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Abstract

Any closed orientable 3-manifold is obtained by gluing two handlebodies of the
same genus along their boundary. Such a decomposition of a 3-manifold is called a
Heegaard splitting, and the common boundary of the two handlebodies, which is a
closed orientable surface, is called a Heegaard surface. The distance of a Heegaard
splitting is defined to be the distance in the the curve graph for the Heegaard surface
between the two sets of meridian disks corresponding to the two handlebodies. The
Goeritz group of a Heegaard splitting is the group of isotopy classes of orientation
preserving self-homeomorphisms of the ambient 3-manifold that leave the splitting
invariant. In this thesis we investigate the Goeritz groups of Heegaard splittings with
the distance greater than one. The thesis consists of two parts. In the first part, we
study Heegaard splittings obtained from twisted book decompositions of 3-manifolds,
and give explicit computations for their Goeritz groups. In the second part, we
consider the Goeritz groups for bridge decompositions of links in 3-manifolds. We
prove that if the distance of a bridge decomposition of a link is at least 6, then its
Goeritz group is a finite group. This is a generalization of a result of Johnson [24].

The content of the first part of the thesis was published in Topology and its
Applications in vol. 272 (2020), published by Elsevier B.V., and the second part
in Pacific Journal of Mathematics in vol. 315 (2021), published by Mathematical
Sciences Publishers.
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Notations and conventions

We will use the following notations:

Rn The n dimensional Euclidean space.

A−B or AB The relative complement of B in A, where A and B are sets.

#X or |X| The number of path-components of a topological space X.

Cl(Y ;X) or Cl(Y ) The closure of Y in X, where Y ⊂ X.

Int(Y ) The interior of Y in X.

∂M The boundary of a manifold M .

We will not distinguish curves, surfaces, maps, etc. from their isotopy classes in
their notation when there is no possibility of confusion.
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CHAPTER 1

Twisted book decompositions and the Goeritz groups

1. Introduction

It is well known that every closed orientable 3-manifold M is the result of taking
two copies H1, H2 of a handlebody and gluing them along their boundaries. Such
a decomposition M = H1 ∪Σ H2 is called a Heegaard splitting for M . The surface
Σ here is called the Heegaard surface of the splitting, and the genus of Σ is called
its genus. In [19], Hempel introduced a measure of the complexity of a Heegaard
splitting called the distance of the splitting. Roughly speaking, this is the distance
between the sets of meridian disks of H1 and H2 in the curve graph C(Σ) of the
Heegaard surface Σ.

The Goeritz group (or the mapping class group) of a Heegaard splitting for a
3-manifold is the group of isotopy classes of orientation-preserving automorphisms
(self-homeomorphisms) of the manifold that preserve each of the two handlebodies
of the splitting setwise. We note that the Goeritz group of a Heegaard splitting is a
subgroup of the mapping class group of the Heegaard surface.

Concerning the structure of the Goeritz groups, Minsky asked in [16] when
the Goeritz group of a Heegaard splitting is finite, finitely generated, or finitely
presented, respectively. The distance of Heegaard splittings gives a nice way to
describe those properties of the Goeritz groups. In [38], Namazi showed that the
Goeritz group is a finite group if a Heegaard splitting has a sufficiently high distance.
This result was improved by Johnson [24] showing the same consequence when the
distance of the splitting is at least 4. On the contrary, it is an easy fact that the
Goeritz group is always an infinite group when the distance of the Heegaard splitting
is at most one (see e.g. Johnson-Rubinstein [30] or Namazi [38]). In this case, there
have been many efforts to find finite generating sets or presentations of the Goeritz
groups. For example, the sequence of works [15, 44, 1, 5, 6, 7, 8, 9, 10] by many
authors completed to give a finite presentation of the Goeritz group of every genus-2
Heegaard splitting of distance 0. Recently, Freedman-Scharlemann [14] gave a finite
generating set of the genus-3 Heegaard splitting of the 3-sphere. For the higher genus
Heegaard splittings of the 3-sphere, the problem of existence of finite generating sets
of the Goeritz groups still remains open. For other works on finite generating sets
of Goeritz groups, see [26,27,46,11].

In this chapter, we concern the Goeritz groups of strongly-irreducible (that is,
distance at least 2) Heegaard splittings. There are few isolated examples that are
known. First, we think of a natural question: how can the Goeritz group be “small”
fixing the genus and the distance of the splitting. In Section 3, we consider finiteness
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1. INTRODUCTION 3

properties of the Goeritz groups of keen Heegaard splittings (see Proposition 1.9).
As a direct corollary, we get the following:

Corollary 1.10. For any g ≥ 3 and n ≥ 2, there exists a genus-g Heegaard
splitting of distance n whose Goeritz group is either a finite cyclic group or a finite
dihedral group.

Roughly speaking, it is believed that the “majority” of the Heegaard splittings
of distance 2 or 3 have the Goeritz groups of at most finite orders. One typical
example of a “minority” here is constructed by using an open book decomposition
with a monodromy of infinite order, see for instance the preprint Johnson [29]. In
fact, this construction gives a distance-2 Heegaard splitting whose Goeritz group
is an infinite groups. Since the Heegaard splitting induced from an open book
decomposition admits the “accidental” symmetry coming from the rotation around
the binding, we might wonder wether this type of Heegaard splittings is the only
“minority”.

In the main part of the chapter, we focus on the Heegaard splittings induced
from twisted book decompositions, which are first studied in Johnson-Rubinstein [30].
Here is a brief construction (see Sections 4–6 for the detailed definitions). Let F
be a compact non-orientable surface of negative Euler characteristic with a single
boundary component, let π : H → F be the orientable I-bundle with the binding
b ⊂ ∂H =: Σ. Let M = H1 ∪Σ H2 be the Heegaard splitting obtained by gluing H
to a copy of itself via an automorphism φ of Σ that preserves b. It is easy to see that
the distance of such a Heeegaard splitting is at most 4. We compute the Goeritz
group of M = H1 ∪Σ H2 in the following two cases.

The first case is that the gluing map φ is particularly “simple”.

Theorem 1.16. Suppose that the gluing map φ is a k-th power of the Dehn
twist about the binding b, where |k| ≥ 5. For the Heegaard splitting M = H1 ∪ΣH2

as above, we have the following.

(1) The splitting M = H1 ∪Σ H2 is not induced from an open book decompo-
sition.

(2) The Goeritz group of M = H1 ∪Σ H2 is isomorphic to the mapping class
group of F . In particular, it is an infinite group.

Note that it follows directly from Yoshizawa [51] that the distance of the splitting
M = H1 ∪Σ H2 in the above theorem is exactly 2. Theorem 1.16 indicates that the
“minorities” is not as minor as we wondered in the previous paragraph. Further,
it is remarkable that the above theorem gives the first explicit computation of the
infinite-order Goeritz groups of strongly-irreducible Heegaard splittings.

The second case is, on the contrary, that the gluing map φ is complicated in
the sense that the distance in the curve graph C(Σb) between the images of the
subsurface projection πΣb

of the sets of meridian disks D(H1) of H1 and D(H2) of
H2 is sufficiently large, where Σb := Cl(Σ−Nbd(b)). In this case, we can show that
the distance of the splitting M = H1 ∪Σ H2 is exactly 4 and we can compute the
Goeritz group as follows, where the definition of the group G(S, ι0, ι1) is given in
Section 6.2:
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Theorem 1.18. Suppose that the distance in C(Σb) between πΣb
(D(H1)) and

πΣb
(D(H2)) is greater than 10. For the Heegaard splitting M = H1 ∪ΣH2 as above,

we have the following.

(1) The distance of the splitting M = H1 ∪Σ H2 is exactly 4.
(2) The Goeritz group ofM = H1∪ΣH2 is isomorphic to the group G(S, ι0, ι1).

We will see that there actually exist (generiacally, in some sense) the Heegaard
splittings satisfying the condition in Theorem 1.18. The Goeritz group in Theo-
rem 1.18 is of course a finite group since the distance of the Heegaard splitting is 4.
The existence of a Heegaard splitting of distance 3 having the infinite-order Goeritz
group still remains open.

2. Preliminaries

For abbriviation, throughout this chapter, we will assume the following : Any
curves on a surface, or surfaces in a 3-manifold are always assumed to be properly
embedded, and their intersection is transverse and minimal up to isotopy.

2.1. Curve graphs. Let Σ be a compact surface. A simple closed curve on Σ
is said to be essential if it is not homotopic to a point or a loop around a boundary
component of Σ. An arc on Σ is said to be essential if it is not homotopic (rel.
endpoints) to a subarc of a boundary component of Σ.

Let Σ be a compact orientable surface of genus g with p boundary components.
We say that Σ is sporadic if 3g + p ≤ 4. Otherwise, Σ is said to be non-sporadic.
Suppose that Σ is non-sporadic. The curve graph C(Σ) of Σ is the 1-dimensional
simplicial complex whose vertices are the isotopy classes of essential simple closed
curves on Σ such that a pair of distinct vertices spans an edge if and only if they
admit disjoint representatives. Similarly, the arc and curve graph AC(Σ) of Σ is
defined to be the 1-dimensional simplicial complex whose vertices are the isotopy
classes of essential arcs and simple closed curves on Σ such that a pair of distinct
vertices spans an edge if and only if they admit disjoint representatives. The sets
of vertices of C(Σ) and AC(Σ) are denoted by C(0)(Σ) and AC(0)(Σ), respectively.
We equip the curve graph C(Σ) (resp. the arc and curve graph AC(Σ)) with the
simplicial distance dC(Σ) (resp. dAC(Σ)). Note that both C(Σ) andAC(Σ) are geodesic
metric spaces.

A subsurfcae Y in Σ is said to be essential if each component of ∂Y is not
contractible, and if Y is not an annulus parallel to ∂Σ. Let Y be an essential, non-
sporadic subsurface of Σ. The subsurface projection πY : C(0)(Σ) → P (C(0)(Y )),

where P (·) denotes the power set, is defined as follows. First, define κY : C(0)(Σ) →
P (AC(0)(Y )) to be the map that takes α ∈ C(0)(S) to α ∩ Y . Further, define the

map σY : AC(0)(Y ) → P (C(0)(Y )) by taking α ∈ AC(0)(Y ) to the set of simple closed
curves on Y consisting of the components of the boundary of Nbd(α ∪ ∂Y ;Y ) that

are essential in Y . The map σY naturally extends to a map σY : P (AC(0)(Y )) →
P (C(0)(Y )). The subsurface projection πY : C(0)(Σ) → P (C(0)(Y )) is then defined
by πY = σY ◦κY . See for example Masur-Minsky [36] and Masur-Schleimer [37] for
details. The following lemma is straightforward from the definition.
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Lemma 1.1. Let (α0, . . . , αn) be a geodesic segment in C(Σ). If αj ∩ Y ̸= ∅ for
each j ∈ {0, . . . , n}, then it holds dC(Y )(πY (α0), πY (αn)) ≤ 2n.

2.2. Distance of a Heegaard splitting. Let H be a handlebody of genus at
lest 2. We denote by D(H) the subset of C(0)(∂H) consisting of simple closed curves
that bound disks in H. Given a Heegaard splitting M = H1 ∪Σ H2, the distance
d(M,Σ) of the splitting is defined by d(M,Σ) = dC(Σ)(D(H1),D(H2)). We say that
a Heegaard splitting M = H1 ∪Σ H2 is strongly irreducible if d(M,Σ) ≥ 2.

A Heegaard splitting M = H1 ∪Σ H2 is said to be keen if there exists a unique
pair of α ∈ D(H1) and α

′ ∈ D(H2) satisfying dC(Σ)(α, α
′) = d(M,Σ). In particular,

M = H1 ∪Σ H2 is said to be strongly keen if there exists a unique geodesic segment
(α = α0, α1, . . . , αn−1, αn = α′), where n = d(M,Σ), such that α ∈ D(H1) and
α′ ∈ D(H2). We say that a Heegaard splitting M = H1∪ΣH2 is weakly keen if there
exist only finitely many pairs of α ∈ D(H1) and α

′ ∈ D(H2) satisfying dC(Σ)(α, α
′) =

d(M,Σ). The notion of a keen (and a strongly keen) Heegaard splitting was first
introduced by Ido-Jang-Kobayashi [22], who showed the following theorem.

Theorem 1.2 (Ido-Jang-Kobayashi [22]). For any g ≥ 3 and n ≥ 2, there exists
a genus-g strongly keen Heegaard splitting M = H1 ∪Σ H2 with d(M,Σ) = n.

2.3. Mapping class groups. Let Y1, . . . , Yn be possibly empty subspaces of
a compact manifold X. We denote by Aut(X,Y1, . . . , Yn) the group of automor-
phisms of X which map Yi onto Yi for any i = 1, . . . , n. The mapping class group
of (X,Y1, . . . , Yn), denoted by MCG(X,Y1, . . . , Yn), is defined to be the group of con-
nected components of Aut(X,Y1, . . . , Yn). The equivalence class in MCG(X,Y1, . . . , Yn)
of a map in Aut(X,Y1, . . . , Yn) is called its mapping class. As mentioned in the intro-
duction, we usually will not distinguish a map and its mapping class. This should
not cause any confusion since it will usually be clear from the context in which
equivalence relation we consider for the maps in question. When X is orientable,
the “plus” subscripts, for instance in Aut+(X,Y1, . . . , Yn) and MCG+(X,Y1, . . . , Yn),
indicate the subgroups of Aut(X,Y1, . . . , Yn) and MCG(X,Y1, . . . , Yn), respectively,
consisting of orientation-preserving automorphisms (or their mapping classes) of X.

Let M = H1 ∪Σ H2 be a Heegaard splitting. The group G(M,Σ) is called the
mapping class group, or the Goeritz group, of the splitting. Note that the natural
map G(M,Σ) → MCG+(Σ) that takes (the mapping class of) φ ∈ G(M,Σ) to (that
of) φ|Σ ∈ MCG+(Σ) is injective. In this way G(M,Σ) can be naturally regarded as
a subgroup of MCG+(Σ). In general, an automorphism ψ of a submanifold Y of a
manifold X is said to be extendable over X if ψ extends to an automorphism of the
pair (X,Y ). We can say that the Goeritz group for the splitting M = H1 ∪Σ H2

is the subgroup of the mapping class group MCG+(Σ) of the Heegaard surface Σ
consisting of elements that are extendable over M .

In this paper, the mapping class groups of non-orientable surfaces will also be
particularly important. Let F be a compact non-orientable surface with nonempty
boundary. Let p : Σ → F be the orientation double-cover. Since the set of two-
sided loops are preserved by any automorphism of F , any map φ ∈ Aut(F ) lifts to a
unique orientation-preserving automorphism of Σ. (The other lift of φ is orientation-
reversing.) This gives a well-defined homomorphism L : MCG(F ) → MCG+(Σ). We
use the following easy but important lemma in Section 6.1.
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Lemma 1.3. The above map L : MCG(F ) → MCG+(Σ) is injective.

Proof. Let F ×̃I be the orientable twisted product, which is a handlebody, and
π : F ×̃I → F the natural projection. We identify Σ with F ×̃∂I ⊂ F ×̃I, and F
with F ×̃{1/2} ⊂ F ×̃I. Note that π|Σ is nothing but the orientation double cover
p : Σ → F .

Let φF be an automorphism of F whose mapping class belongs to the kernel of L :
MCG(F ) → MCG+(Σ). The map φF extends to a fiber-preserving homeomorphism
Φ ∈ Aut+(F ×̃I) with φ := Φ|Σ = L(φF ). The map φ is isotopic to the identity idΣ,
thus, Φ|∂(F ×̃I) can be described as

Φ|∂(F ×̃I) = τk1c1 ◦ · · · ◦ τkncn ,

where c1, . . . , cn are the connected components of ∂F , τkici is the Dehn twist about
the simple closed curve ci (i = 1, . . . , n), and k1, . . . , kn are integers. Since each
ci does not bound a disk in F ×̃I, and each pair of ci and cj (1 ≤ i < j ≤ n)
does not cobound an annulus, we have k1 = · · · = kn = 0 due to Oertel [43] or
McCullough [34]. Therefore, Φ is isotopic to the identity id∂(F ×̃I), so Φ is isotopic

to the identity idF ×̃I . Since the inclusion ι : F → F ×̃I is a homotopy equivalence
with π a homotopy inverse, the composition π ◦Φ ◦ ι is homotopic to idF . It follows
that φF is homotopic to the identity. Now by Epstein [12], φF is isotopic to idF . □

2.4. Pants decompositions and twisting numbers. Let Σ be a closed ori-
entable surface of genus g, where g ≥ 2. The set of 3g−3 mutually disjoint, mutually
non-isotopic, essential simple closed curves on Σ is called a pants decomposition of
Σ. Let P be a pants decomposition of Σ. Let C be the union of the simple closed
curves of P. Let α be an essential arc on a component P , which is a pair of pants, of
Cl(Σ−Nbd(C)). We call α a wave for P if the both endpoints of α lie on the same
component of ∂P . Otherwise, α is called a seam for P. Let k > 0. An essential
simple closed curve β on Σ (that intersects C minimally up to isotopy) is said to
be k-seamed with respect to P if for each component P of Cl(Σ − Nbd(C)), there
exist at least k arcs of β ∩ P representing each of the three distinct isotopy classes
of seams for P.

Let l be a simple closed curve on a closed oriented surface Σ of genus at least 2.
We denote by τl the (left-handed) Dehn twist about l. Let P be a pants decompo-
sition of Σ. Let C be the union of the simple closed curves of P. Set N := Nbd(l).
Fix an identification of N with the product l× I, where l corresponds to l× {1/2}.
We may assume that each component of N ∩ C is an I-fiber of N . Let α be an es-
sential simple arc on N with the endpoints disjoint from N ∩C that intersects each
I-fiber of N transversely. Then the twisting number of α in N with respect to C is
defined as follows. Let p be an endpoint of α. Let vα be the inward-pointing tangent
vector of α based at p. Likewise, let vI be the inward-pointing tangent vector based
at p of the I-fiber of N with p an endpoint. If the pair (vα, vI) is compatible with
the orientation of Σ, the twisting number is defined to be #(α∩C)/#(N ∩C) ∈ Q.
Otherwise, it is defined to be −#(α ∩ C)/#(N ∩ C) ∈ Q. See Figure 1. We refer
the reader to Yoshizawa [51] for more details on the twisting numbers.

Let Σ, l, N , P and C be as above. Let β be a simple closed curve on Σ. We
say that β is in efficient position with respect to (N,C) if
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α

C C

C

C

N

Figure 1. The twisting number of the arc α in N with respect to C is 7/4.

• β intersects ∂N and C minimally (up to isotopy);
• β intersects each I-fiber of N transversely; and
• β ∩ C ∩ ∂N = ∅.

Suppose that β is in efficient position with respect to (N,C). A disk E in Σ−Int(N)
is called an outer triangle of N with respect to (N,P, β) if ∂E ⊂ ∂N ∪ C ∪ β and
each of ∂E ∩ ∂N , ∂E ∩ C, ∂E ∩ β is a single arc. See Figure 2. Note that we can

β
C

N

E

Figure 2. An outer trianble E of N with respect to (N,P, β).

perform an isotopy of β keeping that β is in efficient position with respect to (N,C)
so that (N,P, β) admits no outer triangles.

Lemma 1.4 (Yoshizawa [51]). Let Σ, l, N , P and C be as above. Let β be
a simple closed curve on Σ in efficient position with respect to (N,C) such that
(N,P, β) admits no outer triangles. Let α1, . . . , αr be the components of β∩N , and
tj (j ∈ {1, . . . , r}) the twisting number of αj in N with respect to C. Let k be an

integer such that either k + tj ≥ 0 (for all j) or k + tj ≤ 0 (for all j). Then τkl (β)
remains to be in efficient position with respect to (N,C), and the twisting number
of τkl (αj) in N with respect to C is k + tj.

The following lemma, which we will use in Section 6.1, is straightforward from
the definitions.
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Lemma 1.5. Let Σ, l, N , P, β, αj and tj (j ∈ {1, . . . , r}) be as in Lemma 1.4.
If l is 1-seamed with respect to the pants decomposition P and there exists j with
|tj | > k, then β is k-seamed with respect to P.

2.5. Measured laminations. In this subsection, Σ denotes a compact (possi-
ble non-orientable) surface with χ(Σ) < 0, where χ(·) denotes the Euler character-
istic. We fix a hyperbolic metric on Int Σ. The main references for this subsection
are Thurston [49], Fathi-Laudenbach-Poénaru [13] and Penner-Harer [40].

Recall that a geodesic lamination on Σ is a foliation of a nonempty closed subset
of Σ by geodesics. A transverse measure m for a geodesic lamination λ is a function
that assigns a positive real number to each smooth compact arc transverse to λ so
that m is invariant under isotopy respecting the leaves of λ. A geodesic lamination
equipped with a transverse measure is called a measured geodesic lamination. The
set ML(Σ) of measured geodesic laminations on Σ can be equipped with the weak-
* topology, for which two measured geodesic laminations are close if they induce
approximately the same measures on any finitely many arcs transverse to them.
The quotient PML(Σ) of ML(Σ) under the natural action of the multiplicative
group R+ := (0,∞) is called the projective measured geodesic lamination.

Theorem 1.6 (Thurston [49]). Suppose that Σ is a compact surface with χ(Σ) <
0.

(1) The space ML(Σ) (resp. PML(Σ)) admits a natural piecewise linear (resp.
piecewise projective) structure.

(2) There exists a piecewise linear (resp. piecewise projective) homeomorphism
between ML(Σ) (resp. PML(Σ)) and R6g+3h+2n−6−{0} (resp. S6g+3h+2n−7),
where Σ ∼= (#gT

2)#(#hRP2)− ⊔n IntD
2.

A multiset of pairwise disjoint, pairwise non-isotopic, closed geodesics on Σ is
called a weighted multicurve. The set of multicurves on Σ is denoted by S(Σ). Using
the Dirac mass, we regard S(Σ) as a subset of PML(Σ). We will use the following
theorem in Section 6.2.

Theorem 1.7 (see Penner-Harer [40]). The set S(Σ) is dense in PML(Σ).

We regard closed geodesics on Σ as points in ML(Σ). For simple closed geodesics
α and β on Σ, i(α, β) denotes the geometric intersection number. For (λ,m) ∈
ML(Σ), i((λ,m), α) is defined to be the minimal transverse length with respect to
the measure m for λ.

Theorem 1.8 (Rees [41]). The above i(·, ·) extends to a continuous function
ML(Σ)×ML(Σ) → R that is bilinear and invariant under the action of MCG(Σ).

3. The Goeritz groups of keen Heegaard splittings

In this section, we discuss the finiteness of the Goeritz groups of keen Heegaard
splittings.

Proposition 1.9. Let M = H1 ∪Σ H2 be a Heegaard splitting of genus at least
2.
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(1) If the splitting M = H1 ∪Σ H2 is strongly keen and the distance d(M,Σ)
is 2, the Goeritz group G(M,Σ) is either a finite cyclic group or a finite
dihedral group.

(2) If the splitting M = H1∪ΣH2 is keen and the distance d(M,Σ) is at least 3,
the Goeritz group G(M,Σ) is either a finite cyclic group or a finite dihedral
group.

(3) If the splitting M = H1 ∪Σ H2 is weakly keen and the distance d(M,Σ) is
at least 3, the Goeritz group G(M,Σ) is a finite group.

Proof. (1) Suppose that M = H1 ∪Σ H2 is strongly keen and d(M,Σ) = 2. There
exists a unique geodesic segment (α0, α1, α2) such that α0 ∈ D(H1) and α2 ∈ D(H2).
Let φ ∈ G(M,Σ). By the uniqueness of the geodesic segment (α0, α1, α2), we have
φ(αj) = αj for each j ∈ {0, 1, 2}. Thus the group MCG+(M,H1) acts on the pair
(α0, α0 ∩ α2) in a natural way. It suffices to show that the action of MCG+(M,H1)
on (α0, α0 ∩ α2) is faithful, which in turn implies that MCG+(M,H1) is either a
finite cyclic group or a finite dihedral group. Let ψ be an element of G(M,Σ) that
acts on (α0, α0 ∩ α2) trivially. Since ψ is orientation-preserving, ψ preserves an
orientation of α2. Therefore, we can assume that ψ|α0∪α2 is the identity on α0 ∪α2.
Since the Heegaard splitting M = H1 ∪Σ H2 is strongly keen and d(M,Σ) = 2,
Cl(Σ − Nbd(α0 ∪ α2)) consists of finitely many disks and a single annulus, and α1

is the core of that annulus. By the Alexander trick, we can assume that ψ is the
identity outside of the annulus Nbd(α1). Thus ψ is a power τnα1

of the Dehn twist
τα1 . If n ̸= 0, the circle α1 bounds disks both in H1 and H2 due to Oertel [43] or
McCullough [34], which is a contradiction. Therefore, ψ is the identity.
(2) Suppose that M = H1 ∪Σ H2 is keen and d(M,Σ) ≥ 3. This case is easier than
(1). Since M = H1 ∪Σ H2 is keen, there exists a unique pair of α ∈ D(H1) and
α′ ∈ D(H2) satisfying dC(Σ)(α, α

′) = d(M,Σ). Thus any φ ∈ G(M,Σ) preserves
both α and α′. Since d(M,Σ) ≥ 3, Cl(Σ \Nbd(α∪α′)) consists only of disks. Thus,
the same argument as in the proof of (1) shows that G(M,Σ) is either a finite cyclic
group or a finite dihedral group.
(3) Suppose that M = H1 ∪Σ H2 is weakly keen and d(M,Σ) ≥ 3. In this case, we
can show that the order of any φ ∈ G(M,Σ) is finite as follows. Let φ ∈ G(M,Σ).
Choose α ∈ D(H1) and α′ ∈ D(H2) such that dC(Σ)(α, α

′) = d(M,Σ). Since the
Heegaard splitting M = H1 ∪Σ H2 is weakly keen, there exists an integer n such
that φn(α) = α and φn(α′) = α′. Since d(M,Σ) ≥ 3, Cl(Σ − Nbd(α ∪ α′)) consists
only of disks. Thus, the same argument as above shows that the order of the element
φn is finite in G(M,Σ). Due to Serre [47], any torsion subgroup of MCG+(Σ) is a
finite group. The above argument therefore immediately implies that the Goeritz
group G(M,Σ) is a finite group. □

As a direct corollary of Proposition 1.9 and Theorem 1.2, we get the following:

Corollary 1.10. For any g ≥ 3 and n ≥ 2, there exists a genus-g Heegaard
splitting M = H1 ∪Σ H2 with d(M,Σ) = n such that the Goeritz group G(M,Σ) is
either a finite cyclic group or a finite dihedral group.
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4. Handlebodies as interval bundles

Let F be a compact (possibly non-orientable) surface with nonempty boundary.
Let π : H → F be the orientable I-bundle. Note that H is a handlebody and
π−1(∂F ) consists of annuli on ∂H. We call the union of the core curves of π−1(∂F )
the binding of this I-bundle. In this paper, we often identify F with the image
F × {1/2} of a section of the I-bundle H → F , and under this identification, we
regard that b = ∂F . The union of disjoint simple closed curves on the boundary
∂H of a handlebody H is called a binding of H if it is the binding of an I-bundle
structure H → F .

In the following, let H be a handlebody of genus g, where g ≥ 2.

Lemma 1.11. If a simple closed curve b on ∂H is a binding, then we have
dC(Σ)(b,D(H)) = 2.

Proof. Since b is connected and ∂H − b is incompressible in H, the distance
dC(Σ)(b,D(H)) is at least 2. Let π : H → F be the I-bundle such that b is its

binding. Let α be an essential arc on F . Then D := π−1(α) is an essential disk
in H. Since the Euler characteristic of F is negative, there exists a null-homotopic
simple closed curve β on F disjoint from α. Then A := π−1(β) is an annulus or
a Möbius band in H that satisfies ∂D ∩ ∂A = ∅ and ∂A ∩ b = ∅. Thus we have
dC(Σ)(b,D(H)) = 2. See Figure 3. □

b∂D

Figure 3. This figure depicts the case where the genus of H is two
and F is non-orientable. The distance between ∂D and b in C(Σ) is
two.

The set of 3g − 3 mutually disjoint, mutually non-isotopic, essential disks in H
is called a solid pants decomposition of H. Let S = {D1, . . . , D3g−3} be a solid
pants decomposition of H. An essential arc α on a component P of Cl(∂H −
Nbd(

∪3g−3
i=1 ∂Di)) is called a wave (resp. seam) for S if it is a wave (resp. seam) for

the pants decomposition P = {∂D1, . . . , ∂D3g−3} of the surface ∂H. An essential
simple closed curve β on ∂H is said to be k-seamed with respect to S if β is k-seamed
with respect to the pants decomposition P of ∂H.

The proof of the following lemma is straightforward.

Lemma 1.12. Let S be a solid pants decomposition of H. Then the boundary of
each essential disk D in H with D /∈ S contains at least two waves for S .
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Lemma 1.13. Each binding b of H admits a solid pants decomposition S of H
such that b is 1-seamed with respect to S .

Proof. Let π : H → F be the I-bundle such that b is its binding. Let
{α1, . . . , αn} be a maximal collection of mutually disjoint, mutually non-isotopic,
essential arcs on F . Then {π−1(α1), . . . , π

−1(αn)} forms the required solid pants
decomposition of H. □

Lemma 1.14. Let β be an essential simple closed curve on ∂H. If β is 2-seamed
with respect to a solid pants decomposition S of H, then β is not a binding of H.

Proof. Suppose that β is 2-seamed with respect to a solid pants decomposition
S of H. Let D be an essential disk in H. If D is a member of S , we have

i(β, ∂D) ≥ 4,

where i(·, ·) is the geometric intersection number. Otherwise, by Lemma 1.12, ∂D
contains at least two waves α1, α2 with respect to S . Thus, in this case, we have

i(β, ∂D) ≥ #(β ∩ α1) + #(β ∩ α2) ≥ 4.

See Figure 4. Consequently, for any essential disk D in H we have i(β, ∂D) > 2.

β

αi

Figure 4. Each wave αi intersects β in at least two points.

On the other hand, it is easily seen that for any binding b of H, there exists an
essential disk D in H with i(b, ∂D) = 2. This implies that β is not a binding of
H. □

5. Open and twisted book decompositions

In this section, we consider two analogous structures on a closed orientable 3-
manifold, open and twisted book decompositions. Both decompositions naturally
induce Heegaard splittings, where each handlebody of the splittings inherits the
structure of an I-bundle.

Let S be a compact orientable surface with nonempty boundary. Let h be an
orientation preserving automorphism of S that fixes ∂S. Consider the mapping torus
S(h), which is the result of taking S×I and gluing S×{1} to S×{0} according to h.
The boundary of S(h) can naturally be identified with ∂S × S1. By shrinking each
circle {x} × S1, where x ∈ ∂S, to a point, we obtain a closed orientable 3-manifold
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M . In this paper we shall call such a pair (S, h) an open book decomposition of M .
The image b of ∂S × I under the quotient map q : S × I → M forms a link in
M . We call b the binding of the open book decomposition (S, h). The images H1

and H2 of S × [0, 1/2] and S × [1/2, 1], respectively, under the quotient map q give
a Heegaard splitting for M , that is, H1 and H2 are handlebodies in M satisfying
H1∪H2 =M and H1∩H2 = ∂H1 = ∂H2. We call this one the Heegaard splitting of
M induced from the open book decomposition (S, h). Note that the Heegaard surface
of the splitting is homeomorphic to the double of S.

Again, let S be a compact orientable surface with nonempty boundary. Let ι0
and ι1 be orientation reversing, fixted-point-free involutions of S satisfying ι0|∂S =
ι1|∂S . Remark that, here, the number of the boundary components of S must be
even. Let C1, . . . , C2n be the boundary components of ∂S such that ι0(Ci) = Ci+n

(subscripts (mod n)). Consider the resulting space S(ι0, ι1) of taking S × I and
gluing S × {0} to itself according to ι0 and S × {1} to itself according to ι1. The
boundary of S(ι0, ι1) consists of n copies of the torus. For each point x in ∪n

i=1Ci,
the image of the union ({x} × [0, 1]) ∪ ({ι0(x)} × [0, 1]) under the quotient map
S × [0, 1] → S(ι0, ι1) is a circle on the boundary tori. By shrinking each such
circle to a point, we obtain a closed orientable 3-manifold M . We call such a triple
(S, ι0, ι1) a twisted book decomposition of M . The image b of ∂S × I under the
quotient map q : S× I →M forms a link in M . We call b the binding of the twisted
book decomposition (S, ι0, ι1). The images H1 and H2 of S× [0, 1/2] and S× [1/2, 1],
respectively, under the quotient map q gives a Heegaard splitting for M . We call
this one the Heegaard splitting of M induced from the twisted book decomposition
(S, ι0, ι1). Since Σ := q(S × {1/2}) is the Heegaard surface of the splitting, the
surface Σb := Cl(Σ−Nbd(b)) is homeomorphic to S.

Note that if (S, h) is an open book decomposition of M with the binding b,
Cl(M −Nbd(b)) admits a natural foliation with all leaves (called pages) homeomor-
phic to S. Similarly, if (S, ι0, ι1) is a twisted book decomposition of M with the
binding b, Cl(M −Nbd(b)) admits a natural foliation with all but two leaves (called
pages) homeomorphic to S, where the two exceptional leaves are homeomorphic to
the non-orientable surface S/ι0 (∼= S/ι1).

Lemma 1.15. Let F be a compact surface with nonempty boundary. Let H → F
be the orientable I-bundle with the binding b. Let H1 and H2 be copies of H. Let
M be a closed orientable 3-manifold obtained by gluing H1 to H2 according to an
automorphism of ∂H preserving b. Then we have the following:

(1) If F is orientable, the resulting Heegaard splitting M = H1 ∪H2 is induced
from an open book decomposition where b is the binding.

(2) If F is non-orientable, M = H1∪H2 is induced from a twisted book decom-
position where b is the binding.

Proof. The first assertion is clear from the definition. Suppose that F is non-
orientable. For each i ∈ {1, 2}, let Fi be the surface in Hi corresponding to the
section F ×{1/2} of the twisted I-bundle H → F . Set Σb := Cl(Σ−Nbd(b)), where
Σ is the Heegaard surface of the splittingM = H1∪H2. Then Cl(M−Nbd(F1∪F2))
is homeomorphic to Σb×I, which gives the structure of a twisted book decomposition
of M . The assertion is now clear from the construction. □
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6. The Goeritz groups of the Heegaard splittings induced from twisted
book decompositions

In this section, let F denote a compact non-orientable surface of negative Euler
characteristic with a single boundary component, let π : H → F denote the ori-
entable I-bundle with the binding b. We set Σ := ∂H, and M = H1 ∪Σ H2 always
denotes the Heegaard splitting, where H1 and H2 are copies of H, andM is obtained
by gluing H1 to H2 according to an automorphism φ ∈ Aut+(Σ, b). Note that by
Lemma 1.15, M = H1 ∪ΣH2 is induced from a twisted book decomposition where b
is the binding. By Lemma 3.1, the distance d(H1,H2) is at most 4. In this section,
we will compute the Goeritz group of M = H1 ∪Σ H2 in two cases. The first case,
where we will consider in Subsection 6.1, is that the gluing map φ is particularly
simple in the sense that φ is a power of the Dehn twist about the binding b. The
second case, where we will consider in Subsection 6.2, is, on the contrary, that the
gluing map φ is complicated in the sense that the distance in C(Σb) between the
images of subsurface projection πΣb

of D(H1) and D(H2) is sufficiently large, where
Σb := Cl(Σ−Nbd(b)).

6.1. The Goeritz groups of distance-2 Heegaard splittings. Let k be an
integer. Suppose that the gluing map ∂H1 → ∂H2 is the k-th power τkb of the Dehn
twist τb. Note that by Lemma 3.1 and Yoshizawa [51, Theorem 1.3], if |k| ≥ 2 the
distance d(M,Σ) of this splitting is exactly 2. The aim of this subsection is to prove
the following theorem.

Theorem 1.16. Suppose that |k| ≥ 5. For the Heegaard splitting M = H1∪ΣH2

as above, we have the following.

(1) The splitting M = H1 ∪Σ H2 is not induced from an open book decomposi-
tion.

(2) The Goeritz group G(M,Σ) is isomorphic to the group MCG(F ). In par-
ticular, G(M,Σ) is an infinite group.

Proof of Theorem 1.16 (1). We suppose for a contradiction that the Hee-
gaard splitting M = H1 ∪ΣH2 is induced from an open book decomposition. Let b′

be the binding of the open book decomposition. Using the identification of H1 with
H, we regard b and b′ as bindings of H. Since τkb is the gluing map for the Heegaard

splitting, τkb (b
′) is a binding of H as well. By Lemma 1.13 there exists a solid pants

decomposition S of H such that b is 1-seamed with respect to S . Since Σ − b is
connected whereas Σ − b′ consists of two components, b and b′ are not isotopic on
Σ.

Suppose first that b ∩ b′ = ∅. Let π′ : H → F ′ be the I-bundle with b′ the
binding. Needless to say, this is the trivial bundle. Hence, π′(b) is a simple closed
curve on F ′. Since b and b′ are not parallel, and F ′ is orientable, there exists an
essential simple arc α on F ′ disjoint from π′(b). Then π′−1(α) is an essential disk in
H disjoint from b. It follows that dC(Σ)(b,D(H)) ≤ 1. This contradicts Lemma 1.11.

Suppose that b∩ b′ ̸= ∅. By Lemma 1.14 the binding b′ cannot be 2-seamed with
respect to S . Let P be the set of the boundaries of the disks in S . Let C be the
union of the simple closed curves of P. Set N := Nbd(b; Σ). We may isotope b′ so
that b′ in efficient position with respect to (N,C) and (N,P, b′) admits no outer
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triangles. Let α1, . . . , αr be the components of b′ ∩ N , and tj (j ∈ {1, . . . , r}) the
twisting number of αj in N with respect to C. By Lemma 1.5 we have |tj | ≤ 2 for
all j. Since |k| ≥ 5 by the assumption, this implies that either k + tj ≥ 0 (for all j)

or k+ tj ≤ 0 (for all j). It then follows from Lemma 1.4 that τkb (b
′) remains to be in

efficient position with respect to (N,C), and the twisting number of τkb (αj) in N with
respect to N is k+ tj . In particular, we have |k+ tj | ≥ |k|− |tj | ≥ |k|−2 > 2. Again

by Lemma 1.5, the binding τkb (b
′) is 2-seamed with respect to S . This contradicts

Lemma 1.14. □
To prove Theorem 1.16 (2), we need the following lemma.

Lemma 1.17. Let φ be an automorphism of Σ that is extendable over H1. If φ
preserves the binding b, φ is extendable over H2 as well. Thus, φ can be regarded as
an element of G(M,Σ).

Proof. We will first show that φ commutes with τkb up to isotopy. We identify
Nbd(b; Σ) with S1 × I. Let R and Tk be the automorphisms of S1 × I defined by
R(θ, r) = (−θ, 1− r) and Tk(θ, r) = (θ+2πkr, r). Clearly R commutes with Tk. Up
to isotopy, we can assume that φ preserves Nbd(b; Σ) and φ|Nbd(b;Σ) is the identity

or R. We can also assume that the support of τkb is Nbd(b; Σ) and τkb |Nbd(b;Σ) = Tk.

Therefore φ commutes with τkb up to isotopy.
To prove that φ is extendable over H2, it suffices to see that φ(D(H2)) = D(H2).

This is equivalent to say that φ(τkb (D(H1))) = τkb (D(H1)). Since φ is extendable

over H1, it holds φ(D(H1)) = D(H1). Therefore it follows that φ(τkb (D(H1))) =

τkb (φ(D(H1))) = τkb (D(H1)). □
Recall that F is a compact non-orientable surface with χ(F ) < 0 and #∂F = 1,

and π : H → F is the orientable I-bundle with the binding b. We regard that F ⊂ H
with ∂F = b. The annulus π−1(∂F ) = Nbd(b) is equipped with the structure of a
subbundle of π : H → F . The restriction of π to Σb (= Cl(Σ − Nbd(b))) is the
orientation double cover of F . Using the identification of H1 with H, we regard F
as a surface in H1. By Lemma 1.3, each element φF ∈ MCG(F ) lifts to a unique
element of Aut+(Σb). Using the I-bundle structure of Nbd(b), this element extends
to an automorphism of Σ in a unique way. Clearly, this is extendable over H1,
and further, extendable over H2 as well by Lemma 1.17. In this way we get a map
L : MCG(F ) → G(M,Σ).

Proof of Theorem 1.16 (2). We will show below that the above map L :
MCG(F ) → G(M,Σ) is an isomorphism. The injectivity immediately follows from
Lemma 1.3. To prove the surjectivity of L, it suffices to see that any map φ ∈
G(M,Σ) preserves the binding b (up to isotopy). Indeed, there exists a unique I-
bundle structure of H with b the binding. Thus, if φ preserves b (up to isotopy), it
preserves F (up to isotopy). Putting φF := φ|F , we have φ = L(φF ). Suppose for
a contradiction that there exists a map φ ∈ G(M,Σ) that does not preserve b.

First we will show that we can replace φ with another one, if necessary, so that
b ∩ φ(b) ̸= ∅. Suppose that b ∩ φ(b) = ∅. Then φ(b) is a simple closed curve on
Σb := Cl(Σ−Nbd(b)). Let α and β be two-sided simple closed curves on F satisfying
dC(F )(α, β) ≥ 3. Due to Penner [39], the composition τα ◦ τβ of Dehn twists is
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pseudo-Anosov. Let ψ be the element of Aut+(Σ) defined by taking an orientation-
preserving lift of τα ◦ τβ to Aut+(Σb), and then extending it to the automorphism
of the whole Σ as explained right before the proof. Note that ψ|Σb

is also a pseudo-
Anosov map. Thus, for a sufficiently large integer n, we have ψn(φ(b)) ∩ φ(b) ̸= ∅.
By Lemma 1.17, ψ can be regarded as an element of the Goeritz group G(M,Σ).
Therefore, φ−1◦ψn◦φ is an element of G(M,Σ) that satisfies (φ−1◦ψn◦φ)(b)∩b ≠ ∅.

In the following, we assume that b ∩ φ(b) ̸= ∅. Set b′ := φ(b). Since b is a
binding of a twisted book decomposition of M , so is b′ of another twisted book
decomposition of M that induces that same Heegaard splitting M = H1 ∪Σ H2. As
explained in the proof of Theorem 1.16 (1), it follows that both b′ and τkb (b

′) are
bindings of H1. The same argument as in the proof of Theorem 1.16 (1) shows that
at least one of b′ and τkb (b

′) is 2-seamed with respect to a solid pants decomposition

S of H1. Thus, by Lemma 1.14 at least one of b′ and τkb (b
′) is not a binding of H1.

This is a contradiction. □

6.2. The Goeritz groups of distance-4 Heegaard splittings. Recall that
H1 and H2 are copies of H, and M = H1 ∪Σ H2 is the Heegaard splitting with the
gluing map φ ∈ Aut+(Σ, b). Let (S, ι0, ι1) be the twisted book decomposition of
M that induces M = H1 ∪Σ H2. Set G := MCG(S) and G+ := MCG+(S). Let
G(S, ι0, ι1) denote the intersection of the centralizers CG(ι0), CG(ι1), and the sub-
group G+ of G, that is, G(S, ι0, ι1) = CG(ι0)∩CG(ι1)∩G+. Set DΣb

:= πΣb
(D(H)).

Also, recall that Σb = Cl(Σ − Nbd(b)) and πΣb
: C(0)(∂H) → P (C(0)(Σb)) is a

subsurface projection.
The following is the main theorem of this subsection:

Theorem 1.18. Suppose dC(Σb)(DΣb
, φ(DΣb

)) > 10. For the Heegaard splitting
M = H1 ∪Σ H2 as above, we have the following.

(1) The distance d(M,Σ) is exactly 4.
(2) The Goeritz group G(M,Σ) is isomorphic to the group G(S, ι0, ι1).

In Lemma 1.22, we will see that there actually exists a Heegaard splitting satis-
fying the condition in Theorem 1.18.

Recall that F is a compact non-orientable surface with χ(F ) < 0 and #∂F = 1,
and π : H → F is the orientable I-bundle with the binding b. We equip with
Int F and Int Σb hyperbolic metrics so that the covering map p := π|IntΣb

is a local
isometry. Consider the pull-back p∗ : ML(F ) → ML(Σb) defined by p∗(λ,m) =
(p−1(λ),m◦p) for (λ,m) ∈ ML(F ). Clearly, this is a well-defined, injective piecewise
linear map that is equivariant under the action of R+. Thus, this map induces an
injective piecewise projective map c : PML(F ) → PML(Σb). Let F ⊂ PML(Σb)
denote the image of the set S(F ) of weighted multicurves on F by the map c.

Lemma 1.19 (Johnson [28]). The set F is nowhere dense in PML(Σb).

In the unpublished paper [28], Johnson gave a sketch of the proof of this lemma.
The following proof is essentially due to his idea.

Proof of Lemma 1.19. By Lemma 1.7, the set S(F ) is dense in PML(F ).
Since c is a continuous map between spheres, which are compact and Hausdorff, we
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have

c(PML(F )) = c(Cl(S(F ))) = Cl(c(S(F ))) = Cl(F).

Let F = #hRP 2− Int(D2) (thus, Σb = #h−1T
2−⊔2 Int(D

2)). By Theorem 1.6,
we have PML(F ) ∼= S3h−5 and PML(Σb) ∼= S6h−9. Thus, c is a piecewise projective
embedding. Noting that 3h− 5 < 6h− 9 for h ≥ 2, we conclude that Im c = Cl(F)
is nowhere dense in PML(Σb). □

Let I denote the set of projectivizations of stable and unstable laminations
of pseudo-Anosov automorphisms of Σb. In the following, by abuse of notation
we simply write λ to mean a projective geodesic measured lamination [(λ,m)] ∈
PML(Σb). This will not cause any confusion.

Lemma 1.20. (1) The set I is dense in PML(Σb).
(2) Let λ be a point of I, and λ′ a point of PML(Σb). If the intersection

number of any representatives of λ and λ′ in ML(Σb) is zero, then λ = λ′.

Proof. (1) follows from Long [33, Lemma 2.6]. (2) follows from a well-known
fact that the stable and unstable laminations for a pseudo-Anosov automorphism
are minimal, uniquely ergodic, and fill up the surface. □

Lemma 1.21. The set DΣb
is nowhere dense in PML(Σb).

Remark 1.1. It it worth noting that in [35] Masur proved that D(H) is nowhere
dense in PML(Σ).

Proof. Suppose for a contradiction that DΣb
is not nowhere dense, that is,

there exists an open set U of PML(Σb) contained in Cl(DΣb
). We will prove that

this implies that U is also contained in Cl(F), which contradicts Lemma 1.19.
To prove that, we show that the set U ∩ I is contained in Cl(F). Let λ ∈

U ∩ I. Since U is contained in Cl(DΣb
), there exists a sequence (αn) in Cl(DΣb

)
such that αn converges to λ as n tends to ∞. For each αn, we have dC(Σb)(αn,F) ≤
3 due to Masur-Schleimer [37, Lemma 12.20]. Thus, for each n there exists a
path (β0n, β

1
n, β

2
n, β

3
n) such that β0n = αn and β3n ∈ F . By Theorem 1.6, PML(Σb)

is sequentially compact. After passing to a subsequence if necessary, which we

still write (βjn), we can assume that the sequence (βjn) converges to a point λj in
PML(Σb) (as n→ ∞) for all j ∈ {0, 1, 2, 3}. Note that λ0 = λ ∈ I and λ3 ∈ Cl(F).

Since the intersection number of any representatives of βjn and βj+1
n in ML(Σb) is

zero for all n and j, that of any representatives of λj and λj+1 in ML(Σb) is zero for
all j ∈ {0, 1, 2}. Since λ0 ∈ I, we have λ0 = λ1 by Lemma 1.20 (2). Applying the
same argument repeatedly, we finally get λ0 = · · · = λ3. Therefore, λ is contained
in Cl(F).

By Lemma 1.20 (1), the set I is dense in PML(Σb). Thus, we conclude that
U ⊂ Cl(U ∩ I) = Cl(F). □

The following lemma shows the existence of a Heegaard splitting satisfying the
condition in Theorem 1.18.

Lemma 1.22. There exists an automorphism ψ of Σb such that dC(Σb)(DΣb
, ψn(DΣb

))
tends to ∞ as n tends to ∞.
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Proof. By Lemma 1.21, DΣb
is nowhere dense in PML(Σb). Since I is dense in

PML(Σb) by Lemma 1.20, there exists a pseudo-Anosov automorphism ψ : Σb → Σb

such that none of its invariant laminations λ+, λ− is contained in Cl(DΣb
). We will

show that ψ is the required automorphism in the assertion.
Suppose for a contradiction that there exists N > 0 such that dC(Σb)(DΣb

, ψn(DΣb
)) ≤

N for any n > 0. Thus, for each n there exists a path (α0
n, . . . , α

N
n ) such that

α0
n ∈ DΣb

and αN
n ∈ ψn(DΣb

). Recall that PML(Σb) is sequentially compact by

Theorem 1.6. After passing to a subsequence if necessary, which we still write (αj
n),

we can assume that the sequence (αj
n) converges to a point λj in PML(Σb) (as

n → ∞) for all j ∈ {0, . . . , N}. Note that λ0 ∈ Cl(DΣb
) and λN = λ−. Since the

intersection number of any representatives of αj
n and αj+1

n in ML(Σb) is zero for
all n and j, that of any representatives of λj and λj+1 in ML(Σb) is zero for all
j ∈ {0, . . . , N − 1}. Since λN ∈ I, we have λN−1 = λN by Lemma 1.20 (2). Apply-
ing the same argument repeatedly, we finally get λ0 = · · · = λN . This is impossible
because λ0 ∈ Cl(DΣb

) and λN = λ− ̸∈ Cl(DΣb
). □

Lemma 1.23. Let ψ be an automorphism of Σ that preserve the binding b. If the
distance dC(Σb)(DΣb

, ψ(DΣb
)) is greater than 6, the distance dC(Σ)(D(H), ψ(D(H)))

is exactly 4.

Proof. By Lemma 1.11, the distance dC(Σ)(D(H), ψ(D(H))) is at most 4 for
any ψ. Suppose that dC(Σb)(DΣb

, ψ(DΣb
)) > 6. Suppose for a contradiction that

the distance dC(Σ)(D(H), ψ(D(H))) is less than 4. Then there exists an integer
k ∈ {0, 1, 2, 3} and a geodesic segment (α0, . . . , αk) in C(Σ) with α0 ∈ D(H) and
αk ∈ ψ(D(H)). If there exists j such that αj = b, we have either dC(Σ)(D(H), b) < 2
or dC(Σ)(b, ψ(D(H))) < 2. Since b is a binding of the handlebody whose disk sets
corresponds to ψ(D(H)), this is impossible by Lemma 1.11. Suppose that αj ̸=
b for all j. Then by Lemma 1.1, we have dC(Σb)(DΣb

, ψ(DΣb
)) ≤ 6, which is a

contradiction. □

We remark that in the proof of Lemma 1.23 we have used the assumption that
F has a single boundary component. Indeed, Lemma 1.11, which is used to get a
contradiction in the argument, is valid only when the binding b on ∂H is a single
simple closed curve. In the case where b has more than one components, we have
dC(Σ)(b,D(H)) = 1, which cannot lead to a contradiction.

Proof of Theorem 1.18. The first assertion is a direct consequence of Lemma 1.23.
By identifying Σb with S × {1/2}, we get a natural injective homomorphism η :
G(S, ι0, ι1) → G(M,Σ). We will show the surjectivity of η. Suppose that there
exists an element φ ∈ G(M,Σ) such that φ(b) ̸= b. Set b′ := φ(b). Since b′ is
also a binding of a twisted book decomposition of M , we have dC(Σ)(b

′,D(Hj)) = 2

for j ∈ {1, 2} by Lemma 1.11. Set Dj
Σb

:= πΣb
(D(Hj)). By Lemma 1.1, we have

dC(Σb)(πΣb
(b′),Dj

Σb
) ≤ 4. This together with the fact that the diameter of πΣb

(b′) is

at most 2 implies that dC(Σb)(D
1
Σb
,D2

Σb
) is at most 10. This contradicts the assump-

tion on φ. In Consequence, any element of MCG+(M,H+) preserves the binding
b.
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Let φ ∈ G(M,Σ). Let q : S×I →M be the quotient map. Set St := q(S×{t}) for
t ∈ [0, 1]. Since the I-bundle structure of H with the binding b is unique, φ preserves
each St. In particular, φ restricts to an orientation preserving automorphism of
S1/2 = Σ. Thus φ is contained in the image of η. □



CHAPTER 2

Goeritz groups of bridge decompositions of links

1. Introduction

Let L be a link in a closed orientable 3-manifold M . A bridge decomposition of
L is a Heegaard splitting M = V +∪Σ V

− such that L intersects each of V + and V −

in properly embedded trivial arcs. When the genus of the surface Σ, called a bridge
surface, is g, and the number of components of V ±∩L is n, we particularly call such
a decomposition a (g, n)-decomposition of L. The distance is also defined for a bridge
decomposition in the same way as in the case of a Heegaard splitting, and many
results about Heegaard splittings have been extended to bridge decompositions. For
example, Bachman-Schleimer [2] showed that the distance of a bridge decomposition
of a knot is bounded above by the Euler characteristic of an essential surface in the
complement of the knot, which is a generalization of a result in Hartshorn [18]. The
arguments in [2] apply to the case of links as well, and their results, in particular,
imply that if the distance of a link in a 3-manifold is at least 5, then the complement
of the link admits a complete hyperbolic structure of finite volume. (The definition
of the distance in this paper is slightly different from that in [2]; see Section 2.3.) As
another example, Tomova [50] gave a sufficient condition for uniqueness of bridge
decompositions of knots in terms of the distances and the Euler characteristics of
bridge surfaces, which is a generalization of a result of Sharlemann-Tomova [45].

In this chaper, we are interested in the Goeritz group of a bridge decomposition.
The concept of Goeritz group has been extended for bridge decompositions in [20].
In that paper, an analogous result with Namazi [38] and Johnson [24] was obtained:
it was shown that there exists a constant C such that if the distance of a bridge
decomposition of a link is at least C, then its Goeritz group is finite. Furthermore,
such a constant C can be taken uniformly to be at most 3796. The goal of this
chapter is the following, which improves the above mentioned result of [20].

Theorem 2.1. Let g ≥ 0, n > 0 and (g, n) ̸= (0, 1), (0, 2), (1, 1). Let (M,L; Σ)
be a (g, n)-decomposition of a link L in a 3-manifold M . If the distance of (M,L; Σ)
is at least 6, then the Goeritz group G(M,L; Σ) is a finite group. Further, for a
(0, n)-decomposition (S3, L; Σ) of a link L in the 3-sphere S3, where n ≥ 3, if the
distance of (S3, L; Σ) is at least 5, then the Goeritz group G(S3, L; Σ) is a finite
group.

Theorem 2.1 is proved by extending the argument of [24] to the case of bridge
decompositions. In fact, the major part of the proof is devoted to show the following.

Theorem 2.8. Let L be a link in a 3-manifoldM and (M,L) = (V +, V +∩L)∪Σ

(V −, V − ∩ L) a bridge decomposition. If the distance between the sets of disks and

19
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once-punctured disks in V +−L and V −−L in the curve graph of Σ−L are at least
4, then the natural homomorphism η : G(M,L; Σ) → MCG+(M,L) is injective.

The key tool for the proof is the double sweep-out technique involving the theory
of graphics introduced by Rubinstein-Scharlemann [42]. As noted above, if the
distance of the bridge decomposition (M,L; Σ) is at least 6, then the complement
M − L admits a hyperbolic structure, and hence the mapping class MCG(M,L) is
a finite group. Theorem 2.1 thus follows from Theorem 2.8 and these facts.

In Section 2, we review basic definitions and properties of the distance and the
Goeritz group of a bridge decomposition. In Section 3, we review the theory of
sweep-outs, which is the main tool of the paper. In Section 4, we give the proof of
Theorem 2.8. Finally, in Section 5, we give the proof of Theorem 2.1.

2. Definitions of the distance and the Goeritz group for a bridge
decomposition

2.1. Bridge decompositions. Let g ≥ 0 and n > 0. Let V be a handlebody
of genus g. The union of n properly embedded, mutually disjoint arcs in V is called
an n-tangle. An n-tangle in V is said to be trivial if the arcs can be isotoped
into ∂V simultaneously. Let L be a link in a closed orientable 3-manifold M . Let
M = V + ∪Σ V

− be a genus-g Heegaard splitting of M . A decomposition (M,L) =
(V +, V + ∩ L) ∪Σ (V −, V − ∩ L) is called a (g, n)-decomposition of L if V + ∩ L and
V −∩L are trivial n-tangles in V + and V −, respectively. We sometimes denote such
a decomposition by (M,L; Σ). The surface Σ here is called the bridge surface of L.
Two bridge decompositions of L are said to be equivalent if their bridge surfaces are
isotopic through bridge surfaces of L.

2.2. Curve graphs. In the previous chapter, we have considered the curve
complex (or the arc and curve complex) for a compat surface. In fact, these com-
plexes can also be defined for a punctured surface in a similar way. The following is
a more detailed description.

Let g ≥ 0 and k > 0. Let Σ be a closed orientable surface of genus g with k
marked points p1, p2, . . . , pk. Set Σ′ := Σ − {p1, p2, . . . , pk}. A simple closed curve
in Σ′ is said to be essential if it does not bound a disk or a once-punctured disk in
Σ′. We say that an open arc α in Σ′ is essential if it satisfies:

• Cl(α; Σ)− α ⊂ {p1, p2, . . . , pk}; and
• If Cl(α; Σ) is a simple closed curve bounding a disk D in Σ, then the interior
of D contains at least one point of {p1, p2, . . . , pk}.

The curve graph C(Σ′) of Σ′ is the graph whose vertices are isotopy classes of
essential simple closed curves in Σ′, and the edges are pairs of vertices {α, β} with
α ∩ β = ∅. Similarly, the arc and curve graph AC(Σ′) of Σ′ is the graph whose
vertices are isotopy classes of essential simple closed curves and essential open arcs
in Σ′, and the edges are pairs of vertices {α, β} with α ∩ β = ∅. By abuse of
notation, we denote the underlying space of the curve graph (the arc and curve
graph, respectively) by the same symbol C(Σ′) (AC(Σ′), respectively). The graph
C(Σ′) (AC(Σ′), respectively) can be viewed as a geodesic metric space with the
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simplicial metric dC(Σ′) (dAC(Σ′), respectively). We note that the curve graph C(Σ′)
is nonempty and connected if and only if 3g − 4 + k > 0.

2.3. Distances. The concept of the distance can be defined not only for a
Heegaard splitting but also for a bridge decomposition. In fact, there are three
different ways of generalizing the definiton of the distance to this case. In this
subsection, we give the definition of the distance of a bridge decomposition and its
variations, and summarize their basic properties.

Let (M,L) = (V +, V + ∩L)∪Σ (V −, V − ∩L) be a (g, n)-decomposition of a link
L in a closed orientable 3-manifold M , where 3g−4+2n > 0. We denote by D(V ±

L )
the set of vertices of C(ΣL) that are represented by simple closed curves bounding
disks in V ±

L .

Definition. The distance d(M,L; Σ) of the bridge decomposition (M,L; Σ) is
defined by d(M,L; Σ) := dC(ΣL)(D(V +

L ),D(V −
L )).

There are other variations, dPD(M,L; Σ) and dBS (M,L; Σ), of the distance.
The first one, dPD(M,L; Σ), is defined as follows. Let PD(V ±

L ) denote the set of all
vertices of C(ΣL) that are represented by simple closed curves bounding disks in V ±

that intersect L at most once. Then dPD(M,L; Σ) is defined by dPD(M,L; Σ) :=
dC(ΣL)(PD(V +

L ),PD(V −
L )). It is easily checked that the following inequality holds:

dPD(M,L; Σ) ≤ d(M,L; Σ) ≤ dPD(M,L; Σ) + 2.(1)

Furthermore, for a (0, n)-decomposition the following holds.

Proposition 2.2 (Jang [23, Proposition 1.2]). Suppose that M = S3 and the
genus of Σ is zero. Then,

• dPD(M,L; Σ) = d(M,L; Σ) if dPD(M,L; Σ) ≥ 1, and
• d(M,L; Σ) = 0 or 1 if dPD(M,L; Σ) = 0.

We next define dBS (M,L; Σ), which was introduced by Bachman-Schleimer [2].
For trivial n-tangles (V ±, V ±∩L), we denote by B(V ±, V ±∩L) the set of all vertices
α of AC(ΣL) such that

• α ∈ PD(V ±
L ), or

• α is an open arc in ΣL such that ∂ Cl(α; Σ) ⊂ Σ∩L and Cl(α; Σ) cobounds
a disk in V ± with an arc of V ± ∩ L.

We define dBS (M,L; Σ) by the distance between two sets B(V +, V +∩L) and B(V −, V −∩
L) in the arc and curve graph AC(ΣL). By the argument of the proof of (1) in p.480
in Korkmaz-Papadopoulos [32], we have

1

2
d(M,L; Σ) ≤ dBS(M,L; Σ) ≤ d(M,L; Σ).(2)

See also [3]. We summarize a few facts needed in Sections 4 and 5. The following
lemma is an extension of Haken’s lemma [17].

Lemma 2.3 ([2, Lemma 4.1]). Let (M,L; Σ) be a bridge decomposition of a link
L in a closed orientable 3-manifold M . If ML contains an essential 2-sphere, or if
there exists a 2-sphere in M that intersects L transversely at a single point, then
dPD(M,L; Σ) = 0.



2. DEFINITIONS OF THE DISTANCE AND THE GOERITZ GROUP FOR A BRIDGE DECOMPOSITION22

Remark 2.1. Lemma 4.1 of [2] is stated only for knots, but their arguments
hold for links.

Corollary 6.2 of Bachman-Schleimer [2] says that if dBS(M,L; Σ) ≥ 3, then the
complement of L admits a complete hyperbolic structure of finite volume. (Again,
[2, Corollary 6.2] is stated for knots, but their arguments are valid even for links.)
Combining this fact and the inequality (2), we have the following.

Theorem 2.4. Let (M,L; Σ) be a bridge decomposition of a link L in a closed
orientable 3-manifold M . If d(M,L; Σ) ≥ 5, then ML admits a complete hyperbolic
structure of finite volume.

Remark 2.2. Here is a subtle remark on the various notions of distances intro-
duced above. In [23], two notions of distance of bridge decompositions are discussed.
One is d, which is denoted by dT in [23], and the other is dPD, which is denoted by
dBS in the same paper. The important thing to note is that the definition of dBS in
[23] is different from the original one by Bachman-Schleimer [2]. Then, in [21, The-
orem 5.1], it is claimed that if (S3, L; Σ) is a (0, n)-decomposition of a link L in S3

and d(S3, L; Σ) ≥ 3, where n ≥ 3, then the complement of L admits a complete
hyperbolic structure of finite volume. The proof in that paper bases on two results.
One is [2, Corollary 6.2]. The other is, however, not a relationship between d and
dBS but Proposition 2.2 above (literally this is described as a relationship between
dT and dBS in [23]). Thus, we do not have a reasonable explanation of [21, Theorem
5.1]. If [21, Theorem 5.1] is still valid, then we can improve the distance estimation
of Theorem 2.1 for (0, n)-decompositions of links in S3.

2.4. Goeritz groups. LetM be an orientable manifold, and Y1, Y2 . . . , Yk (pos-
sibly empty) subsets of M . In this chapter, we will work in the smooth categry
for technical reasons. We use similar notations as in the previous chapter: Let
Diff+(M,Y1, Y2, . . . , Yk) denote the group of orientation-preserving self-diffeomorphisms
of M that send Yi to itself for 1 ≤ i ≤ k. Let MCG+(M,Y1, . . . , Yk) denote the
mapping class group of the (k + 1)-tuple (M,Y1, Y2 . . . , Yk), that is, the group of
path-components of Diff+(M,Y1, Y2 . . . , Yk).

Definition. For a bridge decomposition (M,L) = (V +, V +∩L)∪Σ(V
−, V −∩L),

the mapping class group MCG+(M,V +, L) is called the Goeritz group, and it is
denoted by G(M,L; Σ).

Let (M,L; Σ) be a bridge decomposition of a link L in a closed orientable 3-
manifold M . Since the natural map G(M,L; Σ) → MCG+(Σ,Σ ∩ L) obtained by
restricting the maps of concern to Σ is injective, the Goeritz group can be thought
of a subgroup of MCG+(Σ,Σ ∩ L). Thus, we can write

G(M,L; Σ) = MCG+(V
+, V + ∩ L) ∩MCG+(V

−, V − ∩ L) ⊂ MCG+(Σ,Σ ∩ L).
We remark that the Goeritz group can also be defined as the group of path-

components of Aut+(M,V +, L) as in Chapter 1: Indeed, it is well known that
π0(Aut+(Σ,Σ ∩ L)) and π0(Diff+(Σ,Σ ∩ L)) (= MCG+(Σ,Σ ∩ L)) are isomorphic,
and hence π0(Aut+(M,V +, L)) and π0(Diff+(M,V +, L)) (= G(M,L; Σ)) correspond
to the same subgroup of MCG+(Σ,Σ ∩ L). (See for example [4].) So the definition
of the Goeritz group in this chapter is compatible with that in Chapter 1.
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3. Sweep-outs

We review the basic theory of sweep-outs. The main references of this section
are Kobayashi-Saeki [31] and Johnson [25]. In the following, let M be a closed
orientable 3-manifold, L a link in M , and (M,L; Σ) a (genus(Σ), n)-decomposition
of L throughout.

Definition. A function f : M → [−1, 1] is said to be a sweep-out of (M,L)
associated with the decomposition (M,L; Σ) if

• for all s ∈ (−1, 1), f−1(s) is a bridge surface of L and the bridge decompo-
sition (M,L; f−1(s)) is equivalent to (M,L; Σ); and

• f−1(1) and f−1(−1) are finite graphs, which are called spines, embedded
in M .

We note that any bridge decomposition admits a sweep-out. For simplicity, we
shall always assume further that the spines f−1(±1) are uni-trivalent graphs, and
the intersection of the spines and L is exactly the set of vertices whose valency is
one. See Figure 1.

f−1(±1)

V ± ∩ L

Figure 1. A spine in V ±.

A smooth map F from a 3-manifold N into R2 is said to be stable if there
exists a neighborhood U(F ) of F in the space of smooth maps C∞(N,R2) with the
following property: for any G ∈ U(F ), there exist diffeomorphisms φ : N → N and
ψ : R2 → R2 satisfying G ◦φ = ψ ◦F . The image of the set of singular points of the
stable map is called the discriminant set.

Let f and g be sweep-outs of (M,L). Due to Kobayashi-Saeki [31], the map
f×g :M → [−1, 1]×[−1, 1] can be perturbed so that f×g is stable in the complement
of spines of f and g. In the following, whenever we consider the product of sweep-
outs, we slightly perturb it to be stable. Let Γ be the closure in [−1, 1]× [−1, 1] of
the union of the discriminant set of f × g and the image of L under the map f × g.
Then Γ is naturally equipped with a structure of a finite graph of valency at most
four. Such a finite graph is called the (Rubinstein-Scharlemann) graphic defined by
f × g.
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Each point (s, t) in the interior of the square [−1, 1] × [−1, 1] corresponds to
the intersection of two level surfaces Σs := f−1(s) and Σ′

t := g−1(t). We note that
the surfaces Σs and Σ′

t always intersect L transversely by definition. If the point
(s, t) lies in the complementary region of the graphic Γ, then the surfaces Σs and Σ′

t

intersect transversely and Σs ∩ Σt ∩ L = ∅. If (s, t) lies in the interior of an edge of
Γ, then one of the following holds:

• Σs and Σ′
t share a single tangent point, and that point is a non-degenerate

critical point of both f |Σ′
t
and g|Σs , see Figure 2 (i) and (ii); or

• Σs and Σ′
t intersect transversely, and Σs ∩ Σ′

t ∩ L is a single point, see
Figure 2 (iii).

(i) (ii) (iii)

Σ′
t

Σs

Σ′
t

Σs

Σ′
t

Σs

L

Figure 2. The surfaces Σs and Σ′
t when (s, t) lies in the interior of

an edge of the graphic.

If (s, t) is at a 4-valent vertex of Γ, then either

• Σs and Σ′
t share exactly two tangent points, and those points are non-

degenerate critical points of both f |Σ′
t
and g|Σs ;

• Σs and Σ′
t share a single tangent point, and that point is a non-degenerate

critical point of both f |Σ′
t
and g|Σs . Further, L intersects Σs∩Σ′

t at a point

where Σs and Σ′
t intersect transversely; or

• Σs and Σ′
t intersect transversely, and Σs ∩ Σ′

t ∩ L consists of exactly two
points.

If (s, t) is at a 2-valent vertex of Γ, then Σs and Σ′
t share a single tangent point, and

that point is a degenerate critical point of both f |Σ′
t
and g|Σs . See Figure 3. Each 1-

Σ′
t

Σs

Figure 3. The surfaces Σs and Σ′
t when (s, t) is at a 2-valent vertex

of the graphic.
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or 3-valent vertex is in the boundary of the square, and it corresponds to the point
where the level surface of one of the two sweep-outs is tangent to the spine of the
other sweep-out.

Definition. The graphic defined by f × g is said to be generic if f × g is stable
in the complement of the spines, and any vertical or horizontal arc in [−1, 1]× [−1, 1]
contains at most one vertex of the graphic.

The following is Lemma 34 of Johnson [25].

Lemma 2.5. Let f and g be sweep-outs associated to the bridge decomposition
(M,L; Σ). Let {Φr :M →M}r∈[0,1] be an ambient isotopy such that Φ0 = idM and

Φr(L) = L for all r ∈ [0, 1]. Set gr := g ◦ Φ−1
r for r ∈ [0, 1]. Then we can perturb

{Φr}r∈[0,1] slightly, if necessary, so that the graphic defined by f × gr is generic for
all but finitely many r ∈ [0, 1]. At each non-generic r ∈ [0, 1], the graphic fails to be
generic due to one of the following two reasons:

• there exists a single vertical or horizontal arc in [−1, 1]× [−1, 1] containing
two vertices of the graphic, or

• the map f × gr is not stable in the complement of their spines. (This case
corresponds to the six types of local moves shown in Figure 5 of [26].)

Let f and g be sweep-outs associated to (M,L; Σ). Let s, t ∈ (−1, 1). Set Σs :=

f−1(s), Σ′
t := g−1(t), Vs

− := f−1([−1, s]), Vs
+ := f−1([s, 1]), V ′

t
− := g−1([−1, t])

and V ′
t
+ := g−1([t, 1]).

Definition. We say that Σs is mostly above (mostly below, respectively) Σ′
t if

each component of Σs ∩ V ′
t
− (Σs ∩ V ′

t
+, respectively) is contained in a disk with at

most one puncture in Σs − L.

Let Ra (Rb, respectively) denote the set of all points (s, t) ∈ [−1, 1]×[−1, 1] such
that Σs is mostly above (mostly below, respectively) Σ′

t. The regions Ra and Rb are
bounded by the edges of the graphic. Note that a point (s, t) near [−1, 1]× {−1} is

labeled by Ra because V ′
t
− lies within a small neighborhood the spine of g, and all

the intersections of V ′
t
− and Σs must consist of disks. Similarly, a point (s, t) near

[−1, 1]× {1} is labeled by Rb. Also, by definition, both regions Cl(Ra) and Cl(Rb)
are vertically convex, that is, if a point (s, t) is in Cl(Ra) (Cl(Rb), respectively),
then so is (s, t′) for any t′ ≤ t (t′ ≥ t, respectively).

Lemma 2.6. Suppose that (genus(Σ), n) ̸= (0, 1), (0, 2), (1, 1). Then the closure
of the regions Ra and Rb are disjoint.

Proof. We first suppose that Ra ∩ Rb ̸= ∅. Let (s, t) ∈ Ra ∩ Rb. Then there
exists a component l of Σs ∩ Σ′

t such that l bounds once-punctured disks in Σs in
both sides of l. Thus Σs is a twice-punctured sphere and (genus(Σ), n) = (0, 1).

Next, suppose that Cl(Ra) and Cl(Rb) share an edge of the graphic. Let (s, t)
be a point in the (interior of the) common edge of Cl(Ra) and Cl(Rb). A small
neighborhood P in Σs of the component of g|−1

Σs
(t) containing a critical point of g|Σs

or a point of L is either a pair of pants or a once-punctured annulus, see Figure 4.
By the assumption, each component of ∂P is inessential in Σs − L. Therefore Σs

must be a twice-punctured sphere, and thus, we have (genus(Σ), n) = (0, 1).
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Σ′
t

Σs

Σ′
t

Σs

P P

L

Figure 4. A small neighborhood P in Σs of the component of g|−1
Σs

(t)
containing a critical point of g|Σs or a point of L.

Finally, suppose that Cl(Ra) and Cl(Rb) do not share any edge, but they share
a vertex of the graphic. Let (s, t±) be points near the vertex shown in Figure 5.
There are exactly two critical points of g|Σs between g|−1

Σs
(t−) and g|−1

Σs
(t+): one is

s

t−

t+

Figure 5. A neighborhood of the vertex

on g|−1
Σs

(t−) and the other is on g|−1
Σs

(t+). As in the above case, a small neighborhood

Q± in Σs of the component of each g|−1
Σs

(t±) of concern is a pair of pants or a once-
punctured annulus. In the surface Σs −L, each component of ∂Q± either bounds a
once-punctured disk or cobounds an annulus with another component of ∂Q±. Thus,
we can check that Σs is either a four-times punctured sphere or a twice-punctured
torus, which implies (genus(Σ), n) = (0, 2), (1, 1). □

In what follows, we assume that (genus(Σ), n) ̸= (0, 1), (0, 2), (1, 1). We say that
g spans f if there exists t ∈ [−1, 1] such that the horizontal arc [−1, 1]×{t} intersects
both Ra and Rb. Otherwise, we say that g splits f . See Figure 6.

We say that g spans f positively if there exist points (a, t) ∈ Ra and (b, t) ∈ Rb

with b < a.

Lemma 2.7 ([25, Lemma 14]). Let f be a sweep-out of (M,L), and g the result
of perturbing f slightly so that the graphic defined by f × g is generic. Then g spans
f positively.
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t

Rb

Ra

Figure 6. The function g spans f if some horizontal arc in the
square intersects both Ra and Rb (left), and otherwise g splits f
(right).

4. Upper bounds for the distance

Let (M,L) = (V +, V + ∩ L) ∪Σ (V −, V − ∩ L) be a (genus(Σ), n)-decomposition
of a link L in a closed orientable 3-manifold M , and suppose that (genus(Σ), n) ̸=
(0, 1), (0, 2), (1, 1). Recall that dPD(M,L; Σ) = dC(ΣL)(PD(V +

L ),PD(V −
L )). The

goal of this section is to show the following.

Theorem 2.8. If dPD(M,L; Σ) ≥ 4, then the natural homomorphism η : G(M,L; Σ) →
MCG+(M,L) is injective.

We prove Theorem 2.8. We first note that, by Lemma 2.3, we may assume the
following.

Assumption: Any meridional loop of L does not bound a disk in M − L.

Lemma 2.9. Let L and M be as above. Let Σ be a closed connected surface in M
intersecting L transversely. Let D be a disk in M such that D∩Σ = ∂D, ∂D∩L = ∅,
and D intersects L transversely in at most one point. Let Σ′ be a component of a
surface obtained by compressing Σ along D. Then we have χ(Σ′ − L) ≥ χ(Σ − L),
where χ(·) denotes the Euler characteristic.

Remark 2.3. In the above lemma, we allow the case where D is not a compres-
sion disk for Σ, in other words, ∂D can be inessential in Σ.

Proof. Suppose that χ(Σ′ − L) < χ(Σ − L). Then the only possibility is that
|D ∩L| = 1, ∂D bounds a disk E in Σ with E ∩L = ∅, and Σ′ = (Σ−E)∪D. This
contradicts our assumption stated right before the lemma. □

Lemma 2.10. Let Σ be a closed orientable surface, K the union of vertical arcs in
Σ× [0, 1], and S a surface in Σ× [0, 1] that intersects K transversely. If S separates
Σ×{0} from Σ×{1}, then χ(SK) ≤ χ(ΣK). Furthermore, the equality holds if and
only if S is isotopic to a horizontal surface keeping S transverse to K throughout
the isotopy.

Proof. Let S′ be the result of repeatedly compressing SK so that S′ is incom-
pressible in (Σ× [0, 1])−K. The surface S′ still separates Σ×{0} from Σ×{1}, and
it follows from Lemma 2.9 that χ(SK) ≤ χ(S′). Since any incompressible surface in
ΣK × [0, 1] is isotopic to a horizontal surface, we have χ(SK) ≤ χ(ΣK). □
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Let f :M → [−1, 1] be a sweep-out of (M,L) with f−1(0) = Σ, and g the result
of perturbing f slightly. Let [ϕ] be in the kernel of η. Then, there exists an ambient
isotopy {Φr : M → M}r∈[0,1] such that Φ0 = idM , Φ1 = ϕ, and Φr(L) = L for
all r ∈ [0, 1]. We can assume that {Φr}r∈[0,1] satisfies the conditions described in
Lemma 2.5, that is, only a finitely many element in the 1-parameter family {gr :=
g ◦ Φ−1

r }r∈[0,1] of sweep-outs of (M,L) is non-generic.

Lemma 2.11. If gr spans f for all r ∈ [0, 1], then ϕ|Σ is isotopic in Σ to the
identity id|Σ relative to the points Σ ∩ L.

Proof. For each r ∈ [−1, 1], set Ar := p2(Cl(Ra)) and Br := p2(Cl(Rb)), where
p2 : [−1, 1] × [−1, 1] → [−1, 1] denotes the projection onto the second coordinate.
Since gr spans f , Ar and Br have nonempty intersection. Indeed, Ar ∩ Br is a
closed interval in [−1, 1] because Cl(Ra) and Cl(Rb) are vertically convex subsets of
[−1, 1] × [−1, 1]. Fix r ∈ [−1, 1]. We define the map φr from the surface g−1(0) to
f−1(0) that sends the points g−1(0) ∩ L to f−1(0) ∩ L as follows.

Let t(r) be an interior point of the closed interval Ar∩Br. There are points a(r)
and b(r) in [−1, 1] such that (a(r), t(r)) ∈ Ra and (b(r), t(r)) ∈ Rb, respectively. Set
Σa(r) := f−1(a(r)), Σb(r) := f−1(b(r)) and Σ′

t(r) := g−1
r (t(r)). Since Σa(r) is mostly

above Σ′
t(r) = g−1

r (t(r)) while Σb(r) is mostly below Σ′
t(r), we obtain a surface Sr

lying within the product region between Σa(r) and Σb(r) by repeatedly compressing
Σ′
t(r) along the innermost disks intersecting L at most once in Σa(r) ∪ Σb(r) as long

as possible. By the construction, the surface Sr separates Σa(r) from Σb(r). See
Figure 7.

Σa(r)Σb(r) Σ′
t(r)

L

Σa(r)Σb(r)

L

Sr

Figure 7. Compressing along innermost simple closed curves in
Σa(r) ∪ Σb(r) iteratively to form the surface Sr.

We argue that Sr is canonically isotopic to a level surface of the sweep-out f
keeping Sr transverse to the link L throughout the isotopy. By Lemma 2.9 we
have χ(Sr − L) ≥ χ(Σ′

t(r) − L). On the other hand, since Sr separates Σa(r) from

Σb(r), we have χ(Sr−L) ≤ χ(Σ′
t(r)−L) by Lemma 2.10. Thus, we have χ(Sr−L) =

χ(Σ′
t(r)−L). Again, by Lemma 2.10, Sr is isotopic to a level surface of the sweep-out

f with keeping the surfaces transverse to L throughout.
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By the argument above, it follows that Sr coincides with Σ′
t(r) away from some

disks, each of which intersects L at most once. Thus, there is a canonical identifica-
tion of Sr with Σ′

t(r). Therefore, we have the map:

g−1(0) → g−1
r (t(r)) = Σ′

t(r) → Sr → f−1(0).

Note that all maps are uniquely defined up to isotopy (with fixing the intersection
points between the surface of concern and L). It is clear that the composition
map can be chosen so that it sends g−1(0) ∩ L to f−1(0) ∩ L. Define the map
φr : g

−1(0) → f−1(0) by such a composition map.
We shall now show that ϕ|Σ is isotopic to the identity relative to Σ ∩ L. There

is the canonical identification of f−1(0) = Σ with g−1(0) because g is the result of
perturbing f slightly. Under this identification, it holds that φ0 = idΣ and φ1 =
ϕ|Σ. It is clear that the values of t(r) can be chosen so that it varies continuously.
Although perhaps the points a(r) and b(r) do not vary continuously at some finitely
many values of r, the deformation of φr remains to be continuous even around such
values: it is easily seen that the choice of a(r) or b(r) does not affect the definition
of the map g−1

r (t(r)) → f−1(0) in the above argument modulo isotopy. Thus, we
conclude that for any r, r′ ∈ [0, 1], φr and φr′ are isotopic fixing Σ∩L, which shows
the proof. □

Lemma 2.12. If there exists r ∈ [0, 1] such that gr splits f , then dPD(M,L; Σ) ≤
3.

Proof. We denote by π0 the natural projection from the preimage f−1((−1, 1))
of the open interval (−1, 1) to Σ that maps f−1((−1, 1))∩L to Σ∩L. By Lemma 2.7,
g0 spans f positively. Thus, there exists a time r0 such that

• gr spans f positively for all r < r0, and
• Ar0 ∩Br0 = {t}.

In the following, we consider the graphic defined by f × gr0 . By Lemma 2.5, the arc
[−1, 1]×{t} must intersect the region Cl(Ra)∪Cl(Rb) in exactly two vertices of the
graphic. Let (a, t) ∈ Cl(Ra) and (b, t) ∈ Cl(Rb) be coordinates of such vertices. We
note that b < a. Let us consider the points near these vertices shown in Figure 8:
their coordinates are (a−, t), (b+, t), (a±, t±) and (b±, t±).

We set Σs := f−1(s), Σ′
t := g−1

r0 (t) as before. Set f0 := f |Σ′
t
and f± := f |Σ′

t±
.

Note that the functions f± are Morse away from the preimages of ±1.
We think about the function f0. Let La be the set of simple closed curves of

f−1
0 (a−) that are essential in Σa− − L. Similarly, let Lb be the set of simple closed

curves of f−1
0 (b+) that are essential in Σb+ − L. We note that La ̸= ∅ (Lb ̸= ∅,

respectively) because (a−, t) ((b+, t), respectively) does not lie in Ra ∪ Rb. Let la
and lb be arbitrary simple closed curves in La and Lb, respectively.

By the choice of r0, the same argument of the proof of Lemma 2.11 shows
that we can find a natural map ρ0 : f−1

0 ([b+, a−]) → Σ0 = Σ that extends to a
homeomorphism ρ̂0 from the whole surface Σ′

t to Σ with ρ̂0(Σ
′
t ∩ L) = Σ ∩ L. Since

both la and lb are level loops of f0 : Σ′
t → (−1, 1), they are disjoint. Therefore, the

images ρ0(la) and ρ0(lb) in Σ0 = Σ are also disjoint. In other words, we have

dC(ΣL)(ρ0(lb), ρ0(la)) ≤ 1,(3)
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Rb

Ra

aa− a+bb− b+

t
t−

t+

Figure 8. Small perturbed points of the vertices.

where we regard ρ0(la) and ρ0(lb) as vertices of C(ΣL). The projection π0 also
takes la and lb to simple closed curves in Σ, which may have nonempty intersection.
However, we see from the definition of ρ0 that π0(la) and ρ0(la) (π0(la) and ρ0(la),
respectively) are homotopic, hence, isotopic. Therefore, if we regard π0(la) and
π0(lb) as vertices of C(ΣL), we can write

dC(ΣL)(π0(lb), π0(la)) ≤ 1.(4)

We next show the inequality:

dC(ΣL)(π0(La),PD(V +
L )) ≤ 1.(5)

We note that any level loop of f−1
0 (a−) can also be regard as loops of each

of f−1
± (a−) since the points (a−, t) and (a−, t±) are in the same component of the

complementary region of the graphic. In the following, for simplicity, we shall not
distinguish between a level loop of f−1

0 (a−) and the corresponding loops of f−1
± (a−)

in their notations. Let la ∈ La. Let us first consider the function f−. Since the point
(a, t−) lies within Ra, as we pass from the level a− to the level a, the simple closed
curve la turns into one or two inessential simple closed curves in Σa −L. Therefore,
in the surface Σa− − L, either

• The simple closed curve la bounds a twice-punctured disk, see Figure 9 (i)
and (ii); or

• The simple closed curve la cobounds with another essential simple closed
curve l′a an annulus that intersects L in at most one point, see Figure 9 (iii),

and the other simple closed curves of f−1
− (a−) are inessential in Σa−−L. As explained

above, the natural map ρ0 : f
−1
0 ([b+, a−]) → Σ0 = Σ can be extended to the map ρ̂0

defined on the whole surface. The same thing still holds for the natural map from
f−1
− ([b+, a−]) to Σ. Due to the existence of an extension of the natural map we see
that, in the surface Σ′

t− − L, either

• The simple closed curve la bounds a twice-punctured disk; or
• The simple closed curve la cobounds with another simple closed curve l′a
an annulus that intersects L in at most one point,
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(i) (ii) (iii)

la la la

l′a

Σa−
Σa− Σa−Σa Σa Σa

Σ′
t− Σ′

t− Σ′
t−

Figure 9. Potential configurations of la in Σ′
t− .

according to which of the above two cases of the configuration of la in Σa− − L

occurs. The other simple closed curves of f−1
− (a−) are inessential even in Σ′

t− − L.
Let us next consider the function f+. Recall that we denote the simple closed

curve in Σ′
t+ corresponding to la ⊂ Σ′

t by the same symbol la.

Case A: The simple closed curve la bounds a twice-punctured disk in Σt+ −L (and
hence in Σa− − L).

Let P be the twice-punctured disk in Σ′
t+ − L bounded by la (note that such

a subsurface is unique because (genus(Σ), n) ̸= (0, 2)). We note that, in this case,
La = {la}. As we pass from the level a− to the level a, there are four cases to
consider.
Case A1: One or two new simple closed curves are created away from la (Figure
10).

m

la

Σa− Σa

Figure 10. The simple closed curve m ⊂ f−1
+ (a) in Σ′

t+ in Case A1.
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We first see that at least one of the two new simple closed curves is essential in
Σa−L. Suppose, contrary to our claim, that both of them are inessential in Σa−L.
As we pass from the level a to the level a+, the simple closed curve la turns into one
or two inessential simple closed curves in Σa+ − L. Thus, all of the simple closed

curves in f−1
+ (a+) are inessential in Σa+ −L. However, this contradicts the fact that

the point (a+, t+) lies in the complement in [−1, 1]× [−1, 1] of Ra ∪ Rb.
Let m be one of the new simple closed curves that is essential in Σa − L. Since

each simple closed curve of f−1
+ (a−) is inessential in Σ′

t+ except for la, the curve

m is contained in a disk with at most one puncture in Σ′
t − L. Thus, m is also

inessential in Σ′
t+ − L. Let D ⊂ Σ′

t+ − L be a disk with at most one puncture
bounded by m. By repeatedly compressing D along the innermost disk with at
most one puncture in Σa − L as long as possible, we finally obtain a disk D′ in the
handlebody V +

a = f−1([a, 1]) such that ∂D′ = m and |D′∩L| ≤ 1. Thus, π0(m) is a
vertex of PD(V +

L ). As shown in Figure 10, the inequality dC(ΣL)(π0(la), π0(m)) ≤ 1

holds. In consequence, we have dC(ΣL)(π0(la),PD(V +
L )) ≤ 1.

Case A2: The simple closed curve la and another simple closed curve c in f−1
+ (a−)

are pinched together to produce a new simple closed curve m (Figure 11).
Since the point (a, t+) is in the complement in [−1, 1]× [−1, 1] of Ra ∪ Rb, the

simple closed curve m is essential in Σa − L. We also see that c bounds a once-
punctured disk in Σa− −L. Suppose, contrary to our claim, that c bounds a disk in
Σa− − L. Hence π0(m) is isotopic to π0(la) in Σ − L. As we pass from the level a
to the level a+, the simple closed curve m turns into one or two inessential simple
closed curves in Σa+ −L, but this is impossible because the point (a+, t+) lies in the
complement of Ra ∪ Rb.

By the assumption, any meridional loop of L does not bound a disk in M − L.
Thus, c bounds no disk in Σt+ −L. The possible configuration in P of la, m and c is
shown in Figure 11. In particular, m bounds a once-punctured disk D in P −L. By
repeatedly compressing D along the innermost disk with at most one puncture in
Σa−L as long as possible, we finally obtain a disk D′ in the handlebody V +

a such that
∂D′ = m and |D′ ∩ L| = 1. As the points (a−, t+) and (a, t+) can be connected by
a path that intersects the graphic once, dC(ΣL)(π0(la), π0(m)) ≤ 1 holds. Therefore,

it follows that dC(ΣL)(π0(la),PD(V +
L )) ≤ 1.

Case A3: The simple closed curve la passes through a puncture and turns into a
new simple closed curve m (Figure 12).

Since the point (a, t+) is in the complement in [−1, 1] × [−1, 1] of Ra ∪ Rb, m
is essential in Σa − L. As shown in Figure 12, m bounds a once-punctured disk D
in P − L. By repeatedly compressing D along the innermost disk with at most one
puncture in Σa−L as long as possible, we finally obtain a disk D′ in the handlebody
V +
a such that ∂D′ = m and |D′ ∩ L| = 1. As dC(ΣL)(π0(la)), π0(m)) ≤ 1, it follows

that dC(ΣL)(π0(la),PD(V +
L )) ≤ 1.

Case A4: The simple closed curve la is pinched to produce two simple closed curves
m1 and m2 (Figure 13).

There are two possible configurations of la, m1 and m2 in P . See Figure 13.
First, suppose that both of the two simple closed curves m1 and m2 bound once-

punctured disks, which are mutually disjoint, in P − L. Since the point (a, t+) is
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Σa− Σa

Figure 11. Case A2.

la
la

m

P

Σa− Σa

Figure 12. Case A3.

la
m1

m2

m1
m2

m1 m2

la

P

P

Σa− Σa

Figure 13. Case A4.

in the complement in [−1, 1]× [−1, 1] of Ra ∪ Rb, one of m1 and m2 is essential in
Σa−L. We may assume that m1 is essential in Σa−L. Let D ⊂ P be the disk such
that ∂D = m1 and |D ∩ L| = 1. By repeatedly compressing D along the innermost
disk with at most one puncture in Σa − L as long as possible, we finally obtain a
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disk D′ in the handlebody V +
a such that ∂D′ = m1 and |D′∩L| = 1. Thus, we have

dC(ΣL)(π0(la),PD(V +
L )) ≤ dC(ΣL)(π0(la), π0(m1)) ≤ 1.

Next, suppose that m1 bounds a disk in P −L. It suffices to show that m1 must
be essential in Σa − L. Indeed, if m1 is essential in Σa − L, a similar argument as
above shows that there exists a disk D in V +

a − L such that ∂D = m1. Thus, we
have dC(ΣL)(π0(la),PD(V +

L )) ≤ 1.
Suppose, for the sake of contradiction, m1 is inessential in Σa − L. By the

assumption, any meridional loop of L does not bound a disk in M − L. Hence, m1

must bound a disk in Σa − L. As we pass from the level a to the level a+, the
simple closed curve m2 turns into one or two simple closed curves, which bound
once-punctured disks in P − L. Note that π0(m2) is isotopic to π0(la) in Σ0 − L
because m1 bounds a disk in Σa − L. It follows that as we pass from the level a to
the level a+, the simple closed curve m2 turns into one or two simple closed curves
that is inessential in Σa+ − L, and thus all of the simple closed curves of f−1

+ (a+)
are inessential in Σa+ −L. This contradicts the fact that the point (a+, t+) does not
lie in Ra ∪ Rb. This completes the proof of the inequality (5) in Case A.
Case B: The simple closed curve la cobounds with another essential simple closed
curve l′a an annulus in Σ′

t+ (and hence in Σa−) that intersects L in at most one point.

Let A be the annulus in Σ′
t+ bounded by la and l′a (note that such an annulus is

unique because (genus(Σ), n) ≠ (1, 1)). We note that La = {la, l′a}. There are five
cases to consider as we pass from the level a− to the level a.
Case B1: A new simple closed curve m is created away from la and l′a.

This case is same as Case A1.
Case B2: The simple closed curve la and another simple closed curve c ̸= l′a of
f−1
+ (a−) are pinched together to produce a single simple closed curve m (Figure 14).

We see that c bounds a once-punctured disk in Σa− − L. Suppose, contrary to
our claim, that c bounds a disk in Σa − L. Then, it follows that π0(m) is isotopic
to π0(la) in Σ0 − L. As we pass from the level a to the level a+, the simple closed
curves m and l′a are pinched together to produce an inessential simple closed curve
in Σa+ −L. This contradicts the fact that the point (a+, t+) does not lie in Ra∪Rb.

By the assumption, any meridional loop of L does not bound a disk in M − L.
Thus, it follows that |A∩L| = 1 and c bounds a once-punctured disk in A−L. The
possible configuration of la, l

′
a, c and m in the annulus A is shown in Figure 14.

As we pass from the level a to the level a+, the simple closed curves l′a and m are
pinched together to produce a new single curve m′. The simple closed curve m′ is
essential in Σa+−L because the point (a+, t+) lies in the complement of Ra∪Rb. On
the other hand, m′ bounds a disk D in A− L. By repeatedly compressing D along
the innermost disk in Σa+ −L, we obtain a disk D′ in V +

a+ −L such that ∂D′ = m′.

As dC(ΣL)(π0(l
′
a), π0(m

′)) ≤ 1, it follows that dC(ΣL)(π0(l
′
a),PD(V +

L )) ≤ 1.
Case B3: The simple closed curve la passes through a puncture and turns into a
new simple closed curve m (Figure 15).

In the annulus A, m cobounds with l′a an annulus. See Figure 15. As we pass
from the level a to the level a+, the simple closed curves l′a and m are pinched
together to produce a new single curve m′. The simple closed curve m′ is essential
in Σa+ − L because the point (a+, t+) lies in the complement of Ra ∪ Rb. On the
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Figure 14. Case B2.
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Σa− Σa

Figure 15. Case B3.

other hand, m′ bounds a disk in A − L. By repeatedly compressing D along the
innermost disk in Σa+ − L, we obtain a disk D′ in V +

a+ − L such that ∂D′ = m′.

Therefore, we have dC(ΣL)(π0(l
′
a),PD(V +

L )) ≤ 1.
Case B4: The simple closed curve la is pinched to produce two simple closed curves
m1 and m2 (Figure 16).

There are two possible configurations of la, l
′
a, m1 and m2 in the annulus A. See

Figure 16.
First, suppose that m1 bounds a disk D in A − L. By the assumption, any

meridional loop of L does not bound a disk in its complement. Thus, the curve m1

does not bound a once-punctured disk in Σa−L. We claim that m1 does not bound
a disk in Σa −L. Suppose, contrary to our claim, that m1 bounds a disk in Σa −L.
Then, π0(m2) is isotopic to π0(la) in Σ0 − L. As we pass from the level a to the
level a+, the simple closed curves m2 and l

′
a are pinched together to produce a single

simple closed curve that is inessential in Σa+ − L. This contradicts the fact that
the point (a+, t+) does not lie in Ra ∪Rb. Therefore, we conclude that m1 must be
essential in Σa − L.
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Figure 16. Case B4.

By repeatedly compressing D along the innermost disk with at most one punc-
ture in Σa − L as long as possible, we finally obtain a disk D′ in V +

a − L such that
∂D′ = m1. Since dC(ΣL)(π0(l

′
a), π0(m1)) ≤ 1, we have dC(ΣL)(π0(l

′
a),PD(V +

L )) ≤ 1.
Next, suppose that m1 bounds a once-punctured disk D in A − L. If m1 is

essential in Σa − L, by repeatedly compressing D along the innermost disk with at
most one puncture in Σa − L as long as possible, we finally obtain a disk D′ in the
handlebody V +

a such that ∂D′ = m1 and |D′∩L| = 1. Since dC(ΣL)(π0(la), π0(m1)) ≤
1, it follows that dC(ΣL)(π0(l

′
a),PD(V +

L )) ≤ 1. Thus, in the following, we shall
assume that m1 is inessential in Σa − L.

The simple closed curve m2 cobounds an annulus with l′a in A− L. As we pass
from the level a to the level a+, the simple closed curves l′a and m2 are pinched
together to produce a new single simple closed curve m′. The curve m′ is essential
in Σa+ − L because the point (a+, t+) lies in the complement of Ra ∪ Rb. On the
other hand, m′ bounds a disk D in A − L. By repeatedly compressing D along
the innermost disk in Σa+ − L as long as possible, we finally obtain a disk D′ in
V +
a+ − L such that ∂D′ = m′. Since dC(ΣL)(π0(l

′
a), π0(m

′)) ≤ 1, it follows that

dC(ΣL)(π0(l
′
a),PD(V +

L )) ≤ 1.
Case B5: The simple closed curves la and l′a are pinched together to produce a
single simple closed curve m (Figure 17).

Since the point (a, t+) is in the complement in [−1, 1] × [−1, 1] of Ra ∪ Rb, m
is essential in Σa − L. In A − L, m bounds a disk D with at most one puncture.
See Figure 17. By repeatedly compressing D along the innermost disk with at
most one puncture in Σa − L as long as possible, we finally obtain a disk D′ in
the handlebody V +

a such that ∂D′ = m and |D′ ∩ L| ≤ 1. Therefore, we have
dC(ΣL)(π0(la),PD(V +

L )) ≤ dC(ΣL)(π0(la), π0(m)) ≤ 1, which completes the proof of
the inequality (5) in Case B.

The symmetric argument of the proof of (5) shows the inequality

dC(ΣL)(π0(Lb),PD(V −
L )) ≤ 1.(6)
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Figure 17. Case B5.

By the inequalities (4), (5) and (6), for some la ∈ La and lb ∈ Lb we have

dPD(M,L; Σ) ≤ dC(ΣL)(PD(V −
L ), π0(lb)) + dC(ΣL)(π0(lb), π0(la)) + dC(ΣL)(π0(la),PD(V +

L ))

≤ 1 + 1 + 1 ≤ 3.

This completes the proof of Lemma 2.12. □
We now complete the proof of Theorem 2.8. By Lemma 2.12, gr must span f

for all r ∈ [0, 1]. Lemma 2.11 says that ϕ|Σ is isotopic to id|Σ relative to the points
Σ∩L. Therefore, ϕ represents the trivial element in G(M,L; Σ), which implies that
the map η is injective.

5. Proof of Theorem 2.1

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1. Let (M,L; Σ) be a bridge decomposition of L with
the distance at least 6, where L is a link in a 3-manifold M . By Theorem 2.4,
ML admits a complete and finite volume hyperbolic structure. In this case it is
well known that its mapping class group MCG+(ML) is a finite group, hence so
is MCG+(M,L). The first assertion now follows from Theorem 2.8 and (1). The
second assertion can be shown by the same argument using Proposition 2.2 instead
of (1). □
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