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1.1  Introduction 

Economic and environmental requirements make it increasingly important to reduce 

the weight of vehicles.1-3) The specific gravity of aluminum is about 1/3 that of steel, 

and even when rigidity is taken into account, it is 1/2 that of steel. aluminum is therefore 

a very effective lightweight material, and its applications are expanding.4-8) Aluminum 

alloys with Si as the main alloying element are the most important component of all 

cast manufacturing materials in this category.9-13) Due to their combination of excellent 

castability and better mechanical properties, as well as their outstanding corrosion and 

wear resistance, aluminum and silicon casting alloys are widely used to produce 

automotive parts that operate in high temperature environments (up to 200 ºC). Copper 

and magnesium are often added to such alloys to improve strength at room and high 

temperatures and to make heat treatment possible.9, 11, 14-19) The microstructure of these 

cast alloys is dominated by α-Al dendrites decorated with eutectic silicon particles and 

many intermetallic phases such as Al2Cu, Mg2Si and Fe-bearing phases.20-22) The size, 

morphology and distribution of microstructural features of the cast alloys determine the 

mechanical properties of the alloys. Microstructural characterization and analysis are 

fundamental to materials science, linking material structure to composition, process 

history and properties. Traditionally, microstructure quantification requires a human to 

decide what to measure and to design a measurement method to measure it. However, 

there are many microstructural analysis tasks that require human judgment and are 

therefore inherently subjective, difficult to automate, and prone to bias. 

With the development of computer technology, artificial intelligence and related 

techniques are applied in various industries, and great progress has been made in 

techniques to extract the necessary information from large-scale data and to classify it 

automatically. One of these techniques is machine learning.23, 24) Machine learning is a 

research topic in artificial intelligence where computers learn from data iteratively to 

find patterns in the input data that are relevant to the data. Machine learning allows us 

to extract pattern information from the input data and predict which category it belongs 
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to. If we can create a classifier that can perform advanced pattern recognition, it will be 

very useful as it can be applied to various fields such as fingerprint recognition and 

speaker recognition. Over the years, many researchers have designed and built such 

pattern recognition machines. As a result, various pattern recognition techniques, such 

as character recognition and face recognition, have been put into practical use and 

reached commercial levels.25) In recent years, as machine learning research has 

intensified and the technology has become more widespread, more and more materials 

scientists are applying machine learning to materials science to improve material 

processing parameters and to assist in microstructural characterization as well as to try 

to predict mechanical properties.26-34) This is expected to greatly accelerate future 

advances in materials science, including more efficient development of new materials, 

effective identification and differentiation of microstructures, and fabrication of high-

performance materials by optimizing material properties. 
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1.2  Aluminum-silicon based casting alloys 

Si is one of the most important alloying elements in Al-Si casting alloys.35, 36) The 

hypoeutectic Al-Si alloy is when the Si content between 5 and 12 wt.% of the alloy. 

Silicon contributes significantly to the wear resistance of the alloy, the reason of which 

is that Si is consisted as a very hard phase. Si also improves the casting properties of 

the alloy, allowing the alloy to easily fill the mold and harden the casting without 

thermal cracking or thermal cracking problems. The more Si in an alloy will cause the 

lower coefficient of thermal expansion. Si, in combination with other elements, 

increases the strength of the alloy while making it heat treatable. 

Si content in Al-Si based casting alloys affects tensile properties at room and elevated 

temperatures. This effect is more pronounced without alloying elements such as Cu, 

Mg, Fe, and Zn, etc. The strength contribution of Al-Si alloys is attributed to load 

transfer from the α-Al matrix to the strong, highly interconnected eutectic Si plate-like 

structure. The spheroidization can reduce the load carrying capacity of the eutectic Si, 

which improves the machinability, ductility, and fatigue resistance of the alloy. When 

Al-Si cast alloys are exposed to high temperatures, the eutectic silicon particles 

decompose, becoming spherical and coarse, with a reduced aspect ratio and loss of 

interconnectivity of the eutectic phase. The rate of loss of interconnectivity is highly 

dependent on temperature and exposure time. Increasing Si content from 7 wt% to 12 

wt% in low-alloy element Al-Si casting alloys has been reported to increase yield 

strength and ultimate tensile strength to 22 MPa and 25 MPa at the temperature of 

250ºC, respectively.37) 

Cu and Mg are two important alloying elements that widely added to Al-Si casting 

alloys. The additive of them not only increase the strength of the alloy at room and up 

to 190 ºC high temperatures, but also make it responsive to heat treatment. These kinds 

of alloys have wide range of applications, from automotive industry to aerospace 

structural parts.36, 38) For example, compressor pistons, engine cooling fans, crankcase, 

compressor housings and mechanical components such as timing gears and rocker arms. 
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The major alloy strengthening phases are including Al2Cu, Mg2Si and Al2CuMg. When 

the alloy exposed to high temperatures, usually above 200 ºC, these phases become 

unstable and tend to coarsen rapidly and subsequently decompose, causing the products 

made by the alloys to be unsuitable for very high temperature applications.39)  

Both of the additions of Mg and Cu are associated with improved tensile properties and 

the creep resistance of Al-Si alloys at high temperatures of up to 200ºC.7, 39) Therefore, 

Mg could also reduce the rate of strength loss of the alloys at high temperatures. After 

solid solution treatment, the high-temperature strength is significantly improved due to 

precipitation hardening activated by the magnesium-containing phase. The increase in 

the high-temperature strength of the Mg-containing alloy can be attributed entirely to 

the precipitation of β-Mg2Si in the second phase.39) 

1.2.1 Solidification and microstructure of Al-Si alloys 

The classical microstructure of an Al-Si casting alloy is shown in Fig 1.1. Solidification 

occurs from primary crystallization of Al phase (α-Al), with the dendritic α-Al 

embedded in Al-Si eutectics. In hypoeutectic Al-Si alloys, they are solidified as primary 

Al dendrites growing along the <100> direction. For cubic crystal systems, there are 

four auxiliary arms growing around the main axis at each connection, which are often 

referred to as dendrites.40) The degree of undercooling depends on the cooling rate, the 

concentration of alloying elements in the melt, and the type of alloying elements. The 

degree of subcooling is known to increase with cooling rate and alloying element 

concentration.41) 
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Fig. 1.1 Solidification structure of hypoeutectic Al-Si alloy. 

 

Al-Si eutectic formation marks the beginning of the alloy's next stage of solidification. 

Both the Al and Si phases crystallize out of the liquid at the same time during eutectic 

solidification while maintaining in a constant temperature (eutectic temperature).42) 

Fig. 1.2 provides the phase diagram of the Al-Si system with a eutectic point. The 

eutectic temperature is 577 °C, and the eutectic point is 12.2 wt% Si. Eutectic alloys 

provide a natural composite material that gives the alloy good properties.42) In addition 

to Si, commercial aluminum alloys often incorporate the alloying elements Cu and Mg. 

These alloys' eutectic properties could be more complicated than what can be seen by 

analyzing binary systems. Following eutectic development, intermetallic compound 

phases with Cu and Mg are frequently formed. 

Al-Si cast alloys include a α-Al primary phase and a eutectic Al-Si phase in the 

microstructure. The quantity of eutectic in the microstructure is dependent on the 

amount of silicon present, and eutectic is made up of hard Si particles embedded in a 

soft Al matrix. After the modification procedure, the Si particles' plate-like morphology 

could be improved. Numerous intermetallic compounds can be formed in the alloy's 

microstructure as a result of the inclusion of Cu, Mg, and Fe. Therefore, Al2Cu, Mg2Si, 

and β-Al5FeSi are the three most prevalent intermetallic compounds.13)  



Chapter 1 Background and Objective 

7

Fig. 1.2 The schematic phase diagram of Al-Si.43) 
 

1.2.2 Cooling rate refinement and mechanisms 

The size, morphology, and distribution of each microstructural component are 

significantly influenced by the cooling rate. Increasing the cooling rate refines the size 

of all microstructural features, reduces secondary dendrite arm spacing (SDAS), 

changes the morphology of eutectic Si from large, elongated plates to small, round 

plates, and reduces the size of all intermetallic compounds, regardless of their type. The 

eutectic Si particles are refined by the faster cooling rate, but their plate-like 

morphology is not changed. 

As one of the widely accepted theories of quench modification, the refinement of the 

cooling rate of eutectic Si particles is explained on the basis of surface energy at the Al-

Si solid interface. This theory states that the rate at which the solidification interface 

progresses depend on the balance between the heat flow velocity from the liquid 

through the interface to the solid and the latent heat of fusion released during 
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solidification. This theory explains the formation of modified eutectic structures at high 

cooling rates.44) The thermal conductivities of pure Al and Si are 205 and 83 W/(mK), 

respectively, and their latent heats of melting are 396 and 1411 J/g. The solidification 

rate of Al is much faster than that of Si because of the large difference in the magnitude 

of the thermal conductivity of pure Al and Si and the magnitude of the latent heat of 

melting of pure Al and Si. Therefore, Al acquires lead during eutectic solidification as 

shown in Fig. 1.3 (a). As the cooling rate increases, the leading of Al to Si increases, 

resulting in the lagging Si crystals being completely wrapped by the advancing Al, as 

shown in Fig. 1.3 (b) and (c). 

 

 

 

 

 

 

Fig. 1.3 Eutectic solidification in unmodified cast aluminum-silicon alloys.44)  
 

1.2.3 Modification of eutectic silicon 

One of the methods to improve the mechanical properties of Al-Si casting alloys is the 

metamorphism method. Since the Al-Si eutectic has a hard and brittle Si phase in a soft 

Al matrix, the mechanical properties of the casting, especially the elongation at break, 

are mainly determined by the eutectic structure. Modification refers to the addition of 

an inoculant in the form of a master alloy to molten Al to promote the formation of a 

fine fibrous eutectic Si structure during solidification. To modify a plate-like Al-Si 

eutectic (Fig. 1.4a) into a fine coralline-like Si structure (Fig. 1.4b), there are two kinds 

of methods: addition of specific elements (chemical modification) and quenching 

(quenching modification). Several modifiers (such as Sr, Na, Sb, Ba, and Ca, etc.) are 

known for modification of the alloys. Moreover, Sr has the advantage of being easy to 

handle and effective as well as having a low discoloration effect compared to several 

(a) (b) (c) 
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other modifiers. For these reasons, Sr has become the most used additive as a chemical 

modifier in the aluminum alloy industry in recent years. The addition of hundreds of 

ppm Sr changes the morphology of eutectic Si from coarse flakes to fine fibers, and the 

fracture mode changes from crystalline penetration and brittle fracture to crystalline 

gap and dendrite fracture, which is beneficial for both strength and ductility. 

 

 

 

 

 

 

 

 

Fig. 1.4 The morphology of eutectic Si; (a) Unmodified and (b) Modified structure.45)  

 

In hypereutectic compositions (Si content above 12.2 wt%), the addition of phosphorus 

to the molten alloy greatly affects the distribution and morphology of the primary Si 

phase. It has been shown that keeping trace P concentrations between 0.0015 and 0.03% 

effectively produces microstructures. There is no known element that can favorably 

modify only the eutectic and hypereutectic phases. Modifications are thought to alter 

the number, nature and distribution of voids. Although not widely accepted, many 

studies have shown that modification tends to increase porosity, which is closely related 

to casting parameters, and this is one of the obstacles to eutectic modification as a 

method of improving the mechanical properties of castings. The addition of large 

amounts of modifiers (Na > 0.02 wt% and Sr > 0.1 wt%), called over-modification, 

usually results in the formation of Al2Si2Sr brittle compounds and reduces alloy 

properties. There is another reason why eutectic modification does not guarantee that 

the properties of Al-Si alloys are necessarily improved, namely the presence of other 

undesirable compounds, iron-rich intermetallic compounds for example, and casting 
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defects that can negatively affect the alloy properties. Several techniques have been 

used to assess the extent of eutectic silicon modification in aluminum alloy casting 

alloys, including metallographic studies, thermal analysis, and methods based on 

physical properties of the alloy. While the assessment based on cooling curve analysis 

has been presented as the most accurate and non-subjective technique to achieve this 

purpose.46) 

1.2.3.1  The growth mechanism of lamellar silicon 

For the purpose to understand the mechanisms of eutectic silicon modification, 

quenching and chemical modification, one must have prior knowledge of the growth 

mechanism of unmodified pre-sheet silicon. Most theories explaining modification are 

premised on the assumption that the growth mechanism of silicon has changed. 

Therefore, the modification theory remains incomplete unless the growth process of 

lamellar silicon is fully understood. However, the exact growth mechanism of lamellar 

silicon is still controversial. The following describes the currently accepted and more 

plausible growth mechanism of lamellar silicon, followed by a theory of possible 

modification mechanisms. 

1.2.3.1.1 Two-plane re-entry edge (TPRE) mechanism 

TPRE mechanism was first used to describe the growth of germanium dendrites and 

was later extended to the growth of silicon. The equilibrium habit of silicon is an 

octahedron with eight (111) planes around it. The twins are half of the equilibrium 

crystal, and the planes along which the twins are composed are reflected in the rest of 

the solid. Thus, the external shape of a twinned silicon crystal consists of six edges 

where the paired (111) planes intersect, as shown in Fig. 1.5 (a). The outer planes 

between these boundaries are 141° and 219°. The boundary plane forming the 141° 

outer angle forms a concave angle, while the boundary plane forming the 219° outer 

angle forms a ridge. The re-entrant angle is the preferred nucleation site compared to 

the ridges, because the binding of atoms to the re-entrant angle is more favorable than 

the binding by joining the ridges.47) 
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Therefore, a rapid growth along the [211] direction is possible because of the presence 

of the re-entrant corner. But when a triangular solid completely surrounded by ridges is 

formed, the rapid growth at the re-entrant corner stops, as shown in Fig. 1.5 (b). 

However, at the situation of Fig. 1.5 (c), the crystal containing two twins instead of one, 

then there are six re-entrant angles along the [211] direction. As shown in Fig. 1.5 (d), 

the growth of the re-entrant angles generates more reentrant angles and the newly 

generated reentrant angles alleviate the blockage of the nucleation sites by the 

formation of ridges. Fig. 1.5 (e) shows the simultaneous growth of an entity with 

multiple steps through the reentrant edge mechanism. The TPRE mechanism was then 

experimentally verified to be responsible for the growth of germanium dendrites. 

1.2.3.1.2 Layer growth mechanism 

Si crystals are materials with high melting entropy and tend to form atomically smooth 

and dense interfaces during solidification. Thus, if atoms moving away from the liquid 

attach to a flat solid surface, the interfacial energy increases and the atoms may jump 

back into the liquid. However, as shown in Fig. 1.6, if a ledge is present at the interface, 

the liquid atoms can easily bond with the solid without increasing the interfacial energy. 

Flake form silicon is grown mainly by a layer growth mechanism. The average spacing 

of the twins was measured and was found to be between 0.4 and 1.0 μm for the slowly 

cooled samples. It was observed that this twinning spacing was much larger than 

expected from the TPRE mechanism. TEM microstructure analysis showed that 

twinning occurred in the non-surface portions of the silicon crystals, without the 

formation of re-entrant edges or grooves. Although the layer growth mechanism 

explains the growth after ledge formation, the layer nucleation mechanism is also 

important. Screw dislocation is one of the main reasons for nucleation of new layers. 

The study of the effect of screw dislocations on the nucleation of new layers and their 

interaction with re-entrant edges suggests that the ubiquitous helical dislocations in real 

crystals need to be taken into account when studying the growth mechanism of faceted 
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crystals. Therefore, in Fig. 1.7 shows four cases that can be considered depending on 

the presence of screw dislocations and twin junctions on the crystal surface.44) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. Schematic of TPRE Mechanism: (a) Crystal with a single twin, (b) Closure of twins due 

to ridge formation, (c) Crystal with two twins, (d) Creation of extra re-entrant corners I and II, and 

(e) Propagation of crystal due to re-entrant corners.47) 
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(d) 
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Fig. 1.6 Layer growth mechanism of atomically smooth interfaces by formation of 

ledges.48) 

 

Kink, step, re-entrant corners, and surface nucleation are basically four preferential 

growth sites in a given faceted crystal. In Fig. 1.7 (a), there are no surface-exposed 

screw dislocations in both twinned crystals and crystal surfaces. Therefore, the effective 

growth mechanism in this case is the TPRE mechanism. Screw dislocations are exposed 

in the twin-crystal part and grow preferentially in the twin-crystal part in the case of 

Fig. 1.7 (b). In this case, the crystal grows forward and backward. The screw 

dislocations are exposed on the crystal surface, as shown in Fig. 1.7 (c). In this case, 

the screw dislocations act as the origin of the surface-shaped nuclei, so the entire surface 

of the crystal grows uniformly and the TPRE mechanism does not contribute to the 

growth. Fig. 1.7 (d) shows the case where the helical dislocations are exposed to the 

twin junction and the crystal surface. Crystal growth depends on the density of helical 

dislocations at the surface and at the twins in this situation. If the density of screw 

dislocations at the twin junction is higher than at the crystal surface, growth occurs 

preferentially along the twin junction, resulting in crystals similar to those grown by 

the TPRE mechanism. 
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Fig. 1.7 Hypothetical conditions of a screw dislocation and a re-entrant corner.44) 

 

1.2.3.2  Modification Theory 

Recently, most theories explain that the process of modification is caused by the 

presence of impurity atoms in the melt that restrict the growth of silicon. However, in 

such theories there are different views on how impurity atoms affect silicon growth, 

and thus a number of possible mechanisms have been proposed, including changes in 

surface energy, TPRE poisoning, and growth ledges. 

1.2.3.2.1 Surface energy theory 

This theory is one of the widely accepted theories of quench modification that attempts 

to explain chemical modification of Al-Si eutectic in terms of surface energy at the Al-

Si solid interface, although there are still many arguments in favor of chemical 

modification.49) As shown in Fig. 1.8, the addition of chemical modifiers decreased the 

surface energy of the Al-Si solid interface and increased the interfacial angle θ. This 

inhibited the growth of Si crystals, leading to changes in the eutectic structure and 

subcooling. It was subsequently demonstrated that reduction of the surface tension of 

the eutectic liquid was because of the sodium addition. The growth of Al-Si eutectic 
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alloys on polycrystalline silicon substrates was compared in the presence and absence 

of sodium atmosphere, in order to investigate the effect of this change in surface tension 

on the interfacial angle. In the presence of Na, no change was recorded, but the 

importance of the apparent difference between the non-negligible surface tensions is 

still under discussion.44)  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.8 Eutectic solidification in sodium modified Al–Si alloys.44) 
 

1.2.3.2.2 Theories of interfacial poisoning 

These theories describe the way in which chemical modifications poison the Si growth 

sites when impurity atoms (e.g. Na, Sr) start to progress at the interface. There are two 

different groups of views on the theory. One believes that the interfacial poisoning of 

Si at the interface leads to a reduction in the growth rate of Si. The other group suggests 

that the poisoning of the modification atoms at the reentrant edge may hinder growth 

through the TPRE mechanism.44) 

A group of researchers proposed that the interfacial poisoning of the modification atoms 

on the re-entrant edge of the TPRE mechanism is responsible for the modification, 

which is called TPRE poisoning. The typical growth of Si is sawtooth-like. Examination 

of the electron diffraction pattern of the fibers shows the growth mechanism shown in 

Fig. 1.9. The lower part of the AB twinning diagram on the left branches out into BC 

twinning through multiple twinning. In addition, the AB twin is in the [112] direction 

and the BC twin is in the [112] direction. 

(a) (b) (c) 
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Due to the poisoning of impurity atoms, the fibers are oriented by multiple twins, 

usually in a coral-like morphology. This hypothesis of TPRE poisoning mechanism 

does not accurately predict how poisoning at the reentrant edge occurs and which 

features determine whether an element can act as a modifier.50) 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 1.9 Schematic diagram of twins and their growth directions in a modified Si fiber.50) 

 

In the theory of instability-induced twinning, interfacial contamination occurs by 

contaminating the growing edges of silicon. Impurity atoms, such as Na or Sr, act as 

poisons to the already growing atomic layers. As shown in Fig. 1.10, it is believed that 

impurities adsorb to steps or twist points and prevent atoms or molecules from attaching 

to the crystal. These poisoned atoms can induce twinning by changing the stacking 

order of the atomic layers in order to grow around the impurity.51) 
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Fig. 1.10 Schematic view of impurity atoms pinning the steps of a Si crystal growing 

by the layer growth mechanism at the solid/liquid interface.51) 
 

1.2.4 Aging treatment 

Casting is commonly used to produce aluminum alloys for machine parts, and the die-

casting method is one of the main methods, especially for the production of automotive 

parts. Die casting is a method of solidifying molten metal with a cooled mold under 

high pressure. After the automobile parts are manufactured by die-casting method, in 

order to improve the strength, it is often used in the solid solution treatment followed 

by water quenching and then artificial aging heat treatment method (T6 treatment) 

before it will be used for the product. 

In 1906, Germany's A. Wilm first discovered the aging hardening phenomenon of aging 

treatment. Age hardening is mainly due to precipitation strengthening by the formation 

of fine precipitates in the matrix during heat treatment. Precipitation strengthening is a 

method of strengthening obtained by heat treatment, such as solution treatment, 

quenching and aging, which causes fine precipitates to disperse in the matrix and 

become a single-phase at high temperatures and a two-phase alloy system at low 

temperatures. These precipitates are diffusive phase changes that occur through the 
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diffusion of solute atoms in the solid. In age-hardened aluminum, fine metastable 

phases, such as the GP zone and intermediate phases, form in the early stages of aging. 

These metastable phases often induce coherent strains, are highly resistant to 

dislocation migration, and strengthen the alloy. In general, in the Al-Si-Mg alloy used 

in this study, the GP zone is first formed from the supersaturated solid solution after 

solution treatment, followed by the formation of the β'' (needle-like GP zone). With 

further development of aging, the β' phase is formed, followed by precipitation of the 

stable β phase (cubic crystalline Mg2Si). Here, the clusters or GP zones are essentially 

aggregates of solute atoms, which are typically about 2 to 20 nm in size. Therefore, it 

is difficult to determine the structure by X-ray diffraction techniques and it is not 

possible to obtain information about the composition. A high-resolution transmission 

electron microscope (TEM) is required to observe and analyze the structure of the 

precipitates. Furthermore, after the mid-aging period, the concentration of the matrix 

reaches almost constant, the volume fraction of the precipitates remains almost constant 

and the precipitates become coarser while competing with Ostwald growth. Ostwald 

growth is a phenomenon in alloys where particles of different sizes are dispersed in the 

matrix, where small particles shrink and disappear and large particles grow.  

In order to evaluate the current aging treatment, it is necessary to observe the 

precipitates through nanoscale microstructure observations, such as TEM observations, 

which require a lot of time and effort. On the other hand, if big data can be constructed 

by applying machine learning-based image recognition techniques, it can be argued that 

the alloy selection and evaluation process, which traditionally requires labor and 

experience, can be significantly shortened. Therefore, in this study, as a first step, 

machine learning-based image classification techniques were applied to the 

microstructure of Al-Si-Mg alloys subjected to T6 treatment and changes in the 

microstructure of the alloy accompanying the solid solution treatment and aging 

process were identified. The aim is to verify if this is possible. If quantitative 

identification is made possible by machine learning-based image classification 

techniques, it will be possible to improve the efficiency of the material production line. 
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1.3 Application of machine learning in microstructure analysis 

With the development of computer science, especially the fields of artificial intelligence, 

machine learning is becoming an important tool for materials scientists and engineers 

to accelerate the development of new materials, processes and technologies. To 

accomplish high-throughput identification and quantification of critical aspects in the 

process-structure-property chain is one of the goals of utilizing such approaches in 

materials science.26) Machine learning as a scientific field is still new and changing as 

a result. Many of the techniques and algorithms used are already known, but new 

methods have matured in recent years, which makes machine learning considered a new 

field, even though it has existed for quite some time. As a result, the definition of 

machine learning as distinct from descriptive statistics remains vague. As data-driven 

approaches are being accepted in fields such as materials science, new variants and 

adapted machine learning methods are being designed and adapted to the unique 

challenges and data profiles of materials science. 

1.3.1 Data mining and machine learning 

Velichko et al. propose a new method for classifying microstructures using data mining 

methods.52) Data mining is the process of discovering knowledge from a data set. It 

brings together all the analytical steps needed to identify interesting trends and patterns 

in the data, including data preparation and modeling. Depending on the research 

objectives, different models can be constructed. Standard evaluation and statistical 

procedures are needed to properly interpret these models.53) In their study, Velichko and 

colleagues used support vector machines (SVM) as classifiers to classify cast iron in 

different graphite forms using data mining methods. SVMs are binary classification 

algorithms that allocate newly created unlabeled/labeled data to various classes using 

input and output labeled data from various classes. Basically, optical micrographs of 

numerous reference samples were used to deduce morphological features, and data 

mining algorithms were used to evaluate massive amounts of data. This allows the 

identification of trends, clusters or anomalies in the data, and relationships between 
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morphological parameters that can be used to characterize graphite morphology and 

derive classification models. When the model was evaluated using independent samples, 

the classification accuracy for the majority of the various graphite morphologies 

reached 95%. 

The study by DeCost and Holm showed that by using a SVM model for each image 

category, seven different materials with visual properties could be classified (ductile 

iron, gray iron, malleable iron, annealed baryons, brass hyper-eutectic steel, and high 

temperature alloys). Their classifier system achieved a cross-validation accuracy of 

83%.54) 

Unlike classical metallographic procedures, data mining methods have the advantage 

that there is no room for subjective interpretation of microstructures. Liu et al. used a 

similar data mining-based approach for the classification of complex steel structures.55) 

In their study, a workflow was developed using a nearest neighbor (kNN) classifier and 

pixel-based parameters to classify steel using optical microscopy images of single-

phase pearlite samples and mixed microstructure samples. For both types of steels, good 

agreement was found in terms of phase fraction compared to manual classification 

results. In the case of pearlite, there was no classification workflow, so the manually 

created structures were tested with the first method with an accuracy of 93.8%.  

The aim of the work of Gola et al. was to demonstrate that the data mining process 

combined with traditional microstructural parameters can be used as a means to 

objectively classify the microstructure of ferritic matrix duplex stainless steels, using 

support vector machines as classifiers. The structure of the data mining process, the 

different preprocessing and data and partitioning options are described. In contrast to 

the graphitic morphology of cast iron, the typical microstructure of steel is more 

complex due to the presence of substructures. Therefore, morphological features that 

were extracted from optical and electron microscope images served as the basis for the 

classification. The model is trained using a lot of data in order to achieve a high level 

of generalization. The model is initially trained using a database made up of several 

structures and objects that represent various kinds of microstructures. The results 
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demonstrated the feasibility of data mining techniques for the objective classification 

of various steel structures based on morphological features.56) 

In addition to data mining, deep learning methods can also be applied to microstructure 

classification. For example, automatic microstructure recognition was achieved by 

Chowdhury et al. A case study of an image-driven machine learning approach. 

Dendritic morphology is particularly relevant for classification with minimal prior 

expertise. As a result, the expected knowledge gain is claimed to be comparable to 

human performance, but not better. The first classification task is to distinguish between 

dendritic and non-dendritic microstructures. The second classification task aims to 

determine the orientation of longitudinal and transverse dendrites by means of a 

continuous binary classification task performed in cross-section. Images consisting of 

different materials of various sizes were used as initial data input. The micrographs are 

represented as feature vectors by feature extraction and dimensionality reduction. 

Different classification models are trained, validated, and tested using these feature 

vectors. They are made up of a collection of features depicted in the images. A high-

dimensional feature vector is used to represent an image, as shown in Fig. 1.11. Feature 

selection is used to increase computing efficiency by reducing the feature vector while 

retaining all crucial image information (e.g., reducing the sparsity of the vector). 

Different dimensionality reduction methods were evaluated, but overall, the 

convolutional neural network performed the best generalization and scored the highest 

in both classification tests with 92-98% accuracy.57) 
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Fig. 1.11 Overview of approach used in classification of micrograph data. The approach 

summarized here shows 140 different combinations of feature extraction, feature selection and 

classification methods completed. The same approach presented here was completed first for Task 

1 (Data Set 1), then for Task 2 (Data Set 2).57) 

 

1.3.2 Computer vision and CNN 

A number of techniques are used in computer vision (CV) to produce feature vectors, 

which are numerical representations of visual images. The majority of these techniques 

are designed for certain purposes like face recognition, object recognition, and texture 

analysis, etc.58-69) There are, however, just two fundamental CV strategies used 

throughout the application sector. Convolutional neural network (CNN)-based and 

feature-based representations. An image representation—basically a statistical 

representation of the visual features of an image—is created using the feature-based 

approach. The original image is given a filter,54, 70-73) which is applied and activated 

when a feature64) (usually an edge, corner, or speckle) is encountered. The image 

representation is made up of a collection of feature descriptors, 74, 75) each of which is 
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digitally encoded with a descriptor.60, 64) The activation of filters is another visual 

feature used by CNNs. The major difference between CNNs and feature-based picture 

representations is that whereas CNN filters are taught during CNN training and 

optimization, feature-based techniques use filters selected by human experts. 

Furthermore, in a typical CNN task, the activation of the filter is not abstracted into the 

image representation. As a feature map of the image, it is utilized directly instead.76) As 

a result, with the release of the AlexNet CNN in 2012, CNNs have performed better 

than feature-based techniques (often those used by human experts77)) among almost all 

CV tasks.78) 

The basic goal of computer vision is to represent the visual content of an image in 

digital form, and there are many ways to do this with CNNs. Among them, CNN layers 

and super columnar pixels are two methods that are particularly suitable for 

microstructure images. Convolutional neural networks take an image or image-like data 

as input, apply various signal processing operations to encode it as a vector, and use 

artificial neural networks or other ML methods to draw conclusions about the visual 

content of the image. The first part of the CNN pipeline, encoding images into feature 

vectors, is called the feature learning phase, while the second part is the classification 

phase that drawing conclusions. In the feature learning phase, the CNN raster filter 

patch set is moved pixel by pixel and the activation values of the filters are recorded, 

as shown in Fig. 1.12. This operation starts with the image, generating the first 

convolutional layer, and proceeds in subsequent layers generating the second to nth 

convolutional layers. After several convolutions, the activation is modified (usually by 

a modified linear unit ReLU, where the filter converts negative values to zero). Pooling 

(or down sampling) merges several pixels of one layer into one pixel of the next layer 

and performs another series of convolutions. After several iterations of convolution and 

pooling, the final layer, the complete combined layer, is expanded and written as a 

vector to form the representation used for decision making in the classification stage.76, 

79) It is worth noting that the convolution process produces CNN features that are 

translation invariant, but not rotation or scale invariant. This means that a feature may 



Microstructural Classification of Al-Si Casting Alloys with Machine Learning Techniques 

24 

require multiple representations, for example, to capture different geometric 

orientations in the microstructure.  

Designing and training CNNs requires deep expertise and large datasets (often millions 

of images), which is not realistic for most microstructure datasets. However, CNNs 

optimized and trained on a large number of natural images have been successfully used 

for other types of images containing microstructures. The transferability of this result 

may be due to the fact that images of very different things share common visual features, 

such as edges, spots, and visual textures. Thus, pre-trained CNNs, such as the VGG16 

network76) trained on the ImageNet dataset, can be used to represent microstructures by 

transfer learning. However, since assigning microstructure images to ImageNet 

categories such as broccoli, barrels, and haggis does not make sense to material 

scientists, the network is usually truncated before the classification stage. Instead, the 

CNN layer itself was used as the image representation for the ML task. Typically, 

dimensionality reduction coding, such as principal component analysis (PCA) or vector 

of local aggregation descriptors (VLAD), is used. It reduces the length of the feature 

vector used for efficient computation.70)

Which layer of the CNN representation is the best choice for the feature vector depends 

on the characteristics of the micrograph.80) The deep layer captures features at large 

length scales because the pooling operation produces deep pixels that represent a large 

area of the original image. In contrast, shallow filter activations represent the local 

environment. Thus, visually simple micrographs, such as the equiaxed polycrystal, can 

be more fully represented in the shallow layers, while complex microstructures, such 

as the carbide structure, can be more fully represented in the deep layers and more fully 

capture the multiscale structure. However, there is currently no mechanism to determine 

the best layer to represent a particular type of microstructure a priori. Instead, decisions 

are made through iterative experiments.70, 80) 
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Fig. 1.12 The feature learning stage of a CNN. The input image i (left) is processed through layers 
c1,1 through cM,N. Pooling decreases image resolution between groups (or blocks) of layers. A 

feature vector for the image as a whole, C(i), may be constructed by flattening any of the layers 
(here, the c2,5 convolution layer shown in blue). Alternatively, a feature vector for each pixel p 
may be assembled from filter activations in all the layers, giving the hypercolumn pixel vector, 

H(p).81)

To obtain a more complete representation of the image, one may wish to combine 

information from all convolutional layers. This is the basis for the pixel feature vector 

at the top of the column58), as shown in Fig. 1.12. Holm et al.81) start with a pre-trained 

CNN image and its convolutional layers, for each pixel selected in the original image, 

a super column is constructed by stacking the activations of the convolutional layers at 

the true spatial location of the pixel. The result is an image representation in which each 

super column stores information about the feature members of the pixel on multiple 

length scales. Using a per-pixel super column to represent an image consumes a large 

amount of memory, so a sparse subset of pixels is usually chosen. Sub-column features 

are mainly used for image segmentation tasks. Finally, note that CNNs can work in 

reverse (i.e., using inverse convolution) and generate images from the feature vector. 

This is the basis for variable autoencoders (VAE)82) and generative adversarial networks 

(GAN). These methods can be used to generate realistic synthetic images83, 84) and to 

improve image resolution85), among other applications.86, 87) 
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1.4 Objectives of this study 

The microstructure of metallic materials significantly affects their properties. Therefore, 

one of the most critical parts in the characterization of metallic materials is the 

investigation of microstructure. Traditionally, the classification of microstructure is 

mostly accomplished manually by human specialists, which introduces subjectivity-

related uncertainties. Various intelligent image analysis techniques have developed in 

recent years with the advancement of computer technology, offering new thoughts to 

microstructure evaluation. As a result, there have been many attempts at the 

classification and characterization of the microstructures by using machine learning 

techniques and related technology, for the purpose of improving the accuracy and 

efficiency of microstructure analysis compared to the traditional methods.  

Numerous outstanding accomplishments have been made in the study of recognizing 

and classifying the microstructure of the steel. However, there hasn't been much study 

done on aluminum alloy, a structural material that is as important as steel. The 

morphology and distribution of second-phase particles play an important role in the 

mechanical properties of casting Al alloys. In this study, we attempted to classify the 

microstructures of Al-Si casting alloys at different casting conditions and aging at 

different times by using machine learning techniques. Besides, quantitatively analyzed 

the morphology and distribution of second-phase particles in the matrix with our 

originally developed methods.  

In this study, we attempted to classify the microstructures of Al-Si casting alloys at 

different casting conditions and different time of aging by using machine learning 

techniques. Besides, quantitatively analyzed the morphology and distribution of 

second-phase particles in the matrix with our originally developed methods. This work 

hopes to help improve the accuracy and efficiency of microstructural analysis for 

quality control and for the design of new aluminum alloys with desirable properties. 
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1.5 Outline of this thesis 

In Chapter 1, background information about the Al-Si casting alloy was presented, 

including the effect of cooling rate, modification treatment, and aging treatment on the 

microstructures of this alloy and possible mechanisms. In addition, some examples of 

machine learning and neural network applications in the field of materials science and 

related research results were listed. 

In Chapter 2, the originally developed quantitative analysis method for the spatial 

distribution of second-phase particles used in this study was described in detail, as well 

as the specific process of machine learning and the calculation of classification rates. 

The classification of the microstructures of Al-Si casting alloys at different stages of T6 

heat treatment using the above methods was also included. 

The classification of the microstructures of Al-Si alloys casting at different cooling rates 

was accomplished by machine learning techniques, the results and discussions were 

shown in Chapter 3. The classification rate and its change with the number of images 

in training data were measured, and a suitable number of images for training was found. 

In Chapter 4, the Al-Si casting alloys were modified by Sr, and the microstructural 

classification of unmodified and Sr modified samples was completed by machine 

learning techniques. The distribution and morphology of eutectic Si-phase differences 

before and after modification were quantitatively analyzed using our originally 

developed methods. The classification results, the effect of Sr additive on the 

distribution and size of eutectic-Si particles, and the correlations between mechanical 

properties and microstructural features were discussed. 

The results and discussions from the above-mentioned investigation are summarized in 

Chapter 5.  
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2.1 Introduction 

In machine learning, the high-dimensional feature vector is used to extract quantitative 

visual information. This information may include a classification (such as classification 

of ferritic, austenitic, and martensitic, etc.), association with a metadata value (such as 

yield strength), measurement (such as grain size), presence of a specific feature (such 

as surface defect), or any other value that may be present in the feature vector. There 

are essential roles for both supervised and unsupervised machine learning (ML) 

techniques. Supervised ML techniques are taught using known right answers, or 

"ground truth," whereas unsupervised ML techniques uncover patterns without 

knowing a "ground truth." 

The selection of supervised machine learning technique relies on the application and is 

made from a broad range of approaches. For visual image feature vector data, 

supervised ML systems often utilized include support vector machines (SVM)1, 2), 

random forest (RF) classifiers3), and deep learning techniques such artificial neural 

networks (ANNs)4-6). 

SVMs work by figuring out which set of hyperplanes best divides feature vectors into 

groups based on the kind or class of the underlying ground truth. Additional vectors 

may be categorized and associated with the appropriate group after the separation 

planes are established. Flexibility, generality, and performance are benefits of SVM. 

However, whether the high-dimensional data structure is amenable to planar separation 

determines whether an SVM model will be successful. 

To determine the class of an image, RF classifiers first build a number of decision trees; 

choices made inside each tree are dependent on the values of feature vector components. 

The trees each provide a forecast, and the classification is determined by majority rules. 

The feature vector components that make up the trees and their decision values are 

tuned during the training phase of an RF classifier to provide the best agreement with 

the known ground truth. The trees may be used to categorize new vectors once they 

have been tuned. Interpretability is a benefit of RFs since the justification for a choice 
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can be readily validated7). However, RFs are not always simple to apply to intricate 

picture representations. 

ANNs use a neural network's hidden layers to analyze the feature vector and provide a 

prediction about the picture8). The ANN's connection and structure may take on a 

variety of shapes, and its architectural design is chosen to enhance performance, often 

by trial and error. The weights of the connections between neurons in the input, hidden, 

and output layers are tuned throughout the learning process to provide the best match 

with the recognized ground truth. The weights must be chosen before the ANN can 

predict previously unknown vectors. As a class, ANNs scale to accommodate both 

massive volumes of data and data with very high dimensions. However, since they are 

black box models, it might be difficult to understand how decisions are made. 

Without the use of human involvement or ground truth data, unsupervised machine 

learning algorithms identify correlations between visual representations by creating 

clusters of similar images. One unsupervised clustering technique is k-means9). The k-

means algorithm divides a collection of N-dimensional feature vectors into a user-

specified number of N-dimensional clusters that minimizes a cost function that is a 

measure of "cluster quality," such as cluster compactness. k-means employs a variety 

of computing techniques to identify effective solutions since finding a globally 

optimum clustering is an NP-Hard problem, which demands exponential computing 

time. This has the effect that, for a given collection of vectors, the output of k-means 

may differ depending on the computing settings. K-means clustering has the benefit of 

identifying a collection of cluster centroids, allowing for the direct association of extra 

vectors with clusters. As a result, it may serve as a foundation for categorization. As a 

complete N-dimensional representation, one drawback is that it could be difficult to 

visualize the findings in 2D or 3D. 

To find clusters based on picture similarity, there are many techniques available for 

visualizing high-dimensional image representations in two or three dimensions. In the 

examples that follow, we employ t-distributed stochastic neighbor embedding (t-SNE)10, 
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11), which heavily favors grouping similar images but fails to recognize relationships 

between dissimilar images. t-SNE weights image similarity on a nonlinear scale that 

rapidly diminishes as image similarity decreases. Low-dimensional clusters may 

frequently be found and seen with t-SNE, which is a benefit. Because t-SNE is built via 

pairwise comparisons of feature vectors, it has the drawback that it cannot be used for 

classification because new data cannot be added to an t-SNE map without completely 

recalculating it. 

The kind of input data and the intended result will choose the ML modality and model 

to use. Frequently, different strategies are tried and their effectiveness as well as other 

benefits and drawbacks are assessed. Since the best-in-class solutions are always 

changing, it is advantageous to include a domain specialist in ML algorithms in this 

process. 

Supervised learning was used in this research. The main goal of supervised learning is 

a method for creating and learning models from pre-labeled training data in order to 

predict and classify unknown data. "Classification" is positioned as a subfield of 

supervised learning, the purpose of which is to predict the category labels of new data 

based on previous learning. In this study, the classification of aging treatments was 

performed with the samples labeled "Casting", "Solution treatment", "Aging time 10 

mins", "Aging time 1 hour", "Aging time 2 hours" and "Aging time 6 hours". We used 

copper molds with variable temperatures for the casting of Al-Si alloys and obtained 

samples with three different cooling rates, which were identified by sample labels 

according to the cooling rate. For the modified treatment, two categories labeled "no 

modified treatment" and "with modified treatment" were covered, as well as three 

categories labeled "no Sr addition", "0.01 wt% Sr content" and "0.02 wt% Sr content".  
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2.2 Machine Learning Processes 

Tens to hundreds of microstructure photographs are randomly taken on the sample 

cross-section using an optical microscope, and after image processing, the feature 

values associated with them are extracted from the processed microstructure 

photographs, and then machine learning techniques are applied to identify and classify 

the microstructure of samples with different time aging treatments and different casting 

conditions. As shown in Fig. 2.1, the actual learning process of supervised learning is 

divided into a "learning phase" and an "evaluation phase". In the learning phase, the 

pre-labeled images are binarized and features are extracted from the binarized images. 

The binarization process is described in detail in Section 2.2.1. A discriminator is then 

created based on the various extracted features. The discriminators created in this study 

use the following two algorithms, Support Vector Machine (SVM) and Random Forest 

(RF). Both algorithms are explained in detail in Section 2.2.3. Next, the image to be 

recognized (test image) is similarly binarized and features are extracted. The features 

used in this study are LN2D, IMFP, area fraction, number density, diameter, long edge, 

narrow edge, aspect ratio, and roundness. This will be explained in detail in section 

2.2.2. These features extracted from the test images are compared with the data from 

the created discriminator to determine which label they belong to. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Flow chart of machine learning process. 

Learning phase 

Evaluation phase 
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2.2.1 The process of binarization 

Binarization is an image processing process that converts the target image into black 

and white. This process increases the processing speed of machine learning and 

extracting features from the input image becomes easier. The process of binarization is 

shown in Fig. 2.2. First, the brightness value of the original image is adjusted to clarify 

the shadows of the image, and the image is blurred with a bilateral filter, which is used 

because it preserves the sharp edges of the second phase compared to the Gaussian filter. 

After that, it is converted to a binary image using adaptive thresholding as shown in 

Equation (2.1). Here θ denotes the threshold value (range of possible density values: 0-

255), and the density value f (x, y) in a certain coordinate system and the converted 

density value f′ (x, y) are used. In most thresholding methods, the same threshold is 

applied to all pixels of the image. However, in some cases, it may be useful to apply 

different thresholds to different parts of the image depending on the local brightness of 

the pixel. This method is called adaptive thresholding. This method is particularly 

useful in cases where the image has an uneven brightness. Finally, binarization is 

performed by noise reduction through an opening procedure. The opening procedure is 

a basic method of morphological noise reduction that combines the erosion operation 

and the expansion operation of image processing. A specified amount of reduction is 

followed by a similar amount of expansion. Dilation is a method that replaces the white 

pixels of interest with white pixels if there are white pixels in the vicinity of the pixels 

of interest. Conversely, if there is even one black pixel in the surrounding area, the 

shrinkage process replaces the focal pixel with a black one. 

 ݂ᇱ(ݕ,ݔ) = ቄ  2550 (ݕ,ݔ)݂ ℎ݁݊ݓ          ≥ (ݕ,ݔ)݂ ℎ݁݊ݓߠ   <    ߠ 
 
  

(2.1) 
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Fig. 2.2 Procedure of the binarization process. 
 

 

2.2.2 Feature extraction 

After binarization, every particle in the metal matrix could be located, and the gravity 

center, area, perimeter, circumscribed rectangle, etc., of the particles will be marked 

automatically, as shown in Fig. 2.3. Feature extraction is performed and the parameters 

of the second phase particles, such as the area fraction and number density of the second 

phase particles, as well as the equivalent circle diameter, long and short side lengths, 

aspect ratio, and circularity, are measured. The features extracted from the binary 

images including LN2D, IMFP, Area fraction, Number density, Diameter, Long and 

Narrow side, Aspect ratio, and Circularity, the descriptions of which are shown in Table 

2.1. The mean and standard deviation of the features are used for machine learning 

features. The LN2D and IMFP are our originally developed methods to quantitatively 

describe the distribution of second phase particles in the matrix. The details of these 

two methods will be elaborated at next section. 
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Table 2.1 Descriptions of the features 

Name Description 

LN2D 
2-dimentional local number, quantitative analysis of the 

distribution of second phase particles. 

IMFP 
Image mean free path, quantitative analysis of mean free path of 

dislocation motion. 

Area Fraction Area fraction of second phase particles in matrix. 

Number Density Number of particles per unit volume. 

Diameter Equivalent circle diameter. 

Long side Long side of second phase particles. 

Narrow side Narrow side of second phase particles. 

Circularity 
C = 4πA/L2 (A: area size, L: perimeter), The closer the value is to 

1, the closer the area is to circle. 

Aspect ratio  

Fig. 2.3 The gravity center, area, perimeter, circumscribed rectangle, etc., of the particles. 
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2.2.2.1 Definition of LN2D 

Two-dimensional local number (LN2D)12) is a quantitatively evaluating method of the 

spatial distribution of second phase, Fig. 2.4 shows an overview of the LN2D 

measurement method. The number of gravity centers (GC) of second phase in the 

measuring circle is defined as LN2D. Since the center of the measuring circle is located 

on GC, the number of LN2D samples is equal to the total number of GCs measured in 

LN2D. The radius of the measuring circle is determined so that the number density of 

the circle including 7 GCs corresponds to the whole number density in 2-dimension, 

where 7 means the number of a noticed GC and nearest neighbor GCs in the measuring 

circle when assuming the closest hexagonal structure, as shown in Fig. 2.4 (a). The 

measuring radius, R2D, is represented by 7ܴߨଶ஽ଶ = ஺ߣ   ⟹   ܴଶ஽ = ൬ ஺൰ଵߣߨ7 ଶ⁄ = ஺ଵߣ1.493 ଶ⁄  

where λA is the whole number density of second phase.  

 

 

 

 

 

 

 

 

 

 

 
 
 

(2.2) 
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Fig. 2.4 Measuring circles at the closet hexagonal ordered and random arrangements of gravity 

center (GC) of particles. 

If the model shown in Fig. 2.4 is assumed and the measurement circle obtained from 

equation (2.2) is placed at an arbitrary position (Fig. 2.4 (c) and (d)), the number of 

particles in the measurement circle will be more in the dense region and less in the 

sparse region. In this case, two-dimensional local number in random circle (LN2DR) is 

a measurement method in which the measurement circles are placed randomly. The 

same measurement circles are used in LN2DR. In this study, the spatial distribution is 

evaluated by the frequency distribution of the LN2DR. When the distribution is 

uniformly random in both dimensions, according to the Poisson distribution, the 

number k of points presents in the measurement circle when a window of area A 

(hereafter WA) is placed anywhere in the plane is represented by 

ܲ(݇) = ஺ߣ) ஺ܹ)௞݇! ஺ߣ−)݌ݔ݁ ஺ܹ)     ݇ = 0, 1, 2⋯ 

where P(k) is the probability when the number of points in the measurement sphere is 

k, and λA is the number of points per unit area (number density). According to the 

definition of the two-dimensional measurement circle, λAWA = 7. Therefore, the LN2DR 

follows the Poisson distribution formula in Equation (2.4). If the measurement circle 

follows this distribution, then the particle's center-of-mass points are randomly 

distributed. 

ܦ2ܰܮ)ܲ = ݇) = 7௞݇! ݇     (7−)݌ݔ݁ = 0, 1, 2⋯ 

As mentioned previously in this section, the number of LN2D samples is limited, while 

LN2DR is an evolved version of LN2D, since the center of measuring circle is 

randomly located in the measuring process of LN2DR, the number of samples can be 

increased to the order of one million. The average of this distribution is 7, and the 

dispersion of the second phase particles is more uniform the lower the variance value 

of LN2DR. The average and the variance of LN2DR were utilized for machine learning 

features. 

(2.3) 

(2.4) 
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2.2.2.2 Definition of IMFP 

Image mean free path (IMFP)13) is the amount related to the mean free path of 

dislocation motion, Fig. 2.5 shows an overview of the IMFP measurement method. 

IMFP is the distance that a randomly occurring dislocation in a native crystal can move 

in a random direction, which is measured by following procedures. (1) A staring point 

A in aluminum matrix and two traveling directions (red and blue arrows) are selected 

randomly. (2) A free path length, lf, between the starting point in aluminum matrix and 

encountered silicon eutectic is measured, but measurement starts again from procedure 

(1) when some edge of image is found (green arrows). Procedure (1) and (2) were 

repeated at least one million times, and the image mean free path was calculated by 

averaging a (IMFP Single) or a + b (IMFP Double). The average and the standard 

deviation of the free path length, lf, were utilized for machine learning features. The 

IMFP indicates that the smaller the IMFP, the shorter the distance that the misalignment 

can move. Therefore, it can be assumed that the strength tends to increase as the value 

of IMFP in the image decreases. On the other hand, elongation is considered to have a 

tendency to decrease with decreasing IMFP values in the image13).  

2.2.3 Classifiers of machine learning 

2.2.3.1 Support vector machines (SVMs) 

Support vector machines (SVMs) are pattern discriminators developed by Vapnik et al. 

Pattern recognition is the classification of an object consisting of several classes into a 

particular class. SVMs were initially intended to be used with binary (two-class) 

situations. A proper multi-category method is required when dealing with challenges 

that span many categories. Multiclass problems are frequently solved using methods 

like " one against one " and " one against the rest "1, 14). SVMs are widely used not only 

in electrical and electronic information processing, such as character recognition and 
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fault diagnosis, but also in medicine and chemistry because of their high discriminative 

power and flexibility of application.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Schematic of the measurement of IMFP. 

By utilizing the obtained data for learning, SVMs create patterns. Although SVMs are 

based on statistical learning theory, their most significant characteristic is their 

generalization capacity to recognize data that has not been used for training. By learning 

to identify data that has not been used for training, SVMs may enhance this 

generalization ability. The goal of SVMs, which are based on statistical learning theory, 

is to locate the decision boundary that results in the optimal separation class. The SVM 

chooses a linear decision boundary that leaves the two classes with the greatest possible 

margin of separation in a two-class pattern recognition task when the classes are linearly 

separable. The margin is calculated as the sum of the distances between the two classes' 

closest points and the hyperplane. Quadratic programming (QP) optimization methods 
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can be used to tackle this margin maximization problem. The margin is calculated using 

the data points that are closest to the hyperplane. These data points are therefore referred 

to as "support vectors," and they are always small in number. 

SVM can also be applied to nonlinear problems with complex boundaries between two 

classes. However, instead of dealing with nonlinear problems directly, it maps the space 

representing the original data to a high-dimensional feature space, trying to find a 

hyperplane that maximizes the margin while minimizing a quantity proportional to the 

number of misclassification errors. The tradeoff between margins and misclassification 

errors is controlled by a user-defined positive parameter C. SVMs can also be extended 

to handle nonlinear decision surfaces. Boser et al.15) proposed a method that projects 

the input data into a high-dimensional feature space through some nonlinear mapping 

and formulates a linear classification problem in that feature space.  

Nonlinear classification can also be performed by defining a function (called a kernel) 

that is appropriate for each specific problem. This is known as a kernel trick, and 

methods using kernel tricks are collectively referred to as kernel methods. Kernel 

functions are used to reduce the computational cost of dealing with high-dimensional 

feature spaces. The following is a description of a support vector machine with a kernel. 

First, a hyperplane is defined as in Equation (2.5). where w is a weight function, x is 

data, and b is a constant. ࢝ ∙ ࢞ − ܾ = 0 

In equation (2.5), the data closest to the hyperplane is x , and a good adjustment of the 

weights and constant multipliers yields equation (2.6). ࢝ ∙ ࢞∗ − ܾ = 1 

Then the distance from the hyperplane to the data x  is 1/|w|. Now, maximizing the 

distance from the hyperplane to the data closest to the hyperplane can be replaced by 

the problem of minimizing |w|2. Since the data closest to the hyperplane has the 

relationship shown in Equation (2.6), the following conditions hold for the other data. 

(2.5) 

(2.6) 
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࢝ ∙ ࢞ − ܾ ≥ 1 ࢝ ∙ ࢞ − ܾ ≤ −1 

This, together with the correct classification value t (t = +1 or -1), leads to the condition 

shown in Equation (2.7). ݐ(࢝∗ ∙ ࢞ − ܾ) ≥ 1 

In summary, the problem that SVM must solve is the following optimization problem 

for w and b. 

min       ܳ(࢝, ܾ) = 12 |࢝|ଶ ݏ. ࢝)ݐ     .ݐ ∙ ࢞ − ܾ) ≥ 1 

Such an inequality-constrained optimization problem can be solved by the Lagrange 

undetermined multiplier method as in Equation (2.8). 

(ߙ,ܾ,࢝)ܮ = 12࢝−෍ߙ௜(ݐ௜(࢝ ∙ ࢏࢞ − ܾ) − 1) ࢝ = ∑௜ ܾ ௜࢞௜ݐ௜ߙ   = ࢝ ∙ ࢞∗ − 1 

The hyperplane derived from these equations is as in Equation (2.9). ݂(ݔ) = ∑௜  ߙ௜ݐ௜࢞௜ ∙ ࢞࢐ − ܾ  
The optimization problem and the hyperplane equation have an inner product, which is 

replaced by the kernel function K. Equation (2.8) becomes Equation (2.10). 

max (ߙ)ܳ      = ෍ߙ௜ − 12௜ ෍ߙ௜ߙ௝ݐ௜ݐ௝(࢐࢞,࢏࢞)ܭ௜,௝  

.ݏ ௜ݐ௜ߙ෍       .ݐ = ௜ߙ   ,0 ≥ 0௜  

(ݔ)݂ = ∑௜  ߙ௜ݐ௜ܭ(࢞௜,࢞) − ܾ  

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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Using equation (2.10) to determine a kernel function K that returns some value from 

the two feature sets, the SVM can solve the optimal problem from there and derive a 

model that classifies the data into two categories16). 

2.2.3.2 Random Forest (RF) 

Random Forest, first proposed by Breiman17), can be seen as an extension of Bagging 

integration learning. It is a method of prediction using a large number of randomly 

generated decision trees, and the most widely used machine learning method today and 

in many cases does not require parameter tuning or data scaling. Multilevel 

classification and regression problems can also be easily handled, and many decision 

trees can be used without causing overtraining. In classification problems, the 

categories are determined by a majority vote of the categories predicted by each 

classification tree. 

The random forest first uses the bootstrap resampling technique, where n samples 

(typically 2/3) are repeatedly drawn at random from the original training sample set T 

in a replayed manner to generate a new set of training samples, and each independently 

drawn training sample is used to train a tree, and the n decision trees generated based 

on the self-help sample set form the forest. Each tree has the same distribution and the 

classification error depends on the classification ability of each tree and the correlation 

between them. The remaining unextracted data set is called out-of-bag (OOB), and its 

error is an unbiased estimate that can be used to verify the performance of the model to 

prevent overfitting. 

The generalization error P* of a random forest is defined as ܲ∗ ≤ 1)ߩ − ଶݏ(ଶݏ  

where ρ is the average value of decision tree correlation, and s is the average strength 

of the decision tree. 

From equation (2.11), it can be seen that to enhance the generalization performance of 

the random forest, the correlation between each underlying decision tree model needs 

to be reduced or the strength of the decision tree needs to be enhanced. For this purpose, 

(2.11) 
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random perturbations of feature variables are introduced in the random forest algorithm, 

i.e., the split nodes involved in each tree may be different. Therefore, the training 

samples and each node variables are randomly generated in the random forest algorithm. 

Decision tree algorithms are a large family, and Breiman etal.18) builds random forests 

based on classification and regression trees. In the process of building each 

classification and regression tree, the splitting process of each node relies on the 

calculation of the "purity" of the split sample, and the classification and regression trees 

use the Gini coefficient to measure this so-called "purity", i.e., the random forest uses 

the Gini index to The Gini index is used to split the tree to complete the decision. The 

smaller the Gini coefficient, the higher the purity of the samples and the better the tree 

partitioning. Assuming that the sample set T contains k categories, the Gini coefficient 

of the sample set can be expressed as follows 

݃݅݊݅(ܶ) = 1 −෍݌௜ଶ௞
௜ୀଵ  

where pi is the probability of containing class i in T. If T is partitioned into two subsets 

T1 and T2, the Gini coefficient after partitioning can be expressed as ݃݅݊݅( ଵܶ, ଶܶ) = | ଵܶ||ܶ| ݃݅݊݅( ଵܶ) + | ଶܶ||ܶ| ݃݅݊݅( ଶܶ) 

where |*| represents the number of elements in the current sample set. 

The advantages of the random forest classifier including: fewer parameters to be 

selected and simple implementation; the ability to handle high-dimensional data 

without feature selection; the ability to internally perform unbiased estimation of 

generalization error with good generalization capability; and the use of sampling 

techniques to select samples that can effectively handle class-imbalanced data. 

2.2.4 Classification 

2.2.4.1 Evaluation of classification rate 

As shown in Fig. 2.1, the images will be randomly taken out and divided into 2 parts, 

one part for training, and the other part for test, which means that the images belonging 

(2.12) 

(2.13) 
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to training data were only used for machine learning, and the images belonging to test 

data were only used for classification. After the preprocessing, the data of extracted 

features will be used to train the model and a classifier will be used for the classification. 

Two kinds of classifiers, SVM and random forest, were used in this work. Our system 

is suitable for two-class problems, which is to compare and classify two different 

structures at one time. Both the training data and the test will contain microstructural 

images of two different samples (have the same amount), and in the training data, the 

different images will be marked by label 0 or label 1, depending on whether it belongs 

to the same sample. After the machine learning process, the test data of mixed images 

of two samples will be marked label 0 or 1 by the classifier model being trained. If one 

image marked as label 0 in the result belongs to the same sample as the image with the 

same label in the training data, it is regarded as a correct recognition, otherwise, it is an 

error. The classification rate will be the percentage of the total correct recognition 

number in all images of test data. The classification rate, R, calculated by ܴ = ௖ܰܰ × 100  

where Nc is the number of images that classified correctly and N is the total number of 

images in test sets. Dozens of images for each sample were prepared, and about 50% to 

80% images are used for learning phase and about 20% to 50% images were used for 

evaluation phase. 

2.2.4.2 Principal component analysis (PCA) 

Principal Component Analysis (PCA)19) is one of the unsupervised learning. In general, 

the vector space dealt with in the problem of image recognition is often 

multidimensional. Therefore, a method that can reduce the dimension while 

maintaining the maximum amount of information is very useful. PCA is a method of 

reducing the information contained in p feature values (variables, x1, x2, x3, …, xp) to m 

synthetic feature values (m < p). If a linear subspace that closely approximates the 

distribution of feature vectors can be constructed, it will be possible to compress the 

dimensions while preserving the statistical features of the data. Also, by performing 
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PCA, information such as contribution rate, cumulative contribution rate, and plot 

diagram of principal components can be obtained. By analyzing these data, it is possible 

to infer which feature quantity contributes significantly to image classification. 

2.3 Classification of the aging process samples 

2.3.1 Experimental material 

For comparison before and after aging treatment, an Al-4%Si-0.5Mg alloy was used in 

the experiments. The specimens were prepared by gravity casting using ingots of pure 

Al, Al-24.3%Si alloy and Al-10%Mg alloy. 

2.3.2 Pretreatment steps 

Al-4 %Si-0.5 %Mg alloy specimens prepared by gravity casting were polished using 

#600 sandpaper, #800, #1000, and #2400 in that order, followed by mirror finishing 

using 3 μm and 1 μm diamond slurries. Thirty images of the microstructure of the 

mirror-finished surfaces were taken using an optical microscope (OM) at 400x 

magnification for each of the casting, solution annealing, and aging treatments. 

Indentations were made using a Vickers hardness tester as landmarks so that similar 

locations could be photographed for each treatment. The experimental conditions for 

solution annealing and each aging treatment are shown in Table 2.2. The aging 

treatments were performed on the same specimens in sequence so that changes in the 

microstructure of the same component could be observed. The samples were stored in 

a freezer to prevent spontaneous aging. 

 

Table 2.2 Experimental condition of T6 treatment 

 
Holding 

temperature (K) 
Holding time (ks) Cooling method 

Solution treatment 808 21.6 Water-cooled 

Aging treatment 473 0.6, 3.6, 7.2, 21.6 Air-cooled 
 

2.3.3 Analysis methods 
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There are 2 kinds of data types used in this study, histogram data, which is the relative 

frequency (R-frequency) distribution of the features, and statistical data, which is the 

average values and standard deviation of the features. In the case of R-frequency 

distribution, MPLearn, a machine learning-based image classification software 

developed in our laboratory, is used for comparison before and after aging treatment. 

In the case of statistical identification, MaterInfo, a web application developed in our 

laboratory, is used.  

The classification rate calculated is the average of 10 repetitions of the classification 

process. The number of images used to create the classifier during the training phase is 

30 for the comparison of R-frequency distributions, 96 for the training using statistics. 

The conditions of the feature values used in the classification in the T6 process are 

shown in Table 2.3. In condition (1), the mean, variance, and standard deviation of each 

value are used for classification. In condition (2), the minimum, maximum, median, 

mean and standard deviation are used for the equivalent circle diameter, lengths of long 

and narrow sides, aspect ratio and circularity. However, the area ratio and number 

density are constant values.  
 

Table 2.3 Feature conditions using statistical values. 

 Condition (1) Condition (2) 

LN2D ave, var ave, var 

IMFP ave, std ave, std 

Area fraction const const 

Number density const const 

Diameter mean, std min, max, median, mean, std 

Long side mean, std min, max, median, mean, std 

Narrow side mean, std min, max, median, mean, std 

Aspect ratio mean, std min, max, median, mean, std 

Circularity mean, std min, max, median, mean, std 
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2.4 Result and Discussion 

2.4.1 Hardness 

First, Fig. 2.6 shows the results of Vickers hardness measurements for the samples used 

in this experiment at each treatment stage. The results show that the sample at 3.6 ks 

has the highest hardness due to aging and the sample at 21.6 ks has the lowest hardness. 

It is considered that the precipitates became coarser and softer at 21.6 ks due to over-

aging. The change in hardness indicates that the aging treatment changed the 

microstructures of the alloys. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Isothermal aging-hardness curve of Al-4%Si-0.5%Mg 

 

2.4.2 Microstructures and binarization 

The binarized microstructural images are shown in Fig. 2.7. Because the number of 

images used in the analysis is very large, an example of a binarized image from each 

process is shown here. Comparing the results in Fig. 2.7, there are significant 

differences between the microstructural images obtained by free casting and those 

obtained by other solution annealing and aging treatments, and it can be inferred that 
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they can be discriminated successfully. However, the solution annealing and aging 

images do not show significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Binary image of microstructure (a) after casting, (b) solution treatment, 

(c) aging treatment (0.6 ks), (d) aging treatment (3.6 ks), (e) aging treatment (7.2 ks), 

 and (f) aging treatment (21.6 ks). 
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2.4.3 Classification results 

Table 2.4-2.9 and Table 2.10-2.12 show the results of the two classification results using 

SVC and RFC for each of the conditions shown in Table 2.3, and the results for each 

test size for the solution annealing treatment and each aging treatment, respectively. 

Comparing the results in Tables 2.4-2.12, it can be said that the discrimination is 

possible because the classification rate is very high in the case of casting free and other 

treatments, regardless of which classifier is used, as can be inferred from the images of 

the experimental results. However, the rate of classification between solution annealing 

and each aging treatment was not high.  

Fig. 2.6 shows that the hardness peaked at about 7.2 ks of aging time and then softened 

due to over aging, suggesting that aging precipitation occurred with aging treatment 

and then precipitated particles grew by Ostwald growth as the aging time progressed. 

However, the reason why the classification rate did not change as the aging time 

progressed is that the strengthening mechanism due to aging precipitation and the 

growth of particles due to over-aging could not be detected in the OM (400x) images 

because there were no significant differences in the binarized images. Another reason 

may be that the number of images provided as training data for classification was only 

60, so machine learning was not able to properly recognize the number of features at 

each processing stage. 

Therefore, Table 2.4-2.12 shows that the classification rate using statistics tended to be 

higher in the case of identification by SVM than in the case of classification by 

frequency distribution and statistics, respectively. This indicates that in the 

classification using SVM, statistical values detect differences in features for each 

treatment after the solution treatment better than frequency distributions. Since the 

frequency distribution uses the raw data obtained as it is, the amount of data is 

considerably larger than that using the statistics, and overlearning is considered to have 

occurred. On the other hand, no significant difference was observed when RF was used. 

This is because RF is one of the ensembles learning methods and has characteristics 

that make it more difficult to overlearn than SVM. Furthermore, when we focused on 
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the classification results obtained by changing the Test size, the classification rate 

tended to be higher when the Test size was smaller overall. This is thought to be due to 

the fact that a smaller Test size can handle a larger number of images as training data. 

Next, a comparison of the classification rates among the classifiers shows that the RFC-

based classifier has better classification accuracy overall. Therefore, it can be said that 

RFC is more useful in the classification of organizations at each stage of T6 processing, 

as in this study. 
 

Table 2.4 Classification results using SVM (R-frequency). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 95.0     

Aging treatment (0.6 ks) 100 50.0    

Aging treatment (3.6 ks) 100 60.0 60.0   

Aging treatment (7.2 ks) 100 55.0 60.0 60.0  

Aging treatment (21.6 ks) 100 35.0 75.0 50.0 40.0 
 
 

Table 2.5 Classification results using SVM under condition 1 (Test size 0.3). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 98.3 71.1    

Aging treatment (3.6 ks) 99.4 60.5 62.8   

Aging treatment (7.2 ks) 100 66.7 68.3 47.8  

Aging treatment (21.6 ks) 100 61.7 64.5 47.2 45.0 
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Table 2.6 Classification results using SVM under condition 1 (Test size 0.1). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 70.0    

Aging treatment (3.6 ks) 100 67.1 68.3   

Aging treatment (7.2 ks) 100 66.7 60.0 61.7  

Aging treatment (21.6 ks) 100 65.0 71.7 40.0 50.6 
 

Table 2.7 Classification results using RF (R-frequency). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 60.0    

Aging treatment (3.6 ks) 100 75.0 70.0   

Aging treatment (7.2 ks) 100 50.0 60.0 60.0  

Aging treatment (21.6 ks) 100 60.0 70.0 50.0 50.0 
 

Table 2.8 Classification results using RF under condition 1 (Test size 0.3). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 99.4 84.4    

Aging treatment (3.6 ks) 100 81.1 62.7   

Aging treatment (7.2 ks) 100 73.9 55.0 49.4  

Aging treatment (21.6 ks) 100 75.0 65.6 43.3 43.3 
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Table 2.9 Classification results using RF under condition 1 (Test size 0.1). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 86.7    

Aging treatment (3.6 ks) 100 86.7 50.0   

Aging treatment (7.2 ks) 100 78.3 55.0 43.3  

Aging treatment (21.6 ks) 100 73.3 63.4 43.3 49.4 
 

Table 2.10 Classification results using SVC under condition 2 (Test size 0.3). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 69.5    

Aging treatment (3.6 ks) 100 66.1 54.4   

Aging treatment (7.2 ks) 100 68.3 60.0 50.6  

Aging treatment (21.6 ks) 100 67.8 60.0 57.2 57.8 
 

Table 2.11 Classification results using SVC under condition 2 (Test size 0.1). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 66.8    

Aging treatment (3.6 ks) 100 63.3 55.0   

Aging treatment (7.2 ks) 100 66.7 63.3 58.3  

Aging treatment (21.6 ks) 100 61.7 61.7 50.0 60.0 
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Table 2.12 Classification results using RFC under condition 2 (Test size 0.3). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 80.6    

Aging treatment (3.6 ks) 100 83.3 63.3   

Aging treatment (7.2 ks) 100 77.8 62.2 53.9  

Aging treatment (21.6 ks) 100 77.8 63.9 50.0 46.7 
 

Table 2.13 Classification results using RFC under condition 2 (Test size 0.1). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 83.3    

Aging treatment (3.6 ks) 100 83.3 63.4   

Aging treatment (7.2 ks) 100 83.3 60.0 60.0  

Aging treatment (21.6 ks) 100 76.7 61.7 51.7 38.3 

 

Table 2.12 Classification results using RFC under condition 2 (Test size 0.3). 

 As cast Solution 
treatment 

Aging 
treatment 
(0.6 ks) 

Aging 
treatment 
(3.6 ks) 

Aging 
treatment 
(7.2 ks) 

As cast      

Solution treatment 100     

Aging treatment (0.6 ks) 100 80.6    

Aging treatment (3.6 ks) 100 83.3 63.3   

Aging treatment (7.2 ks) 100 77.8 62.2 53.9  

Aging treatment (21.6 ks) 100 77.8 63.9 50.0 46.7 
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2.4.4 PCA results 

The results of PCA are discussed below. Figures 2.8-2.12 show the PCA results for the 

castings with high classification rates and the other treatment stages. The first principal 

component contributes approximately 97% and the second principal component 

approximately 3% in this analysis. Thus, it can be seen that most of the information on 

classification is condensed in the first principal component alone. Therefore, we will 

focus on the first principal component in our discussion. The scatter plots of the 

principal component scores show that the scores of each pair of principal components 

are generally separated. The results in Figs. 2.8-2.12 indicate that the mean and standard 

deviation of IMFP are considered to contribute to the classification rate. Fig. 2.20 shows 

a comparison of the mean value and standard deviation of IMFP for the solution 

annealed and aged 10 minutes. This can be attributed to the spheronization of the 

eutectic Si phase due to the effect of solution annealing, as shown in Fig. 2.7. In other 

words, the IMFP value, which is the free path length, is larger in the solution-treated 

microstructure than in the as-cast microstructure because gaps are created between the 

eutectic Si due to this effect. 

The PCA results comparing the solution annealed microstructures with the 

microstructures from the other treatments and the PCA results for each aging treatment 

are shown in Figs. 2.13-2.16 and 2.17-2.19. The contribution ratio and cumulative 

contribution ratio graphs shown in Figs. 2.13-2.16 and 2.17-2.19 indicate that the first 

main classification rate was higher for the combinations that did not have a high 

classification rate. The contribution ratio and cumulative contribution ratio graphs 

shown in Figs. 2.13-2.16 and 2.17-2.19 indicate that the first principal component 

contributes approximately 80% and the second principal component contributes 

approximately 20% for the combinations that did not obtain a high discrimination ratio. 

Therefore, it can be seen that most of the information on classification is reduced by 

the first and second principal components alone. Therefore, we will discuss the first and 

second principal components. Figures 2.13-2.19 show that the scatter plots of the 
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principal component scores do not show any bias in the scores of each pair of principal 

components for each sample. Looking at the feature values contributing to each 

principal component, the first principal component is the mean value of IMFP, and the 

second principal component is the variance value of LN2DR. Fig. 2.21 shows a 

comparison of the measured values of these features. Fig. 2.21 shows that there is no 

bias in the measured values of the feature values that contribute to classification in each 

sample. Therefore, machine learning is not able to recognize and classify the trend of 

the feature values well in the classification of the microstructures after solution 

annealing treatment. 
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Fig. 2.8 Principal component analysis results for the combination of alloy as cast 
and after solution treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.9 Principal component analysis results for the combination of alloy as cast  

and after aging treatment (0.6 ks). 
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Fig. 2.10 Principal component analysis results for the combination of alloy as cast 
and after aging treatment (3.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.11 Principal component analysis results for the combination of alloy as cast 
and after aging treatment (7.2 ks). 
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Fig. 2.12 Principal component analysis results for the combination of alloy as cast 
and after aging treatment (21.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.13 Principal component analysis results for the combination of alloy after solution treatment 

and aging treatment (0.6 ks). 
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Fig. 2.14 Principal component analysis results for the combination of alloy after solution treatment 
and aging treatment (3.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.15 Principal component analysis results for the combination of alloy after solution treatment 

and aging treatment (7.2 ks). 
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Fig. 2.16 Principal component analysis results for the combination of alloy after solution treatment 
and aging treatment (21.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.17 Principal component analysis results for the combination of alloy  

after aging treatment (0.6 ks) and aging treatment (21.6 ks). 
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Fig. 2.18 Principal component analysis results for the combination of alloy  
after aging treatment (3.6 ks) and aging treatment (21.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.19 Principal component analysis results for the combination of alloy  

after aging treatment (7.2 ks) and aging treatment (21.6 ks). 
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Fig. 2.20 Relationship between average of IMFP and standard deviation of IMFP Double 
in after as cast and aging treatment (0.6 ks). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.21 Relationship between LN2D variance and average of IMFP Double 

in after aging treatment (7.2 ks) and aging treatment (21.6 ks). 
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2.5 Summary 

In this chapter, we attempted to apply a machine learning-based image classification 

technique to classify microstructures at each stage of the T6 process. The Al-4 %Si-

0.5 %Mg alloy was subjected to cast, solution treatment, and aging times of 0.6, 3.6, 

7.2, and 21.6 ks, respectively. PCA was performed on each of the classification results 

to investigate the influence of the features on the classification. The results obtained are 

summarized as follows. 

(1) A classification rate of 100% accuracy was obtained when comparing the 

microstructures from the casting and other T6 process stages. The feature values that 

contributed significantly to the classification were the average value and standard 

deviation of IMFP. This is because the solution treatment causes the eutectic Si-phase 

to become spherical that leading to the increase of the IMFP value, which is the free 

path length. 

(2) In the case of classification using SVM, the classification rate was generally higher 

when statistical data were used. This is thought to be due to overlearning when the 

histogram data (frequency distribution of the features) is applied. Comparing the 

algorithms used for classification, the classification rate was higher when Random 

Forest was used as a classifier than SVM.  
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3.1 Introduction 

The microstructures of metallic material have a crucial impact on their properties. 

Therefore, the analysis of microstructure is one of the most important objects in the 

analysis of metallic materials.1, 2) Traditionally, the classification of microstructure is 

mostly accomplished manually by human specialists, which will give rise to 

uncertainties because of the subjectivity. With the development of computer technology 

in recent years, various intelligent image analysis methods have emerged, providing 

new methods for microstructure analysis. As a result, there have been many attempts at 

classification and characterization of the microstructures by using machine learning 

techniques and related technology,3-12) for the purpose of improving the accuracy and 

efficiency of microstructure analysis compared to the traditional methods.  

Jessica Gola et al.8) used data mining methods to demonstrate how to determine varying 

steel structures of two-phase steels though the evaluation of their morphological 

parameters. In the work of Seyed M. Azimi et al.6) they proposed a Deep Learning 

method for microstructural classification in the examples of certain microstructural 

constituents of low carbon steel, and their system achieved a very high classification 

accuracy of more than 90%. Dmitry S. Bulgarevich et al.7) reported a novel and 

extremely effective approach of pattern recognition in optical microscopic images of 

steels, that can do reliable and automated segmentation of typical steel microstructures 

based on a Random Forest statistical algorithm of machine learning. This method can 

help to handle the large volumes of image data in a short time for quality control and 

for the quest of new steels with desirable properties.  

There have been many excellent achievements in the research of identifying and 

classifying the microstructure of steel. But the related research on aluminum alloy, 

which is a structural material as important as steel, is not much. The morphology and 

distribution of second phase particles play an important role in the mechanical 

properties of casting aluminum alloys.  
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In the previous work, we have defined a 2-dimensional local number, LN2D, and 

suggested the quantitative method to evaluate the particle spatial distribution by using 

the relative frequency distributions of LN2D.13, 14) This method has been used to 

evaluate the spatial distributions of all SiC particles and the delaminated SiC particles 

in the Al-SiC composites, for the purpose of investigating the effect of the volume 

fraction of second-phase particles on the distribution of damaged particles and its 

relation to the tensile deformation behavior.15, 16)  

And we also proposed a statistical method to evaluate the mean free path of dislocation 

motion by using image processing, which is called image mean free path (IMFP), and 

investigated the relationship between the measured mean free path and mechanical 

properties of Al-Si casting alloys.17)  

In this work, we attempted to classify the microstructures of aluminum-silicon alloys 

at different cooling rates by using these originally developed methods and machine 

learning techniques, hope to help improve the accuracy and efficiency of 

microstructural analysis for quality control and for the design of new aluminum alloys 

with desirable properties. 
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3.2 Experimental process and material 

The flow chart of the experimental process using machine learning techniques is 

illustrated in Fig. 3.1. The material used in this experiment was Al-7%Si-0.3%Mg (wt%) 

alloy, casting by the mixture of pure aluminum, Al-24.3%Si (wt%) and Al-10%Mg 

(wt%) ingots. Three samples solidified in different cooling rates were casting in a 

copper mold. After the preparation and polishing of samples, a large number of images 

of samples microstructures were taken by optical microscopy. Before the later steps, 

the image binarization has to be accomplished first. In the next stage, the features 

representing the morphology and distribution of second phase particles could be 

extracted from the binary images. Finally, the implement of classification process can 

be carried out by using the classifiers of SVM and Random Forest, based on the features 

extracted. 

 

 

 

 

 

 

 

Fig. 3.1 The flow chart of experimental process in this work. 
 

3.2.1 Casting process 

A copper mold that can be heated up was used to make the samples solidify in different 

cooling rates. Three sample ingots were cast in the copper mold when it was not heated 

(room temperature), heated up to 80oC and heated up to 140oC, respectively. The sample 

1 was solidified in the mold heated up to 140oC, the sample 2 was solidified in the mold 

heated up to 80oC, and the sample 3 was solidified in the mold when it was not heated. 

A HIOKI machine of model LR8431 with a K-type thermocouple was used to record 
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the temperature change with time during the casting process, so that the cooling curves, 

by which cooling rates can be calculated, can be drawn. 

3.2.2 Microstructural characterization and machine learning process 

For the characterization of microstructures of three samples, the samples were cut 

though the cross-section from the long strip sample ingots. The specimens were ground 

with 400 to 2000 grit SiC abrasive paper, and then polished carefully by using 3 and 1 

μm diamond suspension into a smooth mirror surface, in order to prevent the influences 

of scratches in later process. Hundreds of microstructure images of each sample will be 

shot by 400x optical microscopy in the central area of observation surface, preparing 

for the later treatment. The resolution of each image was 1280 x 960 pixel. 

The details of following image binarization, feature extraction, and classification phase 

have been discussed in Chaper 2.  

3.2.3 Mechanical properties test 

The tensile tests were carried out by a Shimadzu tensile testing machine with a load of 

2500kgf at a stretching speed of 0.5mm/min. Vickers hardness tests were performed on 

the central area of cross-section of the casting sample ingots using a load of 3kgf 

holding for 10 s. 
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3.3 Results and Discussions 

3.3.1 Cooling curves 

The measured cooling curves of three samples were shown in the Fig. 3.2. The cooling 

rate can be defined by dT/dt computed from the approximately straight-line portion 

during the later stages of primary dendrite growth. The calculated cooling rates of three 

samples were 5.7 K/s, 8.0 K/s and 9.5 K/s, respectively. The sample 1 gained the lowest 

cooling rate, while the sample 3 obtained the highest cooling rate. But the gaps between 

the samples were not large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 The measured cooling curves of three samples. 
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3.3.2 Microstructures and mechanical properties 

The microstructures of samples taken by optical microscopy was shown in Fig. 3.3, 

which were classic microstructures of Al-Si-Mg alloys. Microstructure analysis with 

dendrite arm spacing (DAS) is traditionally used in the Al-Si alloys. Rui CHEN et al.18) 

found that secondary dendritic arm spacing of Al-Si-Mg alloy is very sensitive to 

cooling rate, and the size of SDAS decreases with the increase of cooling rate. Besides, 

the decrement of the size of second phase particles and DAS of Al-Fe-Si alloy with 

increasing cooling rate was reported by B. Dutta et al.19) But in our work, it could be 

noticed that because of the approximate cooling rates, the microstructures of three 

samples were similar, which resulted in the classification of the microstructures was 

difficult by traditional methods.  

The mechanical properties of samples were also proved the slight difference between 

three samples, which was shown in Fig. 3.4. Both the ultimate tensile strength and the 

average hardness of the samples were increased with the increase of cooling rates. The 

reason why the change in mechanical properties was so slight should be the 

approximate cooling rates of samples. 
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Fig. 3.3 Images of microstructures of Sample 1 (a), Sample 2 (b), and Sample 3 (c). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Mechanical properties of the three samples. 
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3.3.3 Principal component analysis 

We did the principal component analysis (PCA), trying to find out the difference of 

microstructures between the samples. The result was shown in Fig. 3.4, from where we 

can find that the most effective components were LN2DRvar (Variance of LN2DR), 

Long Sidestd (standard deviation of Long Side), and Narrow Sidestd (standard deviation 

of Narrow Side), respectively. The variance of LN2DR (LN2DRVar), average value of 

Long Side, Narrow Side (Long SideAv and Narrow SideAv), and standard deviation of 

Long Side and Narrow Side (Long Sidestd and Narrow Sidestd) of three samples were 

tested, and the results were shown in Table 3.1.  

 

Table 3.1 The variance of LN2DR, average values of Long Side and Narrow Side, as well as 

standard deviation of Long Side and Narrow Side of three samples. 

 LN2DRVar. 
Long SideAv. 

(μm) 
Long Sidestd. 

Narrow SideAv. 

(μm) 
Narrow Sidestd. 

Sample 1 20.06 8.22 12.45 4.45 6.75 

Sample 2 24.46 9.27 16.70 5.05 9.28 

Sample 3 28.13 8.31 17.93 4.59 10.59 

 

The difference of values of Long SideAv and Narrow SideAv are almost negligible, 

demonstrating the similarity of the particle size between the samples. And it can be 

noticed that the difference of LN2DRVar, Long Sidestd and Narrow Sidestd are much 

bigger, and have the increasing trends with the increase of cooling rates. As we know 

that the cooling rate will affect the nucleation and growth of eutectic phase particles. A 

higher cooling rate will accelerate the nucleation of aluminum and the eutectic phase, 

thereby making the eutectic phase particles in the eutectic region finer and dense. A 

shorter solidification time may result in a decrease in the uniformity of the 

microstructure. Although a slower cooling rate will result in a coarser crystal, a longer 

solidification time will increase the uniformity of the eutectic region. These may 
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explain that the average rate of Long Side and Narrow Side of the samples had very 

small differences, but standard deviation of which were obvious and increased with the 

cooling rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.5 The principal component analysis (PCA) of the samples, using 40 images for each sample. 
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3.3.4 Classification results and discussions 

The number of images used for the training data was 80 (40 images of each sample), 

and the number used for the test data was 20 (10 images of each sample). And 4 groups 

of test data were set, while the result was the average rate of 4 tests to reduce the 

interference of special factors. We tested 2 sets of data for contrast, Sample 1 versus 2 

and Sample 1 versus 3, respectively. The difference between Sample 1 and 3 was bigger 

than which between Sample 1 and 2. The result of classification was shown in Table 

3.2. It can be noticed that the classification rate reached a high level of 80~90%. When 

using the histogram data, the classification rate of Random Forest was higher, while 

using the statistical data, the accuracy of SVM was higher. Besides, the classification 

rate of Sample 1 versus 3 was always higher than Sample 1 versus 2. The bigger 

difference of the cooling rates will cause the bigger difference of microstructures. As 

what we mentioned above, the standard deviation of some features was increased with 

the cooling rates. Therefore, appearance of the higher classification rates should be 

predictable.  

And in this work, we want to figure out whether the number of micrographs for training 

will affect the result. Increasing the number of sample images can make the feature 

values more consistent with the features of the entire sample, but it will also increase 

processing time and reduce efficiency. Therefore, we hope to find the number of images 

most suitable for training data. And for this reason, we did the classification rate change 

with number of images in training data, the number was increased from 20 to 140. The 

results of classification rate change with number of images using in training data were 

shown in Fig. 3.6. Fig. 3.6 (a) and (b) were the results of using histogram data. The 

classification rate of Random Forest was increased when the number of training data 

increased to 60, and then dropped slightly. Fig. 3.6 (c) and (d) were the results of using 

statistical data. The classification rate was also increased when the number of training 

data raised to 60 and 80, furthermore, the classification rate of SVM had an overall 

increment of about 5~10%, got the highest rate. Based on these, it can be inferred that 
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60 or 80 should be a suitable number for training. When using the statistical data and 

SVM as the classifier, the highest accuracy in classification could be obtained in this 

work.  

 

Table 3.2 The classification rate of three samples using different data type and classifier. 

Sample 
Histogram Data Statistical Data 

SVM RF SVM RF 

1 vs. 2 70.00 85.75 82.50 81.75 

1 vs. 3 85.00 87.75 90.00 84.75 
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Fig. 3.6 The classification rates change with number of images used for training data. 

3.4 Summary 

In this chapter, the Al-7%Si-0.3%Mg alloys were solidified in a copper mold at three 

different cooling rates. The classification of the microstructures was accomplished by 

using machine learning techniques. The results were summarized as follows. 

 

(1) The microstructures of the samples were similar because of the approximate cooling 

rates, so originally developed machine learning-based image classification techniques 

were used to detect the difference between the microstructures of the samples. The 

mechanical properties of the three samples were slightly increased with the increase of 

cooling rates, proving the differences between the samples. 

(2) The classification of the microstructures was accomplished by using machine 

learning techniques, and high classification rates of about 80% to 90% were obtained. 

The classification rate was highest when using the statistical data and using SVM as 

classifier. Besides, the classification rate was higher when the difference of cooling 

rates of samples was bigger. In order to get the highest classification rate in shortest 

time, a suitable number of images for training was 60 to 80 during the machine learning 

process in this study. 
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4.1 Introduction 

In recent years, reducing vehicle weight has become increasingly important based on 

legislation and environmental pressures on the automotive industry, which increasingly 

requires the production of lighter, more fuel-efficient vehicles with lower emissions. 

Al-Si casting alloys have been used commercially to produce important components 

such as engine blocks because of their high strength-to-weight ratio, excellent 

castability and corrosion resistance, and especially good mechanical properties under 

heat treatment conditions.1) High fatigue strength and good wear resistance are key 

properties for the life of engine blocks. Eutectic silicon particle size and morphology 

are thought to have an important influence on fatigue crack expansion behavior, and 

finer eutectic silicon particles are effective in improving fatigue crack expansion 

resistance.2) 

The eutectic Si in untreated cast Al-Si alloys is usually in a plate-like morphology and 

coarse. Among the various methods to refine the size and morphology of eutectic Si, 

modification of cast Al-Si alloys by additive of modification elements is a common and 

easy to implement method, and has been widely used in industrial production for a long 

time.3) Many modifier elements such as Sb4-6), Sr7-12), Y13) and rare earth elements (Eu, 

Nd, Yb, etc.)14-16) have been shown to refine and improve the eutectic silicon phase in 

Al-Si casting alloys. Sr is one of the most commonly used modifiers, and the addition 

of Sr results in a fully modified fibrous eutectic-Si morphology.17) 

Due to the effect of the modification on the eutectic silicon, the microstructures of the 

Al-Si alloy changes after the modification, which will eventually lead to changes in the 

mechanical properties of the alloy. Microstructural analysis is one of the most important 

parts in materials science. With the development of computer technology, more image 

analysis methods are available for microstructural analysis, which can significantly 

improve the efficiency of the process. In the present study, machine learning techniques 

were used to classify the microstructures of Al-Si-Mg alloys before and after Sr 

modification, and our original developed methods were used to quantitively analyze the 
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size and distribution of eutectic silicon in the matrix of the alloys before and after 

modification, and we also tried to relate these features, which represent the 

characteristics and distribution of the second phase, to the mechanical properties of the 

material. 
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4.2 Experimental process and material 

4.2.1 Sample preparation 

The material used in this experiment was Al-7%Si-0.3%Mg (wt%) casting alloy, and 

the alloy was modified with 0.01% and 0.02% (wt%) Sr by adding a certain amount of 

Al-10%Sr (wt%) master alloy. The molten alloy was well stirred and injected into a 

copper mold heated to 140 degrees Celsius and cooled naturally to room temperature 

in air, and the measured cooling rate was 5 K/s. The samples were rectangular in shape, 

and the core of the middle section of the casting was taken and cut into rectangles with 

a cross-section of about 10×10 mm for subsequent microstructure photography and 

mechanical property testing. 

The cross section of the unmodified and modified samples was polished with 

waterproof abrasive paper and diamond grinding paste to observe the microstructure, 

and several microstructure photographs with 500x magnification were taken with an 

optical microscope for machine learning and classification. The resolution of each 

image was 1280 x 960 pixels. 

4.2.2 Machine learning process 

The machine learning process was shown in Chapter 2. The image data will be 

randomly divided into 2 parts, one part for training, and the other part for test. The 

original images will be turned into binary images though brightness adjustment, 

filtering and thresholding. Next, we use our software to measure various features that 

represent the morphological structure and distribution of second-phase particles on the 

binary images. The program detects the center of gravity, area, perimeter, and 

circumferential rectangle of each second-phase particle automatically, and measures the 

IMFP and the LN2D of each image. IMFP and LN2D are our originally developed 

methods to quantitatively analyze the distribution of second phase particles. 

After the preprocessing, the data of extracted features, including histogram data and 

statistical data, will be used to train the model and a classifier will be used for the 
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classification. Histogram data is the relative frequency of the features, while statistical 

data is average values and standard deviation of the features. Two kinds of classifiers, 

SVM and random forest, were used in this work. Finally, we derive the accuracy of the 

classification by counting the number of correct ones in the test data as a percentage of 

the total.  

4.2.3 Mechanical properties test 

The tensile tests were carried out by a Shimadzu tensile testing machine with a load of 

1000kgf at a stretching speed of 0.5mm/min. The dimensions of the tensile specimen 

are shown in the Fig. 4.1, which is a sheet tensile specimen with a thickness of 1 mm 

along the length of the rectangular specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 The dimensions of the tensile specimen. 
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4.3 Results and Discussions 

4.3.1 Microstructures 

The Fig. 4.2 (a), (c) and (e) shown the microstructures of unmodified, 0.01% Sr and 

0.02% Sr modified samples taken by optical microscopy in the magnification of 500 

times, respectively. It could be noticed that more large areas of eutectic Si structures 

and finer eutectic Si particles could be found in the microstructures after modification. 

And the micrographs of the samples after binarization were shown in the Fig. 4.2 (b), 

(d) and (f), respectively. The black part of the binarized image was the aluminum matrix, 

and the white part was the second phase. It could be seen that the binarized image 

reproduced the morphological details of the second phase particles and their distribution 

in the matrix relatively well, which can extract feature quantities from binary images to 

describe the microstructural features more accurately. 
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Fig. 4.2 The microstructural images and binarized images of the samples. 
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4.3.2 Classification 

In our previous work,18) we have concluded that 60-80 images using for training was 

suitable for this kind of material in machine learning process. More images in training 

data will spend more time on learning, especially on feature extraction process, which 

will lead to a decrement of machine learning efficiency.  

The classification rates change of unmodified and Sr modified samples with number of 

images for training was tested, the number of which increased from 20 to 80. The results 

of random forest were shown in Fig. 4.3. It could be noticed that the data type 

(histogram or statistics) didn’t have much effect on the accuracy, while the 

classification rates were increased with more images for training. It can be concluded 

that 60 was a suitable number for training to get the highest accuracy and efficiency. 

Therefore, the classification rates of modified samples were much lower than the rates 

between unmodified and modified ones. Classification rates of unmodified and 

modified samples reached 85% to 90% accuracy, but the rates of modified samples only 

reached 60% to 70% accuracy. The similarity of morphology and distribution of 

eutectic Si phase in the modified samples lead to no large difference of the features, 

which may be the reason caused the low accuracy of classification. The results of SVM 

when using the statistical data was shown in Fig. 4.4. The accuracy of 0.01%Sr 

modified and unmodified samples was still around 85% to 90%, but the classification 

rates of 0.02%Sr modified and unmodified samples reached the highest level in all the 

classification results.  
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Fig. 4.3 The classification results of random forest. 
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Fig. 4.4 The classification results of SVM using statistical data. 

In order to more clearly compare the results obtained using the two classifiers, the 

classification results using 60 images for training were listed in Table 4.1. Although the 

classification accuracy of modified samples had increased when using SVM as 

classifier, it was still the lowest. The accuracy of classification between 0.01%Sr 

modified and unmodified samples slightly increased when using Random Forest as 

classifier, compared to the SVM results. Notably, when using statistical data, the SVM 

achieved an impressive 97.5% classification rate for unmodified and 0.02%Sr modified 

samples, which was the highest in all the classification results. 

 

Table 4.1 The classification rates of the classifiers using different types of data, when using 60 

images for training. 

Classifier 
Modified 

sample 

Histogram data Statistical data 

Unmodified 0.01%Sr  Unmodified 0.01%Sr  

SVM 
0.01%Sr  82.50  90.00  

0.02%Sr  90.00 72.50 97.50 73.75 

Random 

Forest 

0.01%Sr  88.75  90.75  

0.02%Sr  90.00 61.00 89.75 64.00 

 

4.3.3 PCA results and discussion 

The results of PCA, the goal of which is to extract the most important information from 

the data table, were shown in Fig. 4.5. The results of PCA shown that LN2DRvar 

(Variance of LN2DR) was the first principal component during the classification. This 

indicated that the spatial distribution of the second phase particles has an important 

effect on differentiating the microstructures of the samples before and after the 

modification. This is also consistent with previous observations on microstructural 

images.  
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Therefore, we used the training data to measure the values of LN2DRvar for the three 

samples. Considering the effect of the modification on the refinement of the second-

phase particles, we also measured the average values of Diameter, which is the 

equivalent circle diameter of the second phase particle, representing the particle size of 

eutectic Si in samples. The values of LN2DRvar and average values of Diameter of the 

samples were shown in the Fig. 4.6. It could be easily found that the values of LN2DRvar 

were increased with more additive of Sr.  

Sr modification significantly increased the value of LN2DRvar, resulting in a large 

difference between the unmodified and modified samples. In contrast, for the modified 

samples, although the value of LN2DRvar increases with more Sr additions, the overall 

difference is not significant, which leads to a lower level of classification rates for the 

modified samples. Besides, it can be found that this difference increased with the 

number of images used for measurement, and since LN2DRvar was the first principal 

component during the classification, this could be the reason for the increment in 

classification accuracy with the increase in the number of images used for training. 

From the measurement results of the Diameter average, it can be noticed that the 

modification did refine the size of the second phase particles, but the average size 

difference before and after the modification was less than one micron, which is too 

small compared to the huge difference that appears in the values of LN2DRvar, so the 

contribution of the feature values representing the size of the second phase particles to 

the classification is very small. 

Usually there are 3 kinds of 2-dimensional arrangement types of the gravity centers,19) 

the schematic diagram of which were shown in Fig. 4.7. During the measurement of 

LN2DR, the measurement circle will be located at a random point of the image, while 

the measurement will repeat at least one million times. The average value of LN2DR is 

always 7, and a lower variance value of which indicates a more uniform particle 

distribution.  Fig. 4.7 (a) is a hexagonal closest ordering, that the distribution of 

particles is perfectly uniform, and in this situation, the value of LN2DRvar equal to 0.5. 

And then the random distribution and clustering arrangement. The LN2DRvar value of 
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clustering arrangement is higher than that of random distribution. It was found that the 

modification made the arrangement of the eutectic-Si particles from random to 

clustering distribution, which lead to an increment of LN2DRvar value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4.5 The principal component analysis results of the samples, using 30 images of each sample. 
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Fig. 4.6 Change of (a) LN2DR variance values and (b) average values of Diameter with the 

number of images for training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Three 2-dimensional arrangement types of gravity center, (a) hexagonal closest ordering, 

(b) random and (c) clustering arrangement. 
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4.3.4 Tensile Properties 

The stress-strain curves of the samples were shown in Fig. 4.8. After the modification, 

the tensile properties of the alloy were significantly increased. The tensile strength, 0.2% 

proof stress and elongation of the samples were shown in Fig. 4.9. All of these 

properties increased with more addition of Sr. The tensile strength increased over 100 

MPa, and 0.2% proof stress increased about 50 MPa after modification. Besides, the 

elongation of the samples was even two to three times higher than before the 

modification. It indicated that Sr modification not only improved the tensile properties 

of the Al-Si-Mg casting alloy, but also greatly increased the ductility of the alloy, which 

is a greater advantage than work-hardening and other strengthening methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Stress-strain curves of the samples. 
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4.3.5 Correlation between microstructural features and tensile properties 

A database system that we are developing to integrate data from the processing 

parameter, microstructural features and properties of materials, with all the 

functionality previously developed, was used attempting to find a possible relationship 

between microstructural features and mechanical properties. Fig. 4.10 shown the 

correlation matrix for each parameter in this work. It was found that there was a strong 

correlation between LN2DRvar to tensile properties, whose correlation rate was 0.7 of 

1.0, and the correlation rate between mean of Diameter and tensile properties was 0.5 

of 1.0. The minimum and average values of Diameter were negatively correlated with 

the tensile properties, which means that the finer the size of the second phase can 

improve the tensile properties of the alloy. The role of Sr modification is to refine the 

eutectic silicon phase to improve the mechanical properties of the Al-Si casting alloy. 

So, this result is consistent with the experimental results. And LN2DRvar is positively 

correlated with the tensile properties, because LN2DRvar is the first principal 

component and increased with the addition of Sr, which is consistent with the increase 

of tensile properties. However, it is still worth discussing and further investigating about 

why the increase of LN2DRvar lead to the enhancement of tensile properties.  
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Fig. 4.9 The tensile properties of unmodified and Sr modified samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 The correlation matrix of the microstructural features and mechanical properties. 
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4.4 Summary 

In this chapter, the Al-7%Si-0.3%Mg casting alloys (wt%) were solidified and modified 

with the additive of Sr. The microstructural classification of the samples and 

quantitative analysis of the eutectic Si-phase changes before and after modification 

were accomplished by machine learning-based image classification techniques. The 

results were summarized as follows. 

 

(1) The large areas of eutectic-Si structure and finer eutectic-Si particles could be found 

in the microstructures of the samples after modification.  

(2) The classification rate of unmodified and 0.02% Sr modified samples reached the 

highest point of 97.5% accuracy when using the statistical data and SVM as classifier. 

The results of PCA shown that LN2DRvar was the first principal component during the 

classification, which indicated the importance of second phase distribution on 

differentiating the microstructures of the samples before and after the modification. The 

modification changed the arrangement of the eutectic-Si particles from random to 

clustering distribution, which lead to a significantly increment of LN2DRvar value. 

(3) The tensile properties of the samples were significantly increased after modification 

because of the refinement effect of Sr to the eutectic-Si phase. Therefore, the feature 

Diameter was negatively correlated to tensile properties. The feature LN2DRvar was 

the first principal component and increased with more addition of Sr, which reflected 

the distribution change of eutectic Si phase before and after Sr modification. However, 

it is still worth discussing and further investigating about why the increase of 

LN2DRvar lead to the enhancement of tensile properties. 
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Chapter 5 

Conclusions 

 

The final purpose of the present research is to develop a system that uses machine 

learning to analyze the interrelationships among processes, microstructures, and 

material properties. This study focuses on microstructural analysis with the help of 

machine learning techniques, in order to help improve the accuracy and efficiency of 

this process. In this study, we attempted to classify the microstructures of Al-Si casting 

alloy at different stages of the T6 heat treatment process Al-Si alloy casting at different 

cooling rates, and after Sr modification treatment by machine learning techniques, and 

quantitatively analyze the morphology and distribution of eutectic Si-phase particles 

using our originally developed methods. The conclusions of this thesis are summarized 

as follows: 

1. The study on microstructural classification of Al-Si casting alloy after aging 

treatment (Chapter 2). 

A machine learning-based image classification technique was attempted to be applied 

to the classification of microstructures of Al-4 %Si-0.5 %Mg alloy at each stage of the 

T6 heat treatment process. A classification rate of 100% accuracy was obtained when 

comparing the microstructures from the casting and other T6 process stages. The feature 

values that contributed significantly to the classification were the average value and 

standard deviation of IMFP. This is because the solution treatment causes the eutectic 

Si-phase to become spherical that leading to the increase of the IMFP value, which is 

the free path length. In the case of classification using SVM, the classification rate was 

generally higher when statistical data were used. This is thought to be due to 
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overlearning when the histogram data (frequency distribution of the features) is applied. 

Comparing the algorithms used for classification, the classification rate was higher 

when Random Forest was used as a classifier than SVM. 

2. The study on microstructural classification of Al-Si alloy casting at different 

cooling rates (Chapter 3). 

The Al-7%Si-0.3%Mg alloys were solidified in a copper mold at three different cooling 

rates. The microstructures of the samples were similar because of the approximate 

cooling rates, so originally developed machine learning-based image classification 

techniques were used to detect the difference between the microstructures of the 

samples. The mechanical properties of the three samples were slightly increased with 

the increase of cooling rates, proving the differences between the samples. 

The classification of the microstructures was accomplished by using machine learning 

techniques, and high classification rates of about 80% to 90% were obtained. The 

classification rate was highest when using the statistical data and using SVM as 

classifier. Besides, the classification rate was higher when the difference of cooling 

rates of samples was bigger. In order to get the highest classification rate in shortest 

time, a suitable number of images for training was 60 to 80 during the machine learning 

process in this study. 

3. The study on microstructural classification of unmodified and strontium modified 

Al-Si casting alloys (Chapter 4). 

The Al-7%Si-0.3%Mg casting alloys (wt%) were solidified and modified with the 

additive of Sr. The microstructural classification of the samples and quantitative 

analysis of the eutectic Si-phase changes before and after modification were 

accomplished by machine learning-based image classification techniques. The large 

areas of eutectic-Si structure and finer eutectic-Si particles could be found in the 

microstructures of the samples after modification.  

The classification rate of unmodified and 0.02% Sr modified samples reached the 

highest point of 97.5% accuracy when using the statistical data and SVM as classifier. 

The results of PCA shown that LN2DRvar was the first principal component during the 
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classification, which indicated the importance of second phase distribution on 

differentiating the microstructures of the samples before and after the modification. The 

modification changed the arrangement of the eutectic-Si particles from random to 

clustering distribution, which lead to a significantly increment of LN2DRvar value. 

The tensile properties of the samples were significantly increased after modification 

because of the refinement effect of Sr to the eutectic-Si phase. Therefore, the feature 

Diameter was negatively correlated to tensile properties. The feature LN2DRvar was 

the first principal component and increased with more addition of Sr, which reflected 

the distribution change of eutectic Si phase before and after Sr modification. However, 

it is still worth discussing and further investigating about why the increase of 

LN2DRvar lead to the enhancement of tensile properties. 
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