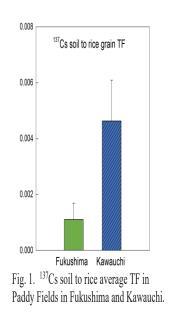
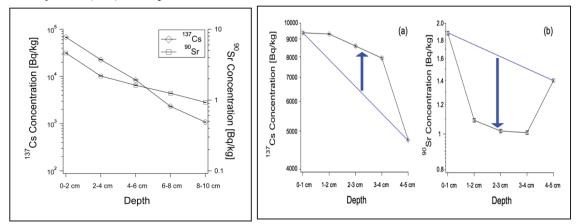
THESIS SUMMARY


Difference in Migration of Radioactive Element Originating from Fukushima Daiichi Nuclear Power Plant Accident: Factors affecting transfer factor of ¹³⁷Cs from soil to rice and Difference in migration between ¹³⁷Cs and ⁹⁰Sr in the Environment

 (福島第一原子力発電所事故に由来する放射性元素の移行の相違:土壌からコメへの ¹³⁷Csの移行係数に及ぼす因子と環境中での¹³⁷Csと⁹⁰Srの移行の違い)


BEKELESI Wiseman Chisale

Both ⁹⁰Sr and ¹³⁷Cs are the products of the fission reaction inside core of the nuclear reactor and are highly radioactive with intermediate half-lives of 28.7, 30.2 years, respectively. After Fukushima Daiichi Nuclear Power Plant (FDNPP) accident both were expelled into the environment and ⁹⁰Sr concentration was about 1/1000 that of ¹³⁷Cs in the soil after FDNPP disaster. ⁹⁰Sr is accumulated in the bone and its biological half-life is about 50 years, thus it is of concern just like ¹³⁷Cs which affects the whole body although it has a shorter biological half-life of 70-100 days compared to ⁹⁰Sr. The study of distribution and migration of both nuclides is important from the point of protection against external and internal exposure. In the present PhD Thesis, we investigated the distribution and migration of ¹³⁷Cs from

In Chapter 2, soil characteristics (soil particle distribution, exchangeable cation and ¹³⁷Cs, mineral composition, Fe oxidation state) were analyzed for the samples from Fukushima and Kawauchi. Because more studies have focused only on one sampling field and there have not been much discussion comparing various fields. The ¹³⁷Cs concentration was higher for Fukushima soil compared with Kawauchi soil. Figure 1 shows ¹³⁷Cs transfer factor of Kawauchi and Fukushima samples. The transfer factor of ¹³⁷Cs is higher in Kawauchi paddy field compared to that of Fukushima despite the soils of Fukushima being more radioactive than that of Kawauchi. Both X-ray diffraction pattern of the soils and the ⁵⁷Fe Mössbauer spectrometry analysis showed that the soils are different in their composition and Fe (II)/ (Fe (III)+Fe (II)) ratio.

In Chapter 3, 90 Sr and 137 Cs distributions were investigated by analyzing their concentration in the soil of Kawauchi (KP) and Fukushima paddy rice fields (FP), and the depth distribution of 90 Sr and 137 Cs in Lake Ogi valley sediments (LS) and its forestry catchment area soil (CA) and the sediment to soil ratio were also investigated. 90 Sr is a pure β -emitter and its daughter nuclide (90 Y) is also radioactive. 90 Sr was extracted from the soil and after the radioactive equilibrium was attained, the radioactivity was measured using liquid scintillation counter. The rough correlation between 90 Sr and 137 Cs concentrations was shown. The relation deviates from original point (0, 0) that suggests the global fallout of 90 Sr. The coefficient of variation for 90 Sr was larger than that of 137 Cs for Fukushima and Kawauchi paddy. Furthermore, the coefficient of variation for 90 Sr was also larger than that of 137 Cs for Ogi Lake Sediment (LS) and its catchment forestry area (CA). The results suggest that the migration of 90 Sr is more affected by external factor. Figure 2 shows the depth dependence of 90 Sr and 137 Cs at Catchment forestry area (CA). 90 Sr penetrates more than 137 Cs in the soils of CA.

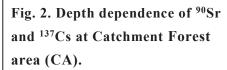


Fig. 3. Depth dependence of ¹³⁷Cs (a) and ⁹⁰Sr(b) at Lake Ogi sediments (LS).

The LS/CA ratio of 90 Sr was greater than that of 137 Cs, which might relate to 90 Sr faster horizontal migration than 137 Cs. Figure 3 shows depth dependence of 137 Cs (a) and 90 Sr(b) at Lake Ogi sediments (LS). Exponential change for both 137 Cs and 90 Sr was largely interfered near the surface (0 to 4 cm) for the sediment. One of the possibilities is that surface sediments become relatively uniform by the disturbance near surface (0~4 cm). 137 Cs adsorbed strongly to sediment becomes uniform, while 90 Sr weakly adsorbed to sediment re-dissolves to the lake water. The re-dissolved 90 Sr is adsorbed to the sediment again (0~1 cm). Therefore, the surface sediment (0~1 cm) has significantly higher 90 Sr than that of deeper sediment layer. The 90 Sr/ 137 Cs ratio for Fukushima soil and sediment samples ranged from 0.0001 to 0.0019 with an average value of 0.0007±0.0005, which is in a good agreement with some previous results.

Chapter 4 shows the general conclusions.

LIST OF PUBLICATIONS:

- W. C. Bekelesi, T. Basuki, S. Nakashima,¹³⁷Cs Soil to Rice Transfer Factor and Soil Properties: Fukushima and Kawauchi Case Study. Radiation Safety Management Vol. 21 (1-12) (2022). [doi:10.12950/rsm.220131]
- W. C. Bekelesi, T. Basuki, S. Higaki, S. Nakashima, Distinction of strontium-90 and cesium-137 migration of Fukushima soil and sediment following Fukushima accident.

Radiation Safety Management Vol. 21 (26-35) (2022).

[doi:10.12950/rsm.220527]

REFERENCE PAPER:

 W.C. Bekelesi, E.O. Darko ,A.B. Andam . Activity concentrations and dose assessment of 226Ra, 228Ra, 232Th, 40K, 222Rn and 220Rn in soil samples from Newmont-Akyem gold mine using gamma-ray spectrometry. African Journal of Environmental Science and Technology. 2017 May 31;11(5):237-47.

 $\underline{https://academicjournals.org/journal/AJEST/article-abstract/759E8E064123}$

- W. C. Bekelesi. Thesis, Master of Philosophy Degree (2015). <u>http://ugspace.ug.edu.gh/handle/123456789/8571</u> p38-41 (accessed 2021/10/01)
- T. Basuki, W. C. Bekelesi, M. Tsujimoto, S. Nakashima, Air dose rate to ¹³⁷Cs activity per unit area ratio for different land use 7 years after the nuclear accident -Case of the slope

catchment, Ogi reservoir, Fukushima-, *Radiation Measurements*, 137 (2020). https://doi.org/10.1016/j.radmeas.2020.106424

- T. Basuki, W. C. Bekelesi, M. Tsujimoto, S. Nakashima, Investigation of radiocesium migration from land to waterbody using radiocesium distribution and soil to sediment ratio: A case of the steep slope catchment area of Ogi reservoir, Kawauchi Village, Fukushima, Radiation Safety Management, 19, 23-34 (2020). DOI 10.12950/rsm.190924
- M. A. Habib, T. Basuki, S. Miyashita, W. Bekelesi, S. Nakashima, K. Techato, R. Khan, A. B.K. Majlis, K. Phoungthong, Assessment of natural radioactivity in coals and coal combustion residues Environmental Monitoring and Assessment, 191: 27 (2019) .<u>DOI10.1007/s10661-018-7160-y</u>
- M. A. Habib, T. Basuki, S. Miyashita, W. Bekelesi, S. Nakashima, K. Phoungthong, R. Khan, M. B. Rashid, A. R. M. T. Islam, K. Techato, Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment, *Radiochimica Acta* (2018). DOI 10.1515/ract-2018-3044