the time interval (¢, t,,], since the software product has not been tested
after the release time ¢;. We assess the software reliability quantitatively with
the best PI-SRMs, which are selected with the minimum AIC at the release

time point t; = t,.

Table 5.6 presents the comparison results of our PI-SRMs with the existing
NHPP-based SRMs. It can be seen that our PI-SRMs with cumulative/non-
cumulative software metrics could provide larger software reliability than the
common NHPP-based SRMs without software metrics. This result implies that
if the PI-SRMs are reliable in goodness-of-fit and predictive performances, they
are more inclined to provide positive decisions in terms of software reliability
assessment, and the NHPP-based SRMs without software metrics tend to un-
derestimate the software reliability. On the other hand, we also note that in
all four data sets, the software reliability estimated by almost all of the SRMs,
except in txvmin-II PI-SRM in GDS3 and txvmin NHPP-based SRM in GDS4,
are not promising. This observation also implies that in time interval (¢;,%,,],
these SRMs tend to give false alarms from the viewpoint of safety, so that the
software products under testing seem to require more tests to meet the software

reliability requirement.



5.3. NUMERICAL EXAMPLES

145

Table 5.6: Software reliability assessment with best SRM (minimum AIC).

(i) Best proportional intensity model (cumulative metrics data)

Model Reliability
GDS1 tlogist-V1 2.969 x 102
GDS2 tlogist-ITT 9.260 x 10~
GDS3 txvmin-II 9.998 x 107!
GDS4 exp-1 5.455 x 1073
(ii) Best proportional intensity model (non-cumulative metrics data)
GDS1 txvmin-II 4.393 x 10~
GDS2 llogist-IT 1.984 x 10~2
GDS3 gamma-IT 2.945 x 1071
GDS4 exp-VI 4.324 x 107!
(iii) Best SRATS (no metrics data)
GDS1 tlogist 6.977 x 107°
GDS2 logist 4.152 x 1073
GDS3 Ixvmax 7.236 x 107°
GDS4 txvmin 9.559 x 107!
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Chapter 6

Non-homogeneous Markov

Process-based Software
Reliability Models

In this chapter, we focus on non-homogeneous Markov processes (NHMPs),
which are generalizations of the well-known HMP- and NHPP-based SRMs, and
propose a unified approach to treat the software reliability prediction and its
related problems. More specifically, we pay our attention to two subclasses of
NHMP; a generalized binomial process (GBP) and a generalized Polya process
(GPP), where GBP and GPP can be characterized respectively as a Markov
inverse death process [105] and a Markov birth process [106], with state- and
time-dependent transition rates. Shanthikumar [107] first considered a GBP-
based SRM to unify two well-known SRMs; Goel and Okumoto exponential
NHPP-based SRM [10] and an inverse death process-based SRM by Jelinski and
Moranda [4]. Since then, NHMP-based SRMs have not been discussed suffi-
ciently in the literature, in spite of its flexibility and applicability in software
reliability modeling. The main purpose of this chapter is to provide a unified
framework based on both GBP and GPP, to study their features in software reli-
ability modeling, and to compare the goodness-of-fit and predictive performances
of those SRMs in a comprehensive empirical study with real software fault count

data.
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6.1 Preliminary

NHMPs are straightforward extensions of HMPs and NHPPs in the sense that
the transition rate depends on both state and time, but possess a more general
representation ability to describe the underlying stochastic nature than both of
them. In reliability engineering, Smotherman and Zemoude [108] and Smoth-
erman and Geist [109] analyzed component-based phased-mission systems with
NHMP and non-homogeneous Markov reward process, respectively. Cosulic et
al. [110] evaluated the system reliability of a multi-voltage high-speed train
with a simple three-state NHMP. Koutras et al. [111, 112] described intertem-
poral behaviors of the amount of free physical memory in a software system
and of the allocation of server resources in a server client system by NHMPs,
respectively. Gokhale et al. [113, 114, 115] considered a software fault detection
and removal process with NHMPs and applied a piecewise constant approxima-
tion to calculate the expected number of fixed software faults. However, it is
worth mentioning that the above references completely lacked a discussion on
statistical inference. Since the likelihood-based methods are commonly used to
estimate the model parameters from software fault count data, a class of NHMP-
based SRMs, which can be used for the data analysis, are rather limited. Our
purpose here is to develop estimable NHMP-based SRMs with software fault
count data. For numerical computation methods, including the ordinary differ-
ential equation method and the uniformization of NHMPs, see Chapter 13 in
Trivedi and Bobbio [21].

To our best knowledge, Schick and Wolverton [116, 117] and Wagoner [118]
treated NHMP-based SRMs for the first time, though they wrongly mentioned
that their models were categorized into semi-Markov processes. They extended
the seminal Jelinski and Moranda HMP-based SRM [4] by introducing the time-
dependent hazard rates, and analyzed only the time-domain data on the soft-
ware fault count. As another significant contribution following Jelinski and
Moranda [4], Littlewood [119, 120] proposed a series of Bayesian SRMs in the
so-called hazard rate modeling framework for the time-domain data analysis on
the software fault count. Although the statistical inference scheme in [119, 120]
is based on the Bayesian approach, the posterior transition rate is time- and

state-dependent, and can be viewed as an NHMP. It is shown that the above
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SRMs are all classified into the hazard rate type SRMs in some well-referenced
text books [2, 3], but belong to a wide class of NHMP-based SRMs.

Shanthikumar [107] attempted to unify two well-known SRMs; Jelinski and
Moranda HMP-based SRM [4] and Goel and Okumoto exponential NHPP-based
SRM [10] by introducing a Markov process under an exponential fault-detection
time assumption, and derived the likelihood function with the time-domain data
and group data. This unified SRM is often called the Markovian SRM or the
binomial SRM in the literature [2, 3], but its mathematical basis was originally
given by Kendall [105]. In the subsequent paper [121], it was recognized as a
subset of NHMP under an exponential distribution assumption, but we refer
to as a generalized binomial process (GBP) in this chapter. We develop new
GBP-based SRMs by relaxing the exponential assumption [107, 121]. Another
important subclass of NHMP is a generalized Polya process (GPP). Konno [122]
argued three Polya processes which denote mixed Poisson processes with gamma
mixture [123]. Cha [124] further gave more general mathematical results related
to reliability theory in an elegant fashion. We also apply the GPPs to software
reliability modeling and develop new GPP-based SRMs as well.

6.2 NHMP-based Software Reliability Model-
ing

A natural extension of the HMP- and the NHPP-based SRMs is to consider the
transition rate depending on both state and time, say, A,(t) (n = 0,1,2,---).
We call such a stochastic process the non-homogeneous Markov process (NHMP)
in this chapter. Inspired from the existing HMP-based SRMs with and without
termination in Figure 1.1 (a) and (b), we consider two types of NHMP-based
SRMs. Figure 6.1 (a) and (b) are the transition diagrams of the NHMP with
and without an absorving state N. In general, it is difficult to get an analytical
solution of the associated Kolmogorov forward equations for an arbitrary A, (¢).
Then we need to specify the functional form of the transition rate. The most
plausible assumption is the decomposition between the state-dependent term

and the time-dependent term, so we suppose the following two linear transition
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Ao(t) A1 (8) A3(t) < : A4(t)

(a) NHMP with termination.

Ao(t) A1(8)

(b) NHMP without termination.

Figure 6.1: Transition diagrams of NHMPs.

rates:

A(t) = (C(—en)k(t), n=0,1,2,-- ;7. (6.1)

(en+ Q) k(t), n=0,1,2,-- -, (6.2)

b
3
—

~
~—

Il

where € (> 0) and ¢ (> 0) are non-negative real parameters, x(t) is an arbitrary
continuous function of ¢, v, . = [(/e€], and [z] is the ceiling function which is
the largest integer less than x. In this chapter we call k(¢) and A(t) = fg k(z)dx
the baseline intensity function and the cumulative baseline intensity function,
respectively. The above linear NHMPs have been discussed by Kendall [105]
and Konno [122]. Especially, we call the transition rates in Equations (6.1) and
(6.2) the generalized binomial process (GBP) and the generalized Polya process
(GPP) respectively.

6.2.1 GBP-based SRMs

Under a specific exponential assumption, Shanthikumar [107, 121] considered
an inverse death-process type of NHMP with A, (¢) = ((—en)k(t) (n =

0,1,2,--+,7.¢) and k(t) = wbexp(—bt). The Kolmogorov forward equations
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in our generalized case are given by

%Po(t) = —(r(t)Po(t), (6.3)
SR = {C-ecn—DIsOP (D),
- en}rl)Pa(t),
n=0,1,- vy (6.4)
SRy ) = {C—elroe— DIROPy, (1) (65)

Solving the difference-differential equations in Equations (6.3) ~ (6.5) with the
boundary conditions; P (0) = 1 and P, (0) = 0 for arbitrary n (= 1,2, ,v. ¢),

yields
Po(t) = (7;<>A(t)ve,<n(1 — AW n=0,1, 7., (6.6)
where
A(t) = e=M® (6.7)
and
A = /0 () (6.8)

It is worth noting that the distribution in Equation (6.6) is also a binomial

distribution having

E[N)] =~ {1 —e ™}, (6.9)

Var [N (t)] = v, {1 — e 2B} e=cA0), (6.10)

From Equations (6.9) and (6.10), it always holds that E [N (¢)] > Var [N (¢)],
so that GBP has the under-dispersion property. This is because the variance
in Equation (6.10) is decreasing in ¢ and the uncertainty after elapsing the
software testing time is reduced. It is obvious that when € = 0 and x(¢) = 1 the
p.m.f.s in Equation (6.6) are essentially reduced to ones of NHPP-based SRM
with intensity function k(t) and HMP-based SRM by Jelinski and Moranda [4],
respectively. Table 6.1 presents the baseline models considered in the GBP-based
SRMs, which are referred to as the mean value function in type-I NHPP in Table
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3.1. The last SRM in Table 6.1 was recently introduced in [9] as a generalization
of the well-known inflection S-shaped NHPP-based SRM [15]. However, this
model is identical to Xiao’s SRM [18], where the underlying fault-detection time
distribution is given by a Marshall-Olkin type of Weibull distribution [125]. By
substituting the baseline model in Table 6.1 with A(t) in Equation (6.8), we can
obtain fourteen GBP-based SRMs corresponding to the existing NHPP-based
SRMs.

If the cumulative baseline intensity function A(t) is bounded, i.e.,
lim; oo A(t) = w, then lim, o E[N()] = 7.{1 — exp(—ew)} and
lim; o Var[N(t)] = ~.cexp(—ew){l — exp(—ew)}, otherwise, i.e. if
lim; oo A(t) — o0, then lim; o E[N(t)] = v, and lim;,o Var[N(t)] = 0.
Noting that the GBP terminates in N(t) = Y., in the sense of sample path,
it is seen for the bounded cumulative baseline intensity function A(t) that
limy oo Py (t) = {1 — exp(—ew)}7<¢, so there exists a positive probability
that all inherent software faults cannot be detected over an infinite testing time.
More precisely, it can be found that each transition time distribution from state
nton+1(n=0,1,...,9,c—1) is defective similar to the NHPP-based SRMs
with bounded mean value function. In the bounded case, the stochastic process
N(t) asymptotically converges to 7, ¢, say, lim; oo N(t) = 7, with probabil-
ity one. Hence 7, {1 —exp(—ew)} is interpreted as the net cumulative number
of detectable software faults. On the other hand, in the unbounded cumula-
tive baseline intensity function, N(t) converges to Ye,c from the law of large
number. The following example, enables us to understand how the unbounded

cumulative intensity function was applied in the existing SRMs.

The well-known SRMs by Schick and Wolverton [117] and Wagoner [118]
belong to the GBP-based SRMs. In the power-law type baseline model A(t) =
at® in Table 6.1, we have x(t) = (a/(1 + b))t**! and \,(t) = (¢ — en)(a/(1 +
b))t**L. Putting ¥ = 1+ b, ¢’ = (a/b')¢ and ¢ = (a/V)e, we get \,(t) =
(¢" — €n)t’. When &' =2 (b=1) and ¥’ > 2 (b > 1), the underlying intensity
functions coincide Schick and Wolverton SRM [117] and Wagoner SRM [118],
respectively. Littlewood [119, 120] considered a pareto type software fault-
detection time, and obtained the posterior representation of the transition rate;

An(t) = (C—en)/(v+t) (n =0,1,2,--+ 7y, ). It is obvious that Littlewood SRM
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[119, 120] is also defined as a GBP, where x(t) = (t+v) ! and A(t) = In(1+t/7),
which can be viewed as an extension of the logarithmic Poisson execution time

SRM [14]. In this case, the expected cumulative number of software faults is

given by E[N(t)] = v, {1 —~(v+ 1)}
6.2.2 GPP-based SRMs

Next, we consider the case with A, (t) = (en + () k() (n =0,1,2,---). Konno
[122] considered a birth-process type of NHMP and formulated the Kolmogorov

forward equations:

d

o) = —Ca(t)Po(t), (6.11)
%pﬂ(t) = {e(n—1)+ (}r(t)Paos(t)

—{en+ C}r(t)Py(t), n=1,2,---. (6.12)
By solving the difference-differential equations with the initial conditions
Py(0) =1 and P,(0) =0, it turns out that

Po(t) = (” +E - 1>A(t)5(1 CAW®)", n=0,1,--- . (6.13)

Hence, the resulting p.m.f. is a negative binomial distribution with

EIN®)] =, {e?® -1}, (6.14)

Var [N(t)] = v, ce“® {er® —1} . (6.15)

Konno [122] and Gat [126] called this NHMP the generalized Polya process
(GPP) and the generalized Yule process, respectively. In this chapter, we refer
to it as GPP as an alternative of GBP. From Equations (6.14) and (6.15), it
is seen that E[N(t)] < Var[N(t)], so that GBP possesses the over-dispersion
property which is the plausible feature to describe the uncertainty in the time
series analysis.

If limg oo A(t) = w, then limy o E[N(f)] = ~ {exp(ew) — 1} and
lim o0 Var[N(t)] = v, exp(ew){exp(ew) — 1}, otherwise, lim; o E[N(t)] =
lim;_, o Var[N(t)] — oo. Although the GPP does not have an absorbing state,
it is interesting to find in the bounded cumulative baseline intensity case that the
expected cumulative number of software faults approaches to v, -{exp(ew) —1},

instead of lim; , A(t) = w in the NHPP-based SRMs. It should be noted that
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GPP is also an extension of a mixed Poisson process model by Okamura and

Dohi [123].

It is obvious that GBP and GPP are generalizations of HMP and NHPP
so far. Since the p.m.f.s in Equations (6.6) and (6.13) are continuous at € = 0
(see [126]), HMP and NHPP are special cases of GBP and GPP, respectively,
when k(t) = 1 and € = 0. Figure 6.2 shows the schematic behaviors of intensity
functions A, (t) based on GBP and GPP in a testing period. We can clearly
find that whenever software faults have been found, the intensity functions are

described as piecewise continuous functions with upward/downward jumps.

6.2.3 Maximum Likelihood Estimation

Here we derive the log likelihood functions of GBP and GPP when the time-
domain data or the group data is observed. Let 0 be a free parameter vector in-
volved in the baseline functions x(t) = k(t;0) and A(t) = A(t;0). Suppose that
the fault-detection time-domain data (t1,ta, - ,tm;t.) with censoring point ¢,

are available. Then, the likelihood function of GBP is given by

L£(6) = ﬁ{C — (i — 1)}(t;; 0) x e~ Jo {emembn(zi6)dr (6.16)

=1

From a few algebraic manipulations, we have

/0 p{C —em}r(x; 0)dx
= Z/t {¢ —e(@ = 1)}x(z;0)dx + /t c{C — em}k(x; 0)dx

=(CA(te;0) — € [mA(te; 0)— i/\(ti; 0)‘| . (6.17)

=1

Also, the factorial part in Equation (6.16) becomes

— r <7€’C + 1) 67” .

K(t;;0). 6.18
T (e —m) i:l( ) (6.18)

[T{¢ = e(i = 1)}x(ti;0)
i=1
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From I'(k + 1) = kI'(k) with & > 0, we derive the likelihood function and its
logarithm:

£(6)

{

s

K/(ti; 0)} T (7€7< + 1) €M x e—{A(tQ;9)+e[m,A(te;9)—Zr:1 A(ti;B)]

1 r (7@( -

.
Il

_ {ﬁ I{(tl‘; e)eeA(ti;O)} I (76,( + 1) 6me(em—C)A(te;O)7 (619)
i=1 r (’YE,C - m)
and
In £(6)
[Zlnn t;;0) +Z€A t:0)| +In[(vee)! = (Yoo —m—1)1]
=1 1=1
+ mln(e) + [(em — ()A(te; 0)] . (6.20)

In the failure truncation case, i.e. t. = t,,, we have

0) = H{C — e(i — 1) Yk(t;; 0) x e~ {Cmel=DHACE0)—ALi—1:60)} - (6.271)
i=1

and
InL£(0 Zln{(—ez—l}—l—Zlnmt“B Z{C—e(z’—l)}
i=1
X {A(ti; 9) — A(ti_l;O)}. (6.22)

Then, the problem is to maximize the log likelihood function In L(e, ¢, 6) with
respect to (e, ¢, 0).

When the group data (7;,n;) (i = 0,1,--- ,m) are available, from Equa-
tion (6.6) we obtain

E(a) _ H (7;,( - nil) « [e—e{A(Ti;o)—A(T7;71;9)}]7EYC—TL,L

i — Nj—1

~ [1 _ efe{A('r,;;9)7A('ri_1:,9)}]711'7717;_17 (623)

and

InL(6 Zln{ ('ye — 1) (ni —ni—1)! = (Ve — nl)'}
- Z{'ye ¢ } E{A(Ti; 0) — A(Ti_l;G)}

1) X ln[l - e—ﬁ{"(T@';")—A(Tﬂfl%")}}. (6.24)

uMg
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Next, we consider the likelihood functions for GPP. Given the fault-detection
time-domain data with the censoring point t., the likelihood function and its

logarithm are, in a fashion similar to Equations (6.19) and (6.20), given by

L) - {ﬁﬁ<ti;0>eeA<tu9>} Pectl) e (6.25)

i=1 r (‘75,4 - m) elem+QA(te;0)’

InL(0) = [i Ink(t;;0) + Zm:d\(ti;e) +In[(v )

i=1 i=1

— ('Ye,g —m — 1)!] + (m1n(e) — [(em + )A(te; 0)]) . (6.26)

The above results are due to Asfaw and Lindgvist [127]. In the failure truncation

case, i.e. t, = t,,, we have

L£(0) = [[{ei — 1) + (}r(t; 0) x e~ (CGmDTAHALseO=Al—00} = (6.97)
=1

and
In£(0) = Zln{e(i -1+ + Zln k(t;;0)
= DAl = 1)+ O { A1) ~ Altio:0) }. (6.28)

On the other hand, when the group data (7;,n;) (¢ =0,1,--- ,m) with GPP
are available, then, from Equation (6.13), we get
£(0) = H (m +Yeo 1> X [em MmO ~AT 1)} +nis

ng — Ni—1

% [1 _ e_E{A(Ti;e)_A(Ti—l;6)}}7”—1’”,17

(6.29)
and
€)= (430~ 1)! = =)= (s 7))
- z;{'yg i} x e{A70) ~ Ari1:0)} + i(n i)

x In [1 - e—f{A<m")—A<Tf=1;9>}] (6.30)
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6.3 Performance Comparisons

6.3.1 Data Sets

In numerical experiments, we analyze eight data sets of software fault count
time-domain data (see Table 1.1 (i) DS1, DS4, DS8 ~ DS13) from CSS develop-
ment projects, eight data sets of group data (see Table 1.1 (ii) DS14 sim DS21)
from CSS development projects and four data sets (see Table 1.1 (iii) DS22 ~
DS25) from OSS development projects. We re-name these data from DS1 to
DS20. Especially, it is worth noting that in the OSS development projects, soft-
ware fault counts are made in accordance with the bug reports provided by the
software users. Based on the fourteen models in Table 6.1, we derive the max-
imum likelihood estimates of the model parameters and obtain the maximum

likelihood function In £(¢, ¢, 0) in NHPP-, GBP- and GPP-based SRMs.

6.3.2 Goodness-of-fit Performances

As a goodness-of-fit measure, we apply the well-known AIC, where In L(é, ¢, é)
is the maximized log likelihood function. The smaller AIC is the better SRM in
terms of the goodness-of-fit to the underlying fault count data. Note that the
difference on the number of free parameters between NHPP and GBP/GPP is
at most 1 for each baseline model in Table 6.1. Hence, if the difference of AIC is
greater than 2, we can recognize that GBP/GPP is significantly different from
NHPP.

In Figure 6.3, we plot the temporal behavior of the cumulative number
of software faults with CSS development project (time-domain data) in DSI,
CSS development projects (group data) in DS9, and OSS development projects
(group data) in DS17, respectively. Looking at the curves (fitted mean value
functions), almost all SRMs could catch up the average trend of the cumulative
number of software faults detected in the testing phase, but a few SRMs failed
to describe realization of the underlying stochastic counting process.

More specifically, in Table 6.2, we compare three modeling frameworks;
NHPP, GBP and GPP, in terms of the AICs, where the bold font denotes
the best SRM among three modeling frameworks. For the CSS development
projects (time-domain data), it is seen that the common NHPP-based SRMs
showed better results than both GBP- and GPP-based SRMs with ¢ > 0 in
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five data sets but the difference was significant in only DS7. In the other data
sets, GBP-based SRM outperformed the NHPP-based SRM and gave the sig-
nificantly better goodness-of-fit in DS8. Since GBP and GPP reduce to the
corresponding NHPP when ¢ = 0, we can conclude that NHPP-, GBP- and
GPP-based SRMs show almost similar goodness-of-fit performances in many
cases when the CSS projects (time-domain data) are available. For the group
data, GBP-based SRM provided the significantly better result in DS11 with
€ > 0, but the difference on AIC between NHPP-based SRM and GBP/GPP-
based SRM was not so remarkable in the remaining data sets. On the other
hand, in half of the OSS development projects, GBP performed better than the

remaining two frameworks, but only showed a significant difference in DS17.

Next we focus on the best baseline models in Table 6.2. In five out of eight
cases in the CSS development projects (time-domain data), four out of eight
cases in the CSS development projects (CSS project (group data)) and two out of
four cases in the OSS development projects (CSS project (group data)), the best
baseline models with minimum AIC are exactly same for three different modeling
frameworks. This suggests that the extreme type distributions such as Lxvmax
and Txvmin tend to be the best baseline model, and that the classical SRMs
like Exp, Llogist and Log are still valid even though GBP/GPP-based SRMs are
considered. Meanwhile, we believe that Gtlogist should also be a good selection
for the baseline model, as some SRMs based on this probability distribution
have shown the superiority of fit for the OSS development projects. Eventually,
we find that eight baseline models are enough among fourteen baseline model
candidates in Table 6.2, if we are interested in the goodness-of-fit performance

with the full data.

6.3.3 Predictive Performances

Next, we investigate the predictive performance of our GBP/GPP-based SRMs
with different baseline models. To compare the predictive performance quanti-
tatively, we use the PMSE and set the observation point [ at 20%, 50% and 80%
points of the whole time series data. Figures 6.4, 6.5, and 6.6 are the predicted
results of the cumulative number of software faults in DS1, DS9, and DS17,

respectively. As easily expected, the long-term prediction from 20% observation
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point is not accurate enough because the trend change may occur in the remain-
ing testing period. Table 6.3 presents the prediction results at each observation
point based on the minimum PMSE, where the best SRM with the minimum
PMSE in each data set is represented with bold font. For the CSS development
projects (time-domain data), when the testing phase is early (20%) and middle
(50%), GBP/GPP-based SRMs provided the minimum PMSEs in six cases. In
the late stage of testing (80%), GPP-based SRM could show the better predic-
tive performances in seven cases than the NHPP-based one, although five data
sets were equivalent in prediction performance. Comparing Table 6.3 with Table
6.2, it is seen that the best baseline models on the goodness-of-fit criterion are
rather different from ones minimizing PMSE at each observation point. The
baseline model; Lxvmax at 20% observation in DS4 and DS6, and Lxvmax at
80% observation in DS8, was selected as the best for three different modeling

frameworks.

In Table 6.4, we summarize the minimum PMSE with the CSS development
projects (group data), and compare three modeling frameworks for fourteen
baseline models. It is pointed out that the number of cases where NHPP-based
SRM strictly outperformed GBP-, GPP-based SRMs was only three (DS10 at
20%, DS14 at 50% and 80%). In the CSS projects (time-domain data), GPP-
based SRM tended to give the better predictive performance in many cases (five
cases at 20%, four cases at 50%, six cases at 80%). From these results, we rec-
ognize that the GPP-based SRMs could show the best prediction performances
for both CSS projects (time-domain data) and CSS projects (group data). It
is worth mentioning that the GPP-based SRMs have not been fully discussed
in the literature. The lesson learned from our numerical experiments suggests
that there are no remarkable differences on goodness-of-fit performance in three
modeling frameworks, but our GPP-based SRMs have the potential ability to
make the accurate prediction for the unknown future pattern on fault detection.
On the best baseline models, we found that Plaw in DS15 at 20% and Lxvmax
in DS15 and DS16 at 50% are identical for three modeling frameworks.

Focusing on the OSS development projects, we observe the minimum PMSE
for each modeling framework in Table 6.5 and provide a comparison of the three

modeling frameworks. It can be noticed that GPP-based SRM could guaran-
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tee the better predictive performance in three out of the four data sets during
the early operational stage (20%) after the OSS was released. However, when
the operational phase is gradually extended, GBP- and GPP-based SRMs have
hardly outperformed NHPP-based SRMs in terms of predictive performance.
They only gave one set of better predicted performance at 50% and 80% ob-
servation point, respectively (DS18 at 50% and DS17 at 80%). Similar to the
case of the best baseline model shown in Table 6.2, Table 6.5 pointed out that
the three modeling frameworks do not often guarantee the same best baseline
model in terms of predictive performance for OSS data. Some of the classic
baseline models; Log (DS19 at 20% and DS17 at 50%), Plaw (DS20 at 20%,
50% and 80%), Pareto (DS17 at 80%) and Gamma (DS19 at 80%) are still

superior enough, even though we had a total of fourteen baseline models.

In Tables 6.3, 6.5 and 6.5, we compared the best SRM with the minimum
PMSE in respective data sets. However, It should be noted that one cannot
know the best baseline model in advance before making the prediction. The
commonly applied method is to make the prediction of the future behavior of
software faults by using the best fitted SRM to the past observation, if it was
not overfitted. Hence, it is plausible to compare the predictive performances
with three modeling frameworks using SRMs having the minimum AIC. Tables
6.6~6.12 present the predictive performances when the baseline model was se-
lected with the minimum AIC at each observation point, in the CSS projects
(time-domain data), CSS projects (group data) and OSS projects (group data),
respectively. For the CSS development projects, it could be confirmed that
NHPP-based SRMs gave the minimum AIC values in almost all cases except
in DS7 at 50%, DS3, DS6 and DS8 at 80% in the time-domain data, DS12 at
20%, DS10, DS11 and DS16 at 50%, DS9, DS11, DS12, DS16 at 80% in group
data. However, for the OSS development projects (group data), NHPP-based
SRMs only guaranteed the minimum AIC in half or less of the cases, at either
observation point. On the other hand, the number of cases where NHPP-based
SRM gave both minimum AIC and PMSE was eleven out of twenty four (DS4,
DS6 and DS8 at 20%, DS1, DS2, DS7 at 50%, DS1, DS2, DS4, DS5, DS6, DS7
at 80%) in the CSS projects (time-domain data), three out of fifteen (DS10 at
20%, DS9 at 50%, DS10 at 80%) in the CSS projects (group data) and two out
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of five (DS18, DS19 at 80%) in the OSS projects (group data). Hence, it is
obvious that selecting the best SRM in terms of AIC does not lead to the best
SRM with highest prediction ability.

It is worth pointing out in Tables 6.6~6.12 that the best baseline models in
the respective modeling frameworks based on NHPP, GBP or GPP were rather
similar. That is to say, if we select the best baseline model among NHPP-based
SRMs and apply the same baseline model for prediction with NHMP-based
SRMs, GBP and GPP provided the best predictive performance seven cases
and nine cases, respectively in the CSS projects (time-domain data). In the CSS
projects (group data), GBP and GPP resulted the best predictive performances
in seven cases and eleven cases, respectively. In the OSS projects (group data),
NHMP could achieve the best prediction performance in eight cases. Though
there is no significant difference between NHPP- and GBP/GPP-based SRMs,
when NHMP-based SRMs were applied to the same baseline model in the best
NHPP-based SRM for the prediction, GBP- and GPP-based SRMs provided
the minimum PMSE (including the equivalent cases to the NHPP-based SRMs)
in seven and nine cases in the CSS projects (time-domain data), in seven and
eleven cases in CSS projects (group data), in two and seven cases in OSS projects
(group data). So, it is recommended to select the best baseline model by NHPP-
based SRM and to predict the number of software faults detected/reported in
the future by GBP- or GPP-based SRM with the same baseline model. At the
first look, GPP-based SRM seems to have advantages in terms of the number
of better cases, especially in the long-term prediction of OSS projects (group
data) (see PMSEs at 20% in Table 6.12), but, for CSS projects, may lead to
extremely worse results (see DS2 at 20% in Table 6.6, DS13 and DS16 at 20%
in Table 6.9. It is obvious that in the mid-term of software testing, GBP-based
SRMs are the better alternative. For both CSS and OSS projects, GBP-based
SRMs guaranteed the better predictive performance in at least half of the cases.
Finally, we can conclude that our generalized modeling frameworks based on
GBP and GPP are superior to the common NHPP-based SRMs in terms of the
predictive performance even in actual situations without knowing the real best

baseline model at each observation point.
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6.3.4 Software Reliability Assessment

Next, we concern to quantify the software reliability. Since the quantitative
software reliability, R;(x), is defined as the probability that software is fault-free
in the time interval (¢, ¢ + ], provided that the software in the CSS development
project is released at time ¢ (> 0). On the other hand, in the OSS development
project, the time ¢ (> 0) is regarded as the operational time length of the
software since its release. In our NHMP-based modeling framework, we define

the software reliability as
Ri(x) =Pr(N(t+z)— N(t)=0| N(t) =m), (6.31)

where m is the cumulative number of software faults detected /reported by time

t. For an infinitesimal time Az, we have
Ry(x + Ax)
=Pr(N(t+z+Az)— N(t) =0 | N(t) = m)
=Pr(N(t+z+Az)— N(t+z)=0|
N(t+z) — N(t) = 0, N(t) = m)
x Pr(N(t+z) — N(t) = 0| N(t) = m)
= Pr(N(t+z+Az)— N(t+2)=0| N(t+z) =m)
x Pr(N(t+x) — N(t) = 0| N(t) = m), (6.32)

which is due to the Markov property. From Equations (6.1) and (6.2), we get

Ri(z + Az) — R(x)
= (¢ —em)k(t + x)AxzR(z) + o(Ax) (6.33)
and
Ri(z + Az) — R(x)
= (em + Q)k(t + z)AxR(z) + o(Az), (6.34)
for GBP- and GPP-based SRMs, respectively, where ima,_o o(Az)/Az = 0.

Then, the differential equations which satisfy the quantitative software reliabil-

ity functions for GBP- and GPP-based SRMs are given by

d

aR(m) = —(¢ —em)k(t + z)R(x) (6.35)
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and

%R(m) = —(em + Q)k(t + x)Re(z), (6.36)

respectively. By solving Equations (6.35) and (6.36) with R.(0) = 0, we obtain

R(z) = exp{—((—em)[A(t+2x)—A®)]}, (6.37)
R(z) = exp{—(em+)[A(t+z)— A1)} (6.38)

for GBP- and GPP-based SRMs.

Table 6.13 presents the quantitative software reliability with the CSS devel-
opment projects (time-domain data), CSS development projects (group data)
and OSS development projects (group data), respectively, where we select the
best baseline model in terms of the minimum AIC at the observation time
points; t,, and 7,,. In these examples, for CSS development projects (time-
domain data), we set the operational time x as ten times of the testing time
length ¢,,, in CPU time. For CSS development projects (group data) and OSS
development projects (group data), we set the operational time z as one year
(fifty three weeks or twelve months). In Table 6.13, we denote the largest soft-
ware reliability value in three modeling frameworks with bold font. It can be
seen that the resulting software reliability values were too small. This is be-
cause, for CSS development projects (time-domain data) and CSS development
projects (group data), we implicitly assume that the software was released to
the market just after the observation point, where almost all software faults
were detected by the release points in the underlying development projects. On
the other hand, for OSS project, the software in the OSS development project
is release, and new source code is available through versioning up.

In Figure 6.7 (a), we illustrate the software reliability as a function of the
operational time x when DS13 is assumed. It can be observed that the software
reliability value drops down to the zero level immediately, even for a relatively
short operational time interval. It is clear that such a reliability measure will
not be useful to make the release decision. In comparison of three modeling
frameworks, it is remarkable that GPP-based SRMs tended to make optimistic
estimation of software reliability in most of the cases. If no fault is detected after

the observation time points; t,, and 7,,, the smaller reliability is more realistic.
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In this sense, the software reliability assessment based on Equations (6.37) and
(6.38) seem to be quite problematic. Then, we consider the wvirtual testing
time to make more realistic software reliability assessment. At each observation
point on software testing progress, we see the virtual testing time in the future.
Define the hypothesis: no software fault is experienced during the operational
time period. If this subjective hypothesis was true after continuing software
testing during the (virtual) software testing time period, then we will release
the software at the end of the virtual testing time, and the software operational
phase starts from the release point. Otherwise, i.e., if any fault was found during
the virtual testing period, then we reset the starting point of the virtual testing
time (observation point) after correcting the detected faults. On the other hand,
we did not consider this problem for the OSS development projects because there
does not exist the testing time for operational phase of the OSS. Let s, denote
the virtual testing time length. Then, the total testing time one expects is
given by t = t,, + s, and t = 7., + s, for the CSS development projects (time-
domain data) and CSS development projects (group data), respectively, where
no software fault will not be found in (¢, ¢y + $y] and (7in, 7 + 85|, under the
hypothesis. In other words, we suppose no fault count from t¢,, to t. = t.,,,+s, for
the CSS development projects (time-domain data) and from 7,,, to 7, +s,, for the
CSS development projects (group data), where (Ty4j, Nmt5) = (Tmtjs tm) (J =
0,1,2,...) during (Tym, Tm + S»]. Note that the maximum likelihood estimation
is repeatedly made by substituting the truncation time ¢, or the zero fault count

data (Tpm4js Mmtj) = (Tmtj.Mm) (5 =0,1,2,...) in the log likelihood functions.

In Figure 6.7 (a), (b), (c), (d), we compare the predictive software reliability
when the virtual testing time lengths are 0%, 50%, 100% and 150% of the whole
testing period in DS13. Comparing with Figure 6.7 (a), the software reliability
functions in (b), (c) and (d) gradually decrease. It is evident that the higher
software reliability is caused by the fact that the virtual testing time length
without fault detection is long enough. This observation gives us a reality such
that the experience of tester leads to the reliable software program. When the
virtual testing time length is given by a half length of the previous testing time
period in (b), the predictive software reliability functions in three modeling

frameworks show the similar behavior. However, when the virtual testing time
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length was exactly same and 150% of the previous testing time period in (c)
and (d), it is found that the GPP-based SRM tends to give a more optimistic
prediction of quantitative software reliability. We concentrate only the CSS
projects (group data), hereafter. Table 6.14 presents the software reliability
prediction under the hypothesis by three different SRMs, when the virtual test
time is given by 50%, 100% and 150% of the previous testing time length, where
the group data sets DS9 ~ DS16 were analyzed. Compared to Table 6.13, the
estimated software reliability value is close to unity under the hypothesis that
no software fault was found during the virtual testing time. We also recognize
here that the higher software reliability is caused by the experience of zero
fault count for the system testing period. Our experiments suggest that the
user/customer test should be performed during more than the system testing
time on the development side, if the software reliability requirement level is high

enough.

6.4 Software Release Decision

In this section, we consider the software release problem. As we have introduced
the virtual testing time in previous section, the software release timing can
be determined by controlling the virtual testing time so as to satisfy a given
reliability requirement level. Following [128, 129, 130, 131, 132], we consider the
so-called software cost model to determine the software release timing with three
kinds of modeling framework; NHPP-, GBP- and GBP-based SRMs. Similar
to the software reliability assessment with virtual testing time, the software
release decision for the OSS is related with the vision up, but not to terminate
the software testing. Hence, we consider only the CSS development projects
for the software release problems. Since the seminal work by Okumoto and
Goel [130], many software cost models have been discussed in the literature
(see e.g., [131] and [132]). Let ¢1, ¢o and c3 denote the system testing cost per
unit of time, debugging cost to remove a software fault in the testing phase, and
debugging cost to remove a software fault in the operational phase, respectively,
where without any loss of generality, ¢z > co. Suppose that the software system
test starts at time ¢ = 0 and terminates at time ¢ = tg, so that ¢y is regarded as

the software release timing to the user or market. Let M(t) = E[N(¢)] be the
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expected cumulative number of software faults detected by time ¢. Then, the

expected total software cost, C(tp), is formulated as
C (to) =cito + C2M(t0) +c3 [M (TLC + to) - M (to)] , (639)

where T7,¢ is the software life cycle. Then the problem is to derive the optimal

software release time, which minimizes C(¢o):

min_ C(tp), (6.40)

0<to<to
where £, is an upper limit of ¢, which may be interpreted as an arbitrary release
bound, say 0 < tg <ty < Trc.

The underlying optimization problem in Equation (6.40) is well-defined, be-
cause it takes account of the trade-off relationship between the testing cost and
the debugging cost. If the release time ¢y is much shorter, then we may en-
counter the situation where a number of failures caused by faults occur in the
operational phase. On one hand, if the release time ¢y is much longer, the test-
ing cost proportional to the testing time length and the debugging cost in the
testing phase increase.

For a cumulative intensity function A(¢) in NHMP-based SRMs, the ex-
pected cumulative numbers of software faults detected by time t are given by
M(t) = ye,c{l — exp(—eA(t))} and M(t) = vec{exp(eA(t)) — 1}, respectively,
for GBP- and GPP-based SRMs, from Equations (6.9) and (6.14). Since A(t)
is monotonically increasing in ¢, M(t) is also increasing in both cases. Further
if limy_, 00 A(t) = 00, then M(t) = 7e¢ in GBP and M (t) — oo in GPP, other-
wise, M (t) is bounded in both cases. From the above insights, the expected total
software cost, C(tp), has different properties in respective modeling frameworks.

Here, we analyze an actual CSS development project (group data) DS15,
where the total number of software faults was 58 and the system testing length
was 33 weeks. We estimate the model parameters for 3 x 14 SRMs by means
of the maximum likelihood estimation, and derive the maximum likelihood es-
timates of the expected cumulative number of software faults M(t). In our
numerical experiment, the parameter of each cost component and software life
cycle are cited from Okumoto and Goal [130]; ¢; = 10 (USD per week), co =1
(USD per fault), c3 = 5 (USD per fault), and Trc = 100 (weeks). For each

SRM, we select the best baseline function with the minimum AIC, and calculate
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the optimal software release time and its associated expected total software cost
numerically.

Table 6.15 presents the comparison results of the optimal software release
policies and their associated expected total software costs. We still use bold font
to show the best modeling framework (NHPP, GBP or GPP) in the optimal soft-
ware release time which minimizes most the expected total software cost. The
results show that the minimum expected total software cost strongly depends
on the kind of framework. Looking at the difference of baseline models, the
minimum expected total software costs were rather different from each other.
In our example, we assume to predict the expected total software cost at 33rd
week and want to know when stopping the software testing. In this sense, the
feasible SRMs were just 10 models; NHPP (Exp), NHPP (Log), GBP (Pareto),
GBP (Lnorm), GBP (Lxvmax), GBP (Log), GPP (Exp), GPP (Pareto), GPP
(Lxvmax), because the corresponding optimal software release times were less
than 33 weeks. From Table 6.2, we know that the baseline model Txvmax was
the best for three modeling frameworks and the goodness-of-fit performances
were almost similar. In this situation, since the optimal software release times
were all less than 33 weeks in Table 6.15, it is easily checked that the expected
total software cost increases in ty. To this end, the optimal decision is to stop

the software testing at the 33-rd week in our example.
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Table 6.1: Representative baseline models in SRMs.

Models

At)

Exponential dist. (Exp) [10]

A(t) = EESM ﬁS bt

Gamma dist. (Gamma) [19],[20] A(t) = wF(t), %o cbsh— wv\;&m
Pareto dist. (Pareto) [7] A(t) = wF(t), m‘A )=1- Aﬂvm
Truncated normal dist. (Tnorm) [17] At) = E% F(t) = %e %“ ~ 5 ds

Log-normal dist. (Lnorm) [8],[17]

(s—c)?

A(t) = wF(Int), F(t) = ,W@ %| e 2% ds

Truncated logistic dist. (Tlogist) [15]

bt

A(t) = wF(t), F(t) = 155

Log-logistic dist. (Llogist) [13]

A(t) = wF(Int), F(t) = -

e (E
Truncated extreme-value max dist. (Txvmax) [16] Alt) = S%Q F(t)=e"° iy
Log-extreme-value max dist. (Lxvmax) [16] A(t) = wF(Int), F(t) = e ()"
Truncated extreme-value min dist. (Txvmin) [16] At) = % Ft) = mLmn
Log-extreme-value min dist. (Lxvmin) [12] At) =w(l— F(=Int)), F(t) =e ¢ 5
Logarithmic Poisson (Log) [2],[14] A(t) = aln(1 + bt)
Power-law (Plaw) [11],[47],[48] A(t) = at®
Generalized truncated logistic dist. (Gtlogist) [9],[18] At) = E%ﬁ\“i F(t) = %

(w>0,a>0,b>0,c¢>0)
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Figure 6.2: Behavior of intensity function A, (¢) in the NHMP-based SRMs.
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Table 6.2: Goodness-of-fit performances based on AIC.

CSS development projects (time-domain data)

NHPP GBP GPP
Best Model AIC Best Model AIC Best Model AIC
DS1 Log 895.305 Plaw 896.668 Log 897.305
DS2 Plaw 234.967 Tlogist 235.343 Plaw 236.967
DS3 Log 1007.100 Log 1007.723 Log 1009.100
DS4 Lxvmax 1822.000 Lxvmax 1823.876 Lxvmax 1824.000
DS5 Txvmin 5296.620 Txvmin 5296.000 Txvmin 5298.620
DS6 Lxvmin 1938.160 Plaw 1936.541 Lxvmin 1940.160
DS7 Log 1203.523 Log 1205.529 Log 1205.093
DS8 Lxvmax 4720.070 Lxvmax 4715.180 Lxvmax 4722.070
CSS development projects (group data)
NHPP GBP GPP
Best Model AIC Best Model AIC Best Model AIC
DS9 Llogist 73.053 Txvmax 73.187 Llogist 75.053
DS10 Lxvmax 61.695 Plaw 62.878 Lxvmax 63.695
DS11 Tlogist 87.275 Txvmin 84.881 Tlogist 87.277
DS12 Tlogist 51.057 Plaw 52.576 Tlogist 53.057
DS13 Exp 29.535 Exp 31.323 Exp 31.956
DS14 Lxvmax 108.831 Lxvmax 110.815 Lxvmax 110.831
DS15 Txvmin 123.265 Txvmin 124.742 Txvmin 125.265
DS16 Llogist 117.475 Llogist 115.963 Llogist 119.475
0SS development projects (group data)
NHPP GBP GPP
Best Model AIC Best Model AIC Best Model AIC
DS17 Lxvmax 665.276 Lxvmax 662.558 Lxvmax 667.280
DS18 Gtlogist 451.112 Txvmax 450.308 Gtlogist 451.541
DS19 Txvmin 329.766 Txvmin 330.390 Txvmin 331.759
DS20 Gtlogist 540.588 Gtlogist 542.021 Plaw 541.604
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Table 6.3: Predictive performance based on PMSE with with CSS development
projects (time-domain data).

20% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS1 Lxvmax 0.323 Exp 3.051 Lxvmax 0.252
DS2 Log 0.743 Pareto 0.729 Log 0.742
DS3 Lxvmax 1.371 Log 1.574 Lxvmax 1.592
DS4 Lxvmax 1.973 Lxvmax 2.778 Lxvmax 1.973
DS5 Llogist 0.389 Tnorm 0.354 Llogist 0.385
DS6 Lxvmax 1.361 Lxvmax 1.640 Lxvmax 1.978
DS7 Lnorm 6.270 Pareto 0.618 Lxvmax 5.495
DS8 Llogist 7.756 Lxvmax 8.995 Llogist 7.756
50% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS1 Pareto 0.406 Lxvmax 1.984 Pareto 0.428
DS2 Txvmin 0.930 Tnorm 1.085 Txvmin 0.933
DS3 Log 13.937 Txvmin 5.167 Exp 15.115
DS4 Gtlogist 1.581 Lnorm 1.231 Llogist 1.338
DS5 Log 1.743 Log 1.131 Exp 2.153
DS6 Log 0.383 Log 0.389 Pareto 0.359
DS7 Log 0.350 Pareto 3.183 Log 0.349
DS8 Tnorm 5.764 Tlogist 2.877 Tnorm 5.729
80% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS1 Plaw 0.511 Lxvmax 0.667 Plaw 0.511
DS2 Log 1.239 Log 1.234 Exp 1.243
DS3 Plaw 0.621 Tlogist 0.807 Plaw 0.621
DS4 Lxvmax 0.655 Log 0.352 Lxvmax 0.655
DS5 Log 0.682 Pareto 0.684 Log 0.681
DS6 Lxvmax 0.563 Log 1.028 Lxvmax 0.560
DS7 Lxvmax 0.529 Pareto 0.567 Lxvmax 0.529
DS8 Lxvmax 0.401 Txvmax 1.741 Lxvmax 0.401
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Table 6.4: Predictive performance based on PMSE with CSS development
projects (group data).

20% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE

DS9 Plaw 3.689 Gamma 3.686 Plaw 3.572

DS10 Lxvmax 1.441 Lxvmax 1.595 Gamma 1.728
DS11 Tlogist 3.343 Tlogist 3.177 Tlogist 2.754

DS12 Exp 3.436 Log 3.436 Exp 3.210
DS13 Pareto 0.432 Log 0.432 Exp 0.427
DS14 Tlogist 2.340 Log 1.847 Lxvmax 4.487
DS15 Plaw 0.957 Plaw 3.871 Plaw 0.945

DS16 Txvmin 4.032 Tlogist 3.532 Tnorm 3.687
50% Observation Point

NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS9 Tnorm 0.893 Lxvmin 0.921 Tnorm 0.891

DS10 Plaw 0.638 Tlogist 2.047 Plaw 0.635
DS11 Lxvmax 6.832 Lxvmax 6.100 Log 10.777
DS12 Exp 3.522 Exp 3.443 Log 4.207
DS13 Exp 0.194 Pareto 0.193 Pareto 0.193
DS14 Log 2.047 Log 5.719 Plaw 2.223

DS15 Lxvmax 1.096 Lxvmax 1.117 Lxvmax 1.081
DS16 Txvmin 1.131 Lxvmin 1.022 Txvmin 1.133

80% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE

DS9 Lnorm 0.531 Plaw 1.071 Lnorm 0.531

DS10 Exp 0.295 Tlogist 0.295 Tlogist | 0.294
DS11 Tnorm 0.230 Gtlogist 0.645 Tnorm 0.228
DS12 Tnorm 0.589 Tlogist 0.781 Tnorm 0.589
DS13 Plaw 0.169 Llogist 0.169 Gtlogist 0.169
DS14 Txvmax 0.741 Lxvmax 0.943 Lxvmax 0.945

DS15 Txvmin 0.818 Tlogist 0.143 Txvmin 0.817
DS16 Lxvmax 0.325 Lxvmax 0.325 Lxvmax 0.314
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Table 6.5: Predictive performance based on PMSE with OSS development
projects (group data).

20% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS17 Lnorm 3.978 Lnorm 3.977 Lnorm 3.961
DS18 Gtlogist 12.661 Log 24.459 Log 21.657
DS19 Plaw 9.353 Gamma 9.333 Log 4.672
DS20 Plaw 13.436 Lxvmax 17.963 Plaw 13.415
50% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS17 Log 2.594 Log 3.763 Log 2.630
DS18 Lxvmin 1.756 Lxvmin 1.030 Lxvmin 3.711
DS19 Gtlogist 16.528 Gtlogist 16.563 Gtlogist 16.558
DS20 Gtlogist 2.004 Gtlogist 1.974 Plaw 1.759
80% Observation Point
NHPP GBP GPP
Best Model | PMSE | Best Model | PMSE | Best Model | PMSE
DS17 Pareto 0.698 Pareto 0.782 Pareto 0.696
DS18 Tlogist 0.207 Tnorm 0.207 Tnorm 0.463
DS19 Gamma 5.346 Lxvmin 5.387 Llogist 5.378
DS20 Plaw 2.428 Lxvmin 2.428 Gamma 2.436
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Table 6.6: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (20% time-domain data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
141.591 142.559 143.591
DS1 1.577 3.599 1.575
(Log) (Plaw) (Log)
35.327 37.055 37.327
DS2 2554.640 1.408 1.091E+10
(Plaw) (Plaw) (Plaw)
187.583 189.398 189.583
DS3 4.817 1.769 4.791
(Plaw) (Plaw) (Plaw)
291.964 292.373 293.965
DS4 5.375 5.624 5.375
(Llogist) (Txvmax) (Llogist)
1046.910 1048.895 1048.910
DS5 0.464 0.427 0.470
(Plaw) (Plaw) (Plaw)
311.745 313.358 313.745
DS6 3.573 4.116 3.576
(Plaw) (Plaw) (Plaw)
191.169 193.027 193.169
DS7 11.723 2.485 11.805
(Plaw) (Plaw) (Plaw)
752.937 753.232 754.937
DS8 9.350 9.784 9.350
(Txvmax) (Txvmax) (Txvmax)
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Table 6.7: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (50% time-domain data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
403.240 403.655 405.240
DS1 0.471 2.369 0.471
(Log) (Plaw) (Log)
123.241 124.923 125.241
DS2 0.990 1.366 0.990
(Plaw) (Plaw) (Plaw)
445.124 447.172 446.531
DS3 33.395 5.389 35801.400
(Plaw) (Tlogist) (Plaw)
764.771 766.231 766.771
DS4 4.111 3.311 4.113
(Lxvmax) (Plaw) (Lxvmax)
2601.980 2604.140 2603.510
DS5 2.834 2.418 5.771
(Plaw) (Plaw) (Plaw)
859.945 861.832 861.945
DS6 3.884 2.052 3.886
(Plaw) (Plaw) (Plaw)
527.080 525.815 529.068
DS7 2.993 3.800 3.069
(Exp) (Plaw) (Exp)
1900.550 1901.390 1902.550
DS8 89.228 9.748 89.200
(Plaw) (Plaw) (Plaw)
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Table 6.8: Predictive performance based on the baseline model with minimum

AIC in CSS development projects (80% time-domain data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
690.114 690.889 692.114
DS1 0.702 1.37 0.702
(Log) (Plaw) (Log)
176.266 178.264 177.889
DS2 8.489 8.607 14.386
(Tlogist) (Tlogist) (Txvmin)
769.639 768.020 771.641
DS3 0.829 0.807 0.831
(Log) (Tlogist) (Log)
1372.520 1374.290 1374.520
DS4 0.655 0.751 0.655
(Lxvmax) (Lxvmax) (Lxvmax)
4203.050 4204.420 4205.050
DS5 0.683 0.698 0.683
(Exp) (Plaw) (Exp)
1478.500 1477.230 1479.313
DS6 0.943 1.343 2.368
(Llogist) (Plaw) (Tlogist)
920.101 922.031 922.101
DS7 0.536 0.608 0.536
(Log) (Log) (Log)
3465.000 3449.830 3467.000
DS8 3.212 1.741 3.212
(Llogist) (Txvmax) (Llogist)
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Table 6.9: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (20% group data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
10.807 12.637 12.807
DS9 3.689 6.167 3.572
(Plaw) (Plaw) (Plaw)
10.864 12.378 12.865
DS10 2.145 2.219 327.513
(Plaw) (Plaw) (Plaw)
17.199 19.031 19.199
DS11 6.764 12.026 6.758
(Plaw) (Plaw) (Plaw)
10.649 10.629 12.649
DS12 8.017 11.14 7.981
(Plaw) (Exp) (Plaw)
6.000 7.976 8.000
DS13 2.415E+11 7.979 3.606E+-6325M
(Plaw) (Plaw) (Plaw)
20.660 21.781 22.660
DS14 34.922 5.540 5.146
(Lnorm) (Tlogist) (Lnorm)
16.959 18.953 18.959
DS15 6.600 6.599 6.601
(Txvmin) (Txvmin) (Txvmin)
6.709 8.696 8.730
DS16 2.081E+13 3.369 2.825E+4-4245M
(Plaw) (Plaw) (Plaw)
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Table 6.10: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (50% group data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
34.645 33.667 36.649
DS9 1.437 3.531 1.437
(Tlogist) (Txvmin) (Tlogist)
31.051 29.471 33.048
DS10 2.633 3.455 2.633
(Lxvmax) (Plaw) (Lxvmax)
49.161 51.099 49.107
DS11 20.583 18.316 20.559
(Gtlogist) (Gtlogist) (Plaw)
30.560 33.087 31.685
DS12 22.973 7.684 20.962
(Tlogist) (Plaw) (Plaw)
16.878 19.911 18.882
DS13 0.796 0.732 0.770
(Plaw) (Plaw) (Plaw)
40.521 40.768 42.521
DS14 5.643 5.813 5.642
(Lxvmax) (Lxvmax) (Lxvmax)
70.521 72.332 72.521
DS15 1.790 1.051 1.768
(Plaw) (Plaw) (Plaw)
65.713 60.151 67.127
DS16 1.131 11.712 1.133
(Txvmin) (Gtlogist) (Txvmin)
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Table 6.11: Predictive performance based on the baseline model with minimum
AIC in CSS development projects (80% group data).

NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
55.069 53.232 57.069
DS9 1.406 1.651 18.845
(Tlogist) (Txvmax) (Tlogist)
52.523 54.251 54.526
DS10 0.417 0.655 0.419
(Lxvmax) (Plaw) (Lxvmax)
75.292 73.881 77.293
DS11 0.887 1.485 0.887
(Txvmin) (Tlogist) (Txvmin)
42.548 40.788 44.548
DS12 0.828 1.242 0.827
(Txvmin) (Tnorm) (Txvmin)
24.272 25.495 26.272
DS13 0.286 0.664 0.169
(Exp) (Exp) (Gtlogist)
96.179 98.179 98.172
DS14 0.945 0.943 0.945
(Lxvmax) (Lxvmax) (Lxvmax)
111.458 112.304 113.458
DS15 4.137 0.143 4.137
(Plaw) (Tlogist) (Plaw)
100.326 99.291 102.326
DS16 0.855 1.022 0.855
(Tlogist) (Tlogist) (Tlogist)
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Table 6.12: Predictive performance based on the baseline model with minimum

AIC in OSS development projects (group data).

20% Observation Point
NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
274.813 275.993 276.813
DS17 5.318 5.457 5.317
(Llogist) (Llogist) (Llogist)
66.096 66.984 68.096
DS18 23.276 27.710 23.221
(Exp) (Plaw) (Exp)
37.998 39.999 39.996
DS19 9.353 9.434 7.937
(Plaw) (Plaw) (Plaw)
128.249 129.620 130.249
DS20 17.784 17.963 17.784
(Lxvmax) (Lxvmax) (Lxvmax)
50% Observation Point
NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
466.733 459.369 468.733
DS17 4.692 3.868 4.692
(Llogist) (Txvmax) (Llogist)
256.109 255.906 257.261
DS18 10.354 10.183 9.715
(Txvmin) (Txvmax) (Txvmin)
87.808 89.809 89.809
DS19 17.761 17.782 17.726
(Plaw) (Exp) (Plaw)
294.681 296.677 292.542
DS20 2.004 1.974 6.267
(Gtlogist) (Gtlogist) (Gtlogist)
80% Observation Point
NHPP GBP GPP
AIC AIC AIC
PMSE PMSE PMSE
(Best Model) (Best Model) (Best Model)
606.600 603.489 608.610
DS17 0.869 1.063 0.881
(Lxvmax) (Lxvmax) (Lxvmax)
407.140 407.330 408.607
DS18 0.495 0.588 57.194
(Gtlogist) (Txvmax) (Tlogist)
249.980 251.978 251.759
DS19 8.102 8.160 37.377
(Tlogist) (Tlogist) (Tlogist)
438.472 440.477 435.822
DS20 3.691 3.668 7.141
(Gtlogist) (Gtlogist) (Gtlogist)
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SRMs.
(i) CSS development projects (time-domain data).
NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS1 Log 1.092E-17 Plaw 1.411E-33 Log 1.071E-17
DS2 Plaw 7.081E-138 Tlogist 1.097E-28 Plaw 8.886E-138
DS3 Log 4.254E-15 Log 1.076E-11 Log 2.098E-15
DS4 Lxvmax 5.567E-15 Lxvmax 1.310E-15 Lxvmax 6.599E-15
DS5 Txvmin 0.000E+00 Txvmin 0.000E+00 Txvmin 0.000E+00
DS6 Lxvmin 1.529E-16 Plaw 2.802E-88 Lxvmin 1.552E-16
DS7 Log 5.148E-40 Log 5.681E-40 Log 1.601E-43
DS8 Lxvmax 2.939E-48 Lxvmax 1.193E-51 Lxvmax 2.612E-48
(ii) CSS development projects (group data).
NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS9 Llogist 1.530E-03 Txvmax 3.876E-02 Llogist 1.531E-03
DS10 Lxvmax 5.730E-09 Plaw 4.962E-22 Lxvmax 6.585E-09
DS11 Tlogist 2.628E-03 Txvmin 5.166E-56 Tlogist 2.629E-03
DS12 Tlogist 2.801E-01 Plaw 1.830E-19 Tlogist 2.808E-01
DS13 Exp 5.021E-09 Exp 4.961E-09 Exp 1.413E-15
DS14 Lxvmax 1.601E-12 Lxvmax 1.052E-12 Lxvmax 1.613E-12
DS15 Txvmin 9.633E-01 Txvmin 9.610E-01 Txvmin 9.593E-01
DS16 Llogist 6.326E-01 Llogist 8.012E-01 Llogist 6.327E-01
(iii) OSS development projects (group data).
NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS17 Lxvmax 8.578E-03 Lxvmax 1.209E-02 Lxvmax 8.497E-03
DS18 Gtlogist 1.156E-01 Txvmax 7.438E-02 Gtlogist 8.825E-02
DS19 Txvmin 3.005E-35 Txvmin 1.162E-79 Txvmin 1.110E-34
DS20 Gtlogist 4.229E-29 Gtlogist 3.686E-29 Plaw 8.540E-29
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Figure 6.7: Inference of software reliability with virtual testing time (DS13).
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(i) 50% virtual testing time.
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NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS9 Llogist 3.488E-01 Txvmax 8.727E-01 Llogist 3.490E-01
DS10 Lxvmax 3.986E-03 Plaw 7.591E-18 Lxvmax 4.108E-03
DS11 Tlogist 8.007E-01 Txvmin 1.000E+00 Tlogist 8.021E-01
DS12 Tlogist 9.761E-01 Plaw 4.137E-38 Tlogist 9.761E-01
DS13 Exp 3.909E-01 Exp 3.860E-01 Exp 4.040E-01
DS14 Lxvmax 1.417E-04 Lxvmax 2.546E-01 Lxvmax 1.495E-04
DS15 Txvmin 1.000E4-00 Txvmin 1.000E4-00 Txvmin 1.000E4-00
DS16 Llogist 9.660E-01 Llogist 9.659E-01 Llogist 9.663E-01
(i) 100% virtual testing time.
NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS9 Llogist 7.237E-01 Txvmax 9.919E-01 Llogist 7.255E-01
DS10 Lxvmax 6.004E-02 Plaw 8.753E-12 Lxvmax 6.234E-02
DS11 Tlogist 9.890E-01 Txvmin 1.000E+00 Tlogist 9.888E-01
DS12 Tlogist 9.994E-01 Plaw 1.325E-23 Tlogist 9.994E-01
DS13 Exp 8.162E-01 Exp 8.124E-01 Exp 9.603E-01
DS14 Lxvmax 9.523E-03 Lxvmax 9.059E-03 Lxvmax 9.554E-03
DS15 Txvmin 1.000E+-00 Txvmin 1.000E+00 Txvmin 1.000E+00
DS16 Llogist 9.887E-01 Llogist 9.887E-01 Llogist 9.887E-01
(iii) 150% virtual testing time.
NHPP GBP GPP
Best Model | Reliability | Best Model | Reliability | Best Model | Reliability
DS9 Llogist 9.992E-01 Txvmax 9.992E-01 Llogist 8.487E-01
DS10 Lxvmax 1.749E-01 Plaw 7.365E-09 Lxvmax 1.761E-01
DS11 Tlogist 9.992E-01 Txvmin 1.000E+00 Tlogist 9.992E-01
DS12 Tlogist 1.000E4-00 Plaw 3.319E-17 Tlogist 1.000E4-00
DS13 Exp 9.434E-01 Exp 9.922E-01 Exp 9.930E-01
DS14 Lxvmax 5.360E-02 Lxvmax 5.319E-02 Lxvmax 5.376E-02
DS15 Txvmin 1.000E+4-00 Txvmin 1.000E+4-00 Txvmin 1.000E4-00
DS16 Llogist 9.985E-01 Llogist 9.985E-01 Llogist 9.985E-01
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Table 6.15: Comparison of optimal software release policies with respect to
baseline models.

NHPP GBP GPP
t; (week) C(tg) t5 (week) C(tg) t5 (week) C(ty)
Exp 38.036 896.408 32.001 752.058 264.257 7197.580
Gamma 0.209 68.806 6.094 140.536 5.389 125.808
Pareto 23.425 561.992 48.679 2912.980 39.723 2011.950
Tnorm 5.459 122.150 5.458 122.208 5.447 121.178
Lnorm 3.766 208.500 4.731 111.081 7.201 177.402
Tlogist 4.813 114.309 4.813 114.306 4.817 114.310
Llogist 7.030 179.993 4.598 108.406 7.030 179.981
Txvmax 5.538 138.525 3.691 114.149 3.911 115.186
Lxvmax 0.448 139.218 4.913 114.619 18.891 740.077
Txvmin 1.133 316.220 4.279 101.959 4.262 101.907
Lxvmin 4.812 112.380 4.844 112.808 4.807 112.310
Log 48.676 2983.410 43.820 1085.980 | 1.429E-10 | 6038.370
Plaw 1.429E-10 | 9746.260 | 3.429E-08 | 291.993 | 1.429E-10 | 10809.900
Gtlogist 4.599 109.430 4.602 109.387 4.598 109.278




Chapter 7

Conclusions

In this thesis, we comprehensively studied the Markov process-based software
reliability modeling frameworks. We first complemented the study of some
well-known HMP-based SRMs by handling software fault counting group data.
Then, We developed dozens of novel parametric and semi-parametric NHPP-
based SRMs and proposed two novel software reliability modeling frameworks;
GBP and GPP.

In Chapter 2, we have performed the group data analysis for a de-
eutrophication SRM based on a pure birth process and compared it with the
well-known J&M-SRM in terms of goodness-of-fit and predictive performances.
As we have already emphasized, the group data analysis for a de-eutrophication
SRM has been left in the software reliability research for a long time. In nu-
merical examples with 8 actual software development project data sets, we have
shown that the geometric de-eutrophication SRM was much more attractive to
make the software reliability prediction, although the seminal J&M-SRM based
on the linear death process has been used more frequently.

In Chapter 3, under the finite-failure and infinite-failure assumptions, we
proposed 18 novel type-I NHPP-based SRMs and 26 novel type-II NHPP-based
SRMs by considering several representative probability distributions (e.g., gen-
eralized exponential distributions family or extreme-value distribution family),
Lindley-type distributions and Burr-type distributions as the software fault-
detection time c.d.f.s. By analyzing 8 software fault count time-domain data
and 8 software fault count group data, we have investigated the goodness-of-fit

performance and predictive performance of our SRMs. We have also compared
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these SRMs with 11 existing type-I NHPP-based SRMs under the finite-failure
assumption. The important point to note is that the type-I and type-II NHPP-
based SRMs considered in Chapter 3 have the same software fault detection
c.d.f.s, which have never been addressed in the past literature.

The lessons learned from our numerical examples are given in the following:

(i) Our Type-II NHPP-based SRMs could hardly satisfy the goodness-of-fit
performance, when compared with the type-I NHPPs.

(ii) Our Type-II NHPP-based SRMs outperformed the existing type-I NHPP-
based SRMs for software fault-detection prediction in the early testing

phase when group data were available.

(iii) Burr-type NHPP-based SRMs could provide the better goodness-of-fit per-
formances than the other NHPP-based SRMs (including our proposed
other NHPP-based SRMs in Chapter 3) in 11 out of 16 data sets.

(iv) Based on PMSE, our Burr-type and Lindley-type NHPP-based SRMs had
the better potential for accurate prediction on unknown future fault de-
tection than the existing NHPP-based SRMs in the half of group data

sets.

v) In three observation points of group data sets, our Burr-type NHPP-based
g

SRMs were superior to the existing NHPP-based SRMs in terms of the

predictive performance in many cases on the scenario that the best model

is selected in terms of the minimum AIC.

(vi) In the software reliability assessment, when we consider goodness-of-fit as
the model selection criterion, our type-1I NHPP-based SRMs tend to make

more conservative predictions than the type-I NHPPs in most cases.

The main contribution of Chapter 3 is to suggest that the Lindley-type and Burr-
type NHPP-based SRMs are quite attractive SRMs to describe the software
fault-detection processes and should be the possible candidates in selecting the
best SRM in terms of goodness-of-fit and predictive performances. Meanwhile,
we also confirmed that both finite-failure and infinite-failure assumptions are
necessary to be considered in the NHPP-based modeling assumptions. This

fact has not been known during the last four decades.
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In Chapter 4, we have proposed type-I and type-II local polynomial NHPP-
based SRMs, where the software debug rate was given by a local polynomial
function. We proposed algorithms to obtain the maximum likelihood estimates
of polynomial coefficients in two phases; the estimation phase to investigate the
goodness-of-fit and the prediction phase to the inference of an unknown num-
ber of software faults in the future. In numerical examples, we have made a
comparison of our local polynomial NHPP-based SRMs with the 11 existing
type-I and the 3 existing type-II NHPP-based SRMs and confirmed that our
type-I local polynomial SRMs could not always provide better goodness-of-fit
on AIC, but could outperform the existing NHPP-based SRMs in terms of MSE
in almost all cases. On the other hand, in many cases, our local polynomial
NHPP-based SRMs outperformed the existing NHPP-based SRMs in terms of
predictive performance. From the comprehensive experiments with actual soft-
ware fault data, our novel NHPP-based SRMs with local polynomial software
debug rates are good candidates without determining a specific c.d.f. of the
software fault-detection time. However, we have also found that the increase in
polynomial degree does not necessarily improve the goodness-of-fit performance

of the SRM.

Chapter 5 presented the proportional intensity NHPP-based SRMs (PI-
SRMs) with eleven representative baseline intensity functions, which could in-
corporate multiple time-dependent cumulative/non-cumulative software devel-
opment/test metrics data. In our numerical experiments with actual software
project data, we have quantitatively evaluated the goodness-of-fit and predic-
tive performances of our PI-SRMs and compared them with the common NHPP-
based SRMs with the same baseline intensity functions. Finally, we have verified
that our SRMs performed well in all data sets and had the excellent potential
ability on prediction. By carefully checking the regression coefficients, we have
also confirmed that failure identification work was the most important test-
ing metric that could contribute to software debugging, and could improve the

goodness-of-fit and predictive performances.

In Chapter 6, we have developed two NHMP-based modeling frameworks
to describe the software fault counting processes, where GBP was a binomial

type of inverse death process and GPP was a negative binomial type of birth
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process. We have derived the log likelihood functions for GBP- and GPP-based
SRMs with an arbitrary baseline intensity function for the CSS development
projects (time-domain data), CSS development projects (group data) and OSS
development projects (group data), and investigated the goodness-of-fit and
predictive performances with twenty actual software fault count data sets. The
comparison has been made from the viewpoint of difference from the common
NHPP-based SRMs with fourteen baseline models. Further, we have discussed
how to assess the quantitative software reliability in our NHMP-based SRMs and
the software release decision. The lessons learned from numerical experiments

are summarized in the following:

(i) Three modeling frameworks; NHPP, GBP and GPP, showed almost similar
goodness-of-fit performances for an arbitrary baseline intensity function in
CSS development projects (time-domain data), CSS development projects

(group data) and OSS development projects (group data) data.

(ii) Our generalized modeling frameworks based on GBP and GPP were supe-
rior to the common NHPP-based SRMs in terms of the prediction per-
formance in many cases in the scenario that the best baseline model is

selected in terms of the minimum AIC.

(iii) By introducing the virtual testing time, we inferred the quantitative soft-
ware reliability in a reasonable way, under the assumption that no software
fault was detected during the virtual testing time period. It was shown
that GPP-based SRMs tend to make optimistic estimations of software
reliability.

The approach to generalizing the well-known NHPP-based SRMs was some-
what straightforward, but it has not been done sufficiently during the last five
decades. The contribution of Chapter 6 was to describe the software fault count
processes with a wide class of Markov processes; GBP and GPP, and to enable
the group data analysis. These problems have been left in the software reliabil-
ity community for a long time. As an interesting insight, it can be pointed out
that a great number of baseline models are not needed anymore. Instead, the
generalization from the standpoint of the underlying stochastic process would

be acceptable to get a more accurate prediction of software faults.
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In the future, it is beneficial to implement the de-eutrophication SRM, fi-
nite (type-I) and infinite (type-1I) Lindley-type, Burr-type, local polynomial
NHPP-based SRMs on the well-established software reliability assessment tool.
Although SRATS [43] contains 11 well-known NHPP-based SRMs, the main
feature is to guarantee the global convergence of model parameters in comput-
ing the ML estimates, where the EM (Expectation-Maximization) algorithms
are implemented for the respective SRMs. In order to implement reliable and
automated ML prediction for the Burr-type NHPP-based SRMs, we need to
design the EM algorithms for our proposed SRMs.

Then, we will discuss whether the Lindley-type distribution family can be
generalized from the viewpoint of mathematical theory. More specifically, we
will try to find whether there exists a relation between the c.d.f. and the p.d.f.
to unify the Lindley-type distribution as to the Burr-type distribution family
(see Equation (3.29)). If such a differential equation can be derived, then, we
may be able to obtain different Lindley-type distributions for describing software
fault detection times, as the Burr-type distributions.

Third, we will propose other PI-SRMs with different baseline intensity func-
tions. As we know, some metrics that are more easily observed as time-
dependent or non-time-dependent during the testing of software engineering
(e.g., the total number of operators, number of program volume, number of
lines of comments, number of lines of code, number of lines of executable source
code), were missed in the thesis. Therefore, we will continue to propose and
investigate novel PI-SRMs in the near future by using the above-mentioned
metrics data as well as software fault count data.

Finally, it is attractive to extend GBP- and GPP-based SRMs by introduc-
ing nonlinear structures in the transition rates of NHMP, although both GBP
and GPP suppose linear structures to represent the state-dependent term. Also,
we will develop a numerical inference scheme by solving the Kolmogorov for-
ward equations numerically, without knowing the explicit form of the likelihood
function, even when the transition rate in NHMP does not have the decompo-
sition between the state-dependent term and the time-dependent term. It is
really a challenging issue to provide the most comprehensive software reliability

modeling framework.
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