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Abstract. E. Bunch, P. Lofgren, A. Rapp and D. N. Yetter [J. Knot theory Ram-
ifications (2010)] pointed out that by considering inner automorphism groups of
quandles, one has a functor from the category of quandles with surjective homo-
morphisms to that of groups with surjective homomorphisms. In this paper, we
focus on faithful quandles. As main results, we give a category equivalence between
the category of faithful quandles with surjective quandle homomorphisms and that
of pairs of groups and their conjugation-stable generators with suitable group ho-
momorphisms. We are also interested in injective quandle homomorphisms. By
defining suitable morphisms among pairs of groups and their conjugation-stable
generators, we obtain a category which is equivalent to the category of faithful
quandles with injective quandle homomorphisms.

1. Introduction

The concept of quandles was introduced by Joyce ([13]). A quandle is a set
with a binary operator, whose axioms are corresponding to Reidemeister moves
of classical knots. Quandles have been studied actively from various viewpoints
([2], [3], [4], [5], [6], [7], [10], [12], [17], [19]). From the view point of differential
geometry, quandles can be regarded as a generalization of symmetric spaces.
There have already been several studies of quandles that transfer notations and
ideas in the theory of symmetric spaces to that of quandles ([11], [14], [15], [18]).

Let Q be a quandle. We denote by Aut(Q) the group of quandle automor-
phisms of Q. For a point x of Q, a quandle automorphism sx : Q→ Q is defined
as the right multiplication of x with respect to the binary operator, and is called
the symmetry at x on Q. The inner automorphism group Inn(Q) is defined
as the subgroup of Aut(Q) generated by s(Q) the set of all symmetries on Q.
The inner automorphism groups play important roles in the structure theory of
quandles.

We write Q for the category of quandles and quandle homomorphisms. One
may expect that the correspondence Inn : Q "→ InnQ will become a functor Q→
Grp, where Grp denotes the category of groups and group homomorphisms. As
shown in [4], “Inn” becomes a functor for surjective quandle homomorphisms,
i.e. “Inn” is a functor between the category of quandles with surjective quandle
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homomorphisms and Grp. It should be noted that such the functor is not a
category equivalence.

In this paper, we focus on faithful quandles. Let us denote by Qf the
full subcategory of Q consists of faithful quandles. We are interested in the
subcategories Qf

surj of Q
f with surjective quandle homomorphisms and Qf

inj of

Qf with injective quandle homomorphisms.
In order to study Qf

surj and Qf
inj, we define group theoretic categories

Grpg.c.f
surj and Grpg.c.f

! . The objects of Grpg.c.f
surj and those of Grpg.c.f

! are pairs

of groups and generators with certain conditions. The morphisms of Grpg.c.f
surj

are surjective group homomorphisms inducing surjective maps between fixed
generators. The morphisms of Grpg.c.f

! are defined more complicatedly (see
Sections 2.4, 4.1 and 4.2 for the details).

The main results of this paper are the following:

Theorem 1.1. There exists an equivalence Fsurj : Qf
surj → Grpg.c.f

surj such
that Fsurj(Q, s) = (InnQ, s(Q)) for each faithful quandle (Q, s).

Theorem 1.2. There exists an equivalence Finj : Qf
inj → Grpg.c.f

! such
that Finj(Q, s) = (InnQ, s(Q)) for each faithful quandle (Q, s).

In particular, for each pair of faithful quandles (Q1, Q2), we have the fol-
lowing bijections:

HomQf
surj

(Q1, Q2)
1:1↔ HomGrpg.c.f

surj
((Inn(Q1), s(Q1)), (Inn(Q2), s(Q2))), (1.1)

HomQf
inj
(Q1, Q2)

1:1↔ HomGrpg.c.f
!

((Inn(Q1), s(Q1)), (Inn(Q2), s(Q2))). (1.2)

This paper is organized as follows. In Section 2, we recall some notions on
categories and those on quandles. We also define several categories of groups
with generators. Theorems 1.1 and 1.2 will be discussed in Sections 3 and 4,
respectively. In Section 5, as an easy application of Theorem 1.2, we study the
set of all injective quandle homomorphisms from the dihedral quandle R3 of
order 3 to the dihedral quandle R9 of order 9.

2. Preliminaries

In this section, we recall some notions on categories and those on quandles.
We also define some categories of groups with generators.

2.1. Notions on the category theory. In this subsection, we recall some
notions on the category theory. For details, see [16].

Definition 2.1 (category). A (locally small) category C consists of the
following:

• A collection Obj(C) of objects.
• For each c1, c2 ∈ Obj(C), a set HomC(c1, c2) of morphisms from c1 to

c2.
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• For each c1, c2 and c3 ∈ Obj(C), a map:

HomC(c2, c3)×HomC(c1, c2) → HomC(c1, c3)
(g, f) "→ g ◦ f,

called composition.
• For each c ∈ Obj(C), an element idc of HomC(c, c), called the identity

on c,

where the following axioms hold:

• (Associativity) For each f ∈ HomC(c1, c2), g ∈ HomC(c2, c3) and h ∈
HomC(c3, c4), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• (Identity laws) For each f ∈ HomC(c1, c2), we have f ◦ idc1 = f =
idc2 ◦ f .

In Sections 2.2 and 2.4, we define some categories as subcategories or full
subcategories of several categories. The definitions of subcategories and full
subcategories are given as follows.

Definition 2.2 (subcategory, full subcategory). Let C be a category.
A subcategory C ′ of C consists of a subclass Obj(C ′) of Obj(C) together with,
for each c1, c2 ∈ Obj(C ′), a subset HomC′(c1, c2) of HomC(c1, c2) such that
C ′ is closed under the composition and identities. It is a full subcategory if
HomC′(c1, c2) = HomC(c1, c2) for all c1, c2 ∈ Obj(C ′).

We recall notions of isomorphisms and functors in order to define category
equivalences.

Definition 2.3 (isomorphism). (1) A morphism f ∈ HomC(c1, c2)
is called an isomorphism from c1 to c2 in C if there exists g ∈ HomC(c2, c1)
such that g ◦ f = idc1 and f ◦ g = idc2 . Such the morphism g is called
the inverse of f .

(2) An object c1 ∈ Obj(C) is said to be isomorphic to an object c2 ∈
Obj(C) if there exists an isomorphism from c1 to c2. For such c1 and
c2, we write c1 ∼= c2.

Definition 2.4 (functor, faithful functor, full functor). For two cat-
egories C and D, a (covariant) functor F : C → D consists of the following:

• A function Obj(C)→ Obj(D), written as c "→ Fc.
• For each c1, c2 ∈ Obj(c), a map HomC(c1, c2) → HomD(Fc1,Fc2),

written as f "→ Ff ,

where the following axioms hold:

• For each f ∈ HomC(c1, c2) and g ∈ HomC(c2, c3), we have F(g ◦ f) =
Fg ◦ Ff .

• For each c ∈ Obj(C), we have F idc = idFc.
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A functor F : C → D is said to be faithful (resp. full) if, for each c1, c2 ∈ Obj(C),
the following map is injective (resp. surjective):

HomC(c1, c2) → HomD(Fc1,Fc2)
f "→ Ff.

A functor F : C → D is said to be essentially surjective on objects if, for all
d ∈ Obj(D), there exists c ∈ Obj(C) such that Fc ∼= d on D.

We also define category equivalences.

Definition 2.5 (natural isomorphism, category equivalence). For
two functors F ,G : C → D, a natural isomorphism θ : F ⇒ G is a family
{θc : Fc → Gc}c∈Obj(C) of isomorphisms in D such that, for each morphism
f : c1 → c2 in C, the following diagram commutes:

c1

c2

Fc1

Fc2

Gc1

Gc2

f Gf

θc1

θc2

Ff

A category equivalence between C and D consists of a pair of functors C
F−!==="−
G

D

together with natural isomorphisms θ : idC ⇒ GF and η : FG ⇒ idD.

In Sections 3.2 and 4.4, we prove Theorem 1.1 and 1.2, respectively, accord-
ing to the definition of category equivalence above.

The following is a well known proposition on category theory, and induces
bijections (1.1) and (1.2) in Section 1 from Theorem 1.1 and 1.2.

Proposition 2.6 ([16, Proposition 1.3.18]). Let F : C → D be a func-
tor. Then F gives a category equivalence if and only if F is faithful, full and
essentially surjective on objects.

2.2. Notions on quandles. In this subsection, we fix our terminologies for
quandles, subquandles, faithful quandles and their categories.

Quandles are usually defined by sets with binary operators satisfying three
axioms, derived from the Reidemeister moves of classical knots. However, we
employ a formulation in terms of symmetries as [13]. For a set Q, we write

Map(Q,Q) := {f : Q→ Q : a map}.

Definition 2.7 (quandle, quandle homomorphism). Let Q be a set.
We consider a map

s : Q→ Map(Q,Q) : x "→ sx.

Then the pair (Q, s) is a quandle if

(Q1) ∀x ∈ Q, sx(x) = x,
(Q2) ∀x ∈ Q, sx is bijective,
(Q3) ∀x, y ∈ Q, sx ◦ sy = ssx(y) ◦ sx.
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For a quandle (Q, s), the map s is called a quandle structure on Q. For each
x ∈ Q, the map sx is called a symmetry at x on Q.

Let (Q1, sQ1) and (Q2, sQ2) be quandles. Then f : Q1 → Q2 is called a
quandle homomorphism if, for any x1 ∈ Q1, it satisfies

f ◦ sQ1
x1

= sQ2

f(x1)
◦ f.

We recall the notion of faithful quandles.

Definition 2.8 (faithful quandle). A quandle (Q, s) is said to be faithful
if sx = sy implies x = y for all x, y ∈ Q.

In this paper, we use the symbol Q for the category of quandles and quandle
homomorphisms. Let us define categories Qf ,Qf

surj and Qf
inj related to faithful

quandles as follows.

Definition 2.9 (Qf , Qf
surj, Q

f
inj). We write Qf for the full subcategory

of Q consists of faithful quandles and quandle homomorphisms. Furthermore,
we use the symbol Qf

surj (resp. Q
f
inj) for the subcategory of Qf with surjective

(resp. injective) quandle homomorphisms.

Our goal in this paper is to study Qf
surj and Qf

inj in terms of the theory of
groups.

We also recall the notion of subquandles.

Definition 2.10 (subquandle). For a quandle (Q, s), a subset Q′ in Q
is called a subquandle of (Q, s) if sx(y), s−1

x (y) ∈ Q′ for all x, y ∈ Q′.

A subquandle Q′ of (Q, s) becomes a quandle with s|Q′ : Q′ → Map(Q′, Q′).
Here we set up our notation for conjugation quandles and their specific

subquandles.

Definition 2.11 (conjugation quandle). Let G be a group and define
the map s : G→ Map(G,G) as follows:

sg(h) = ghg−1 (g, h ∈ G).

Then (G, s) is a quandle. Such the quandle is called a conjugation quandle, and
denoted by Conj(G). Furthermore let Ω be a union of some conjugacy classes of
G. Then Ω is a subquandle of Conj(G), which is written as ConjG(Ω) or simply
Conj(Ω).

One can easily see that the following lemma holds.

Lemma 2.12. Let G be a group and Ω a union of some conjugacy classes
of G. Then ConjG(Ω) is faithful if the centralizer of Ω in G is trivial.

Remark 2.13. It should be remarked that any morphism of Q has the
surjective-injective factorization, i.e. for any morphism f : Q1 → Q2 of Q, there
exists an object Q of Q, a surjective morphism fs : Q1 → Q and an injective
morphism fi : Q→ Q2 such that f = fi ◦ fs. In fact, one can take Q as f(Q1),
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fs as f and fi as the inclusion. However, some morphisms of Qf do not have
surjective-injectve factorizations in Qf . Actually, let us consider the following
group homomorphism

f : S3 → S3/A3
∼=Grp C2

ι
↪→ S3,

where S3 denotes the symmetric group of degree three, A3 the alternating group
of degree three, C2 the cyclic group of order two, and we fix ι as any injective
group homomorphism. Then Conj(S3) is a faithful quandle, f : Conj(S3) →
Conj(S3) is a morphism of Qf and Imagef ∼=Q Conj(C2) is not faithful. In
particular, the morphism f does not have the surjective-injectve factorization in
Qf .

2.3. The group of inner automorphisms. In this subsection, we recall the
notion of inner automorphism groups of quandles.

Definition 2.14 (inner automorphism group). Let (Q, s) be a quandle
and Q′ a subquandle of Q. We use the symbol Inn(Q,Q′) for the group generated
by the set s(Q′) = {sx : Q → Q | x ∈ Q′}. Inn(Q,Q) is denoted by InnQ. The
group InnQ is called the inner automorphism group of (Q, s).

One can easily show the following lemma.

Lemma 2.15. Let (Q, s) be a quandle and Q′ a subquandle of Q. Then
the generator s(Q′) of Inn(Q,Q′) is stable by the following Inn(Q,Q′)-action on
Aut(Q):

g.φ = gφg−1 (g ∈ Inn(Q,Q′),φ ∈ Aut(Q)).

Furthermore, if Q is faithful, then the action Inn(Q) ! s(Q) is faithful.

Remark 2.16. Let us denote by Grp the category of groups and group
homomorphisms. One may expect that the correspondence Inn : Obj(Q) →
Obj(Grp) : Q "→ InnQ extends to a functor from Q to Grp. As shown in
[4], “Inn” becomes a functor for surjective quandle homomorphisms, i.e. “Inn”
induces a functor Qsurj → Grp, where Qsurj is the category of quandles with
surjective quandle homomorphisms, by considering the following correspondence
f "→ Inn(f): For quandles Q1, Q2 and a surjective quandle homomorphism
f : Q1 → Q2, there uniquely exists a group homomorphism Inn(f) such that the
following diagram commutes:

Q1 Q2

Inn(Q1) Inn(Q2)

f

s s

Inn(f)

However, for Q or Qf instead of Qsurj, the following statement is not always
true: For objects Q1, Q2 and a morphism f : Q1 → Q2 of Q or Qf , there
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exists a group homomorphism Inn(Q1)→ Inn(Q2) such that the diagram below
commutes:

Q1 Q2

Inn(Q1) Inn(Q2)

f

s s

Actually, let T1 be the trivial quandle of order 1 and R3 the dihedral quandle
of order 3. For any quandle homomorphism f : T1 → R3, it is not true that
there exists a group homomorphism Inn(T1)→ Inn(R3) such that the following
diagram commutes:

T1 R3

Inn(T1) Inn(R3)

f

s s

Therefore, it is not easy to consider “Inn” as a functor from Q (or Qf ) to Grp.

Remark 2.17 (associate groups). For any quandle Q, one can associate
a group As(Q) called the associate group (or adjoint group) of Q, which is de-
fined as an abstract group 〈eQ|R〉, where eQ = {ex | x ∈ Q}, R = {esx(y) =
exey(ex)−1 | x, y ∈ Q}. The correspondence ex "→ sx gives a surjective group
homomorphism from As(Q) onto Inn(Q). It is known that “As” becomes a func-
tor Q → Grp, and Conj : Grp → Q gives a right adjoint functor of As ([13]).
It should be remarked that the associate group As(Q) is not needed to be finite
even for a finite quandle Q.

2.4. Definitions of some categories of groups with generators. In this
subsection, we define categories Grpgen,Grpg.c,Grpg.c

surj,Grpg.c
bij ,Grpg.c.f and

Grpg.c.f
surj .

Definition 2.18 (Grpgen). We define a category Grpgen as follows. Its
object (G,Ω) is a pair of a group G and its generator Ω. Its morphism ϕ :
(G1,Ω1)→ (G2,Ω2) is a group homomorphism ϕ : G1 → G2 such that ϕ(Ω1) ⊂
Ω2.

We shall define the full subcategory Grpg.c of Grpgen as follows.

Definition 2.19 (Grpg.c). We denote by Grpg.c the full subcategory of
Grpgen whose generators of objects are conjugation-stable. Here, for an object
(G,Ω) of Grpgen, the generator Ω is said to be conjugation-stable if gΩg−1 ⊂ Ω
for any g of G.
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Let us define the subcategories Grpg.c
surj and Grpg.c

bij of Grpgen as below.

Definition 2.20 (Grpg.c
surj,Grpg.c

bij). We define a categoryGrpg.c
surj (resp.Grpg.c

bij )
as follows. Let us put

Obj(Grpg.c
surj) := Obj(Grpg.c)

(resp. Obj(Grpg.c
bij ) := Obj(Grpg.c)).

Its morphism ϕ : (G1,Ω1) → (G2,Ω2) is a morphism of Grpg.c such that
ϕ|Ω1 : Ω1 → Ω2 is surjective (resp. bijective).

Note that for any morphism ϕ : (G1,Ω1)→ (G2,Ω2) of Grpg.c
surj or Grpg.c

bij ,
ϕ : G1 → G2 is surjective.

We also define the full subcategory Grpg.c.f of Grpg.c as follows.

Definition 2.21 (Grpg.c.f ). We denote by Grpg.c.f the full subcategory
of Grpg.c whose generators of objects are faithful. Here, for an object (G,Ω) of
Grpg.c, the generator Ω is said to be faithful if the following action G ! Ω is
faithful:

g.ω = gωg−1 (g ∈ G,ω ∈ Ω). (2.1)

Remark that for an object (G,Ω) of Grpg.c, the action G ! Ω is faithful
if and only if the centralizer of Ω is trivial. Furthermore, these two conditions
on (G,Ω) are also equivalent to the condition that the centralizer of G is trivial,
since Ω is a generator of G.

We shall define the subcategory Grpg.c.f
surj of Grpg.c.f as follows.

Definition 2.22 (Grpg.c.f
surj ). We denote by Grpg.c.f

surj the full subcategory

of Grpg.c
surj with objects of Grpg.c.f .

Let us note that for objects of these categories, the following hold:

Obj(Grpg.c.f ) = Obj(Grpg.c.f
surj )

⊂ Obj(Grpg.c) = Obj(Grpg.c
surj) = Obj(Grpg.c

bij )

⊂ Obj(Grpgen).

The proposition below gives characterizations of isomorphisms in Grpg.c,
Grpg.c.f or Grpg.c.f

surj .

Proposition 2.23. (1) Let us put C = Grpg.c or Grpg.c.f . Let ϕ :
(G1,Ω1)→ (G2,Ω2) be a morphism of C. Then ϕ is an isomorphism
in C if and only if ϕ : G1 → G2 is an isomorphism of Grp (i.e. a
group isomorphism) and ϕ(Ω1) = Ω2.

(2) Let ϕ : (G1,Ω1)→ (G2,Ω2) be a morphism of Grpg.c.f
surj . Then ϕ is an

isomorphism in Grpg.c.f
surj if and only if ϕ : G1 → G2 is an isomorphism

of Grp (i.e. a group isomorphism).
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Proof. First we show the “if” part of the claim (1). Let ψ : G2 → G1 be
the inverse of ϕ in Grp. Cleary, ϕ(Ω1) = Ω2 implies ψ(Ω2) = Ω1. Thus ψ is a
morphism of C. It is obvious that ψϕ = id(G1,Ω1) and ϕψ = id(G2,Ω2). Thus ψ
is the inverse of ϕ in C.

Let us prove the “only if” part of the claim (1). There exists an isomorphism
ψ : (G2,Ω2) → (G1,Ω1) such that ψϕ = id(G1,Ω1) and ϕψ = id(G2,Ω2). Since ψ
is also a morphism of Grp, ϕ is an isomorphism of Grp. Furthermore, we also
have ϕ(Ω1) ⊃ ϕ(ψ(Ω2)) = Ω2, and hence ϕ(Ω1) = Ω2.

One can easily show the “only if” part of the claim (2). Finally, we show
the “if” part of the claim (2). Let ψ : G2 → G1 be the inverse of ϕ in Grp.
Since ϕ is a morphism of Grpg.c.f

surj , one has ϕ(Ω1) = Ω2. Hence ψ(Ω2) = Ω1

and thus ψ is a morphism of Grpg.c.f
surj . It is obvious that ψϕ = id(G1,Ω1) and

ϕψ = id(G2,Ω2). Thus ψ is the inverse of ϕ in Grpg.c.f
surj . !

Let (G,Ω) be an object inGrpg.c.f . By Lemma 2.15, (Inn(Conj(Ω)), s(Conj(Ω)))
is an object of Grpg.c.f . By the definition of Conj(Ω), the action G ! Ω (see
Definition 2.21 (2.1)) leads a group homomorphism

ϕ(G,Ω) : G→ Inn(Conj(Ω)) : g "→ (ϕ(G,Ω)(g) : ω "→ gωg−1).

Note that ϕ(G,Ω)(ω) = sω for each ω ∈ Ω.
The following proposition will be applied in Sections 3 and 4.

Proposition 2.24. In the setting above, ϕ(G,Ω) is an isomorphism from

(G,Ω) to (Inn(Conj(Ω)), s(Conj(Ω))) in Grpg.c, Grpg.c.f and Grpg.c.f
surj .

Proof. By definition, ϕ(G,Ω) : (G,Ω) → (Inn(Conj(Ω)), s(Conj(Ω))) is a
morphism of Grpg.c.f . By Proposition 2.23, it is enough to show that ϕ(G,Ω) :
G→ Inn(Conj(Ω)) is bijective and ϕ(G,Ω)(Ω) = s(Conj(Ω)). Clearly, ϕ(G,Ω)(Ω) =
s(Conj(Ω)), and hence ϕ(G,Ω) : G → Inn(Conj(Ω)) is surjective. Since (G,Ω) is
an object of Grpg.c.f , the action G ! Ω is faithful, so we have ϕ(G,Ω) : G →
Inn(Conj(Ω)) is injective. !

3. Categories with surjective homomorphisms

Let us recall that the following two categories are introduced in Sections 2.2
and 2.4:

• Qf
surj : the category of faithful quandles and surjective quandle homo-

morphisms.
• Grpg.c.f

surj : the category of groups with conjugation-stable faithful gen-
erators, whose morphisms are surjective group homomorphisms induc-
ing surjective maps between fixed generators.

In this section, we show that the categories Qf
surj and Grpg.c.f

surj are equivalent.

3.1. Functors between Qf
surj and Grpg.c.f

surj . In this subsection, we con-

struct two functors between Qf
surj and Grpg.c.f

surj .
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3.1.1. A functor from Qf
surj to Grpg.c.f

surj . We construct a functor

Fsurj : Q
f
surj → Grpg.c.f

surj

for objects in Lemma 3.1, and for morphisms in Lemma 3.2. For the simplicity,
we just use the symbol F for Fsurj throughout Section 3.

Lemma 3.1. Let Q be an object of Qf
surj. Then FQ := (InnQ, s(Q)) is an

object of Grpg.c.f
surj .

Proof. It follows from Lemma 2.15. !
Lemma 3.2. Let f : Q1 → Q2 be a morphism of Qf

surj. Then the following

Ff is well-defined and a morphism of Grpg.c.f
surj :

Ff : (InnQ1, s(Q1))→ (InnQ2, s(Q2)) : sx1 "→ sf(x1).

Proof. Take any series {x1i}mi=1, {y1j}nj=1 ⊂ Q1. Assume sε1x11
· · · sεmx1m

=

sδ1y11
· · · sδny1n

in Inn(Q1), where εi, δj = 1 or −1. We show that

sε1f(x11)
· · · sεmf(x1m) = sδ1f(y11)

· · · sδnf(y1n)

in Inn(Q2). Take any z2 ∈ Q2. Since f : Q1 → Q2 is surjective, there exists
z1 ∈ Q1 such that f(z1) = z2. We have

sε1f(x11)
· · · sεmf(x1m)(z2) = sε1f(x11)

· · · sεmf(x1m)(f(z1))

= f ◦ (sε1x11
· · · sεmx1m

)(z1)

= f ◦ (sδ1y11
· · · sδny1n

)(z1)

= sδ1f(y11)
· · · sδnf(y1n)

(f(z1))

= sδ1f(y11)
· · · sδnf(y1n)

(z2).

Hence Ff : InnQ1 → InnQ2 is a well-defined group homomorphism. Moreover,
since f is surjective, Ff |s(Q1) : s(Q1)→ s(Q2) is surjective . !

Proposition 3.3. The above F : Qf
surj → Grpg.c.f

surj is a functor.

Proof. It is obvious that F idQ = idFQ for each object Q of Qf
surj. Let

f1 : Q1 → Q2 and f2 : Q2 → Q3 be morphisms of Qf
surj. By the definition of F ,

we have F(f2 ◦ f1) = Ff2 ◦ Ff1. !

3.1.2. A functor from Grpg.c.f
surj to Qf

surj. We construct a functor

Gsurj : Q
f
surj ← Grpg.c.f

surj

for objects in Lemma 3.4, and for morphisms in Lemma 3.5. For the simplicity,
we just use the symbol G for Gsurj throughout Section 3.

Lemma 3.4. Let (G,Ω) be an object of Grpg.c.f
surj . Then G(G,Ω) := Conj(Ω)

is an object of Qf
surj.
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Proof. It is enough to show that Conj(Ω) is faithful. This follows from
Lemma 2.12. !

Lemma 3.5. Let ϕ : (G1,Ω1)→ (G2,Ω2) be a morphism of Grpg.c.f
surj . Then

the following Gϕ is a morphism of Qf
surj:

Gϕ : Conj(Ω1)→ Conj(Ω2) : ω1 "→ ϕ(ω1).

Proof. Since ϕ|Ω1 : Ω1 → Ω2 is surjective, Gϕ : Conj(Ω1) → Conj(Ω2) is
surjective. Since ϕ is a group homomorphism and Conj(Ω1) and Conj(Ω2) are
conjugation quandles, Gϕ is a quandle homomorphism. !

Proposition 3.6. The above G : Grpg.c.f
surj → Qf

surj is a functor.

Proof. It is obvious that Gid(G,Ω) = idG(G,Ω) for each object (G,Ω) of

Grpg.c.f
surj . Let ϕ1 : (G1,Ω1) → (G2,Ω2) and ϕ2 : (G2,Ω2) → (G3,Ω3) be

morphisms of Grpg.c.f
surj . By the definition of G, we have G(ϕ2 ◦ ϕ1) = Gϕ2 ◦

Gϕ1. !
3.2. A category equivalence between Qf

surj and Grpg.c.f
surj . In this sub-

section, we show that F and G give a category equivalence between Qf
surj and

Grpg.c.f
surj , where F and G are defined in Sections 3.1.1 and 3.1.2.
First we prove that there exists a natural isomorphism θ : GF ⇒ idQf

surj
.

Proposition 3.7. The following θ is a natural isomorphism from GF to
idQf

surj
:

θ = {θQ : GFQ→ Q : sx "→ x}Q∈Obj(Qf
surj)

: GF ⇒ idQf
surj

.

Proof. Recall that each object Q of Qf
surj is faithful. Then one can

easily see that θQ is well-defined and becomes an isomorphism of Qf
surj. Take

any morphism f : Q1 → Q2 of Qf
surj. It is enough to show that the following

diagram commutes:

Q1

Q2

GFQ1

GFQ2

Q1

Q2

f f

θQ1

θQ2

GFf

Take any x1 ∈ Q1. Then we have

(θQ2 ◦ (GFf))(sx1) = θQ2(sf(x1))

= f(x1)

= (f ◦ θQ1)(sx1).

The proof is completed. !
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Next we show that there exists a natural isomorphism η : FG ⇒ idGrpg.c.f
surj

.

Proposition 3.8. The following η : FG ⇒ idGrpg.c.f
surj

is a natural isomor-

phism from FG to idGrpg.c.f
surj

:

η = {η(G,Ω) : FG(G,Ω)→ (G,Ω) : sω "→ ω}(G,Ω)∈Obj(Grpg.c.f
surj ),

where, for each (G,Ω), η(G,Ω) is the inverse of the isomorphism ϕ(G,Ω) : (G,Ω)→
FG(G,Ω) in Grpg.c.f

surj defined in Lemma 2.24. Here, we remark that FG(G,Ω) =

(Inn(Conj(Ω)), s(Conj(Ω))) for each (G,Ω) ∈ Obj(Grpg.c.f
surj ).

Proof. Take any morphism ϕ : (G1,Ω1) → (G2,Ω2) of Grpg.c.f
surj . It is

enough to show that the following diagram commutes:

(G1,Ω1)

(G2,Ω2)

FG(G1,Ω1)

FG(G2,Ω2)

(G1,Ω1)

(G2,Ω2)

ϕ ϕ

η(G1,Ω1)

η(G2,Ω2)

FGϕ

Take any ω1 ∈ Ω1. Then

(η(G2,Ω2) ◦ FGϕ)(sω1) = η(G2,Ω2)(sϕ(ω1))

= ϕ(ω1)

= (ϕ ◦ η(G1,Ω1))(sω1).

Since Inn(G(G1,Ω1)) is generated by s(G(G1,Ω1)), the proof is completed. !

The following theorem follows from Propositions 3.7 and 3.8.

Theorem 3.9. The above (F ,G, θ, η) gives a category equivalence between
Qf

surj and Grpg.c.f
surj .

4. Categories with injective homomorphisms

In this section, we define a category Grpg.c.f
! , and prove that Qf

inj and

Grpg.c.f
! are equivalent as categories.

4.1. Definition of a category of groups with generators. Let us recall
that the following three categories are introduced in Section 2.4:

• Grpg.c : the category of groups with conjugation-stable generators,
whose morphisms are group homomorphisms inducing maps between
fixed generators.



On categories of faithful quandles with surjective or injective quandle homomorphisms 13

• Grpg.c
bij : the category of groups with conjugation-stable generators,

whose morphisms are surjective group homomorphisms inducing bijec-
tive maps between fixed generators.

• Grpg.c.f : the category of groups with conjugation-stable faithful gen-
erators, whose morphisms are group homomorphisms inducing maps
between fixed generators.

In this subsection, we define a category Grpg.c.f
! in terms of the three categories

above.

Definition 4.1 (Grpg.c.f
! ). We define a category Grpg.c.f

! as follows.
We denote Grpg.c.f

! briefly by D in this subsection. Let us put Obj(D) :=
Obj(Grpg.c.f ). For objects (G1,Ω1), (G2,Ω2) ∈ Obj(D), we define the set of
morphisms HomD((G1,Ω1), (G2,Ω2)) from (G1,Ω1) to (G2,Ω2) in D as follows.

HomD((G1,Ω1), (G2,Ω2))

:=





((H,Γ),π)

∣∣∣∣∣∣∣∣∣

H : a subgroup of G2,

Γ : a subset of Ω2,

(H,Γ) ∈ Obj(Grpg.c),

π : (H,Γ)→ (G1,Ω1) : a morphism in Grpg.c
bij





.

We remark that each morphism is an opposite directional partial map, and
a diagram of a morphism can be written as Figure 4.1.

(G1,Ω1) (G2,Ω2)

(H,Γ)

⊂

Φ

π

Figure 4.1. Φ = ((H,Γ),π) ∈ HomD((G1,Ω1), (G2,Ω2)).

In Section 4.2, we define composition of morphisms in D and prove that D
becomes a category.

Remark 4.2. For a morphism ((H,Γ),π) of Grpg.c.f
! , the group homo-

morphism π is not needed to be injective on H. Actually, the following gives
an example of non injective π: Let us denote by Sn the symmetric group of
degree n for each n. Take a conjugation-stable faithful generator t3 of S3 as the
set t3 = {(12), (13), (23)} of transpositions. For objects (S3, t3) and (S6,S6) of
Grpg.c.f

! , we define a morphism ((H,Γ),π) by

H = S3 × {id, (456), (465)},Γ = t3 × {(456)},

π : S3 × {id, (456), (465)}→ S3 : (g, c) "→ g,

from (S3, t3) to (S6,S6) of Grpg.c.f
! . Then π is not injective.
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4.2. On composition of morphisms in Grpg.c.f
! . Let us give a definition

of composition of morphisms in Grpg.c.f
! by the following proposition.

Proposition 4.3 (composition in Grpg.c.f
! ). Let Φ1 = ((H2,Γ2),π2) :

(G1,Ω1) → (G2,Ω2) and Φ2 = ((H3,Γ3),π3) : (G2,Ω2) → (G3,Ω3) be mor-
phisms of Grpg.c.f

! . Then Φ2◦Φ1 := ((〈π3|−1
Γ3

(Γ2)〉,π3|−1
Γ3

(Γ2)),π2◦π3|〈π3|−1
Γ3

(Γ2)〉)

is a morphism from (G1,Ω1) to (G3,Ω3) of Grpg.c.f
! . The diagram of Φ2 ◦ Φ1

can be written as Figure 4.2.

(G1,Ω1) (G2,Ω2)

(H2,Γ2)

⊂
(G3,Ω3)

(H3,Γ3)

⊂

(〈π3|−1
Γ3

(Γ2)〉,π3|−1
Γ3

(Γ2))

⊂

Φ1

π2

Φ2

π3

π3|〈π3|−1
Γ3

(Γ2)〉

Figure 4.2. Composition in Grpg.c.f
! .

Proof. It is obvious that π3|−1
Γ3

(Γ2) generates 〈π3|−1
Γ3

(Γ2)〉. Take any h3 ∈
〈π3|−1

Γ3
(Γ2)〉, and γ3 ∈ π3|−1

Γ3
(Γ2). Since π3(γ3) ∈ Γ2, π3(h3) ∈ 〈Γ2〉 = H2 and

(H2,Γ2) is an object of Grpg.c, we have π3(h3γ3h
−1
3 ) = π3(h3)π3(γ3)π3(h3)−1 ∈

Γ2. Thus h3γ3h
−1
3 ∈ π3|−1

Γ3
(Γ2). Hence (〈π3|−1

Γ3
(Γ2)〉,π3|−1

Γ3
(Γ2)) is an object of

Grpg.c. Since π3|Γ3 : Γ3 → Ω2 is bijective, π3|π3|−1
Γ3

(Γ2)
: π3|−1

Γ3
(Γ2) → Γ2 is

bijective. Hence π2◦π3|π3|−1
Γ3

(Γ2)
: π3|−1

Γ3
(Γ2)→ Ω1 is bijective. So π2◦π3|π3|−1

Γ3
(Γ2)

is a morphism of Grpg.c
bij . !

Remark 4.4. The following diagram is a part of the above diagram in
Proposition 4.3:

(G2,Ω2)

(H2,Γ2)

⊂

(H3,Γ3)
π3

The following diagram is pullback of the above diagram in Grpg.c:

(G2,Ω2)

(H2,Γ2)

⊂

(H3,Γ3)

(〈π3|−1
Γ3

(Γ2)〉,π3|−1
Γ3

(Γ2))

⊂

π3

π3|〈π3|−1
Γ3

(Γ2)〉

Hence, composition of morphisms in Grpg.c.f
! leads from pullback in Grpg.c.
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By Propositions 4.5 and 4.6 stated below, Grpg.c.f
! becomes a category with

respect to the composition.

Proposition 4.5. The above composition of morphisms in Grpg.c.f
! is

associative.

Proof. Let Φ1 = ((H2,Γ2),π2) : (G1,Ω1)→ (G2,Ω2), Φ2 = ((H3,Γ3),π3) :
(G2,Ω2) → (G3,Ω3) and Φ3 = ((H4,Γ4),π4) : (G3,Ω3) → (G4,Ω4) be mor-
phisms of Grpg.c.f

! . By the definition of composition in Grpg.c.f
! , one has

Φ3 ◦ (Φ2 ◦ Φ1) =((〈π4|−1
Γ4

(π3|−1
Γ3

(Γ2))〉,π4|−1
Γ4

(π3|−1
Γ3

(Γ2))),

π2 ◦ π3|〈π3|−1
Γ3

(Γ2)〉 ◦ π4|〈π4|−1
Γ4

(π3|−1
Γ3

(Γ2))〉),

(Φ3 ◦ Φ2) ◦ Φ1 =((〈(π3|Γ3π4|π4|−1
Γ4

(Γ3)
)−1(Γ2)〉, (π3|Γ3π4|π4|−1

Γ4
(Γ3)

)−1(Γ2)),

π2 ◦ (π3π4|〈(π3|Γ3π4|π4|−1
Γ4

(Γ3)
)−1(Γ2)〉).

Figure 4.3 and 4.4 are diagrams of each of them.

(G1,Ω1) (G2,Ω2)

(H2,Γ2)

⊂

(G3,Ω3)

(H3,Γ3)

⊂

(G4,Ω4)

(H4,Γ4)

⊂

(〈π3|−1
Γ3

(Γ2)〉,π3|−1
Γ3

(Γ2))

⊂

(〈π4|−1
Γ4

(π3|−1
Γ3

(Γ2))〉,π4|−1
Γ4

(π3|−1
Γ3

(Γ2)))

⊂

Φ1

π2

Φ2

π3

Φ3

π4

π3|〈π3|−1
Γ3

(Γ2)〉

π4|〈π4|−1
Γ4

(π3|−1
Γ3

(Γ2))〉

Figure 4.3. A diagram of Φ3 ◦ (Φ2 ◦ Φ1).

Since π4|−1
Γ4

(π3|−1
Γ3

(Γ2)) = (π3|Γ3π4|π4|−1
Γ4

(Γ3)
)−1(Γ2) in Γ4, one has Φ3 ◦ (Φ2 ◦

Φ1) = (Φ3 ◦ Φ2) ◦ Φ1. !
Proposition 4.6. For each object (G,Ω) of Grpg.c.f

! , ((G,Ω), idG) is the
identity of (G,Ω) in Grpg.c.f

! .

Proof. Let Φ = ((H,Γ),π) : (G1,Ω1) → (G2,Ω2) be a morphism of
Grpg.c.f

! . Since π|Γ−1(Ω1) = Γ, the following holds:

Φ ◦ ((G1,Ω1), idG1) = ((〈π|Γ−1(Ω1)〉,π|Γ−1(Ω1)), idG1π|〈π|Γ−1(Ω1)〉)

= ((H,Γ),π)

= Φ.



16 Yasuki Tada

(G1,Ω1) (G2,Ω2)

(H2,Γ2)
⊂

(G3,Ω3)

(H3,Γ3)

⊂

(G4,Ω4)

(H4,Γ4)

⊂

(〈π4|−1
Γ4

(Γ3)〉,π4|−1
Γ4

(Γ3))

⊂

(〈(π3|Γ3π4|π4|−1
Γ4

(Γ3)
)−1(Γ2)〉, (π3|Γ3π4|π4|−1

Γ4
(Γ3)

)−1(Γ2))

⊂

Φ1

π2

Φ2

π3

Φ3

π4

π4|〈π4|−1
Γ4

(Γ3)〉

π3π4|〈(π3π4|
π4|−1

Γ4
(Γ3)

)−1(Γ2)〉

Figure 4.4. A diagram of (Φ3 ◦ Φ2) ◦ Φ1.

Let Ψ = ((H ′,Γ′),π′) : (G0,Ω0) → (G1,Ω1) be a morphism of Grpg.c.f
! . Since

id−1
G1

(Γ′) = Γ′, we have

((G1,Ω1), idG1) ◦Ψ = ((〈id−1
G1

(Γ′)〉, id−1
G1

(Γ′)),π′idG1 |〈id−1
G1

(Γ′)〉)

= ((H ′,Γ′),π′)

= Ψ.

Hence ((G1,Ω1), idG1) is the identity of (G1,Ω1) in Grpg.c.f
! . !

The following proposition give a characterization of isomorphisms inGrpg.c.f
! .

Proposition 4.7. Let Φ = ((H,Γ),π) : (G1,Ω1) → (G2,Ω2) be a mor-
phism of Grpg.c.f

! . Then Φ = ((H,Γ),π) is an isomorphism in Grpg.c.f
! if and

only if H = G2,Γ = Ω2 and π : (G2,Ω2) → (G1,Ω1) is an isomorphism in
Grpg.c.

Proof. First we show the “if” part. One has that ((G1,Ω1),π−1) is the
inverse of Φ = ((G2,Ω2),π).

Let us prove the “only if” part. There exists

Ψ = ((H ′,Γ′),π′) ∈ IsomGrpg.c.f
!

((G2,Ω2), (G1,Ω1))

such that ΨΦ = id(G1,Ω1) and ΦΨ = id(G2,Ω2). By ΦΨ = id(G2,Ω2), one has that

(〈π|Γ−1(Γ′)〉,π|Γ−1(Γ′),π′π) = ((G2,Ω2), idG2). Since Ω2 = π|Γ−1(Γ′) = Γ, one
has that Ω2 = Γ andG2 = H. Similarly one can show that G1 = H ′ and Ω1 = Γ′.
Clearly π′π = idG2 and ππ′ = idG1 , thus π : G2 → G1 is an isomorphism of Grp.
Since π : (G2,Ω2) → (G1,Ω1) is a morphism in Grpg.c

bij , one has π(Ω2) = Ω1.
By Proposition 2.23 (1), π is an isomorphism of Grpg.c. !

One can easily show the following lemma.
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Lemma 4.8. Let (G0,Ω0), (G1,Ω1), (G2,Ω2), (G3,Ω3) be objects of Grpg.c.f
!

and ϕ an isomorphism from (G2,Ω2) to (G1,Ω1) in Grpg.c. We shall consider
the isomorphism Φ = ((G2,Ω2),ϕ) from (G1,Ω1) to (G2,Ω2) in Grpg.c.f

! . Take
morphisms Φ0 = ((H1,Γ1),π1) : (G0,Ω0) → (G1,Ω1) and Φ2 = ((H3,Γ3),π3) :
(G2,Ω2)→ (G3,Ω3) of Grpg.c.f

! . Then the following hold:

Φ ◦ Φ0 = ((ϕ−1(H1),ϕ
−1(Γ1)),π1 ◦ ϕ),

Φ2 ◦ Φ = ((H3,Γ3),ϕ ◦ π3).

Those diagrams can be written as Figure 4.5.

(G0,Ω0) (G1,Ω1)

(H1,Γ1)

⊂

(G2,Ω2)

(G2,Ω2)
⊂

(G3,Ω3)

(H3,Γ3)

⊂

(ϕ−1(H1),ϕ−1(Γ1))

⊂

(H3,Γ3)

⊂

Φ0

π1

Φ

ϕ

∼=

Φ2

π3

ϕ π3

Figure 4.5. The diagram appeared in Lemma 4.8.

4.3. Functors between Qf
inj and Grpg.c.f

! . In this subsection, we construct

two functors between the categories Qf
inj and Grpg.c.f

! .

4.3.1. A functor from Qf
inj to Grpg.c.f

! . We construct a functor

Finj : Q
f
inj → Grpg.c.f

!

for objects in Lemma 4.9, and for morphisms in Lemma 4.10. For the simplicity,
we just use the symbol F for Finj throughout Section 4.

Lemma 4.9. Let Q be an object of Qf
inj. Then F(Q) := (InnQ, s(Q)) is an

object of Grpg.c.f
! .

Proof. It follows from Lemma 2.15. !

Lemma 4.10. Let f : Q1 → Q2 be a morphism of Qf
inj. Then the following

Ff : FQ1 → FQ2 defines a morphism of Grpg.c.f
! :

Ff := ((Inn(Q2, f(Q1)), s(f(Q1))),π),

π : Inn(Q2, f(Q1))→ InnQ1 : sf(x1) "→ sx1 .



18 Yasuki Tada

Proof. The diagram of Ff can be written as below.

(InnQ1, s(Q1)) (InnQ2, s(Q2))

(Inn(Q2, f(Q1)), s(f(Q1)))

⊂

Ff

π

We show that (Inn(Q2, f(Q1)), s(f(Q1))) is an object of Grpg.c and π :
(Inn(Q2, f(Q1)), s(f(Q1))) → (InnQ1, s(Q1)) is a morphism of Grpg.c

bij . By
Proposition 2.15, (Inn(Q2, f(Q1)), s(f(Q1))) is an object of Obj(Grpg.c), since
f(Q1) is a subquandle of Q2. Let us prove that π is well-defined. Take any
{x1i}mi=1, {y1j}nj=1 ⊂ Q1. Assume that sε1f(x11)

· · · sεmf(x1m) = sδ1f(y11)
· · · sδnf(y1n)

in

Inn(Q2, f(Q1)), where εi, δj = 1 or −1. We shall show that sε1x11
· · · sεmx1m

=
sδ1y11

· · · sδny1n
in Inn(Q1). Take any z1 ∈ Q1. It is enough to show that f ◦

(sε1x11
· · · sεmx1m

)(z1) = f ◦ (sδ1y11
· · · sδny1n

)(z1) in Q2, since f is injective. One has
that

f ◦ (sε1x11
· · · sεmx1m

)(z1) = sε1f(x11)
· · · sεmf(x1m)(f(z1))

= sδ1f(y11)
· · · sδnf(y1n)

(f(z1))

= f ◦ (sδ1y11
· · · sδny1n

)(z1).

Hence π : Inn(Q2, f(Q1)) → InnQ1 is a well-defined group homomorphism.
As π(s(f(Q1))) ⊂ s(Q1), π is a morphism from (Inn(Q2, f(Q1)), s(f(Q1))) to
(InnQ1, s(Q1)) in Grpg.c. By the definition, π|s(f(Q1)) : s(f(Q1)) → s(Q1)
is surjective. Since Q1 is a faithful quandle, π|s(f(Q1)) : s(f(Q1)) → s(Q1) is
injective. Hence π is a morphism of Grpg.c

bij . !

Proposition 4.11. The above F : Qf
inj → Grpg.c.f

! is a functor.

Proof. It is obvious that F idQ = idFQ for each object Q of Qf
inj. Let

f1 : Q1 → Q2 and f2 : Q2 → Q3 be morphisms of Qf
inj. We show that F(f2 ◦

f1) = Ff2 ◦ Ff1. We describe

Ff1 = ((Inn(Q2, f1(Q1)), s(f1(Q1))),π2),

Ff2 = ((Inn(Q3, f2(Q2)), s(f2(Q2))),π3),

F(f2 ◦ f1) = ((Inn(Q3, f2f1(Q1)), s(f2f1(Q1))),π).

By the definition of composition, Ff2 ◦ Ff1 = ((〈Γ′
3〉,Γ′

3),π2 ◦ π3|〈Γ′
3〉),

where Γ′
3 = π3|s(f2(Q2))

−1(s(f1(Q1))). It is clear that s(f2f1(Q1)) ⊂ Γ′
3 . We

shall prove the inverse conclusion. Take any sf2(x2) ∈ Γ′
3 ⊂ s(f2(Q2)) (x2 ∈ Q2).

Since π3(sf2(x2)) ∈ s(f1(Q1)), there exists x1 ∈ Q1 such that π3(sf2(x2)) =
sx2 = sf1(x1). Q2 is faithful quandle, so x2 = f1(x1). Hence sf2(x2) belongs
to s(f2f1(Q1)), and Γ′

3 = s(f2f1(Q1)). We have 〈Γ′
3〉 = Inn(Q3, f2f1(Q1)) and

π2 ◦ π3|〈Γ′
3〉 = π. Thus Ff2 ◦ Ff1 = F(f2 ◦ f1). !
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4.3.2. A functor from Grpg.c.f
! to Qf

inj. We construct a functor

Ginj : Q
f
inj ← Grpg.c.f

!

for objects in Lemma 4.12, and for morphisms in Lemma 4.13. For the simplicity,
we just use the symbol G for Ginj throughout Section 4.

Lemma 4.12. Let (G,Ω) be an object of Grpg.c.f
! . Then G(G,Ω) := Conj(Ω)

is an object of Qf
inj.

Proof. It is proved in the same way as Lemma 3.4, since Obj(Qf
inj) =

Obj(Qf
surj) and Obj(Grpg.c.f

! ) = Obj(Grpg.c.f
surj ). !

Lemma 4.13. Let (G1,Ω1) and (G2,Ω2) be objects of Grpg.c.f
! and Φ =

((H,Γ),π) : (G1,Ω1) → (G2,Ω2) a morphism in Grpg.c.f
! . Then the following

GΦ is a morphism of Qf
inj:

GΦ : Conj(Ω1)→ Conj(Ω2) : ω1 "→ π|−1
Γ (ω1).

Proof. Take any ω1,ω′
1 ∈ Conj(Ω1). By direct calculation, one has that

GΦ ◦ sω1(ω
′
1) = sGΦ(ω1) ◦ GΦ(ω′

1). Thus GΦ is a quandle homomorphism. Since
π|Γ : Γ→ Ω1 is bijective, GΦ is injective. !

Proposition 4.14. The above G : Grpg.c.f
! → Qf

inj is a functor.

Proof. Take any object (G,Ω) of Grpg.c.f
! . We show that Gid(G,Ω) =

idG(G,Ω). Since id(G,Ω) = ((G,Ω), idG), one has Gid(G,Ω)(ω) = idG|Ω−1(ω) = ω
for each ω ∈ Conj(Ω). Thus Gid(G,Ω) = idG(G,Ω).

Let Φ1 = ((H2,Γ2),π2) : (G1,Ω1) → (G2,Ω2) and Φ2 = ((H3,Γ3),π2) :
(G2,Ω2)→ (G3,Ω3) be morphisms ofGrpg.c.f

! . We show that G(Φ2◦Φ1) = GΦ2◦
GΦ1. Take any ω1 ∈ Conj(Ω1) = G(G1,Ω1). By the definition of composition in
Grpg.c.f

! , one has that

Φ2 ◦ Φ1 = ((〈π3|−1
Γ3

(Γ2)〉,π3|−1
Γ3

(Γ2)),π2 ◦ π3|〈π3|−1
Γ3

(Γ2)〉).

We have

G(Φ2 ◦ Φ1)(ω1) = ((π2 ◦ π3)|π3|−1
Γ3

(Γ2)
)−1(ω1)

= π3|Γ2

−1(π2|Γ1

−1(ω1))

= (GΦ2 ◦ GΦ1)(ω1).

Hence G(Φ2 ◦ Φ1) = GΦ2 ◦ GΦ1. !

4.4. A category equivalence between Qf
inj and Grpg.c.f

! . In this sub-

section, we show that F and G give a category equivalence between Qf
inj and

Grpg.c.f
! , where F and G are defined in Sections 4.3.1 and 4.3.2.
First we show that there exists a natural isomorphism θ : GF ⇒ idQf

inj
.
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Proposition 4.15. The following θ is a natural isomorphism from GF to
idQf

inj
:

θ = {θQ : GFQ→ Q : sx "→ x}Q∈Obj(Qf
inj)

: GF ⇒ idQf
inj
.

Proof. Recall that each object Q of Qf
inj is faithful, thus θQ is a well-

defined isomorphism. Take any morphism f : Q1 → Q2 in Qf
inj. It is enough to

show that the following diagram commutes:

Q1

Q2

GFQ1

GFQ2

Q1

Q2

f f

θQ1

θQ2

GFf

Take any sx1 ∈ GFQ1 (x1 ∈ Q1). Then we have

(θQ2 ◦ (GFf))(sx1) = θQ2(sf(x1))

= f(x1)

= (f ◦ θQ1)(sx1).

The proof is completed. !
Next we show that there exists a natural isomorphism η : FG ⇒ idGrpg.c.f

!
.

Proposition 4.16. The following η : FG ⇒ idGrpg.c.f
!

is a natural isomor-
phism from FG to idGrpg.c.f

!
:

η = {η(G,Ω) = ((G,Ω),ϕ(G,Ω)) : FG(G,Ω)→ (G,Ω)}(G,Ω)∈Obj(Grpg.c.f
! ),

where ϕ(G,Ω) is the isomorphism of Grpg.c in Lemma 2.24. Remark that FG(G,Ω) =

(Inn(Conj(Ω)), s(Conj(Ω))) for each (G,Ω) ∈ Obj(Grpg.c.f
! ).

Proof. By Proposition 4.7, η(G,Ω) is an isomorphism in Grpg.c.f
! for each

object (G,Ω) of Grpg.c.f
! . Take any morphism Φ = ((H,Γ),π) : (G1,Ω1) →

(G2,Ω2) in Grpg.c.f
! . Let us denote by FGΦ = ((H ′,Γ′),π′) where

H ′ = Inn(G(G2,Ω2),GΦ(G(G1,Ω1))),

Γ′ = s(GΦ(G(G1,Ω1))),

π′ : (H ′,Γ′)→ FG(G1,Ω1) : sπ|−1
Γ (ω1)

"→ sω1 .

It is enough to show that the diagram in Figure 4.6 commutes i.e. Φ ◦η(G1,Ω1) =
η(G2,Ω2) ◦ FGΦ:

By Lemma 4.8, we have Φ ◦ η(G1,Ω1) = ((H,Γ),ϕ(G1,Ω1) ◦ π) and η(G2,Ω2) ◦
FGΦ= ((ϕ(G2,Ω2)

−1(H ′),ϕ(G2,Ω2)
−1(Γ′)), π′◦ϕ(G2,Ω2)). Since Γ

′ = s(GΦ(Conj(Ω1))) =
{sπ|−1

Γ (ω1)
| ω1 ∈ Ω1} = {sγ | γ ∈ Γ}, one has that ϕ(G2,Ω2)

−1(Γ′) = Γ in Ω2,



On categories of faithful quandles with surjective or injective quandle homomorphisms 21

(G1,Ω1)

(G2,Ω2)(H,Γ) ⊂

FG(G1,Ω1)

FG(G2,Ω2)

(G1,Ω1)

(G2,Ω2)(H ′,Γ′)⊂

(G1,Ω1)⊂

(G2,Ω2)

⊂

(H,Γ)⊃

Φ
π

Φ
π

η(G1,Ω1)

η(G2,Ω2)

ϕ(G1,Ω1)

ϕ(G2,Ω2)

FGΦ
π′

Figure 4.6. The diagram appeared in the proof of Proposition 4.16.

and hence ϕ(G2,Ω2)
−1(H ′) = H in G2. We show that ϕ(G1,Ω1) ◦π = π′ ◦ϕ(G2,Ω2).

Take any γ ∈ Γ. Then one has

(ϕ(G1,Ω1) ◦ π)(γ) = sπ(γ)

= π′(sπ|−1
Γ (π(γ)))

= π′(sγ)

= (π′ ◦ ϕ(G2,Ω2))(γ).

Since Γ generates H, we have that ϕ(G1,Ω1) ◦ π = π′ ◦ ϕ(G2,Ω2). Hence Φ ◦
η(G1,Ω1) = η(G2,Ω2) ◦ FGΦ. !

Propositions 4.15 and 4.16 imply the following theorem.

Theorem 4.17. The above (F ,G, θ, η) gives a category equivalence between
Qf

inj and Grpg.c.f
! .

5. Applications and examples

In this section, as an application of Theorem 1.2, we study the set of all
injective quandle homomorphisms from R3 into R9. Here we denote by Rn the
dihedral quandle of order n.

5.1. Applications. One has that the functor Finj : Qf
inj → Grpg.c.f

! defined
in Section 4 implies the following proposition.

Proposition 5.1. For finite faithful quandles Q1 and Q2, if there ex-
ists an injective quandle homomorphism f : Q1 → Q2, then #Inn(Q1) divides
#Inn(Q2).
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Let us apply Proposition 5.1 to a more concrete case. We set up our termi-
nologies for Alexander quandles.

Example 5.2 (Alexander quandles). For an additive abelian group A
and its group automorphism ϕ ∈ Aut(A), the following s is a quandle structure
on A. For each a, b ∈ A, sa(b) = ϕ(b) + (idA−ϕ)(a). This quandle is called the
Alexander quandle of A with respect to ϕ and denoted by Alex(A,ϕ). It is well
known (cf. [9, Section 1] ) that a quandle Alex(A,ϕ) is faithful if and only if ϕ
is fixed-point free (i.e. ϕ(a) = a implies that a is equal to the unit of A).

Example 5.3 (Dihedral quandles). For Z/nZ the cyclic group of order
n and its automorphism −id, the Alexander quandle Alex(Z/nZ,−id) is called
the dihedral quandle of order n and denoted by Rn. The dihedral quandle Rn is
faithful if and only if n is odd.

Theorem 5.4 ([1, Theorem 6.1.(3)]). Let A be a finite additive abelian
group and ϕ ∈ Aut(A) a fixed-point free automorphism. Then Inn(Alex(A,ϕ))
is isomorphic to A" 〈ϕ〉 as groups.

For finite Alexander quandles and dihedral quandles, Proposition 5.1 and
Theorem 5.4 imply the following corollary.

Corollary 5.5. Let A and B be both finite abelian groups. We take
ϕ ∈ Aut(A) and ψ ∈ Aut(B) as fixed-point free automorphisms which have the
same order. If there exists an injective quandle homomorphism f : Alex(A,ϕ)→
Alex(B,ψ), then #A divides #B. In particular, for odd numbers m and n, if
there exists an injective quandle homomorphism f : Rm → Rn, then m divides
n.

5.2. Injective quandle homomorphisms from R3 to R9. In this subsec-
tion, we study the set of all injective quandle homomorphisms from R3 into R9

i.e. HomQf
inj
(R3, R9).

First, we observe that the proposition below holds.

Proposition 5.6. For each c ∈ Z/9Z, ε ∈ {±1}, the following map fc,ε :
R3 → R9 is an injective quandle homomorphism:

fc,ε : Z/3Z→ Z/9Z : [k]3 "→ c+ ε[3k]9,

where we put [k]n := k + nZ in Z/nZ.

By Proposition 5.6, we have

HomQf
inj
(R3, R9) ⊃ {fc,ε | c ∈ Z/9Z, ε ∈ {±1}}

and #HomQf
inj
(R3, R9) ≥ 18. Let us prove that

HomQf
inj
(R3, R9) = {fc,ε | c ∈ Z/9Z, ε ∈ {±1}}.

Note that the equality could be shown directly. However, we shall give a group
theoretic proof of it as below.
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As in Section 4, let us denote by Finj : Qf
inj → Grpg.c.f

! the category
equivalence (see Theorem 4.17). For the equality above, by Proposition 2.6, it
is enough to show that

#HomGrpg.c.f
!

(FinjR3,FinjR9) = 18.

For inner automorphism groups of dihedral quandles, the following theorem
is well known.

Theorem 5.7. Let n be an odd integer. Then the inner automorphism
group Inn(Rn) is isomorphic to the dihedral group D2n of order 2n, that is,

D2n = 〈a, x | an = x2 = 1, xax = a−1〉.

Let us put

D18 = 〈a, x | a9 = x2 = 1, xax = a−1〉,
A = {akx | k = 0, . . . , 8} ⊂ D18,

D6 = 〈b, y | b3 = y2 = 1, yby = b−1〉 and
B = {y, by, b2y} ⊂ D6.

One has that FinjR9
∼= (D18, A) and FinjR3

∼= (D6, B). We shall determine
HomGrpg.c.f

!
((D6, B), (D18, A)). We put H1 := 〈a3, x〉,H2 := 〈a3, a4x〉 and

H3 := 〈a3, a2x〉 as subgroups of D18, and take conjugation-stable generators
of them as Γ1 := {x, a3x, a6x} ⊂ H1,Γ2 := {ax, a4x, a7x} ⊂ H2 and Γ3 :=
{a2x, a5x, a8x} ⊂ H3. One can see that Γ1,Γ2 and Γ3 are conjugate to each
other in D18, hence H1,H2 and H3 are conjugate subgroups in D18.

For sets Γ and Ω, we use the symbol Bij(Γ,Ω) for the set of bijective maps
from Γ to Ω. By direct calculation, one has the following observation: For
i = 1, 2, 3 and any f ∈ Bij(Γi, B), there exists a unique surjective group homo-
morphism f̃ : Hi → D6 such that f̃ |Γi = f .

By a computer search on GAP([8]), we have

HomGrpg.c.f
!

((D6, B), (D18, A)) =
3⊔

i=1

{((Hi,Γi), f̃) | f ∈ Bij(Γi, B)}.

Hence the following holds:

#HomGrpg.c.f
!

((D6, B), (D18, A)) =
3∑

i=1

#{((Hi,Γi), f̃) | f ∈ Bij(Γi, B)}

=
3∑

i=1

#Bij(Γi, B) = 18.

Therefore, we have

HomQf
inj
(R3, R9) = {fc,ε | c ∈ Z/9Z, ε ∈ {±1}}.
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