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Abstract 

Predicting a ship’s long-term position can be game-changing in maritime industries. Ship 

position prediction for maritime situational awareness (MSA), as a critical aspect of maritime 

safety and security, requires a longer time interval than collision avoidance and maritime traffic 

monitoring. However, previous studies focused mainly on shorter time-interval predictions 

ranging from 30 min to 10 h. A longer time-interval ship position prediction is required for 

MSA and efficient allocation of ships or business objectives. This study used an end-to-end 

tracking method that inputs the previous position of a vessel to a trained deep learning model 

to predict its next position with an average 24-h interval, up to the 96-h interval. An AIS dataset 

with a long-time-interval distribution in nine years for Capesize bulk carriers worldwide was 

used.  

The dissertation is constructed from two main parts of the study: each consists of three 

experiments followed by constructing discussions. From the former, a deep learning model of 

the Indian Ocean was examined, and subsequently, the model performance was compared for 

six different oceans and six primary maritime chokepoints. In the third experiment, a sample 

location within the Malacca Strait area was selected, and the number of ships was counted daily. 

The results indicate that the ship position can be predicted accurately with an average time 

interval of 24 h using deep learning systems with AIS data. From the latter, larger networks of 

DL models were trained on different observation area sizes with magnified time intervals. Then, 

more observation size variations were conducted in the next experiment, increasing 4 and 3.2 

degrees on longitude and latitude, respectively. Finally, in the last experiment, five DL models 

were built for five major locations of maritime shipping routes focused on Capesize bulk 

carriers. The result reveals that the locations where importers of bulk shipments constitute the 

largest portion appear to be harder to predict than those that constitute bulk export regions.  
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Chapter 1                                                            
Introduction 

1.1. The Importance of Long-term Prediction of Ship Position 

Maritime transportation is recognized for its central role in the global supply chain 

considering it accounts for 90% of international trade by volume and 70% by value [1]. The 

United Nations predicted that the total volume of seaborne trade worldwide would increase by 

3.2% from 2019 to 2022 [2]. Therefore, establishing safety and security in maritime 

transportation is essential. Maritime situational awareness (MSA) is a critical aspect of 

maritime safety and security that can be achieved through tracking, surveillance, and position 

prediction of ships [3]. Once a prediction of the ship position is obtained, decision making and 

action planning can be supported at different information levels. However, ship position 

prediction for MSA requires a longer time interval than other tasks such as collision avoidance 

and maritime traffic monitoring, which mainly use a short-term prediction from a high-

precision real-time forecast spanning less than one hour [4]. Accordingly, we considered a 

prediction with a time interval ∆t longer than 12 h as a long-term prediction, and a prediction 

with a time interval between short- and long-term threshold as a medium-term prediction [5].  

Studies on the long-term prediction of vessel position remain scarce despite its 

considerable potential for maritime applications, while almost all previous studies have focused 

on either near real-time predictions (short-term prediction) or predictions with a time interval 

lesser than 12 h (medium-term predictions). Long-term ship position prediction is required not 

only for MSA but also for efficient allocation of ships by shipping companies in accordance 

with global freight demand. It can be utilized to monitor and assist the fleet, specifically, when 

communication with a ship operator breaks down owing to poor weather conditions or when a 

ship is in distress. It can also be implemented by shipping insurance and maritime investigators 

for investigation purposes. The ability to predict the long-term position of a fleet could prove 

not merely necessary but vital for strategy formulation in the fast-changing dynamics of 

maritime industries. 

Maximizing the potential of maritime big data is essential for predicting vessel positions. 

The automatic identification system (AIS) is a self-reporting message system on board a vessel 

that records its position and condition [6]. Each record of the AIS message contains the static 

and voyage-related information of the vessel and its dynamic information such as longitude, 
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latitude, speed over ground, course over ground, and heading. As of July 2008, all commercial 

vessels above 300 GT serving international routes were regulated to be outfitted with an AIS 

Class A device by the International Maritime Organization (IMO) [7]. Prior to the widespread 

use of maritime big data (i.e., AIS data), studies on vessel position prediction were conducted 

using data from radar or laser sensors, such as in the work of Perera et al. (2012) [8]. Since 

2015, studies in the field have started using AIS as a historical data source for ship position 

information. Czapiewska and Sadowski (2015) conducted position prediction experiments 

using linear and nonlinear motion functions for location data compression of AIS records [9]. 

The high volume of AIS data accumulated over the years is a potential asset that needs to be 

explored, especially in the current age of artificial intelligence. With this big data of vessel 

position records, it is possible to predict vessel position by applying advanced machine learning 

(ML) techniques such as deep learning. 

1.2. Objective of this Study 

This study aims to achieve a 24 h interval and more ship position prediction for MSA. 

Predicting a ship’s long-term position can be game-changing in maritime industries. The 

application of the long-term position prediction may not be the end goal. The results can be fed 

to another machine learning system, along with many other signals. Then, a business objective 

of the machine learning pipeline can be established broadly, such as for ship allocation, 

shipping investment, or global economic projection. For instance, with the objective of 

shipping investment, this downstream system will determine whether it is worth investing in a 

certain area and future time or not by predicting direct components to the measurement of the 

Baltic Dry Index (BDI), which has a predictive ability for a range of stock markets [10]. The 

accurate results of the application are critical, as it directly affects revenue. This work provides 

a valuable benchmark for future studies.  

Previous studies focused mainly on short- and medium-term prediction, ranging from 30 

min to 10 h intervals as the AIS data were dense (closely packed between short time intervals) 

but in a limited period or timespan. Naturally, a vessel position prediction with long time 

intervals (e.g., 24 h) requires data with a long timespan, given that state-of-the-art ML 

algorithms, such as deep learning, require large amounts of data to make accurate predictions 

for longer intervals [11]. Accordingly, nine-year AIS data for capesize bulk carriers worldwide 

and deep learning (DL) were used to accomplish long-term prediction. End-to-end learning 

refers to training a learning system represented by a single deep network model that supersedes 
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the preprocessing stages typically present in traditional pipeline designs. By using extensive 

fleet data and computing power, the model can learn robustness to noise and generalization to 

data variation; this result confirms that an accurate long-term prediction of vessel position can 

be generated with the straightforward method. The utilization of nine years of AIS data 

worldwide and the development of a generalized DL model from an uneven time-interval 

dataset for the long-term prediction of ship positions constitute the novelty of this study. 

1.3. Organization of this Dissertation 

Each chapter in this thesis is organized as follows. 

Chapter 1 overviews the long-term prediction of ship position and its importance. The 

objective of this study is also presented. 

In Chapter 2, studies on vessel position prediction are compiled and described based on 

the prediction methods. The different characteristics between trajectory-based and motion-

based methods are also described. The characteristics of this study are further discussed. 

Chapter 3 outlines the basic concept and data used in this study. The AIS and ship data 

used are described. The basic concept of the deep learning model for position prediction is also 

explained. 

In Chapter 4, the first part of the research, a one-day interval of ship position prediction 

is carried out. In the first experiment, the model performance was demonstrated for the Indian 

Ocean, followed by a comparison of the performance for six different oceans and six primary 

maritime chokepoints to investigate the influence of each area. Finally, the model performance 

for a sample area within the Malacca Strait was analyzed to simulate a practical application.  

In Chapter 5, as the second part of the research, the time interval prediction was magnified 

up to several days; a larger network was proposed where the previous model was used as the 

baseline, and the observation coverage was also enlarged. DL models were trained on different 

observation area sizes with magnified time intervals in the first experiment. More observation 

size variations were conducted in the subsequent experiment, increasing 4 and 3.2 degrees on 

longitude and latitude, respectively. In the last experiment, five DL models were built for five 

major locations of maritime shipping routes focused on Capesize bulk carriers. 

Finally, Chapter 6 presents conclusions, and some future works are proposed. 

The structure of this thesis is depicted in Figure 1-1. 
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Figure 1-1. Structure of the dissertation 
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Chapter 2                                                                            
Related Studies 

2.1. Methods of Vessel Position Prediction 

The methods for forecasting vessel positions can be classified into three categories: 

trajectory-based, point-based, and motion-based methods. Overall, studies concerning ship 

position prediction are summarized in Table 2-1; only studies focused on predicting vessel 

position are listed. The results of one method are not equivalent to those of another method 

because each method is specifically developed for the desired objective and the data used. 

Table 2-1. Vessel position prediction studies 

Prediction 

Method1 
Authors 

∆t 

Threshold 

∆t 

Prediction 
Objective2 

AIS Data 

(Range) 

ML 

Algorithm3 

Target 

Vessel4 

Target 

Area5 

Unrestricted 

Trajectory 

T-b [18] Medium 8 h MSA 5 m - Cg,Tg,Tk OW Yes 
T-b [20] Medium 10 h MSA 1 m - Cg OW No 
T-b [17] Short 15 min CA 1 y - nr RW Yes 
T-b [21] Short 5 min MTM 2 m kNN nr RW No 
T-b [19] Medium 1 h MSA nr ELM nr nr Yes 

P-b [23] Medium 1 h MTM 1 m kNN Fs,Cg,Tk RW Yes 
P-b [24] Short 50 min MTM 2 y CNN Cg, Tk RW Yes 
P-b [25] Short 5 min MTM 1 m CNN,LSTM nr RW Yes 

M-b [8] Short < 1 min MTM - - nr RW No 
M-b [9] Short 5 min DC nr - Cg RW No 
M-b [28] Short 40 min AD,MSA 1 m ELM nr OW No 
M-b [27] Short 8 min MTM 3 m - nr RW Yes 
M-b [30] Short 3 min MTM - MLP Tk RW No 
M-b [32] Short 15 min CA nr MLP Fe nr No 
M-b [31] Medium 4 h MSA nr MLP Ps  RW No 
M-b [29] Short 20 min CA,MSA nr MLP nr RW Yes 
M-b [33] Short 10 min CA 1 y bLSTM nr RW Yes 
M-b [34] Short < 1 min CA nr LSTM Fe RW No 
M-b this study Long 24 h MSA,SA 9 y MLP BC OW Yes 

 
1 Prediction methods: T-b, trajectory-based; P-b, point-based; M-b, motion-based 
2 Prediction objectives: CA, collision avoidance; MSA, maritime situational awareness; SA., ship allocation; DC, data 

compression; MTM, maritime traffic monitoring; AD, anomaly detection. 
3 ML algorithm or DL architecture used for vessel position prediction: SVM, support vector machine; ELM, extreme learning 

machine; kNN, k-nearest neighbors; MLP, multilayer perceptron; RNN, recurrent neural network; LSTM, long short-term 
memory; CNN, convolutional neural network; bLSTM, bidirectional long short-term memory. 

4 Target vessel type: Cg, cargo, Tk, tanker, Tg, tugboat, BC, bulk carrier, Fs, fishing vessel, Fe, ferry, Ps, passenger ship. 
5 Target area: OW, open water; RW, restricted water. 
nr, not reported. 
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2.1.1. Trajectory-based Method 

In the trajectory-based prediction method, clusters of vessel trajectories must be initially 

created and classified based on shipping routes from historical voyage patterns [12]. A 

trajectory is defined as a structure of polygon or matrix that forms one shipping route, created 

from AIS data points of particular ships or vessels entering a coverage area. A waypoint 

detection is utilized to detect new or existing routes once vessels enter the coverage. 

Trajectories can also be decomposed from a cluster or classification of AIS data points based 

on dense points in shipping routes or other criteria from all historical voyage patterns inside an 

examined area [13]. The route decomposition extracts similar vessel behaviors into a cluster; 

to accurately estimate vessel trajectory, different features are identified to decompose it into 

different sub-routes [14]. Figure 2-1 demonstrated a sample of trajectories extracted from a 

trajectory deonposition of AIS data points in the North Adriatic Sea. 

 
Figure 2-1. An example of decomposed highly dense routes extracted from historical vessel 

voyages in the North Adriatic Sea [3] 

As a set of trajectories creates a trajectory database, each trajectory must have a similar 

structure. It generally undergoes a trajectory reconstruction such as interpolation or other 

means (see Figure 2-2 for an example of trajectory reconstruction by interpolation AIS data 

points). The ship position that is wanted to be predicted is first matched to the database based 

on its historical trajectory. The reconstruction of trajectories requires intensive preprocessing 

regarding the varying density of data points, abnormal behavior, trajectory anomaly, noise, 

missing points, the assumption regarding status, and the trade-off between similarity thresholds 

[15, 16]. 



7 

 
Figure 2-2. An example of short trajectory reconstruction by interpolation represented with 

both data structures: the original AIS data (blue), and the new interpolated points (red) [17] 

A position prediction can then be derived by formulating or interpolating the trajectory 

structure. Because vessels' entire trajectories (such as port-to-port trajectories) are required in 

an observed area, this method has been implemented mainly for large areas (e.g., open waters, 

oceans, and straits).  

Several studies have developed unique route extraction algorithms to be used before the 

vessel position is predicted by deriving from its routes, such as in the work of Pallotta et al. 

(2014), Tu et al. (2020), and Mazzarella et al. (2015) [18-20]. We considered ∆t of Mazarella 

et al. (2016) to be effective for only 10 h because they merely demonstrated their trajectory-

based algorithm on a particular target and route, where the 10 h threshold exhibited the most 

significant performance compared to those of the other algorithms. Dalsnes et al. (2018) 

conducted predictions using a Gaussian mixture model combined with the neighbor course 

distribution method [17]. Using k-nearest neighbor (kNN), Virjonen et al. (2018) compared the 

trajectories of a new ship and historical ships within the Gulf of Finland [21].   

2.1.2. Point-based Method 

In the point-based method, the examined area is first transformed into non-overlapping 

cells or grids. The position of a ship inside the area is converted into a grid reference and 

defined by the occupied cells. Once a vessel enters the coverage, its movement is captured by 

these occupied cells. Figure 2-3 illustrates a grid ranges definition to be tested on a selected 

rectangular shipping area. As a fixed time interval must be maintained inside the observed 

coverage, the AIS points or trajectories must undergo a trajectory reconstruction such as 

interpolation or other means. An ML model then calculates the prediction of the next position 

of the ship, trained from historical movement data inside the grid. Some researchers used CNNs 

by converting vessel positions from AIS data into a gridded ocean floor model as the input. 
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Figure 2-3. An example of a grid ranges definition set on a designated area [22] 

Several studies have utilized this method for vessel position prediction for various 

objectives. Duca et al. (2017) employed a kNN classifier for ship route prediction [23]. Kim et 

al. (2018) employed a combined hierarchical architecture of a convolutional neural network 

(CNN) for feature extraction with five separate fully connected neural networks (NNs) to 

predict the number of ships around the Korean port Yeosu up to 50 min ahead with initial AIS 

points reconstructed by interpolation [24]. Zhou et al. (2020) used three different architectures, 

including CNN, long short-term memory (LSTM), and bi-directional LSTM (bLSTM) 

integrated with CNN, to predict the inflow and outflow of gridded Singapore waters [25].  

2.1.3. Motion-based Method 

The motion-based method estimates the future vessel position using motion functions from 

the current geographical position and movements (see Figure 2-4) or a trained ML model using 

historical information as input. Table 2-2 shows the main differences between trajectory-based 

and motion-based methods for vessel position prediction. This method is relatively more 

flexible than the other methods and can be effectively generalized for data variation. Most 

researchers have used this method for short- and medium-term predictions within a small area 

(e.g., near ports, waterways, and restricted water areas) and particular trajectories.  

 
Figure 2-4. An example of two conventional approaches to compute future position from the 

current geographical position and movements [26] 
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Several studies have utilized this method with many approaches. Juraszek et al. (2020) 

used an extended Kalman filter for fast short-term prediction in the distributed processing 

system Apache Flink [27]. Mao et al. (2017) generated ship position predictions 20 and 40 min 

ahead for the west coast of the US using an extreme learning machine (ELM) [28]. Duca et al. 

(2017) employed a kNN classifier to forecast ship movements around Malta [23]. Using an NN, 

Simsir and Ertugrul (2009) and Zhou et al. (2019) conducted predictions with intervals of 3 

and 20 min, respectively, targeting vessels in narrow waterways [29, 30]. Meanwhile, Zissis et 

al. (2016) attempted predictions in Greek waters up to 4 h ahead, focusing on the regular sea 

trips of passenger ships around the Aegean Islands [31]. Borkowski (2017) combined AIS 

location data and sensor data onboard a vessel to predict its subsequent position, aiming at 

collision avoidance [32]. Gao et al. (2018) used a bidirectional recurrent neural network 

(bRNN) with an LSTM unit seeking short-term predictions [33], and another study by Gao et 

al. (2021) combined the TPNet framework and LSTM for multi-step ship trajectory prediction 

based on four types of navigation stages [34].  

2.2. Characteristics of Trajectory-based and Motion-based Methods  

As long-term vessel position predictions have not been performed yet, determining a 

suitable method is vital for achieving long-term prediction. Consequently, the observed 

location (and dataset) must be considerably larger than the ship distance intervals to 

accommodate and capture their long-term movements; a small observation area limits long-

term movement. The point-based method inevitably involves computing the entire cell 

information in each computation cycle, and thus the observed area cannot be too large because 

the computational costs would be exorbitant. Meanwhile, utilization of the trajectory-based 

method is expected to result in high accuracy for any time-interval threshold and area size; 

however, this method is not sufficiently flexible for adaptation to factors other than the 

observed variable. It also involves arduous work on route clustering and classification and 

trajectory reconstructions, in addition to anomaly detection owing to the partially incomplete 

and noisy AIS data. Furthermore, although we can create a database for millions of historical 

trajectories, ship trajectories are not fixed but quickly adapt to the weather and other conditions; 

ship routes evolve owing to various factors such as climate change and the emergence of new 

ports and new routes [35]. In contrast, the motion-based method is relatively more flexible, 

efficient, and practical than the other methods, and, notably, can be effectively generalized for 
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data variation. Table 2-2 shows the main differences between trajectory-based and motion-

based methods for vessel position prediction. 

Table 2-2. Primary differences between trajectory-based and motion-based methods for vessel 

position prediction 

 Trajectory-based Motion-based 

Merits 
high accuracy for any time-interval 

threshold and area size 

flexible, efficient, and can be 

generalized for data variation 

Demerits 

requires arduous work on pre-

processing such as trajectory definition, 

classification, and reconstruction 

requires machine learning where 

developing a model involves a CPU-

intensive and specialized expertise 

 

Therefore, from the perspective of long-term position prediction on large international 

open waters without the consent of any restricted trajectory, a more general and updatable 

model with generalization to data variation and robustness to noise needs to be constructed that 

incorporates a fast prediction generation for predicting the long-term position of a vessel. In 

this study, a motion-based method was used to develop a generalized deep learning model for 

long-term vessel position prediction to overcome these challenges. 

2.3. Characteristics of this Study 

In previous studies, such as in Zhang et al. (2020), trajectories with missing records over 

one day and lasting less than one day were excluded from the training and testing process [35]. 

However, this study does not execute this pre-processing because eliminating the routes or 

trajectories with missing data can be applied when trajectories have been defined, only when 

using other methods (see Table 2-2). Because of the nature of our dataset, we consider an AIS 

message to be an outlier when its time interval from the previous messages is more than twice 

the observed time interval. For instance, in a 24-h time interval prediction, AIS data with more 

than 48 h intervals are considered outliers. These outliers (individual AIS messages, not the 

entire trajectories) are removed from the training process, but are retained in the testing process. 

An end-to-end DL model was developed to supersede a vessel position prediction model 

that requires arduous preprocessing steps (e.g., trajectory reconstruction) since the time 

intervals of the AIS data vary considerably. A trajectory reconstruction becomes impractical as 

the time intervals have an uneven distribution. The asynchronous nature of AIS messages with 

time intervals of less than 3 min allows the application of a trajectory reconstruction from a 
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short-interval to a long-interval dataset without a significant error. This satisfactory outcome is 

because the AIS points can be aligned using a simple method of sampling the nearest point in 

the time dimension that satisfies the x interval condition as . Nonetheless, this 

preprocessing destroys information regarding latent variables [36]; it causes distortion (the 

trajectory becomes compressed or simplified), causing the acceleration (derived from speed 

over ground) and rate of turn to become unusable [37].  

 
Figure 2-5. Uncertain trajectory reconstruction of long-time-interval data with uneven 

distribution 

However, if the values of the time interval ∆t are relatively large with uneven distribution, 

the interpolation can cause a considerable error in the aligned positions [38]. In this study, the 

dataset has ∆t values ranging between almost zero and 48 h (in the absence of outliers), 

indicating that although the dataset consists of daily AIS messages (averaging 24 h), their exact 

time interval can be longer than 24 h. The large gap in time intervals between two consecutive 

AIS messages signifies that the interpolation to create an evenly-spaced dataset time series 

would result in large errors. For instance, in a time window of 24 h, a moving ship generally 

has an average distance interval of more than 400 km. Consequently, interpolating the ship 

position in this extended time window is expected to result in a significant error in the aligned 

positions, thus accumulating additional errors when predicting the subsequent position. Figure 

2-5 illustrates the uncertainty of trajectory reconstruction of the long-time-interval data with 

uneven distribution; the aligned data are prone to result in a large error. Therefore, any 

application or method that requires trajectory reconstruction is considered impractical.  

Based on the nature of the AIS dataset used while achieving the objective (which 

eventually focuses on the long-time interval data and large observation area), performing a 

trajectory reconstruction is unattainable. Therefore, in this study, deep feed forward network 
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was employed to solve the long-term position prediction. Previous studies have also attempted 

to use this basic architecture but have been limited to shallow networks with limited time 

intervals and area sizes. We aimed for a larger-scale and longer timespan of the AIS dataset, 

and more importantly, developed a more general and updatable model from a long-time-

interval dataset with uneven distribution, which has not been achieved thus far. By leveraging 

the advantages of deep learning systems supported by extensive fleet data and computing power, 

the model was developed to learn robustness to noise from extensive data with unrestricted 

trajectories in international open waters and realize generalization to data variation of time 

intervals, vessel activities, statuses, and locations.  
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Chapter 3                                                                
Basic Concept and Data Used in This Study 

3.1. AIS Data 

We processed AIS data from exactEarth [39], considering that it was established as an AIS-

data-service company that started deploying AIS receivers on satellites soon after the IMO 

regulation was implemented. As exactEarth offers the untapped potential of extensive AIS data 

of SOLAS-compliant ships, we took advantage of the capacity provided by deep learning 

systems to learn from large datasets to improve the overall performance.  

The dataset comprises nine years of archived AIS messages of global capesize bulk carriers, 

from July 2010 to December 2018. This type of vessel exhibits proper records with less 

irregularity compared to those of smaller vessel types and more diverse shipping routes than 

containers and tankers [40]. The dataset alone is composed of over 3.5 million archived AIS 

messages from 1698 different IMO numbers (vessels).  

 
Figure 3-1. Time-interval distribution of the AIS dataset 

Daily archived AIS messages have random time intervals ∆t between less than 1 h and up 

to 48 h, averaging 24-h intervals; the time-interval distribution is depicted in Figure 3-1. The 

fitted probability density function (PDF) of the overall dataset showed a standard Gaussian 

distribution. The data proliferated from 2010 to 2014 when satellite-based AIS became a 

standard practice. Although the dataset has an uneven time-interval distribution, it is considered 

adequate for long-term prediction because it contains years of extensive fleet data worldwide. 
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3.2. Ship Data 

Ship specification data from IHS SeaWeb's fleet data [41] were utilized to organize and 

validate the capesize bulk carrier vessels from billions of raw exactEarth data records. This 

dataset was also used to rectify the static information in each AIS message.  

 
Figure 3-2. Overview of data exploration 

Figure 3-2 illustrates the overview of data handling from retrieval to processing for a DL 

model. All datasets were collected independently from each source and stored in a single SQL 

relational database for easy access and management. An IMO number identifies every vessel, 

each of which is related to another piece of information in the dynamic and static data. When 

a model needs to be generated, a specified chunk of the AIS dataset is retrieved from the 

relational database and subsequently processed into a DL model. All scripts from preprocessing 

to postprocessing were written in Python. 

3.3. Deep Learning Model for Position Prediction 

A DL model refers to the process of training and testing multilayered NNs that can learn 

complex structures and achieve high levels of abstraction [42]. Building a DL model to perform 

a specified task satisfactorily requires hours of iterative prototyping; the process is not a trivial 

task, even for a simple small model. Keras, an open-source high-level API framework capable 

of running on GPU clusters was used to facilitate rapid model prototyping [43]. The decision 

regarding the structure of the model and its input-target features was determined through our 

extensive experimentation and evaluation, focusing on the model objectives: performance and 

generalization on the observed areas. 

In this study, we employed a deep feed-forward Neural Network, or can be called a deep 

Multi-Layer Perception (MLP). The building block of each neuron or unit is shown in Figure 

3-3(a), and the overall network architecture is presented in Figure 3-3(b). For each unit in the 

hidden layer  , an activation function   is applied to the input’s weighted sum (  ). The 
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information is then propagated through the network up to the output layer , where the last 

layer end has no activation (a linear layer). 

(a)   

(b)  

Figure 3-3. (a) The building block of each unit in the MLP (b) The network architecture 

 
Figure 3-4. MLP architectures for regression 

The model was constructed as a DL model to solve regression problems. Compared with 

the classification problem that treats portions of the covered area as classes, regression 

problems can achieve a higher location resolution and, therefore, higher prediction accuracy 

[27]. The option of MLP architecture for regression is depicted in Figure 3-4. Scalar regression 

model of the MLP architecture outputs one scalar value, where vector regression yields two 

value at once; multi-output (or multihead) model has more parameters to be computed but can 

solve the imbalanced loss caused by the different scales of the target. In this investigation, the 
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target is longitude-interval and latitude-interval value between the current and the next timestep, 

and hence both vector regression and multihead model would produce similar result.  

A straightforward method that takes advantage of the capacity provided by deep learning 

systems with sufficient data and computing power is proposed to produce long-term ship 

position prediction. Fast result generation and generalization from the trained model make the 

proposed method suitable for practical use. The flowchart in Figure 3-5 summarizes the overall 

method for long-term vessel position prediction. Given a selected location and time range, a 

sizeable chunk of the AIS dataset is queried from the database. Next, a set of input features  

and a set of target features  comprising vessel positions at the next time step are created. Each 

set is standardized and then input for training into DL model(s). The model generates a 

prediction of the displacements of the positions. Then, the results are passed through inverse 

standardization using the standardization parameters of the target features. Finally, the 

predicted ship position (i.e., latitude and longitude) is systematically evaluated and analyzed. 

 
Figure 3-5. Overview of vessel prediction model with AIS and deep learning 

3.4. Procedure of This Research 

This study explores AIS data and deep learning potential for vessel position prediction by 

conducting three experiments on 1-d intervals followed by another three on several-day 

intervals. An overview of the study flow is illustrated in Figure 3-6 

In the first part of the research, a model definition was utilized. The model's objectives are 

to accurately predict the next-1-d position and make a generalization. The first experiment 

examines a DL model for the Indian Ocean. Subsequently, DL models were assessed for six 

open oceans and six near-port global primary chokepoints. The target area is the international 

open waters; we specified a worldwide observation into these twelve areas to avoid building 

an excessively large model. Finally, a simulation of practical application was carried out inside 

a sample area of the Malacca Strait. 

In the second part of the research, a new model was defined with deeper layers and larger 

networks. The objectives of this new model are to predict up to the next 4-d position and 

consequently more extensive coverage with the same procedure as the previous experiments. 
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The first experiment examines this new model compared with the previous model in four 

different coverage sizes and time intervals from 1-d to 4-d intervals; each time-interval model 

has a different coverage size due to the nature of moving ship characteristics. Afterward, the 

DL model was performed on more detailed size variation to capture the fluctuation of the model 

performance in more detail in order to find the optimum coverage size requirement for each 

time interval. Finally, five DL models for five major locations of maritime shipping routes 

focused on Capesize bulk carriers were assessed to further assess the area's influence. 

 
Figure 3-6. Overview of the research’s procedure 
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Chapter 4                                                                 
One-day Interval of Ship Position Prediction 

4.1. Overview of One-day Interval of Ship Position Prediction 

Study on long-term prediction of ship position (i.e., more than 12-h interval) is scarce, 

despite many advantages that can be attained. However, as machine learning algorithm thrives 

nowadays, supported by abundant maritime big data (i.e., AIS), the lofty aspiration is 

achievable. Deep learning, one of the most popular machine learning algorithms, craves 

enormous data for training to effectively produce accurate results. This criterion fits perfectly 

with maritime transportation as nowadays, AIS data has become mandatory for international 

shipping. 

This research is the first to predict vessel position for around 24-h intervals (on average). 

The long-term prediction aims to establish additional safety and security in maritime 

transportation, which benefits all relevant stakeholders. The motion-based method implies 

building a generalized model that can generate fast results suitable for practical use.  

This research consists of three experiments followed by discussions regarding the 

performance of end-to-end DL models. In the first experiment, a model for the Indian Ocean 

area was examined, and in the subsequent experiment, 12 models were investigated on open 

oceans and maritime chokepoints. In the last experiment, a selected sample location within the 

Malacca Strait area was examined, resembling a simulation of practical application. In the 

discussion section, the DL model was compared to other end-to-end models with sequence-

based architectures (i.e., RNN, LSTM), and then they were tested on a small dataset. Finally, 

the conclusion of this research is presented. 

The detail of the one-day interval of ship position prediction in this dissertation is 

presented in the following chapter. 

4.2. Methodology 

The overview of the prediction model is explained in the previous chapter.  

We performed the regression task by setting the target as a scalar value for analysis and 

objective evaluation in the prototyping process at the expense of running it twice; the target 

features are the displacements of longitude ∆λ and latitude ∆φ directions. Accordingly, the 
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input and target features were fed into two independent DL models with the same model 

properties. The model predicts the displacements in longitude and latitude directions that are 

uncorrelated.  

4.2.1. Model Structure and Properties 

During the prototyping process, the most salient input features were selected by evaluating 

permutation feature importance (PFI) based on Fischer et al. (2018) [44]. After a model was 

trained and the model score   was computed, a corrupted matrix   was generated by 

permuting feature   in the original matrix  . Subsequently, a new score   was computed 

based on the prediction of the permuted data . Finally, the PFI score  was calculated as 

follows: 

 

The permuted data  were then returned to the original order. This step was repeated for all 

the features of the input data. 

The PFI evaluation was conducted using the dev set at the prototyping stage to determine 

the extent to which the model relied on each input feature to generate predictions [45]. All 

irrelevant and insignificant features with minimum PFI scores were removed, and subsequently, 

a new feature was extracted and re-evaluated until the final set of features was established. 

Thus, any timestep-based information added to the final inputs would not improve the model 

performance; instead, it would overfit the model. 

The proposed model uses a deep network with six layers: five hidden layers with a sigmoid 

activation function and a one-unit linear output layer [64, 64, 32, 32, 16, 1]. The mean absolute 

error (MAE) was employed as the loss function since it is less sensitive to outliers than the root 

mean square error (RMSE), and mini-batch gradient descent with a mini-batch size of 64 was 

used for training. We used an adaptive learning rate method involving the adaptive moment 

estimation optimization algorithm (Adam), an update to the RMSProp with momentum [39]; 

the learning rate was automatically reduced by a factor of 0.5 once the validation loss stagnated 

for 50 epochs. Moreover, to accommodate areas with low AIS data coverage (to avoid 

overfitting caused by deep networks), a validation-based early stopping was set to interrupt 

training once the validation stopped improving for 100 epochs. These in-training validation-

based methods were solely used for the experiment and were not used in the prototyping stage 

[40]. 
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A hold-out validation split was conducted to prevent information leakage from the test data. 

An overview of the hold-out validation split for the dataset is depicted in Figure 4-1. AIS data 

from July 2010 to December 2017 were randomly shuffled into a training set, and the dataset 

was disrupted with data from other vessels and timelines. Meanwhile, a dev set was randomly 

sampled from half of the 2018 data. The remainder was retained as a test set that had never 

been used for model prototyping. The split was designed to reflect the dev/test set as the recent 

AIS data. The dev set was used to validate the training set while having the same distribution 

as the test set. The randomly shuffled data combined with mini-batch training ensured rapid 

convergence of the gradient descent with minimal disturbances. Moreover, this combination 

prevented deep networks from conspiring to memorize the chronological sequences of vessel 

locations. 

 
Figure 4-1. Hold-out validation split of the dataset (non-proportional scale) 

4.2.2. Input and Target Features 

A set of AIS messages was first retrieved from the SQL database, given a boundary 

condition of location and time. The specified input and output features were then extracted 

from the dataset with vessel states at the current time step   as the input matrix   and its 

location at the next time step   as the target vector  . The input   is composed of 10 

features: longitude , latitude , speed over ground , course over ground , heading , 

time interval  , distance  , haversine distance1   , Manhattan distance2   , and average 

speed . Meanwhile, the component of the target  follows the DL model output that targets 

particularly one of the two variables: the displacements of longitude   and latitude  

                                                 
 

 

 
1 great-circle distance calculation between two points on a sphere given their coordinates. 
2 distance between two points measured along axes at right angles. 
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between the current time step  and the next time step . The input matrix and target vectors 

are expressed as follows: 

 

 

where  , the subscript   represents the time step,   is the 

longitude interval, and  is the latitude interval. 

Input features of  ,  ,  ,  , and   are extracted directly from the archived AIS 

messages, whereas some of the remaining inputs provide implicit information on the position 

history at the previous time step . Further, the target timestamp (at the next time step 

) is represented as a time interval  and a rough distance to the target . They are defined 

as follows: 

 

 

 

 

 

where   is the timestamp of the AIS message, and   is referred to as the prediction 

timestamp. We utilized implicit information because it enables the DL model to generate 

predictions while using less information, rather than employing every possible explicit 

information directly from the AIS messages (the selection is described in Section 4.1.2). The 

above calculations (Eq. (3)–(7)) are empirical formulas such that the extraction is performed at 

a high speed. 

After retrieving the input and target, all input features  are standardized, similar to the 

target feature standardization shown in Eq. (9). The standard score of the target feature  is 

calculated as follows:  

 

where  is the target feature containing  and ,  is the mean of ,  is the standard 

deviation of , and  is the standard score of . The standardization of the input and output 

features avoids any imbalance in the network parameters and loss calculations during training.  
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Two sets of standardized input and target features,  and , are then fed 

separately into two independent DL models with the same model properties. 

4.2.3. Performance Evaluation Metrics 

Loss Score 

Two separate models were trained for each standardized target feature  of  and  

values (scalar regression model). Subsequently, each value was discretely predicted. The 

predicted vessel position was then generated by inverse standardization using the 

standardization parameters of the target features as follows: 

 

where  is the prediction vector after inverse normalization, and  is the prediction vector 

that combines the outputs of the two separate models (  and ). Both results (  and ) 

are then transformed into latitude  and longitude  by the addition of each component 

in the input (i.e., , ). Finally, a new loss score for each result is calculated as follows: 

 

 

where   is the prediction longitude,   is the prediction 

latitude,  is the target longitude, and  is the target latitude. 

Metric Score 

The metric scores for the combined results (i.e., location) were defined as the mean 

distance error (MDE) and mean angular error (MaE). The distance error is the haversine 

distance between the prediction and target (true position) in kilometers, signifying the extent 

to which the result (prediction) deviates from the true position (target). MDE can be a single 

evaluation metric for the long-term prediction of vessel location; however, in cases where the 

distance between previous positions and target positions is remarkably diverse (owing to time-

interval variation), another evaluation metric is required. 

The MaE as the second evaluation metric was calculated based on the three known points 

of the base, target, and predicted positions. The angular error between the target and the 

prediction is a spherical triangle that can be solved using the law of haversines [46]. Because 

the haversine distance between the prediction and the target is small, the formula is derived in 
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combination with the spherical law of cosine. Accordingly, these metric scores were calculated 

as follows: 

 

 

 

where  is the base point ,  is the true position , and  is the predicted 

point . The predicted position is in a vector space, and consequently, its distance 

error relative to the current position may not be proportional to its angular error. Figure 4-2 

illustrates the relationship between distance and angular errors. Furthermore, the distance and 

angular errors can reflect the accuracy and precision of the prediction from the target, 

respectively. 

 
Figure 4-2. Relation between the distance error and the angular error 

4.3. Baseline Model 

A non-ML baseline and a sanity check were used as model-building guidelines to conduct 

error analysis on bias and variance, gaining confidence in the overall performance of the DL 

models. The baseline replicates a human-level performance as a proxy for the Bayes optimal 

error in the classification problem [47]. 
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The predicted positions were defined as the next timestep positions averaging 24-h 

intervals, and consequently, a conventional formula for the dead reckoning position3 of the ship 

could not be adopted as the baseline. The dead reckoning calculation is too simple for two 

distant points; while it is accurate in the Euclidian space, it fails to map the Earth as a great 

circle4. An equation for the geodesic on a spherical surface, namely the great circle equation, 

is more accurate for planning routes [48]. 

Therefore, the geodesic calculation was established as a baseline model, computed based 

on the shortest distance on a spherical earth. Given a starting position (   and  ), current 

course , and distance to the target (next position) , the destination point along a (shortest 

distance) great circle arc is computed as follows: 

 

 

where  are in radians,  is the angular distance, and  is the earth 

diameter [49]. The results from Eq. (16) and (17) were subjected to normalization to degrees. 

Additionally, the average distance interval of the ships was adopted as a sanity check, 

assuming that the next position always equals the present state. This approach is adopted to 

examine the performance evaluation metrics between the current position  and the next 

position , calculated as follows: 

 

where  is the base point, and  is the next position at 1-d interval. 

 

                                                 
 

 

 
3 in seamanship, a position determined by plotting courses and speeds from a known position. 
4 also known as an orthodrome, is the largest circle that can be drawn around a sphere. Earth is 

not a perfect sphere, but as long as the Arctic and Antarctic Circles are not included, all 

meridians on Earth can be treated as great circles. 
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4.4. First Experiment: DL Model for the Indian Ocean 

4.4.1. Experimental Setup 

In the first experiment, a DL model was built for the Indian Ocean. The observed area is 

within 60°E–90°E longitude and 24°S–0°N latitude boundaries, covering 8.6 million square 

kilometers5. Compared to all previous studies, the boundaries were relatively larger, adequately 

capturing the continuous long-term movements of the vessels. Figure 4-3 presents the 

normalized density distributions of the dataset in the observed area from nine years of AIS 

messages involving 1531 different IMO numbers (vessels). This distribution was calculated 

using kernel density estimation (KDE), adopting a Gaussian kernel [50], in which the 

background geography was visualized using an open-source Python library Matplotlib 

Basemap toolkit for geospatial data processing [51]. 

 
Figure 4-3. Normalized density distribution of AIS data in the observed Indian Ocean area 

The dataset was split into a training set and dev-test sets according to the hold-out 

validation split described in Section 4.1.3. The training set comprised more than 122,000 data 

records after omitting AIS messages with missing values and abnormalities, whereas each dev 

and test set contained more than 10,000 data records. The size of these sets was considered 

sufficiently large, thus providing high confidence in the model performance. 

                                                 
 

 

 
5 calculated by geodesic area assuming the earth is a perfect sphere with a radius defined in 

WGS84 as 6,378,137 m. 
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4.4.2. Error and Sensitivity Analyses 

The MAE, as the performance evaluation metric of the model, is shown in Table 4-1; these 

values correspond to the absolute deviation between the prediction point and the target point in 

degrees (longitude  and latitude ). The results from the geodesic calculations were computed 

based on the training set. 

Interestingly, the DL model performance on the training set and dev set surpassed the 

geodesic calculation as the baseline model. The model displayed minimal bias, fitting the 

training and dev sets satisfactorily. In practice, the sole focus of a regression model is not the 

deviation between the training loss and dev loss (i.e., variance), but rather its prediction 

performance, that is, the dev loss. Nevertheless, the variance in the model was insignificant, 

indicating that the model generalized very well to the dev set without overfitting.  

Table 4-1. Error analysis of the DL model 

Model    

Geodesic calculation 0.225 0.226 

Training set 0.163 0.145 

Dev set 0.169 0.147 

 

Moreover, hyperparameters sensitivity of the DL model was carried out while also 

applying regularization techniques to confirm further that the model generalized very well to 

the dev set. All hyperparameters combinations were permutated except the structure of hidden 

layers and their units to see the effect on prediction performance from hyperparameters' 

influence. This permutation was repeated for other models with regularization: 20% and 40% 

dropout on all hidden layers and a model with batch normalization.  

Figure 4-4 shows the hyperparameters sensitivity of all models. The selected 

hyperparameter proved to be the best combination for the standard DL model. The model with 

no regularization achieved the most optimum error compared to other models with 

regularization, confirming that the model was already generalized well without overfitting. 

Applying dropout worsened the model performances than applying batch normalization. 

Naturally, predictions of longitude values would have accuracy less than latitude values since 

the longitude values have a distribution twice as large as latitude. This natural divergence 

appears to negatively affect the model with batch normalization but with the expense of 

accuracy. 
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Figure 4-4. Sensitivity analysis of the DL model 

Based on these error and sensitivity analyses, we determined that the proposed deep 

learning model achieved an optimal error with generalization to the dev set and was ready for 

the evaluation on the unseen test set resembling a practical scenario. 

4.4.3. Results and Discussions 

The performance evaluation metrics of the DL and baseline models are presented in Table 

4-2. All results were computed using the test set. The average distance interval indicates the 

difference between the current vessel position and the subsequent position. Compared with 

these average values, the geodesic calculation appears to be reasonably accurate for long-term 

predictions. 

The DL model adequately outperformed the baseline model and almost doubled its 

performance based on the metric scores. Given that the distance between the current position 

of a vessel and its position the next day was approximately 486 km, the geodesic calculation 

might be accurate for long route planning, yielding an average distance error of 40 km. However, 

the DL model generated more accurate and precise predictions with a slight mean distance error 

of approximately 25 km and a mean angular error of 1.8°. If we assume that the evaluation 

metric (i.e.,  ) of the average distance interval created an error of 100%, simulating a 

model performance similar to the classification problem, the geodesic calculation and DL 

model predicted the vessel positions with 8% and 5% error, respectively. 

Moreover, several ensemble-based ML regressors have been investigated, including 

random forest, gradient boosted decision trees, and extreme gradient boosting algorithm 

(XGBoost) [52, 53]. The hyperparameters were tuned using the exhaustive grid search method, 

and therefore, all hyperparameters were optimized for each ML model in this manner. With the 
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same input, output, and validation splits, the performances across all the models were broadly 

comparable. Nevertheless, despite performing more accurately than the geodesic calculation, 

their performances were not significantly different from each other, among which the DL model 

still achieved the best performance (13% better than the ML models). 

Table 4-2. Comparison of the model performance 

Methods 
Loss   

(km) 

  

(degree)   

Average distance interval 3.553 2.564 486.1 - 
Geodesic calculation 0.239 0.239 40.6 3.3 

Deep learning 0.174 0.149 27.0 1.7 

Random forest 0.197 0.174 31.3 2.1 
Gradient boosted decision tree 0.198 0.171 31.4 2.3 

XGBoost 0.197 0.175 31.6 2.2 
 

Results from the DL model compared with the baseline model can be analyzed further by 

its distribution, which is plotted in Figure 4-5. The 2D plot represents more than ten thousand 

test data of vessels' previous position, plus their next position predicted by geodesic calculation 

and the DL model with axis in degrees longitude and latitude. To demonstrate the accuracy of 

the predictions, all plotted points were normalized relative to the true position (target) 

positioned at (0,0). The sparsely distributed plots of vessels' previous position (blue dots) were 

caused by the time interval of AIS messages, affecting their distance intervals between the 

previous position and target (next position). Their dense plot past Southwest-Northeast 

direction was due to the typical pattern of shipping lanes in the Indian Ocean (see Figure 4-3).  

Nevertheless, the geodesic calculation and DL model generated precise predictions, at 

which the model confirmed better accuracy and precision, converging on the target: the 

standard deviation of the model predictions was slightly lower than the geodesic calculation 

with 0.40 and 0.43, respectively; 92% of the predictions were within one standard deviation 

from the mean, more precise than the geodesic calculation with only 87%.  
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Figure 4-5. Normalized plot distribution of the result in the Indian Ocean area from 10,888 

vessel positions 

4.5. Second Experiment: DL Models for the International Open Waters 

4.5.1. Experimental Setup 

In the second experiment, 12 DL models were built for six open oceans and six maritime 

chokepoints with the same model properties to assess the influence of the respective areas. 

Open waters of the North Pacific Ocean (NPO), South Pacific Ocean (SPO), North Atlantic 

Ocean (NAO), South Atlantic Ocean (SAO), Indian Ocean (IO), and Philippine Sea (PS) were 

selected considering that vessels generally sail across these deep oceans without stopping. 

According to Rodrigue (2020), the primary maritime shipping chokepoints were selected to 

represent long-term vessel behavior near the ports and congested (high-traffic) waters, namely, 

Gibraltar Strait (GS), South Africa Coast (SAC), Bab al-Mandab Strait (BMS), Strait of 

Hurmuz (HS), Laccadive Sea (LS), and Malacca Strait (MS) [54]. Altogether, the ocean and 

chokepoint areas correspond to the simple and complex movement of ships, respectively. 

Figure 4-6 shows the location and size of each area (red rectangles). The size of the 

observed maritime chokepoint area was as large as that of the open ocean. Each has the same 

observation area size: within 30-interval longitude and 24-interval latitude, covering more than 

eight million square kilometers. The same procedure as in the first experiment was applied to 

the models: each used the same model properties and followed a similar hold-out validation 

split. We limited the worldwide observation to these 12 areas to avoid building an excessively 

large model. A large model is prone to fit noise from inferior-quality data and random vessel 
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behavior contained in the massive AIS dataset. Regularization methods might be a constructive 

solution; however, they require an extremely large model to fit all nonlinear problems. 

(a)   

(b)  
NPO, North Pacific Ocean; SPO, South Pacific Ocean; NAO, North Atlantic Ocean; SAO, South Atlantic 

Ocean; IO, Indian Ocean; PS, Philippine Sea; GS, Gibraltar Strait; SAC, South Africa Coast; BMS, Bab al-

Mandab Strait; HS, Strait of Hurmuz; LS, Laccadive Sea; MS, Malacca Strait. 

Figure 4-6. Location of the observed areas: (a) open oceans and (b) maritime chokepoints 

4.5.2. Results and Discussions 

The performance evaluation metrics of the models for each examined area are listed in 

Table 4-3. Again, the DL models substantially outperformed the geodesic calculation as the 

baseline model in all areas, especially in the chokepoint areas. The improvement score ( ) was 

the only inference to determine the extent to which the DL model outperformed its counterpart 

baseline model based on the MDE scores. The improvement scores were notably higher in the 

chokepoint areas than in the open ocean areas, scoring more than a 50% improvement over the 

baseline model for almost all the chokepoint areas. The geodesic calculation appears accurate 

enough to predict moving vessels; however, it fails to predict vessel behavior near the ports 

and high-traffic areas (i.e., the chokepoint areas). With no information regarding vessel status, 

historical trajectory, or destination, conventional calculations would fail. 

The effect of a high improvement score can be seen by the normalized results distribution 

plot from Malacca Strait’s model (see Figure 4-7), where the DL model was vastly superior to 

geodesic calculation. Vessel behavior in this area was widely dispersed in terms of voyage 

direction and time interval. The scattered results of the geodesic calculation from the target 
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demonstrated the failure of the conventional method to estimate vessel position in this area. 

Nevertheless, supported by a considerable amount of training data, the model could learn 

intricate and high-level structures in its deep layers, generating predictions with significant 

performance than the baseline model.  

Table 4-3. Comparison of the loss and metric scores of the DL model and baseline model on 

each observed area 

Area 

DL Model 
 

(%) 

Geodesic Calculation Number 

of Test 

Data 

Average 

Distance 

Interval 

Loss   

(km) 

 

(deg) 

Loss   

(km) 

 

(deg)     

NPO 0.18 0.13 27 1.8 27 0.20 0.23 37 3.1 471 485 
SPO 0.13 0.11 20 1.5 15 0.13 0.15 24 2.1 499 484 
NAO 0.30 0.22 41 3.7 15 0.33 0.28 48 4.5 2474 467 
SAO 0.13 0.11 19 1.7 24 0.15 0.15 26 2.5 4672 491 
IO 0.17 0.15 27 1.7 33 0.24 0.24 41 3.3 10888 486 
PS 0.25 0.31 48 8.0 37 0.48 0.46 77 10.5 9206 453 

GS 0.54 0.27 63 21.7 38 0.78 0.53 102 20.2 4263 355 
SAC 0.35 0.23 46 15.4 50 0.59 0.54 92 15.0 13337 389 
BMS 0.28 0.31 51 4.3 55 0.56 0.75 113 10.9 1251 473 
HS 0.34 0.27 52 39.8 58 0.77 0.70 123 31.0 3734 259 
LS 0.26 0.33 51 37.4 50 0.57 0.63 102 27.8 5975 273 
MS 0.37 0.34 63 16.7 60 0.88 0.93 158 19.5 22745 417 

 

In Figure 4-7, Gaussian KDE was computed to approximate the probability density 

function of each three different vessel positions: previous position, geodesic calculation, and 

model prediction. The results are plotted in their normalized density by each latitude and 

longitude. A 1D plot of each vessel's position is also plotted to explain each distribution. The 

superior accuracy and precision of the model compared to the geodesic calculation were 

confirmed by the standard deviation of 0.89 and 2.06 and the population within one standard 

deviation from the mean of 92% and 87%, respectively.  

Both the DL model and geodesic calculation showed more accurate predictions for the 

ocean areas than the chokepoint areas, but not in the average distance intervals between the 

current position and the next position, indicating that more vessels have shorter distance 

intervals in the chokepoint areas. Almost all vessels were moving in the ocean areas, whereas 

in the chokepoint areas, many vessels were idle for berthing or resting at anchorages. These 
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activities resulted in an extremely short distance interval between two consecutive AIS 

messages at any time interval.  

 
Figure 4-7. Normalized plot distribution of the result in Malacca Strait (MS) from 22,745 

vessel positions 

Figure 4-8 shows the distance-interval distribution of AIS data on both areas; the distance 

intervals were calculated from the haversine distance between the base point  and the 

next position  . Many vessel activities have very low distance intervals in the 

chokepoint areas but not in the ocean areas. Consequently, the average distance intervals in the 

chokepoint areas would indicate lower performance evaluation metrics than the ocean areas. 

The irregularity of idle vessels and activities other than sailing with minimal distance intervals 

renders the MaE unsuitable as a metric score. The angle between the prediction and the target 

no longer corresponds to the accuracy of the prediction because the distance interval between 

two consecutive positions is extremely short. Accordingly, for the evaluation of the chokepoint 

areas, the MDE alone suffices as a single metric score. 
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Figure 4-8. Distance-interval distribution of AIS data on the ocean and chokepoint areas 

4.5.3. Discussions: Influence of the Area 

Figure 4-9 presents the distance error distribution of the predicted positions based on the 

distance interval, where the distance errors are the haversine distance between the true position 

 and the predicted point . 

In the ocean areas, as most data have distance intervals between 400 and 600 km, the DL 

models generated continuous accurate predictions with a distance error below 40 km for 80% 

of the population over the entire test set. For the same 80% population, the geodesic calculation 

generated a distance error below 60 km with a more diverse distribution, where its standard 

deviation was twice as high as that of the DL models. 

In the chokepoint areas, as most data have distance intervals distributed between 400 km 

and near zero, the DL models constantly generated accurate predictions with a distance error 

below 65 km for 80% of the population. In contrast, the geodesic calculation generated 

projections with distance errors below 100 km for only 65% of the population. Its projections 

resulted in grave errors when the distance intervals were broad, but the errors became less 

severe when the distance intervals were near zero. Overall, the geodesic calculation fails to 

make accurate projections for the complex movements of vessels in chokepoint areas. 

Deep learning systems can learn from large datasets to effectively improve their 

performance to generate accurate predictions by discovering complex variations across all 

input features [55]. Accordingly, we computed the mean PFI score of the DL models on the 

ocean areas and chokepoint areas to determine which features play a vital role in improving the 

overall performance (shown in Figure 4-10). The scores were calculated based on the test set 

of each area and were grouped by ocean and chokepoint areas and then averaged. The input 

features were classified into five components: distance, speed, angle, time, and position. 
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Figure 4-9. Distance error distribution of the predicted positions based on the distance 

interval on ocean areas (left) and chokepoint areas (right): DL model (top) and geodesic 

calculation (below). 

Based on the results for both the chokepoint and ocean areas, the speed component of the 

vessel (i.e.,  ,  ) does not appear to be essential because the distance   already 

represents it, whereas the course over ground  proves vital for making predictions. 

Models in the ocean areas rely primarily on input features of angle and distance 

components but not on speed and position components; this is similar to the geodesic 

calculation, which generally proved accurate for position projections of vessels moving in a 

definite straight direction or making simple movements. 

Meanwhile, models in the chokepoint areas rely more on the current position (i.e., , ), 

implying that they can be used to develop high-level abstraction to alternatively predict the 

next position when vessels deviate from a simple trajectory. Furthermore, focusing on the 

distance component, they also rely more on the distance  as a rough estimate of the distance 

interval to the next position than the haversine distance  and Manhattan distance  as the 

distance interval between the current position and the previous position, suggesting that the 

previous position of the vessel at  is not as important as its current position at  and a 

rough estimate projection at . Nonetheless, the utilization of all input features may not 
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suffice to cover the entire range of unexpected vessel behavior near ports or with complex 

movements.  

 
Figure 4-10. Mean PFI score of the DL models on the ocean areas (left) and chokepoint areas 

(right) 

The model performance can be enhanced by incorporating additional information 

regarding the vessel status, destination, or historical trajectory without a trajectory definition; 

thus, this approach remains a topic to explore in our future work. 

4.5.4. Discussions: Influence of Data Size 

The proportion of AIS messages varied widely according to the area location. This 

variability among different areas is a general characteristic of AIS data: rarely passed areas 

contributed only a limited amount of data, whereas congested areas contained a substantial 

quantity of information. Figure 4-11 presents the size distribution of the training and dev-test 

sets in each observed area based on the same hold-out validation split. 

The proportion of the dev-test sets to the training set increased in the areas with the busiest 

shipping routes; for instance, the Malacca Strait (MS) area encompasses half of South East 

Asian waters, including the most congested maritime primary chokepoints and three secondary 

chokepoints in Indonesian waters [54]. The proportion was drastically reduced in the rarely 

transited areas, such as the Pacific Ocean. Consequently, areas with a small amount of test data 

would indicate lower confidence in the overall performance of the model than areas with 

extensive data. The K-fold validation split can solve this problem; nonetheless, it would 

produce non-comparable models. 
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Figure 4-11. Size distribution of the training set and dev-test sets for each area 

The dataset size affects deep learning performance, as a small amount of training data may 

degrade the performance [56]. We recreated the DL model for the Malacca Strait (the area with 

the most extensive dataset size) for each variation in the training set to show the effect of the 

data size on the model performance (see Figure 4-12). The most significant improvement in 

the performance occurred when the training set size exceeded 25,000. The model performance 

began to stabilize when the training set reached approximately 200,000. This effect may not 

represent all areas because three areas have a small dataset of less than 25,000 thresholds (i.e., 

NPO, SPO, BMS); however, all the models were trained with eight years of data, and are thus 

still capable of producing accurate predictions. 

 
Figure 4-12. Effect of dataset size on the deep learning performance in Malacca Strait (MS) 
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4.6. Third Experiment: Application of the DL Model 

4.6.1. Experimental Setup 

In the third experiment, a DL model was built for the Malacca Strait (MS) area, and a 

sample location was selected in which the number of ships was counted each day consecutively, 

resembling a simulation of practical application. In the MS area, ships traveled approximately 

417 km daily on average (see Table 4-3). Thus, the Malacca Strait itself, between Malaysia and 

Indonesia (95.2°E–103.2°E longitude and 0.5°N–6°N latitude), was selected as the sample 

location, covering an area of half a million square kilometers. Figure 4-13 shows the sample 

locations in the MS area. As the highest density area, Singapore waters were not included in 

the sample because there would be many outliers in the northeast and southeast portions that 

enter the observed sample location. Nonetheless, long-term ship behavior near ports can be 

observed on Malaysia’s Teluk Rubiah port inside the location. 

 
Figure 4-13. Location of the observation area (red-filled square): the Malacca Strait; the 

normalized density distribution is calculated based on the test set 

For the application, uninterrupted AIS data for a period of time were required as the test 

set. Consequently, the previous hold-out validation split cannot be applied because the test and 

dev sets are equivalently derived from shuffled 2018 data; in addition, the training and dev sets 

have to be generated in the same manner as the models in the previous experiment to produce 

a generalized DL model similar to the previous experiment. 

Accordingly, a different scheme for the hold-out validation split was developed. Randomly 

shuffled AIS data from July 2010 to September 2017 were used as the training set, while 

randomly shuffled data between October 2017 and September 2018 were used as the dev set. 

The last three-month data were not randomized and were retained chronologically as the test 



38 
 

set, as shown in Figure 4-14; the predictions were processed sequentially, day by day, rather 

than instantaneously. Subsequently, the number of ships was counted at the selected locations 

every day. 

 
Figure 4-14. Hold-out validation split for the third experiment (non-proportional scale) 

4.6.2. Results and Discussions 

(a)    

(b)  

Figure 4-15. Fitted plots of the daily prediction of the number of ships in the Malacca Strait 

from October to December 2018: (a) DL model and (b) geodesic calculation 

The fitted plots of the overall results from the DL models and geodesic calculations were 

compared to the actual data, as shown in Figure 4-15. The results are the daily prediction of the 

number of ships inside the Malacca Strait from October to December 2018. The r-value 

measures the linear relationship between the predictions and actual values. Compared to the 

actual data, a strong relationship with the r-value of 0.83 from the DL model confirms that 
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predictions with an average time interval of 24 h using deep learning are possible, which is 

contrary to the belief that the motion-based method is not effective for long-term vessel location 

prediction. By using proper DL systems and massive data, this result confirms that an accurate 

long-term prediction of the vessel position can be generated with the straightforward motion-

based method. In contrast, the geodesic calculation showed a weak relationship with an r-value 

of 0.51, suggesting that conventional calculations cannot be used for the long-term position 

projection of a vessel moving in congested waters or near the ports. 

 
Figure 4-16. Daily prediction of the number of ships in the Malacca strait in November 2018 

Moreover, Figure 4-16 shows the daily prediction of the number of ships inside the sample 

location for the entire month of November 2018; the estimated target values from the DL model 

and geodesic calculations were compared to the ground truth target values. The DL model 

proved that it can accurately predict the quantity inside the location for an entire day without 

additional information regarding historical navigational status. Meanwhile, as the geodesic 

calculation failed to predict the long-term position of a vessel moving in congested waters or 

near the ports, it also failed to predict the number of ships. 

Detailed ship position predictions inside the sample location are shown in Figure 4-17. 

The ship position prediction from the DL model and geodesic calculation in the Malacca Strait 

was compared with the actual position on November 10 and 11, 2018. In this location, most 

ships were moving, and some were idle near Malaysia’s Teluk Rubiah port. Examining the 

actual data on November 9, there was a line of ships moving from the northwest to the 

southwest, three of which were separated at the rear. These three ships moved to the southwest 

the next day, and another line of ships appeared from the northwest, which eventually was the 

start of a congested line of moving ships that appeared on the 11th. The DL model closely 

mimicked the position of these ships and the movement of the ground truth targets on 

November 10 and 11, even for ships idling at the port. The number of ships and their positions 
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were reliably predicted by the model. From these results, the dl model appears to have a sense 

of the dimension of the geographic coordinate system that can be or is often passed. In contrast, 

geodesic calculation failed to predict the position of the ships either in the moving position or 

idle near ports, and also resulted in a poor estimate of the number of ships inside the area. 

 
Figure 4-17. Ship positions in the Malacca strait on three consecutive days in November 

2018: TP is the true position (left), DL is the deep learning prediction (center), and GC is the 

geodesic calculation (right) 

4.7. Discussions on Performance of End-to-end Deep Learning Models 

4.7.1. Comparison of End-to-end DL Models 

The MLP model shows a remarkable performance compared to the ensemble-based ML 

models and conventional approach from the dataset with the long-time-interval distribution. 

End-to-end means that the approach does not need a trajectory reconstruction and other 

preprocessing/postprocessing steps for making a prediction.  

To further clarify the robustness of end-to-end DL-based models, we built two DL-based 

models: Deep RNN and LSTM. These sequence-based DL architectures were built with the 

same input, output, and validation splits to the MLP model so that their performances are 

broadly comparable (the structure was also constructed as closely as possible to the MLP model 



41 

while also tuned to the most optimized). The input does not go through an interpolation or 

trajectory reconstruction to ensure an equivalent model; it already carries information regarding 

time interval  and a rough distance  to the target. The Deep RNN and LSTM models have 

five hidden recurrent layers with recurrent units of [64, 64, 32, 32, 16] and a one-unit linear 

output layer; the model was trained in mini-batch with the loss function of mean absolute error 

(MAE) optimized by Adam. The stacked deep recurrent layers were easily prone to overfit the 

training set (LSTMs are much easier), which was alleviated using a combination of recurrent 

dropout and recurrent layer normalization. 

The Indian Ocean and Malacca Straits areas similar to the second experiment, representing 

the simple and complex movement of ships on the ocean and chokepoint areas, respectively, 

were selected as a definitive test for the DL-based models. The overall prediction methodology 

of these two recurrent models is similar to the second experiment. The models were also set to 

generalize on the data at which the training set was shuffled. The number of steps was 

considered one-time steps: the input only contains information at time step   (the implicit 

information of   is included) to make a prediction at  , and thus this resembles a 

multivariate time series with a single time step. 

Table 4-4. Comparison of the deep learning model performance 

Areas Methods 
Loss   

(km) 

  

(degree) 

Training  

Time (s)   

Indian Ocean 
(IO) 

MLP 0.174 0.149 27.0 1.7 1,699 
RNN 0.176 0.150 27.4 1.7 2,758 

LSTM 0.177 0.148 27.3 1.7 1,845 

Malacca Strait 
(MS) 

MLP 0.376 0.337 62.8 16.9 4,257 
RNN 0.384 0.335 63.6 16.6 6,561 

LSTM 0.381 0.336 63.4 16.2 6,243 
 

The performance of the DL-based models is presented in Table 4-4. The results of the 

proposed MLP model in the ocean and chokepoint areas are slightly more accurate than the 

other DL architectures. However, with only a 1% improvement, the performance of the feed-

forward model is considered similar to the recurrent models (RNN and LSTM) that have more 

trainable parameters; applying more computational cost and complex models appear to 

negatively improve the performance. The MLP model took the fastest total training times on 

both areas with the least parameters than the other DL models. These results were obtained on 

a single Intel i7-9700K processor (8 CPU @3.60 GHz). 
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The patterns observed result from the small sequences (time steps), at which the regular 

feed-forward network is sufficient for this task. This is confirmed as the application of the 

LSTM model did not deliver better performance than the RNN model since LSTMs capability 

is much better at handling long sequential data than simple RNNs with limited short-term 

memory. The results correspond to Gers et al. (2002) that tested RNNs and LSTMs for time-

series predictions, but the results were poor as simple multilayer perceptrons (MLPs) often 

outperformed LSTMs when applied to the same data [57].  

4.7.2. Comparison of End-to-end DL Models on Small Dataset 

A small dataset with short-time intervals near the ports was used to further analyze the 

robustness of the end-to-end DL models. The dataset was retrieved from the ATD2019 

challenge dataset6. All AIS training and challenge data with different properties were combined 

and used to construct a dataset with varying time-interval distribution. Figure 4-18(a) shows 

the short-time-interval distribution of the small dataset averaging around 10 seconds intervals; 

most of the data have near-real-time intervals, and the rest varies up to 60 seconds. The dataset 

consisted of ships movements near ports located around north of Norfolk, Virginia, North 

America (see Figure 4-18(b)). In this dataset, course over ground  is given but not heading 

, and therefore, to accommodate the same 10 input features as the previous experiments, the 

heading was copied from the course over ground. 

The dataset was split into a training set and dev-test sets according to the hold-out 

validation split with 80% data for training and the rest 20% for validation and test. The training 

set comprised more than 90,000 data records, whereas each dev and test set contained more 

than 10,000 data records. The size of these sets was considered sufficiently large, thus 

providing high confidence to the overall result. 

                                                 
 

 

 
6 https://gitlab.com/algorithms-for-threat-detection/2019/atd2019. 
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 (a)  

(b)  

Figure 4-18. The small dataset properties: (a) Time-interval distribution; (b) Normalized 

density distribution 

The results show that compared to the conventional approach, the DL-based models are 

not as effective as on the long-term prediction task, and the LSTM model delivers the same 

performance as the feed-forward networks since the time steps are limited (single time steps 

with 10 dimensions). This limited sequence allows the feed-forward networks to deliver 

optimum performance but would not maximize the potential of the sequence-based recurrent 

networks. Moreover, on the dataset with varying time-interval distribution and without 

trajectory reconstruction, the feed-forward networks generated predictions as accurate as of the 

LSTM with faster training times and less trainable parameters. 

Table 4-5 shows the results from the DL models and geodesic calculation on the small 

dataset. According to the second experiment results, the pattern of MaE on the small dataset 

confirms that the dataset consists of vessel behavior near ports with short-distance intervals 

such as berthing, idling, and maneuvering. The average distance interval between two 

consecutive AIS points is 24.6 meters. At this small distance, the geodesic calculation is 

qualitatively similar to the dead reckoning calculation with an error of around 3.5 meters. The 

DL models are 8% better than the geodesic calculation. Naturally, LSTMs can generate the 
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most accurate short-term predictions of vessel position; however, on this dataset with the 

uneven distribution and without trajectory reconstruction, the MLP model generated 

predictions as accurate as of the LSTM with almost half of the training times. 

The results show that compared to the conventional approach, the DL-based models are 

not as effective as on the long-term prediction task, and the LSTM model delivers the same 

performance as the feed-forward networks since the time steps are limited (single time steps 

with 10 dimensions). This limited sequence allows the feed-forward networks to deliver 

optimum performance but would not maximize the potential of the sequence-based recurrent 

networks. Moreover, on the dataset with varying time-interval distribution and without 

trajectory reconstruction, the feed-forward networks generated predictions as accurate as of the 

LSTM with faster training times and less trainable parameters. 

Table 4-5. Comparison of the model performance on the small dataset 

Methods 
Loss   

(m) 

  

(degree) 

Training 

Time (s) 

Total 

Params (10-5) (10-5) 

Average distance int. 19.7 12.1 24.6 - - - 
Geodesic calculation 2.4 2.1 3.5 29.2 - - 

MLP 2.3 1.8 3.2 31.5 922 8,545 
RNN 2.4 1.8 3.3 31.4 2,537 19,041 

LSTM 2.3 1.7 3.2 31.4 1,693 76,113 

4.8. Conclusions on one-day interval of ship position prediction 

This research demonstrated that predictions with an average time interval of 24 h are 

possible, confirming that the straightforward motion-based method can generate an accurate 

long-term prediction of the vessel position. The DL models generated more accurate 

predictions than the geodesic calculation as the baseline model in all areas. Predictions in the 

open ocean areas yielded higher accuracy than in the chokepoint areas; however, compared to 

the geodesic calculation, the improvement scores were higher in the chokepoint areas than in 

the ocean areas since the geodesic calculation failed to predict vessel behavior near the ports 

and congested waters. The DL model can predict the complex movement of ships near ports 

and congested routes, whereas conventional calculations fail, with no information regarding 

vessel status, historical trajectory, or destination. The last experiment demonstrated that the DL 

model appears to have a sense of the dimension of the geographic coordinate system that can 

be or is often passed, wherein the chokepoint areas rely more on the input features of the current 
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latitude and longitude of the vessels. Moreover, on the dataset with varying and uneven time-

interval distribution and without a trajectory reconstruction, the proposed MLP model 

generated predictions as accurate as the LSTM with faster training times. 

This research can be a basis for future research for further improvement or even longer 

time intervals. Additionally, the generated predictions can be directly utilized for any further 

actions depending on the maximum error threshold the prediction model allows; the final model 

can then be launched into production. After launching, the model can be trained incrementally 

with new data on the fly in line with the growth of AIS data over time, further improving the 

model.  
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Chapter 5                                                             
Several-day Intervals of Ship Position Prediction 

5.1. Overview of Several-day Intervals of Ship Position Prediction 

The previous chapter demonstrates that a one-day interval prediction of vessel position 

using the straightforward motion-based method is feasible with deep learning, more accurate 

than another machine learning algorithm, and much more accurate than the conventional 

approach. In the previous chapter, the selected observation size is large enough to capture the 

long-term movement of ships, with the time interval averaging 24 h. However, the optimum or 

minimum coverage size to capture the long-term ship movement according to the respective 

time intervals is not yet established.  

This research continues the work in the previous chapter, utilizing deep learning and AIS 

data to predict ship position at four different time intervals: from 24 h to 96 h. This chapter 

aims to achieve up to a 4-d interval of ship position prediction and resolve the topics regarding 

optimum coverage size on each magnified time interval. As the distance traveled by moving 

ships in a straight line is proportional to the time interval, if the time interval is magnified, the 

observation area size must also be expanded or magnified. Additionally, to cope with the 

extensive coverage, hence data handled, we utilized a new deep learning model with deeper 

layers and bigger networks than the model used in the previous chapter. 

This research consists of three experiments followed by discussions regarding the single-

worldwide model and the limitations of the prediction models. In the first experiment, larger 

networks of DL models were trained on different observation area sizes with magnified time 

intervals. We focused more on observation size variations in the next experiment, increasing 4 

and 3.2 degrees on longitude and latitude, respectively. In the last experiment, five DL models 

were built for five major locations of maritime shipping routes focused on Capesize bulk 

carriers. In the discussion section, a single-worldwide model was executed, and research 

limitations such as outliers and AIS data uncertainty are discussed. Finally, the research's 

conclusion is presented at the end of this chapter. 

The several-day intervals of ship position prediction in this thesis is detailed in the 

following chapter. 
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5.2. Methodology 

The overall method for this research is almost similar to the previous chapter. The 

differences are that the set of input features   and target features   comprising vessel 

positions were created based on the next time step , where  is the time-interval target 

(in days). Moreover, a larger deep learning model was utilized as a vector regression model, 

generating both the displacements in longitude and latitude directions at the same time.  

5.2.1. Model Structure and Properties 

Through extensive experimentation and evaluation based on the previous research, we 

developed a deep feed-forward model with the objectives of performance and generalization 

on the wider observation area and time intervals. The deep MLP architecture was constructed 

as a vector regression model to solve regression problems by setting the target as two scalar 

outputs (vector): the displacements of longitude ∆λ and latitude ∆φ directions. Compared to 

the previous research that set the target as a scalar value, hence one model for each target, this 

model can solve the same problem with half of the running time.  

The model used a deeper and bigger network with eleven layers: triangle-shaped ten 

hidden layers with selu activation function and LeCun initialization and a two-unit linear output 

layer [98, 98, 88, 58, 44, 43, 32, 28, 26, 16, 2]. The mean absolute error (MAE) was still 

employed as the loss function since it is less sensitive to outliers, particularly when used in the 

larger observation area. A larger mini-batch size of 256 was used for training to fasten 

computation time with GPU as more training data were utilized extensively. Similarly, we used 

an adaptive learning rate method involving the adaptive moment estimation optimization 

algorithm (Adam); the learning rate was automatically reduced by a factor of 0.5 once the 

validation loss stagnated for 20 epochs. A validation-based early stopping was set to interrupt 

training once the validation stopped improving for 100 epochs. Moreover, a hold-out validation 

split was applied similar to the previous research. 

5.2.2. Input and Target Features 

As the overall method of ship position prediction with several-day intervals is similar to 

the previous research with one-day intervals, the input matrix  is still composed of the same 

10 features or vessel states at the current time step  . Meanwhile, the target vector   is 

composed of the displacements of longitude  and latitude  between the current time step 

 and the next time step , following the DL output as a vector regression model. The input 
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matrix and target vectors are retrieved from the SQL database given a boundary condition of 

location and time, expressed as follows: 

 

 

where  ,   is the longitude interval,   is the 

latitude interval, subscript   represents the time step, and subscript   represents the target 

interval in day(s). 

Similarly, input features of , , , , and  are extracted directly from the archived 

AIS messages at the current time step  . Some of the remaining inputs provide implicit 

information on the position history at the previous time step . The target timestamp (at 

the next time step ) is represented as a time interval  and a rough distance to the target 

. They are defined as follows: 

 

 

 

 

 

where   is the timestamp of the AIS message, and   is referred to as the prediction 

timestamp.  

After extracting the input and target at high speed, all input features  and target features 

 are standardized. The standard scores are calculated as follows:  

 

 

where according to the corresponding features, the accent   is the mean,   is the standard 

deviation, and the superscript  is the standard score. The standardized input and target features 

 are then fed into a DL model. 
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5.2.3. Performance Evaluation Metrics 

Loss Score 

After the DL model generated vessel position, the prediction was inversed using the 

standardization parameters of the target features as follows: 

 

where  is the prediction vector after inverse normalization, and  is the prediction vector. 

The results (   and  ) are then transformed into latitude   and longitude   by 

adding each component to the input (i.e., , ). Finally, a new loss score for each result is 

calculated as follows: 

 

 

where   is the prediction longitude,   is the prediction 

latitude,  is the target longitude, and  is the target latitude. 

Metric Score 

We used the same metric scores from the previous research, defined as the mean distance 

error (MDE) and mean angular error (MaE). The distance error is the haversine distance 

between the prediction and target (true position) in kilometers, signifying the deviation of the 

result (prediction) from the true position (target). The MaE as the second evaluation metric was 

calculated based on the three known points of the base, target, and predicted positions, 

signifying precision of the prediction from the target. These metric scores were calculated as 

follows: 
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where  is the base point ,  is the true position , and  is the predicted 

point .  

5.3. Baseline Model 

The previous research is used as a baseline of this research for model-building guidelines 

especially in the prototyping process. The baseline was defined as a DL model with the same 

structure and hyperparameters as the previous research, presented in the previous chapter [58]. 

We also utilized a naive baseline, geodesic calculation, as a non-ML baseline, computed as 

follows: 

 

 

where   are in radians,   is the angular distance,   is the earth 

diameter,   and   are subjected to normalization to degrees [49]. These baseline 

models were used to conduct error analysis on bias and variance. 

Likewise, the average distance interval of the ships was adopted as a sanity check. This 

approach examines the performance evaluation metrics between the current position and the 

next position, calculated as follows: 

 

where  is the base point, and  is the next position at the designated time 

interval. 

5.4. First Experiment: Time-Interval Magnification 

5.4.1. Experimental Setup 

In the first experiment, we trained the DL model on four different time intervals prediction: 

from averaging 24 h to 96 h. The model was trained on four different variations of observation 

area size at each time interval. Naturally, the distance traveled by moving ships in a straight 

line is proportional to the time interval. Therefore, the variation in the observation area size is 

increased twofold as the time interval doubles, and so on. Table 5-1 shows the size variation of 

the observation area at each time interval. 
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We focused our observation on Malacca Strait and its surrounding area. The strait is the 

most congested primary chokepoint, where it is one of the core routes of the main maritime 

shipping route [59]. The observed area covers from 1 to 204 million square kilometers from 

the smallest observation area at 24-h average time intervals  to the largest observation area 

at 96-h average time intervals, respectively, adequately capturing the continuous long-term 

movements of the vessels conformed to its time intervals.  

Table 5-1. Variation of time intervals and its coverage size  

Time intervals 

(in average) 

Index 

area 
Longitude Latitude 

Area size7 

(106 km2) 

Train set 

size (103) 

Dev/test set 

size (103) 

24 h 

1 95°E–105°E 0°S–8°N 1 48 5 
2 90°E–110°E 4°S–12°N 4 107 10 
3 85°E–115°E 8°S–16°N 9 172 15 
4 80°E–120°E 12°S–20°N 16 367 33 

48 h 

1 90°E–110°E 4°S–12°N 4 82 7 
2 80°E–120°E 12°S–20°N 16 316 28 
3 70°E–130°E 20°S–28°N 35 763 77 
4 60°E–140°E 28°S–36°N 60 1352 138 

72 h 

1 85°E–115°E 8°S–16°N 9 123 11 
2 70°E–130°E 20°S–28°N 35 700 71 
3 55°E–145°E 32°S–40°N 75 1544 158 
4 40°E–160°E 44°S–52°N 126 1892 190 

96 h 

1 80°E–120°E 12°S–20°N 16 222 20 

2 60°E–140°E 28°S–36°N 60 1280 133 
3 40°E–160°E 44°S–52°N 126 1878 189 
4 20°E–180°E 60°S–68°N 204 2039 204 

 

According to the hold-out validation scheme, the dataset was split into a training set and 

dev-test sets. In the smallest observation area, the training set comprised more than 48 thousand 

data records after omitting AIS messages with missing values and abnormalities; each dev and 

                                                 
 

 

 
7 calculated by geodesic area assuming the earth is a perfect sphere with a radius defined in 

WGS84.  
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test set contained more than five thousand data records. Meanwhile, more than 2 million AIS 

data for training was used in the largest observation area, with 200 thousand more for testing. 

The size of these sets was considered sufficiently large for each condition, where the smallest 

area is already above the 25,000 thresholds, thus providing high confidence in the overall model 

performance [58]. 

5.4.2 Results and Discussions 

Time interval = 24-h average 

Figure 5-1 demonstrates four size variations of the observed area with a 24-h average time 

interval. The normalized density distributions were calculated using Gaussian kernel density 

estimation (KDE) with the largest observed area dataset from nine years of AIS messages 

involving 1662 different IMO numbers (vessels). For geospatial data processing, the 

background geography was visualized using an open-source Python library, the Matplotlib 

Basemap Toolkit [51]. The smallest observation area captures the densest region, the narrow 

bottom-end of Malacca Strait and around Singapore Strait. Meanwhile, the largest observation 

area covers Makassar Strait, a secondary maritime chokepoint or the second densest region. 

 
Figure 5-1. Size variations of the observed area with 24-h time-interval average (the 

normalized density distribution of AIS data is based on the largest area) 

The performance evaluation metrics of the DL and baseline models are given in Table 5-2; 

all results were computed using the test set. The average distance interval indicates the average 

distance between ships’ current and subsequent positions in their corresponding time-interval 

window. Similar to the geodesic calculation performance on the maritime chokepoint areas 

from the previous research, the geodesic calculation fails to make predictions of vessel behavior 
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in this high-traffic area. Both DL models effectively outperformed (accuracy and precision) the 

non-ML baseline on all area size variations.  

Table 5-2. Comparison of model performance in 24-h average time interval 

Index 

area 

DL model Previous model Geodesic calc. Average 

distance 

interval (km) 

Loss  

(km) 

 

(deg) 

 

(km) 

 

(deg) 

 

(km) 

 

(deg)   

1 0.40 0.26 55 23.7 56 24.5 182 39.7 288 

2 0.48 0.35 72 17.9 75 18.8 202 31.3 377 

3 0.42 0.31 63 16.1 64 16.4 162 26.0 403 

4 0.29 0.27 49 13.3 50 13.2 128 20.3 424 

 

 
Figure 5-2. Comparison of the DL model performance with the previous model and 

characteristics of each observed area dataset in 24-h average time interval 
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Figure 5-2 reveals the mean distance error from the results of the DL model with deeper 

and larger networks and the previous research’s model, along with the dataset characteristics 

in each area. The DL model constantly generated more accurate and precise predictions than 

the previous model on all area size variations, which exceeded 2.5% and 2.3% on accuracy and 

precision, respectively. Generally, the models’ performance improves with larger covered areas. 

The irregularity of the smallest area compared to other areas corresponds to the surprisingly 

higher data related to ships near ports and high-traffic areas in the surrounding Singapore Strait 

than ships in normal sailing movement, indicated by the high ratio of the low-distance interval. 

Time interval = 48-h average 

Figure 5-3 depicts four size variations of the observed area with a 48-h average time 

interval. The normalized density distributions were calculated with the largest observed area 

dataset from AIS messages involving 1693 vessels over nine years. By the third-largest 

observation area (index area number 3), the Indian Ocean surrounding Port Hedland, the site 

of the highest tonnage port in Australia, becomes the densest zone eclipsing Malacca Strait. 

This transition is caused since the observed AIS data were taken from only Capesize bulk 

carriers that mainly transport coal, ore, and other commodity raw materials, the largest ships 

dedicated to ore transportation [60]. This particular fit perfectly with the fact that it is the 

world’s largest bulk export port and a major iron ore exporting port in Western Australia [61]. 

Following the densest region, the East China Sea surrounding China, South Korea, and Japan 

as the second place was covered in the largest observation area. 

 
Figure 5-3. Size variations of the observed area with 48-h time-interval average (normalized 

density distribution of AIS data is based on the largest area) 
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Table 5-3. Comparison of model performance in 48-h average time interval 

Index 

area 

DL model Previous model Geodesic calc. Average 

distance 

interval (km) 

Loss  

(km) 

 

(deg) 

 

(km) 

 

(deg) 

 

(km) 

 

(deg)   

1 1.04 0.73 151 16.8 150 16.8 563 42.6 686 

2 0.67 0.66 116 14.0 119 15.4 354 26.8 842 

3 0.61 0.66 111 14.9 115 15.4 286 23.1 870 

4 0.65 0.76 122 27.0 128 27.3 294 34.3 697 

 

 
Figure 5-4. Comparison of the DL model performance with the previous model and 

characteristics of each observed area dataset in 48-h average time interval 

The performance evaluation metrics of the DL and baseline models computed using the 

test set are presented in Table 5-3. Again, the geodesic calculation fails (both in accuracy and 
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precision) to predict vessel positions in this high-traffic area; both DL models tremendously 

outperformed the non-ML baseline on all area size variations. The average distance between 

ships’ successive positions was normally increased twofold in this doubled time-interval 

average window (48-h average time interval with index area 1 and 2 compared to 24-h average 

time interval with index area 2 and 4, respectively). However, predictions from geodesic 

calculation grew worse dramatically than the results at the same area size with half time interval, 

indicating that the geodesic calculation is bound to fail for ship position prediction at this long 

interval. 

Figure 5-4 shows the performance of the DL model and the previous model and the data 

characteristics in each area. The DL model generated more accurate and precise predictions 

than the previous model on almost all area size variations, with more than 2.5% accuracy 

and 3.1% precision on average. The performance improves relative to the size of the area until 

drastically altered when the covered area at the largest. The patterns observed in the largest 

area may be caused by the surprisingly high low-distance interval ratio, leading to the low 

average distance interval compared to other areas. 

Time interval = 72-h average 

 
Figure 5-5. Size variations of the observed area with 72-h time-interval average (normalized 

density distribution of AIS data is based on the largest area) 

Figure 5-5 reveals the area size variations with a 72-h average time interval. The 

normalized density distributions were calculated with the largest observed area dataset 

involving the same number of vessels at the largest area with a 48-h average time interval. The 
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Indian Ocean was captured completely by the largest observation area, including waters 

surrounding Australia, Japan, China, and Indonesia. The East China Sea and the Yellow Sea 

surrounding China were the second densest regions after Northwest Australia waters. 

Table 5-4. Comparison of model performance in 72-h average time interval 

Index 

area 

DL model Previous model Geodesic calc. Average 

distance 

interval (km) 

Loss  

(km) 

 

(deg) 

 

(km) 

 

(deg) 

 

(km) 

 

(deg)   

1 1.58 1.18 235 18.2 237 18.0 890 45.1 1081 

2 1.02 1.12 188 16.0 195 16.0 522 27.1 1283 

3 1.11 1.40 218 28.4 227 29.1 544 38.9 1024 

4 1.10 1.35 211 28.3 225 29.2 521 38.2 1020 

 
Figure 5-6. Comparison of the DL model performance with the previous model and 

characteristics of each observed area dataset in 72-h average time interval 
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Table 5-4 gives an overview of the performance of the DL and baseline models. Similar 

performance of geodesic calculation was generated, which is bound to fail at time intervals 

longer than 24 h. The DL models far exceeded the non-ML baseline performance, although 

naturally, the model's performance decreased as the time interval increased. As the average 

distance interval reached more than one thousand kilometers at this large time interval, the 

model performance degraded to more than one-degree error in both longitude and latitude 

directions. 

Figure 5-6 demonstrates the performance comparison of the DL models, including the 

dataset characteristics in each area. Again, the DL model generated more accuracy and 

precision with 3.6% and 1.1% on average than the previous model on all area size variations, 

respectively. At this large time interval, the performance appears to accumulate the total errors 

as the coverage area expanded, indicated by the distancing performance of both models. 

Consequently, the larger networks improve steadily relative to the size of the area. 

Time interval = 96-h average 

 
Figure 5-7. Size variations of the observed area with 96-h time-interval average (normalized 

density distribution of AIS data is based on the largest area) 

Figure 5-7 depicts the variations of the coverage area with a 96-h average time interval. 

Almost all capsize bulk carriers were captured with 1695 vessels over nine years and used to 

calculate density distributions by the largest observation area. Almost all regions in the eastern 

hemisphere were covered at this most extensive coverage, including 6 out of 8 primary 
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chokepoints and 8 out of 13 secondary chokepoints in main maritime shipping routes [59]. 

Eastern Parts of the North Pacific and South Pacific Oceans were covered, including Southern 

parts of the Mediterranean Sea.  

Table 5-5. Comparison of model performance in 96-h average time interval 

Index 

area 

DL model Previous model Geodesic calc. Average 

distance 

interval (km) 

Loss  

(km) 

 

(deg) 

 

(km) 

 

(deg) 

 

(km) 

 

(deg)   

1 1.77 1.61 293 18.1 296 18.6 1024 39.5 1484 

2 1.51 1.95 304 27.1 314 27.1 813 40.6 1364 

3 1.55 2.02 309 27.9 328 28.9 793 40.8 1350 

4 1.57 1.99 308 28.0 322 28.0 767 39.4 1367 

 
Figure 5-8. Comparison of the DL model performance with the previous model and 

characteristics of each observed area dataset in 96-h average time interval 
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Table 5-5 presents the performance evaluation metrics of the DL and baseline models using 

the test set. At this longest time interval, based on the total average distance interval between 

two AIS points, the DL models still delivered good performance, especially compared to the 

complete failure of the non-ML baseline. However, this result may not be reasonably 

acceptable since the performance degraded steadily relative to the time interval magnification. 

Figure 5-8 demonstrates the comparison of DL models’ performance and the dataset 

characteristics of each area. The model generated a steady improvement from the previous 

model with 3.5% more accuracy and 1.5% more precision on average. Additionally, the 

accumulation of the prediction performance in the large areas appears to distance the total 

average performance of both models. 

5.5. Second Experiment: Coverage Size Variations  

5.5.1. Experimental Setup 

In the previous experiment, the coverage area variation was different between time interval 

dimensions since the dimension naturally modulated the extent of vessel movement, which is 

directly related to the minimal coverage area to observe the objects completely. Thus, the 

results from each time interval dimension could not be compared. However, from the previous 

experiment, the geodesic calculation as a non-ML baseline failed when the time interval 

average was beyond 24 h, and the performance of the previous DL model as the baseline was 

getting worse in large coverage areas compared to the new larger networks. The DL model 

delivered a satisfactory performance compared to the baseline models and succeeded in 

responding to the task of an increasingly large time interval dimension and thus coverage area; 

thus, the larger networks generalized better. As the optimization was carried out with no explicit 

regularization such as dropout or batch normalization, this phenomenon is allegedly caused by 

the optimization algorithm that remains largely unexplained [62]. 

In the second experiment, we trained only the proven DL model on observation size 

variations based on the first experiment. We focused more on the coverage area, increasing 4 

and 3.2 degrees on longitude and latitude, respectively. The coverage variation was from 90°E–

110°E to 60°E–140°E longitude and from 4°S–12°N to 28°S–36°N latitude based on the first 

experiment where the fluctuation occurred before the models’ performance settled down. The 

more detailed size variation was expected to capture the fluctuation of the model performance 

in more detail. The model was then trained on each of four different time interval  

dimensions. 
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Figure 5-9. Size variations of the observed area for four-different time intervals (the 

normalized density distribution of AIS data is based on the largest area by the 24-h average 

time interval) 

Figure 5-9 reveals the size variations of the observed area for four-different time interval 

dimensions. The normalized density distributions were calculated using Gaussian kernel 

density estimation (KDE) with the dataset at the largest observation area by the 24-h average 

time interval dimension involving 1693 different IMO numbers. Meanwhile, the smallest 

observation area at 96-h time interval dimension covered 1590 vessels. The most extensive 

coverage was similar to the largest observation area at a 48-h time interval in the second 

experiment. The Indian Ocean surrounding Northwest Australia, followed by the East China 

Sea surrounding China, South Korea, and Japan, became the densest zone eclipsing Malacca 

Strait. 

Table 5-6 gives the overview of size variation of the observation area. The observation 

area covers from 4 to 60 million square kilometers. The dataset was split into training and dev-

test sets with the same hold-out validation scheme as the first experiment. Separate training 

and dev-test sets were prepared due to the differences in time interval dimensions. The longest 

time interval suffers from the size limitation because the starting point at  and the target point 

at  have to be in the coverage area, at which vessels traveled by more than 1300 km 

on average (see Table 5-5). Still, the size of these sets was sufficient where the smallest area at 

the largest time interval was already above the 25,000 thresholds, thus providing high 

confidence in the overall model performance. 
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Table 5-6. Size variation of observation coverage  

Index 

area 
Longitude Latitude 

Area size 

(106 km2) 

Training; dev/test size (103)  

based on average time intervals 

24 h 48 h 72 h 96 h 

1 90°E–110°E 4.0°S–12.0°N 4 107; 10 82; 7 61; 6 43; 4 
2 88°E–112°E 5.6°S–13.6°N 6 132; 12 107; 9 84; 7 64; 6 
3 86°E–114°E 7.2°S–15.2°N 8 157; 14 132; 12 108; 10 86; 7 
4 84°E–116°E 8.8°S–16.8°N 10 185; 16 161; 14 137; 12 114; 10 

5 82°E–118°E 10.4°S–18.4°N 13 235; 21 194; 17 169; 15 146; 13 
6 80°E–120°E 12.0°S–20.0°N 16 367; 33 316; 28 271; 25 222; 20 
7 78°E–122°E 13.6°S–21.6°N 19 516; 47 457; 41 399; 37 342; 32 
8 76°E–124°E 15.2°S–23.2°N 22 585; 54 522; 48 465; 44 410; 39 

9 74°E–126°E 16.8°S–24.8°N 26 663; 63 593; 56 527; 50 471; 46 
10 72°E–128°E 18.4°S–26.4°N 30 761; 76 692; 69 626; 64 563; 58 
11 70°E–130°E 20.0°S–28.0°N 35 832; 83 763; 77 700; 71 641; 67 
12 68°E–132°E 21.6°S–29.6°N 39 1044; 101 997; 96 952; 92 908; 89 

13 66°E–134°E 23.2°S–31.2°N 44 1147; 113 1098; 109 1053; 105 1013; 101 
14 64°E–136°E 24.8°S–32.8°N 49 1223; 123 1176; 118 1131; 115 1091; 111 
15 62°E–138°E 26.4°S–34.4°N 54 1278; 129 1230; 125 1184; 121 1142; 118 
16 60°E–140°E 28.0°S–36.0°N 60 1393; 142 1352; 138 1314; 135 1280; 133 

5.5.2. Results  

Table 5-7 presents the performance evaluation metrics of the DL models across area size 

variations at four-different time intervals; results were computed using each test set by their 

respective trained models. On average, across all coverage size variations, the accuracy 

difference (based on ) between DL models with different long-time intervals was directly 

proportional to the difference in average distance interval. Each has a performance baseline 

that is almost equidistant from the others as the time intervals (thus the distance intervals) have 

uniform magnification. Meanwhile, models with shorter time intervals were just more precise 

(based on ) than longer-time interval models in general without any correlation. 

Figure 5-10 gives an overview of the model performance across the coverage variations 

for each time interval dimension. All models generated comparable performances based on the 

time intervals, fluctuating from the initial coverage size until reaching around 20 million square 

kilometers. The fluctuation appears to be more intense for models with longer intervals. At this 

point, the performances improved from the initial coverage size and became stable. Then, a 

weak fluctuation was generated between this point and 30 million square kilometers of 
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coverage for models with the longest-time intervals (i.e., 72 h, 96 h). Eventually, all 

performances experienced a gradual increase on over 40 million square kilometers of coverage. 

Table 5-7. Comparison of model performance in all area size and time interval variations 

Index 

area 

(km) (deg) Average distance interval (km) 

=1d =2d =3d =4d =1d =2d =3d =4d =1d =2d =3d =4d 

1 73 149 211 247 18.2 17.3 19.2 18.6 377 686 912 1078 
2 68 155 230 281 16.8 16.0 18.0 18.4 396 745 991 1192 
3 65 154 243 307 14.7 15.6 17.7 17.9 411 783 1070 1300 
4 60 145 240 327 15.7 16.3 17.7 19.2 411 797 1108 1356 

5 55 135 235 332 16.2 18.0 19.1 20.9 395 788 1111 1371 
6 49 116 199 293 13.2 14.3 15.8 18.3 424 842 1208 1484 
7 45 105 184 271 14.7 15.4 16.8 17.5 422 839 1226 1558 
8 46 113 193 284 15.7 16.6 18.0 18.7 419 835 1229 1581 

9 46 113 197 287 15.4 16.7 17.6 18.6 420 841 1240 1604 
10 46 111 187 276 13.8 15.3 16.6 16.8 432 867 1282 1656 
11 45 111 188 278 14.1 14.7 15.6 17.4 430 870 1283 1658 
12 46 110 185 276 19.6 18.9 19.8 20.9 391 783 1161 1521 

13 47 113 191 285 23.3 22.4 22.0 23.6 373 747 1114 1459 
14 49 116 197 290 25.5 24.8 25.3 24.8 364 727 1076 1416 
15 50 119 201 295 25.7 25.1 26.2 25.8 361 721 1070 1403 
16 50 123 206 303 28.4 27.0 27.4 26.6 347 697 1037 1364 

 

 
Figure 5-10. The DL model performance on area size variations in four-different time interval 
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5.5.3. Discussion: coverage size expansion 

From the experiment result, the performances across long time intervals became stable 

after the coverage size reached 20 million square kilometers but increased gradually on 40 

million square kilometers of coverage. After that range, the performance tendency leads to 

uncertainty about whether to remain in a gradual increase or become stable. 

On that account, we trained the DL model on the expanded variations of the coverage size. 

The coverage area was increased in size, continuing from beyond 60 million to 204 million 

square kilometers as the widest coverage area in the first experiment (from 56°E–144°E to 

20°E–180°E longitude and 31.2°S–39.2°N to 60°S–68°N latitude). As the performance was 

expected to be steady at this more extensive coverage, the size interval was doubled: expanded 

by 8 and 6.4 degrees on longitude and latitude, respectively. 

 
Figure 5-11. Expanded size variations of the coverage area with doubled size interval (the 

normalized density distribution of AIS data is based on the largest area) 

Figure 5-11 portrays the expanded variations of the coverage area, whereby the largest 

observation area, almost all 1695 capsize bulk carriers, was captured over nine years and 

calculated for the density distribution. Identical to the most extensive coverage in the first 

experiment, almost all regions in the earth’s eastern hemisphere were covered. 

Figure 5-12 reveals the model performance across the expanded coverage variations for 

each time interval dimension. Overall, DL models across multiple time intervals deliver stable 
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performance and generate a proportional magnitude to the time intervals (predicted distance 

intervals). The performances remained steady from the initial to the end of the observed area. 

The observed performance stability across the size range may result from no high-density low-

distance-interval region dominating beyond the initial coverage. 

 
Figure 5-12. The DL model performance on the expanded coverage variations in four-

different time interval 

5.5.4. Discussion: the optimum coverage size for long-term position prediction 

As the stability is different in each time-interval model, the observed performance patterns 

may not result from only enlarging the coverage area. The shortest-interval model produced a 

direct result, but models with time intervals longer than 24 h produced different patterns, 

although the amount of training data is roughly equivalent. The optimum coverage size needed 

to be answered whether it is influenced more by its size or possibly the dataset characteristics 

of the area. 

Accordingly, we compare the dataset properties used to train the models across the time 

interval dimension and coverage size. The dispersion for continuous data can be measured by 

standard deviation, but comparing the variability when the coverage size and time intervals are 

different is tricky [63]. Therefore, we compare the number of training sets and AIS data 

characteristics on each observed area size and time interval represented by the dispersion of 

vessels distance interval (the haversine distance between two AIS messages). We calculated the 

coefficient of variation (CV), a measure of relative variability or dispersion of frequency 

distribution, to compare the distribution of ships’ distance intervals across different time 

intervals as follows [64]: 
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where  and  are the standard deviation and the mean of ships’ distance interval between 

the base and true positions, respectively (see Equation 18). 

Figure 5-13 compares the model performance and dataset characteristics across observed 

time intervals and covered area size variations. The dataset size may not directly influence the 

performance since the observed area is already large and contains sufficient data for the 

machine learning algorithm. The coverage size affects the data size until the coverage reaches 

the furthest of the northern and southern hemispheres. As the coverage size reaches 100 million 

square kilometers, AIS data is no longer significantly captured. 

Based on the coefficient of variation, the dataset with a time interval of 24 h average has 

a similar pattern but different magnitude from other datasets with magnified time intervals. Its 

magnitude is relatively larger than the others across the coverage size, indicating that it has a 

greater variability to the ships' average distance interval despite having an almost equal amount 

of data at each coverage. This profound distinction may result from using the daily archived 

AIS messages with natural time intervals averaging 24-h. The dataset sampling in the time 

dimension satisfies the   interval condition as  , destroying information 

regarding latent variables and causing distortion, indicated by the low dispersion compared to 

the raw AIS dataset with daily interval (i.e., averaging 24 h). Consequently, the transformed 

dataset became unbalanced or skewed, hindering the machine learning model's performance 

[65]. The unbalanced dataset may also be caused by a new formation of outliers that are not 

strictly defined when the time interval was magnified. 

The model performance with 24 h time interval is already stable at 19 million square 

kilometers. Malacca Strait is the densest region in this coverage, followed by the Makassar 

strait. Meanwhile, the performance of magnified-interval models fluctuated until 39 million 

square kilometers of coverage. In this coverage, the Northwest Australian waters as the densest 

region are completely captured, at which the CV soared to around 60 percent. The sharp 

increase of CV corresponds to capturing the densest region, indicating that dataset 

characteristics influenced these model performances more than the observed area size. 

However, after this point, the model performances increase gradually and become stable when 

the coverage reaches around 72 million square kilometers, corresponding to dispersion rate 

stability. This coverage completely captured the waters surrounding China, the second densest 

region. 
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Figure 5-13. DL model performance and dataset characteristics comparison across different 

time intervals and coverage size variation 

Therefore, according to the observed location, 19 million kilometers of coverage is optimal 

for the prediction model with 24-h intervals but not for the other DL models with magnified-

time intervals. Meanwhile, the optimum coverage size for all models is 39 million square 

kilometers, corresponding to the dataset's high dispersion rate. The subsequent gradual increase 
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observed from the longest-time interval models appears insignificant, resulting from capturing 

the second densest region degrees by degrees. Thus, by capturing the densest region on the 

observed location, which leads to a proportional ratio of the low-distance to the high-distance 

intervals, optimum coverage for long-term position prediction can be achieved. Enlarging the 

coverage area size may eventually solve the prerequisite of partial coverage. 

5.6. Third Experiment: Comparison of Observation Area Worldwide 

5.6.1. Experimental Setup 

Predictive performance is directly proportional to the time interval dimension based on 

performance evaluation metrics. Meanwhile, the observation area size is not only the main 

determinant in optimizing prediction performance but also a dataset characteristic shaped based 

on its location. To further assess the influence of the area, in the third experiment, five DL 

models were built for five major locations of maritime shipping routes focused on Capesize 

bulk carriers. The same procedure was applied to the models as in the previous experiments: 

each used the same model properties and followed a similar hold-out validation split.  

The observed locations shared the same longitude and latitude length based on the 

optimum coverage size from the previous experiment: within 64-interval longitude and 52-

interval latitude. Each area's size varies despite having the same geographical boundaries since 

the geographic coordinate measurements are angles and are not on a planar surface [66]. Each 

was named after the crossed region of the continent due to its large size, namely, Europe (EUR), 

South America (SAM), Southern Region of Africa (SRA), South and Southeast Asia (SAS), 

and East Asia (EAS).  

Figure 5‑14 illustrates the location and size of each area (red rectangles) based on the 

equidistant cylindrical projection, which neither covers equal-area nor conformal, a standard 

for imaging the relationship between the observed location on the map and its corresponding 

geographic location on Earth [67]. Each observed location is further depicted based on the 

Mercator projection, which inflates the area size away from the equator [68]8. The normalized 

                                                 
 

 

 
8 Despite large distortion at high latitude, it is commonly used in nautical and aerial use and is 

practical for visual mapping the Earth’s globe (without polar areas). 
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density distribution on each observed location reveals the complete capture of the densest 

region, not partial, complying with the recommendations for the optimum coverage of long-

term position prediction.  

 
Europe (EUR), South America (SAM), Southern Region of Africa (SRA),  

South and Southeast Asia (SAS), East Asia (EAS) 

Figure 5-14. Location of the observed area 

Capesize bulkcarriers are one-way cargo transport, where round trips between the 

countries are a common pattern. China, Australia, and Brazil are the top players with Capesize 

ships’ iron ore shipments [69]. From the normalized density distribution, the densest region in 

East Asia is located between Shanghai Port and Port of Ningbo in China; combined, they are 

the world’s biggest importers of iron ore and bulk shipments [70]. Meanwhile, the densest 

region in South and South East Asia is Northwest Australia, where the nearest Port Hedland is 

the world’s largest bulk export port [71]. In South America, the densest region is dry bulk cargo 

ports around Ponta da Madeira in North Brazil and Sepetiba and Tubarao in South Brazil, 

exporting mainly iron ore [72]. In Europe, the densest region is around the port of Rotterdam 

in the Netherlands, an important transit point for transport bulk between the European continent 
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and other parts of the world [73]. Further, the densest region in the Southern Region of Africa 

stretches around the Cape of Good Hope as ships sail between the Pacific and Atlantic oceans, 

plus additional traffic of iron ore exports around Port of Saldanha on the south-western coast 

of South Africa [74]. 

5.6.2. Results and Discussions 

The performance evaluation metrics of the models for each examined area are shown in 

Figure 5-15. Based on the mean angle error (MaE), model performance in the Southern Region 

of Africa (SRA) generated the most precision across time intervals, followed by models in 

South and Southeast Asia and South America. Their precisions gradually fade with the time-

interval magnification scheme. Meanwhile, model performance in Europe followed by East 

Asia produced the worse precision, to which magnifying time intervals barely affected them. 

All models produced a similar performance pattern based on the mean distance error, 

where the accuracy was inversely proportional to the time intervals. At 24-h average intervals, 

their magnitude appeared not substantially different from each other. As the time interval was 

magnified, the model's distance error in Europe and East Asia closely soared to their highest 

levels of more than 300 km at 96-h average intervals, much higher than the models in other 

observed locations. Meanwhile, models on South America, the Southern Region of Africa, and 

South and Southeast Asia generated a more accurate result and similar trends, with a gradual 

increase over the time-interval magnification. 

As ships’ behavior in each observed location has different observable properties, the error 

ratio demonstrates the generated error (MDE) relative to the average movement (i.e., distance 

interval) of the predicted objects per location and time-interval scheme, calculated as follows: 

 

where   is the previous or base point  , and   and   are the true   and 

predicted positions  at designated time intervals.  
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Figure 5-15. Comparison of DL model performance across observed location and time 

intervals 

Based on the error ratio, model performances in Europe and East Asia produced poor 

results across the time interval magnification compared to the model performances in other 

observed locations. By 24-h and 96-h average intervals, their error ratio worsened significantly 

from around 24% and 18% to 30% and 39%, respectively, double the average of the other 

model performances at the same time intervals. Although their mean distance error is not 

statistically significant to the other models, especially at low magnification time intervals, their 

error ratio appears to have a large gap. At 24-h and 96-h average intervals, the error ratio of 

South America, the Southern Region of Africa, and South and Southeast Asia averaged 9% and 

15%, respectively. For the case like the Southern Region of Africa, where the dominant AIS 

characteristics formed from the common sailing movement of bulk fleet stretching across the 

Cape of Good Hope, an ideal condition for a position prediction model, the DL model generated 

the lowest error ratio with the smallest increase over the longest time intervals. 

Therefore, the deep learning models generated worse predictions in Europe and East Asia 

than in the other observed locations (i.e., South America, the Southern Region of Africa, and 

South and Southeast Asia). The locations where importers of bulk shipments constitute the 
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largest portion appears to be harder to predict than those that constitute bulk export regions, 

which corresponds with the fact that Capesize dry bulk carriers' unloading time takes longer 

with a wider approximate range than loading time. Based on IHS MARKIT/TheTradeNet 

Market Intelligence Network (MINT) data from Muzhoffar, D.A.F., et al. (2022), the average 

port-staying time of worldwide Capesize bulkcarriers when loading is around 3 days ± 2 days, 

and when unloading is around 5 days ± 3 days [75]. The unloading operations require more 

complex procedures in cargo handling treatment than loading operations, which may lead to 

more lengthy delays or other uncertainties [76]. More importantly, the divergent state through 

unloading conditions is considered unsuitable for long-term position predictions of ships as the 

processed input is only their last movement and geographical position. 

5.7. Discussions on Single-Worldwide Model and Limitations of the 

Prediction Models 

5.7.1. Single-Worldwide DL Model 

The more accurate performance of the larger networks than the previous DL model can 

mitigate the larger observation area, thus a bigger and wider range of data. The larger model 

also performs better as the time interval was magnified longer than 24 h average, a more 

complex problem than the 24-h interval model. To further assess performances from a much 

larger model, a single worldwide model, we created a DL model trained from the whole 

worldwide data, having the same model properties and hold-out validation split. Model 

performances from the third experiment provide a baseline for this process. 

Figure 5-16 reveals performances from the single-worldwide model across the magnified 

time intervals. Compared to the location-based models in the third experiment, the worldwide 

model generated poor performance based on the MDE evaluation metric, similar to the inferior 

performance of the models with import-dominated regions of bulk shipments (i.e., Europe, East 

Asia). However, based on the error ratio, the worldwide model demonstrated output equivalent 

to the average between the poor performance models of the import-dominated location and 

strong performance models of the export-dominated locations, indicating that the worldwide 

model poses more generalized networks. The bigger and wider range of training data of the 

worldwide model is a way to generalize position prediction from the combinations of specific 

ships' behavior that may be only associated with specific locations.  
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Figure 5-16. Single-worldwide model performance across time intervals: mean distance error 

(left y-axis) and error ratio (right y-axis) 

The worldwide model may be suitable for predicting general responses; however, it will 

limit accuracy in certain circumstances or sites previously covered by the less-generalized 

location-based models that perform better on the designated observation area [77]. Moreover, 

this model contains extensive data that can naturally lead to more spurious correlations being 

fit undetected across many spots worldwide; consequently, more input features are required to 

generate optimal results [78]. Finally, the networks can be either overparameterized (e.g., large 

networks trained on small data tasks) or underparmeterized, which are too small for the 

enormous and complex world-scale model [79].  

5.7.2. Limitations: Outliers and AIS Data Uncertainty 

Despite a thorough understanding of the data and a deep learning ability that is robust to 

outliers, outliers identification and appropriate analytical technique are still hard to be carried 

out in preprocessing operations [80]. As our observation covers a relatively larger area and time 

range of AIS data with no restrictions on shipping trajectory than other position prediction 

studies, defining all outliers would be tremendously difficult had we examined everything at 

the micro level. Point or global outliers naturally inhere within AIS data are one thing, but 

detecting contextual or conditional outliers related to geographical position requires a 

monumental work that needs to specify every existing geographical boundary (e.g., polygon) 

and practicable definition of the geographical position [81, 82]. This preprocessing, 

nonetheless, is not essential in the motion-based method of vessel position prediction studies, 

where generalization plays an important role. Additionally, the AIS data used does not require 
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a preprocessing of anomalous motion patterns or trajectory outliers found naturally in the low 

time-interval data sets [83].  

Global outliers from the functions of movement and geographical position explicitly from 

AIS data were already omitted earlier in the database handling process, along with the absence 

and abnormality of AIS message components. Following the preprocessing, to rationalize on a 

huge scale, we further considered the outliers based on the time-interval functions and all their 

derivatives, which may affect prediction performances in particular scenarios. Considering that 

a formation of outliers possibly contributed to data sets when the time interval was magnified 

due to the nature of the AIS data used. This problem intensifies for the worldwide model as the 

CV dropped significantly compared to the location-based models when the time interval was 

magnified (see Figure 5-17 (a)). In this extensive coverage, the dispersion rate across time 

intervals is affected mainly by data set characteristics, not their size, since the number of AIS 

data has no correlation to the magnitude of CV on the respected location (see Figure 5-17 (b)). 

Conditional outliers related to ships' navigational status also play notable roles which may 

impact the data set's balance. Their identification analysis would reveal the balance of the data 

set; ML experts can then choose the most suitable set to be trained so that the prediction results 

will be more sensitive and accurate, but only in the specified situation [84]. Instead, we 

generalized the deep learning model since we focused only on the last geographical movements 

as the input, and it is interesting to incorporate the statuses in future studies. 

Moreover, other limitations inherent to the nature of AIS data may add certain deviations 

to the data set characteristics, affecting the deep learning performance. The development of 

AIS technology and mandatory installation regulation took years to fully implement, leading 

to differences in data volume and signal coverage across the observed years (see Figure 3-1) 

[85]. Some loss reported where it is difficult for satellites to capture all messages emitted, 

attributed to the congestion in some spots, such as in China [86, 87]. Nevertheless, these 

concerns are trivial as the observation covers a more extensive zone and time coverage. 

The archived and compressed AIS messages with random sampling intervals also inheres 

major limitations to the study [88]. Despite being compressed within a one-day interval, the 

random sampling renders the data set distribution; having a clear Gaussian distribution will 

benefit machine learning building [89]. However, the issue has been minimalized as the time-

interval targets are not strictly defined. The DL model is also improved by replacing sigmoid 

functions that work most naturally with normally distributed data with selu activation [90]. For 

the same time windows within 24-h intervals, the deep learning generated remarkable good 
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performance; however, at the time-intervals magnification, it is possible that the issue 

intensifies, especially for the single-worldwide scenario. 

(a)  

 (b)  

Figure 5-17. Dataset characteristics comparison of the location-based and worldwide models: 

coefficient of variation across time interval magnification (a) and number of training data (b) 

5.8. Conclusions on several-day intervals of ship position prediction 

Results from this research show that the geodesic calculation as a non-ML baseline failed 

when the time interval average was magnified beyond 24 h, and the performance of the 

previous DL model as the baseline became worse in large coverage areas compared to the new 

larger networks. The vector regression model is better than the scalar regression model; thus, 

the larger networks generalized better. The DL model delivered a satisfactory performance 

compared to the baseline models and succeeded in responding to the task of an increasingly 

large time interval dimension and coverage area.  

Meanwhile, the optimum coverage size for all time-interval models is 39 million square 

kilometers, corresponding to the dataset's high dispersion rate. By capturing the densest region 
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on the observed location, which leads to a proportional ratio of the low-distance to the high-

distance intervals, optimum coverage for long-term position prediction can be achieved. The 

deep learning models generated worse predictions in Europe and East Asia than in the other 

observed locations (i.e., South America, the Southern Region of Africa, and South and 

Southeast Asia). The locations where importers of bulk shipments constitute the largest portion 

appears to be harder to predict than those that constitute bulk export regions, which corresponds 

with the fact that Capesize dry bulk carriers' unloading time takes longer with a wider 

approximate range than loading time.  

Moreover, the worldwide model is a way to generalize position prediction and may be 

suitable for predicting general responses, but it will limit accuracy in certain circumstances or 

areas where location-based models perform better on them. The deep learning model was 

trained based on the last geographical movements; thus, this limitation intensifies at the time-

intervals magnification. 
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Chapter 6                                                           
Conclusions and Future Works 

6.1. Conclusions 

This study employed DL models with experimentally defined properties using exactEarth 

AIS daily data. There are two main chapters: each consist of three experiments and discussions. 

In the first experiment of the former, a model for the Indian Ocean area was examined, and in 

the subsequent experiment, 12 models were investigated on open oceans and maritime 

chokepoints. Then, a selected sample location within the Malacca Strait area was examined, 

resembling a simulation of practical application. In the first experiment of the latter, larger 

networks of DL models were trained on different observation area sizes with magnified time 

intervals. We focused more on observation size variations in the next experiment, increasing 4 

and 3.2 degrees on longitude and latitude, respectively. Finally, five DL models were built for 

five major locations of maritime shipping routes focused on Capesize bulk carriers. 

The conclusions of this dissertation are summarized as follows: 

1. Ship position prediction with an average time interval of 24 h was possible with the 

straightforward motion-based method, more accurate than the geodesic calculation as 

the baseline model in all areas.  

2. Predictions in the open ocean areas yielded higher accuracy than in the chokepoint 

areas; the improvement compared to the geodesic calculation was higher in the 

chokepoint areas than in the ocean areas as the conventional calculation failed to predict 

vessel behavior near the ports and congested waters.  

3. The DL model can predict the complex movement of ships near ports and congested 

routes with no information regarding vessel status, historical trajectory, or destination. 

The DL model appears to have a sense of the dimension of the geographic coordinate 

system that can be or is often passed, wherein the chokepoint areas rely more on the 

input features of the current latitude and longitude of the vessels.  

4. The proposed MLP model generated predictions as accurate as of the LSTM with faster 

training times on the dataset with varying and uneven time-interval distribution and 

without a trajectory reconstruction. 

5. From the research of several-day intervals of ship position prediction, the DL model 

delivered a satisfactory performance compared to the baseline models in increasingly 
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large time interval dimensions and coverage size; thus, the larger networks generalized 

better. The geodesic calculation as a non-ML baseline failed when the time interval 

average was beyond 24 h, and the performance of the previous DL model as the baseline 

became worse in large coverage areas.  

6. The optimum coverage size for all time-interval models is 39 million square kilometers, 

corresponding to the dataset's high dispersion rate. To achieve the optimum coverage 

for long-term position prediction, the densest region on the observed location must be 

captured, leading to a proportional ratio of the low-distance to the high-distance 

intervals.  

7. The locations where importers of bulk shipments constitute the largest portion appears 

to be harder to predict than those that constitute bulk export regions, which corresponds 

with the fact that Capesize dry bulk carriers' unloading time takes longer with a wider 

approximate range than loading time.  

8. The worldwide model is a way to generalize position prediction and may be suitable 

for predicting general responses, but it will limit accuracy in certain circumstances or 

areas where location-based models perform better. The deep learning model was trained 

based on the last geographical movements; thus, this limitation intensifies at the time-

intervals magnification. 

6.2. Future Works 

This paper is the first study to explore long-term ship position prediction using an AIS 

dataset in nine years for Capesize bulk carriers worldwide, providing a valuable benchmark for 

future studies. As this is the first study on long-term position prediction, we focused only on 

the basics of AIS data as the input features, that is, the last geographical position and movement. 

Therefore, it is very possible to incorporate other valuable input features and utilize other 

techniques in future studies to improve the prediction performance, such as: 

 Adding new essential input features regarding the vessel status, destination, or longer 

historical trajectory. 

 Adding feature-engineered input processed from AIS data and other data (e.g., Port data, 

Country data, etc.). 

 Adding input from other data (e.g., Weather data, operation data, etc.).  
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 Exploring new thrived architecture specialized for the objective (sequence-based time-

series problems): The neural ordinary differential equation model and Transformer 

Neural Networks for regression. 

In future studies, we intend to improve the model performance by utilizing these 

techniques and incorporating other types of vessels, thereby increasing the complexity of the 

model.  
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