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Abstract

Making the trained model robust to the distortions, such as pixel noises in medical
image segmentation, is crucial. Recently, self-supervised learning (SSL) methods
such as SimCLR, VICReg, and Barlow Twins are closely related to spectral meth-
ods such as Laplacian Eigenmaps, Multidimensional Scaling, etc. This means that
SSL can construct features invariant to the perturbations introduced by data aug-
mentations. Since invariant feature extraction is also fundamental in medical image
segmentation, we proposed introducing SSL loss as a regularizer in U-Net for medi-
cal image segmentation in this paper. Pixel noise is applied to the training samples,
and invariant features to such distortions are extracted in the hidden layer of U-Net.
The effectiveness of the proposed approach is experimentally confirmed using the
subset of Sunnybrook Cardiac Data (SCD) and Abdominal Organs segmentation
dataset by CHAOS.
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Chapter 1

Introduction

Medical image segmentation is used to identify the pixels of organs or lesions from
medical images such as CT or MRI images and is regarded as one of the most critical
tasks in medical image analysis [1]. Deep learning is now recognized as one of the
best approaches for medical image segmentation [2]. Many network architectures,
such as the fully convolutional neural network (FCN) [3] or U-Net [4], have been
used to segment medical images.

U-Net [4] is one of the most well-known architectures for medical image segmen-
tation. The encoder-decoder architecture is utilized, and skip connections between
different stages of the network are introduced, as shown in Fig.2.3. Many researchers
applied the U-Net base model for medical image segmentation[5, 6].

Invariant feature extraction is one of the central topics in machine learning and
pattern recognition, and it is also essential in deep learning. The standard approach
to making robust to unnecessary variations is to train a deep learning model by
using many training samples that include all possible variations. There are some
researches in which invariant features are extracted by using deep learning. For
example, pose-invariant features are extracted using Convolutional Neural Networks
(CNN) for pose-invariant face recognition [7]. Metric learning has also often been
used for invariant feature extraction [8, 9]. Ueda et al. proposed an invariant feature
extraction method using Gradient Reversal Layer (GRL) [10].

Self-Supervised Learning (SSL) is one of the most promising methods to learn
data representations that generalize across downstream tasks [11]. Labels in the
training samples are not required, but the knowledge of what makes some samples
semantically close to others is trained. Usually, semantic similarity is constructed
by augmenting the training samples through data augmentations.

One of the basic SSL methods is SimCLR (a simple framework for contrastive
learning of visual representations) [12]. SimCLR learns representations by max-
imizing agreement between differently augmented views of the same sample via a
contrastive loss in the latent space. Recently Balestriero et al. [11] demonstrate that
SSL methods such as SimCLR [12], VICReg [13], and Barlow Twins [14] are closely
related with the spectral methods such as Laplacian Eigenmaps, Multidimensional
Scaling, etc. This means that SSL can extract features (embedding) invariant to
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2 CHAPTER 1. INTRODUCTION

the perturbations introduced by data augmentations.
The invariant feature extraction is also fundamental in supervised learning.

Ramyaa et al. proposed to combine Barlow Twins loss with the standard cross
entropy loss for the supervised learning with CNN [15].

In this paper, we propose to use SSL loss as a regularizer in U-Net-based medical
image segmentation. Pixel noise is applied to the training samples as the distortions
to the medical images, and the invariant features to such distortions are extracted
by introducing SSL loss in the hidden layers of the U-Net. To show the effective-
ness of the proposed approach, we have performed experiments using the subset of
Sunnybrook Cardiac Data (SCD) [16] and Abdominal organs segmentation dataset
by CHAOS challenge[17].

The contributions of this paper are summarized as follows:

(1) SSL loss in the hidden layers of the U-Net is introduced to make the trained
model for medical image segmentation robust to the pixel noises.

(2) The effectiveness of the proposed approach is experimentally confirmed using
the subset of Sunnybrook Cardiac Data (SCD) [16] and Abdominal Organs
segmentation dataset by CHAOS challenge[17].



Chapter 2

Related Works

2.1 Neural Network

A neural network [18] is a mathematical model of human neurons and their connec-
tions. These artificial neurons are called perceptrons [18], and three or more layers
of them are called multi-layer perceptrons (MLP) [18] or neural networks. A neural
network consists of all fully connected layers, and one perceptron can be represented
by the following

y = f(twx+ b) (2.1)

where x, y,w, b, and f(·) are input vector, output, weight vector, bias, and active
function (explained in the 1.1.1 section) respectively. Many of these perceptrons are
connected and overlap to form a neural network as shown in Figure 2.1, which
enables complex calculations. The function f is an activation function.

Figure 2.1: Overview of MLP.
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4 CHAPTER 2. RELATED WORKS

2.1.1 Active Function

The activation function is a function that transforms the output values of a per-
ceptron. This function can be inserted between a neural network to increase the
flexibility of the representations of the model. In this study, we used the ReLU [19]
and Softmax [20] functions.

ReLU

(Rectified Linear Unit) is one of the most commonly used activation functions of
neural networks (figure 2.2). It outputs 0 if it is less than or equal to the input
value, and the value as it is if it is greater than 0. This function is defined as

f(x) =

{
x (x > 0)

0 (x ≤ 0).
(2.2)

Softmax

is a function that normalizes the sum of multiple output values to be 1.0. This
function is defined as

yi =
exp(xi)

n∑
k=1

exp(xk)

(i = 1, 2, ..., n) (2.3)

where n is the number of classes.

2.1.2 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) [18] is a neural network that includes a
computation called convolution. It is mainly used for images and videos.

Convolution

is the most important structure in CNN. The convolution calculation generates new
feature maps by filtering the input feature maps. The filter is also called a ”kernel”.
The convolution operation is defined as

Output(x, y) =
∑
i

∑
j

Filter(i, j)Input(x+ i, y + j). (2.4)

CNN performs this convolutional computation instead of a linear computation.
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Figure 2.2: Graphs of ReLU.

Pooling

is a technique used to enhance and compress feature maps. As with convolution,
the calculation is performed using a kernel. One of the most commonly used is
MaxPooling, which retrieves the largest value in the kernel.

2.2 Image Segmentation

Image segmentation is one of the image recognition techniques and is the task of
partitioning objects in an image. It has been applied in a wide range of fields such as
medical image analysis, scene understanding, robot perception, video surveillance,
augmented reality, image compression, automated driving, and so on [21].

There are three main segmentation methods: semantic segmentation, instance
segmentation, and panoptic segmentation.

Semantic Segmentation is a method of attaching a class label to each pixel
in an image. It divides the image into regions for each type of object in the image
and performs class classification on a pixel-by-pixel basis.

Experiments have been conducted using this method in this study.
Instance Segmentation differs from semantic segmentation in that it is a

method for segmenting objects in an image into individual regions. Because it does
not segment by class, if two or more objects in an image are identical, they are
recognized as different objects.

Panoptic Segmentation is a technique that combines semantic and instance
segmentation described above. All objects in the image are assigned class labels, and
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Figure 2.3: Overview of U-Net.

if there are multiple identical objects, they are recognized individually. Currently,
it is not sufficiently accurate and is still a developing research field.

2.2.1 U-Net

U-Net is a network proposed by Ronneberger et al. [4] for biomedical image seg-
mentation, one of the fully convolutional networks (FCN) [3] and currently the most
popular network model used in semantic segmentation (figure 2.3). An FCN is a
network composed entirely of convolutional layers, unlike CNNs, which are generally
composed of a convolutional layer and a fully-connected layer [22]. While general
CNN’s output feature vectors can be classified, FCNs can output feature maps or
images.

In addition to being an FCN, U-Net has the features of deconvolution and skip-
connection. deconvolution is the opposite of convolution, which is an operation to
stretch the input features (upsampling). Skip-connection is the process of adding
the features obtained by convolution to those to be deconvolved. This allows the
features related to the position of the object lost by pooling, etc. to be supplemented.

U-Net has an encoder-decoder architecture because it compresses the input image
into a small feature map and restores it to the original image size.

2.2.2 Medical Image Segmentation

Medical image segmentation, which identifies pixels of organs and lesions from med-
ical images such as CT and MRI, plays an important role in many medical image
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analyses [23, 1]. Deep learning is now recognized as one of the best approaches for
medical image segmentation [2].

While deep learning-based models produce good segmentation accuracy, it is
essential to collect a large number of training samples to learn them [3]. In medical
image analysis, the collection of large numbers of image samples is often a very
difficult and expensive task. The most common approach to increase the amount
of training samples is data augmentation, which applies variation to images in the
training sample [24].

In medical images, it is common for anatomical structures of interest to occupy
only a small portion of the image. That is, most pixels in the image belong to
the background region, and the organs or lesions that should be seen for medical
diagnosis are very small. When a network is trained on such data, the learned
network is often biased toward the background. A common solution to this problem
is sample reweighting, which applies a higher weight to foreground patches. Dice
loss is often used for automatic reweighting [25, 4, 26, 27].

Another approach is to introduce prior knowledge into the loss function as a
regularization. For example, the Euler characteristic (EC) from topology computes
the number of isolated objects on segmented vascular regions in the fundus image
and uses it as a regularization factor for training [28]. It is also useful to use the
information on pixel neighborhood relationships; Hakim et al. [29] proposed to
introduce a regularization term defined based on the difference of neighboring pixels.
The regularization term can be expressed as a graph Laplacian computed from the
output of the network and the ground-truth image.

2.3 Self-Supervised Learning (SSL)

Recently, it has been shown that self-supervised learning (SSL) can extract as many
features as supervised learning with a large number of training samples [11]. SSL can
construct a representation of unlabeled data, which has led to significant advances in
a variety of applications, including natural language processing, speech processing,
and computer vision [30]. SSL can build representations of unlabeled data and
has led to significant advances in various applications such as natural language
processing, speech processing, and computer vision.

In SSL for computer vision, distortions and variations are added to the original
image. The features of the distorted images are then trained to be close to each other.
This is accomplished by maximizing the similarity of representations obtained with
different distortions using deformation of the Siamese network [31]. In this way,
SSL is able to learn representations (embeddings) that are invariant to distortions
applied to the input image.

2.3.1 SimCLR

SimCLR (a simple framework for contrastive learning of visual representations) is
one of the basic methods for contrastive self-supervised learning [12]. SimCLR learns
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Figure 2.4: Overview of SimCLR.

representations by maximizing agreement between differently augmented views of
the same sample via a contrastive loss in the latent space (figure 2.4).

Let {xk|k = 1, . . . , N} be the training samples in a mini-batch. At first, for
each training sample in the mini-batch, a stochastic data augmentation is applied
to randomly generate two views of the same sample, denoted x̃i and x̃j, which are
considered as a positive pair. Then we obtain 2N pairs of the augmented samples
derived from the samples in the mini-batch. These augmented samples include a
positive pair x̃i and x̃j which are generated from the same training sample xi. The
pairs of the augmented samples are fed into the neural network encoder to get the
hidden representation hi = f(x̃i. The contrastive loss is applied after the hidden
representation is mapped by a small neural network projection head as zi = g(hi).

The loss function for a positive pair of examples (i, j) is defined as

li,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(2.5)

where sim(u,v) =
uTv

||u||||v||
is the cosine similarity between two vectors u and v

and 1[k ̸=i] is an indicator function evaluating to 1 if k ̸= i. τ denotes a temperature
parameter that controls the scale. Then the final loss is computed across all positive
pairs in the mini-batch.

2.3.2 Other SSL Methods

For SSL, it is important to prevent a collapse in which the encoders produce con-
stant or non-informative representations. Bardes et al. proposed VICReg (Variance-
Invariance-Covariance Regularization) which explicitly avoids the collapse problem
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with two regularization terms [13]. One term maintains the variance of each embed-
ding dimension above a threshold and the other decorrelates each pair of variables.

Another method is Barlow Twins which is developed by applying H. Barlow ’s
redundancy-reduction principle [14]. The objective function of Barlow Twins mea-
sures the cross-correlation matrix between the embeddings of two identical networks
fed with distorted versions of a batch of samples and tries to make this matrix close
to the identity matrix. This makes the embedding vectors of distorted versions to be
similar while minimizing the redundancy between the components of these vectors.
It is reported that Barlow Twins is competitive with state-of-the-art methods for
SSL.

Balestriero et al. [11] demonstrate that SSL methods such as SimCLR, VICReg,
and Barlow Tiwns correspond to the spectral methods such as Laplacian Eigen-
maps, Multidimensional Scaling, etc. This shows that invariant feature extraction
is fundamental in SSL.

Since it is obvious that the invariant feature extraction is also important in
supervised learning, Barlow Twins loss is combined with the standard cross-entropy
loss as a regularizer in the supervised learning with CNN [15].

In this paper, we propose to introduce SSL loss as a regularizer in U-Net for
medical image segmentation.





Chapter 3

Proposed Method

3.1 Problem Definition

In medical image segmentation, the accuracy of segmentation is significantly reduced
if the medical image contains pixel noise. This is because the boundary between the
background and the organ or lesion to be marked becomes ambiguous.

Therefore, we designed a mechanism to promote segmentation learning that is
robust to pixel noise in medical images. As described in the previous section, SSL is
capable of learning representations that are invariant to distortions given the image.
We exploit this property by learning the segmentation task and SSL in parallel, and
by introducing the SSL loss function as a regularization term in the segmentation
loss function during segmentation learning to facilitate segmentation learning to be
robust to distorted images.

3.2 Network Architecture

We propose a mechanism that connects a network consisting of 2 linear layers to the
intermediate layer of the segmentation model and uses the output feature vector for
learning SSL (figure 3.1).

U-Net is used to train the main task, segmentation. It takes a grayscale medical
image as input, goes through encoding and decoding, and outputs a feature map
(pixel-by-pixel probability distribution) of the same size as the input.

To train the SSL for normalization, the intermediate features of the U-Net are
input to a network consisting of two linear layers (SSL branch) and its output
feature vector is used. The SSL branch follows SimCLR and performs two linear
transformations [12].

zi = g(hi) = W (2)σ(W (1)hi) (3.1)

where h,W, σ, g(·), and z are the intermediate features of the U-Net, the weights
of the linear layer, the ReLU function, the two-layer linear network, and the final
output of the SSL branch, respectively (figure 2.4). The SSL branch can be con-
nected to each block (encode1-5, decode1-3) as shown in the figure 3.1, from which

11
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Figure 3.1: Overview of proposed network.

the intermediate features are transformed into a 128-dimensional feature vector by
two linear layers. We expect the U-Net to embed an invariant representations of
the images by learning to approach the final output vectors of the positive paired
samples by SSL branch.

3.3 Training Flow

Follow the learning method used in SimCLR’s paired data learning. The original
image is subjected to Gaussian noise, and the distorted images are used as positive
paired samples with the original image.

Figure 3.2: Training flow of the proposed method.
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The original and the distorted images are fed to the main stream (U-Net), and
the outputs of the U-Net are used to compute the segmentation loss function for
each image. The SSL branch of the sub-stream outputs the feature vectors of the
original and the distorted images, and these vectors are used to compute the SSL
loss function. This allows the model to adapt to the effect of bridging the difference
between the positive paired samples of the original and distorted images when learn-
ing the segmentation task. As a result, the model can incorporate representations
that are invariant to variation (noise) and robust to such distortions. The overview
of the training flow of the proposed method is shown in the figure 3.2.

In the proposed learning flow, Segmentation learning and SSL are performed
simultaneously. This means that the loss functions must be computed and fused.
In this study, the loss function is defined as the weighted sum of the loss functions
of segmentation and SSL as

L = λLseg + (1− λ)Lssl (3.2)

where Lseg and Lssl are the loss functions of segmentation and SSL and λ is the
coefficients that determine the ratio of the two loss functions. Since the segmentation
loss function is computed for each of the original and the distorted images, the
segmentation loss Lseg is defined by their respective averages as

Lseg =
lseg(Yoriginal) + lseg(Ynoise)

2
(3.3)

where lseg is the loss function of segmentation and Yoriginal and Ynoise are the outputs
of U-Net for the original and the distorted images. In this study, Cross-entropy Loss
is used for segmentation loss and InfoNCE Loss (eq (2.5)) is used for SSL loss.





Chapter 4

Experimental Details

4.1 Datasets

To evaluate the effectiveness of the proposed approach, we have performed experi-
ments using two datasets. They are the subset of Sunnybrook Cardiac Data (SCD)
[16] and Abdominal Organs segmentation dataset by CHAOS challenge[17]. Images
of the datasets are resized to 256 × 256 pixels.

4.1.1 Subset of SCD

The SCD also called the 2009 Cardiac MR Left Ventricular Segmentation Challenge
data, consists of 45 cine MRI images of various patients and conditions. The SCD
subset used in this study consists of gray-scale cardiac MRI images (short-axis im-
ages) and expert-masked data of the left ventricular region (figure 4.1). The masked
data is a binary image with 1 inside the region of the left ventricle and 0 in other
regions. The training data set consists of 234 image pairs, and the validation data
set consists of 26 image pairs. They do not overlap each other.

4.1.2 Abdominal Organs segmentation dataset by CHAOS
challenge

The CHAOS Challenge is aimed at segmenting organs (liver, kidneys, spleen) from
abdominal CT and MRI data. CT and MRI are provided in DICOM image data,
each with masked images of abdominal organs. The CT dataset is data acquired for
the pre-evaluation of living liver transplant donors and is intended for the segmen-
tation of the liver. The MRI data set consists of data from two different sequences
(T1-DUAL and T2-SPIR) and is intended for the segmentation of the four abdom-
inal organs (liver, right and left kidneys, and spleen). The MRI T2-SPIR data set
was used in this experiment (figure 4.2). As mentioned earlier, this data set is DI-
COM image data, so it was converted to JPEG image data for easier handling. Of
the total MRI images, 531 were used as training data and 92 as validation data. The
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Figure 4.1: Image and mask in subset of SCD dataset.

classes to be classified are the four abdominal organs (liver, right and left kidneys,
and spleen) as described above.

4.2 Experimental Parameters

4.2.1 Distortions

The distortion used in this study is Gaussian noise. Gaussian noise is statistical
noise that has the same probability density function as the Gaussian distribution.
The noise image was generated by adding 0.3 times the noise to the original image.

4.2.2 Learning Parameters

The batch size was set to 9, and Adam was used as the optimizer.
For the subset of SCD, the number of epochs was set to 100, and the learning

rate was set to 0.0001, which was multiplied by 0.5 every 25 epochs. The weight
decay was set to 0.001.

For the Abdominal Organs segmentation dataset, the number of epochs was set
to 250, and the learning rate was set to 0.0001, which was multiplied by 0.5 every
40 epochs. The weight decay was set to 0.01.

4.2.3 Evaluation

Multi-class IoU and pixel-wise accuracy, which are common metrics for segmentation
tasks, were used for evaluation. After training the model, prediction using the
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Figure 4.2: Image and mask in Abdominal Organs segmentation dataset.

Figure 4.3: Original and distorted images in subset of SCD dataset.
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Figure 4.4: Original and distorted images in Abdominal Organs segmentation
dataset.

trained model is performed on the original images and the distorted images, and
each is evaluated.



Chapter 5

Results

5.1 Baseline experimental results

First, check the segmentation accuracy of the distorted images by baseline. The
U-Net was trained using only the original images as baseline1. Also, let baseline2
be the one in which the U-Net is trained on a dataset in which 50% of the samples
are replaced by distorted images. We will use these baselines as a baseline to check
the performance of the proposed method.

Table 5.1: Baseline accuracy comparison for subset of SCD.
IoU pixel-wise accuracy

original images distorted images original images distorted images

baseline1 94.625 49.115 99.810 98.230
baseline2 94.284 93.531 99.799 99.772

Table 5.2: Baseline accuracy comparison for Abdominal Organs segmentation
dataset.

multi-class IoU pixel-wise accuracy
original images distorted images original images distorted images

baseline1 87.329 19.102 99.355 95.511
baseline2 82.570 80.478 99.019 98.855

5.2 Experimental results using subset of SCD dataset

We present the results of the proposed method using a subset of the SCD dataset.
The proposed method has two parameters: the location of the SSL branches

connected to the U-Net and a λ that determines the fraction of segmentation and
SSL loss function(3.2). Since these two parameters are expected to influence each
other, we tried one combination of parameters in this experiment. Specifically, 72
experiments were conducted, including 8 different connection positions of the SSL

19
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branch (encode1-5, decode1-3) and 9 different values of λ, varying by 0.1 from 0.1
to 0.9 in 0.1 steps.

The results for each evaluation indicator for the test data are as follows.

Table 5.3: multi-class IoU using original images from subset of SCD dataset
λ encode1 encode2 encode3 encode4 encode5 decode1 decode2 decode3
0.1 94.665 93.797 95.379 91.104 91.465 91.868 91.219 88.785
0.2 94.661 95.072 95.110 95.026 92.799 92.844 92.616 90.295
0.3 95.441 95.492 95.313 94.302 92.291 94.043 92.119 91.682
0.4 94.425 95.471 95.341 94.743 94.125 94.233 93.383 89.340
0.5 95.243 95.546 95.539 94.924 93.923 94.045 93.187 94.195
0.6 94.996 95.457 95.530 95.045 93.688 94.158 94.524 93.992
0.7 95.462 95.463 95.451 94.359 93.903 94.379 95.016 94.284
0.8 95.293 95.821 95.537 94.441 95.158 93.952 94.959 95.192
0.9 95.685 95.544 95.462 94.797 94.566 94.546 94.502 95.469

Table 5.4: multi-class IoU using distorted images from subset of SCD dataset
λ encode1 encode2 encode3 encode4 encode5 decode1 decode2 decode3
0.1 94.207 92.387 93.422 90.360 85.980 86.537 85.080 86.101
0.2 92.449 92.285 93.387 92.779 86.892 88.300 89.340 85.258
0.3 93.934 92.513 94.490 93.067 88.438 91.574 89.812 87.630
0.4 93.872 93.847 94.968 92.366 89.531 91.108 92.264 84.128
0.5 93.519 94.898 94.696 93.010 91.339 90.989 91.950 91.666
0.6 93.465 94.693 94.627 93.247 91.178 90.927 92.087 92.410
0.7 94.074 95.158 94.946 93.279 93.421 92.334 92.056 92.444
0.8 94.635 95.336 94.974 93.031 93.754 93.040 93.672 93.314
0.9 94.340 95.110 94.651 94.067 94.024 93.943 93.654 93.277

When compared to the larger value of each baseline evaluation value, the better
evaluation value of the proposed method is in bold, and furthermore, the most
accurate one is in italics.

Table (5.3,5.4,5.5,5.6) of the experimental results shows that the best accuracy
is obtained when the SSL branch is connected to encode2 and the λ is set to 0.8 for
both the original and distorted images. This indicates that the contour information
of objects in the image could be extracted from the upper layers of U-Net and robust
to the object contours.

The proposed method is also more accurate for larger values of the parameter λ,
indicating that it is robust to small changes in λ.

5.3 Experimental results using Abdominal Organs

segmentation dataset

Next, we show the experimental results from the Abdominal Organs segmentation
dataset.
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Table 5.5: pixel-wise accuracy using original images from subset of SCD dataset
λ encode1 encode2 encode3 encode4 encode5 decode1 decode2 decode3
0.1 99.810 99.780 99.832 99.650 99.694 99.699 99.678 99.592
0.2 99.812 99.825 99.822 99.821 99.746 99.732 99.734 99.624
0.3 99.837 99.839 99.829 99.789 99.726 99.786 99.716 99.682
0.4 99.802 99.838 99.829 99.808 99.788 99.792 99.754 99.564
0.5 99.830 99.840 99.838 99.816 99.782 99.784 99.751 99.783
0.6 99.822 99.836 99.837 99.823 99.770 99.787 99.803 99.777
0.7 99.838 99.836 99.835 99.797 99.774 99.796 99.820 99.787
0.8 99.831 99.850 99.838 99.802 99.824 99.777 99.820 99.826
0.9 99.845 99.839 99.835 99.814 99.803 99.802 99.803 99.836

Table 5.6: pixel-wise accuracy using distorted images from subset of SCD dataset
λ encode1 encode2 encode3 encode4 encode5 decode1 decode2 decode3
0.1 99.793 99.731 99.765 99.657 99.508 99.510 99.468 99.498
0.2 99.732 99.729 99.763 99.744 99.542 99.581 99.616 99.469
0.3 99.784 99.735 99.802 99.750 99.593 99.694 99.639 99.558
0.4 99.782 99.781 99.819 99.729 99.626 99.683 99.720 99.413
0.5 99.769 99.817 99.808 99.752 99.693 99.673 99.702 99.692
0.6 99.767 99.810 99.806 99.759 99.685 99.677 99.717 99.725
0.7 99.787 99.825 99.817 99.760 99.764 99.728 99.719 99.722
0.8 99.808 99.832 99.818 99.753 99.775 99.750 99.776 99.761
0.9 99.798 99.824 99.806 99.788 99.785 99.781 99.775 99.750
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Figure 5.1: Result image of segmentation by each methods with subset of SCD
dataset.
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Based on the results of the SCD dataset experiment described in the previous
section, we connected the SSL branch to two locations, encode2, which had the best
performance, and decode2, which had consistently good performance on the decoder
side, and performed the experiment with the λ set to 0.8.

Table 5.7: Comparison of accuracy with Abdominal Organs segmentation dataset.
multi-class IoU pixel-wise accuracy

model original images distorted images original images distorted images

baseline1 87.329 19.102 99.355 95.511
baseline2 82.570 80.478 99.019 98.855
encode2 82.231 80.393 99.076 98.938
decode2 83.723 82.137 99.059 98.932

Table 5.7 shows that the proposed method outperforms baseline 1 for distorted
images, while all of them are lower than baseline 1 for the original images. The best
accuracy is obtained when the SSL branch is connected to decode2 when measured
by multi-class IoU and to encode2 when measured by pixel-wise accuracy (however,
pixel-wise accuracy for distorted images when connected to decode2 also exceeds
baseline, and the values are close). accuracy also exceeds baseline and the values
are close). This indicates that in the case of multi-class segmentation, it is easier
to improve performance by extracting class information from the lower layers of
the U-Net than by extracting contour information of objects in the image from the
upper layers of the U-Net.

5.4 Additional Experiments

5.4.1 Number of linear transformations of the SSL branch

In this study, following SimCLR, the number of linear transformations of the SSL
branch is performed twice. However, we will check how the proposed method changes
when this number of transformations is reduced to one. We set the lambda to 0.8
and evaluate the performance on two datasets when the SSL branch is connected to
encode2 and decode2, respectively.

Table 5.8: Comparison by number of linear transformations with subset of SCD
dataset.

multi-class IoU pixel-wise accuracy
model original images distorted images original images distorted images

baseline1 94.625 49.115 99.810 98.230
baseline2 94.284 93.531 99.799 99.772

fc×1
encode2 95.118 94.627 99.824 99.808
decode2 94.649 93.491 99.806 99.763

fc×2
encode2 95.821 95.336 99.850 99.832
decode2 94.959 93.672 99.820 99.776
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Figure 5.2: Result image of segmentation by each methods with Abdominal Organs
segmentation dataset.
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Table 5.9: Comparison by number of linear transformations with Abdominal Organs
segmentation dataset.

multi-class IoU pixel-wise accuracy
model original images distorted images original images distorted images

baseline1 97.329 19.102 99.355 95.511
baseline2 82.570 80.478 99.019 98.855

fc×1
encode2 81.087 79.186 99.028 98.855
decode2 84.162 81.310 99.082 98.893

fc×2
encode2 82.231 80.393 99.076 98.938
decode2 83.723 82.137 99.059 98.932

From Table 5.8, 5.9, it can be seen that in most cases, the performance is worse
when the number of linear transformations is one than when it is two. Therefore, the
number of linear transformations will be performed twice in subsequent experiments.

5.4.2 2 SSL branches

To see what happens to performance when two SSL branches are connected and
trained at the same time. Connect SSL branches to encode2 and decode2 and
proceed with training. However, the SSL loss function Lssl is the average of the loss
functions of encode2 and decode2.

Table 5.10: Comparison by SSL branches with subset of SCD dataset.
multi-class IoU pixel-wise accuracy

model original images distorted images original images distorted images

baseline1 49.625 49.115 99.810 98.230
baseline2 94.284 93.531 99.799 99.772
encode2 95.821 95.336 99.850 99.832
decode2 94.959 93.672 99.820 99.776

encode2+decode2 95.261 94.789 99.826 99.810

Table 5.11: Comparison by SSL branches with Abdominal Organs segmentation
dataset.

multi-class IoU pixel-wise accuracy
model original images distorted images original images distorted images

baseline1 97.329 19..102 99.355 95.511
baseline2 82.570 80.478 99.019 98.855
encode2 82.231 80.393 99.076 98.938
decode2 83.723 82.137 99.059 98.932

encode2+decode2 76.819 75.337 98.799 98.675

Table 5.10, 5.11 shows that the performance when two SSL branches are con-
nected tends to be lower than that when one SSL branch is connected, respectively.
Although we conducted the experiment with the expectation that feature extraction
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from two locations would synergistically improve performance, we could not confirm
any improvement in performance in this experiment. However, we did not see any
improvement in performance in this experiment. It may be possible to improve
performance a little more by tuning parameters.

5.4.3 Noise intensity

We tested how the strength of the distorted images (Gaussian noise) applied to the
image data during training changes the performance of the model after training.
We trained models with noise strengths of 0.1, 0.3, 0.5, 0.7, and 0.9, and evaluated
them on images with the same noise strength. The SSL branch was connected to
encode2, lambda was set to 0.8, and a subset of the SCD dataset was used.

Table 5.12: Performance variation with image noise intensity in training the pro-
posed method with subset of SCD dataset (multi-class IoU). The rows are the noise
intensity applied to the image during training and the columns are the noise inten-
sity applied to the image during evaluation.

0.0 0.1 0.2 0.3 0.4 0.9
0.1 95.970 95.773 51.951 49.115 49.115 49.115
0.3 95.458 95.544 95.322 89.317 62.539 50.153
0.5 95.354 95.327 95.399 94.752 91.532 82.604
0.7 94.999 94.827 94.921 94.703 93.288 87.649
0.9 93.914 94.206 94.662 94.375 93.626 91.325

Table 5.13: Performance variation with image noise intensity in training the pro-
posed method with subset of SCD dataset (pixel-wise accuracy). The rows are the
noise intensity applied to the image during training and the columns are the noise
intensity applied to the image during evaluation.

0.0 0.1 0.3 0.5 0.7 0.9
0.1 99.854 99.848 98.329 98.230 98.230 98.230
0.3 99.836 99.838 99.830 99.622 98.694 98.267
0.5 99.833 99.831 99.833 99.809 99.697 99.389
0.7 99.821 99.814 99.816 99.807 99.757 99.561
0.9 99.783 99.792 99.805 99.792 99.764 99.684

The table 5.12, 5.13 is colored according to the magnitude of the values. In the
table, the largest values are colored green, the smallest values are colored red, and
values in between are represented by gradients.

Table 5.12, 5.13 shows that the larger the noise applied during training, the lower
the accuracy with respect to the original image, but the generalization performance
for noise of various strengths is improved.
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5.4.4 SSL loss function: CosineSimilarity

In this study, InfoNCE Loss (eq (2.5)) is used for the SSL loss function. This function
has the effect of bringing the features of positive pairs (the original image and its
distorted images) in a mini-batch closer together and moving the other features
away. Since regular SSL is positioned as a pre-training for the class classification
task, the effect of moving away non-positive pairs is necessary. However, in the
case of segmentation tasks, even different images may contain objects belonging to
the same class, so the effect of moving away non-positive pairs is not considered
necessary.

Therefore, we conducted an additional experiment in which the SSL loss function
was changed to Cosine Similarity Loss. Cosine Similarity Loss is a loss function that
learns to maximize cosine similarity. In other words, only the effect of approaching
positive pairs of features can be obtained during learning. Two datasets were used
to compare the results with those of baseline, the proposed method (InfoNCE Loss).

Table 5.14: Variation in performance with different loss functions using subset of
the SCD dataset.

multi-class IoU pixel-wise accuracy
model original images distorted images original images distorted images

baseline1 94.625 49.115 99.810 98.230
baseline2 94.284 93.531 99.799 99.772

InfoNCE
encode2 95.821 95.336 99.850 99.832
decode2 94.959 93.672 99.820 99.776

CosineSim
encode2 95.647 93.598 99.844 99.764
decode2 95.504 94.568 99.838 99.806

Table 5.15: Variation in performance with different loss functions using Abdominal
Organs segmentation dataset.

multi-class IoU pixel-wise accuracy
model original images distorted images original images distorted images

baseline1 97.329 19.102 99.355 95.511
baseline2 82.570 80.478 99.019 98.855

InfoNCE
encode2 82.231 80.393 99.076 98.938
decode2 83.723 82.137 99.059 98.932

CosineSim
encode2 81.136 77.318 99.094 98.763
decode2 83.011 82.226 99.083 98.885

From the table, the results did not exceed the InfoNCE Loss results in most
cases, although they could exceed the baseline. This result indicates that in the
segmentation task, it is necessary to act not only to bring the features closer together,
but also to move them apart.
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Conclusions

We proposed a learning method for U-Net with SSL to make the trained model
robust against image distortions such as pixel noise. The proposed method (U-
Net with SSL) can construct the segmentation model by extracting features that
are invariant to distortions in the paired data. The effectiveness of the proposed
approach was experimentally confirmed by using the subset of Sunnybrook Cardiac
Data (SCD) and Abdominal Organs segmentation dataset.

In this paper, we used only pixel noise as image distortion. We think the ap-
proach proposed in this paper can apply to the other types of image distortions.
Experiments for such distortions will be our future works.

29
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