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ABSTRACT. We study nonorientable maximal surfaces in the Lorentz-Minkowski
3-space IL3. We construct nonorientable maximal surfaces containing hypocycloid
and maximal surfaces in IL? which are homeomorphic to the real projective plane
RIP? minus two points with degree of the Gauss map being equal to 4.

1. Introduction

The first example of a complete nonorientable minimal surface in the
Euclidean 3-space R? was found by W. H. Meeks III [16] in 1981. He con-
structed a minimal Mobius strip with total curvature —6n (see Figure 1.1:
left). After that, M. Elisa G. G. de Oliveira [18] generalized Meeks’ example
to the surface with total curvature —2n(2n + 1), where n € Z- (see Figure 1.1:
middle).

The Bjorling problem asks for the existence of a minimal surface con-
taining a given curve in R and a given unit normal coincides with its Gauss
map. H. A. Schwarz gave the representation formula of the solution of this
problem. Minimal M&bius strips constructed by Meeks and Oliveira contain a
circle. So we can construct them as solutions of the Bjorling problem by giving
a circle and suitable unit normals. Meeks and M. Weber [17] constructed
minimal Mobius strips by using Schwarz’ formula (see Figure 1.1: right).

In [16], Meeks showed the only complete nonorientable minimal surface
with total curvature —6x is the minimal M&bius strip he constructed. There-
fore, there does not exist a complete minimal immersion of the real projective
plane minus two points RIP?\{p, p»} into R® with total curvature —6.

A maximal surface in Lorentz-Minkowski 3-space IL* is a spacelike surface
with zero mean curvature. Maximal surfaces share many local properties with
minimal surfaces in R3. However, their global properties are quite different.
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Meeks Oliveira Meeks and Weber

Fig. 1.1. Minimal Mgbius strips

In fact, the only complete maximal surface in IL® is the plane [2, 3]. Maximal
surfaces with singularities are investigated in [4], [5], [6], [7], [11], [19] and so
on. M. Kokubu and M. Umehara investigated co-orientability of maximal
surfaces in [13]. The Bjorling problem for the maximal surfaces is studied in
[1], [15], and so on.

S. Fujimori and F. J. Lopez [10] studied some basic aspects of the global
theory of nonorientable maximal surfaces with singularities. They constructed
one-ended maximal Klein bottles, and higher genus nonorientable maximal
surfaces are constructed by S. Fujimori and the author [8]. S. Fujimori and
F. J. Lopez [10] also constructed two maximal Md&bius strips, one contains an
epicycloid and the other contains a hypocycloid.

In this paper, we construct some new examples of nonorientable maximal
surfaces. In Section 2, we recall the definition of nonorientable maximal sur-
face with singularities and introduce some basic properties of these surfaces.
In Section 3, we construct maximal Mobius strips containing epicycloids and
hypocycloids. In Section 4, we construct a nonorientable maximal surface
homeomorphic to RIP*\{p;, p»} and show its uniqueness under some assump-
tions (Theorem 4.1).

2. Preliminaries

Let IL? be the three dimensional Lorentz-Minkowski space with the metric
(,>:=dx? +dx} —dx}. In 1L we can define the cross-product a x b e IL?,
given by

—(azb3 — azby)
axb= —(a3b1 — a1b3) s
a1b2 — azbl

where a = (al,az,a3), b= (b],bz,bg,) € ]L3.
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An immersion f: M — IL3 of a 2-manifold M into IL? is called spacelike
if the induced metric T = f*{, ) is positive definite. Let (u,v) be a local co-
ordinate system of U C M. We can define a unit normal vector field as

L fux
xy

We call this vector the Gauss map of f. We define the first and the second
fundamental forms I of f by

I:<df7df>> H:7<df,d\/>

We then define the Gaussian curvature K and the mean curvature H by

cU — H* = {(x1,x2,x3) e L? | x] + x5 — x3 = —1}.

K= —det(I"'ll), H= % tr(1-'1I).

A spacelike immersion f : M — IL° is said to be maximal if the mean curvature
vanishes identically.

DEerFINITION 2.1 (Maxfaces [19], see also [9]). Let M be a Riemann sur-
face and f: M — IL* a C¥-map. f is called a maxface if there exists an open
dense subset W of M so that the restriction f|, : W — IL? is a conformal
maximal immersion and the rank of df at p is positive for all p e M. A point
p €M is said to be singular if rank(df) <2 at p.

THEOREM 2.2 (Weierstrass-type representation [12, 19]). Let (g,n) be a
pair consisting of a meromorphic function g and a holomorphic differential n on
a Riemann surface M such that

(L+191*)*nm (2.1)
gives a Riemannian metric on M. Set
i (1+g%)n
P=| ¢ |=|il-g)n | (2.2)
¢s 291
Suppose that
Re El; D=0 (2.3)
?

holds for any ye H\(M,Z). Then

f:ReJZ &M — 1L, (zoe M) (2.4)

20
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is a maxface. We call (M, g,n) (or (g,n)) the Weierstrass data of f : M — L
(we define the Weierstrass data of a nonorientable maxface later).

ReMARK 2.3. (i) The first fundamental form 1 and the second fundamental
form 11 of the surface (2.4) are given by

=19/ i, U=ndg+ndg.

The singular set corresponds to {pe M ||g(p)| = 1}.

(ii) Let (g,n) be the Weierstrass data of f. (g,n) can be written as

_ 1 .
9= n =51~ iga).

Moreover, g coincides with the composition of the unit normal v of f
and the Lorentzian stereographic projection o, that is, g = o ov. Thus
we call g the Gauss map of f.

(iii) The condition (2.3) is called the period problem, which guaranties the
well-defindness of f. It is equivalent to

fg%+§n=0 (2.5)
) :

7

and
Re% gn =20 (2.6)
y

for any ye Hi(M,Z).

DEFINITION 2.4 (Complete maxfaces [19]). A maxface f : M — IL? is said
to be complete if there exists a compact set C and a symmetric (0,2)-tensor 7'
on M such that 7 vanishes on M\C and 1+ T is a complete Riemannian
metric.

PROPOSITION 2.5 ([19, Proposition 4.5]). Let f: M — IL* be a complete
maxface with the Weierstrass data (M,g,n). Then the Riemann surface M is
biholomorphic to a compact Riemann surface M minus a finite number of points
{p1,...,pn}. Moreover, g and n extend meromorphically to M.

We say that a complete maxface f : M\{py,...,p,} — IL? is of genus k
if M is a compact Riemann surface of genus k.

Let y; denote the winding number of the multigraph f around p;. It is
easy to check that

Hi = max{ordp,(¢1) |.] = 1527 3} - 17

where Ord,, (¢,) is the pole order of ¢; at p;.
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TueoreM 2.6 ([19, 5]). Let M be a compact Riemann surface and f : M =
M\{pi,...,pn} —1IL* a complete maxface with the Weierstrass data (g,n).
Then g: M — CU{x} satisfies

2degg = —x(7) + (s +1) 27)
i=1

where y(M) denotes the Euler characteristic of M. In particular,

2degg > —y(M)+ 2n, (2.8)
and equality holds if and only if all ends are properly embedded.

Let M’ be a nonorientable surface with conformal coordinates. We
denote 7 : M — M’ the orientable conformal double cover of M’.

DeFiNiTION 2.7 (Nonorientable maxfaces [10]). A conformal map
f':M' — 13 is said to be a nonorientable maxface if the composition

f=flon:M—1L>
is a maxface. In addition, f’ is said to be complete if f is complete.

We say that a complete nonorientable maxface f’: M’ — IL? is of genus
k (k> 1) if the double cover M of M’ is biholomorphic to M\{pi,...,pn},
where M is a compact Riemann surface of genus k — 1.

Let f': M’ — L be a nonorientable maxface, and let 7 : M — M denote
the antiholomorphic order two deck transformation associated with the orient-
able double cover #: M — M’. Since fol = f, we have

1 _
goI:5 and I'n = gn. (2.9)

Conversely, if (g,7) is the Weierstrass data of an orientable maxface
f:M — 13 and I is an antiholomorphic involution without fixed points in
M satisfying (2.9), then the unique map f’: M’ = M /{I) — IL° satisfying that
f = f"om is a nonorientable maxface. We call (M,I,g,n) the Weierstrass
data of f': M’ —IL°.

THEOREM 2.8 (Bjorling representation [1, Theorem 3.1]). Let f: U C C —
IL} be a maximal surface, and define c(s) = f(s,0), n(s) = v(s,0) on a real
interval I C U.  Choose any simply connected open set A C U containing I over
which we can define holomorphic extensions c(z), n(z) of ¢, n. Then for all z€ A
it holds

f(2) = RGJ (¢" —inx c")dz.

S0
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Here sy is a point fixed but arbitrary of I and the integral is taken along an
arbitrary path in A joining sy and z.

3. Cycloids and maximal Mdbius strips

3.1. Epicycloids and maximal Mébius strips. Let c(¢) = (x(¢), y(¢)) be an
epicycloid. Then it is written by

Fe+T
X(£) = (Fe + 1) COS t — 1)y cos( ctim z),
" 3.1
. 1o+ ( : )
y(t) = (re +rm) sin t —ry, sinf ——+¢ |,
'm

where r. and r,, are radii of a fixed circle and a rolling circle around outside
of a fixed circle respectively [14]. See Figure 3.1.

Fig. 3.1. The thick curve indicates an epicycloid, the big circle is a fixed circle, and the small circle
is a rolling circle.

In the case r,, = 1/(k+ 1), r.=1/(k(k+1)), ke Z~, (3.1) becomes

_cost cos(((k+1)/k)t)

=7 k+1 ’
_sint sin(((k +1)/k)?) (32)
Ay e e

After the substitution 7 = 2k(0+ n/2) and multiplying the right-hand side by
(—l)k, we have
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_ cos 2k cos(2(k +1)0)
ey +1

_sin 2k0  sin(2(k + 1)0)
WO == "% +1

(3.3)

See Figure 3.2.

DO @

Fig. 3.2. Epicycloids (left: &k =1, middle: k =2, right: k = 3)

We define the Weierstrass data (M, 1,g,7n) as

M=Q\(0), () =1,
(3.4)
224 (2 4 1) (z—1)°

g=— =il
z—1

where k€ Z-o. (3.4) gives a complete nonorientable maxface with degg =
2(k+1). These data are given by [10, Remark 3.2]. See Figure 3.3.

Fig. 3.3. Maximal Mobius strips given by (3.4) (left: k =1, middle: k =2, right: k = 3)

When z = e, we have

21
ReJ¢3 :2ReJiz o dz = -4 ReJisintdt:4Re(icost—|— C3) =4 Re Cs,
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where C; is a complex constant. So we can assume the image of z = e’
by f is a planar curve on the xjx;-plane. A straightforward computation
gives

in(2(k + 1)t in(2kt
Re [ - ST 1)_sn3h)
ReJ¢2:cos(i(i—il—l)l)+cos(]€2kt)+Re C,

where C; and C, are complex constants. Define a curve ¢(¢) = (X(¢), X2(f)) as
follows:

Csin(k + 1)) sin(2ki)

x1(1) = 1 A
- cos(2(k + 1)t)  cos(2kt) (3:5)
L) ==t

After the rotating the curve ¢(¢) in IL? by —z/2 about the x3-axis, we obtain
c(t) = (x1(2),x2(1)) as follows:

_cos(2(k +1)t)  cos(2kt)

) ===t
sin(2(k + 1)1) _ sin(2k) (3.6)
(1) == —.

(3.6) coincides with (3.3). So we see the surface given by (3.4) contains the
epicycloid.

REMARK 3.1. We set a curve c(t) = (X1(¢),%2(¢),0) as (3.5) and a unit

normal n(t) of c(t) as

n(t) = (—sin((2k + 1)7) tan ¢,cos((2k + 1)¢) tan ¢, %)

Applying Theorem 2.8 to ¢(t) and n(t), we obtain the same surface defined by
(3.4).

3.2. Hypocycloids and maximal Mdbius strips. Let c¢(f) = (x(¢), y()) be a
hypocycloid. Then it is written by

e — T
X(l) = (r(;—rm) CoS t+ 1y, COS( ¢ m Z‘),
rm

(3.7)

y(¢) = (re — 1) sin ¢ — r,, sin (rc — T t>,

I'm
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where r. and r,, are radii of a fixed circle and a rolling circle around inside of
a fixed circle respectively [14]. See Figure 3.4.

Fig. 3.4. The thick curve indicates a hypocycloid, the big circle is a fixed circle, and the small
circle is a rolling circle.

In the case r,, =k/(2k+1), r. =1, k€ Z-y, (3.7) becomes

(1) = LEa cos t+ K cos k+1t
=2k 2k + 1 k) 338)
(1) = Lhal in¢— K in k+1t .
W=\k+1)° k1) k)
After the substitution ¢ = 2k6+ kn/(2k + 1), we have
k+1 kn k kn
x(0) = (m) Cos(zk0+2k+ 1) + (2k+ 1) cos<2(k+ 1)9+m>,

k+1Y . kn k . kn
y(0) = <2k—|—1> s1n<2k9+2k+ 1) - <2k+ 1) 51n(2(k+ 1)0+2k+1).

Rotating the curve in IL® by 7/(2(2k + 1)) about the x;-axis and scaling the
curve by multiplying (2k +1)/(k(k+ 1)), we have

_ sin(2k0)  sin(2(k +1)0)

0 = k k+1 ’
o) — cos(2k0) cos(2(k +1)0) (3.9)
y(0) = ——F .

See Figure 3.5.
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AN

Fig. 3.5. Hypocycloids (left: & =1, middle: k =2, right: k = 3)

We define the Weierstrass data (M, 1,g,7)

M=q\(0),  15)=-1,

, (3.10)
Z(sz-H _ 1) .<22k+1 + 1)

2k 0 1T ks dz,

g:

where ke Z-y. (3.10) gives a complete nonorientable maxface with deg g =
2(k+1). See Figure 3.6.

A X5¢

Fig. 3.6. Maximal Mobius strips given by (3.10) (left: & =1, middle: k = 2, right: k = 3)

ReMARK 3.2, In [10], Fujimori and Lopez constructed a maximal Mobius
strip defined by

M=\, 1) =1,
(3.11)

Czz=n)(z—s)(z 1) N R NCh L N
T ez PR ’

where reRwg, s,te C\{0}. In the case (rs,t) = (1,3 e=27/3) (3.11)
coincides with (3.10) with k = 1.
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When z = e, we have

Z22k+1) (i cos((2k + 1)z)

RGJ¢3:2RCJIW dz =4 Re k1 +C3>:4RCC37

where C; is a complex constant. So we can assume the image of z = e by f
is a planar curve on the x;x;-plane. A straight computation gives

sin(2(k +1)7)  sin(2kt)

ReJqﬁl:— 1 2 + Re (i,
20k + 1)t 2kt
ReJ¢2 :COS(k(H ) )_COSEC ) i Re Cy,

where C; and C, are complex constants. Define a curve é(1) = (X(¢), X2(1))
as follows:

_sin(2(k + 1)1)  sin(2kt)

(1) = k1 K
cos(2(k + 1)t) cos(2kt) (3.12)
RO=T0T T

After the rotating the curve &(¢) in IL> by —z/2 about the x3;-axis, we obtain
c(t) = (x1(2), x2()) as follows:

_cos(2(k 4+ 1)1)  cos(2kt)

() = kt1 K
sin(2(k + 1)¢)  sin(2k?) (3.13)
w0 ==0T Tk

(3.13) coincides with (3.9). So we see the surface given by (3.10) contains the
hypocycloid.

REMARK 3.3. We set a curve c(t) = (X1(1),X2(¢),0) as (3.12) and a unit

normal n(t) of ¢(t) as

n(t) = (—Sin ¢ tan((2k + 1)1), cos ¢ tan((2k + 1)1, —M)

Applying Theorem 2.8 to c(t) and n(t), we obtain the same surface defined by
(3.10).

4. Nonorientable maximal surfaces with two ends

The degree of the Gauss map of complete nonorientable maxfaces is
greater than or equal 4. In [10], Fujimori and Lopez constructed maximal
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Mbobius strips and maximal Klein bottles with deg g =4 and showed their
uniqueness. In this section, we prove the following theorem.

THEOREM 4.1. There exists a unique complete nonorientable maxface
RPN\ {py, pr} — IL® with deg g =4

We set the Riemann surface M as

M =S\{p1,1(p1), p>. 1(p2)}, (p1,pre M = S?)

where I = I(z) = —1/Z is an antiholomorphic involution without fixed points
in M. Letn: M — M'= M/{I) be a double cover of M’'. Then M’ can be
written as

M' =RP*\{n(p1),7(p>)}-

Let f/: M' — IL? be a complete nonorientable maximal surface with deg g = 4.
When we set (ql » 42,43, 94) = (pla I(p1)7 D2, I(p2))> by (27)7 we have

4
> (w4 1) = 10,
J=1

where 4; is a winding number of f = f'om: M — 1L’ around g;. Without
loss of generality, we may assume

(41,92, 93,44) = (0,00,1, 1), (1, o 135 114) = (1,1,2,2),
and |g(0)] < 1.
Case 1. The map g has a branch point of order three at z = 0.
After a suitable rotation f(M) in IL> we can take g as
4

g=az,

where @ e R\{0}. Since g and 7 satisfy (2.9) and (2.1) gives a Riemannian
metric on M, we can assume

g=24 5= : d. (4.1)

See Table 4.1.

z | -1 0 1 59)
g - 04 - o0t
n| o w2 w3 0

Table 4.1. Orders of zeros and poles of g and 7
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It is clear that |g| =1 at the two ends z = +1. So the maximal surface
given by (4.1) is not a complete maxface.
Case 2. The map g has a branch point of order two at z = 0.
After a rotation f(M) in IL> we can take g as

3(5 —
P Chnl)]
bz +1

where a € R\{0} and b € C\{0}. Since g and 7 satisfy (2.9) and (2.1) gives a
Riemannian metric on M, we can take g as

2(z—b) _; (bz +1)*

b+t 2iz-1)>¢z+1)°

(4.2)

See Table 4.2, 4.3, and 4.4.

20w 1 -1 b —1fp
g| 03 w3 - - 0 ool
n| o 0* o P - 02

N
S
8
—_
|
—_

Table 4.3. Orders of zeros and poles of g and n (b=1)

z | 0 0 1 -1
g 03 003 OOI 01
n| o 0* ol w3

Table 4.4. Orders of zeros and poles of g and n (b= —1)

We now check the period problem. A straightforward computation
gives

Res._o(¢;) = —2ib, Res._o(¢,) = 2b, Res.—o(¢;) = 0.

So (4.2) satisfies (2.3) for a loop around z=0 if and only if b =0. This
contradicts b # 0.

Case 3. The map ¢ has a branch point of order one at z = 0.
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After a rotation f(M) in I’ we can take g as

2(z—b)(z—¢)

g:a(52+1)(az+1)’

where « € R\{0} and b,c e C\{0}. Since g and 7 satisfy (2.9) and (2.1) gives
a Riemannian metric on M, we can assume

2(z—b)(z—c) :i(l;z+l)2(éz+l)2 v

=0 ’ 2134 1)

(bz+1)(cz+1) *3)

See Table 4.5.

z] 0 o 1 -1 b —=1/b ¢ -—l1J¢
g| 02 »* - - 0" ! 0ol !
n| w2 02 03 03— 02 - 02

Table 4.5. Orders of zeros and poles of g and 7

We check the period condition. A straightforward computation gives

Res._o(¢;) = —2i(h +¢), Res._o(¢,) = 2(b + ¢), Res._o(¢;) =0,
Res.—o (¢;) = 2i(b + ¢), Res.—o (¢,) =2(b + ¢), Res._ o, (43) = 0.

So we have b = —c. Moreover,
Res.—i(¢)) = —é(Re c*+6Rec? - 15),
Res.__1(4,) = %(Re A+ 6Rec? — 15), (4.4)

Res._i(¢,) = —é(lm ¢* 4+ 61Im ¢?),

i

—(Im ¢* + 6 Im ¢?), 4.5
8

Res.—_1(¢,) =
Res.i(g) = — g ' + 6 Re 2 + 1),
Res.—_1(¢5) :é(|c|4+6Re A+ 1). (4.6)

Setting ¢ = ¢ + icy, where ¢i,¢; € R, we have

Imc*+6Imc? = 4clcz(cl2 — C% +3).
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So Res._i(¢,) is real if and only if ¢; =0, ¢c; =0, or ¢ = ¢ —3. Moreover,
we obtain

Rect+6Rec®—15=(c? —3)* —4c?3 +6(c — ) —15, (4.7)
le|* +6Re >+ 1 =(c?+c2)>+6(c?—c2) + 1. (4.8)
In the case ¢; =0, g and # satisfy (2.3) if and only if

5 — 603 —15=0,
5 —6c3+1=0.
The simultaneous equations (4.9) have no solution.

In the case ¢; =0, g and 5 satistfy (2.3) if and only if

{c‘f+6c12—15:0, (4.10)

ct+6c3+1=0.
The simultaneous equations (4.10) have no solution.

In the case ¢ =c¢3 —3, g and 75 satisfy (2.3) if and only if

4324 6—
{cz 3¢5 +6=0, @11

cg‘ — 3c§ —-2=0.
The simultaneous equations (4.11) have no solution.
Case 4. The map g has no branch point at z = 0.
After a rotation f(M) in IL> we can take g as

2(z=b)(z—¢)(z —d)
(bz+1)(ez+ 1)(dz+ 1)’

where a € R\{0} and b,c,d € C\{0}. Since g and # satisfy (2.9) and (2.1)
gives a Riemannian metric on M, we can assume

g=a

_ zz=b)(z—)(z—d) n:i(132+1)2(éz+1)2(c72+1)2 o (412)
(bz + 1)(cz + 1)(dz+ 1)’ 2iz-1)>%z+1)° S

See Table 4.6.

z | 0 o 1 -1 b —1/b ¢ —1)¢ d —1/d
g | o' ol - - 0 ! 0ol ! 0! oo!
n 302 o 003 303 02 _ 02 o 02

Table 4.6. Orders of zeros and poles of g and 7
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Let y; (j=1,2,3,4) be loops around ¢; respectively. Note that (q1, 92,
q3,q4) = (0,00,1,—1). Then a direct calculation gives that

§ o 0= 2miRes, (4°n) ~ Res, ()

For loops y;, (2.5) is equivalent to
Res._y,(9%7) — Res._y, (1) = 0. (4.13)

A straightforward computation gives

Res.—o(g°n) — Res.—o() = =2i(b + ¢ + d), (4.14)
Res._..(g°1) — Res.—. (1) = 2i(b + ¢ + d). (4.15)

So ¢ and 5 satisfy (4.13) at z= 0,00 if and only if d = —b —¢. In the same
way, we have

Res._i(g%n) — Res.—i (1)

(3¢ — Db* 4 2¢(3¢* — )b +3(c* — 2 = 2)b?)

0| ~.

2@+ - (6 - 1)) (.16)
Res.—1(g°n) — Res—_1 ()

- —é((3cz — 1)b* +2¢(3¢% — 1)b3 + 3(c* — 2 — 2)b?)

—é(—20(02+3)b— (¢! +6¢* - 15)). (4.17)

So g and # satisfy (4.13) at z=1,—1 if and only if
(3¢ — 1)b* +2¢(3¢® — 1)b* + 3(c* — ¢* = 2)b> — 2¢(c* 4+ 3)b
—(c* +6¢*—15) =0. (4.18)
Moreover, we have
Res._o(gn) = —ibc(b + ¢), Res._.. (gn) = ibc(b + ¢). (4.19)
By (4.19), g and # satisfy (2.6) at z =0, 00 if and only if

Re(be(b +¢)) = 0. (4.20)
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We also have

Res._i(gn) = 1—l6(|bc(b L = b2+ bt 243

+8be(b +¢) — 8be(b+¢) +8), (4.21)
Res.__1(gn) = %(V)c(b YOl = b2+ be+ 243

—8be(b + )+ 8be(b + ¢) + 8). (4.22)

By (4.20), (4.21) and (4.22) become
Res._i(gn) = % (|be(b 4 ¢)|* = |b* + be + ¢ + 31> + 8 4 16be(b + ¢)),  (4.23)
Res.—_1(gn) = % (|be(b + ¢)* = |b* + be + ¢ + 3] +8 — 16be(b + ¢)),  (4.24)

respectively. So g and 7 satisfy (2.6) at z=1,—1 if and only if
be(b + ¢)|* — |p> +be+ 2 43> + 8 =0. (4.25)

Setting o = b+ ¢ and f = bc, (4.18), (4.20), and (4.25) are equivalent to

= (32 + 28— 6)a’ +pE—65—15=0, (4.26)
af + off =0, (4.27)
lof|* — 0> —B+3]* +8=0, (4.28)

respectively.

ReMARK 4.2. (i) If (a,f) is a solution of (4.26)-(4.28), (—a,f), (&,5),
and (—a,p) are also solutions of them. They give the same surface.
() If (o,fp) = (b+c,bc) is a solution of (4.26)—(4.28), (b+d,bd) and
(c+d,cd) are also solutions of them. They give the same surface.

We determine the number of the solutions («,f) which give complete
maxfaces.

LemmA 4.3. The maxface given by (4.12) satisfying (4.26)—(4.28) is not
complete if and only if o> — e R,

Proor. The maxface given by (4.12) is not complete if and only if
lg(1)] = |g(=1)] = 1. So it is not complete if and only if

(1 =b)(1—c)1—d)]*=|(b+1)(c+1)(d+ 1) (4.29)
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Note that a = b + ¢, f = bc. A straightforward computation shows that (4.29)
holds if and only if

af(—a + B+ 1) +af(—a2 +p+1) = 0.
By (4.27) and of # 0, we have
o’ — p= m.
This completes the proof.

Setting o = oy +ion, f=p,+ifr, (1,00,0,0,€R), (4.26)—(4.28) are
written as

o + o (=693 — 387 — 2, + 33 + 6) + 42 (3p + 1),

+of + o3BT+ 26, — 367 —6)+ 7 — 6B, —p3—15=0, (4.30)
20 — a (31, + o) + o (—205 — 37 — 2B + 3p; + 6)

+ B33+ 1)+ = 3) =0, (4.31)
200, — 20, =0, (4.32)
—o + (=205 + B + 2By + B3 — 6)o5 + 4o

— o + (B = 2B + B3 + 6)a3 — i + 68 — 7 — 1 =0. (4.33)

Note that
of = =i — o5 — By +i(2mm — ). (4.34)

In the case that the maxfaces given by (4.12) satistying (4.30)—(4.33) are com-
plete, we have f, # 0 by (4.27) and (4.34). If oo =0, we have o; =0 or f; =0
by (4.32). 1In the case o; =0, we have d = —(b+¢) =0. This contradicts
d #0. So we have a; #0. In the case ff; =0, (4.31) becomes

(3+a7)B, =0.
It contradicts f, # 0. Therefore we have oy # 0. Then by (4.32), we have
g, =P (4.35)
o2

Substitute this f, into (4.30), (4.31), and (4.33), we have
(2 + 3p7)1) + (=603 + 2036 + By + 3)3 — Bi)ort

+o3(a + (3BT + 2B — 6)o3 + B — 6 — 15) =0, (4.36)
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o (—p + oc12 - oc% + 3)(2“3 -p) =0, (4.37)
(a3 — B1)of + (205 — 2(BT + 3y — 3)oi3 + Bt
+a2(o — (BF = 2B, + 6)2 + B — 6f, +1) = 0. (4.38)

By (4.37), we have 8, =203 or o} — a3 + 3.
In the case ff; = 203, we have = 203 + 2iojop. A straightforward com-
putation gives

o —f=0of — 303 eR.

By Lemma 4.3, this case is excluded.
In the case B, = i — o3 + 3, we have
Lo (—of 4 303 — 3)

W —f=-3+i . (4.39)
o

We see that if a maxface with the Weierstrass data (4.12) is not complete, then
it does not satisfy the period problem (4.36)—(4.38). In fact, (4.39) implies

, of+3
OCZZT.

Then (4.36) and (4.38) are rewritten as
1609 + 720} + 810 — 27 =0, (4.40)
1600 + 7201 + 81a7 + 81 = 0, (4.41)

and it is clear that no o; satisfies (4.40) and (4.41) simultaneously. Hence, in
this case, ff; = o — o3 + 3, the solutions of (4.36)—(4.38) always give complete
maxfaces.

After the substitution 8, = o} — a3 + 3, (4.36) and (4.38) become

305 — 1805 — 3(20f + 9a7 — 9)o3
+ 24(af + 302 — 1)ad + o2 (oF +3)° (30 — 1) = 0, (4.42)
0§ — 605 + (=20 — 1507 +9)os
+ 4030} + 907 + 2)03 + af(0F +3)* (e — 1) = 0. (4.43)
Define
pi(A1, A2) = 3435 — 1843 — 3(247 + 94, — 9)43

+24(A2 + 34 — 1) A4y + A1 (4; +3)(34, — 1),
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P2(Ar, 4y) i= Ay — 645 + (=247 — 154, +9)A43
+ 4342 + 941 +2)A45 + A (A; +3) (4, — 1).

LemMA 4.4. py and p, have at least one common positive real root
(A1, A42).

PrOOF. A straightforward computation gives
P1—3p2 = —2(94142 — 6(A? + 341 +4) Ay + A, (A4, +3)%).

So the common roots (A;,A4,) of p; and p, satisfy

A? + 34, +4 +24/2(47 + 34, +2)

A, =
? 34,
We set
A2+ 341 +4+24/2(42 + 34, +2)
Ar. =
2+ 3A1 )
(4.44)
A? + 341 +4 —24/2(A} + 34, +2)
Ay = .
: 34,

On the other hand, the resultant of p; and p, about A, is
Resultant(p, pa; 42)
= 6553647 (A1 +3)*(—13824 4 392044, + 1911647 + 198454; — 6237047}
— 2828747 — 360048 + 54724] + 230445 4 25647)°.
Define
R(Ay) = —13824 4392044, + 1911647 + 1984547 — 6237047
— 2828747 — 360049 + 5472A4] + 23044% + 25647 .

Note that p; and p, have common real roots if and only if there exists a real
number A; satisfying R(A4;) =0. A straightforward computation gives

R(0)=—13824 <0,  R(3)= 18384192 > 0.

By the intermediate value theorem, R has at least one root. It is easy to check
that

(A2 + 34 +4)° —8(A? + 34, +2) = 42(4, +3)> > 0.



Nonorientable maximal surfaces 21

So we have A, > 0. Therefore we see p; and p, have at least one positive
real root (A, 4,).

The equation (4.44) is a necessary condition that 4, becomes a common
root of p; and p,. The equations pi(A4;,Ars) = pi1(A41,4r-) = pa(A1,424) =
p2(A41, 4, ) =0 yield that

25647 4230448 + 547247 — 360049 — 2828747

— 6237047 + 1984547 + 1911547 4 392044, — 13824 = 0. (4.45)

The real solutions of this equation are candidates for the common real roots of
p1 and py. By the Descartes’s rule of signs (cf. [20]), we see that (4.45) has at
most 3 real positive solutions. Therefore we obtain at most 6 pairs (A, A2+ )
that are common real roots of p; and p,. Straightforward computations and
the intermediate value theorem give

A4, x20.307, 0.863, 2.203, (4.46)
are real roots of (4.45).

Lemma 4.5. If (A1, Aay) is a common real positive root of py and pa,
(A1, Ay-) is not a common real positive root of p, and pj.

ProoF. We assume that (A4, 4,.) and (4;, A>—) are common roots of p;
and p,. It is easy to check that

pi(Ar, Ay ) = 3pa(Ar, Azy)

4
=g (16A% + 1204] + 24149 — 1264; — 6054} — 82247 + 847
1

+ 3844 + 512 +24/2(A2 +34; +2)(—84F — 1847 + 114}

— 21347 + 64} +128)),

pi(A41,4>-) =3pa(A1,42-)

4
— W(MA? +1204] +2414° — 1264; — 6054; — 8224; + 84}
1

+ 3844 + 512 —24/2(A} +34; +2)(—84% — 184; + 114}

— 21347 + 647 + 128)).
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We have
pi(Ar, A2y ) — pi(Ar, 42-)
=44/2(A} + 34, +2)(—8A4% — 184; + 114} — 21347 + 647 +128). (4.47)

Define
P(A;) := —8A4% — 184; + 114} — 2134} + 64} + 128.

The common real positive roots of pi(Ay,A4>.) and pi(A4y,4,_) satisfy
P(A4,) =0. Moreover, we have

P'(A)) = —484; — 9047} + 4447 — 6394; + 124;.

It is clear that P(1) <0 and P'(4;) <0 if 4, >1. So P(A4;) does not
have real roots on [l,00). If there exists Ao e (0,1) satisfying P(4y) =0,
we have

512
4443 = 3245 + T2A3 + 85243 — 244, — o
0

It is clear that

512
P'(Ag) = —164; — 1847 + 21345 — 124, — o
0
So we see that P'(4p) <0 on (0,1).
A direct computation shows P(0) =128 > 0. Hence the intermediate
value theorem yields the existence of the exactly one positive real root on
(0,1), and this root is

Ay ~0.84. (4.48)

However, (4.48) is not in the list (4.46). So we conclude that 4y ~ 0.84 is not
a common real root of p; and p,.

By (4.46) and Lemma 4.5, we have at most 3 positive roots (4, A2) of pi
and p>. So we have at most 12 common real solutions (o, o) of (4.42) and
(4.43).

On the other hand, by Remark 4.2, we have 12 solutions of (4.26)—
(4.28) giving the same surface. Therefore we conclude that there exists the
unique nonorientable complete maxface homeomorphic to RIP?\{p;, p} with
deg g =4. See Figure 4.1. Summing up, we have proven Theorem 4.1.
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(a, B) = (—0.554922 — 0.336273i, 3.19486 + 5.27219)

Fig. 4.1. Nonorientable complete maxface defined by (4.12)

REMARK 4.6. There exists the 12 solutions of (4.26)—(4.28) satisfying
pelR. So we have non-complete maxfaces. See Figure 4.2.

Fig. 4.2. Nonorientable non-complete maxfaces (left: (o, /) ~ (2.684i,—0.744), right: (o,f) ~
(1.197 + 0.5687i,0.647 + 1.362i))
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