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Abstract

This paper proposed a kinematic model and its calibration scheme to further improve an indus-
trial robot’s absolute positioning accuracy over the entire workspace. To demonstrate the proposed
model and its effectiveness in simplified kinematics, this paper only targets a SCARA (Selective
Compliance Assembly Robot Arm) -type robot. The proposed model includes not only link length
errors and rotary axis angular offsets, widely known as the Denavit-Hartenberg (D-H) parame-
ters, but also the “error map” of the angular positioning deviation of each rotary axis, modelled
as a function of command angular position, and the rotation direction to model the influence
of backlash. The angular positioning deviation of each rotary axis is identified by measuring
the robot’s end-effector position by a laser tracker with indexing each rotary axis at prescribed
angular positions. To verify the validity of the identified model, the effectiveness of the com-
pensation based on it is experimentally investigated. By the compensation, the robot’s average
absolute position error was reduced by 33% to 0.034mm. Furthermore, this paper experimentally
demonstrates that the proposed model can be extended to the radial error motion, axis-to-axis
cross talk, and the three-dimensional positioning with orientation errors of axis average lines.

Keywords: Calibration, Compensation, Kinematic model, Industrial robot.

1 Introduction

1.1 Background

An industrial robot is usually programmed by
the teach-in method, where a human operates
the robot manually by using a teach pendant,
and the robot memorizes it. Since the operator’s
command trajectory may or may not be optimal,
the “absolute” positioning accuracy is typically
not regarded as crucial for robots [1]. When a
robot has sufficiently high positioning repeatabil-
ity, the operator can modify its motion manually
to successfully perform the required task. In this
paper, the “absolute” positioning error represents
the relative deviations between the actual and
ideal position of the robot’s end effector in X-, Y-

and Z-directions [2]. On the other hand, a CNC
(computer numerical control) machine tool is typ-
ically programmed by the CAM (computer-aided
manufacturing) programming software based on
a 3D (three-dimensional) model of the workpiece.
In such programming, the command trajectory is
calculated from the workpiece geometry to be fin-
ished, and the machine’s “absolute” positioning
accuracy determines the finished workpiece’s geo-
metric accuracy. In today’s market, more users
require a robot to have higher absolute position-
ing accuracy due to, e.g. the need for reducing the
time and the cost with the teach-in operations. To
program a robot based on a 3D model of its work-
ing environment (“offline programming”), higher
absolute positioning accuracy may be critically
required to successfully perform the given task.
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Furthermore, higher absolute positioning accu-
racy may be a key to further extending a robot’s
applications. For example, many researchers and
engineers study robotic machining as a viable
alternative to machine tools especially for a large
part due to its portability and lower implemen-
tation cost [3–5]. For machining operations with
complex tool paths, the teach-in programming and
manual modification of the robot’s motion are no
longer possible. The application of a robot to the
3D printing [6], [7] and 3D scanning [8] can also
benefit from the improvement of a robot’s absolute
positioning accuracy.

1.2 Prior Art

To improve the absolute positioning accuracy of
an industrial robot, the majority of past works
target the identification of the D-H (Denavit-
Hartenberg) parameters in the robot kinematics.
The D-H parameters represent position and ori-
entation errors of the axis average line of each
rotary axis in a local coordinate system defined
with respect to another axis. ISO 230-1 [2], the
international standard on machine tool accuracy
tests, defines the term, the axis average line of
a rotary axis, as a straight line representing the
mean position and orientation of the axis of rota-
tion over the full rotation. For machine tools, ISO
230-7 [9] describes the test procedures to mea-
sure position and orientation errors of rotary axis
average lines. For robots, many researchers pro-
posed a scheme to identify the D-H parameters
from the measurement of the end effector posi-
tion. For easier and lower-cost measurement, some
researchers presented the measurement of the end
effector position when it is nominally constrained
at a point [10], [11], on a line [12], on a spherical
surface [13, 14], or on a plane [15]. Recently, more
researches employ either a laser tracker [16, 17]
or a vision-based measurement system [18–20],
which can measure the end effector’s 3D position
at arbitrary positions over the entire workspace.

It should be emphasized that the axis average
line only represents the mean position/orientation
of the axis of rotation. The axis of rotation may
be displaced in the radial or axial direction, or
tilted, during its rotation. These error motions are
referred to as radial, axial and tilt error motions
in ISO 230-7 [9]. The error motion of a rotary
axis is the term defined in ISO 230-1 [2] and rep-
resents changes in position and orientation of axis
of rotation relative to its axis average line as a
function of angle of rotation of the rotary axis.

The angular positioning error motion can be also
a major error source, which cannot be described
by the D-H parameters. The angular positioning
error motion, also defined in ISO 230-1 [2], repre-
sents the actual angular position reached by the
rotary axis minus the commanded angular posi-
tion in the plane perpendicular to the axis average
line. A robot’s rotary axis is often driven via
a power transmission mechanism such as a tim-
ing belt, a plenary gear, and a strain wave gear.
The pitch error of such a gear causes the angu-
lar positioning error motion of each rotary axis.
The angular positioning deviation generally varies
with the command angular position, due to tooth-
to-tooth variation in the gear pitch error. On the
other hand, position and orientation errors of the
axis average line are constant regardless of the
axis’ angular position. Some researchers call them
position-independent errors [21].

A robot’s rotary axis also has error motions,
and they are, predictably, often larger than those
in machine tools. In a robot’s rotary axis, a rotary
encoder is often installed on the motor axis only,
i.e. no encoder for the actual axis of rotation [22].
This increases the influence of the gear pitch error
on the angular positioning error motion. Further-
more, the gear transmission mechanism often has
the backlash, resulting in the bidirectional angular
positioning deviation. The influence of the angular
positioning error motion on the positioning error
at the robot’s end effect becomes larger in propor-
tion to the distance from it to the axis of rotation.
Unlike, e.g. a rotary table for a machine tool, it
is inherently difficult for a robot to keep this dis-
tance shorter. As a result, for robots, the angular
positioning deviation of rotary axes often gives
a significantly larger influence on the position-
ing accuracy at the end effector than for machine
tools.

Some past studies report that even when the 
influence of the D-H parameters are compensated, 
the positioning error of the robot is still roughly 10 
to 100 times larger than that of a typical machine 
tool [23–25](Refs. [23, 24] review the achieved 
positioning accuracy from total 20 papers for var-
ious robots including six-axis robots. Ref. [25] 
focuses on the geometric calibration of SCARA 
robots). To compensate for error motions in addi-
tion to the D-H parameters, some researches have 
modelled the error in a non-geometric way, typ-
ically by the neural network model [26, 27]. To 
ensure compensation performance over the entire 
workspace, geometric model-based approaches are
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more promising. Some works discussed the influ-
ence of joint compliance and friction [28, 29]. Some
recent works have measured and modelled rotary
axis angular positioning error motion. For a 6-
DoF (degrees of freedom) robot, Nubiola et al.
[16] presented the measurement of the angular
positioning error motion of each rotary axis by
using a laser tracker. Hörler et al. [30] measured
the angular positioning deviation of two rotary
axes in a SCARA (Selective Compliance Assem-
bly Robot Arm) -type robot and modelled it as a
function of command angular position. They also
measured the backlash (hysteresis) of each axis
but its inclusion into the kinematic model was not
clearly presented in [30].

This paper considers the static modeling of 
robot kinematics for the feedforward modifica-
tion of command trajectories. Optimal design of 
feedback controllers for motors, with the dynamic 
modeling of a robot and the influence of exter-
nal forces, can also contribute significantly to 
a robot’s positioning accuracy [31, 32]. Many 
researchers have presented a feedback control 
based on an additional position measurement, 
such as the joint-side angular position measure-
ment (secondary encoder) [33] and direct mea-
surement of end effector position by using a laser 
tracker [34]. This paper does not involve the feed-
back control but focuses on the robot kinematic 
errors that cannot be observed by an encoder.

1.3 Contribution

To predict the robot’s positioning accuracy in
higher accuracy than the conventional kinematic
model with the D-H parameters only, this paper
proposes a new kinematic model with the bidi-
rectional angular deviation of each rotary axis, in
addition to the D-H parameters. One of the essen-
tial differences between machine tools and robots
is the difficulty indirect measurement of rotary
axis error motions. For example, the angular posi-
tioning error motion of a rotary table in a five-axis
machine tool is typically measured by using an
autocollimator with a reference polygon mirror or
a reference indexing table (ISO 230-1 [2]). For
a robot, such a measurement is difficult, since a
reference polygon mirror or a reference indexing
table must be placed on the axis of rotation, which
requires a special fixture. This paper proposes the
application of a laser tracker to indirectly esti-
mate the angular positioning deviation from the
measurement of the end effector positions.

The proposed model of a SCARA-type robot
with the position-dependent, direction-dependent
angular positioning deviations was first proposed
by the authors’ group in [35]. Compare to [35], this
paper’s original contributions are as follows: a) In
Ref. [35], angular positioning deviations are identi-
fied by a special measurement scheme. This paper
presents a more generally applicable measurement
scheme using a commercial laser tracker, at the
expense of the instrument’s higher cost. b) numer-
ical compensation based on the proposed model is
first presented in this paper, and c) the extension
of the present model is presented to include the
following potential error sources: the radial error
motion, the axis-to-axis cross talk, and the orien-
tation errors of axis average lines to model the 3D
positioning error. A laser tracker is employed in
some recent works in the literature but its appli-
cation to the identification of position-dependent
error motions is a part of this paper’s original
contributions.

1.4 Limitation

To investigate the effectiveness of the proposed
model in a simpler kinematics, this paper only
presents the application to 2D positioning by the
SCARA-type robot. A SCARA-type robot is usu-
ally not for the applications requiring higher rigid-
ity, and we do not intend to apply a SCARA-type
robot to machining operations. The application to
a SCARA-type robot is studied to investigate the
fundamental validity and performance of this new
methodology. Our final goal is to apply the present
model to a 6-DoF robot, which will be studied in
our future research.

A change in the robot kinematics can result 
in the deterioration of the positioning accuracy 
for any feedforward, model-based compensation 
schemes. Such a change can be caused by, for 
example, environmental influences, including tem-
perature change, an external load to the robot, 
and the gear wear. This paper does not study 
such an influence. In particular, our group [36] has 
shown thermal influence can significantly influence 
the positioning accuracy of a SCARA robot, and 
presented a scheme to measure it.
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Fig. 1: The SCARA-type robot configuration

2 Proposed model and its
identification scheme

2.1 Conventional kinematic model
with the D-H parameters

The geometric configuration of the SCARA-type
robot considered in this paper is shown in Fig. 1.
When the robot without geometric error, the k-th
end effector position in the reference coordinate
system (CS), P ∗(k) ∈ R3, is formulated by the
nominal forward kinematic model as Eq. (1).

P ∗(k)=

L1 cos (θ
∗
1(k)) + L2 cos (θ

∗
1(k) + θ∗2(k))

L1 sin (θ
∗
1(k)) + L2 sin (θ

∗
1(k) + θ∗2(k))

Z∗(k)


(1)

where k is the index number of the command
position, k = 1, . . . , N , and N is the number
of command positions. L1 and L2 are link one
and link two lengths of the SCARA-type robot
(see Fig. 1), θ∗1(k) and θ∗2(k) are the commanded
angular positions of J1- and J2-axis, Z∗(k) is
the commanded Z-position in the reference CS.
The superscript “*” represents commanded values
throughout this paper. The posture shown in Fig.
1 is at θ∗1(k) = θ∗2(k) = 0. The reference CS is the
fixed CS with its Z-axis aligned to the J1-axis of
rotation (see Fig. 2). The Z-position of its origin
can be set arbitrary.

To study the fundamental validity of the pro-
posed scheme in the simplified problem, this paper
basically considers the 2D positioning error on
the XY plane only; the positioning error in the
Z-direction will be studied only in Section 5.3.

As reviewed in Section 1, the majority of the
previous works on error calibration for industrial
robot are based on the kinematic model with the
D-H parameters. For the SCARA-type robot in

Fig. 1, when only the 2D positioning error is con-
sidered, the D-H parameters are: the link length
errors, denoted by △ L1 and △ L2, and the angu-
lar offset with J2-axis, denoted by θ20. With these
D-H parameters, the 2D end effector position in
Eq. (1) can be rewritten by Eq. (2).

P̂con(k) =[
cos (θ∗1(k)) cos (θ∗1(k)+θ∗2(k)+θ20)
sin (θ∗1(k)) sin (θ∗1(k)+θ∗2(k)+θ20)

][
L1+∆L1

L2+∆L2

]
(2)

The variables with “ˆ” represent estimated values
throughout this paper.

ISO 230-7 [9] describes that a single rotary
axis has six error motions, as well as four errors
representing the position and orientation of its
axis average line. The angular positioning error,
included in the proposed model, is one of six error
motions. While Sections 2−4 only consider the 2D
positioning, this paper also presents the proposed
model’s extension to the 3D positioning in Section
5. The radial error motion, to be presented in
Section 5.1, is another error motion, and further
extension to another four error motions would be
straightforward.

The angular error motions (yaw, pitch and 
roll) of the end effector are not considered in this 
paper. A laser tracker, with a single retroreflector, 
measures the retroreflector position only. When 
the end effector orientations can be measured, the 
extension of the present model to angular error 
motions is potentially possible, but it is out of this 
paper’s scope.

2.2 Proposed kinematic model

The major contribution of this paper is in the pro-
posal of a new kinematic model with rotary axis
angular positioning deviations, in addition to the
conventional D-H parameters. As was discussed
in Section 1, the angular positioning deviation
of a rotary axis is typically caused by the gear
pitch error. To model its influence, in the pro-
posed model, the angular positioning deviation is
a function of the command angular position. Fur-
thermore, since a robot’s rotary axis is often sub-
ject to significant influence of the gear backlash,
different angular positioning deviation should be
assigned for different rotation direction.

For the command angular position of the Jn-
axis (n = 1, 2), θ∗n,map(in), where in = 1, . . . , Nn is



Springer Nature 2021 LATEX template

5

the index number, the angular positioning devia-
tion is denoted by ∆θ∗n,map(in, sgn(θ̇

∗(in))). It is a
function of the command angular position, repre-
sented by the index number in, and furthermore,
a function of the rotation direction, sgn(θ̇∗n(in)),

where sgn(θ̇∗n(in)) is assigned a value of +1 (or -1)

when θ̇∗n(in) > 0 ( or θ̇∗n(in) < 0), θ̇∗n(in) represents
the angular velocity of Jn-axis at θ

∗
n(in). When the

command Jn-axis angular position (n = 1, 2) is
given arbitrarily by θ∗n(k), the proposed kinematic
model is given by Eq. (3).

P̂ (k) =[
cos (θ̂1(k)) cos (θ̂1(k)+θ̂2(k)+θ20)

sin (θ̂1(k)) sin (θ̂1(k)+θ̂2(k)+θ20)

][
L1+∆L1

L2+∆L2

]
(3)

where θ̂n(k) is the estimated angular position of
the Jn-axis, and is given by linearly interpolating
∆θ∗n,map(in, sgn(θ̇

∗
n(in))) (n = 1, 2) as Eq. (4).

θ̂n(k) = θ∗n(k) + δn(k) ·∆θ∗n,map(in, sgn(θ̇
∗
n(k)))

+ (1− δn(k)) ·∆θ∗n,map(in + 1, sgn(θ̇∗n(k))) (4)

and in (n = 1, 2) must meet:

θ∗n,map(in) ≤ θ∗n(k) ≤ θ∗n,map(in + 1) (5)

δn(k) (n = 1, 2) are the interpolation weights,
given by Eq. (6).

δn(k) =
θ∗n(k)− θ∗n,map(in)

θ∗n,map(in + 1)− θ∗n,map(in)
(6)

Remark 1: In the proposed kinematics model 
(Eq. (3)), the angular offset of J1-axis is not 
considered, because the reference CS is defined 
according to the direction of the Link 1 when J1-
axis is indexed at θ1∗ = 0. The angular offset of J1-
axis is needed if the reference CS is defined in the 
prescribed direction. This is the case, for example, 
when there exists a reference hole or slot on a work 
table to define the direction of the reference CS.

Remark 2: The D-H model in [37] defines 
four parameters, namely the link twist angle, the 
link length, the joint distance and the joint angle, 
for each CS aligned to the axis average line. The 
present model (3) is essentially equivalent to the 
D-H model, but it represents the XY position only, 
which eliminates the influence of the link twist and

(a) J2-axis indexing test

(b) J1-axis indexing test 

Fig. 2: Measurement procedure

Fig. 3: Experimental setup with laser tracker and
robot

joint angles. The parallelism errors investigated in 
Section 5.3 correspond to the link twist and joint 
angles. Alam et al. [38] discussed the formulation 
of various equivalent D-H models from different 
CS definitions.

2.3 Proposed measurement
procedure

Another original contribution of this paper is
on the proposal of a scheme to identify all the
parameters included in the proposed model (3).
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min
Xrlt,Yrlt,Rrlt

∑
i1

{∥∥∥∥[αrlt 0 0
0 βrlt 0

]
ltP 1(i1, sgn(θ̇

∗
1,map(i1)))−

[
Xrlt

Yrlt

]∥∥∥∥−Rrlt

}2

(7)

[
Pn(in, sgn(θ̇

∗
n,map(in)))
1

]
=

 cos θrlt sin θrlt 0 0
− sin θrlt cos θrlt 0 0

0 0 1 0
0 0 0 1


 1 0 −βrlt −Xrlt

0 1 αrlt −Yrlt

βrlt −αrlt 1 −z0

[ltPn(in, sgn(θ̇
∗
n,map(in)))

1

]
(8)

The objective of the present scheme is to iden-
tify the angular positioning deviation of Jn-axis, 
∆θ∗n,map(in, +1) and ∆θ∗n,map(in, −1) for all in = 
1, . . . , Nn, and for both axes, n = 1, 2, as well 
as the D-H parameters, ∆L1, ∆L2 and θ20. This 
paper proposes the following test using a laser 
tracker. Figure 2 illustrates the proposed test 
procedure. Figure 3 shows the experimental setup.

1. Keep the J1-axis at θ1∗ = 0◦. Index the J2-axis 
at θ2∗,map(1), . . . , θ2∗,map(N2). θ2∗,map(i2) should 
be given bidirectionally. The range of θ2∗,map(i2) 
should cover the J2-axis rotation stroke as 
much as possible. At each stop position, the 
three-dimension (3D) position of the end effec-
tor is measured by using a laser tracker. Figure 
2a shows the test setup.

2. Similarly, keeping the J2-axis at θ∗2 = 0◦.
J1-axis is indexed at θ∗1,map(1), . . . , θ

∗
1map(N1).

θ∗1,map(i1) should also be given bidirectionally.
The end effector 3D position at each stop point 
is also measured by using a laser tracker. Figure 
2b shows the test setup.

2.4 Identification of bidirectional
angular position deviation of
each rotary axis

The end effector position measured in the
proposed test in Section 2.3 is denoted by
ltPn(in, sgn(θ̇

∗
n,map(in))) ∈ R3(in = 1, . . . , Nn),

where Jn-axis is at the command angle θ∗n,map(in)
and its rotation direction is represented by
sgn(θ̇∗n,map(in)) (either +1 or −1). The laser
tracker has its own CS, and the left-hand side
superscript “lt” represents a vector defined in the
laser tracker CS. Figure 4 shows the overview of
the proposed algorithms.

1. Conversion to the reference CS: as described
in Section 2.1, the reference CS is defined such
that its Z-axis is aligned to the J1-axis average
line. The angle of the J1-axis average line to
the Z-axis of the laser tracker CS around the
X- and Y-axis, denoted by αrlt and βrlt ∈ R,

Fig. 4: Overview of the proposed algorithm

can be calculated by solving Eq. (9).

min
αrlt,

βrlt,z0

∑
i1

{A− z0}2

A=
[
−βrlt αrlt 0

]
ltP 1(i1, sgn(θ̇

∗
1,map(i1)))

(9)

where αrlt and βrlt are the inner product
of a vector with

[
−βrlt αrlt 0

]
represents the Z

position of the vector rotated by αrlt around X
and by βrlt around Y. If this assumption is not
met, Eq. (9) can be rewritten with the rotation
matrices.

The (X, Y ) position of the J1-axis average
line, projected onto the XY plane in the laser
tracker CS, denoted by (Xrlt, Yrlt), is given as
the center of the best-fit circle of the measured
trajectory rotated by αrlt and βrlt. It can be
calculated by solving Eq. (7).

The X-axis of the reference CS is defined
such that it passes the measured position when
the J1-axis is at its reference angular position,
denoted by θ∗1,map(i

0
1).

Then, by using αrlt, βrlt, Xrlt, Yrlt, θrlt, and
z0 calculated in Eqs. (7) and (9), the measured
end effector position in the laser tracker CS, can
be converted to the reference CS by Eq. (8).
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2. Calculate the center of the best-fit circle,
denoted by Q2 ∈ R2, to the measured
trajectory with the J2-axis indexing test,
P2(i2, sgn(θ̇

∗
2,map(i2))) (i2 = 1, . . . , N2), and

the radius, R2 ∈ R, by solving the problem in
Eq. (10).

min
Q2, R2

∑
k

{∥∥B −Q2

∥∥−R2

}2

B =

[
1 0 0
0 1 0

]
P2(i2, sgn(θ̇

∗
2,map(i2)))

(10)

3. The angle- and direction-dependent angular
positioning deviation of Jn-axis, can be calcu-
lated by Eq. (11)

∆θ∗n,map(in,±1) = ∠(Pn(in,±1)−Qn)

− ∠(Pn(i
0
n,±1)−Qn)− θ∗n,map(in) (11)

where θ∗n,map(i
0
n) is the reference angular posi-

tion of Jn-axis (see Step Section 2.3). ∠(Pn)
denotes the angle between the vector Pn ∈ R3,
projected onto the XY plane, and X-axis of
the reference CS. Eq. (11) must be calculated
for all in = 1, . . . , Nn bidirectionally. Note the

Q1 = [0 0 0]
T
by the definition of the reference

CS.
4. The length errors of the first and second links,

∆L1 and ∆L2, can be calculated by Eqs. (12)
and (13).

∆L1 = Rrlt −R2 − L1 (12)

∆L2 = R2 − L2 (13)

5. The angular offsets of J2-axis, θ20, can be
calculated by Eq. (14).

θ20=∠(P2(i
0
2, sgn(θ̇

∗
2,map(i

0
2)))−Q2)−∠(Q2−Q1)

(14)

The D-H parameters,∆L1, ∆L2, and θ20, 
defines the position of the J1- or J2-axis average 
lines [38] . The axis average line, defined in [2], 
represents the mean position and orientation of the 
axis of rotation. The calculation of the D-H 
parameters by solving Eq. (10) complies with this 
definition of the D-H parameters.

3 Experiments to identify the
error parameters in
proposed model

3.1 Experiment setup

In this experiment, a SCARA-type robot, RH-
3FRH-5515-D by Mitsubishi Electric Co., Ltd. was
measured by a laser tracker, Leica’s AT960-XR,
as shown in Fig. 3. The major specifications of
the robot are shown in Table 1. The cat’s eye
retroreflector is installed on the robot end effec-
tor to reflect the laser beam. The retroreflector
is mounted on a screw-driven stage such that the
center of the retroreflector can be roughly aligned
to the centerline of J4-axis (see Fig. 3). Table
2 shows the laser tracker’s major specifications.
In this experiment, the measured distance was
about 2.8m by average. According to Table 2, the
laser tracker’s measurement uncertainty is about
±30µm, by average. Throughout the experiment,
the Z-position of the robot end effector was kept
at Z∗ = 300mm in the reference CS.

The measurement described in Section 2.3 was
performed with the J2- and J1-axis command
angular positions in Eq.s (15) and (16).

θ∗2,map(i2) = [−143◦,−140◦,−130◦,−120◦, . . . ,

140◦, 143◦] ∈ R31(i2 = 1, . . . , 31) (15)

Table 1: Major specifications of the robot (RH-
3FRH-5515-D by Mitsubishi Electric Co., Ltd.)

Nominal link
lengths

Operating
range

Position
repeatability

L1: 325mm J1-axis: 340◦ X-Y composite:
±0.012mm

L2: 225mm J2-axis: 290◦ J3-axis:
±0.01mm

J3-axis: 150mm J4-axis:
±0.0004◦

J4-axis: 720◦

Table 2: Major specifications of the laser tracker
(Leica AT960-XR by Hexagon Manufacturing
Intelligence)

Reflector
Measuring

range
(diameter)

Horizontal
measuring

range

Vertical
measuring

range

Measurement
accuracy
Uxyz

160m 360◦ ±145◦ ±15µm+
6µm/m
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Fig. 5: Measured end effector positions for J2-
axis command angles in Eq. (15)

Fig. 6: Identified J2-axis angular deviation
∆θ∗2,map(i2, sgn(θ̇

∗
2(i2)))

θ∗1,map(i1) = [−165◦,−160◦,−150◦,−140◦, . . . ,

160◦, 165◦] ∈ R35(i2 = 1, . . . , 35) (16)

The black dots in Fig. 2 shows
the end effector command positions,
denoted by P ∗

1 (i1, sgn(θ̇
∗
1,map(i1))) and

P ∗
2 (i2, sgn(θ̇

∗
2,map(i2))), given in Eq. (1) with

command angular positions either in Eq. (15) or
(16).

3.2 Identification of J1-axis, J2-axis
angular positioning deviations

For the J2-axis indexing test, described in Fig.
2a, the measured end effector positions are shown
in Fig. 5. The test was repeated three times.
Figure 5 shows only the data from the first mea-
surement. The black dots represent the command
end effector points, P ∗

2 (i2, sgn(θ̇
∗
2,map(i2))), and

red and blue circles represent the measured posi-
tions, P ∗

n(in, sgn(θ̇
∗
n,map(in))), as J2-axis rotates

in positive (counter-clockwise, in red circles) and
negative (clockwise, in blue circles) directions. The

Fig. 7: Measured end effector positions for J1-
axis command angles in Eq. (16)

Fig. 8: Identified J1-axis angular deviation
∆θ∗1,map(i1, sgn(θ̇

∗
1(i1)))

error from the command to measured positions
is magnified 2,000 times (“Error scale” in Fig. 5
corresponds to the error 50 µm).

Throughout this paper, the end effector posi-
tions were statically measured. It was confirmed 
that static end effector positions in the robot con-
troller, calculated from J1- and J2-axis angular 
positions, had negligibly small difference from the 
command positions.

Figure 6 shows the identified J2-axis angu-
lar positioning deviations ∆θ∗2,map(i2, sgn(θ̇

∗
2(i2)))

at each command angle θ∗2,map(i2) calculated by
Eq. (11) with the first measured bidirectional
trajectory shown in Fig. 5. The red polyline repre-
sents ∆θ∗2,map(i2,+1) when J2-axis rotates in the
positive direction. The blue polyline represents
∆θ∗2,map(i2,−1) when J2-axis rotates in the nega-
tive direction. The difference between the identi-
fied angular positioning deviations in positive and
negative directions represents the influence of the
backlash in the J2-axis. The error bar represents
the maximum and minimum values in the three
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measurements, which show the repeatability of
J2-axis angular positioning and the measurement.

The same calculation is applied to the J1-
axis indexing test. The measured end effector 
positions at P1

∗(i1, sgn(θ̇1∗,map(i1))) are shown in 
Fig. 7. Three tests were repeated, but Fig. 7 
only shows the first m easurement d ata. Figure 
8 shows the identified J 1-axis a ngular devia-
tion P1

∗(i1, sgn(θ˙1∗,map(i1))) calculated by Eq. 
(11) based on the first measurement data. Table 3 
shows the identified D-H parameters included in 
Eq. (3) calculated by Eqs. (12)-(14).

Remark 1: Figure 8 shows a sinusoidal com-
ponent. This is not caused by identification error
of the best-fit center, Q2 in Eq. (10), but indeed
shows the angular positioning deviation, since the
radial error motion, shown in Fig. 14, is calcu-
lated by using the same Q2 but does not show a
sinusoidal component.

Remark 2: According to the manufacturer’s 
catalog, the measurement uncertainty of the laser 
tracker, shown in Table 2, may not be sufficiently 
small compared to the robot’s positioning error, 
shown in Figs. 5, 7, and 9. However, the experi-
mental results show that the repeatability of the 
measurement was sufficiently small compared to 
the robot’s positioning error (see the error bars 
in Figs 6 and 8). Note that they also contain 
the influence of the robot’s positioning repeata-
bility. The measurement uncertainty of a laser 
tracker can be potentially a critical issue for higher 
accuracy positioning by a robot.

4 Experimental validation of
prediction accuracy of the
identified model

4.1 Verification of the prediction
accuracy of the proposed
kinematic model

To experimentally investigate the prediction accu-
racy of the proposed kinematic model identified
in Section 3.2, the measured and predicted paths
were compared for the command paths shown by
black dots (“•”) in Fig. 9 (bidirectional). The end

Table 3: Identified D-H parameters

∆L1(mm) L1 +
∆L1(mm)

∆L2(mm) L2 +
∆L2(mm)

θ20(deg)

−0.0347 324.9650 −0.0178 224.9832 −0.0032

Fig. 9: 2D positioning error measured by the laser
tracker

Fig. 10: 2D positioning error estimated by the
proposed model

effector positions in the reference CS, measured by
the same laser tracker, are shown in Fig. 9 by red
and blue circles (“ ◦” and “◦”) for the feed direc-
tion shown by red and blue arrows. The error from
the command to measured positions is magnified
500 times (“Error scale” in Figs. 9−12 corresponds
to the error 400µm).

Then, the 2D positioning error is predicted by
using the proposed kinematic model at each of
the same command positions. The predicted end
effector positions are shown in Fig. 10. Compared
with the measured positions in Fig. 9, it shows a
good match. This shows the proposed kinematic
model’s prediction accuracy, even though the sim-
ulated paths are completely different from the
paths used in the model identification (see Fig. 2).
Figure 9 shows that the 2D contour error is signif-
icantly different for different feed directions (the
difference between the blue and red paths is about
80 µm at maximum). This is mostly attributable
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Fig. 11: 2D positioning error estimated by the
conventional model

Fig. 12: Measured end effector positions under
the compensation based on the proposed model

to the rotary axis backlash, and Fig. 10 shows
that the identified model can predict its influence
with sufficient accuracy. For the comparison, Fig.
11 shows the end effector positions predicted by
the conventional model, given in Eq. (2), with the
D-H paramenters identified in Table 3. It shows
that the conventional model’s estimation accuracy
is significantly lower than the proposed model.
The conventional model cannot distinguish the
positioning error in different feed directions.

4.2 Compensation for the end
effector positioning error

This paper uses a straightforward off-line method
to compensate the robot positioning error. The
predicted robot end effector position, P̂ (k), based
on the proposed kinematic model ((3)) is inverted
relative to the command end effector position,
P ∗(k), and the inverted coordinate position is used

Fig. 13: Absolute position error distribution of 
measurement points

as the compensated position. The compensated
position, P ∗

com(k) ∈ R2, is calculated by Eq. (17).

P ∗
com(k) = P ∗(k)− (P̂ (k)− P ∗(k)) (17)

For the compaensated trajectories, the end
effector position was measured by using a laser
tracker. Figure 12 shows the bidirectional trajec-
tories with this compensation. Compared to Fig.
9, Fig. 12 shows that the new kinematic model can
effectively improve the absolute positioning accu-
racy over the entire workspace. In particular, the
impact of the rotary axis backlash is significantly
reduced in Fig. 12.

Figure 13 compares the absolute position-
ing errors of all measurement points before and 
after compensation. The average positioning error 
before compensation was 0.051 mm, and 0.034 
mm after compensation. By the compensation, 
the absolute positioning error of the robot was 
reduced by 33%.

5 Extension of the proposed
model

For machine tool, ISO 230-7[9] describes test pro-
cedures to measure all the error motions of a
rotary axis. In addition to the angular positioning
error motion, the axis of rotation may be dis-
placed or tilted as it rotates. Such error motions
are called the radial and tilt error motions. Natu-
rally, a rotary axis in a robot can also have radial
and tilt error motions. This paper so far only con-
siders the angular positioning error motion, since
it often has a larger influence on the end effector
positioning accuracy, but the present modelling
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scheme can be extended to other error motions in
a straightforward manner.

A machine tool often has one rotary axis
mounted on another rotary axis. In such a con-
figuration, error motions of one rotary axis may
be influenced by the angular position of the other
rotary axis. For example, Ibaraki et al. [39] dis-
cusses such an influence for a rotary table (C’-axis)
mounted on a swivel axis (B’-axis). When the
swivel axis is horizontal (B = 0◦) and verti-
cal (B = ±90◦), the error motion of the rotary
table (C-axis) may significantly change, due to the
deformation of the C-axis bearing caused by the
gravity to the rotary table. Such an axis-to-axis
accuracy cross-talk can exist also on a robot. The
modelling scheme presented in this paper can be
extended to model such an influence.

Unlike machine tools, such an influence on the
positioning accuracy of an industrial robot has
not been discussed in the literature. To illustrate
the extensibility of the present scheme to a wider
class of error motions, this section will present
three examples of such an analysis of experimental
results.

5.1 Radial error motion of rotary
axes

5.1.1 Inclusion of radial error motion
of rotary axis into the kinematic
model

The geometric inaccuracy (the roundness error) of
the bearing laces is often a major cause for the
radial error motion of a rotary axis. The move-
ment of bearing balls, as well as the gear teeth,
can cause the radial error motion typically in a
periodic form of the frequency corresponding to
the ball pitch or the gear pitch[40]. When the dis-
turbance is dependent on the angular position,
for example, when the gravity influence changes
with the angular position, then it can cause the
radial error motion that changes with the angu-
lar position. Radial error motion, the term in [9],
is defined as error motion that occurs perpendic-
ular to the rotary axis of rotation at a specified
axial location. Similarly as the angular positioning
error motion, the radial error motion is generally
a function of the angular position.

Such a radial error motion influence can be
incorporated into the proposed model. Denote the
radial error motion at the command angular posi-
tion, θ̇∗n,map(in), by Eradial,n,map(in, sgn(θ̇

∗
n(k))).

Similar as the angular positioning error motion,
the radial error motion is modelled as a function

of the rotation direction, sgn(θ̇∗n(k)). Then, with
this radial error motion, the proposed kinematic
model (3) is modified as Eq. (18),

P̂ (k) =

[
cos θ̂1(k) cos (θ̂1(k) + θ̂2(k) + θ20)

sin θ̂1(k) sin (θ̂1(k) + θ̂2(k) + θ20)

]
[
L1 +∆L1 + Eradial,1(k, sgn(θ̇

∗
1(k)))

L2 +∆L2 + Eradial,2(k, sgn(θ̇
∗
2(k)))

]
(18)

n

n

where Eradial,n(k, sgn(θ̇∗ (k))), represents the 
radial error motion at the arbitrary command 
angular position, θ˙∗ (k). According to the defini-
tion of the term “radial error motion” in [2], it is 
defined such that its mean is zero. It is given by
linearly interpolating Eradial,n,map(in, sgn(θ̇

∗
n(k)))

(n = 1, 2), similarly as the angular positioning
deviation, as Eq. (19).

Eradial,n(k, sgn(θ̇
∗
n(k)))

= δ1(k) · Eradial,n,map(in, sgn(θ̇
∗
n(k)))

+ (1− δ1(k)) · Eradial,n,map(in + 1, sgn(θ̇∗n(k)))
(19)

δn(k) is defined in Eq. (6). Other error parameters,

∆Ln, θ̂n(k), are identified in Section 2.2.

5.1.2 Identification of radial error
motions and experiment

The same test procedure presented in Section 2.3
is applied to identify the radial error motion,
denoted by Eradial,n,map(in, sgn(θ̇

∗
n(in))) ∈ R (n =

1, 2). It can be calculated by Eq. (20).

Eradial,n,map(in, sgn(θ̇
∗
n(k)))

=
∥∥Pn(in, sgn(θ̇

∗
n,map(in)))−Qn

∥∥ (20)

where Pn(in, sgn(θ̇
∗
n,map(in))) represents the mea-

sured end effector positions in the Jn-axis indexing
test given in the reference CS as shown in Eq. (8).
Qn represents the center position of the best-fit
circle to the measured trajectory and its definition
is given in Eq. (10).

From the measured end effector positions
shown in Figs. 5 and 7, the radial error
motion, Eradial,n,map(in, sgn(θ̇

∗
n(k))), is calcu-

lated. Figures 14 and 15 show the identified
Eradial,n,map(in, sgn(θ̇

∗
n(k))).

Then, for the same command paths shown in
black dots in Fig. 9, Fig. 16 shows the predicted
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Fig. 14: Identified J1-axis radial error motion
Eradial,1,map(i1, sgn(θ̇

∗
1(i1)))

Fig. 15: Identified J2-axis radial error motion
Eradial,2,map(i2, sgn(θ̇

∗
2(i2)))

Fig. 16: 2D positioning error estimated by the
proposed model added radial error motion

trajectories of the model (18) with J1- and J2-axis
radial error motions (Figs 14 and 15) , in addition
to the J1- and J2-axis angular positioning devi-
ations (Figs. 6 and 8) and the D-H parameters
(Table 3) identified in Section 3.2. Comparing Fig.
16 and Fig. 10, it can be found that, in this par-
ticular robot, the radial error motions do not have
significant influence on the predicted results. The
estimated radial error motions, shown in Figs. 14

Fig. 17: J1-axis angular positioning deviation at
diffident J2-axis angles

and 15, are relatively smaller than the positioning
error observed in Fig. 9.

For this particular robot, the radial error 
motions, shown in Figs. 14 and 15, were not sig-
nificant. While the radial error motion of a spindle 
can be easily measured by using, for example, a 
cylindrical artefact and a dial gauge [1], the radial 
error motion of a robot rotary axis is more dif-
ficult to measure, since it is typically difficult to 
place an artefact on its axis of rotation. This sub-
section presented a scheme to measure it. This is 
a contribution of this subsection.

5.2 Axis-to-axis cross-talk in
angular positioning deviation

5.2.1 Possible cause for axis-to-axis
cross-talk in angular positioning
deviation

In the proposed model in Eq. (3), the angular
positioning deviation of a rotary axis is assumed
dependent only on its command angle and rotat-
ing direction. In the proposed model in Eq. (3),
the angular positioning deviation of a rotary axis
is assumed dependent only on its command angle
and rotating direction. The axis-to-axis cross talk
can be incorporated into the proposed model by
making the angular positioning deviation of J1-
axis dependent not only the J1 angular position
but also on the J2 angular position.

For the SCARA robot configuration in Fig. 1, 
the gravity influence as a static torque to the J1-
axis is clearly maximized when θ2∗ = 0◦ (the pose 
shown in Fig. (1)). As θ2∗ increases (or decreases), 
the center of gravity of the robot will move towards 
the J1-axis, and the influence of gravity will 
decrease. Therefore, the following sub-section will 
investigate the influence of the J2-axis
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Fig. 18: 3D end effector positioning errors mea-
sured by the laser tracker

Fig. 19: 3D end effector positioning errors esti-
mated by the proposed model (23)

angular position on the J1-axis angular positioning 
error motion.

5.2.2 Identification of axis-to-axis
cross-talk in angular positioning
deviation and experiment

For identifying the influence of the J2-axis angular
position on the angular positioning deviation of
J1-axis, the following test procedure is proposed:

1. Keep the J2-axis at θ
∗
2 = 0◦. Index the J1-axis

as shown in Eq. (21).

θ∗1,map(i1)=

[−100◦,−80◦,−60◦,−40◦,. . . ,80◦,100◦]

∈ R11(i1 = 1, . . . , 11) (21)

θ∗1,map(i1) should be given bidirectionally. At
each stop position, the 3D position of the end
effector is measured by using a laser tracker.

2. Keep the J2-axis at θ
∗
2 = 20◦, 40◦, 60◦. At each

J2-axis angular position, perform Step 1.

For each J1-axis angular position, the J1-axis
angular positioning deviations is identified by Eq.
(11). Figure 17 compares the J1-axis angular posi-
tioning deviations identified at θ∗2 = 20◦, 40◦, 60◦.
The difference is not significant, compared to the
robot’s unrepeatable positioning error (see error
bars in Fig. 8), or the measurement uncertainty

of the laser tracker. The present test results show
that, in this particular robot, the influence of the
J2-axis angular position on the J1-axis angular
positioning deviation is not significant.

If such influences are significant, the present
model can be straightforwardly extended to
include the J1-axis angular positioning deviation
that is dependent on not only the J1-axis angular
position but also on the J2-axis angular position.
This represents the axis-to-axis cross-talk in the
J1-axis angular positioning deviation.

5.3 Parallelism errors of J2- to
J1-average line

In the proposed model in Eq. (3), only 2D posi-
tioning error was estimated. On a typical SCARA
robot, the positioning error in the Z-direction is
often significantly influenced by error motions of
the Z-axis (J4-axis in Fig. 1). In many SCARA
robots, a linear Z-axis is often not designed for
higher positioning accuracy (for example, it often
has no linear guideway). Therefore, this paper so
far does not consider the positioning error in the
Z-directions. However, when needed, it is straight-
forward to extend the present model to the 3D
positioning. This section demonstrates the inclu-
sion of the parallelism errors (the term in [2]) of
J1- to J2-axis average lines into the present model
to model the 3D positioning error in the entire
workspace.

First, Fig. 18 shows the 3D positions of the end
effector measured for the command paths shown
by black dots in Fig. 9. It show significant posi-
tioning errors in the Z-direction. The parallelism
error of J2- to J1-axis average lines is consid-
ered to be its major cause. For industrial robots,
the parallelism error of axes may be caused by
assembly errors. The parallelism errors of J2- to
J1-axis around X- and Y-axes, denoted respec-
tively by EA(0J1)J2

and EB(0J1)J2
, can be identified

by the following procedure: perform the J2-axis
indexing test, described in Step 1 of Section 2.3.
From the measured 3D end effector positions,
P ∗
2 (i2, sgn(θ̇

∗
2,map(i2))), EA(0J1)J2

, and EB(0J1)J2

can be identified by solving Eq. (22).

Table 4: Identified parallelism errors of J2- to J1-
axis

EA(0J1)J2 (deg) EB(0J1)J2 (deg) z1(mm)

−0.0009 0.0293 −0.2715
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min
EA(0J1)J2

,EB(0J1)J2
,z1

∑
i2

{[
EA(0J1)J2

EB(0J1)J2
0
]
P

2
(i2, sgn(θ̇

∗
2,map(i2)))− z1

}2

(22)

P̂ (k) =

 (L1 +∆L1) cos(θ̂1(k)) + (L2 +∆L2) cos(θ̂1(k) + θ̂2(k) + θ20)

(L1 +∆L1) sin(θ̂1(k)) + (L2 +∆L2) sin(θ̂1(k) + θ̂2(k) + θ20)

(L2 +∆L2) · (EA(0J1)J2
) sin(θ̂2(k) + θ20)− EB(0J1)J2

cos(θ̂2(k) + θ20)

 (23)

The calculation results are shown in Table 4.
The influence of the parallelism errors on the posi-
tioning error in the XY plane is negligibly small,
when there is no command movement to the Z-
direction. The proposed kinematic model (3) is
extended to Eq. (23).

For the same command paths in Fig. 18, the
positioning errors estimated by the model in Eq.
(23) are shown in Fig. 19. Figures 18 and 19 show
a good match, which indicates that the parallelism
errors are the main cause for the Z-position error.
It is emphasized that the parallelism errors were
not identified by the measured trajectories in Fig.
18, but by the tests shown in Fig. 2.

6 Conclusion

For offline compensation of a robot’s “abso-
lute” positioning error over its entire workspace,
the prediction accuracy of the robot’s kinematic
model is a key. Most of conventional works employ
a kinematic model with position and orientation
errors of rotary axis average lines, called the D-H
parameters. Although they are clearly dominant
error causes, they alone cannot exhibit sufficient
prediction accuracy of the robot’s positioning
error. This was shown by experimental compari-
son with the measured end effector trajectories in
Fig. 11.

Motivated with the volumetric error compen-
sation for machine tools, this paper proposes a
kinematic model for a SCARA-type robot with the
angular positioning deviation of each rotary axis.
The angular positioning deviation is modelled as
a function of the command angular position, and
a function of the rotation direction to model the
backlash influence.

To identify the bidirectional angular position-
ing deviations, this research used a laser tracker
to measure the position of the end effector when
each joint is independently indexed at the given
command angles. The comparison of the predicted
end effector positions with the measured ones, for
the paths that are completely different from the
paths used for model identification, shows that the
proposed kinematic model can accurately predict

the 2D position error. Furthermore, the compen-
sation test was performed to cancel the predicted
2D positioning error, and the test results showed
that it can improve the absolute position accuracy
of the robot.

In addition, this study also demonstrates that
the present model can be extended to include 1)
radial rotation motion of each rotary axis, 2) axis-
to-axis cross-talk in angular positioning deviation,
and 3) the parallelism errors of J2- to J1-axis to
model the 3D positioning error. The test results
showed that the influence of 1) and 2) was not
significant, but they showed potential applicability
of the extended model to numerical compensation.
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