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Chapter 1

Introduction

Supervised learning is a subcategory of machine learning algorithms that construct
the model trained using labeled datasets. The trained model can accurately classify
new samples or predict outcomes for the new samples. Usually, the accuracy of the
model is measured through a loss function, and the best parameters are searched
during the training until the loss has been sufficiently minimized.

Image classification is a computer vision task where the trained model must ac-
curately assign test images into specific categories. Convolutional neural networks
(CNNs) have proven to be an excellent performance for image classification. The
cross-entropy loss is the most widely used loss function for supervised learning
of deep classification models. A number of works have explored shortcomings of
this loss, such as lack of robustness to noisy labels and the possibility of poor mar-
gins, leading to reduced generalization performance. However, in practice, most
proposed alternatives have not worked better for large-scale datasets, such as Ima-
geNet, as evidenced by the continued use of cross-entropy to achieve state-of-the-art
results.

In recent years, a resurgence of work in contrastive learning has led to major ad-
vances in self-supervised representation learning. The common idea in these works
is the following: pull together an anchor and a “positive” sample in embedding
space, and push apart the anchor from many “negative” samples. Since no labels
are available, a positive pair often consists of data augmentations of the sample, and
negative pairs are formed by the anchor and randomly chosen samples from the
minibatch.

Recently research on self-supervised learning [10] becomes popular in machine
learning algorithms and has achieved almost similar accuracy to supervised learn-
ing. In self-supervised learning, the samples without labels are used in the training
and the perturbation-invariant features are extracted by contrastive mechanism [14]
which reduces the distance between the representations of differently augmented
views of the same image (positive pairs) and increase the distance between the rep-
resentations of the augmented views from different images (negative pairs).

One of the self-supervised learning methods, named Barlow Twins [12] uses an
objective function that computes the cross-correlation matrix between the outputs of
two identical networks fed with distorted versions of the same sample, and makes
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it as close to the identity matrix as possible. This causes the embedding vectors of
the distorted versions of the same sample to be similar while minimizing the re-
dundancy between the components of these vectors. Barlow Twins does not require
large batches nor asymmetry between the network twins such as a predictor net-
work, gradient stopping, or a moving average on the weight updates.

In this work, we propose a supervised learning method for image classification
with CNN by combining the loss function of the supervised learning (cross-entropy
loss) with the loss of self-supervised learning (Barlow Twins loss). Perturbations
(augmentations) are applied to the input data. The perturbed images are first fed
into the two networks with the same parameters and then the Barlow Twins loss
is measured at a small neural network projection heads that give the embedding
features. The embedding features from the same class are pulled closer together
than embedding features from different classes and are represented as 1’s and 0’s
in cross-correlation matrix. The main goal is to encourage the network to learn the
perturbation invariant embeddings. We experimentally confirmed that the cross en-
tropy (CE) loss with Barlow Twins loss can achieve the best classification accuracy
in the Supervised classification problems. Our main contributions are summarized
below:

1. We propose a perturbation-invariant feature extraction mechanism in the Su-
pervised Learning for Classification with CNN using the Barlow Twins loss
function.

2. We show that the proposed approach provides consistent improvements in
classification accuracy for different baseline CNNs, VGG-16 and ResNet-18,
on different datasets, CIFAR-10 and STL-10.
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Chapter 2

Related Works

Self-supervised learning aims to learn useful representations of the input data with-
out relying on human annotations. Recent advances in self-supervised learning for
visual data show that it is possible to learn self-supervised representations that are
competitive with supervised representations. A common underlying theme that
unites these methods is that they all aim to learn representations that are invari-
ant under different distortions (also referred to as ‘data augmentations’). This is
typically achieved by maximizing the similarity of representations obtained from
different distorted versions of a sample using a variant of Siamese networks.

Contrastive methods like SIMCLR [2] define ‘positive’ and ‘negative’ sample
pairs which are treated differently in the loss function. Additionally, they can also
use asymmetric learning updates wherein momentum encoders are updated sep-
arately from the main network. Clustering methods use one distorted sample to
compute ‘targets’ for the loss, and another distorted version of the sample to predict
these targets, followed by an alternate optimization scheme like k-means in DEEP-
CLUSTER or non-differentiable operators in SWAV and SELA.

In another recent line of works, BYOL [6] and SIMSIAM [13], both the network
architecture and parameter updates are modified to introduce asymmetry. The net-
work architecture is modified to be asymmetric using a special ‘predictor’ network
and the parameter updates are asymmetric such that the model parameters are only
updated using one distorted version of the input, while the representations from
another distorted version are used as a fixed target. SIMSIAM concludes that the
asymmetry of the learning update, ‘stop-gradient’, is critical to preventing trivial
solutions.

Among discriminative methods, contrastive methods [9],[8] currently achieve
the state-of-the-art performance in self-supervised learning [4],[3]. Contrastive ap-
proaches avoid a costly generation step in pixel space by bringing the representation
of different views of the same image closer (‘positive pairs’) and spreading repre-
sentations of views from different images (‘negative pairs’) apart [11]. Contrastive
methods often require comparing each example with many other examples to work
well [2],[7] prompting the question of whether using negative pairs is necessary.

DeepCluster [1] partially answers this question. It uses bootstrapping on previ-
ous versions of its representation to produce targets for the next representation; it
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clusters data points using the prior representation and uses the clustered index of
each sample as a classification target for the new representation. While avoiding the
use of negative pairs, requires a costly clustering phase and specific precautions to
avoid collapsing to trivial solutions.

In the new method, Barlow Twins[12], which applies redundancy reduction, a
principle first proposed in neuroscience to self-supervised learning. In his influen-
tial article Possible Principles Underlying the Transformation of Sensory Messages
(Barlow, 1961), neuroscientist H. Barlow hypothesized that the goal of sensory pro-
cessing is to recode highly redundant sensory inputs into a factorial code (a code
with statistically independent components). This principle has been fruitful in ex-
plaining the organization of the visual system, from the retina to cortical areas, and
has led to a number of algorithms for supervised and unsupervised learning. Based
on this principle, they propose the objective function which tries to make the cross-
correlation matrix computed from twin embeddings as close to the identity matrix
as possible. Barlow Twins is conceptually simple, easy to implement and, learns
useful representations as opposed to trivial solutions. Intriguingly, Barlow Twins
strongly benefits from the use of very high-dimensional embeddings. The network
architecture of Barlow Twins is shown in Fig.2.1. Barlow Twins outperforms previ-
ous methods on ImageNet for semi-supervised classification in the low-data regime
and is on par with the current state of the art for ImageNet classification with a linear
classifier head, as well as for a number of transfer tasks of classification and object
detection.

FIGURE 2.1: Barlow Twins’s objective function computes the cross-
correlation matrix between the embeddings of two identical networks
fed with distorted versions of a batch of samples, and tries to make
this matrix close to the identity matrix. Barlow Twins is competitive
with state-of-the-art methods for self-supervised learning while be-
ing conceptually simpler, naturally avoiding trivial constant (i.e. col-

lapsed) embeddings, and being robust to the training batch size.
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Chapter 3

Proposed Method

FIGURE 3.1: Supervised CNN Architecture, where Barlow Twins loss
function and Cross Entropy Loss are calculated from the embeddings
of projection head layers and are combine together to form a single

loss function

3.1 Architecture for Supervised Learning with Barlow Twins

The architecture of the proposed supervised learning is shown in Fig. 3.1. There are
two networks with the same parameters and two branches for classifiers and feature
embedding for each network.

Let {(xn, tn)|n = 1, . . . , N} be the set of training samples, where

tn =
[
tn1 · · · tnK

]T
is the one-hot vector representation of the target class of the

image xn. The number of classes is assumed to be K. Then we apply two different
perturbations to each of the training sample xn. The perturbed images are denoted
as x̃(1)n and x̃(2)n and they are fed into the upper and the lower networks in Fig. 3.1.
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The outputs for two classifiers are denoted as y(1)
n and y(2)

n . Also, the embedding fea-
tures for two networks are denoted as z(1)n and z(2)n The transformed input images are
fed into the architecture in the form of two branches using a variant of the Siamese
network. We call the output of the projection heads the ’embeddings’. These embed-
dings from the first projection head network are used to calculate the cross entropy
loss for each network and the embeddings from the second projection head network
are used to calculate the Barlow Twins loss function as shown in Fig. 3.1.

Each input image is randomly transformed during training to produce the two
distorted views x̃(1)n and x̃(2)n as shown in Fig. 3.1. The image augmentation pipeline
consists of the following transformations: random resize crop, random horizontal
flip, random grayscale, and random solarize. We investigate the performance of our
framework when applying augmentations individually or in pairs. Specifically, we
always first randomly crop images and resize them to the same resolution, and then
we apply the targeted transformations only to one branch of the framework, while
randomly applying transformations to the other branch. The first two transforma-
tions (cropping and flipping) are always applied, while the random grayscale and
random solarize are applied randomly, with desired probability.

3.2 Cross Entropy Loss

Cross-entropy loss measures the similarity between the given one-hot vector and the
estimated output vector (probabilities) and it is used to calculate how accurate the
trained deep learning model is. Since we have two networks the cross entropy losses
for each network can be defined as

L(1)
CE = −

N

∑
n=1

K

∑
k=1

tnk log y(1)nk (3.1)

L(2)
CE = −

N

∑
n

K

∑
k=1

tnk log y(2)nk (3.2)

3.3 Barlow Twins Loss

Like other recent methods for self-supervised learning, Barlow Twins operates on
a joint embedding of distorted images. In the proposed method, the Barlow Twins
loss is defined by using the embedding feature vectors in mini-batch. Let

Z(1) =

{
z(1)n =

[
z(1)n1 · · · z(1)nM

]T
∣∣∣∣n = 1, . . . , B

}
Z(2) =

{
z(2)n =

[
z(2)n1 · · · z(2)nM

]T
∣∣∣∣n = 1, . . . , B

}
be the sets of embedding feature vectors in a given mini-batch, where M is the length
of the feature vectors and B is the number of samples in mini-batch. Then the Barlow
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Twins loss is defined as

LBT = ∑
i
(1 − Cii)

2 + λ ∑
i

∑
j ̸=i

(
Cij

)2 (3.3)

where λ is a positive constant trading off the importance of the first and second terms
of the loss. The cross-correlation matrix C = [Cij] is computed between the sets of
outputs of the two identical networks Z(1) and Z(2) along the batch dimension as

Ci j =

B

∑
b=1

z(1)bi z(2)bj√
B

∑
b=1

(
z(1)bi

)2
√

B

∑
b=1

(
z(2)bj

)2
(3.4)

where b indexes batch samples and i, j index the vector dimension of the network’s
outputs. The cross-correlation matrix C is a square matrix with size M × M. Each of
the elements of the matrix C have the value between −1 (i.e. perfect anti-correlation)
and 1 (i.e. perfect correlation).

Intuitively, the first term of Barlow Twins loss forces the diagonal elements of
the cross-correlation matrix to be equal to 1. This makes the embedding features
invariant to the perturbations applied to the input images. On the other hand, the
second term forces the off-diagonal elements of the cross-correlation matrix to be
equal to 0. This decorrelates the different elements of the embedding feature vectors.
This decorrelation reduces the redundancy between the elements in the embedding
feature vector, so that the output units contain non-redundant information.

3.4 Barlow Twins in Supervised Classification CNN

In the proposed methods, we combine the standard cross-entropy loss with the Bar-
low Twins loss. As shown in Fig. 3.1, we have two classifiers. Thus the total loss can
be defind as

L = L(1)
CE + L(2)

CE + γLBT, (3.5)

where γ is a hyper-parameter to control the strength of the Barlow Twins loss. By
introducing the Barlow Twins loss, it is expected that each of the classifiers becomes
robust to the perturbation and the generalization performance of the trained model
is improved.

In test phase, we can use one of the backbone networks with classification head
as one simple CNN.
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Chapter 4

Experiments

To confirm the effectiveness of the proposed approach, we have performed experi-
ments using different data sets (CIFAR-10 and STL-10) and different baseline CNNs
(VGG-16 and ResNet-18).

4.1 Datasets

We evaluated our method on two datasets, CIFAR-10 and STL-10[5]. The CIFAR-10
dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test images. The dataset is divided into
five training batches and one test batch, each with 10000 images. The test batch con-
tains exactly 1000 randomly-selected images from each class. The training batches
contain exactly 5000 images from each class. The STL-10 dataset is inspired by the
CIFAR-10 dataset but with some modifications. In particular, each class has fewer
labeled training examples than in CIFAR-10, but a very large set of unlabeled exam-
ples is provided to learn image models prior to supervised training. This dataset
consists of 10 classes with 96x96 pixels color images. There are 500 training images
(10 pre-defined folds), 800 test images per class, and 100000 unlabeled images for
unsupervised learning.

4.2 Experimental Setup

4.2.1 Network Architecture

In the encoder of the network architecture, we use VGG-16 and ResNet-18 networks
without pre-trained weights. We change the output size of the last layer to 2048
output units, following the original work on Barlow Twins. The encoder network is
followed by two parallel projection head networks, where the first projection head
has one linear layer with 10 output units for classification and the second projec-
tion head has two linear layers with 2048 hidden units and 128 output units for the
transformation-invariant embedding. The first layer is followed by a ReLU activa-
tion.
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4.2.2 Siamese Neural Network

We use Siamese Neural Network which is one of the leading methods for deep
learning and fine-tuning vector representations or even training a new model from
scratch. This architecture contains two or more identical subnetworks. ‘identi-
cal’ here means, they have the same configuration with the same parameters and
weights. Parameter updating is mirrored across both sub-networks. It is used to
find the similarity of the inputs by comparing their feature vectors, so these net-
works are used in many applications. We learn to make these similarities closer if
the categories of the pair are the same and to make the similarities apart if the cate-
gories are different.

4.2.3 Image Augmentations

Each input image are transformed randomly to produce the two distorted views
shown in Fig. 3.1. The image augmentation pipeline consists of the following trans-
formations: random resize crop, random horizontal flip, random grayscale, and ran-
dom solarize. We investigate the performance of our framework when applying
augmentations individually or in pairs. Specifically, we always first randomly crop
images and resize them to the same resolution, and then we apply the targeted trans-
formations only to one branch of the framework, while randomly applying transfor-
mations to the other branch. The first two transformations (cropping and flipping)
are always applied, while the random grayscale and random solarize are applied
randomly, with desired probability.

4.2.4 Optimization

We use the SGD optimizer with a momentum of 0.9 and train the model for 1000
epochs at a learning rate of 0.01. We also add some weight decay with a rate of
0.0001. We run experiments with the values of γ 0.0001, 0.001, and 0.01, and our
results show that the optimal value for this parameter changes under different con-
figurations. We use a batch size of 512 for VGG-16 and 128 for ResNet-18.

Training time taken for the VGG-16 network in GPU is approximately 22 hours
for each experiment. For the ResNet-18 network, the training time takes approxi-
mately 5 hours for each experiment.

4.3 Evaluation on CIFAR-10 dataset

We train the VGG-16 network model without pre-trained weights with our proposed
method on the CIFAR-10 dataset. The network is trained with different gamma pa-
rameters ranging from 0.0001 to 0.01. The gamma parameter value which results in
the best accuracy is compared with the cross entropy loss (baseline model), where
the baseline cross-entropy loss accuracies are calculated from the transformed train
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and test data. Additionally, we show evaluations on augmented data to directly con-
firm our method’s ability to learn transformation-invariant features. We perform
the same process when training the ResNet-18 network model. The same experi-
ments are conducted multiple times and the performance variance is reported with
the mean accuracy and standard deviation to all tables of ResNet-18 architecture.
The classification accuracies obtained on the CIFAR-10 dataset with the VGG-16 net-
work for train data, test data, and augmented test data are reported in Table 4.1.
The gamma parameter of 0.001 consistently gives the best accuracy, outperforming
the baseline (standard classification training with cross-entropy loss). Fig.4.1 and
Fig.4.2 shows the 2-dimensional PCA and t-SNE visualizations of augmented train
embeddings for baseline cross entropy loss and different gamma parameter values.
The visualizations of embeddings from our proposed method show cleaner class
separation than the baseline method. The classification accuracies obtained on the
CIFAR-10 dataset with ResNet-18 network for train data, test data, and augmented
test data are reported in Table 4.2. The gamma parameter of 0.001 shows the best
accuracy under all configurations. Fig.4.4 shows the 2-dimensional t-SNE visualiza-
tions of augmented train embeddings for baseline cross entropy loss and different
gamma parameter values.

TABLE 4.1: Classification accuracy results on CIFAR-10 dataset with
VGG-16 architecture

Proposed Method Cross Entropy Loss
(mean acc±std.deviation) (baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.59±0.09 99.61±0.23 99.53±0.06 98.56±0.51
Test Acc-test data 88.90±0.20 88.94±0.78 88.59±0.67 86.15±2.28
Test Acc-Aug test data 87.88±0.41 87.91±0.85 87.59±0.49 86.37±1.03

TABLE 4.2: Classification accuracy results on CIFAR10 dataset with
ResNet-18 architecture

Proposed Method Cross Entropy Loss
(mean acc±std.deviation) (baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 98.29±0.25 98.58±0.19 98.53±0.5 97.39±0.25
Test Acc-test data 81.78±1.51 83.63±0.38 82.86±0.33 82.78±0.26
Test Acc-Aug test data 80.13±2.61 81.3±0.14 80.84±0.92 80.85±0.43

4.4 Evaluation on STL-10 dataset

For the STL-10 dataset, we consider 5000 labeled train samples and 5000 unlabelled
train samples to train the VGG-16 network model without pre-trained weights with
our proposed method. We used only the 5000 labeled train samples to train the base-
line cross-entropy loss. The classification accuracies obtained on the STL-10 dataset
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FIGURE 4.1: 2-dimensional PCA visualizations of augmented train
embeddings from CIFAR-10 dataset with VGG-16 architecture

with the VGG-16 network for train data, test data, and augmented test data are re-
ported in Table 4.3. The gamma value of 0.01 shows the best accuracy under all
configurations, outperforming the baseline by over 2% on the test data. Fig.4.5 and
Fig.4.6 shows the 2-dimensional PCA and t-SNE visualizations of augmented train
embeddings for baseline cross entropy loss and different γ parameters values. The
visualizations of embeddings for γ value 0.01 is more clearly clustered than the base-
line cross-entropy. The classification accuracies obtained on the STL-10 dataset with
the ResNet-18 network for train data, test data, and augmented test data are reported
in Table 4.4. The gamma parameter of 0.001 gives the best accuracy, again outper-
forming the standard classification baseline. Fig.4.8 shows the 2-dimensional t-SNE
visualizations of augmented train embeddings for baseline cross entropy loss and
different gamma parameter values.
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FIGURE 4.2: 2-dimensional t-SNE visualizations of augmented train
embeddings from CIFAR-10 dataset with VGG-16 architecture

TABLE 4.3: Classification accuracy results on STL-10 dataset with
VGG-16 architecture

Proposed Method Cross Entropy Loss
(mean acc±std.deviation) (baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.74±0.26 99.85±0.12 99.88±0.13 99.82±0.18
Test Acc-test data 72.81±0.42 74.45±0.48 76.87±2.22 70.97±4.63
Test Acc-Aug test data 72.44±0.45 74.19±0.57 76.64±2.52 69.88±3.19

4.5 Evaluation of different augmentations on CIFAR-10 dataset

We train the ResNet-18 network model without pre-trained weights with our pro-
posed method on the CIFAR-10 dataset. The network is trained with different gamma
parameters ranging from 0.0001 to 0.01. The gamma parameter value which results
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FIGURE 4.3: 2-dimensional PCA visualizations of augmented train
embeddings from CIFAR-10 dataset with ResNet-18 architecture

TABLE 4.4: Classification accuracy results on STL-10 dataset with
ResNet-18 architecture

Proposed Method Cross Entropy Loss
(mean acc±std.deviation) (baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.86±0.02 99.88±0.13 99.17±1.13 99.36±0.33
Test Acc-test data 72.78±1.06 73.66±0.37 71.74±3.45 70.46±0.87
Test Acc-Aug test data 72.34±0.33 73.51±0.46 71.33±2.49 71.28±0.27

in the best accuracy is compared with the cross entropy loss (baseline model), where
the baseline cross-entropy loss accuracies are calculated from the transformed train
and test data. Additionally, we show evaluations on augmented data to directly
confirm our method’s ability to learn transformation-invariant features.
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FIGURE 4.4: 2-dimensional t-SNE visualizations of augmented train
embeddings from CIFAR-10 dataset with ResNet-18 architecture

4.5.1 Evaluation of Random Resize Crop augmentation on CIFAR-10 dataset

We train ResNet-18 network model with only random resize crop augmentation on
the CIFAR-10 dataset. The classification accuracies obtained on the CIFAR-10 dataset
with ResNet-18 network for train data, test data, and augmented test data are re-
ported in Table 4.5. The gamma parameter of 0.01 consistently gives the best accu-
racy, outperforming the baseline (standard classification training with cross entropy
loss). Fig.4.9 and Fig.4.10 show the 2-dimensional PCA and t-SNE visualizations of
augmented train embeddings for baseline cross entropy loss and different gamma
parameter values. The visualizations of embeddings from our proposed method
show cleaner class separation than the baseline method.
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FIGURE 4.5: 2-dimensional PCA visualizations of augmented train
embeddings from STL-10 dataset with VGG-16 architecture

TABLE 4.5: Classification accuracy results for Random Resize Crop
augmentation on CIFAR-10 dataset with ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.17 98.81 99.4 98.39
Test Acc-test data 81.53 81.23 82.11 81.36
Test Acc-Aug test data 80.98 80.2 82 80.56

4.5.2 Evaluation of Random Horizontal Flip augmentation on CIFAR-10
dataset

We train the ResNet-18 network model with only random horizontal flip augmenta-
tion on the CIFAR-10 dataset. The classification accuracies obtained on the CIFAR-10



16 Chapter 4. Experiments

FIGURE 4.6: 2-dimensional t-SNE visualizations of augmented train
embeddings from STL-10 dataset with VGG-16 architecture

dataset with ResNet-18 network for train data, test data, and augmented test data are
reported in Table 4.6. The gamma parameter of 0.01 consistently gives the best accu-
racy, outperforming the baseline (standard classification training with cross-entropy
loss). Fig.4.11 and Fig.4.12 show the 2-dimensional PCA and t-SNE visualizations of
augmented train embeddings for baseline cross entropy loss and different gamma
parameter values. The visualizations of embeddings from our proposed method
show cleaner class separation than the baseline method.

4.5.3 Evaluation of Random Gray Scale augmentation on CIFAR-10 dataset

We train the ResNet-18 network model with only random grayscale augmentation
on the CIFAR-10 dataset. The classification accuracies obtained on the CIFAR-10
dataset with ResNet-18 network for train data, test data, and augmented test data
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FIGURE 4.7: 2-dimensional PCA visualizations of augmented train
embeddings from STL-10 dataset with ResNet-18 architecture

TABLE 4.6: Classification accuracy results for Random Horizontal
Flip augmentation on CIFAR-10 dataset with ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.28 99.42 99.45 99.44
Test Acc-test data 79.18 79.31 80.51 79.82
Test Acc-Aug test data 66 63.96 69.2 64

are reported in Table 4.7. The gamma parameter of 0.0001 consistently gives the best
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FIGURE 4.8: 2-dimensional t-SNE visualizations of augmented train
embeddings from STL-10 dataset with ResNet-18 architecture

accuracy, outperforming the baseline (standard classification training with cross-
entropy loss). Fig.4.13 and Fig.4.14 show the 2-dimensional PCA and t-SNE visu-
alizations of augmented train embeddings for baseline cross entropy loss and differ-
ent gamma parameter values. The visualizations of embeddings from our proposed
method show cleaner class separation than the baseline method.

4.5.4 Evaluation of Random Solarize augmentation on CIFAR-10 dataset

We train the ResNet-18 network model with only random solarize augmentation on
the CIFAR-10 dataset. The classification accuracies obtained on the CIFAR-10 dataset
with ResNet-18 network for train data, test data, and augmented test data are re-
ported in Table 4.8. The gamma parameter of 0.001 consistently gives the best accu-
racy, outperforming the baseline (standard classification training with cross-entropy
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FIGURE 4.9: Random Resize Crop: 2-dimensional PCA visualizations
of augmented train embeddings from CIFAR-10 dataset with ResNet-

18 architecture

TABLE 4.7: Classification accuracy results for Random Gray Scale
augmentation on CIFAR-10 dataset with ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 100 99.91 100 99.6
Test Acc-test data 77 74.96 75.97 75.09
Test Acc-Aug test data 63.58 60.2 62.49 58.2

loss). Fig.4.15 and Fig.4.16 show the 2-dimensional PCA and t-SNE visualizations of
augmented train embeddings for baseline cross entropy loss and different gamma
parameter values. The visualizations of embeddings from our proposed method
show cleaner class separation than the baseline method.
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FIGURE 4.10: Random Resize Crop: 2-dimensional T-SNE visualiza-
tions of augmented train embeddings from CIFAR-10 dataset with

ResNet-18 architecture

TABLE 4.8: Classification accuracy results for Random Solarize aug-
mentation on CIFAR-10 dataset with ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 98.73 100 100 99.64
Test Acc-test data 74.58 79.6 75.43 75.4
Test Acc-Aug test data 59.4 64.2 61 59.57
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4.6 Evaluation of combinations of augmentation on CIFAR-
10 dataset

4.6.1 Evaluation of Random Resize Crop and Random Horizontal Flip
augmentations on CIFAR-10 dataset

We train ResNet-18 network model with random resize crop and random horizontal
flip augmentation on CIFAR-10 dataset. The classification accuracies obtained on the
CIFAR-10 dataset with ResNet-18 network for train data, test data and augmented
test data are reported in Table 4.9. The gamma parameter of 0.01 consistently gives
the best accuracy, outperforming the baseline (standard classification training with
cross entropy loss). Fig.4.17 and Fig.4.18 shows the 2-dimensional PCA and t-SNE
visualizations of augmented train embeddings for baseline cross entropy loss and
different gamma parameter values. The visualizations of embeddings from our pro-
posed method show cleaner class separation than the baseline method.

TABLE 4.9: Classification accuracy results for Random Resize Crop
and Random Horizontal Flip augmentations on CIFAR-10 dataset

with ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 99.12 98.92 99.30 98.53
Test Acc-test data 83.42 83.46 83.59 83.17
Test Acc-Aug test data 81.04 81.31 81.59 80.77

4.6.2 Evaluation of Random Gray Scale and Random Solarize augmenta-
tions on CIFAR-10 dataset

We train ResNet-18 network model with random grayscale and random solarize
augmentation on CIFAR-10 dataset. The classification accuracies obtained on the
CIFAR-10 dataset with ResNet-18 network for train data, test data and augmented
test data are reported in Table 4.10. The gamma parameter of 0.0001 consistently
gives the best accuracy, outperforming the baseline (standard classification training
with cross entropy loss). Fig.4.19 and Fig.4.20 shows the 2-dimensional PCA and
t-SNE visualizations of augmented train embeddings for baseline cross entropy loss
and different gamma parameter values. The visualizations of embeddings from our
proposed method show cleaner class separation than the baseline method.
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TABLE 4.10: Classification accuracy results for Random Gray Scale
and Random Solarize augmentations on CIFAR-10 dataset with

ResNet-18 architecture

Proposed Method Cross Entropy Loss
(baseline)

Gamma parameter(γ) 0.0001 0.001 0.01
Train Acc 100 98.42 100 99.64
Test Acc-test data 77.82 73.41 76.27 74.06
Test Acc-Aug test data 63.06 57.59 61.21 59.53

FIGURE 4.11: Random Horizontal Flip: 2-dimensional PCA visual-
izations of augmented train embeddings from CIFAR-10 dataset with

ResNet-18 architecture
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FIGURE 4.12: Random Horizontal Flip: 2-dimensional T-SNE visual-
izations of augmented train embeddings from CIFAR-10 dataset with

ResNet-18 architecture



24 Chapter 4. Experiments

FIGURE 4.13: Random Gray Scale: 2-dimensional PCA visualizations
of augmented train embeddings from CIFAR-10 dataset with ResNet-

18 architecture
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FIGURE 4.14: Random Gray Scale: 2-dimensional T-SNE visualiza-
tions of augmented train embeddings from CIFAR-10 dataset with

ResNet-18 architecture



26 Chapter 4. Experiments

FIGURE 4.15: Random Solarize: 2-dimensional PCA visualizations of
augmented train embeddings from CIFAR-10 dataset with ResNet-18

architecture
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FIGURE 4.16: Random Solarize: 2-dimensional T-SNE visualizations
of augmented train embeddings from CIFAR-10 dataset with ResNet-

18 architecture
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FIGURE 4.17: Random Resize Crop and Random Horizontal Flip:
2-dimensional PCA visualizations of augmented train embeddings

from CIFAR-10 dataset with ResNet-18 architecture
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FIGURE 4.18: Random Resize Crop and Random Horizontal Flip: 2-
dimensional T-SNE visualizations of augmented train embeddings

from CIFAR-10 dataset with ResNet-18 architecture
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FIGURE 4.19: Random Gray Scale and Random Solarize: 2-
dimensional PCA visualizations of augmented train embeddings

from CIFAR-10 dataset with ResNet-18 architecture



4.6. Evaluation of combinations of augmentation on CIFAR-10 dataset 31

FIGURE 4.20: Random Gray Scale and Random Solarize: 2-
dimensional T-SNE visualizations of augmented train embeddings

from CIFAR-10 dataset with ResNet-18 architecture
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Chapter 5

Conclusion

We propose a method of supervised learning for Convolutional Neural Network
with Barlow Twins to learn useful features that are invariant to distortions applied
to the input data. This method uses a cross-entropy loss in a siamese setting, where
the Barlow Twins function is used as an additional loss term with a weighting hyper-
parameter γ, and can recover better learnable features from the transformed input
image samples. Through our experiments, We show that the proposed method
makes it possible to achieve higher classification accuracy and learns a better fea-
ture space (proven by visualization of the features) by tuning the weighting hyper-
parameter. The proposed method achieves better results in classification accuracy
than the baseline method, which uses a cross-entropy loss with augmented input.
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