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Abstract

A calibration scheme of position and orientation errors of rotary axis average

lines based on touch-trigger probing is widely available on many commercial

five-axis machine tools. Such a measurement is influenced by error motions of

both linear and rotary axes. This paper proposes a novel scheme to separately

identify linear and rotary axis geometric errors by using a touch-trigger probe

and an uncalibrated test piece. Whereas the proposed scheme is based on well-

developed self-calibration schemes for the circularity measurement, an original

contribution is that it is applied to separate linear and rotary axis geometric

errors. Two case studies are presented. First, the proposed tests are performed

on the same five-axis machine tool for half a year to observe a long-term change

in linear and rotary axis geometric errors. The second case study investigates

the influence of room temperature change on linear axis and rotary axis error

motions.
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1. Introduction

Recent advances in sensor technologies, automated data acquisition systems

and communication links have provided new opportunities for implementing ma-

chine tool condition monitoring systems [1]. According to [1], current machine

tool condition monitoring systems target two aspects of areas; the machining5

process and machine tool systems. In the latter, long-term change in quasi-

static geometric accuracy of linear and rotary axes is a major contributor to

the change in the machining accuracy. Environmental change, particularly the

thermal change, is a major cause for the change in linear axis geometric errors

[2]. However, thermal change is not a sole cause for long-term changes. Linear10

axis error motions can change due to the change in the friction on a guideway

or a ball screw [3]. For a long linear axis, the change in the ground geometry or

stiffness can significantly change the straightness error motion in a long term.

In civil engineering, long-term continuous condition monitoring for large

buildings or bridges is widely available. Typically, electrical resistance strain15

gauges and fiber-optic Bragg grating sensors are used to measure the stress dis-

tribution [4]. A few researchers presented the application of strain gauges [5] or

Fiber Bragg Grating sensors [6] to the estimation of linear axis error motions in

a machine tool. Since they do not directly measure error motions, it is typically

difficult to ensure sufficiently high measurement accuracy required for machine20

tools. Thus, several periodic monitoring schemes of linear axis error motions,

commercially available from machine tools manufactures or maintenance ser-

vice providers (e.g. Okuma Corp. and NIDEC Machine Tool Corp.), are based

on direct measurement of three-dimensional (3D) positioning errors by using a

touch-trigger probe and an artefact. When the geometry of an artefact, typically25

a ball array, as is often used in the verification of coordinate measuring machines

(CMMs) [7], is pre-calibrated, the measured positions by a touch-trigger probe

give the machine tool’s 3D positioning errors.

For machine tools with rotary axes, one of the geometric error sources is an

assembling error of rotary axis, which appears as the position and orientation30

2



errors of rotary axis average lines [8]. Various methods have been actively

researched to identify the position and orientation errors of rotary axis average

lines, and been in practical use[9], including the R-test [10],[11],[12],[13],[14], the

ball-bar tests [15], and the method utilizing a sphere and a touch-trigger probe

[16],[17],[18],[19]. In particular, the probing-based schemes are commercially35

available from many machine tool builders (see Fig. 2).

All the methods reviewed above measure the relative displacement between

the spindle and the work table. A critical issue is that they cannot separate

linear axis geometric errors from rotary axis geometric errors in principle. As

a result, many previous studies reviewed above assume that linear axis geomet-40

ric errors are negligible. Bringmann and Knapp [20] discussed in details the

influence of linear axis error motions on the uncertainty in the estimation of

position and orientation errors of rotary axis average lines. They stated that “it

can be remembered that errors like tilting, roll, run-outs or hysteresis do not

only cause direct errors on a work-piece when machining, but are also increasing45

the uncertainties in the identification of the main geometric errors ... (‘You have

to pay for bad axes twice!’).”

In ISO 230-2 [21] and 230-7 [8], rotary axis error motions can be measured

independently from a linear axis. For example, the angular positioning error

motion can be measured by using a laser interferometer and a reference poly-50

gon mirror or indexing table [21]. The radial, axial, and tilt error motions are

measured by measuring the displacement of a cylindrical artefact [8]. However,

these methods require the measured artefact installed on the rotary axis cen-

terline. It requires careful setup, and may not be applicable to every axis (for

example, a swivel axis centerline can be below table surface). Essentially anal-55

ogous schemes using the ball bar have been presented in [22], which requires

one of the spheres of the ball bar nominally on the rotary axis. Clearly, these

methods are not suitable for periodic accuracy inspection.

A critical issue with probing-based error identification methods is that it

requires either 1) an artefact of the pre-calibrated geometry, or 2) axes, not60

under the test, of the pre-calibrated error motions. For periodic check of machine
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tool geometric errors, it does not make sense to assume negligibly small linear

axis error motions. Thermal influence, or long-term change in the ground or

guideway, likely changes linear axis error motions.

To address this issue, Zimmermann and Ibaraki [23] applied a self-calibration65

technique to separate linear axis geometric errors from rotary axis geometric er-

rors for the probing tests with an uncalibrated test piece. For the circularity

measurement, to separate the geometric error of the measured test piece and the

radial error motion of rotary table, self-calibration schemes have been well de-

veloped [24]. They can be classified into the Donaldson reversal, multi-step and70

multi-probe methods [25]. Although the method presented in [16] is essentially

the multi-step method, it focuses on the separation of rotary and linear axis er-

ror motions, with using an uncalibrated nominally-cylindrical test piece. Only

the linear positioning error of a single linear axis must be directly measured by

probing an artefact of the precalibrated length. All the other error motions can75

be estimated by the present self-calibration scheme. It is not possible for any

self-calibration schemes to estimate “the absolute” size of the test piece when

the machine’s positioning error is completely unknown. This is also true for

well-established self-calibration schemes for the circularity measurement. Any

self-calibration schemes, as reviewed in [23], can estimate the roundness profile80

of the test piece, i.e. the variation of the contour profile from the best-fit circle,

under the influence of the radial error motion of the rotary table. However,

none of them can estimate the mean diameter, when the displacement sensor

positions are unknown.

Based on our preliminary work [23], original contributions of this paper are85

summarized in Table 1: 1) Zimmermann and Ibaraki [23] only presented an

algorithm to identify the C-axis radial error motion and the positioning error of

X- and Y-axis, by performing the proposed self-calibration test at B = 0° (with

the table horizontal). This paper extends it to the identification of the axial

error motion of C-axis and 3D error motions of linear axes. Furthermore, by90

performing the analogous test at B = −90° and B = 90° (with the table vertical),

the C-axis error motions, as well as linear axis error motions, are identified
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over the entire workspace. 2) Two case studies are presented to demonstrate

the applicability of the proposed test to periodic machine tool accuracy check

without using a pre-calibrated artefact. In the first case study, the proposed95

tests were periodically performed on the same five-axis machine tool for half a

year to observe a long-term change in linear and rotary axis geometric errors.

The second case study investigated the influence of room temperature change

on linear and rotary axis error motions. Performance of thermal compensation

done by a commercial machine tool controller can be checked.100

Table 1: Comparison of this paper and our previous work [23] in the identifiable
geometric errors

Previous work [23] This paper

C-axis

Position error of
axis average line,
(EX0C , EY 0C)

✓ ✓

Radial error motion,
(EXC , EY C)

✓ ✓

Axial error motion,
EZC

✓

Squareness error of
C- to X- and Y-axis,
(EA0C , EB0C)

✓

B-axis
Position error of
axis average line,
(EX0B , EZ0B)

✓

Angular posi-
tioning error at
B = −90°, 0°, 90°,
EBB

✓

Squareness error of
B- to X- and Z-axis,
(EA0B , EC0B)

✓

X-, Y-, and Z-axes

Position error in
radial direction,
Eradial,XY

✓ ✓

Squarenes error of Y-
to X-axis, EC(0X)Y

✓ ✓

Straightness error
motion in Z direc-
tion, (EZX , EZY )

✓

Squarenes error of Z-
to Y-axis, EA(0Y )Z

✓

Case studies presented Comparison with the
R-Test

1) Long-term mon-
itoring over half a
year, 2) Investigation
of thermal influence
of room temperature
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Figure 1: Configuration of the machine tool
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2. Objective and the proposed test procedure

2.1. Overview

This paper targets a five-axis machine of the configuration shown in Fig.

1. The proposed method needs a nominally cylindrical test piece whose exact

geometry is not calibrated. The surface of its side and top surfaces to be probed105

should be sufficiently smooth such that the probing is not influenced by the

surface finish.

As is reviewed in Section 1, many five-axis machine tool builders provide

a probing-based scheme to identify, and then compensate for, rotary axis ge-

ometric errors. Fig. 2(a) depicts a typical setup. A machine tool user places110

a precision sphere on the machine rotary table. A touch-trigger probe mea-

sures the position of its center in a semi-automated manner. As the sphere is

indexed at a given set of rotary axis angles, the sphere position is probed. As

an illustrative example, Fig. 2(b) shows the influence of the position error of

the C-axis average line on the probed positions of the sphere. In the coordi-115

nate system with its origin at the nominal C-axis position, the trajectory of

the probed sphere positions becomes a circle with its center offset equal to the

C-axis position error.

It is important to note that this calculation assumes that linear axes have

negligibly small error motions. A touch-trigger probe measures the relative dis-120

placement of the spindle to the work table. Therefore, all the axes involved, C-,

X- and Y-axes in the example shown in Fig. 2, influence the probed positions.

When linear axes have significant error motions, the measured trajectory in Fig.

2(b) can show significant circularity error, which subsequently causes an error

in the identified rotary axis geometric errors.125

To separately identify rotary and linear axis geometric errors, this paper

proposes a self-calibration scheme. The presented measurement schemes are

composed of Step S and Step T, probing the side face and the top face of the

test piece, respectively.
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2.2. Error variables to be identified130

The objective of the proposed tests (Tests S and T), to be presented in

Section 3, is to identify all the error variables defined in Tables 2 to 5.

Each variable is defined for a given set of Ci or θi. Ci represents the angular

position of C-axis, and θi represents the angular position of the probed point

on the test piece. Ci is defined positive clockwise, according to typical machine135

tool sign convention, but θi is defined positive counter-clockwise. In the example

test procedure in Section 3, Ci or θi are given by Ci, θi = 0°, 45°, ..., 315°(i =

1, 2, ..., 8). Therefore, Tables 2 to 5 respectively contain a total of 32, 28, 26 and

18 parameters. In this paper, the machine coordinate system (MCS) represents

the fixed coordinate system with its origin at the nominal intersection of B- and140

C-axes. The error symbols in Table 2, such as EXC , EY C , EX0C , and EY 0C ,

are defined in ISO 230-1 [26].

Tables 2 and 3 show the error parameters to be identified by probing the side

face of the test piece (Tests S) at B = 0° (in Table 2) and B = −90° and B = 90°

(in Table 3). In Table 3, EZC,total at B = ±90° contains EZ0C at B = ±90°,145

which represents the position error of the C-axis average line from its nominal

position at B = ±90°. The nominal Z position of C-axis at B = ±90° is defined

at the Z-position of B-axis. Therefore, it contains the position error of the B-axis

average line, EZ0B . According to the kinematic model in [11], when the B-axis

average line has the position error in X and Z directions, EX0B and EZ0B , the150

C-axis position error at B = 0°, denoted by (EX0C(0°), EY 0C(0°)), is related to

the C-axis position error at B = −90°, (EX0C(−90°), EY 0C(−90°)), by: EY 0C(−90°) = EY 0C(0°)

EZ0C(−90°) = EX0C(0°)− EX0B − EZ0B

(1)

Furthermore, the radial error motion of C-axis, (EXC , EY C), may vary at

B = ±90° due to, for example, the elastic deformation of the C-axis bearing

caused by the gravity influence. This is why (EY C,total, EZC,total) at B = ±90°155

is defined separately in Table 3 from (EXC,total, EY C,total) at B = 0° in Ta-
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ble 2. Similarly, due to, for example, the angular positioning error of B-axis

and the tilt error motion of B-axis, the C-axis average line at B = 0° and

B = ±90° may not be perfectly perpendicular to each other. This is why

(EC(0Y )C,±90°, EB(0Z)C,±90°) at B = ±90° is defined separately in Table 5 from160

(EA(0Y )C,0°, EB(0X)C,0°) at B = 0° in Table 4. Note that the test piece’s ge-

ometry, Wradial(θi), is already identified at B = 0° (Table 2), and thus is not

included in Table 3. However, the test piece may be displaced at B = ±90° due

to, for example, the position error of B-axis average line. This displacement is

represented by (wY,±90°, wZ,±90°), which is to be identified.165

When the test piece’s top face is probed at B = 0° (Tests T), Table 4 similarly

shows the error variables. According to ISO 230-1 [26], the axial error motion of

C-axis represents its position error in the direction of its axis average line, and

thus the squareness error of the C-axis average line to X- and Y-axes, EA(0Y )C,0°

and EB(0X)C,0°, must be identified separately. Table 5 similarly shows the error170

variables identified by probing the test piece’s top face at B = −90° and B = 90°.

The uncertainty analysis for the error variables to be identified in Table 2

was presented in our previous work [23]. The propagation of the uncertainty

in the probing to each estimated variable was assessed by applying the Monte

Carlo simulation. The same analysis can be applied to assess the uncertainty in175

all the error variables in Tables 3 to 5.

Z

X

Y

Rotary

table C-

axis

Touch-trigger

probe

Sphere position

at C0�

Sphere position

at C30�

(a)

X

Y

C-axis of rotation
assumed in CNC controller

Nominal sphere trajectory
assumed in CNC controller

Actual C-axis of rotation

Sphere
position at

C0�

Actual sphere trajectory

Sphere
position at

C30�

(b)

Figure 2: Principle in conventional probing-based identification schemes of rotary
axis geometric error. (a) Typical test setup. (b) illustrative example:
influence of the position error of the C-axis average line on the probed
positions of the sphere.
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Table 2: Error variables to be identified by Test S at B = 0°

Variable Description

EXC,total(Ci, 0°) Displacement of C-axis in the X-direction when C-axis is
indexed at Ci. It is given by the superposition of the X
position error of the C-axis average line, EX0C , and the
radial error motion, EXC , in the X direction as a function
of the rotation angle Ci:
EXC,total(Ci, 0°) = EX0C + EXC(Ci, 0°)

EY C,total(Ci, 0°) Displacement of C-axis in the Y-direction when C-axis is
indexed at Ci. Similarly it is given by the superposition
of the Y position error of the C-axis average line, EY 0C ,
and the radial error motion, EY C , in the Y direction.

Eradial,XY (θi, 0°) Positioning error of X- and Y-axes in the radial direction
of the test piece, when X- and Y-axes are positioned at
(R·cos θi, R·sin θi). R represents the nominal radius of the
test piece. It is given by the superposition of various error
motions of X- and Y-axis, such as the linear positioning
and straightness error motions, and the squareness error
between X- and Y-axes.

Wradial(θi) Geometric profile of the test piece side surface in the ra-
dial direction at the angular position θi. It is defined in
the MCS and thus includes the the setup position error
of the test piece with respect to the origin of the MCS.
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Table 3: Error variables to be identified by Test S at B = ±90°

Variable Description

EY C,total(Ci,±90°) Displacement of C-axis in the Y-direction when C-axis
is indexed at Ci. It is defined similarly as the one at
B = 0° (in Table 2), but it contains the C-axis position
and radial error motion at B = ±90°:
EY C,total(Ci,±90°) = EY 0C + EY C(Ci,±90°)

EZC,total(Ci,±90°) Displacement of C-axis in the Z-direction when C-axis
is indexed at Ci. Similarly it is given by the super-
position of the Z position error of the C-axis average
line, EZ0C , and the radial error motion, EZC , in the Z
direction.

Eradial,Y Z(θi,±90°) Positioning error of Y- and Z-axes in the radial direc-
tion of the test piece, when Y- and Z-axes are posi-
tioned at (R · cos θi, R · sin θi).

wY,±90° Displacement of the test piece center position in the Y
direction at B = ±90° in the MCS.

wZ,±90° Displacement of the test piece center position in the Z
direction at B = ±90° in the MCS.
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Table 4: Error variables to be identified by Test T at B = 0°

Variable Description

EZC(Ci, 0°) Axial error motion of C-axis at B = 0° in the Z direction as a
function of the rotation angle Ci.

EZZ(θi, 0°) Positioning error of linear axes in the Z(axial) direction, when
positioned at (X,Y ) = (R · cos θi, R · sin θi). It may contain
all the error motions of X, Y and Z-axes but the straightness
error motion of X- and Y-axes in the Z-direction is typically a
dominant contributor.

Waxial(θi) Geometric profile of the test piece top surface in the axial
direction, at (X,Y ) = (R · cos θi, R · sin θi). It is defined in the
MCS and thus it contains not only the flatness profile of the
test piece, but also its orientation with respect to the machine’s
XY plane.

EA(0Y )C,0° Squareness between the Y-axis and C-axis at B = 0°, defined
positive counter-clockwise from the positive X-direction.

EB(0X)C,0° Squareness between the X-axis and C-axis at B = 0°, defined
positive counter-clockwise from the positive Y-direction.
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Table 5: Error variables to be identified by Test T at B = ±90°

Variable Description

EXC(Ci,±90°) Axial error motion of C-axis at B = −90° or B = 90° in the
X direction as a function of the rotation angle Ci.

EXX(θi,±90°) Positioning error of linear axes in the X(axial) direction,
when positioned at (Y, Z) = (R · cos θi, R · sin θi).

EC(0Y )C,±90° Squareness between the Y-axis and C-axis at B = ±90°,
defined positive counter-clockwise from the positive Z-
direction.

EB(0Z)C,±90° Squareness between the Z-axis and C-axis at B = ±90°,
defined positive counter-clockwise from the positive Y-
direction.

3. Proposed test procedure

The angular increment of Ci and θi should be designed according to the geo-

metric accuracy of the machine and the test piece. This section presents the pro-

posed test procedure with the angular increment 45°, i.e. Ci, θi = 0°, 45°, ..., 315°,180

but it is merely an example.

When the proposed tests, Tests S and T at B = 0°,±90° (Figs. 3-6), are

performed, the machine tool is assumed to be in a thermally stable condition.

The total test time depends on various measurement conditions, for example, the

probing feed rate, the standoff distance, and the rapid traverse speed between185

the probed points. In a set of the proposed tests, Tests S and T at B = 0°,±90°

(Figs. 3-6), total 192 points are probed. Typical test time is estimated 30 min

approximately.

3.1. Step1: Probing side face of test piece

3.1.1. Tests S at B = 0°190

Figure 3 illustrates the proposed test procedure at B = 0°.

1) In Test 1-a-S and 1-b-S, C-axis is indexed clockwise from 0° to 315° by

increments of 45°. The point on the test piece’s cylindrical face located at 0° (in

13



Test 1-a-S) and 45° (in Test 1-b-S) is probed. Since the probing is normally al-

ways at the same (X,Y ) position, Test 1-a-S and 1-b-S can exclude the influence195

of Eradial,XY (θi, 0°).

Figure 3: Proposed measurement procedure, Tests S at B = 0° (1-a-S, 1-b-S, 2-S,
3-S)

2) In Test 2-S, C-axis is fixed and the target points are probed, located

at every 45° from 0° to 315°, by positioning by X- and Y-axes. Since C-axis

does not rotate, Test 2-S can exclude the influence of EXC,total(Ci, 0°) and

EY C,total(Ci, 0°).200

3) In Test 3-S, C-axis is indexed at every 45° from 0° to 315°, and X- and

Y-axes are positioned such that the same point on the side face of test piece is

probed at every C angle. Test 3-S can exclude the influence of Wradial(θi).

3.1.2. Direct measurement of X-axis linear positioning error by probing the pre-

calibrated bar205

For the proposed self-calibration scheme, it is not possible to estimate “ab-

solute” distance when neither of the machine linear axes and the test piece are

calibrated. It is, in principle, the same with the self-calibration schemes for

the circularity measurement [24]; it is not possible to estimate the diameter of

the test piece by any self-calibration schemes. In the proposed test procedure,210

only the linear positioning error of X-axis is directly measured by using a cali-

brated bar artefact. This is only error that cannot be estimated by the proposed

self-calibration scheme.

As an artefact, a ceramic bar (20× 20× 300 mm), whose length was pre-

calibrated by a coordinate measuring machine, is used. The bar’s is made of215

silicon nitride, and its coefficient of thermal expansion is 1.79× 10−6 [m/K] at

room temperature.
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3.1.3. Tests S at B = ±90°

As shown in Fig. 4, similar tests are conducted at B = −90°. The test piece

is probed in the YZ plane. The test procedure is analogous to the one presented220

in Section 3.1.1. Analogous tests are conducted also at B = 90° in the YZ plane.

Figure 4: Proposed measurement procedure, Tests S at B = −90° (4-a-S, 4-b-S, 5-S,
6-S)

3.2. Step2: Probing top face of test piece

3.2.1. Tests T at B = 0°

Figure 5 illustrates the proposed test procedure at B = 0°.225

1) In Test 1-a-T and 1-b-T, C-axis is indexed clockwise from 0° to 315° by

increments of 45°. The point on the test piece’s top face located at 0° (in Test

1-a-T) and 45° (in Test 1-b-T) is probed. Since the probing is normally always

at the same (X,Y ) position, Test 1-a-T and 1-b-T can exclude the influence of

EZZ(θi, 0°), EA(0Y )C,0°, and EB(0X)C,0°.230

2) In Test 2-T, C-axis is fixed and the target points are probed, located at

every 45° from 0° to 315°, by positioning by X- and Y-axes. Since C-axis does

not rotate, Test 2-T can exclude the influence of EZC(Ci, 0°).

3) In Test 3-T, C-axis is indexed at every 45° from 0° to 315°, and the same

point on the top face of the test piece is probed at every C angle. Test 3-T can235

exclude the influence of Waxial(θi).
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Figure 5: Proposed measurement procedure, Tests T at B = 0° (1-a-T, 1-b-T, 2-T,
3-T)

3.2.2. Tests T at B = ±90°

Figure 6 illustrates the measurement procedure at B = −90°. Test procud-

ure is analogous to the one in Section 3.2.1 except for that the target point’s

displacement in the X-direction is probed. Analogous tests are conducted also240

at B = 90°.

Figure 6: Proposed measurement procedure, Tests T at B = −90° (4-a-T, 4-b-T, 5-T,
6-T)

4. Algorithm to identify the error variables

4.1. Step1: Probing side face of test piece

4.1.1. Tests S at B = 0°

A touch-trigger probe is sensitive only to the target point’s position in the245

direction normal to the surface. Therefore, for Tests S at B = 0°, when the

C-axis angular position is Ci, and the touch-trigger probe is positioned at (R ·

cos θi, R · sin θi), the distance of the probed point to the MCS origin, denoted

by r(Ci, θi), is measured. Then, its change from the initial measurement at

16



Ci = θi = 0° is taken as the inputs to the proposed algorithm:250

∆r(Ci, θi) = r(Ci, θi)− r(0°, 0°) (2)

Test 1-a-S (see Fig. 3) is formulated as an example. 1) When C-axis is indexed

at Ci, the C-axis centerline is displaced by (EXC,total(Ci, 0°), EY C,total(Ci, 0°)).

Since a unit vector representing the probe’s sensitive direction is (cos 0°, sin 0°)

(in Test 1-a-S, this is always the probing direction in the MCS), its influence

on the measured radial displacement is represented by the inner product of

(EXC,total(Ci, 0°), EY C,total(Ci, 0°)) and (cos 0°, sin 0°). 2) When the C-axis is

at Ci, the probe touches the point on the test piece at θi. Thus, the test piece’s

geometric error in the radial direction at θi, denoted by Wradial(θi), directly

affects the probed displacement. 3) The positioning error of X- and Y-axes does

not influence since X- and Y-positions are nominally always the same. Adding

1) to 3), the measured radial displacement at Ci in Test 1-a-S is formulated by:

∆r1−a−S(Ci) =

EXC,total(Ci, 0°)

EY C,total(Ci, 0°)

 ·

cos 0°
sin 0°

 + Wradial(Ci) (3)

Similarly, the measured radial displacements in Tests 1-b-S, 2-S, and 3-S are

written by:

∆r1−b−S(Ci) =

EXC,total(Ci, 0°)

EY C,total(Ci, 0°)

 ·

cos 45°
sin 45°


− Eradial,XY (45°, 0°) +Wradial(Ci + 45°) (4)

∆r2−S(θi) = −Eradial,XY (θi, 0°) +Wradial(θi) (5)

∆r3−S(Ci, θi) =

EXC,total(−Ci, 0°)

EY C,total(−Ci, 0°)

 ·

cosCi

sinCi

− Eradial,XY (θi, 0°) (6)

17



As is mentioned in Section 3.1.1, each test does not contain one of the error

sources (EX/Y C,total(Ci, 0°), Wradial(θi), and Eradial,XY (θi, 0°)). Eqs. (3)–(6)

can be combined in a matrix form:255 

∆r1−a−S(C1)

∆r1−b−S(C1)

∆r2−S(θ1)

∆r3−S(C1, θ1)
...

∆r1−a−S(C8)

∆r1−b−S(C8)

∆r2−S(θ8)

∆r3−S(C8, θ8)



= Aradial,B0 ·



EXC,total(C1, 0°)

EY C,total(C1, 0°)

Eradial,XY (θ1, 0°)

Wradial(θ1)
...

EXC,total(C8, 0°)

EY C,total(C8, 0°)

Eradial,XY (θ8, 0°)

Wradial(θ8)



(7)

where Aradial,B0 matrix has the size of 32× 32. However, Aradial,B0 has rank

deficiency. The following boundary conditions have to be imposed to solve

Eq. (7) using the least squares method. Firstly, the following four boundary

conditions are required because ∆r(Ci, θi) is defined relative to ∆r(0°, 0°).

EXC,total(0°, 0°) = 0

EY C,total(0°, 0°) = 0

Eradial,XY (0°, 0°) = 0

Wradial(0°) = 0

(8)

The C-axis error motions, (EXC,total, EY C,total), and the geometric profile of the260

test piece side surface, Wradial, are defined with respect to the MCS. The origin

of the MCS is defined based on the positioning by linear axes. The following

constraints are needed to define the MCS origin: Eradial,XY (90°, 0°) = 0

Eradial,XY (180°, 0°) = ∆L
(9)

The need for these constraints can be understood as follows: If the MCS
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origin, the C-axis centerline, and the test piece, are all moved by the same265

distance to Y-direction, it clearly does not influence the probed displacements

at all. The first constraint in Eq. (9) is needed to avoid this redundancy. The

second constraint in Eq. (9) is needed since the “absolute” distance cannot be

estimated by any self-calibration schemes, as was discussed in Section 1. With

six constraints imposed, Aradial,B0 has the size of 32 × 26, and becomes full270

rank. As a result, 26 unknown variables can be identified by solving Eq. (7).

4.1.2. Tests S at B = ±90°

The formulations of for Tests S at B = −90° and B = 90° are essentially the

same as Eqs. (3)–(6). A difference is that the geometric error of the test piece,

Wradial(θi), is identified at B = 0° and thus is considered as known variables at

B = ±90°. Only the displacements of the test piece center, wY,±90°, wZ,±90°, in

Table 3 must be identified. For B = −90°, the probed displacements in Tests

4-a-S, 4-b-S, 5-S, and 6-S are respectively formulated as follows:

∆r4−a−S(Ci) =

EY C,total(Ci,−90°)

EZC,total(Ci,−90°)

 ·

cos 0°
sin 0°


+Wradial(Ci + 90°)−Wradial(90°) +

wY,−90°

wZ,−90°

 ·

cosCi − 1

sinCi

 (10)

∆r4−b−S(Ci) =

EY C,total(Ci,−90°)

EZC,total(Ci,−90°)

 ·

cos 45°
sin 45°

− Eradial,Y Z(45°,−90°)

+Wradial(Ci + 135°)−Wradial(90°) +

wY,−90°

wZ,−90°

 ·

cos(Ci + 45°)− 1

sin(Ci + 45°)

 (11)
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∆r5−S(θi) = −Eradial,Y Z(θi,−90°) +Wradial(θi + 90°)−Wradial(90°)

+

wY,−90°

wZ,−90°

 ·

cos θi − 1

sin θi

 (12)

∆r6−S(Ci, θi) =

EY C,total(−Ci,−90°)

EZC,total(−Ci,−90°)

 ·

cosCi

sinCi

−Eradial,Y Z(θi,−90°) (13)

Eqs. (10)–(13) can be expressed by:



∆r4−a−S(C1)

∆r4−b−S(C1)

∆r5−S(θ1)

∆r6−S(C1, θ1)
...

∆r4−a−S(C8)

∆r4−b−S(C8)

∆r5−S(θ8)

∆r6−S(C8, θ8)



= Aradial,B−90 ·



EY C,total(C1,−90°)

EZC,total(C1,−90°)

Eradial,Y Z(θ1,−90°)
...

EY C,total(C8,−90°)

EZC,total(C8,−90°)

Eradial,Y Z(θ8,−90°)

wY,−90°

wZ,−90°



(14)

Similarly as in B = 0°, the following boundary conditions should be imposed:275 
EY C,total(0°,−90°) = 0

EZC,total(0°,−90°) = 0

Eradial,Y Z(0°,−90°) = 0

(15)

 Eradial,Y Z(90°,−90°) = 0

Eradial,Y Z(180°,−90°) = Eradial,XY (270°, 0°)
(16)
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4.2. Step2: Probing top face of test piece

4.2.1. Tests T at B = 0°

When the C-axis angular position is Ci and the touch-trigger probe is posi-

tioned at (R·cos θi, R·sin θi), denote the displacement of the probed point in the280

Z-direction by h(Ci, θi). Its displacement from the initial position, ∆h(Ci, θi),

is defined as:

∆h(Ci, θi) = h(Ci, θi)− h(0°, 0°) (17)

Thus, the Test 1-a-T, 1-b-T, 2-T, and 3-T, shown in Fig. 5, can be expressed

as Eqs. (18)–(21), respectively.

∆h1−a−T(Ci) = EZC(Ci, 0°) +Waxial(Ci) (18)

∆h1−b−T(Ci) = EZC(Ci, 0°)− EZZ(45°, 0°) +Waxial(Ci + 45°)

+

EA(0Y )C,0°

EB(0X)C,0°

 ·

 R · sin 45°

R · (1− cos 45°)

 (19)

∆h2−T(θi) = −EZZ(θi, 0°) +Waxial(θi)

+

EA(0Y )C,0°

EB(0X)C,0°

 ·

 R · sin θi
R · (1− cos θi)

 (20)

∆h3−T(Ci, θi) = EZC(−Ci, 0°)− EZZ(θi, 0°)

+

EA(0Y )C,0°

EB(0X)C,0°

 ·

 R · sinCi

R · (1− cosCi)

 (21)
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Eqs. (18)–(21) can be combined in a matrix form:285



∆r1−a−T(C1)

∆r1−b−T(C1)

∆r2−T(θ1)

∆r3−T(C1, θ1)
...

∆r1−a−T(C8)

∆r1−b−T(C8)

∆r2−T(θ8)

∆r3−T(C8, θ8)



= Aaxial,B0 ·



EZC(C1, 0°)

EZZ(θ1, 0°)

Waxial(θ1)
...

EZC(C8, 0°)

EZZ(θ8, 0°)

Waxial(θ8)

EA(0Y )C,0°

EB(0X)C,0°



(22)

Similarly as in tests S, the following boundary conditions should be imposed:
EZC(0°, 0°) = 0

EZZ(0°, 0°) = 0

Waxial(0°) = 0

(23)

The orientation of the XY plane of the MCS is defined parallel to the ma-

chine’s XY plane. The following constraints, in addition to the second constraint

in Eq. (23), define the orientation of the MCS: EZZ(90°, 0°) = 0

EZZ(180°, 0°) = 0
(24)

The following constraints are needed since the axial error motion of C-axis,290

EZC(Ci, 0°), is defined as the variation from the plane defined normal to the

axis average line. In other words, the “mean” plane of EZC(Ci, 0°) must be

parallel to the XY plane.  EZC(90°, 0°) = 0

EZC(180°, 0°) = 0
(25)
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4.2.2. Tests T at B = ±90°

Similarly, for B = −90°, the test 4-a-T, test4-b-T, test 5-T, and test 6-T,

shown in Fig. 6, can be expressed as Eqs. (26)–(29), respectively.

∆h4−a−T(Ci) = EXC(Ci,−90°) + Waxial(Ci + 90°) − Waxial(90°) (26)

∆h4−b−T(Ci) = EXC(Ci,−90°)− EXX(45°,−90°)

+Waxial(Ci + 135°)−Waxial(90°)

+

EC(0Y )C,−90°

EB(0Z)C,−90°

 ·

 R · sin 45°

R · (1− cos 45°)

 (27)

∆h5−T(θi) = −EXX(θi,−90°) +Waxial(θi + 90°)−Waxial(90°)

+

EC(0Y )C,−90°

EB(0Z)C,−90°

 ·

 R · sin θi
R · (1− cos θi)

 (28)

∆h6−T(Ci, θi) = EXC(−Ci,−90°)− EXX(θi,−90°)

+

EC(0Y )C,−90°

EB(0Z)C,−90°

 ·

 R · sin(−Ci)

R · (1− cos(−Ci))

 (29)
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Eqs. (26)–(29) can be combined in a matrix form:295



∆r4−a−T(C1)

∆r4−b−T(C1)

∆r5−T(θ1)

∆r6−T(C1, θ1)
...

∆r4−a−T(C8)

∆r4−b−T(C8)

∆r5−T(θ8)

∆r6−T(C8, θ8)



= Aaxial,B−90 ·



EXC(C1,−90°)

EXX(θ1,−90°)
...

EXC(C8,−90°)

EXX(θ8,−90°)

EC(0Y )C,−90°

EB(0Z)C,−90°


(30)

Similarly as in B = 0°, the following boundary conditions should be imposed:

EXC(0°,−90°) = 0

EXC(90°,−90°) = 0

EXC(180°,−90°) = 0

EXX(0°,−90°) = 0

EXX(90°,−90°) = 0

EXX(180°,−90°) = 0

(31)
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5. Case Study #1: Evaluation of long-term changes in rotary and

linear axis geometric errors

5.1. Test objective

Geometric errors of linear and rotary axes in a five-axis machine tool change300

in a long term, due to, for example, environmental change. To demonstrate

the application of the proposed scheme to long-term periodic monitoring of

linear and rotary axis geometric errors, it was performed on the same five-axis

machining center periodically over half a year.

5.2. Experimental setup305

In experiments, a cylindrical test piece (approximate size: diameter 180 mm,

height 50 mm, material: aluminum alloy, see Fig. 7) was measured on a vertical

five-axis machining center, NMV3000 DCG by DMG Mori. Co., Ltd. Its config-

uration is shown in Fig. 1. According to ISO 10791-2 [27], the kinematic chain

of the machine tool is expressed as follows: V[w-C-B-b-Y-X-Z-(C)-t]. Renishaw310

OMP400 touch-trigger probe was installed to the spindle (major specifications

in the manufacturer’s catalogue: Unidirectional repeatability (2σ): 0.35 µm for

stylus length 100 mm, 3D pre-travel variation in X, Y, Z: ±1.75 µm for sty-

lus length 100 mm). The test piece was fixed on the table by two bolts. The

cylindrical side surface of the test piece was rough-machined by a lathe but its315

geometry was not pre-calibrated. As shown in Fig. 7,“star styli” with three

stylus spheres in vertical and horizontal directions were used to perform the

proposed tests at B = 0°, B = −90°, and B = 90°. The nominal stylus lengths

are shown in Fig. 7(a) and the actual lengths were precalibrated. The diameter

of the stylus spheres was 6 mm. The actual probing repeatability depends also320

on the repeatability in the machine tool’s positioning. The probing repeatability

was investigated by experiments. For each stylus sphere, the same point was re-

peatedly probed for 20 times in X and Z directions. The measured unidirectional

repeatability (in 2σ) was 0.00 µm in X direction, and 0.98 µm in Z direction,

for the center stylus sphere. It was 1.02 µm in X direction, and 1.28 µm in Z325
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direction, for the left stylus sphere. It was verified that the probing repeatability

error was not significantly larger than the machine tool’s positioning resolution

(and thus the probe’s measurement resolution), 1 µm, for any of stylus spheres,

in both horizontal (X) and vertical (Z) directions.

The same set of the tests was performed on July, September, December330

2020 and January 2021. Table 6 shows the room temperature at each test.

The machine tool is installed in a university laboratory, and is operated only

occasionally over this half year for research purposes.

Table 6: Room temperature

Date Jul./2020 Sep./2020 Dec./2020 Jan./2021

Room temperature [◦C] 23.4 24.2 15.7 20.0

2
0
0
 m

m

100 mm 100 mm

(a) (b)

Figure 7: Experimental setup (a) at B = 0° and (b) at B = −90°

5.3. Measurement result (Probing tests for side face with the table at horizontal

position)335

The expanded uncertainty (k=1) estimated by the measured unidirectional 

repeatability was 1.38 µm, which can be taken as standard uncertainty for the

input quantities in the Monte Carlo method. To evaluate the uncertainties of

the identified geometric errors, the Monte Carlo method with 1,000 runs was 340 

adopted to the self-calibration algorithm. The resulting expanded uncertainties

(k=2) were presented in Figs. 9, 10, 12 and 13.

26



(1) Tests S at B = 0°

Tests 1-a-S to 3-S, depicted in Fig. 3, were performed at B = 0° (see Fig. 7(a))

to measure the radial displacement at each point, ∆r1−a−S(Ci), ∆r1−b−S(Ci),

∆r2−S(θi), ∆r3−S(Ci, θi)(i = 1, 2, ..., 8). Then, the algorithm presented in345

Section 4.1.1 was applied to identify all the error parameters in Table 2 (for

i = 1, 2, ..., 8). To help intuitively understanding the identified errors, each er-

ror parameter is shown in Fig. 8 in a polar format.

(1-1) X-, Y-, and C-axis and test piece geometric errors identified by350

the proposed algorithm

Figure 8(a) shows the radial error motion of C-axis, (EXC,total(Ci, 0°), EY C,total(Ci, 0°)),

identified by the four tests. If there exists no error, (EXC,total(Ci, 0°), EY C,total(Ci, 0°))

is at the origin. The center of the trajectory of (EXC,total(Ci, 0°), EY C,total(Ci, 0°)),

shown by the cross mark in Fig. 8(a), represents the position error of the C-axis355

average line from its nominal position (EX0C , EY 0C). It can be observed that

the C-axis position moved by 22 µm in X-direction, and 38 µm in Y-direction,

during four tests over half a year. This is likely caused by thermal deforma-

tion of the machine structure. In Fig. 8(a), the mean radius of each trajectory

significantly varies, which is directly caused by the C-axis position error, due360

to the boundary condition in Eq. (8). The radial deviation of the trajectory

(EXC,total(Ci, 0°), EY C,total(Ci, 0°)) from its best-fit circle represents the radial

error motion of C-axis; it is not significant in any tests in Fig. 8.
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Jan./2021

Jul./2020

Sep./2020
Dec./2020

(a)

Jan./2021

Dec./2020

Jul./2020

Sep./2020

10 m

Nominal probed position

(b)

Jul./2020Jan./2021

Sep./2020

Dec./2020

100 m

(c)

Figure 8: (a) Identified C-axis error motions at B = 0°, EXC,total(Ci, 0°) and
EY C,total(Ci, 0°) (b) Identified positioning error of X- and Y-axes in the
radial direction, Eradial,XY (θi, 0°). The error from the nominal probed po-
sition is magnified 5,000 times. (c) Identified test piece geometric error,
Wradial(θi). The error from the nominal probed position is magnified 200
times.
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Figure 9: Geometric errors of rotary and linear axes and the test piece identified by
Tests S at B = 0° (Red bar: Jul./2020, Green bar: Sep./2020, Blue bar:
Dec./2020, Yellow bar: Jan./2021)

Fig. 8(b) shows the (X,Y) positioning error in the radial direction, Eradial,XY (θi, 0°),

identified by the four tests. The black circle represents zero error, Eradial,XY (θi, 0°) =365

0, and the identified Eradial,XY (θi, 0°), magnified 5,000 times, is plotted in the

radial direction from the command point shown in a black dot. In other words,

50 mm in Fig. 8(b) is equivalent to 10 µm error. In Fig. 8(b), all trajectories

are elliptical, with their axis tilted by 45° from the X-axis. Analogous to the

circular test described in ISO 230-4 [28], this shows the influence of the square-370

ness error between X- and Y-axis. Furthermore, Fig. 8(b) shows that the linear

positioning error of the X-axis, represented by the identified error at θi = 180°,

varied approximately by 20 µm. Note that the identified errors at θi = 0° and

90° are are constrained to zero by Eqs. (8) and (9).
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Figure 10: Geometric errors of rotary and linear axes and the test piece identified
by Tests S at B = −90° (Red bar: Jul./2020, Green bar: Sep./2020, Blue
bar: Dec./2020, Yellow bar: Jan./2021)
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Jul./2020

Sep./2020

Jan./2021

Dec./2020

2 m

(a)

Jul./2020
Dec./2020

Sep./2020

Jan./2021

2 m

(b)

Jul./2020

Sep./2020

Jan./2021

Dec./2020
200 m

(c)

Figure 11: (a) The axial error motion of C-axis, EZC(Ci, 0°). The black circle repre-
sents zero error. The error is magnified 10,000 times. (b) The positioning
error of linear axes in the Z (axial) direction, EZC(Ci, 0°). The black cir-
cle represents zero error. The error is magnified 10,000 times. (c) The
shape deviation of the test piece in the Z direction, Waxial(θi). The black
circle represents zero error. The error is magnified 100 times.

Fig. 8(c) shows the test piece geometric error, Wradial(θi). It is in the same375

polar plot format as in Fig. 8(b), with the error magnified 200 times. In the

four tests, the same test piece was used. The change in Fig. 8(c) is mostly

caused by the setup error of the test piece; the center of the best-fit circle to the

trajectories in Fig. 8(c) represents the position error of the test piece’s center

to the machine tool’s (X, Y) origin. Note that Wradial(0°) is constrained to zero380

by Eq. (8)

(1-2) Error indices calculated from the identified errors
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To numerically evaluate the change in rotary and linear axis error motions,

error indices are calculated from the identified trajectories shown in Fig. 8.385

The definition of the error indices in Fig. 9 are in accordance with ISO 230-1

[26]. For example, they are calcurated as follows:

• The X and Y position errors of C-axis average line, represented by EX0C

and EY 0C in ISO 230-1 [26]. are calculated as the center of the best-fit

circle to the trajectory of (EXC,total(Ci, 0°), EY C,total(Ci, 0°)), shown in390

cross marks in Fig. 8(a). Their changes over half a year are shown in the

first and second columns in Fig. 9.

• The total radial error motion of C-axis, defined in ISO 230-7 [8], is cal-

culated as the difference in the maximum and minimum variation of

(EXC,total(Ci, 0°), EY C,total(Ci, 0°)) from its best-fit circle. It is shown395

in the 3rd column in Fig. 9.

• Linear positioning errors of X- and Y-axes, represented by EXX and EY Y

in ISO 230-1 [26], are calculated from Eradial,XY (θi, 0°) at θi = 180° and

θi = 270°, respectively, in Fig. 8(b). They are shown in the 4th and 5th

columns in Fig. 9.400

Figure 12: Geometric errors of rotary and linear axes and the test piece identified
by Tests T at B = 0° (Red bar: Jul./2020, Green bar: Sep./2020, Blue
bar: Dec./2020, Yellow bar: Jan./2021)
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Figure 13: Geometric errors of rotary and linear axes and the test piece identified
by Tests T at B = −90° (Red bar: Jul./2020, Green bar: Sep./2020, Blue
bar: Dec./2020, Yellow bar: Jan./2021)

(2) Tests S at B = −90° (Probing tests for the side face with the table

at vertical position)

Similarly at B = −90°, Tests 4-a-S to 6-S in Fig. 4 were performed (see Fig.

7(b)). By applying the algorithm presented in Section 4.1.2, Y-, Z- and C-

axis and test piece geometric errors, defined in Table 3, were identified for405

B = −90°. Figure 10 summarizes the error incices calculated similarly as in (1).

The followings can be observed:

• The position of the C-axis average line was changed at maximum by 30 µm

and 30 µm in Y and Z direction, respectively.

• The squareness error of Z- to Y-axis was initially 33 µm/m in the first410

test (July 2020), and was changed by 45 µm/m at maximum during half a

year, which is three times larger than the variation in the X-Y squareness

error in Fig. 9.

• The linear positioning error of Y-axis was changed at maximum approx-

imately by 20 µm, and the linear positioning error of Z-axis was smaller415

than that of Y-axis in each test.

(3) Tests T at B = 0° and B = −90° (Probing tests for the top face)
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Tests 1-a-T to 3-T in Fig. 5 were performed at B = 0°. X-, Y- and C-axis

and test piece geometric errors, defined in Table 4 were identified by applying

the algorithm presented in Section 4.2.1. The black dots represent the nominal420

points, and the identified errors were shown in radial direction, magnified 10,000

times in Figs. 11(a) and 11(b), and 1,000 times in Fig. 11(c).

• In Fig. 11(a), the center offset of the identified EZC(Ci, 0°) shows the

squareness error of C- to X- or Y-axis. The C-axis axial error motion is

the deviation from its best-fit circle. Both were sufficiently small in every425

test.

• In Fig. 11(b), the variation in the positioning error of linear axes in the

Z-direction, EZZ(Ci, 0°) , was at maximum 4 µm within the four tests.

Considering that the minimum positioning resolution of the machine tool

is 1 µm, this variation is not significant.430

• In Fig. 11(c), the shape deviation of the test piece in the Z direction,

Waxial(θi), is mostly caused by the parallelism error of its top surface to

the XY plane of the machine. The flatness of the top surface can be

calculated as the deviation from the best-fit circle to the trajectory of

Waxial(θi).435

Figure 12 shows the error indices calculated from the identified errors in Fig.

11. Test T was performed also at B = ±90°. as presented in Sections 3.2.2 and

4.2.2. Figure 13 shows the error indices for Test T at B = −90°. The followings

can be observed:

• The squareness errors of C- to X- and Y-axes at B = 0°, and to Y- and440

Z-axes at B = −90°, varied within the four tests, but their variation was

not significant (for the test piece’s nominal diameter 180 mm, its influence

was up to about 5 µm).
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6. Case Study #2: Performance check for thermal compensation

6.1. Test objective445

The objective of Case study #2 is to demonstrate the application of the

proposed scheme 1) to the observation of thermal influences on linear and ro-

tary axis geometric errors, when a machine tool is in a temperature-controlled

room and its room temperature is changed significantly, and 2) to the perfor-

mance check of thermal compensation implemented in a commercial machine450

tool controller. The configuration of the machine tool is shown in Fig. 14.

Figure 14: Configuration of the machine tool used in Case Study #2

6.2. Test setup and procedure

A cylindrical test piece (approximate size: diameter 500 mm, material: alu-

minum alloy, see Fig. 15) was measured on a vertical five-axis machining center.

According to ISO 10791-2 [27], the kinematic chain of the machine tool is ex-455

pressed as follows: V[w-C-A-b-Y-X-Z-(C)-t]. A touch-trigger probe, RMP400

by Renishaw, of the same measurement uncertainty as OMP400 (shown in Sec-

tion 5.2), was used. The diameter of the stylus spheres was 6 mm.

The test procedure is as follows:
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Figure 15: Test setup at A = −90°

1) The room temperature was regulated at 22 ◦C for a period sufficient to stabi-460

lize. Tests S, presented in Section 3.1, were conducted at A = 0° and A = −90°

with the machine controller’s thermal compensation turned off;

2) Room temperature was regulated at 30 ◦C for a period sufficient to stabi-

lize, and then Tests S were conducted at A = 0° and A = −90° without thermal

compensation; and465

3) Under the same room temperature, the machine controller’s thermal compen-

sation was activated, and then Tests S were conducted at A = 0° and A = −90°.

Before starting each step, the test piece was installed on machine table for a

period sufficient to stabilize its temperature. The detailed functionalities of the

thermal compensation in the machine controller are not disclosed. It is dis-470

closed that multiple temperature sensors are installed at various locations in

the machine structure. Numerical compensation based on some thermal error

prediction model is implemented. The model, including its input/output dimen-
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sions, e.g. the compensation for 3D position or Z error only, is not disclosed.

Figure 16: Geometric errors of rotary and linear axes and the test piece identified
by Tests S at A = 0°

475

Figure 17: Geometric errors of rotary and linear axes and the test piece identified
by Tests S at A = −90°

6.3. Test Results

(1) Observation of thermal influence

Figure 16 shows C-, X- and Y-axis geometric errors identified by Test S per-

formed at A = 0°. The influence of the change in room temperature, from 22

37



◦C to 30 ◦C, can be observed from orange (“22 ◦C, Compensation: off”) and480

and blue (“30 ◦C, Compensation: off”) bars. The followings can be observed:

• X and Y positions of C-axis average line moved to the positive direction

by 4 µm and 8 µm, respectively.

• At 22 ◦C, the linear position error of Y-axis was larger than that of X-axis

by 14 µm. When room temperature was changed to 30 ◦C, it was reduced485

to 9 µm.

• Squareness error between X- and Y-axis was sufficiently small both under

22 ◦C and 30 ◦C.

Similarly, Fig. 17 shows the errors identified by Test S performed at A = −90°.

The followings can be observed:490

• The Z-position of C-axis average line was displaced in the negative direc-

tion by 24 µm. This is likely attributable to the thermal displacement of

the spindle to Z-direction. On the other hand, the displacement to the X-

direction was only 2 µm, which is similar as the X-displacement observed

at A = 0°.495

• At 22 ◦C, the linear position error of Z-axis was smaller than that of X-

axis by 18 µm, and at 30 ◦C, this difference was increased to 33 µm. This

is largely caused by thermal deformation of Z-axis.

• Squareness error between X- and Z-axis was sufficiently small both under

22 ◦C and 30 ◦C.500

On this machine, the change in room temperature influenced the linear posi-

tioning error of all the linear axes. Since the position error of C-axis average

line is defined with respect to the origin of linear axes, the C-axis position is

thermally influenced in X- and Y-directions at A = 0°, and in X and Z directions

at A = −90°. The displacement was larger in the Z direction but existed both505

in X and Y directions.
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(2) Performance check for thermal compensation

In Figs. 16 and 17, the performance of the thermal compensation, implemented

in the machine controller, can be studied by comparing from blue (“30 ◦C,510

Compensation: off”) and green (“30 ◦C, Compensation: on”) bars. If thermal

compensation works perfectly, the change in rotary or linear axis geometric er-

rors caused by temperature change can be cancelled. In other words, in Figs.

16 and 17, green (“30 ◦C, Compensation: on”) bars would be closer to orange

(“22 ◦C, Compensation: off”) bars, if thermal compensation works perfectly.515

The followings can be observed:

• Most typical thermal deformation would be in the Z-direction. Figure 17

shows that the Z position error of C-axis at A = −90° was not reduced by

applying the thermal compensation.

• On the other hand, in Fig. 16, the Y position error of C-axis at A = 0°520

was reduced to the value at 22 ◦C by applying the thermal compensation.

It shows the effectiveness of the compensation. The X-position error of

C-axis was, however, not reduced.

The thermal compensation seemed effective only in the Y-direction. However,

many geometric errors with respect to linear and rotary axes were not compen-525

sated.

7. Conclusion

The contributions of this paper can be summarized as follows:

• Many schemes in the literature, such as the R-test, the ball bar tests, and

the probing-based tests, cannot separately identify rotary and linear axis530

geometric errors. Based on the self-calibration, this paper presented a

novel on-machine measurement scheme to separately identify rotary and

linear axis error motions by using a touch-trigger probe and an uncali-

brated cylindrical artefact.
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• Our preliminary work [23] proposed Test S (probing tests for the side535

face). This paper extended it to Test T, probing tests for the top face, to

identify the axial error motion of C-axis and the Z-axis linear positioning

error motion. It was furthermore extended to the tests with the machine

table vertical, such that the C-axis error motions, as well as linear axis

error motions, can be identified over the entire workspace.540

• The proposed scheme is applicable to a periodic check of rotary and linear

axis geometric errors, since it does not require a calibrated artifact. To

demonstrate it, the case study was presented to observe long-term changes

in rotary and linear axis error motions by periodically performing the

proposed tests over six months.545

• As the second experimental case study, the influence of room tempera-

ture change on linear and rotary axis error motions was observed. The

performance of the thermal compensation implemented in a commercial

machine tool controller was investigated by the proposed scheme.

The limitations of the present scheme include: 1) it cannot identify the550

angular positioning error of the C-axis. 2) the error motions of linear axes can

be observed only in the radial direction of the test piece. Separate identification

of straightness and angular error motions of linear axes is not possible. 3) The

“absolute” linear positioning error of a linear axis cannot be identified by the

self-calibration scheme, and thus its direct measurement is needed by probing555

a bar of the pre-calibrated length, 4) The machine’s error motions are assumed

unchanged during the proposed tests.
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