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Abstract 
Afghanistan is a country that is exposed to numerous geomorphological hazards such 

as earthquakes, landslides, floods, droughts, avalanches, and man-made disasters. Natural 

disasters such as landslides and floods are among the most common hazards in various parts of 

the country, causing extensive damage to buildings and killing hundreds of people each year. 

Safety and economic problems, instability, ongoing war, and poverty have put Afghanistan 

among the countries that have paid less attention to research. Therefore, it is challenging to 

find a published map or find reports after a disaster to show you the details of a natural disaster 

along with its exact geographical location. Assessing the degree of catastrophes is vital for 

post-disaster efforts and for structural engineers planning and constructing appropriate 

structures to prevent future disasters. Based on this, people would choose to reside in secure 

places instead of vulnerable ones. Because most structures in Afghanistan are created by people 

without any engineering, designs, assessments, or ideas owing to a lack of total government 

oversight and regular urban planning. Considering the concerns described, the relevance of the 

issue, and the scarcity of research in the specified areas in Afghanistan, an attempt was made 

in this study to perform a study on floods and landslides. It was planned to conduct current 

study to investigate without traveling to the impacted region for on-site data collection due to 

acute security issues. As a result, this research focuses on assessing two natural disasters (the 

Abe-Barek landslide and the Charikar flood) utilizing remote sensing analyses. 

Chapter 1 discussed how natural catastrophes, notably floods and landslides, are 

common in many places of Afghanistan. In the background and literature review part, it has 

been demonstrated that, despite being classified as a natural disaster-prone country, 

Afghanistan has less research and knowledge on natural disasters. It has also been discussed 

that how catastrophe assessments are crucial for post-disaster operations and for policymakers 

seeking to prevent future disasters. This chapter also discussed the purpose and research 

problem. 

Chapter 2 discussed the specifics of natural disaster risk in Afghanistan, such as 

earthquakes, floods, landslides, avalanches, and droughts. The availability of risk information 

is critical for effective catastrophe and climate risk management. The risk profile summarizes 

and visualizes the national multi-hazard evaluations. Such data and information will be critical 

for politicians, decision-makers, development planners, and infrastructure investors to create a 
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more resilient future for Afghans. As a result, this chapter addressed the susceptibility map, 

lack of coping skills, lack of adaptive capacities, vulnerability map, population exposure to 

natural disasters, and world risk index as a result of exposure and vulnerability. Furthermore, 

it was also presented that which natural disasters have the greatest impact in terms of 

agricultural losses, property losses, and human losses. 

Chapter 3 presented on the assessment of the Abe-Barek landslide using remote 

sensing analysis. The Abe-Barek landslide occurred on May 2, 2014 in northern parts of 

Afghanistan. Pre-and post-event Digital Elevation Models (DEMs) created from stereo pairs 

of high-resolution satellite images was used to evaluate the extent and the volume of displaced 

material. For obtaining such objectives a nonlinear technique was proposed to accurately align 

the multi-temporal DEMs to decrease the undesired artifacts from identified landslide affected 

areas and finally increase the accuracy of the estimation. The landslide volume was estimated 

as 1.05 × 106 m3 from the corrected DEM of difference (DoD) by the nonlinear method and the 

relationship between the area and volume compared to those of the previous studies were 

discussed. Furthermore, in order to map the damaged region and determine the number of 

impacted people, the remote sensing-based damage assessment was also conducted.  

Chapter 4 proposed a method for identifying and assessment of the Charikar flood. 

Since the Charikar flash flood occurred on August 26, 2020, there have been no high-resolution 

stereo pair satellite data available to use the same approach utilized for the landslide 

identification. A pixel-based spectral index approach which is suitable for assessing flash 

floods using lower resolution data were utilized. Relative Difference Normalized Difference 

Vegetation Index (NDVI) was used in Google Earth Engine with freely accessible medium 

resolution images (Sentinel-2). Also, pre- and post-event NDVIs and NDVI-time series were 

applied to track changes in the study region, and it is found that the NDVI dropped considerably 

after the incident and remained low for two years. The fact that the NDVI levels have not 

changed after two years is clear indication that there is no recovery process, neither given by 

the government nor by the people themselves. A DEM-based flow simulation was also 

conducted to examine the simulation's usefulness in detecting unsafe locations for future flood 

disasters The accuracy was also assessed using the official survey reports and other on-site 

data, such as satellite images. Based on the available data, it is concluded that both 

methodologies were suitable for monitoring, analyzing, and mapping almost all types of 

disasters in the future. 

Chapter 5 concluded the overall result of this study as well as the study's strengths, 

shortcomings, recommendations and future directions. 
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CHAPTER I 

Introduction 

1.1 Background 

Afghanistan is completely a landlocked, dry, multiethnic country located in the heart of 

south-central Asia bounded to the east by Pakistan, to the west by Iran, to the north by the 

central Asian countries of Turkmenistan, Uzbekistan, and Tajikistan (Fig. 1-1). It has also a 

short border with China to the northeast side. The majority of the land (i.e., more than 70 %) 

in Afghanistan is mountains. Most of Afghanistan's land is situated between 600 to 3000 meters 

in elevation (Dupree et al, 2022). The central mountains such as the Hindu Kush mountains 

with 414000 square km are a part of the Himalayan chain that is mainly situated in Afghanistan. 

Some peaks of the Hindu Kush Mountain rise above 6400 meters. Soil quality varies in 

different parts of the country. The central highlands have desert-steppe or meadow-steppe types 

of soil.  

The northern plains have extremely rich, fertile, loess-like soils, while the southwestern 

plateau has infertile desert soils except along the rivers, where alluvial deposits can be found. 

Erosion is much in evidence in the central highlands, especially in the regions affected by 

seasonal monsoons and heavy precipitation. In general, the climate ranges from arid to semi-

arid, with a large temperature difference between altitude and between warm and cold seasons. 

In the mountains the annual mean precipitation increases from west to east; there, as in the 

southeastern monsoon region, it averages about 400 mm. National precipitation extremes have 

been recorded in the Salang Pass of the Hindu Kush, with the highest annual precipitation of 

53 inches 1,350 mm, and in the arid region of Farah in the west, with only 75 mm per year.  

Because of the geophysical location, types of soil, and weather extreme in the country, almost 
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all parts of Afghanistan are very susceptible nearly to all kinds of natural hazards, including 

earthquakes, floods, drought, sandstorms, snow avalanches, and landslides (Shroder, 2014).  

 

Figure 1-1.  Presents the location of Afghanistan and neighboring countries. 

About 30 % of the population in Afghanistan is living in Urban areas (Dupree et al, 

2022). The majority of urban settlements chose to live along the roads from Kabul 

southwestward to Kandahar and Herat, northwest to Mazar-i-Sharif, and northeast to 

Badakhshan. The rural population which is the majority (i.e., 70 %) of the population are living 

as farmers and nomads over the rest of the country which is distributed unevenly along the 

rivers. The most heavily populated part of the country is between the cities of Kabul to 

Charikar, Kabul to Kandahar, and Herat (Dupree et al, 2022). Typical types of buildings in 

urban areas are made of Masonry, precast (i.e., made during the Soviet invasion), RC and RC- 

with shear walls. On the other hand, Rural settlements (i.e., most of them farmers) usually 

sparsely live along valleys of major rivers. The majority of their houses are built from local 

materials (i.e., stone, mud. etc.) by themselves without the help of professionals or any 

engineering designs. Even in most of the cases government or local government does not 
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involve in the whole process of building particularly in rural areas. Because of the poor 

economy, continuous war, and unstable situation, Afghanistan remains among the country with 

fewer surveys, and research about any aspects particularly natural disasters. There is no proper 

urban or rural settlement map or micro zonation map, that shows the natural disaster-prone 

area. Therefore, usually, they don’t have the knowledge to choose a safe place regarding natural 

disasters. Most of the time they are building their houses along the path of floods, or in 

landslide-prone areas. Another reason for unlawful, non-engineered urban sprawl is the rapid 

increase of population after 2001 as a result of mass returning to the country. The rapid increase 

of population in urban areas like Kabul and other major cities was a challenge for the 

government in terms of building shortages. The landlords and local government start selling 

land without a proper urban master plan. As a result of this rapid increase in building 

construction, most of the settlements build their houses in risky areas such as flood and 

landslide-prone areas. 

Landslides (Zhang et al., 2015) and frequent impactful floods (World bank, 2017) are 

among the most widespread natural hazards. Most of the time the so-called hazards pose threat 

to the unlawful weak settlements built from local materials without any proper design and 

hazard assessments. Since 1980, disasters caused by natural hazards have affected 9 million 

people and caused over 20,000 fatalities in the country (World Bank, 2017). Providing natural 

disaster assessments such as landslide assessments and flood mapping assessments is the most 

critical risk information that paves the ground for the government, policymakers, and even 

people themselves. Because having access to risk maps makes the public decide to build their 

house in the proper place and more importantly increases the resilience of future and even 

existing reconstruction to neutral hazards which can save lives and livelihoods. 

It has been clear that the risk related assessment is very advantageous, however 

collecting data in an insecure country like Afghanistan is almost impossible to conduct the on-
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site survey. Hence, taking advantage of remote sensing information is crucial for monitoring 

land use, and land cover change. The advantages of remote sensing include the ability to collect 

information over large spatial areas; characterize concerned features and monitor their changes 

over time, and the ability to integrate this data with other information to aid decision making 

without putting the life of the surveyor at risk. 
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1.2 Literature Review 

1.2.1 Landslide Studies in Remote Sensing 

Landslides induced by heavy rainfalls and earthquakes are among the most common 

geohazard phenomena that frequently occur in mountainous regions, constitute one of the 

major hazards responsible for Interruption and destruction of transport-related structures, 

industrial and hydropower plants, and cause loss of lives worldwide. Recent studies show that 

the number of locations, activity, severity, frequency of landslides, and their social and 

economic impacts are increasing (Dai et al., 2002; Haque et al., 2019; Petley et al., 2005; 

Schuster et al., 2001). As an example, between 2004 and 2010, 2,620 deadly landslides 

occurred, bringing the lives of 32,322 people to an end. Likewise, the result of a published 

report by the International Federation of Red Cross and Red Crescent Societies (IFRCRCS, 

2001) shows that 42 % of the natural hazards related incidents are triggered by landslides, 

which annually account for millions to billions of U.S. dollars in economic losses in three 

countries like Canada, Nepal, and Sweden alone. Wenchuan landslides occurred in Sichuan, 

China, and were one of the deadliest landslides which led 2,000 people to death (Yin et al., 

2009).  

Afghanistan is considered a country prone to several geomorphological hazards such 

as earthquakes, landslides, flooding, drought, avalanches, and man-made disasters. 

Geomorphic hazards are a notable feature in Afghanistan that kills dozens every year along 

with other burdens coming from deadly insecurity, unsustainable economy, crippling poverty, 

and chronic health problems. Safety and economic problems made Afghanistan among the 

countries with only a little research on landslides. Therefore, the exact location and number of 

landslides prone areas all over the country have not been specified yet, but as per records of 

the United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA, 2020) Of 

all-natural disasters reported in Afghanistan between 2012 and 2020, landslides accounts for 
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only 6.77% of total natural hazard events which 30.33 % of all Geohazards related deaths being 

attributed to landslides. Of all recorded (UNOCHA, 2020) landslides in the country between 

2012 to 2020, 41.8% occurred in Badakhshan, and surprisingly, landslide events in Badakhshan 

account for 16.25% of all-natural disaster incidents (UNOCHA, 2020). It accounts for 53.6% 

of all recorded landslide-related deaths in Afghanistan. As reported by (Gupta, 2010) 

Badakhshan province is Identified as a high-priority province due to its greater susceptibility 

to landslides. 

Furthermore, (Shroder, 2011a) examined 22 mass movements in northeast Afghanistan and 

recognized them as loess landslides after due consideration and analysis. A similar study 

(Shroder, 2011b) found 34 large-scale loess slope failures on the north, west, and northwest 

slopes of Badakhshan. According to (UNCHA, 2020) From 2012 to 2020, more than 14 

thousand individuals were affected by Landslide hazards in Badakhshan province alone, and 

as reported by (Gupta, 2010) Badakhshan province is a high priority province due to its greater 

susceptibility to the landslide. The majority of Afghanistan's land is covered by mountains. 

Hence, due to the insufficient flat area in most of the cities, people constructed their houses 

along the hills. For instance, Abi-Barek is one of the districts, located in a suburb area that can 

be counted as a landslide-prone area surrounded by steep slope mountains. A massive landslide 

occurred on May 2, 2014, in the Abe-Barek area buried all houses with their owners along its 

path and affected thousands of people and had a considerable impact on the fragile economy 

of Afghanistan. 

Badakhshan province's high susceptibility to landslides led us to conduct a study on one 

of the occurred landslide events areas using remote sensing. In this research, the attention 

spotlight is on the Abe-Barek landslide incident which occurred on May 2, 2014, in 

Badakhshan, Afghanistan, and bring great international attention due to its large dimensions 

and catastrophic damage. In accordance with United Nations Institute for Training and 
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Research (UNITAR/UNOSAT, 2014; Zhang et al., 2015) the death toll ranges from 300 to 

more than 2700. Based on an initial comparison of high-resolution worldView-2 satellite 

imagery of pre-and post-event a total of 87 structures were buried by a mass of soil 

(UNITAR/UNOSAT, 2014; Zhang et al., 2015). Moreover (UNITAR/UNOSAT, 2014) after 

investigation and comparison of different areal images conclude that in the same area 

previously mass movements occurred and are highly likely to occur again.  Zhang et al., (2015) 

conducted landslide susceptibility assessments in Abe-Barek landslide affected area using a 

low-resolution of 90m SRTM elevation data and DEM derivatives with great limitation of 

lacking landslide inventory data. 

In order to prepare a suitable response to landslides, various slope reinforcement 

structures, such as retaining walls, anti-sliding piles, and anchor cables have been commonly 

used. Knowing the volume of deformed soil is a key index to knowing the magnitude of a 

landslide, conducting accurate design of slope reinforcement structures, analyzing and evaluate 

accurately the risk assessments, and predicting the secondary risks triggered by landslides. 

Compared to calculating the area of a landslide, which is usually easily determined by aerial 

imagery, quantifying the volume of specified landslides is a challenging task and requires 

detailed information on the surface and sub-surface geometry profile of the deformed soil 

(Malamud et al., 2004; Chen et al., 2014; Chen et al., 2019) 

There are several methods available that can be used to quantify the displaced soil 

volume. In some studies, the landslide volume was calculated using combined algebraical 

approaches (e.g., Integral approximation methods,) in situ profile surveying approaches, and 

geophysical or drilling techniques (Chen et al., 2014; Chen et al., 2019). In some other studies, 

the volume of landslides was obtained using statistical approaches (Brunetti et al., 2009; 

Kovacs et al., 2019; Xu et al., 2016; Zekkos et al., 2017; Larsen et al., 2010). Several studies 

thus far have claimed that there is a strong relationship between total failure area with the 



8 
 

relevant volume of landslides (Malamud et al., 2004; Guzzetti et al., 2009; Larsen et al., 2010) 

conventional surveying methods are not suitable for large landslide areas ( Kovacs et al., 2019) 

because in case of urgent hazard assessments it takes considerable time and is not budget-

friendly. Another method of quantifying the volume of a landslide material that is the preferred 

method for this study is remote sensing (e.g. aerial photo surveying, LiDAR, and InSAR 

techniques) which can provide large-scale data, covering extensive areas. It gives the scientist 

ability to collect information and images of the Earth's land to characterize the natural features 

or physical objects on the ground; to observe surface areas and objects on a systematic basis 

and monitor their changes over time; and the ability to integrate this data with other information 

to ease the decision-making with urgent support and rescue operation. A general overview of 

remote sensing techniques for landslide studies and their beneficial service to society has been 

widely presented (Scaioni et al., 2014). The increasing availability of satellite data, high 

efficiency, enhanced performance, great accuracy of the computational process, and 

appropriate output of remote sensing tools led researchers to take advantage of it with greater 

reason. Thus, every day there is the development of fresh methodologies in numerous sectors, 

particularly in the study of landslides. Furthermore, Remote sensing techniques provide a 

potentially low-cost alternative to field-based assessment, monitoring, early investigation, and 

remedial work planning for different disasters, especially landslides.  

In order to quantify the volumes of a displaced material, identifying the location of 

slope failure is very crucial. identification of a landslide area is commonly performed by 

utilizing change detection techniques on remote sensing images. Identifying the significant 

change in a set of images of the same location captured at different time frames is defined as a 

change detection technique (Singh, 1989; Asokan et al., 2019). Numerous change detection 

techniques have been introduced, among all, the image differencing (Sohl,  1999), DEMs of 

difference (Williams, 2012), Normalized difference vegetation index (NDVI)  (Ghandhi et al., 
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2015; Miura, 2019), principal component analysis  (Fauvel et al., 2009; Sabokbar et al., 2014), 

post-classification comparison (Rogan et al., 2004), spectral mixture analysis (Somers et al., 

2011) and artificial neural networks (ANN) (Lei et al., 2019; Ermini et al., 2005; Yilmaz et al, 

2009; Mas et al., 2008) become more prominent techniques. A difference of elevation between 

pre-and post-event DEMs (DEMs of difference: DoD) has been used to identify the location of 

the affected areas and quantify the displaced soil volume (Tsutsui et al., 2007; Martha et al., 

2010; Miura, 2019; Lin et al., 2020). Among various remote sensing data sources, the light 

detection and ranging (LiDAR) technique can produce a reliable estimate of morphological 

change (Jaboyedoff et al., 2012). However, LiDAR observations have been rarely conducted 

in remote areas such as the Abe Barek area. The satellite image-based approach is more feasible 

to assess the natural disasters in such remote areas. DEM can be created from a stereo analysis 

of multiple satellite images with different off-nadir angles. In the case that a set of high-

resolution stereo pair satellite images is available before and after the disaster, the DoD analysis 

can be performed by developing pre-and post-event DEMs. 

In order to quantify landslide volumes from DoD, the geometries of the obtained DEMs 

need to be registered accurately. However, the DEM errors of height values are found in many 

cases, even when the data is geometrically registered. Previous studies revealed that the 

uncertainty, including registration-noise or locational errors in multi-temporal DEMs, would 

cause the miscalculation of soil volumes(Chen et al., 2014; Hsieh et al., 2016). These errors 

arise from many factors such as the quality of original data, interpolation algorithm, projection 

method during the DEM creation process, etc. (Ostrowski et al., 1989). The horizontal 

misregistration between DEMs would be one of the major causes of the uncertainty in the DoD 

analysis. 

Various researches have given special attention to the development of advanced 

registration techniques not only for aerial images (Foseca et al., 1996; Le Moigne et al., 2002; 
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Sarvaiya et al., 2011) but also for multi-temporal DEMs(Chen et al., 2014; Hirakawa, 2006; 

Miura, 2015; Jaboyedoff et al., 2012)  addressed the use of ground control points (GCPs) to 

refine the generic sensor’s orientations. The collection of GCPs is time-consuming in an urgent 

time of disaster. Chen et al. (2014) proposed a mass balance model to accurately correct two 

DEMs and quantify the landslide’s accumulated volume. However, the mass balance 

calculation would be difficult in affected areas where collapsed soils flowed into buildings and 

the downstream rivers. Hirakawa (2006) also proposed an optimization-based method to 

automatically correct the geometrical errors in multi-temporal LiDAR-derived DEMs by 

assuming unique linear errors throughout the area of concern. It would be difficult to correct 

the geometries of the DEMs when substantial nonlinear distortions are found in the area of 

interest. Those previous studies indicate that misregistration caused by nonlinear distortions in 

multi-temporal DEMs still remains an open problem. Miura, (2015) presented a nonlinear 

mapping technique for reducing horizontal locational errors between LiDAR-derived DEMs 

and estimating the displaced volumes of debris flows. However, the applicability of the 

technique for a landslide in satellite image-derived DEMs, and the parameter selections in the 

technique were not fully discussed in the previous study (Miura, 2015). 

In current study, the proposed methodology from (Miura, 2015) has been followed to 

present the nonlinear mapping technique’s applicability in reducing the registration noise of 

the multi-temporal DEMs to estimate the volume of the Abe Barek landslide. A set of high-

resolution DEMs generated from stereo pair satellite images was analyzed. The nonlinear 

mapping technique was applied for reducing the nonlinear distortions in the DEMs. Unlike the 

previous work (Miura, 2015), here in this study, particular attention was given to illustrating 

the efficacy of the method using both statistical approaches and profile cross-sections. The 

volume of the landslide was estimated from the DoD corrected by the nonlinear technique. 
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1.2.2 Flood Studies in Remote Sensing 

Flooding is one of the most destructive and recurring natural hazards on the planet. It 

causes catastrophic damage and threats to life, property, and cultural heritage. Floods affect 

more people than any other sort of weather-related disaster and are a leading cause of natural 

disaster fatalities worldwide (UNISDR, 2015). It is triggered by natural factors such as heavy 

rainfall, overflowing of water onto dry land in the floodplain, rapid melting of snow, and the 

failure of man-made structures such as dams and levees. Floods have had significant impacts 

on the human economy, as well as indirect effects on economic growth and societal well-being. 

Floods disproportionately have high impacts on the poorest and most vulnerable people 

(Freebairn et al, 2020). Afghanistan is vulnerable to a variety of hazards, including earthquakes, 

flooding, drought, avalanches, and man-made calamities (Atefi and Miura, 2021). Due to safety 

and economic concerns, there is virtually little emphasis on research. As a result, very little 

research has been conducted on natural catastrophes, particularly flood disasters. Of all the 

reported natural catastrophes in 2020, floods directly affected about 50,000 individuals in 

Afghanistan (IFRCa, 2021) More than 3,000 people were severely affected by the flood in 

Charikar, Parwan province, during the same year (IFRCb, 2021). A destructive flash flood 

ravaged Charikar city on August 26, 2020, severely damaging the residential area and killing 

hundreds of people. Nevertheless, very few studies have been conducted to explore and identify 

the flood-affected areas in Charikar. Consequently, the precise location of flood-inundated 

places, as well as the degree of flood damage area, remains unknown to this day.  

Although flood control is a tough task, minimizing the consequences is a viable, 

necessary, and smart option (Khosravi et al, 2019; Mius et al, 2015; Wu et al, 2017; Zaji et al, 

2018). It is never easy to figure out and choose the ideal strategy and policy to deal with floods. 

However, it is possible to reduce these losses and dangers by notifying the public ahead of time 

and providing credible information, as well as providing proper flood mapping of flood-prone 
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areas that are experiencing the most severe floods. Flood maps prepared in flood-prone areas 

utilizing remotely sensed data are very safe, economical, and timesaving, and they play a 

significant role in predicting, preparing, preventing, and mitigating flood damage. 

Furthermore, flood monitoring with satellite imagery has the advantage of covering a vast area 

and being reasonably quick to collect and analyze data. Researchers often benefit from the 

availability of both optical and radar remotely sensed imagery data for flood monitoring and 

mitigation methods. The Charikar event was a flash flood caused by severe rainfall that swept 

downward from the top of the mountain. Since no water has accumulated downstream for a 

long period, employing optical satellite photos is considered ideal. As a result, in this study, 

uses optical satellite data to assess flood inundated sites in Charikar.  

Several approaches and methodologies based on pixel and object-oriented methods can 

be used to detect water using optical satellite data, including supervised and unsupervised 

classification methods; transformation of spectral channels; texture analysis; visual 

interpretation; single channel thresholding; and channel ratio use. In this approach, water 

indicators are extremely beneficial. Their implementation is contingent on the formulation of 

a threshold value that differentiates water pixels from those representing other forms of land 

cover.  

Several approaches for extracting water bodies from remotely sensed data have been 

developed by researchers. (McFreeters, 1996) proposed the Normalized Difference Water 

Index (NDWI) to detect water features from Landsat TM using band 2 and band 4. (Rogers et 

al, 2004) introduced a new NDWI for extracting water from Landsat TM utilizing bands 3 and 

5. To extract surface water bodies from raw digital Landsat data, (McFreeters, 1996) proposed 

a threshold value of zero, with all positive NDWI values categorized as water and negative 

values classed as non-water. This threshold, on the other hand, makes it impossible to 

distinguish between built-up surfaces and water pixels. As a result, (Xu, 2006) developed the 
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Modified Normalized Difference Water (MNDWI) using Landsat TM bands 2 and 5. When 

compared to other indicators, the MNDWI indicator has a stronger ability to reduce 

disturbances generated by buildings, vegetation, and soils (Xu, 2006). (Feyisa et al, 2014) 

developed the Automated Water Extraction Index (AWEI) to increase the accuracy of water 

extraction in locations containing shadows and dark surfaces. The MNDWI has been used to 

create a simple Enhanced Water Index (EWI) by (Wang et al, 2014). Water surfaces can be 

identified from background information such as deserts, soil, and vegetation. For the extraction 

of surface water from Landsat data, (Rokni et al, 2014) examined the characteristics of NDWI, 

MNDWI, NDMI, WRI, NDVI, and AWEI in applying a novel surface water change detection 

process based on the principal components of multi-temporal NDWI. Surface water was 

retrieved from the indices using a trial-and-error thresholding methodology. The overall 

accuracy and kappa coefficient were used to examine the efficacy of each water body extraction 

procedure, and NDWI was found to outperform other measures. These indices have also been 

used in a multitude of scenarios, such as surface water mapping (Feyisa et al, 2014; Duan et al, 

2013), land use and land cover change assessments (Dayranche et al, 2010), and ecological 

research (Poulin et al, 2010). 

Numerous researchers have utilized the Normalized Difference Vegetation Index 

(NDVI) to detect land cover change since the NDVI shows positive values for vegetation, 

values close to zero for bare soil, and negative values for water (Huete et al, 1997; Escuin et 

al, 2008; Sidi et al, 2020). Many studies show that AWEI and MNDWI achieved better results 

and more stable thresholds than the NDVI index (Huang et al, 2018). However, these indices 

are frequently used by the researchers to extract water bodies such as lakes, canals, waterways, 

ponds, and so on. Unlike current study, they never employed the so-called spectral indices in 

flash flood scenarios where there is no standing water except the damaged area as a result of 

the flood. 
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Although modern satellites have provided a superior solution over traditional methods in 

monitoring water surfaces, manually downloading and processing imagery associated with 

large study areas or long-term time scales is time-consuming. Most of the traditional methods 

are not straightforward, which makes them technically challenging for the user to apply 

because the extra procedures like preprocessing (DeVries et al, 2020).  

Google Earth Engine (GEE), a planetary-scale platform for earth science data and analysis 

developed by Google, has been utilized in this study for applying the NDVI technique 

developed in (Scheip et al, 2021). The GEE has enabled the development of global-scale 

products, tools, and services using temporal earth observation data such as Sentinel-2. The GEE 

platform provides a fast-forward solution for these kinds of big data problems. The GEE has 

been used to conduct various global and regional scale studies, including regional land cover 

mapping (Saah et al, 2019), surface water mapping (Phongsapan et al, 2019), accessing food 

security situations (Poortinga et al, 2019), settlement and population mapping (Patel et al, 

2014), and other applications (Mutanga et al, 2019). Hazard Mapper is an open-access 

application developed in the GEE (Scheip et al, 2021) and has been used in many case studies 

and in different countries to delineate different kinds of natural hazards, including floods. 

Although the model's original developer (Scheip et al, 2021) never used it to estimate floods in 

non-vegetated environments such as high altitudes or semi-arid to arid regions, this research is 

looking into it to see if it can be used to locate flood inundated areas in non-vegetated, data-

scarce regions in Afghanistan. The flood in Charikar was most likely caused by torrential rain, 

which caused enormous stones and debris to slide along the path of the stream channel, which 

was blocked by residential residences, resulting in devastating debris flows that ruined homes, 

infrastructure, and properties. There were no reports of water accumulation during or after the 

flood event, indicating that the water was moving extremely quickly along the valley from 

uphill to the flat areas of the mountain. In this study, the GEE was used to automatically identify 
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Charikar flash flood flooded areas using a change detection method based on pre- and post-

event NDVIs in optical satellite Sentinel-2 pictures. The detected inundation area's accuracy 

has been evaluated and compared with flood maps derived from visual image interpretations 

and government reports. Furthermore, the NDVI time series has also been used to measure 

changes in NDVIs two years after the event date to follow the recovery process in the affected 

area. Moreover, a digital elevation model (DEM) has been also used to examine flow path 

assessment of gravitational hazards at a regional scale (Horton et al, 2013) in order to assess 

the feasibility of the simulation technique for finding and predicting vulnerable regions in 

future flood occurrences. 

1.3 Problem Statement  

 Slope instability and flood issues are the problems that have to be prioritized for finding 

a solution to decrease the risk at a tolerable level either by using effective engineering 

techniques or other effective measures. A budget-friendly way to help decrease the impact of 

landslides and floods is to identify, assess and develop methods to rapidly can detect in an 

emergency period of hazards. Assessments of floods and landslides can be possible through 

on-site surveys and remote sensing. However, remote sensing analysis is safer in terms of 

securing and faster in terms of efficiency. The assessments of floods and landslides using 

efficient remote sensing techniques has also been presented. However, there is the following 

problem applying remotely sensed data: 

1. In order to make sure that, landslide and flood assessment analysis is being done 

properly, it needs to be precisely compared and confirm with field data. In order to carry 

out such validation analysis; it is necessary to have both precise and sufficient GCP 

(Ground control points) of the study area. GCP collection can be done by in-situ 

surveying. Surveying in an unsafe country like Afghanistan is not recommendable. To 

solve this problem, a method has been proposed that answers the problem very well. 
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2. Availability of data in remote sensing analysis for a specific study area is crucial. There 

is very less high-resolution satellite imagery available during the landslide time which 

occurred in Abe-Barek. The available data was also not observed by one satellite. This 

is also a challenge because two satellite images with different sensors and resolutions 

cannot be directly used for the analysis.  

3. As stated earlier, for landslide analysis a methodology is proposed that only could be 

applied with the high-resolution stereo pair satellite imagery. On the other hand, for 

flood analysis, high-resolution satellite imagery was unavailable to carry out the same 

methodology as conducted in landslide analysis. Therefore, for the freely available 

medium resolution satellite image, different methodology was proposed. 

Concerning all the mentioned problems, it becomes the purpose to come up with methods that 

fit very well by performing remote sensing analysis. To do this, understanding knowledge of 

the engineering characteristic of each problem is vital.  
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1.4 Research Objectives 

The aim of the study is set to fulfill the following objectives from two case studies: 

1. The objectives of Abe-Barek landslide assessment analysis are as follows: 

 Applicability of nonlinear mapping technique on minimizing geometric errors 

 Validation of nonlinear mapping algorithm by comparison of several 

descriptive and graphical parameters. 

 Landslide detection and volume estimation by using corrected DEM based on a 

nonlinear mapping method.  

 Validation and comparison of the obtained volume of displaced material with 

previous studies. 

 Landslide hazard assessments to determine the number of affected houses. 

2. The objectives of the Charikar flood assessment analysis are as follows: 

 Using Sentinel-2 images in Google Earth Engine to automatically identify the 

Charikar flash flood inundated area.  

 Rapid mapping of the flood soon after the event with fewer post-event images. 

 To detect and estimate the area of flood inundated area with freely available low-

resolution satellite imagery. 

 Evaluate the performance of the relative normalized vegetation index using the 

google earth engine on flash floods that occurred in non-vegetated environments. 

 Accuracy assessment of the method  

To fulfill the above objectives following computer-based software is used: 

 Fortran 77 code-oriented program. 

 Google Earth Engine (GEE), a JavaScript API-based program. 

 QGIS 

 ENVI 
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1.5 Organization of the Dissertation 

This dissertation is comprised of 5 chapters. The contents of each chapter are briefly 

summarized as follows: 

1. Chapter 1 provides a general context of the study including background, problem 

statement, and research objectives. 

2. Chapter 2 is covering an overview of the natural disaster such as floods, 

earthquake, ladslide, snow avalanches, and droughts in Afghanistan. 

3. Chapter 3 this chapter is focusing on the assessment of landslide using nonlinear 

mapping technique. This chapter contains a detailed explanation regarding, 

acquiring satellite data, features of the obtained data, DEM extraction, alignment of 

the DEMs, detailed explanation of non-linear mapping methodology, analysis of 

Abe-barek landslide, its applicability, estimation of the landslide area and volume 

using remotely sensed data. Moreover, it covers a comparison between previously 

landslide volume estimation and the current study.  

4. Chapter 4 This chapter covers the assessment of flood using rdNDVI. This chapter 

covers the details regarding, acquiring satellite data, features of the obtained data, 

DEM acquisition, detailed explanation of spectral indices, relative Normalized 

difference Vegetation Index methodology using Google Earth Engine, its 

applicability, propagation of flood debris mapping in the study area, estimation of 

the landslide area using remotely sensed data. Moreover, it covers a comparison 

accuracy assessment using visual interpretation and government survey reports. 

5.  Chapter 5 gives information about the general conclusion and future work of this 

study. 
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Figure 1-2.  Outline of the dissertation. 
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CHAPTER II 

Natural Disaster in Afghanistan 

2.1 Introduction 

Afghanistan with complex topography, and varying climate conditions with highly 

fluctuating temperatures between warm and cold in all seasons, is highly prone to a variety of 

natural hazards (UNDRR, 2020). Exposure of people and assets to natural disasters has been 

increased due to political instability, war, weak institution, less control of the government on 

rapid urbanization, and poor planning in the country along with the Covid-19 pandemic and 

insufficient investment in disaster risk reduction strategies further contributed to increasing the 

frequency and severity of various natural disasters. Based on World Risk Report (2021) 

Afghanistan is ranked third for the lowest coping capacity, among highest vulnerability, and 

stands among the countries with a high lack of adaptive capacity (Fig.2-1). It indicates that any 

small shock or disaster can easily cause loss of life and properties due to high vulnerability and 

low coping capacity. Also, Afghanistan ranked second place in terms of natural disaster-related 

fatalities between 1980-2015. Moreover, in Afghanistan, about 9 million people have been 

affected and 20000 has been lost their life since 1980 by natural disasters from which floods 

are the most frequent and damage-causing hazard in the country (World Bank, 2017). Intense 

rainfall, rapid snow melting, and less vegetation coverage of land in mountainous areas mainly 

contribute to flood inundation, and urban flooding is mostly a problem in major cities such as 

Kabul, Mazar-i-Sharif, and Herat due to poor drainage systems (World Bank, 2017). 

Afghanistan is also highly vulnerable to earthquakes. It is among the 10 % of countries with 

the highest expected annual earthquake mortality risk. (Shi, et al, 2015). The history of 

devastating earthquakes in the country ranges more than 4000 years (Boyed et al, 2007). Of 

all-natural disasters, historically most of the fatalities occurred in the earthquake. Since 1980 
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more than 10000 people have lost their lives because of earthquakes. (World Bank, 2017). 

From 1997 to 2007 earthquake-related death has been reported for 7000 people, from which 

4000 people died in the Nahrin earthquake in May 1998 (Boyed et al, 2007). As per reports of 

the world bank, 2017 on average earthquakes cause 80 million US dollars in damages on 

average annually in Afghanistan. 

Furthermore, in Afghanistan with a mountain dominant landscape, landslide 

susceptibility is classified as high. Having heavy rainfall patterns, high slope terrain, type of 

geology, soil, land cover, and more importantly earthquakes make the landslide event a 

frequent hazard phenomenon. Based on (DRR & World Bank, 2017) over 3 million people in 

Afghanistan are under high exposure to landslide hazards. As per records of the United Nations 

Office for the Coordination of Humanitarian Affairs (OCHA, 2020) from all reported natural 

disasters in Afghanistan between 2010 and 2017, landslides only account for 3.6% which 

makes 16.8% of all Geohazards related deaths. As reported by (Gupta, M.,2010) Badakhshan 

and with other three northern provinces are identified as high priority provinces due to their 

greater susceptibility to landslides. Drought is also threatening the lives of nearly three million 

Afghans (NRC, 2021). Severe weather, including heavy rain and snow falls, has been affecting 

the central, northern, and northeastern provinces of Afghanistan causing casualties and 

damage. Avalanches frequently happen almost every year and are triggered after a heavy 

snowstorm and long-term snowfalls. According to the (World Bank, 2017) reports over two 

million people are under high threat of avalanches in Afghanistan. Avalanches most often 

happen in northern parts of the country. The 2017 avalanches were a series of avalanches that 

occurred in different parts of the country and reportedly killed 100 people (BBC News, 2017). 

The DRRR estimates show that more than 10000 km of roads which is more than 15 % of all 

roads in Afghanistan are under high exposure to avalanches, it contains the key transport route 
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such as the Salang pass which connect the northern province to Capital Kabul. (DRP & world 

bank, 2017). 

 

Figure 2-1. World disaster-related maps, a) susceptibility map b) lack of coping capacities c) lack of 

adaptive capacities d) vulnerability map e) exposure of the population to the natural hazards; f) world 

risk index as a result of exposure and vulnerability (WorldRiskReport, 2021) 

 

Based on report of (OCHA, 2022), from January 2012 to May 2022, 1.6 million people were 

affected by natural disasters throughout Afghanistan. A total of 13 provinces out of 34 

experienced some kind of natural disaster during the period (Fig. 2-2). Among all the natural 

disaster flood and flash flood seems to be more frequent. (Fig.2-2). On average the so-called 

disasters affect 40000 people every year. 
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This chapter will cover four main frequent natural disasters in Afghanistan such as floods, 

landslides, earthquakes, avalanches, and droughts in detail: 

 

 

Figure 2-2.  Presents number of affected people from different types of natural disaster from 2012 to 

2022 (UNDATA). 
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2.2. Floods 

Flood and flash flood are the most frequent types of natural disaster which happening 

in different parts of Afghanistan and causing loss of life and properties. As can be seen in Fig. 

2-3 almost all parts of the country including urban areas and countryside areas are flood prone 

areas. However, flood impact on population is comparatively low on flat areas compared to the 

mountainous areas. The main cause of flood in rivers mainly occurs due to the heavy rainfall 

and snow and glaciers melt. It is noteworthy to mention that lack of vegetation and contributes 

to the occurrence of flooding. Flooding in urban areas is typically triggered by intense local 

rainfall and lack of drainage systems. Floods in Afghanistan cause more deaths than other 

countries due to low socio-economic development, lack of awareness, lack of coping 

mechanisms and lack of protection capacities . 

 

Figure 2-3.  Presents the flood prone areas across all Afghanistan. (World Bank, 2017). 
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Figure 2-4 presents the flood hazard map of all Afghanistan. As can be seen in Fig 2-4 Kabul 

with high density of population has most affected population because of floods. In Kunar 

Province flood has high impact on population and GDP. 

 

Figure 2-4. GDP and Population exposure to floods. (Data from World Bank, 2017) 
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2.2.1 Flood Risk and its impact on assets in Afghanistan 

The exposure assessment of assets for floods provides essential information about the 

assets, which are located in the flood hazard prone areas. The information created from the 

assessment are important and useful to and policy makers as basis for plans and interventions 

on preparedness, early warning, response recovery, and mitigation. In Afghanistan floods, 

primarily affecting people, private buildings, roads, healthcare facilities, education related 

buildings and facilities, and energy related facilities (Fig. 2-5). In Afghanistan floods, primarily 

affecting people, private buildings, roads, healthcare facilities, education related buildings and 

facilities, and energy related facilities. Moreover, from Fig. 2-5 it clearly can be noticed that 

the cities with largest densities of any assets having more exposure to the flood. 

 

 

Figure 2-5.  Presents the distribution of assets and its exposure to the flood across all Afghanistan. 

(World Bank, 2017) 
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For example, Kabul province with highest population density has the highest exposure of the 

population to the flood. The percentage of population exposed to flood ranges from 8 to 15 

percent. Likewise, private buildings, roads healthcare and education related buildings are 

found to be exposed in flood prone areas. 
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2.2.2. Recommendations 

As discussed, floods frequently occurring in different parts of the country causing 

significant damage and has the potential to disrupt the livelihood throughout the country. 

There are various flood risk management methods that can reduce the impacts they can cause. 

 Flood risk-reduction measures particularly building infrastructure like strengthening 

dikes and retrofitting buildings would help improve the flood protection in cities and 

rural areas. 

 Avoid constructing houses in floodplains and flood prone areas as much as possible. 

 Because of lack of government control on urban planning and building construction 

majority of the buildings are being built in riverbanks and flood plains. Increasing the 

natural space along the riverbanks would help reduce the occurring of flood from 

rising of the river water. 

 Lack of drainage system in all Afghanistan including big cities like Kabul, Mazar-i- 

Sharif. etc., cause blockage of rainwater. 

 Preparing flood inundation maps will prevent people not to construct public and 

private property in flood prone areas. 
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2.3. Earthquake 

Afghanistan is located in a tectonically active region of the world. Each year 

Afghanistan experience moderate to strong earthquakes, causing massive human casualties, 

loss of life and damages to homes and infrastructure because many dwellings are not as stable 

or well-built. Afghanistan situated between Indian and Eurasian plates Fig 2-6, which area 

moving upward and downward direction respectively.  

 

Figure 2-6.  Presents the geotectonic plates inside and beyond Afghanistan’s border, which as a result 

may cause major earthquake in Afghanistan and surrounding countries.  
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If a modern deformation continues in the so-called region, moderate- to- large magnitude are 

occurring. As a result, the earthquake will cause massive damage, not just from ground shaking 

and ground surface fault rupture, but also triggering liquefaction and extensive landslide as 

occurred in Kashmir (Harp et al. 2006). Among all active faults in Afghanistan Hindu Kush-

Pamir region the most active because it is intersected by network of faults that have different 

orientation and direction of movement. Fig 2-7.  

Figure 2-7.  Presents the active faults inside Afghanistan (USGS) Modified from Wheeler et al. 

(2005). 

Large number of earthquakes in Afghanistan is triggered by Indian plates which is 

moving northward beneath Eurasian plate at speed of 3-4 cm/year (Fig. 2-6). This collision 

make the Himalayan, Hindu Kush, and Pamir Mountains uplifted. As a result of this activity 

majority of the historical earthquakes happing northern parts of the country. Figure 2-8 clearly 

illustrates that the distribution of historical earthquakes mostly occurred in Hindu Kush-Pamir 
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region and gives and insight that future earthquake most likely to happen more and more 

because those areas under large stresses that cause slip on faults.  

Figure 2-8.  This map indicates all the earthquakes recorded in the period between 1971 until first 

Oct. 2017(IMMAP - E. Hagen, 2017). 

 
Table 2-1. Shows the recorded number of earthquakes, magnitude in Afghanistan from 1971 to 2017 

(U.S Geological Survey earthquake program, 2017). 

 Number of Earthquakes (magnitude) 
Period 3-4.9 5-5.9 6-6.9 7-7.9 Total 

1971-1979 763 144 17 1 925 
1980-1989 1258 140 14 2 1,414 
1990-1999 2,181 178 26 3 2,388 
2000-2009 3,800 176 21 1 3,998 
2010-2017 1,750 122 5 3 1,880 

Total 9,752 760 83 10 10,605 
 

Historically many earthquakes struck Afghanistan with magnitude larger than 6 as 

shown in Table 2-1 which caused huge injuries, loss of life and damages to the properties. 
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Figure 2-9 presents the earthquakes’ magnitude and depth between 2015 to 2022. In 2015 an 

earthquake which is recorded in USGS with magnitude 7.5 Mw (Fig 2-9) caused nearly loss of 

400 people, more than 2500 injuries, and more than 36000 houses were damage, and 7000 

houses were totally destroyed. (IFRC, 2015). The shake impact was felt beyond Afghanistan’s 

border as damages and casualties have been reported in the western part of Pakistan while 

minor damage occurred in India. (OCHA, 2015). 

 

Figure 2-9. Illustrates the recorded magnitudes and depth of the earthquake from 2015 to 2022 

(USGS, 2022).  
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2.3.1 Earthquake Risk and its impact on assets in Afghanistan 

Afghanistan is struck by moderate to strong earthquakes, causing huge damage and loss 

of life. Based on report (World Bank, 2017) earthquake has been caused the greatest numbers 

of deaths since 1900. As discussed north and north-eastern parts of the country is under high 

risk of earthquake hazards. Particularly most of the earthquake record was observed along the 

borders with Tajikistan, Uzbekistan, and Pakistan. Based on reports (World Bank, 2017) 

10,000 people were killed since 1990 as a result of earthquake. As shown in Fig. 2-10 Kabul, 

capital of Afghanistan is under high risk due to its location in earthquake prone area and the 

concentration of assets. So far Kabul has the highest average estimated damage compared to 

all regions in Afghanistan. (World Bank, 2017). Figure 2-10 presents the people and GDP 

exposure to the earthquakes.  

Figure 2-10. Population and GDP exposure to earthquake in Afghanistan. (World Bank, 2017) 
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Based on a study conducted by (World Bank, 2017) an earthquake with high magnitude 

in Kabul highly likely cause approximately more than 8000 deaths and over $500 million in 

damages, due to high concentration of population and GDP. 

The exposure assessment of essential assets is presented in Fig 2-11, it shows the 

location where each asset intersects with these hazards, and the vulnerability of those assets. 

This map is produced based on historical records of earthquakes which on the other hand 

illustrates the location of earthquake hazard prone areas. The information created from the 

assessment are important and useful for policy makers as basis for plans and interventions on 

preparedness, early warning, response recovery, and mitigation. In Afghanistan earthquakes, 

primarily affecting people, private buildings, roads, healthcare facilities, education related 

buildings and facilities, and energy related facilities as shown in (Fig. 2-11). The impacts of 

earthquake on each asset are different, it is mostly depending on the characteristics of the assets. 

Moreover, from Fig. 2-11 it clearly can be noticed that the cities which is susceptible to the 

earthquake and having high concentration of any assets having more exposure to the 

earthquake. 
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Figure 2-11. Presents the distribution of assets and its exposure to the Earthquake across all 

Afghanistan. (World bank, 2017). 
 

As can be seen in Fig 2-11, north and north-eastern parts of the country’s assets are under 

high exposure. Particularly, Kabul province with highest population density has the highest 

exposure of the population to the earthquakes. The percentage of population exposed to 

earthquake ranges from 0 to 0.15 percent. Likewise, private buildings, roads healthcare and 

education related buildings are found to be exposed to earthquake and percentage of exposure 

is shown in Figure 2-11. 
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2.3.2. Recommendations 

As mentioned north and north-eastern part of Afghanistan suffers from one of the 

highest earthquake rates in Afghanistan. The proximity of the boundary between the Indian 

and Eurasian tectonic plates means that there is a lot of seismic activity going on almost 

constantly. Most of these earthquakes go unnoticed, but every now and then a larger scale 

quake hits the area and the impacts of it can be felt for a long time afterwards. Constructing 

new structures based on updated seismic design code, retrofitting existing building can reduce 

the building collapse and fatalities from earthquake significantly. Moreover, lack of 

consciousness also play an important role in high rate of fatalities due to earthquake. Therefore, 

learning some basic earthquake safety tips can help reduce the death tolls considerably. 
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2.4. Landslide 

Due the mountainous terrain, unstable soil, heavy rainfall, frequent earthquakes more 

than 60 % of land in Afghanistan, from the northeast to the western region are susceptible to 

landslides. Lack of landslide hazard maps and lack of consciousness of the people make them 

to build their houses in susceptible places which leads loss of life and properties. In Fig 2-12 

exposure of two categories of assets are illustrated. The intersection of hazard and exposed 

datasets has been carried out by using landslide susceptibility maps produced at the national 

level (Afghanistan-MHRA, 2017). As can be seen in Fig 2-12 in province such as Badakhshan, 

Nuristan, Daikundi, and Ghor large number of people exposed to landslide. Similarly, in 

Badakhshan, Takhar, and Ghor province large numbers of assets values under exposure of 

landslides. Based on reports (World Bank, 2017) deforestation, land-use change and increase 

in heavy rainfall increase the severity of the landslide hazard to the houses and settlements. 

 

 

Figure 2-12.  Population and GDP exposure to landslide in Afghanistan. (World bank, 2017). 
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2.4.1 Landslide Risk and its impact on assets in Afghanistan 

This study evaluates the significance and socioeconomic value of assets (people, 

infrastructures, schools, health facilities, highways, etc.) in relation to their exposure level. 

Such an approach provides a comprehensive overview of the general exposure at the national 

level. The available exposure data layer for each category (population, government buildings, 

commercial and residential buildings, agricultural, infrastructure, and GDP) are shown in Fig. 

2-13. 

 

Figure 2-13. Presents the distribution of assets and its exposure to the landslides across all 

Afghanistan. (World bank, 2017) 

 

As can be seen in Fig 2-13 highest number of assets exposed to landslide are located in 

north, north-eastern, and central parts of the country. Based on findings of (World Bank, 2017) 

over 3 million people area exposed to landslides in Afghanistan. Badakhshan has more than 

800 million dollars’ worth of assets and more than 280,000 people exposed to landslide. an 
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example of a devastative landslide in Afghanistan would be Abe-Barek landslide which caused 

death hundreds to thousands of people. 

2.4.2. Recommendations 

It is stressed that landslide is a common natural disaster causing deaths and economic 

losses each year. The risk of landslide can be reduced by increasing consciousness of the people 

in the national and local level avoid building their houses landslide prone areas. Moreover, 

government also prepare the landslide hazard maps in local level to better understand the risk 

in each area. Furter, it is government job to recognize the landslide susceptible area and avoid 

the construction of transport networks or service lines and other important infrastructure. In 

most of the landslide prone countries local monitoring of slopes is very effective and it can 

help identify the landslide hazard early. It is also noteworthy that if a landslide susceptible area 

identified then strengthening of the slope would reduce the potential risk of landslide to some 

extent. Passive measures such as gathering of boulders in the foot of hillside, geosynthetic and 

geotextile can also reduce the impact of small landslide from reaching to the assets. 
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2.5. Snow Avalanches 

Avalanches are a common natural disaster found in most mountain snowy regions of 

the world. Avalanches are rapid mass movement of snow caused by gravity and are considered 

meteorologically induced dangers. There are various types of avalanches such as wet type, dry 

type. All avalanches from starting point to the stopping point has three stages: origin, transition, 

and runout. Typically avalanches occur in steep terrain of 30° to 45° having large accumulation 

of snow (Fuchs et al., 2019). On terrain below 15°, the avalanche slows down and stops. The 

flow velocity of avalanches is ranges between 50-200 km/h, whereas wet avalanches are denser 

and slower (20-100 km/h). (Fuchs et al., 2019) Avalanches can trigger naturally or artificially. 

Whereas spontaneous natural avalanches pose a major threat to buildings and infrastructure.  

 

 

Figure 2-14.  Population and GDP exposure to snow avalanches in Afghanistan (World bank, 

2017). 
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Figure 2-14. presents the avalanche prone province in Afghanistan. As can be seen from Fig. 

2-14 the majority of north-eastern to western, and central parts of the country are very 

susceptible to avalanches due to the availability of snow in most of the seasons in high 

mountains Hindu Kush. 

Snow avalanches affecting the people living in those hazardous areas. Avalanche deaths 

continue to increase in Afghanistan. The latest avalanche in 2022 in Afghanistan killed at least 

eight people, including three children, have been killed and 10 others wounded in three separate 

incidents of landslide and avalanche in Afghanistan (Xinhua, 2022). The worst avalanche was 

occurred in Salang Pass (Fig 2-15) on Feb 2010 which is the only road connecting Kabul to the 

northern provinces and more than 180 people have been killed there which was the worst 

avalanche in a past 30 years. (World bulletin, 2010).  

 

 

Figure 2-15.  Long line of traffic jam including different vehicles are half-buried in snow after 

avalanches killed at least 180 people at the Salang tunnel in Parwan province, Afghanistan on February 

10, 2010. (Photo: Shah Marai) 
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Accessing and providing assistance to in emergency time to such remote places is the biggest 

challenge with the avalanche’s events particularly in unstable country like Afghanistan. As 

illustrated in Fig 2-14 Badakhshan, Kabul, and Daikundi have the greatest number of people 

and GDP affected by avalanches.  

 

2.5.1 Snow avalanches’ risk and its impact on assets in Afghanistan 

In order to illustrate the population, infrastructures, schools, health facilities, roads, etc. 

level of exposure to the avalanches, this study consider their relevance and socioeconomic 

value accordingly. Such an approach very helpful for overviewing of the general exposure at 

the national level. The available exposure data layer for each sector (population, government 

buildings, commercial and residential buildings, agricultural, infrastructure, and GDP) is 

shown in Fig. 2-16. 

 

Figure 2-16. Presents the distribution of assets and its exposure to the avalanches across all 

Afghanistan. (World Bank, 2017). 
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As can be seen in Fig 2-16 highest number of assets exposed to landslide are located in 

north, north-eastern, and central parts of the country. Based on findings of (World Bank, 2017) 

over 2 million people area exposed to landslides in Afghanistan. Badakhshan has more than 

990 million dollars’ worth of assets. From 2000 to 2015, over 153,000 people were affected by 

avalanches in Afghanistan (World Bank, 2017). 

2.5.2. Recommendations 

As discussed in this section avalanches are a common natural disaster causing deaths 

and economic losses each year in Afghanistan. The risk of snow avalanches similar to other 

natural disasters can be reduced by increasing consciousness of the people in the national and 

local level avoid building their houses in landslide prone areas. Building retention structures 

such as snow supporting structures, artificial release of avalanches in susceptible areas, 

building dam avalanches, and avalanches galleries can reduce the avalanches risk of exposure 

to different assets. 
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2.6. Droughts 

Afghanistan has arid and semi-arid climate condition suffers from recurring droughts 

with varying lengths and severity. Agriculture in Afghanistan contributes to 80 % of 

Afghanistan’s total income. Frequent occurrence of droughts in Afghanistan affects millions 

of people and causing large economic damages to agriculture, households, and other lifeline 

structures. Its annual water budget relies heavily on winter rainfall in its mountains, which 

accumulate in the form of glaciers, snow, and ice. The amount of water available depends on 

the amount of rainfall and stable weather patterns, which causes snow and ice to melt 

continuously during the planting season. The Hindu Kush Mountains in Afghanistan are the 

source of 80% of the country's renewable water. Afghanistan experienced severe drought in 

the past (e.g., 1970, 1996 and 2001), but in the southern provinces of Kandahar, Helmand, 

Zabul, Uruzgan and Nimroz, it was so severe that in 2000, the United Nations estimated that 

nearly three million people needed emergency assistance (OCHA, 2001).  

 

Figure 2-17. Time series of annual values of Afghanistan mean temperature anomalies and its trends 

(Base period 1981-2010) (NOAA data). 

 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

18
80

19
00

19
20

19
40

19
60

19
80

20
00

20
20

M
ea

n 
Te

m
pe

ra
tu

re
 A

na
m

ol
y 

(C
°)

Time (in year)



45 
 

Figure 2-17 presets the Time series of annual values of Afghanistan mean temperature 

anomalies and its trends from 1880 to 2022. A positive anomaly means that the temperature 

was warmer than normal; a negative anomaly indicates that the temperature was cooler than 

normal. As can be seen the year recorded as warmer temperature or low negative winter often 

corresponds to the driest year or drought. 

Droughts causes further threat to livelihoods, income, poverty of the people which 80 

% of their livelihood rely on agricultural. Lack of water resources led to excessive reduction of 

wheat yields and drying of fruit trees, plants, grasses, and the loss of 50 to 60 percent of 

livestock in those provinces. The drought caused so much famine that the United Nations 

named the worst-hit areas, from northwestern Afghanistan to the central Hazaras, the "Hunger 

Belt." 

Afghanistan's drought cycle lasts from three to five years once a decade (Arthur et al, 

1966). In the last two decades, Afghanistan has experienced drought twice a decade, in the 

2000s in 1996-2001 and 2007-2009, in 2010 in 2011-2013 and 2016.  

Afghanistan is expected to be affected by climate change and uncertain rainfall and frequent 

droughts, and the increased risk of flooding would come in secondary concern. Annual drought 

in many parts of the country is likely to become common by 2030. As can be seen in Fig.2-18 

population and assets in southern provinces are under high exposure and threat of droughts 
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Figure 2-18.  Population and GDP exposure to Droughts in Afghanistan. (World Bank, 2017). 

 

Based on reports (World Bank, 2017) on average, droughts cause 280 million of 

economic loss to agriculture each year. Due to the climate change consequences, the 

hydropower production will decrease to zero once in every 10 years in Kajaki Hydropower, 

and once in Naghlu Hydropower (World Bank, 2017). 
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2.6.1 Drought risk and its impact on assets in Afghanistan 

 

Figure 2-19.  Presents the distribution of assets (e.g., agriculture, and population) and the current and 

future impacts of snow avalanches on them in different part of Afghanistan. (World Bank, 2017). 

 

Drought has a direct impact on crops and thus on people. Therefore, the impact of 

current and future droughts on agriculture and people will be introduced. Assessing drought 

and its potential impact on agriculture in vulnerable areas is very important, especially in 

drought-prone areas. Quantifying the impact of agricultural drought on food supply may enable 

policy makers to make more sustainable agricultural decisions. This requires a thorough 

assessment of the relationship between spatiotemporal drought variability, agricultural 

systems, irrigation effects and the availability of water resources. To illustrate the population, 

and agricultural impacts, level of exposure to the droughts, this study consider their relevance 

and socioeconomic value accordingly. Such an approach very helpful for overviewing of the 

general exposure at the national level. The current and future impacts of droughts in 

Afghanistan are shown in Fig. 2-19. The effects of drought on agriculture and population 
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modeled by FAO for Afghanistan are shown in Figure 2-19, which shows that approximately 

90% of Afghanistan will be affected by drought by 2050. 
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2.6.2. Recommendations 

There is an urgent need to enhance public awareness to improve the possibility of 

wastewater sampling and decrease water use in light of the anticipated precipitation over the 

next few months. Additionally, farmers should shift to crops that produce greater yields per 

unit of water applied to irrigable land. This will maintain the water balance and minimize 

drought danger to some degree. Beyond these short-term remedies, the government must 

prioritize a comprehensive drought risk management plan. By enhancing the agricultural 

system's resilience, sustainable development can reduce vulnerabilities to climate change. In 

addition, applying a successful model of a nation that has experienced drought along with best 

management techniques on farms and in agriculture might reduce the danger of drought to 

some extent. Implementing a low water consumption restriction policy during the high-water 

season and conserving that quantity of water in particular areas, such as the southern provinces, 

might also be an effective method for promoting sustainable living. 
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CHAPTER III 

Assessment of the Abe-Barek Landslide using Remote Sensing 

Analysis 

3.1. Introduction 

A devastating landslide hit Abe Barek village of Argo District, Badakhshan Province, 

Afghanistan (Fig 3-1) in May 2014. It was the worst landslide in 2014, killing 300 to more than 

2700 people (Zhang et al., 2015). According to the locals, two landslides occurred within a 

short period of time. The villagers may lack the specialized knowledge, training, and necessary 

equipment to perform triage and started the search and rescue operations for assistance to the 

first trapped victims shortly after the first incident (New York Times, 2014). Tragically, many 

volunteer rescuers become secondary victims themselves (The Guardian, 2014). Considering 

the remoteness of the landslide area, rough road conditions, insufficient capacity for fast and 

well-timed transfer of machinery, and the necessary equipment, the government quickly 

concluded that retrieving the buried bodies is unattainable. Hence, the site was declared a mass 

grave (CNN, 2014). Figure 3-2a, taken by (Kohsar, 2014), and outlined with a yellow color, 

shows the landslide’s downward movement direction in a sufficiently inclined surface rupture 

over a considerable distance and buried the settlements along its pathway. Moreover, Figure 3-

2a, b clearly illustrates previous landslides’ boundaries in the same position with red lines. 

The study area with a latitude of 37°1′ 18″ N and a longitude of 70°22′01″ E is situated 

21 km away from Faizabad, the capital of Badakhshan province. Badakhshan is one of the 34 

provinces of Afghanistan, located in the northeastern part of the country along the Pamir and 

Hindu Kush Mountains. Some of its mountains lay between 3000–7000 m above sea level and 

are covered with snow and glaciers throughout the year. Badakhshan is one of the most remote, 
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least developed, and disaster-prone regions, which borders Tajikistan to the north, Pakistan to 

the south, and China to the easternmost (Figure 3-1a). 

 

Figure 3-1.  Location of the study area. (a) Afghanistan, study area, and borders with neighboring 

countries, (b) Badakhshan province, (c) Argo district, and Abe Barek village. 

 

The presence of two active plate boundaries (Shroder, 2014), namely “North Afghan 

Platform and Transgressional Plate boundary”, and the passing of three major active faults 

through the province (Boyed et al., 2007), namely the Central Badakhshan Fault, Darvaz Fault, 

and Henjvan Fault, making it the highest seismic prone region in the country and is arguably 

one the most vulnerable regions to all kinds of natural disasters. With this regard, most of the 

researchers relate the majority of the landslide hazards to earthquakes. Argo district (Figure 3-

1c), of which Abe Barek is one of its villages, with 10% of the whole province population, is 

the most populous district in Badakhshan (UNFPA, 2003). According to the previous study 

(Zhang et al., 2015), 30.2% of the entire land in Badakhshan province is covered by a slope 

gradient of 20–30°, and in the area where the landslide occurred, 78% of its land is made up of 

a slope gradient of 20 to 40°. This might be considered as one of the reasons why this area is 

prone to landslides.  
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Figure 3-2.  Collapsed area. (a) Front view of the Abe Barek landslide area, the yellow outlines indicate 

the boundary line on the current landslide, the red outlines represent the boundary of old landslides, and 

the photograph was taken on May 5, 2014, by (Kohsar, 2014). (b) Top bird view of the landslide area 

shows how steep the slope is, the red outlines reflect the boundaries of the old landslides, the photograph 

was taken on May 5, 2014, by (Kohsar, 2014). 
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The Abe Barek landslide area brutally buried houses and killed large numbers of 

people, which can be categorized as the most life-threatening (Zhang et al., 2015) natural 

disasters after two incidents of the 1998 earthquakes (Boyed et al., 2007; Wheeler et al., 2005) 

occurred in this area. To date, (Shroder et al., 2011a; Shroder et al., 2011b) has determined 34 

large loess landslides that are commonly triggered by saturation and liquefaction in this area. 

Knowing the cause of the landslides is extremely important. However, as mentioned, not so 

many studies have been conducted in the area of interest to figure out the main reason. The 

only research conducted in the study area is the susceptibility assessment in the Abe Barek 

(Zhang et al., 2015). Landslide factors such as topography, climate (rain), geology and 

seismicity of the area, land cover and land use, and previous earthquakes were reviewed deeply. 

Eventually, they identified the following factors as a leading cause of the incident: 

 Weakening of the rock-based silt-covered area due to the repeated seismic events. 

 Slope instability further intensifies due to the remaining too loose materials from the 

previous landslides at the same position. 

 Slope instability due to the increased infiltration of rainwater into the loose soil. 

 The presence of sensitive material which is very prone to landslides. 

 Increasing the soil water content from the rapid melting of deep snow and spring rains 

up to 200 mm. 

 Land use and irrigation activities. 

Finally, it can be concluded that the cause of the landslide is not one. Rather, a set of 

triggering factors (e.g., complex geology, the presence of landslide-prone material (Shroder et 

al., 2011a; Shroder et al., 2011b), previous earthquake records, and close distance to the fault 

line’s intersection (Wheeler et al., 2005), summer rains, and melting snow) or a combination 

of any of such mentioned factors possibly lead to this unfortunate situation. 
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Even though this tragic event caused loss of hundreds of people and buried hundreds of houses, 

yet there was no research conducted to illustrate the size (area and volume of landslide) and 

number of affected houses. 
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3.2. Satellite imagery used in landslide analysis 

In this study, stereo pair high-resolution satellite images were gathered to generate pre-

and post-event DEMs. The pan-sharpened GeoEye-1 images with the spatial resolution of 0.5 

m observed in June 2012 were analyzed to create the pre-event DEM. The pan-chromatic 

IKONOS-2 images with the spatial resolution of 0.8 m observed 2 months after the event in 

2014 were analyzed to create the post-event DEM. Table 3-1 shows the characteristics of the 

satellite images used in this study and their observation conditions. Since the pre-event images 

were observed on the same day with different off-nadir angles, the pair images’ quality can be 

judged as very good. On the other hand, since the time interval of the observations of the post-

event images is 8 days, and land cover changes were slightly observed between the images, the 

pair quality of the post-event images are judged as good. 

Table 3-1. Distinguished features of the satellite imagery used in this study and their observation 

conditions. 

 Pre-Event Post-Event 

Image ID 105041000005F800 10504100000CBE100 106001000932AC00 1060010009356D00 

Date 13 June 2012 13 June 2012 7 July 2014 15 July 2014 
Satellite GeoEye-1 GeoEye-1 IKONOS-2 IKONOS-2 

Band Pan-sharpened Pan-sharpened Panchromatic Panchromatic 
Spatial resolution (m) 0.5 0.5 0.8 0.8 

Off-nadir (deg.) 18.4 29.6 24.1 9.6 
Satellite azimuth (deg.) N63.1E N36.8E N220.1E N169.4E 

Sun elevation (deg.) 68.7 68.6 70.0 67.8 
Sun azimuth (deg.) N124.2E N124.0E N132.4E N129.0E 
Cloud cover (%) 1.0 5.0 3.0 0.1 

Overlapped area (km2) 24.5 30.5 
Pair quality Very good Good 

 

Figure 3-3 shows the flowchart for the DEM generations from the acquired satellite 

im-ages. The DEMs and orthorectified images were generated by a dense stereo matching 

technique using commercial software (Agisoft Metashape Professional Ver. 1.6.3). The 

technique consists of a photo-alignment, generation of the three-dimensional dense point 

cloud, and building of the mesh.  
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Figure 3-3. Flowchart for the data acquisition and digital elevation model (DEM) generations. 

 

Approximately 168 thousand tie points and 34 mil-lion-point clouds were extracted in the pair 

of the pre-event images, indicating that the mean cloud density is 1.4 points per square meter. 

On the other hand, approximately five thousand tie points and 16 million-point clouds were 

extracted in the pair of the post-event images, demonstrating that the mean cloud density is 0.5 

points per square meter. The images’ geographic locations were coordinated using rational 

polynomial co-efficient (RPC) files. The RPC files were provided by the supplier as a standard 

positioning assistance dataset, including polynomial equations to relate geographic locations 

(latitude, longitude, and height) with locations in the image (row and column). 

Figure 3-4a, and b illustrate the pre- and post-event DEMs created from the images, 

respectively, and Figure 3-4 c, d shows the hillshades effects on the DEMs. Unexpected small 

concavities and convexities were found in the post-event DEMs (Figure 3-4d), probably due to 

the lower density of the point clouds. Figure 3-4(e), (f) shows the pre- and post-event 

orthorectified images, respectively. Figure 3-4 (g), (h) illustrates the close-up of the generated 

point clouds in a rectangular area shown in Figure 3-4(e), (f). From the close-up image, the 

concentration of the cloud points in the pre-event DEM is substantially higher than that of the 

post-event DEM. The pre-event data spatial resolutions were 1.0 m, whereas the post-event 
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data spatial resolutions were 1.5 m due to the different spatial resolutions of the original images. 

Since the spatial resolution and the pair quality of the pre-event data are higher, the post-event 

DEM and orthorectified image were resampled to a 1.0 m resolution by the cubic convolution 

technique for the following change detection operation in order to obtain a detailed 

morphological change. 
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Figure 3-4. Data used in this study. (a) Generated 1 m-resolution pre-event DEM from the GeoEye-1 Satellite in 

June 2012; (b, c) pre-and post-event hillshades effects to the DEMs overlay with colors showing clear details of 

the study area; (d) generated 1 m-resolution post-event DEM from the IKONOS-1 Satellite in July 2014; (e) pre-

event orthorectified multispectral image derived from GeoEye-1 images (0.5 m-resolution); (f) post-event 

orthorectified panchromatic image derived from IKONOS-1 images (0.8 m-resolution); close-up view of the 

generated point clouds of pre-event data (g) and post-event data (h) presents the rectangular area shown in (e, f). 
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The derived DEMs were georeferenced in GIS during the stereo matching operations 

based on the RPC files. Then, they were applied to the DoD technique by subtracting the pre-

event image from the post-event image. The DoD (post-pre) obtained from the pixel-based 

change detection is shown in Figure 3-5. Although the DEMs were geometrically corrected by 

the RPC files, significant noises or errors in height values were found even in unaffected areas. 

These false detections would probably arise from the locational errors (e.g., horizontal errors) 

in the DEMs, indicating that two DEM images were not perfectly matched. Therefore, a further 

geometric correction would be necessary to accurately enhance the DEM’s matching and 

accurately extract the geomorphological change. Here, in this study, a nonlinear mapping 

technique would be utilized to diminish the DEM’s locational errors generated in DoD. 

 
 

Figure 3-5. Uncorrected DEMs of difference (DoD) obtained from the pixel-based change detection 

using the pre-and post-event DEMs. 
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3.3. Nonlinear Mapping Method 

An adaptive nonlinear mapping method was introduced by Kosugi et al., 2004, and 

Nakamura et al., 2002 to superpose a pair of aerial or satellite images accurately and detect 

pixel-by-pixel changes automatically. The method can geometrically correct the images even 

if rotational gaps and local skews are obtained in the images. The method was applied not only 

to aerial images but also to LiDAR-derived DEMs by one of the authors for quantifying 

volumes of debris flows (Miura, 2015). Hence, this technique was applied to the obtained 

DEMs in this study. 

The flowchart of the nonlinear mapping technique for pre-and post-event DEMs is 

presented in Figure 3-6. This method consists of four operations: Shifting vector generation in 

subareas, consensus operations for shifting vectors, interpolation of consented shifting vectors, 

and the repetition of three previous operations until a satisfactory outcome has been achieved. 

In this analysis, the pre-and post-event DEMs are defined as the controller (reference) data and 

follower data, respectively. First, both DEMs are divided into subareas with the window size 

of NW-by-NW pixels (Figure 3-7). The segmented subarea (NW × NW pixels) in the follower data 

looks for the best-matched segment in the given segment’s neighborhood (NS pixels for left, 

right, upward, and downward) in the corresponding controller data by adopting the smallest 

elevations’ difference using the following formula: 

 

  (3-1) 

 

The elevations’ difference (s-value) is calculated in each subarea. Here, d1 and d2 are 

the elevations in the pre-and post-event DEMs, respectively, and ic and jc indicate the subarea’s 

central location in x- and y-directions, respectively. The shifting vectors are determined from 

dx and dy in pixels when the minimum s-value is obtained within the given search area in NW-
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by-NW pixels. It would be difficult to search for the appropriate shifting vectors in landslide-

affected areas due to the fact that the ground movement significantly changes the topography 

after the event. Since the false shifting vectors would be generated in such changed areas, the 

shifting vectors need to be corrected considering the vectors in the altered areas’ vicinities. 

The consensus operation will be performed to correct the overestimated shifting vectors 

or false generated shifting vectors. The first scalars of the shifting vectors are calculated using 

Equation (3-2) in all the subareas. 

 

 (3-2) 

 

Figure 3-8a shows the schematic diagram for the histogram of the vectors and threshold 

selection to two classes. The threshold value of the vectors (dth) is determined by maximizing 

the ratio of inter-class variance ( B ) to the total variance ( T ) calculated Equations (3-3) to (3-

5) (Kosugi et al., 2004; Nakamura et al., 2002; Otsu, 1979) 

 

  s.t.   (3-3) 

  (3-4) 

  (3-5) 

 

Here, m0, m1, and m2 indicate the mean value of d for all the vectors, the mean value in 

class 1, and the mean value in class 2, respectively. Additionally, n1 and n2 are the number of 

vectors in classes 1 and 2, respectively. In a similar manner,  and  represent the variances 

of the vectors in classes 1 and 2, respectively. When the d-value in a subarea is larger than dth, 

the vectors are classified to class 2. In that case, the shifting vectors are corrected by giving 

median values of dx and dy obtained within the neighborhood subareas (NC-by-NC subareas), 

as shown in Figure 3-8b. The shifting vectors are provided to all the pixels from the subareas’ 
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vectors by the bilinear interpolation technique. These operations are repeated by the given 

number of iteration (n). Finally, the controller data is geometrically corrected based on the 

shifting vector in each pixel. Figure 3-9 illustrates the comparison of the schematic plan and 

profile before and after the nonlinear mapping-based geometric correction. Four parameters, 

NW, NS, NC, and n are required to perform the nonlinear mapping technique. 
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Figure 3-6.  Flowchart of the nonlinear mapping technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. The schematic diagram for nonlinear mapping operations presents the segmentation of 

both pre – and post – event DEMs, the matching segments process, generating shifting vectors, and 

correcting false generated shifting vectors using the consensus operation, the figure is modified from 

(Miura, 2015). 
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Figure 3-8.  Schematic diagrams of (a) the histogram of shifting vectors and thresholding (b) present 

how the direction of generated shifting vector (red arrow) is corrected in the same way as the 

neighboring arrows using the consensus operation, modified from (Miura, 2015). 

 

 

Figure 3-9.  Schematic plan and profile denote a comparison of DEMs before and after the nonlinear 

mapping-based geometric correction. 
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3.4. Evaluation and Applicability of the Method 

To apply the nonlinear mapping method to the pre-and post-event DEMs, the algorithm 

needs a combination of entry parameters. These key input parameters are NW (window size or 

size of subarea), NS (search area), NC (consensus area), n (number of iterations). The selection 

of the parameters in the method was discussed in a selected testing zone with different 

combination values of these parameters. In this study, a set of scenarios were examined with 

different values of NW, NS, NC, and n. In the following subsections, statistical and shifting vector 

assessments was performed. Based on the quality assessment result, the best possible 

combination of parameters (NW, NS, NC, and n) was selected. 
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3.4.1. Statistical Assessment 

As shown by the dotted rectangle in Figure 3-10, the nonlinear mapping technique was 

applied repeatedly with different scenarios for the selected test area. For instance, in every 

process of the analysis, the pre-event DEM subareas were given a different search area (pixel 

value) and consensus value to automatically search and match with the best possible 

corresponding reference point in the post-event DEM. Typical parameters illustrated in Table 

3-2 were selected for the accuracy assessment. It is convenient to use descriptive statistics 

(mean and standard deviation) to evaluate different categories and identify the differences 

among other scenarios. If the geometric correction is successfully performed to the data, the 

DoDs mean value would be zero or close to zero in the unaffected areas. As shown in Table 2, 

different window sizes (e.g., NW = 5,7,9…31) and search areas of NS × NS (3 × 3, 5 × 5, 7 × 

7…31 × 31) pixels are evaluated through a repetitive iteration procedure. Finally, in this study, 

the window size (NW = 5 pixels) and search area (NS = 9 × 9) highlighted in Table 3-2 with bold 

text were chosen based on the lowest mean and standard deviations of DoD maps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10. The selected test area is shown in a rectangle outlined with a dotted line. 
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Table 3-2. Means and the standard deviations of the DoDs for different parameters in the test 

area. Bold texts indicate the chosen parameters, which have the lowest mean and standard 

deviation. 

NNo
..  

SSize of   
SSubarea  

((NNWW))  

SSearch  
  Area   

(NNS,, Pixel) 

CConsensus   
AArea  
(NNC)) 

No. of   
Iterations   

(n)  

Mean  
Value   
(m)  

Standard   
Deviation   

(m)  

Sum of   
Square 

Remarks  

1 0 0 0 0 1.278 3.337 2.00 × 107 Uncorrected 
2 5 5 3 3 0.475 1.467 3.87 × 106 Corrected 
3 5 7 3 3 0.221 1.254 2.83 × 106 Corrected 
4  5 9 3 3 0.152 1.152 2.39 × 106 Corrected 
5 7 5 3 3 0.862 2.197 8.68 × 106 Corrected 
6 7 7 3 3 0.492 1.592 4.56 × 106 Corrected 
7 7 9 3 3 0.166 1.308 3.08 × 106 Corrected 
8 9 5 3 3 0.500 1.672 5.03 × 106 Corrected 
9 9 7 3 3 0.247 1.468 3.87 × 106 Corrected 

10 9 9 3 3 0.187 1.436 3.71 × 106 Corrected 
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3.4.2. Shifting Vectors Assessment 

Figure 3-11(a)-(i) illustrate the generated shifting vectors for the scenario numbers 2-

10 of Table 3-2. The selected test area of the pre-event DEM based on the entry-parameters 

described above; looked for the best matching segment in the vicinity of the corresponding 

reference point in the chosen test area of the post-event DEM. As shown in Figure 3-11, shifting 

vectors were generated if the best matching point is not the same as the reference point. During 

the operation analysis, more than nine profiles of shifting vectors have been generated. Here, 

in Figure 3-11, nine of them have been shown. A moderate vector movement that brings 

reasonable smoothness in the DEMs quality and considerably removes the locational errors in 

the unaffected area compared to another set of shifting vectors would be chosen from all the 

generated shifting vectors. After the comparison, in Figure 3-11, shifting vector with label c 

were selected, which corresponds to the parametric combination (NW = 5, NS = 9, NC = 3, n = 3). 

Since the shifting of the vectors in the selected parameters is smaller than the other shifting 

vectors (e.g., scenario number five to ten in Table 3-2 shown by Fig. 3-11(d)-(i), the corrected 

DEM eliminated the locational errors in the unaffected area significantly compared to the other 

shifting vector-related DEMs. Moreover, the selected shifting vector had the smallest mean, 

deviation, and sum of squares, as discussed and shown in Table 3-2. 
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Figure 3-11. Generated shifting vector for nine scenarios. (a)-(i) correspond to the parameter 

combinations shown by the scenario numbers (2)-(10) in Table 3-2, respectively. 
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3.5. Quality Assessment 

The histogram is a very handy way of graphically displaying the information contained 

in a single band of remotely sensed images (Jensen et al., 2015).  In remote sensing, scientists 

usually examine histograms for each band to determine the quality of satellite images. The 

histogram presents the information by which one can figure out the quality of image data.  In 

most cases, scientists show the before and after histogram graphs to compare the effectiveness 

of their image enhancement methods (Abdullah-Al-Wadud, et al., 2007). Hence, the 

distribution of the difference of elevations in the corrected DEM has been compared with the 

uncorrected DEM using histograms. 

As shown in Figure 3-12, the uncorrected DoDs histogram (red line) generated a 

negatively skewed distribution shape histogram indicating the poor quality of the data or the 

presence of additional noise in data. However, the corrected DEM histogram (blue line) 

produces a symmetrical frequency distribution. The values are distributed around a central 

value, and the pixel numbers decline away from this central point. The distribution graph 

completely changed to a bell-shaped and is called a normal distribution. It can be concluded 

that the data quality in DoD after applying the nonlinear mapping method dramatically 

increased. Meanwhile, the incorrectly detected errors have drastically decreased after 

conducting the nonlinear mapping method and choosing the parametric combination. 
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Figure 3-12. Comparison of histograms of the corrected and uncorrected DoD. 
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3.6. Landslide based nonlinear method’s results 

In this section, the profile cross-sections are evaluated using the corrected DEMs, 

including the landslide area to validate the nonlinear mapping method in Section 3.6.1, and 

presented the estimation of the soil volume through a comparison of the volume estimated from 

the uncorrected DEMs in Section 3.6.2. 

3.6.1. Corrected and uncorrected DEMs profile cross-sections 

The profile cross-sections are compared between the corrected DEMs and uncorrected 

DEMs to confirm the nonlinear technique’s quality. Figure 13a shows the DoD obtained from 

the uncorrected DEM. Two cross-section lines was selected in the affected and unaffected 

areas, as illustrated by the A-A’ and B-B’ lines in Figure 3-13(b), (c), respectively. It was 

observed from the profile cross-sections that significant gaps between the pre-and post-event 

elevations are prominent throughout the cross-sections in the uncorrected DEMs. Figure 3-

14(a) illustrates the DoD obtained from the corrected DEMs in this study, and the cross-

sections in the A-A’ and B-B’ lines are shown in Figure 3-14(b), (c), respectively. It is 

confirmed that the locational errors (e.g., horizontal gaps) were significantly decreased, and 

the post-event line matches very well with the pre-event topographies. 

The model performance was also evaluated in decreasing the locational errors using the 

quantitative value of the root means square error (RMSE) to confirm the degree of the matching 

in both corrected and uncorrected data in the unaffected area (Figures 3-13 and 3-14). This 

indicator has been frequently used to evaluate the prediction error quantitatively (Rawat et al., 

2019). The RMSE of the corrected profile cross-section was obtained at 0.81 m, whereas the 

RMSE for the uncorrected profile cross-section was obtained at 3.81 m, which is more than 

four times larger than that of the corrected one. It suggests that the horizontal locational errors 

are the leading cause of the change detection errors not only in the unaffected areas but also in 
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the affected areas. The employed geometric correction model of the current study can be 

utilized for accurately extracting the geomorphological changes. 
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Figure 3-13.  (a) Uncorrected DoD with the A-Aʹ and B-Bʹ cross-section lines. (b) Profile cross-section 

line (A-Aʹ) passing through the affected area. (c) Profile cross-section line (B-Bʹ) passing through the 

unaffected area. 

 

Figure 3-14.  (a) Corrected DoD with the A-Aʹ and B-Bʹ cross-section lines. (b) Profile cross-section 

line (A-Aʹ) passing through the affected area. (c) Profile cross-section line (B-Bʹ) passing through the 

unaffected areas. 
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3.7. Volume Estimation 

Before quantifying the volume of the displaced soil, the boundary line of erosion and 

deposition areas of the landslide need to be delineated. Figure 3-15(a) shows the DoD map 

(post-pre) obtained from the corrected DEMs with the landslide area delineated by the 

combination of the satellite images, the ground photos shown in Figure 3-2, and the cross-

sections shown in Figure 3-15(b). The colors in the DoD map in Figure 3-15(a) illustrate the 

distribution of displaced soil depths in the Abe-Barek landslide disaster area. The DoD map 

consists of positive and negative pixel values. The negative values indicate soil erosion, which 

is filled in red to orange color pixels, and the pixel values range from (−37 m < DoD < 0 m). 

On the other hand, the positive pixel values correspond to the deposition of the displaced soil 

as shown in the blue to green pixel colors, and the pixel values vary from (0 m < DoD < +41 

m). 

Referring to the cross-sections drawn in Figure 3-15(b), the landslide moved in a 

complicated fashion in the erosion-affected sections. The post-event elevations were 

significantly decreased in the southern areas such as lines C-C', D-D', E-E', F-F', and G-G', 

whereas the elevations were increased after the landslide in the northern areas such as lines I-

I', J-J', and K-K', as shown in Figure 3-15(b). Judging from the cross-sections in Figure 3-15(b), 

it can be claimed that in the upper slope section line C-C' to the line G-G' the erosion occurred, 

in which the eroded mass of the material is thought to move as a rigid block with a significant 

depth. By contrast, from the cross-section H-H' onward, which is the ending boundary of the 

erosion-affected area, the displaced material′s movements became more complicated. In other 

words, the mass of the material that was moving almost in a rigid block turned into many sub-

slide surfaces at the lower reach of G-G', and each block in a separated fashion, choosing its 

direction to reach a remarkable distance. 
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From section I-I' onward, the post-event elevation increases as the movement continues 

with a distance towards the northern direction. It means that the landslide started depositing 

from I-I' on to the stopping points in the deposition zone. Finally, the landslide material that 

accumulated along the purple boundary polygon filled with a green color in Figure 3-

15(a)caused the severe building damage. The redline polygon and dotted purple line polygon 

in Figure 3-15(a) shows the erosion area (upstream) and the deposition area (downstream) of 

the displaced materials, respectively. 

The volume of the displaced material was estimated using the corrected DoD map by 

aggregating the positive and negative pixel values separately in their boundaries and 

multiplying them to the corresponding area boundaries. As an example, in Figure 3-16, the 

elevation change is presented along the cross-section line A-A'. It indicates the elevation 

difference between the pre- and post-event DEMs along the mentioned cross-section line 

shown in Figure 3-15. The positive values indicate the deposition of the material, whereas 

negative values indicate erosion of the materials. The maximum erosion depth along the cross-

section line was obtained at 37.7 m, while on the contrary, the maximum deposition depth 

throughout the A-A' was estimated at around 12.7 m. 
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Figure 3-15.  (a) DoD map obtained from the corrected DEMs presents the delineation of the landslide 

affected area and cross-section lines. (b) Cross-section profiles present the pre-and post-event surface 

difference throughout the landslide area. 
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The total erosion and deposition soil volumes in the upstream and downstream are 

summarized in Table 3-3. As highlighted in Table 3-3, the total volume of the eroded and 

accumulated soil in the landslide area by applying the nonlinear method was estimated at 1.05 

× 106 m3 and 5.73 × 105 m3, respectively. The total erosion volume was nearly twice larger 

than the total deposition volume. This would be due to the fact that the soil in the downstream 

zone was dragged into buildings and parts of them flowed into the river. 

 

Figure 3-16. Elevation difference along the cross-section line A-Aʹ obtained from (pre-post) DEMs. 

 

In addition to that, the volumes of the displaced materials were also estimated for the 

uncorrected DEMs and summarized in Table 3-3. The total erosion volume of 1.61 × 106 m3 

was approximately 53% larger than the one estimated from the corrected DEMs. The total 

deposition volume in the uncorrected DEM is 54% larger than that of the adjusted DEMs. The 

percentage increase between the corrected and uncorrected DoDs in the erosion and deposition 

zones was also summarized in Table 3-3. From the percentage increase, clearly, one can 

appreciate that the estimated parameters (volumes and depths) in the uncorrected DoD were 

significantly more extensive than that of the correct one. This implies that applying the 

proposed method considerably decreases the estimated volume of the soil. Furthermore, it 

reveals that the direct use of DoD without correcting the errors, leads to the overestimation of 

the landslide volume. 
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Table 3-3. Summarized erosion and deposition volumes for the corrected and uncorrected 

DoD. 

  

Corrected A Uncorrected B 
( ) 

% 

Erosion Deposition Total  Erosion Deposition 
m3 

Total  Erosion Deposition  

m3 m3 m3 m3 m3 % % 

Upstream 
−1.03 × 

106 4.78 × 104 
1.08 
× 106 

−1.56 × 
106 8.74 × 104 

1.61 
× 106 51 57 

Downstream −1.58 × 
104 

5.25 × 105 5.41 
× 106 

−4.26 × 
104 

7.96 × 105 8.38 
× 105 

170 52 

Total −1.05 × 
106 

5.73 × 105   −1.61 × 
106 

8.83 × 105   53 54 

Area (m2) 
1.22 × 

105 1.23 × 105   1.22 × 
105 1.23 × 105   - - 

Ave. depth 
-8.6 4.6   −13.2 7.2   53 57 

(V/A), m 
 

Similarly, the average erosion and deposition depths defined as the volume divided by 

the area were estimated by aggregating all the positive and negative pixel values within the 

landslide boundary line. The average depths were also presented in Table 3-3 for both the 

corrected and uncorrected DoDs, respectively. The average erosion and deposition depths for 

the corrected DoD were estimated at around 8.6 and 4.6 m, respectively. The average 

deposition depth was considerably lower than that of the erosion in the DoDs. This is due to 

the fact that parts of the deposited material were washed away to the downstream river, as 

mentioned above. 

3.7.1 Previous landslide’s volume versus current estimated one 

In order to understand the scale of the Abe Barek landslide, a comparison was made 

with the area-volume relationship or power-law relation derived from the previous studies 

(Simotett, 1967; Rice et al., 1969; Abele, 1974; Innes, 1983; Whitehouse, 1983;  Larsen et al., 

1998; Martin et al., 2002; Guthrie et al., 2004; Guzzetti et al., 2008; Imaizumi et al., 2008; Rice 

et al., 1971; Guzzetti et al., 2009; Zhang et al., 2020) having a high confidence level at locations 

in different countries. The number of sample data, the study areas’ limitations, and the obtained 
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relationships were summarized in Table 3-4. As reflected in Figure 3-17, the volume of the 

landslide appears to be slightly larger relative to the ground surface area. It reflects that the 

landslide occurred in a relatively small area with a significant loess thickness. Overall, Figure 

3-17 indicates that the volume estimated by our analysis shows a good agreement with the 

previous studies and is located within correlation lines corresponding to the previous research. 
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Table 3-4. Empirical relationships linking the landslide area (AL) to the landslide volume (VL) 

obtained by various researchers. 

No. 
Number of 

 Data 
Maximum 

 AL 
Minimum 

 AL 
Equation Source 

1 207 1.9 × 105 2.3 × 100 VL = 0.1479AL1.368 Simotett, 1967 
2 29 2 × 102 2.1 × 100 VL = 0.234AL1.11 Rice et al., 1969 
3 53 6 × 107 2 × 105 VL = 0.242AL1.250 Abele, 1974 
4 30 5 × 102 3 × 101 VL = 0.0329AL1.385 Innes, 1983 
5 45 3.9 × 106 4 × 104 VL = 0.769AL1.250 Whitehouse, 1983 
6 1019 1.6 × 104 5 × 101 VL = 1.826AL0.898 Larsen et al., 1998 
7 615 5.2 × 104 2 × 102 VL = 1.0359AL0.880 Martin et al., 2002 
8 124 1/2 × 105 7 × 102 VL = 0.1549AL1.0905 Guthrie et al., 2004 
9 539 1 × 109 1 × 101 VL = 0.0844AL1.4324 Guzzetti et al., 2008 
10 11 4 × 103 5 × 101 VL = 0.19AL1.19 Imaizumi et al., 2008 
11 37 1.5 × 103 1.1 × 101 VL = 0.328AL1.104 Rice et al., 1971 
12 677 1 × 109 2 × 100 VL = 0.074AL1.450 Guzzetti et al., 2009 
13 50 2.1 × 105 9.6 × 102 VL = 0.333AL1.399 Zhang et al., 2020 

 

 
Figure 3-17. Comparison of the estimated landslide volume from current study with the empirical 

relationships linking the landslide area (AL) and volume (VL) resulted from previous studies. 
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3.8. Advantages and Shortcoming of the Method 

The advantages of the technique presented in this study are summarized as follows: It 

can reduce geometric errors in the DoDs output almost automatically by providing adequate 

parameters without collecting GCPs; it can be applied to the DEMs, even significant 

morphological changes such as a large-scale landslide are observed in the data; and 

consequently, it can provide a more accurate volume quantification of the displaced material 

by landslides than a simple DoD analysis. 

On the contrary, one of the nonlinear mapping method’s main shortcomings is the time 

spent in scenarios for choosing the ideal input parametric combinations. For choosing such a 

parametric combination (NW, NS, NC, n), it is needed to compare each scenarios’ results and 

choose them based on a thorough evaluation, which will take a relatively long time. With the 

exception of that being said, the rest of the method is very fast. 

Since in this study no discussion has been made about the absolute geo coordinate 

accuracy by using GCPs, the corrected DEM would still inevitably contain errors. A true error 

assessment can typically be conducted with enough GCPs (Tsutsui et al., 2007; Martha et al., 

2010; Hsieh et al., 2016; Simonett, 1967; Nadi et al., 2020), which provides an actual error 

estimation. However, the error estimation using GCP in an insecure place, located in a remote 

area with high mountain and poor traffic accessibility, makes it nearly impossible to collect 

such data. Although some studies conducted such an assessment using the LiDAR-derived 

DEM as GCP (Tsutsui et al., 2007; Hsieh et al., 2016), the LiDAR observation has never been 

conducted in this area. Martha et al., 2010 suggested that aligning images using RPCs alone is 

enough for volume estimation. However, in this study, the nonlinear mapping technique is 

employed to align the DEMs with the maximum extent possible, to decrease the noise in the 

unchanged area, and to increase the accuracy of the analysis to the extent feasible. 
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3.9. Future Studies 

Although the nonlinear mapping method’s application significantly decreased the noise 

in the DoDs output, it subsequently may increase the accuracy of the landslide volume 

estimation result to a certain level. However, the error estimation has not been discussed in this 

work with the actual GCPs. Once such data are collected, much additional work needs to be 

done. For example, an error estimation of both depths and volume obtained from the nonlinear 

mapping and real GCP can be compared in a similar procedure conducted by (Tsutsui et al., 

2007) using the evaluation change analysis technique. The shortcoming addressed in the earlier 

section may need further research to find a possible way of automatically selecting those 

parameters to accomplish the analysis faster. A comparative study, together with other 

techniques aimed at reducing undesired noises, can be applied to highlight the method’s 

efficacy. 

As final remarks, it should be emphasized that, in this study, the attention was to 

decrease the extra accumulated noises in nonaffected areas of DoDs output and to illustrate the 

impact of the adopted nonlinear mapping technique in decreasing the estimated landslide 

volume compared to the result coming from directly using DoD. The approach applied in this 

study aimed to estimate the volume of a large-scale landslide after decreasing the accumulated 

noises in the DoDs output. In addition, it has the potential to quantify the volume of the 

landslide in a critical disaster time with a relatively shorter time, without using any extra actual 

GCPs. 
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3.10. Summary of this chapter 

The nonlinear mapping technique is utilized to detect and estimate the volume of the 

landslide affected area using stereo pair high-resolution satellite imagery. It is being stressed 

that the method can successfully be used in the image processing analysis to conduct mapping 

tasks, diminishing the geometric errors accumulating in the unchanged areas of the DoDs 

output, and finally, obtain the volume and average depth of the displaced material in the disaster 

area to ease the crisis management support and contribute very well to the more effective 

planning of the disaster relief and restoration. 

The technique presented in this study was employed in a large-scale landslide that 

occurred on 2 May 2014, in Abe Bare village, Badakhshan, Afghanistan. Using the DEMs of 

the difference change detection technique, the DEMs of the landslide affected area was 

generated from the pre-and post-event satellite stereo-pair images. Although the DEMs were 

corrected using the RPC method, registration noises or locational errors were still spotted in 

the nonaffected areas. The nonlinear mapping technique was employed to diminish the 

aforesaid geometric inconsistencies or registration noises and enhance the accuracy of the 

process analysis.  The proposed method has been coded in such a way that, in the selected 

testing zone with the given combinations of parameters, the post-event DEM (follower data), 

superimposes on the pre-event DEM, and pixel by pixel, scanning neighboring vicinities for 

the best possible matching points in the pre-event DEM (controller data). In this study, nine 

scenarios were examined with different values of NW (window size or size of the subarea), NS 

(search area), NC (consensus area), n (number of iterations). As the quantitative and graphical 

comparison revealed, the locational gaps significantly reduced, and a bell-shaped histogram, 

also known as a normal distribution, was obtained. Moreover, statistical values, in particular, 

mean and standard deviations, decreased more closer to zero and one, respectively. 

Additionally, the obtained RMSE values also verified the nonlinear mapping’s applicability in 
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decreasing the locational errors quantitatively. The required input components (NW = 5, NS = 9, 

NC = 3, and n = 3) for processing the method were chosen after a thorough comparison and 

observation of the assessments. 

The total eroded soil volume in the landslide area after adopting the nonlinear mapping 

method was approximately estimated at about 1.05 × 106 m3, and the volume of the deposited 

soil acquired 6.73 × 105 m3. The landslide’s estimated volume was compared with the volumes 

obtained from the previous studies. The erosion volume of the soil obtained in this study 

showed a good agreement with that achieved in the previous studies. The average depth of 

erosion, mostly situated on the mountain’s hilly side, was 8.6 m. On the contrary, the average 

depth of deposition, which typically situates in a flatted area, was estimated at 4.6 m. This 

highlights that nonlinear mapping has a considerable potential to reduce locational errors in 

mountainous regions. Therefore, it indicates a good applicability of the nonlinear mapping 

technique. It suggests that the method can be used efficiently on a routine basis and runs 

whenever a new landslide event has occurred if high-resolution stereo-pair images of the area 

become available. 
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CHAPTER VI 

Assessment of the Charikar Flood Using Remote Sensing Analysis 

4.1 Introduction 

Flood is the most frequent and most damaged caused natural disaster which affects 

more people than any other types of weather-related natural disaster in Afghanistan. Low 

coping capacity and less consciousness of the people in Afghanistan is a prominent reason for 

most of the fatalities. Control of flood is very difficult, and, in most cases, it is very 

economically unaffordable for country like Afghanistan. However, it is possible to minimize 

the effects thorough efficient policy like enhancing the consciousness of the people by 

providing reliable information, providing flood susceptible area. To predict, prepare, prevent, 

and mitigate flood damage, preparing flood maps in flood-prone areas using remotely sensed 

data is very safe, affordable, and time-saving that plays an important role. Therefore, a method 

is proposed by which can rapidly detect, monitor, and predict the flood inundation area in any 

types of land, such as flat, built up, vegetated or even non-vegetated area. Since Normalized 

Difference Vegetation Index (NDVI) commonly used to detect land cover changeIn this study, 

the Relative Difference in Normalized Difference Vegetation Index (rdNDVI) approach is 

designed to identify and monitor flooding in Charikar based on NDVI values. The intention 

was to use same methodology as used in Landslide to detect and estimate the flood inundation 

area, but as discussed due the nature of nonlinear mapping techniques pairs of stereo satellite 

imagery was needed. Due to the lack of stereotype satellite image in the flooded area, this study 

employed the rdNDVI approach.  
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4.2 Study Area and the Flash Flood in Charikar 

The study area is located between latitudes 35° 01′ 9.3’’ W and longitude 69° 09′ 

55.67’’ N, which includes parts of the capital of the Parwan province (Fig. 4-1). The city lies 

on the Afghan Ring Road, 69 km from Kabul along the route to the northern provinces. It 

connects Kabul and western parts of Afghanistan to northern parts of Afghanistan such as 

Mazar-i-Sharif, Kunduz, and Puli Khumri. Despite the proximity to Kabul, slightly more than 

half of the land is not built-up. 

 

Figure 4-1. Topographical map of the study area showing how Charikar city is surrounded by high 

mountains of Hindukush which the elevation is between 1000 - 4000 m. 

The study area includes the central Charikar district which has a total land area of 

30,500 hectares that part of the city was affected by flood (Fig. 4-2). Ghorband river is flowing 

through Parwan province. It is a tributary of the Panjshir river, then a sub-tributary of the Indus 

River, then the Kabul river. The Ghorband runs entirely in Parwan province, where it gave its 

name to the Ghorband district. It is born in the eastern Sheybar pass (which connects the 

provinces of Parwan and Bamyan, or watersheds of the Ghorband and Kunduz river) and passes 
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in an eastbound direction which it maintains throughout most of its course. It runs along the 

south and the imposing central range of the Hindu Kush, receiving meltwater in the Sheybar 

pass area of Salang. It flows from this in a long valley between the high range of the Hindu 

Kush (north) and Koh-i-Baba in the south. It then converges with the Panjshir, on its right bank, 

10 km east of Charikar. It flows through the districts of Sheikh Ali, Shinwari, Ghorband, and 

Surkh Parsa.  

Parwan is located at a high altitude, 1,800 m (5,900 feet) above sea level. Winter is 

cold, with an average temperature in January of -1 °C, usually with freezing nights, and with 

possible peaks of -20/-25 °C; snowfalls are frequent and sometimes heavy. Summer is hot 

during the day, sometimes scorching, but nights remain usually cool. Precipitation in Charikar, 

fairly low, amounts to 300 mm per year. The rainiest season is spring. In summer, it rarely 

rains. In Charikar, the sun shines quite often even in winter, while in summer, it regularly 

shines. 
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4.3. The flash flood in Charikar 

A devastating flash flood occurred near the residential areas in Charikar city of Parwan 

Province, Afghanistan on Aug. 26, 2020, killing over 100, most of the victims were children 

and women. More than 150 were injured (Tolo News, 2020), In the flash flood event, more 

than 17,000 people have been affected and nearly 2,000 homes were destroyed (The New York 

Times, 2020), The midnight floods surprised locals who were asleep. According to local 

witnesses, a roar was firstly heard and then a flood was arrived at their houses (The Guardian, 

2020). Even police soldiers attempted air shooting to wake up people but unfortunately, most 

of the people did not notice. Rescue teams, locals and social groups were searching for the 

bodies of the victims. But many people were missing. Based on a report (Independent Farsi, 

2020), a person was missing nine members of his family. The substandard mud houses on the 

mountainside near the Opyan village (Fig. 4-3) and some other areas around Charikar turned 

into rubble after the flood as shown in Fig. 4-2. 
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Figure 4-2.  The affected area in Charikar A) people walking near the damaged houses after heavy 

flooding in the Charikar, Parwan province, Wednesday, Aug. 26, 2020. the photograph is taken from 

(Gul, 2020) accessed via Fox news; B) a man standing in front of what is left of his house after covering 

all his properties under heavy debris of flash flood Photograph taken from (Gul, 2020), C) Villagers 

soldiers search for victims in a mudslide resulted after a flash flood affected the area at Sayrah-e-Opiyan 

in Charikar (Photograph is taken from (Jalali, 2020). D) flash flood brought debris and boulders into 

the house and covered the car and injured and killed the people, (Photograph is taken from 

(Azadmanish, 2020), E) A general view of a building in Charikar covered with flooded debris of 

flooding in Parwan, Afghanistan August 26, 2020, this picture obtained in (The Guardian, 2020). 

 

This tragic event, in addition to the intense war and the Covid-19 epidemic, further 

affected the health system, which is completely dependent on foreign aid for even some of its 
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most basic services. Charikar city is located in an area where a series of flood channels and 

valleys directly can put the residentials of the city under critical threat. Population pressure, 

flat area shortages, and inappropriate land development lead most of the people in Afghanistan 

to live in hilly flood-prone areas such as Charikar which highly likely lead to an increase in 

flood-induced building damage. 

 

Figure 4-3.  Compounds in Charikar city are at risk of flood due to a lack of regular urban planning, 

the flood path information is taken from the Surface Water Resources Department of Afghanistan. 

 

As can be seen in Fig. 4-3, flood paths or valleys are shown in red color where each red 

area contains hundreds of residential buildings where the life of their residents can be in danger 

at any moment by floods. Government control and regular urban planning have been neglected 

in the construction of new towns and buildings. Irregular and arbitrary sale of land by landlords 

and local bullies, and most importantly, the absence of floods in the city of Charikar in recent 

years have encouraged people to feel that these susceptible areas are safe to buy and build the 

houses. The building and construction were growing at an unprecedented rate until a 
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devastating flash flood occurred and affected the people’s life and the economy as shown in 

Fig. 4-2. 
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4.4. Materials  

4.4.1.  Sentinel-2 imagery 

Sentinel-2 satellite imagery is a constellation of two earth observation satellites, 

developed by the European Space Agency (ESA) and the European Commission’s ambitious 

Copernicus Program, consists of two identical satellites: Sentinel-2A, launched on June 23, 

2015, and Sentinel-2B launched on March 7, 2017, available in various processed formats 

(ESA, 2015). Because the so-called Multispectral Instrument (MSI) products experience 

different stages of processing to reach a Level that becomes accessible by the users. From the 

main stages of Level-0, Level-1A, Level-1B, Level-1C, and Level 2. However, Level-0 and 

Level-1A are not accessible by users and are in the instrument source packet (ISP) format, 

which is a compressed raw image data format. Level-1B has radiometrically corrected imagery 

with Top-Of-Atmosphere (TOA) radiance which is made of granules 25 by 23 km long. Level-

1C has formed in 100 × 100 km tiles in an orthorectified format in UTM/WGS 84 projection 

(ESA, 2015). Level 2A can be processed from Level-1C products using Sentinel-2 Toolbox. 

Level -1C and Level-2A are the most used product in land cover/ use mapping. This dataset is 

available free to the public domain as part of the free, full, and open data policy of the European 

Commission and European Space Agency. 

Sentinel-2 data have been utilized in numerous research studies of earth sciences and 

atmospheric sciences since its launch and are ideal for agriculture, forestry, and other land 

management applications. (Szostak et al., 2018; Miranda et al., 2018; Wang et al., 2018; 

Taberner et al., 2020), flood mapping (Caballero et al., 2019; Dinh et al., 2019; Rättich et al., 

2020), wetland monitoring (Solovey, 2020) and agricultural activities (Zhang et al., 2019; 

Kobayashi et al., 2020). The radiometric and geometric quality of Sentinel-2 data is technically 

superior to data acquired by other low spatial resolution data such as Landsat data. The 
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dominance of the Sentinel-2 is including a 10-day revisit time at the equator and a 5-day revisit 

time at mid-latitudes, as well as a spatial resolution of 10 m. Although they have the 

disadvantage of being affected by cloudiness, optical imaging satellites would be preferred for 

flood studies since the surface conditions of the affected areas are easily confirmed from the 

images compared to radar satellites. 

In this study, Sentinel-2 data with Level 1C processing available in the GEE were used. 

These data have been orthorectified and radiometrically corrected providing top-of-atmosphere 

reflectance values. Bands 4 (Red) and 8 (Near Infrared) were used with original spatial 

resolutions of 10 meters. An automatic cloud masking procedure was applied on both opaque 

clouds and cirrus clouds using a bitmask band QA60 of the S2-1C product which has cloud 

mask information. As indicated in Table 4-1, two months containing nine photographs are 

selected for the pre-event period, and two months containing five images are selected for the 

post-event period. Unfortunately, the first post-event image after the flood event was not used 

in the analysis because the affected area was heavily covered with clouds in the image. 
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Table 4-1. Distinguished features of the satellite imagery used in this study and their observation 
conditions. 

4.5.  Methodology 

The GEE cloud platform was used to execute multiple tasks impeccably from 

concurrent Sentinel-2 optical satellite data retrieval for flood mapping and to identify its impact 

on land use and land cover, and population on a parallel processing architecture. The Sentinel-

2 images were retrieved during the pre-flood period (June 5 to Aug. 24, 2020), the event date 

(Aug. 26, 2020), and the post-event date (Sep. 13 to Oct. 23, 2020). The various pre-processing 

techniques have been conducted by the GEE beforehand.  

  
No 

 
Image ID 

 
Date 

 Acquired 

 
Cloud  
Cover  

    (%)       

 
Relative  

Orbit 

 
Pass  

direction 

 
Processing 

 level 

 

 1   1.10 134 Descending Level-1C 

Be
fo

re
 e

ve
nt

 

 2   0.63 134 Descending Level-1C 

 3   4.23 134 Descending Level-1C 

 4   23.75 134 Descending Level-1C 

 5   35.2 134 Descending Level-1C 

 6 8.63 134 Descending Level-1C 

 7 3.06 134 Descending Level-1C 

 8 1.20 134 Descending Level-1C 

 9   9.87 134 Descending Level-1C 

 10   8.7 134 Descending Level-1C 

Af
te

r e
ve

nt
 

 11 0.23 134 Descending Level-1C 

 12 0.82 134 Descending Level-1C 

 13     S2A_MSIL2A_20201013T060821 11.82 134 Descending Level-1C 

 14 0.68 134 Descending Level-1C 
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Figure 4-4.  Flowchart of the methodology used in this study. 

4.5.1 NDVI and Spectral water indices 

This study did not attempt extracting or identifying the body of water in the impacted 

area because there was no standing water. However, the NDVI index is utilized to assess and 

identify the flooded zone because researchers have developed numerous indices for identifying 

flooded areas. This study would shortly examine the application of various indicators in the 

affected area in order to evaluate their performance in the affected region. To extract water 

bodies from remotely sensed data, several spectral water indices have been established, mainly 

by computing the normalized difference between two image bands and then applying an 

appropriate threshold to classify the outputs into two groups (water and non-water features). 
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The MNDWI and NDMI indices are utilized by most researchers to extract water bodies such 

as lakes, rivers, ponds, etc. The current study's purpose is to use rdNDVI to delineate the 

inundated area following a flash flood where there are no leftover water bodies. Then, a 

correlation is calculated between NDVI and three spectral water indices, and the output of each 

indicator for identifying changes induced by the flash flood in the research area is illustrated. 

Figure 4-5 (a) and (b) shows the true color Sentinel-2 images observed before the flash flood 

on Aug. 24 and after the flood on Sep. 13. Examining the rectangular rectangles depicted in 

Fig. 4-5 reveals a trail of the inundated area that remains mostly due to the flood event. The 

color of the soil in the affected area changed as a result of increased soil moisture after the flash 

flood.  The reflectance of such darken wet soil is significantly low in infrared band such as near 

infrared (NIR) and short wavelength infrared (SWIR) as shown in Fig. 4-5 (c)-(f).  It means 

spectral indices using NIR and/or SWIR would be effective to detect the flood-inundated areas. 
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Figure 4-5. Observation of changes in the study area using pre- and post-event Sentinel-2 satellite 

images a) True-color images acquired on Aug 24, 2020; b) True-color image acquired on Sep 13, 

2020. c) NIR band acquired on Aug 24, 2020; d) NIR band acquired on Sep 13, 2020; e) SWIR band 

acquired on Aug 24, 2020; f) SWIR band acquired on Sep 13, 2020; Rectangular area is selected on 

those areas to analyses the NDVI time series. 
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4.5.2. Normalized Difference vegetation Index (NDVI) 

The NDVI index uses reflected light in the visible and near-infrared bands to detect and 

quantify the presence of live green vegetation. Simply put, NDVI is a metric that may be used 

to classify land cover in remote sensing areas and can measure the density and health of 

vegetation in each pixel. The first formal report of the NDVI was in (Rouse et al, 1973). The 

NDVI is expressed by Eq. (4-1): 

 

 

 

Where NIR is the near-infrared band and red is the visible red band. This index ranges 

from -1.0 to 1.0, essentially depicting green, with negative values originating from clouds, 

water, and snow, and values close to zero originating from rocks and bare soil. The NDVI 

function has very low values (0.1 or below) that correlate to vacant expanses of rocks, sand, or 

snow. Shrubs and meadows are represented by moderate values (0.2 to 0.3), while temperate 

and tropical forests are represented by large values (0.6 to 0.8). The estimated image of the 

NDVI index is visually presented in Fig. 4-6 to see the changes in the flash flood inundated 

area. 
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Figure 4-6. Observation of changes in the study area using pre- and post-event NDVIs. 

 

4.5.3. Normalized Difference Water Index (NDWI) 

The normalized difference water index (NDWI) was developed by (McFeeters, 1996) 

for detecting surface water in wetland regions and surface water measurement and is defined 

as: 

 

 

Where, for Sentinel-2, green and NIR are the reflectance of green (band 3) and NIR 

(band 8), respectively. The NDWI value ranges from -1 to 1. (McFeeters, 1996) determined 

the threshold value at zero. That is to say, if NDWI is greater than zero, the type of cover is 

water; alternatively, if NDWI is less than zero, the type of cover is not water. According to the 

previous study (Xu, 2006), NDWI was unable to entirely differentiate built-up features from 

water features. Because the NIR reflectance was lower than the green reflectance, NDWI 
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displayed positive values in built-up features that were comparable to water. Therefore, (Xu, 

2006) proposed the modified NDWI (MNDWI), which substituted the SWIR band (Landsat 

TM band 5) for the NIR band in McFeeters' NDWI equation (4-3): 

 

Where, for Sentinel-2, SWIR is the reflectance of short-wave infrared bands (Band 11). 

Eq. (4-3) is used to enhance open water features that are dominated by built-up areas. Noises 

from built-up land, vegetation, and soil is reduced considerably. This study visually presents 

the estimated image of the MNDWI index in Fig.4-7. This made it possible to observe the 

changes that had occurred in the region inundated by the flash flood. 

 

Figure 4-7.  Observation of changes in the study area using pre- and post-event MNDWIs. 

4.5.4. Normalized Difference Moisture Index (NDMI) 

The Normalized Difference Moisture Index (NDMI) was used to determine vegetation 

water content. For Sentinel-2, the normalized difference moisture index (NDMI) is derived as 

a ratio between the NIR (band 8) and the SWIR (band 11) using Eq. (4-4): 



102 
 

 

Like most indices, the NDMI value ranges between -1 and 1. Negative numbers 

approaching -1 indicate water stress, whereas positive values suggest waterlogging. NDMI can 

detect water stress in early stages, before it becomes a serious problem. Furthermore, 

employing NDMI to monitor irrigation, particularly in locations where crops require more 

water than nature can provide, aids crop growth tremendously. In order to determine whether 

or not it is possible to observe the changes in the study area as a result of the impact of the flash 

flood using NDMI, the NDMI images in the study area is illustrated in Fig. 4-8. Initially, the 

performance of NDVI, MNDWI, and NDMI in the flooded area is evaluated, and then the 

correlation between these indices and NDVI is demonstrated. 

 

Figure 4-8. Observation of changes in the study area using pre- and post-event NDMIs.  

 

The estimated images of the indices in Fig. 6-8 are visually presented to see the 

applicability of the index in detecting the changes in the flash flood inundated area. To examine 

how the images would alter after the flood, a completely identical color table ranging between 
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(-1 to +1) is specified for all of the estimated indices. As can be observed in Fig. 4-6, the color 

in the rectangle area of the NDVI-post event shifted to dark red (+1), although in the same area 

some changes were noticed in the MNDWI-post event (Fig. 4-7), but it’s not as pronounced as 

the NDVI. Additionally, the NDMI, in the selected rectangular area, depicts the changes as a 

result of the flood more pronounced (Fig. 4-8), compared to the MNDWI (Fig. 4-8), 

particularly in the NDMI-after image, vast areas at the tops of the hills (surrounding the 

rectangular areas), are altered to darker colors (+1), indicating an overestimation of the 

detecting the inundation area. 

In the inundated area depicted by the rectangular area in Fig. (4-6)-(4-8), a time series 

of NDVI, MNDWI, and NDMI is also displayed in Fig. 4-9 for the months of February through 

December of 2020. The result demonstrates that both NDVI and MNDWI values decreased 

just after the event over the flood affected area. However, NDMI does not follow a similar 

trend. In order to evaluate the relationship between the indices the correlation between NDVI, 

MNDWI, and NDMI is illustrated in Fig. 4-10.  

 

 

Figure 4-9.  NDVI, MNDWI, and NDMI time series over the course of one year in 

affected area 
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Figure 4-10. Correlation graphs between NDVI and NDMI and MNDWI. 

 

It is clear from Fig. 4-10 that NDMI and NDVI have a weak negative correlation (R2 = 0.27). 

NDVI and MNDWI, on the other hand, show a high positive correlation (R2 = 0.82).  

It is possible to identify the changes using most of the stated spectral water indices due 

to the impact of the flood on the affected area by manipulating the color table to some extent. 

These results indicate that the flood inundated areas can be detected not only by MNDWI but 

also by NDVI. Furthermore, the NDVI has a higher spatial resolution (10 m) compared to those 

of MNDWI (20 m) and NDMI (20 m) because the spatial resolution of the SWIR band is 20 m 

in the Sentinel-2 images. Higher spatial resolution images are expected to detect the inundation 

areas in more detail. For those reasons, this study intends to employ NDVI applicability in 

detecting flood-inundated areas. 

4.5.5. Relative Difference NDVI (rdNDVI) 

It is self-evident that the information contained in any given index varies substantially 

depending on the seasons and type of land cover, such as vegetation types. As a result, using a 
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single indicator to assess complex landscapes is technically difficult because change does not 

always correlate to the degree of effects (Miller et al, 2007). It's difficult to quantify changes 

in fractional forest, grass, or shrub cover since an NDVI drop in a low-NDVI drought-sensitive 

open forest area can have a greater impact than a similar percent loss in a high-NDVI dense 

forest (Norman et al, 2016). As a result, (Norman et al, 2020) proposed the Eq. (4-5): 

 

In Eq. (4-5), NDVIPre and NDVIPost present the greenest pixel composites in 

multitemporal pre- and post-event satellite imagery, respectively. Eq. (4-5) was originally used 

to help not only interpret or quantify the changes in complex landscapes such as fractional 

forest, grass, or shrub cover, particularly with low resolution imagery, but also help partially 

overcome problems that arise from NDVI’s nonlinear responsiveness or NDVI “saturation” 

effect (Norman et al, 2020). When forest cover is low, a few trees added (or lost) have a higher 

impact on NDVI than a few trees lost in a dense forest cell. When both areas experience the 

same absolute change in NDVI, taking the square root of the denominator makes cells with 

high and low NDVI values fall more similarly. The result of Eq. (4-5) represents a normalized 

percentage of NDVI gained or lost. Later, (Scheip et al, 2021) used the rdNDVI technique to 

detect surface changes, primarily vegetation area changes, as a result of fire, volcanic eruptions, 

and landslides. (Scheip et al., 2021) never discuss the feasibility of the method in detecting 

flood inundated areas, particularly in non-vegetated areas, unlike the current work. This study 

focusses on feasibility of the rdNDVI-based detection, delineation, assessments of inundated 

area in non-vegetated arid region in Charikar, Afghanistan.  

In this study, two temporal composites are made. One is a stack of all pre-event images, 

and the second contains all post-event images. Then, pre- and post -event NDVI is calculated 

for the so-called stacks. The greenest-pixel composite is a single composite or tiled image 
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generated from all images within the user-defined pre- and post-event window that records the 

pixel with the highest NDVI result as shown in Eq. (4-1). Instead of differencing true-color 

composites such as red, green, and blue bands, it exploits changes in surface vegetation by 

developing and differencing an NDVI band from the greenest-pixel composite image. Simply, 

the algorithm works in a way that from all-composite images it retains only the pixels with the 

highest NDVI value from the entire stack. This composite indicates the peak phenological cycle 

of pre- and post-event conditions. The rdNDVI indicator was derived using the peak 

phenological cycle calculated from the user input duration (in months) for the pre- and post-

event duration.  

4.5.6. Histogram-based segmentation 

The thresholding-based segmentation algorithm is one of the simplest, most powerful, 

and most commonly used algorithms for the segmentation process. Segmentation based on 

histogram applies a thresholding value. This technique is used to segment the area of interest 

(AOI) from images with a uniformly bright background. Based on AOI, the threshold might 

have a single or multiple value. The entire image is pixel-by-pixel scanned in order to designate 

pixels as objects or background according to gray-level value and thresholding function (T). In 

the current study, to discriminate between the inundated and non-inundated area pixels, a 

histogram-based thresholding technique is used to find a set of thresholds. The method 

associates each pixel of the image (f) with a binary number that depends on the intensity of the 

pixels and a threshold T: 

 

The above equation simply defines the binarization method. The thresholding process 

produces a binary image as its output. In eq. (4-6), pixels with an intensity value of 1 correspond 

to objects (inundated area), while pixels with a value of 0 correspond to the background (non-
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inundated area). In histogram-based thresholding, it is critical to select the optimum threshold, 

and this process needs to be carried out in a way that produces the least amount of bias possible. 

The optimal value was obtained manually by iterating the value and observing the outcome. 

This procedure was repeated until it was determined that, with the selected value, the image 

contained almost all of the pixels from the original image. The histogram-based methods 

typically produce results that contain noise that needs to be removed before further analysis 

can be performed. In this particular research area, using sieve analysis in ENVI 5.3 to exclude 

each individual pixel that is less than 10. It is possible to eliminate noise by using larger (11 or 

12 pixel) values. However, using pixels less than 10 would diminish most of the single pixel 

of such size in the vicinities of the inundated area, which may underestimate the inundation 

area. 

4.5.7. Accuracy assessment procedures using confusion matrix  

To validate the rdNDVI detection result, the flood inundation map was first created 

using visual interpretations of pre- and post-event Sentinel-2 images, as well as governmental 

reports from after the flood, as shown in Fig. 4. Confusion matrix is employed to evaluate the 

accuracy of detected inundation compared to the inundation map of the visual interpretation. 

Confusion matrices, also known as error matrices, are typically utilized as the quantitative 

method for characterizing the accuracy of image classification. These matrices contain 

information about actual and predicted classification. It is a table that illustrates the 

correspondence between the classification result and a reference image. The generation of a 

confusion matrix requires ground truth data, such as cartographic information, manually 

digitized photographs, and GPS-recorded results of field work or surveys. This data is also 

referred to as reference images. In this analysis, the reference image is a manually digitized 

version of an image that was compiled from various sources, including photographs taken after 
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the flood, published reports, and government survey reports. It is necessary to make a 

comparison between the pixels that have been classified and the truth data. The inundated and 

non-inundated regions of this study area were generated utilizing binarization thresholding 

techniques. This study utilized the results of the visually identified inundated reference map 

data to perform the accuracy assessment. The estimated inundated pixels located within the 

boundary of the reference map (visually identified inundated map) is the number of correctly 

identified pixels. On the basis of the confusion matrix, a pixel-by-pixel analysis of the image’s 

accuracy was carried out. The accuracy of the outcome is determined by considering the user’s 

accuracy, the producer’s accuracy, the overall accuracy, and the kappa coefficient. 

4.5.8. Flood susceptibility mapping model based on Flow-R 

Remote sensing technology is a very useful tool for detecting and monitoring land-use 

changes after natural disasters. However, evaluation and prediction of hazardous areas for 

flooding are also important issues in considering countermeasures for future events. In order 

to talk about how well the simulation method works for figuring out flood inundation areas for 

future flash floods, semi-automatic debris flood mapping susceptibility is made using Flow-R 

and free DEM from ASTER Global DEM (ASTER-GDEM) (NASA et al, 2018) with 30 m 

spatial resolution (see Fig. 4). Flow-R is a freely available simulation software developed by 

(Horton et al, 2013) that has been used to simulate the flow propagation of debris flows and 

debris floods through a DEM. The Flow-R software is a path assessment of gravitational 

hazards that provides a substantial basis for a preliminary susceptibility assessment at a 

regional scale (Horton et al, 2013). It has been successfully applied to different case studies in 

various countries with variable data quality and satisfying accuracy. This study utilizes the 

Flow-R simulation to discuss the applicability of the technique in assessing flood areas for a 

future event. Although in this study, Flow-R is applied to a true disaster, such a simulation 
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technique is especially useful to identify vulnerable areas before the sources of an event are 

provided. The main input requires two steps to apply the technique. For applying Flow-r first, 

it is needed to provide source points using morphological and/or user-defined criteria. Second, 

debris floods are being propagated from the given source points based on simple frictional laws 

and flow spreading algorithms. Debris floods are caused by water moving quickly through 

steep channels with a lot of debris in them. Their peak flow is similar to that of water floods 

(Hunger et al., 2014). 

The DEM used for the simulation of flood susceptible areas were 30 m, which is very 

low resolution. However, the developer of the Flow-R (Horton et al., 2013) reported that the 

quality of the produced map is of major importance for the result accuracy. In addition, Horton 

et al. (2013) suggest that a DEM resolution of 10 m is a good compromise between the amount 

of time it takes to process the data and the quality of the results. In addition, the hazard map 

that is generated by Flow-R is a possible future hazard map, which means that compatibility of 

one hundred percent is not required to be achieved. Because it only shows the areas that could 

potentially be hazardous. For Flow-R analysis, this study follows the methods described by 

(Horton et al., 2013). 

4.6. Extraction of flood inundated areas 

As described in the preceding chapter, the pre-event and post-event periods for this 

study are two months and two months, respectively. There were 14 photos available for the 

given time period. This study considered the total number of pre-event images and then 

changed the number of post-event images during the course of the study in order to evaluate 

and determine the shortest time required for the rdNDVI to analyze and identify the affected 

area. As illustrated in Figure 4-11, the analysis technique starts by combining all pre-event 

composites into a single post-event image (a). In the subsequent stages of analysis, two post-
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event images are gathered, and in the final iteration, all pre-event images and post-event data 

in the study area are compared, as depicted in Figure 4-11 (a)- (e). 

 

 

Figure 4-11. Result of rdNDVI map for five scenarios. Pre-and post-event images were acquired 

between June 5, 2020, and October 31, 2020.  Figures (a)–(e) show the results of rdNDVI for all pre- 

and post-event images that were available and used in this study. (a) presents the result of rdNDVI 

which was generated with only one post-image acquired on Sep. 13, 2020. (b), (c), (d) and (e) represents 

the results obtained from two, three, four and five post-event images, respectively. 

 

Figure 4-11 presents the rdNDVIsʹ inundation map where blue color illustrates the 

decrease of NDVI as a result of the flood event. The colors other than blue show no change 

(green) and vegetation gain (red color). From Fig. 4-11, it can be clearly seen that by 

considering only one post-event image, a clear inundation map is obtained. By increasing the 

number of the post-event images, a slight change is noticed in the result of the inundation map. 
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The changes were so small that they were barely can be noticeable without a close-up of the 

image. Therefore, using only one post-event image and the rdNDVI algorithm, the utilized 

method can detect the flooded area. This study employs the image shown in Figure 4-11(a) for 

the rest of the study. 

 

Figure 4-12. rdNDVI-based change detection image and greenest pixel composites (pre-event time: 2-

months; post-event time: 16 days). 

 

Figure 4-12 presents the larger map of the rdNDVI vegetation change in percentage. 

The blue color represents the loss of vegetation, which here means inundated areas. Whereas 
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red colors indicate vegetation gain or non-flooded areas’ detection. As can be seen, the cur-

rent technique rapidly detects the inundated area using the explained methodology. 

Figure 4-13. Histogram of the rdNDVI image with the chosen thresholds. 

 

 However, there were falsely detected areas due to the existence of a sharp slope that 

reflected as a shadow. Hence, those undesired noise are canceled out using sieve analysis. 

Additionally, wrongly detected spots caused by steep slopes (greater than 30 degrees) are 

masked out. To undertake an error assessment, it was necessary to first simplify the 

representation of the flooded image into an easily recognizable map. As presented in Fig.4-13, 

this study used a histogram-based thresholding technique as explained in the methodology to 

find a set of thresholds that can discriminate between pixels that are inundated and pixels that 

are in the background. Figure 4-13 presents the histogram of the rdNDVI image with the 

minimum, optimum, and maximum thresholding. The image is segmented based on the 

optimum thresholding of -12.90 into two different colors. The optimum value was obtained 

manually by iterating the value and observing the result. This process was repeated until it is 
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noticed that, with the selected value, the image contained nearly all of the pixels from the 

original image. For values less than the optimal value, the color blue is selected to indicate the 

flooded area. Values larger than optimum thresholding were segmented into a non-inundated 

area which is presented in white or non-color. The result of binarization is illustrated in Fig. 4-

14 (a), which only consists of two classes of inundated and non-inundated zones. However, the 

result of threshold binarization contains unwanted salt-and-pepper noise. As illustrated in 

Figure 4-14(b), the so-called undesired noises with a size of 10 or less than 10 pixels are 

masked out. All noises with small areas were canceled out using the Sieve analysis in ENVI 

5.3 software, as shown in Fig. 4-14 (b).  

 

Figure 4-14. Extraction of inundated and non-inundated areas from the rdNDVI result based on 

binarization for two thresholds. a) The left image presents the result of threshold binarization with 

unwanted salt-and-pepper noise. b) In the left image, the right image presents the inundated area (red 

lines) is superimposed on the result of theextracted image of the threshold-binarization after removing 

salt-and-pepper noise. 
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Figure 104-14 (b) shows the final inundation map of Charikar, which occurred on August 26, 

2020. A total of 300 hectares of built-up area were extracted as inundations.  

4.7. Inundation map by visual interpretation 

To draw the true inundation of Charikar, this study collected the reports published 

mainly in the local language by the Disaster Management Authority, the National Statistic and 

Information Authority (NSIA) (HashtiSubh, 2020), and the National Water Affairs Regulation 

Authority. Moreover, the pre- and post-event satellite images are side by side compared to 

identify the changes between the flood events. The Sentinel-2 satellite images acquired before 

the event (Aug. 24, 2020) and after the event (Sep. 13, 2020) are used as reference data. 

 

 

Figure 4-15. Visual interpretation of the flood inundated area. a) Drawn from visual interpretation with 

government reports, b) Inundation area mapped by (IWMI, 2020). 
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The true Charikar inundated vector data is overlaid in red color, which is similar to the 

true impacted site. Because of the resolution of the satellite images, only significant changes 

were considered. Therefore, minor damage may not be visible, and it was neglected in this 

study. Although the inundation area by the Charikar flood was also estimated by visual 

interpretation in a previous study (IWMI, 2020), the interpreted area was limited. This study 

estimates the inundation map over a larger area. In the process of visual interpretation, the 

previous inundation map created by IWMI (2020), and official reports are examined. The 

official reports by the government were reflected in the inundation map. For example, when 

building damage was reported in some towns in the official documents, inundation areas were 

identified in the town by the visual interpretations. Figure 4-5 (a) presents the result of visual 

interpretation carried out in this study. Figure 4-5 (b) shows the result of the previous 

inundation map in (IWMI, 2020). Based on the visual comparison of the images, it can be 

confirmed that the inundated area obtained in this study has good agreement with the previous 

visual interpretation. 
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4.8. Accuracy assessment 

The accuracy assessment of the results obtained in this study was made through a 

confusion matrix explained in the methodology. The result of the rdNDVI-based change 

detection shown in Fig. 4-14(b) is overlaid on the visually identified inundation map shown in 

Fig. 4-15(a). The error assessment was conducted pixel-by-pixel based on the confusion matrix. 

The result of the confusion matrix is presented in Table 4-2. It presents the user’s accuracy, the 

producer’s accuracy, the overall accuracy, and the Kappa coefficient. The accuracy assessment 

obtained from the analysis of this study shows an overall accuracy of 88.44 % with a Kappa 

coefficient of 0.75, which indicates a good agreement between thematic maps generated from 

images and the reference data. 

Based on the inundated map obtained in this study, most of the affected houses were in 

built-up areas, and it was also confirmed by government reports. Another significant point of 

this method is the ability to detect changes with a single post image. Increasing the number of 

post-event images does not increase the quality of the detected image. Therefore, the rdNDVI 

algorithm has the potential to quickly identify the flood-affected area immediately after an 

event on a routine basis, typically with comparable accuracy to on-site reports, to help decision 

makers find a quick way to contribute significantly to the post-disaster activities. 
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Table 4-2. Accuracy assessment result using the confusion matrix. 

Actual change status 
  User’s 

accuracy 
(%) 

 
Producer’s      
accuracy        

(%)   

 
 

 Classes 
Inundated 

Non-
inundated  

Row 
total 

 

(Pixels) (Pixels) (Pixels)    

M
od

el
ed

 
ch

an
ge

 s
ta

tu
s 

Inundated 2,323 524 2,847 81.59 88.23  

Non-
inundated 

310 4057 4,367 92.9 88.56  

 

Column total 2,633 4581 7,214 

Overall 
88.44 

 
 accuracy  

  Kappa 
Coefficient 

0.75  
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4.9. Monitoring the changes in the affected area in two years 

The spatial resolution of remote sensing data accessible to state, local, and regional 

agencies has markedly improved. It is very helpful for the public sector and local governments 

to consider the use of new remote sensing technologies to monitor and efficiently act based on 

needs. The use of satellite data and remote sensing applications already brings significant 

efficiency to the decision-makers and policymakers of developed countries. However, 

developing countries such as Afghanistan do not have the technical capacity to use remote 

sensing data and applications for post-disaster activities. In most cases, even having 

information about the affected area, the government does not reach out to the people to help 

them in the recovery process. 

From the NDVI time series (Figure 4-16) in the affected region depicted by the 

rectangle in Figures (4-5) - (4-8), it can be seen that the NDVI decreased following the Charikar 

event. As can be seen, even after one year, the NDVI values did not recover. This study 

illustrates the rdNDVI changes one year after the event in Fig. 4-17. The rdNDVI image time 

series shows very minor and negligible changes, indicating that the damaged area has not yet 

recovered considerably.  Probably one factor behind the lack of changes in the NDVIs is the 

limitation of economic and human resources in the Afghanistan government, which they failed 

to utilize to revitalize and rebuild the affected areas. People also could not rebuild their houses, 

probably due to their poverty. This result shows that the NDVI and rdNDVI techniques are 

very useful for monitoring the event, and it will particularly be useful to observe how long it 

will take for the recovery of the affected area. 
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Figure 4-16. NDVI time series over the study area; the blue line indicates the raw NDVI from Feb. 

2019 to Apr. 2022. 

 

Figure 4-17. rdNDVI changes in Charikar after one year period. 
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4.10. Flow propagation analysis by Flow-R 

The freely available ASTER-GDTM with 30 m spatial resolution was used in the 

simulation of the Charikar flood event. The initial pixels of the detected inundated areas in the 

mountains were selected as the predefined source points. The parameters for flow spreading in 

Flow-R were provided as shown in Table 4-3.  

Table 4-3. Debris-flood parameters used in Flow-R. 

Types of input Flow-R Parameters Value 

Directions 
algorithm 

Holmgren 
(1994 modified) 

Dh=2, 
exponent=4 

Inertial 
algorithm 

Weights Default 

Friction loss 
function 

Travel angle 4, 5, 6 Degrees 

Energy limitation Velocity 15 m/sec 

 

These parameters were also used in the evaluation of the debris flow events in 

Hiroshima prefecture, Japan in July 2018 (Miura, 2019). Three different travel angle iterations 

for the analysis, as illustrated in Table 4-3 are considered, because the threshold of the travel 

angle largely controls the propagation areas. The result of each iteration is shown in Fig. 4-18. 

The overlaid red lines are the visually identified inundation maps. The results show the 

estimated spreading areas well reproduced the inundation areas by the flood. It is noticed that 

smaller travel angles such as 4 degrees overestimated the inundation areas as shown in Fig. 4-

18 (a), and larger travel angles such as 6 degrees underestimated the flood inundation areas 

(Fig. 4-18 (c)). The result with a travel angle of 5 degrees shown in Fig. 4-18 (b) gave moderate 

spreading areas. Figure 4-18 (b) depicts a spread region that is slightly bigger than the 

inundation areas that were determined, but the simulation that used a travel angle of 5 degrees 

was able to better reproduce these inundation areas. These results indicate that hazardous areas 
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for future flood events can be evaluated if appropriate source points are provided in the 

simulation. Such simulations would be useful not only for government officials but also for 

residents living in natural hazard susceptible areas, particularly flood and debris flow prone 

areas, to increase their awareness of mitigating future disasters. 

 

Figure 4-18. Flow-R generated flood -debris susceptibility map using a 4-degree travel angle 

illustrated in (a), 5-degree travel angle in (b), and 6-degree travel angle in (c). 
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4.11. Significance of the method 

The novel aspect of this study is the combination of pre- and post-greenest pixel 

compositing with the Google Earth Engine service in order to map hazard-related changes in 

the vegetated and non-vegetated areas, as well as flat areas, mountainous areas, and areas with 

a high concentration of buildings. This work is also an attempt to bridge the gap between the 

worlds of cloud computing and big data, which enables extremely large satellite datasets to be 

processed quickly in response to a crisis. On the other hand, government agencies and the 

general public could benefit from the current method even though they lack the expertise to do 

so directly through the Google Earth Engine utilizing the rdNVI to monitor changes in the 

vegetation. Schiep et al., 2021, utilized the rdNVI to monitor changes in the vegetation; 

However, those researchers did not investigate the usefulness of the system in identifying 

landslides, particularly in areas that were devoid of vegetation. In contrast to the previous 

research Schiep et al., 2021, which proposed using the method in vegetated regions, this study 

successfully applied and map the inundated area by using the rdNDVI approach in a dry 

environment without any vegetation. In addition, the accuracy of the rdNDVI methodology 

was not investigated in the previous research; however, in this work, the accuracy of the method 

is also discussed. 

 The use of this study in a place with little data, less research, and significant security 

challenges would be an additional contribution that would be of use for government and 

volunteer organizations. Another important part of the current study is its applicability in a 

flood-prone area with no standing water when the satellite is passing. There are numerous 

methods for extracting water body using spectral water index such as NDWI (McFeeters 1996; 

Rogers et al., 2004), MNDWI (Xu, 2006), AWEI (Feyisa et al., 2014), EWI (Wang et al., 2014), 

NDMI (Zha et al., 2003) and NDBI (Gao, 1996). However, none of these techniques 
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acknowledged their application in detection of inundated areas with no standing water. 

Although it is conceivable to detect the inundated area in a completely identical scenario such 

as Charikar city using some of the water spectral indices, but no research has been conducted 

in this regard using the so-called indices. 

4.12. Urban planners and flood managers’ expectations from current study 

Rapid urbanization poses a serious threat to existing flood management infrastructure, 

putting lives and property at risk if it is not appropriately planned. Rivers, coastal floods, 

pluvial and groundwater floods, and manmade system failures can all cause flooding in urban 

areas. Lands with open soil that can be used for water storage are scarce in metropolitan 

settings. Flooding can occur when rainfall intensity is high and drainage systems do not have 

the ability to handle the flow. Constant urbanization has diminished the permeability of the soil 

in groundwater recharge zones, resulting in increased runoff and a higher risk of flooding. To 

avoid catastrophic disasters, it is critical to take preventative and precautionary measures while 

dealing with flood threats. As (Abdrabo et al., 2022) suggested, Flood Risk Assessment (FRA) 

is intended to improve disaster management efficiency, decrease the terrible social and 

economic effects of flooding, and direct urban growth to a safe place. As a result, FRA is 

critical for detecting flood-prone locations in arid urban contexts, reducing flood risks, and 

assisting in decision-making. (Abdrabo et al., 2022; Amundrud et al., 2015). 

Both structural and non-structural flood control measures must be undertaken to reduce 

current and future flood damage. The structural measures are engineering works that can be 

undertaken to remedy and/or prevent flood-related problems. Non-structural measures are 

those that aim to prevent or decrease flood damage or effects by introducing rules, regulations, 

and programs aimed at, for example, regulating land use and occupation, implementing 

warning systems, and raising public awareness. 
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This approach will significantly contribute to the rapid detection of inundated areas 

using a single publicly available satellite image, such as Sentinel-2. The GEE is utilized for the 

analysis in order to speed the operation. Rapid identification of the inundated area expedites 

the post-crisis management of rescuing the affected individuals, offering additional essential 

aid, and assisting the people in rebuilding and reconstructing the affected areas. Afghanistan’s 

government lacks the capacity to develop crisis maps quickly after an occurrence. The results 

of this study and the provision of such results can inspire the government to prioritize remotely 

sensed data for crisis management in the future. In addition, in this study, the detection of 

possible future flood utilizing Flow-R is also discussed. If future flood zones are identified, 

urban planners, policy makers, and flood operators on the ground will be better equipped to 

mitigate risks by taking the appropriate countermeasures, such as structural and non-structural 

measures. In addition, whether contemplating the formation of new cities or formulating plans 

for existing ones, it is strongly recommended that the Flow-R software be used to analyze the 

likelihood of future flooding. It is also important to note that local and central government must 

ensure that no new homes are constructed in high-risk regions. For existing settlements in 

flood-prone areas, the government must either replace homes with safer alternatives or 

implement structural measures such as detention/ retention facilities, channel improvements to 

reduce the impact of flooding in flood-hazard areas, construction of banks or dams, upstream 

storage and diversion works. 

 According to the results of the present study, the damaged area has not recovered even 

two years later. It is evident that the government is inadequate in terms of monitoring and 

offering assistance. The government will be able to monitor the damaged area and provide 

better aid to the affected area using the current method’s results and applications. Last but not 

least, the outcome of transferring the current study’s skills will be an improvement in 

government and officials’ awareness. 
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4.13. Applications and future aspects 

This section discusses the applications and future aspects of remote sensing technology 

for detecting and monitoring areas affected by natural disasters. The workflow can be easily 

applied to different areas, such as built-up areas, vegetated and non-vegetated areas. Moreover, 

it can be used in different flood scenarios, such as flash floods, coastal floods, fluvial, and 

pluvial floods. Unlike any traditional method, the GEE used in this study automatically gives 

the flood-affected area with little processing time after giving the area of interest and the 

concerning event date. It is also worth noting that the current method can quickly identify a 

flooded area with significant time efficiency in terms of disaster support management for 

affected people. In addition, most traditional methods of identifying flood-affected areas in 

urban, densely vegetated, or non-vegetated areas are challenging. In most cases, the download 

and preprocessing of images add extra time to the analysis process. However, the current 

method can determine the inundated area in the mentioned areas with considerable speed 

without the existence of the mentioned challenges in traditional methods. The GEE allows for 

rapid deployment of the algorithm during flood events and gives the user extra time to not 

download the numerous temporal images. 

Many false positive pixel changes on the land surface in the inundated images also 

noticed, which were mostly not caused by flooding. Most of the false-positive pixels detection 

was due to the sharp slope, which makes the pixels in those areas darker and, as a result, falsely 

leads the algorithm to detect those areas as a flood. To prevent the detection of such false 

positive pixels the sharp slope is masked out in the analyses. The current method is not able to 

capture the flood peak due to the acquisition frequency of Sentinel-2 or most of the time due 

to the clouds. However, the recent increase in launches of satellites with optical sensors will 

allow users immediate data acquisition just after a natural disaster. Moreover, the shortcoming 
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addressed here may need further research to find a possible way of automatically denoising the 

rdNDVI result to accomplish the analysis faster. 
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4.14. Summary of this chapter 

Due to the recent increase in the frequency and magnitude of natural hazards such as 

flooding events, satellite remote sensing has become more valuable for post-disaster activities. 

This study presented utilizing the rdNDVI in GEE using Sentinel-2 images to detect and 

estimate the flood-affected area. The technique presented in this study was employed in a flood 

disaster that occurred on Aug 26, 2020, in Charikar, Afghanistan. The method successfully 

detected the flood-affected area with only one post-event image which is significant time 

efficient in terms of disaster support management for the affected people. An increasing 

number of post-event images does not significantly improve the quality of the estimated 

inundation map. Moreover, it is being stressed that the method can successfully be used even 

in non-vegetated areas such as semi-arid regions like Charikar to quickly identify affected 

areas. 

The sharp slope of the mountain caused false positive pixels changes on the land surface 

in the inundated images which makes the pixels on those areas darker and as a result falsely 

leads the algorithm to detect those areas as a flood. The most flood-affected area was in the 

built-up area, which also can be confirmed by government survey reports. Accuracy assessment 

was carried out to verify and assess the accuracy of the inundated map. The accuracy 

assessment obtained from the analysis of this study showed an overall accuracy of 88 % with 

a Kappa coefficient of 0.75, which indicates a good agreement between thematic maps 

generated by the visual interpretation. Even after two years, there is no noticeable increase in 

NDVI values in the study area, indicating that the damaged areas have not recovered due to the 

government's lack of financial and human resources and the poverty of the affected population. 

Further, the Flow-R simulation is utilized to discuss the applicability of the technique in 

assessing flood areas for a probable future flood event. The inundated map obtained from the 

Flow-R was also comparable with the identified inundation areas. 
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Estimations of flooded areas serve as important input information used for determining 

the extent of natural disasters and for making decisions regarding the recovery plans for the 

damaged areas. The total flood-affected area using the current method was approximately 

estimated at 300 ha. With this, it can be concluded that the method utilized in this study has a 

considerable potential to map the inundated area rapidly in both flat and mountainous regions, 

and it indicates good applicability of this technique. With that being said, it suggests that this 

method can be used efficiently even with the viability of one single post-event image on a 

routine basis and runs whenever a new flood event has occurred. 
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CHAPTER V 

CONCLUSIONS 

 

This dissertation overviewed five major natural disaster and it finally utilize remote 

sensing analysis to detect, monitor, and predict the landslide and flood which are the leading 

cause of hundreds of life’s losses in Afghanistan. Besides the detection of the mentioned natural 

disaster, the extent of the landslide, such as volume, depths of erosion, and depositions is also 

estimated. To accomplish the objective of this study, two different methodologies is used. For 

landslide detection and assessments, nonlinear mapping techniques is employed. However, for 

flood detection and assessment, the rdNDVI techniques is utilized. The nonlinear mapping 

techniques is used for landslides because of lack high resolution stereo satellite imagery in the 

study area where the landslides happened. As a result, in the flood-affected area, similar data 

could not be obtained. Applying nonlinear mapping techniques is solely dependent on the 

availability of stereo types of satellite imagery. The availability of such high-resolution satellite 

imagery give user the opportunity to not only detect and assess the changes in the area but also 

estimate the volume and depth of those changes with high accuracy. On the contrary, the 

rdNDVI can detect both landslides and floods in any type of land area rapidly by using freely 

available satellite imagery. Although rdNDVI satellite imagery can be used to detect and assess 

nearly all types of natural disaster, it cannot be used to estimate the volume and depth of 

changes. 

This dissertation initially discusses the details of the natural disaster risk such as 

earthquakes, floods, landslides, avalanches, and droughts in Afghanistan. The availability of 

risk information is a key to the effective management of disaster and climate risks. The risk 

profile provides a summary and visualization of the national multi-hazard assessments. Such 
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information will provide essential data and information for policymakers, decision-makers, 

development planners, and infrastructure investors to ensure a more resilient future for people 

in Afghanistan. Therefore, this study discussed the susceptibility map, lack of coping 

capacities, lack of adaptive capacities, vulnerability map, exposure of the population to natural 

hazards, and world risk index as a result of exposure and vulnerability. This study also present 

which natural disaster is worse in terms of agricultural losses, property losses, and deaths. 

The nonlinear mapping technique is utilized to detect and estimate the volume of the 

landslide affected area using stereo-paired high-resolution satellite imagery. It is being stressed 

that the method can successfully be used in the image processing analysis to conduct mapping 

tasks, diminishing the geometric errors accumulating in the unchanged areas of the DoDs 

output, and finally, obtain the volume and average depth of the displaced material in the disaster 

area to ease the crisis management support and contribute very well to the more effective 

planning of disaster relief and restoration. 

The technique presented in this study was employed in a large-scale landslide that 

occurred on May 2, 2014, in Abe-Barek village, Badakhshan, Afghanistan. Using the DEMs 

of the difference change detection technique, the DEMs of landslide affected areas are 

generated from the pre-and post-event satellite stereo-pair images. Although the DEMs were 

corrected using the RPC method, registration noises or locational errors were still spotted in 

the nonaffected areas. The nonlinear mapping technique was utilized to diminish the aforesaid 

geometric inconsistencies or registration noises and enhance the accuracy of the process 

analysis. The proposed method has been coded in such a way that, in the selected testing zone 

with the given combinations of parameters, the post-event DEM (follower data), superimposes 

on the pre-event DEM, and pixel by pixel, scans neighboring vicinities for the best possible 

matching points in the pre-event DEM (controller data). In this study, nine scenarios were 

examined with different values of NW (window size or size of the subarea), NS (search area), 
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NC (consensus area), and n (number of iterations). As the quantitative and graphical 

comparison revealed, the locational gaps were significantly reduced, and a bell-shaped 

histogram, also known as a normal distribution, was obtained. Moreover, statistical values, in 

particular, mean and standard deviations, decreased more towards zero and one, respectively. 

Additionally, the obtained RMSE values also verified the nonlinear mapping’s applicability in 

decreasing the locational errors quantitatively. After carefully comparing and observing the 

assessments, NW = 5, NS = 9, NC = 3, and n = 3; were chosen as the required inputs for the method 

to use for the rest of analysis. 

The total eroded soil volume in the landslide area after adopting the nonlinear mapping 

method was approximately estimated at about 1.05 × 106 m3, and the volume of the deposited 

soil acquired was 6.73 × 105 m3. The landslide’s estimated volume was compared with the 

volumes obtained from the previous studies. The erosion volume of the soil obtained in this 

study showed good agreement with that achieved in the previous studies. The average depth of 

erosion, mostly situated on the mountain’s hilly side, was 8.6 m. On the contrary, the average 

depth of deposition, which is typically situated in a flat area, was estimated at 4.6 m. This 

highlights that nonlinear mapping has a considerable potential to reduce locational errors in 

mountainous regions. Therefore, it indicates a good applicability of the nonlinear mapping 

technique. It suggests that the method can be used efficiently on a routine basis and run 

whenever a new landslide event has occurred if high-resolution stereo-pair images of the area 

become available. 

Chapter four of current study presents This study explored the usefulness of the rdNDVI 

approach in Sentinel-2 images for estimating flood inundation areas in a semi - arid and arid 

region by employing the GEE. The approach of this investigation was applied to the flash flood 

incident in Charikar, Afghanistan on August 26, 2020. Several spectral indices, including 

NDVI, MNDWI, and NDMI, were utilized to detect the flooded areas. A strong relationship 



132 
 

was found between NDVI and MNDWI, and both indices decreased significantly in the 

affected zones soon following the occurrence of the incident. In contrast, NDMI did not change 

significantly between before and after the event. From the perspective of spatial resolution, it 

is determined that NDVI should be used to detect flooding zones. The NDVI was effective in 

defining flood inundation regions in a semi - arid and arid region, which is one of the most 

noteworthy findings of this study. The method successfully detected the flood-affected area 

with only one post-event image, which is significantly time-efficient in terms of disaster 

support management for the affected people. An increasing number of post-event images does 

not significantly improve the quality of the estimated inundation map. Moreover, it is being 

stressed that the method can be successfully used even in non-vegetated areas such as semi-

arid regions like Charikar to quickly identify affected areas. 

The sharp slope of the mountain caused false positive pixels on the land surface in the 

inundated images, which made the pixels in those areas darker and, as a result, falsely led the 

algorithm to detect those areas as a flood. The most flood-affected area was in the built-up area, 

which can also be confirmed by government survey reports. An accuracy assessment was 

carried out to verify and assess the accuracy of the inundated map. The accuracy assessment 

obtained from the analysis of this study showed an overall accuracy of 88% with a Kappa 

coefficient of 0.75, which indicates a good agreement between thematic maps generated by the 

visual interpretation. No significant increase in NDVIs value in the study area is observed even 

after two years, indicating that the affected areas have not recovered, probably due to the 

government's lack of financial and human resources and the poverty of the affected people. 

Furthermore, the Flow-R simulation is utilized to discuss the applicability of the technique in 

assessing flood areas for a probable future flood event. The inundated map from the Flow-R 

was also to some extent similar to the inundated areas that had already been found. 
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Estimations of flooded areas serve as important input information used for determining 

the extent of natural disasters and for making decisions regarding the recovery plans for the 

damaged areas. The total flood-affected area using the current method was approximately 300 

ha. With this, it can conclude the method utilized in this study has considerable potential to 

map the inundated area rapidly in both flat and mountainous regions, and it indicates good 

applicability of this technique. Finally, it is suggested that this method can be used efficiently 

with the viability of one single post-event image on a routine basis and run whenever a new 

flood event has occurred. 

The error estimation has not been discussed in landslide assessments using actual GCPs. 

Once such data are collected, much additional work needs to be done. For example, an error 

estimation of both depths and volume obtained from the nonlinear mapping and real GCP can 

be compared using the evaluation change analysis technique. Most of the false-positive pixels 

detection in flood detected area was due to the sharp slope, which makes the pixels in those 

areas darker and, as a result, falsely leads the algorithm to detect those areas as a flood, a 

manual denoising method was applied in this study. Moreover, the proposed rdNDVI technique 

is not able to capture the flood peak due to the acquisition frequency of Sentinel-2 or most of 

the time due to the cloud’s coverage. So further research needs to be done to find a possible 

way of automatically denoising the rdNDVI result to accomplish the analysis faster. 

As a final remark it is to say that the approaches based on satellite imagery and/or DEM 

would be advantageous for pre- and post-disaster efforts, particularly for countries with limited 

financial and human resources, such as Afghanistan. Implementation of remote sensing 

technologies, including the proposed method in this work, by the government and official 

agencies would be crucial for more prompt and effective responses to future natural disasters 

and for the development of effective remedies. 
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