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Abstract 

Objective 

We aimed to develop a predictive model for occult cervical lymph node metastasis (OCLNM) 

in patients with tongue cancer using radiomics and machine learning from pretreatment 

contrast-enhanced computed tomography (CT). 

Study Design 

This study included 161 patients with tongue cancer who received local treatment. CT images 

were transferred to a radiomics platform. The volume of interest was the total neck node level, 

including levels Ia, Ib, II, III, and IVa at the ipsilateral side, and each neck node level. The 

dimensionality of the radiomics features was reduced using least absolute shrinkage and 

selection operator (LASSO) logistic regression analysis. We compared five classifiers with or 

without the synthetic minority oversampling technique (SMOTE). 

Results 

For the analysis at the total neck node level, random forest with SMOTE was the best model 

with an accuracy of 0.85 and an area under the curve (AUC) score of 0.92. For the analysis at 

each neck node level, support vector machine with SMOTE was the best model with an 

accuracy of 0.96 and an AUC score of 0.98. 

Conclusions 

Predictive models using radiomics and machine learning have potential as clinical 



decision-support tools in the management of patients with tongue cancer for prediction of 

OCLNM. 

  



Introduction 

Surgical operation and brachytherapy are standard local treatments for early stage tongue 

cancer.1 Patients who do not have poor prognostic factors and undergo treatment with these 

modalities for tongue lesions that are small and have adequate treatment margins, are placed 

under observation if their neck is clinically and radiographically cancer-free.1, 2 However, this 

observation period may risk the development of occult cervical lymph node metastasis 

(OCLNM), which may have been present during initial treatment but escaped detection even 

after careful examination3.  

     OCLNM has been reported in 20%–50% of early stage tongue cancer cases, and the 

prognosis is poor.3, 4, 5 Despite advances in imaging modalities, it is difficult to detect 

OCLNM in high-risk patients. Elective neck dissection (END) is an option that could 

potentially manage OCLNM.6, 7 However, for patients without metastasis, END is an 

overtreatment. 

     Radiomics is the study of systemically handling large amounts of imaging information 

in radiology.8 Radiomics has been successfully applied in the screening, diagnosis, treatment, 

and evaluation of multiple tumor types.9, 10 Machine learning, which is the study of computer 

algorithms that improve automatically through experience, has also been applied in medical 

imaging analysis. In recent years, the introduction of radiomics and machine learning into 

medicine has become a major topic of discussion. Indeed, many studies have created 



predictive models using radiomics and machine learning from medical imaging of head and 

neck cancers.11, 12, 13  

     Hence, it might be possible to develop a predictive model for OCLNM of tongue cancer 

through radiomics and machine learning using pretreatment computed tomography (CT). 

Detecting OCLNM with high accuracy could help avoid unnecessary surgery, such as END, 

in patients who are free of metastasis. Indeed, several studies have reported predictive models 

for OCLNM in patients with tongue cancer using radiomics and machine learning.14, 15, 16 The 

performance is good, but the data regarding these modalities is still limited. 

     Therefore, we aimed to develop a predictive model for OCLNM in patients with tongue 

cancer using radiomics and machine learning from pretreatment contrast-enhanced CT. 

 

Materials and methods 

Patients 

Data from patients diagnosed with tongue cancer who underwent local treatment without 

additional therapy, such as END and chemotherapy, at Hiroshima University Hospital 

(Hiroshima, Japan) between October 2008 and July 2019 were retrospectively analyzed. 

Individuals who fulfilled the following criteria were included in the present study: received a 

histological diagnosis of squamous cell carcinoma of the tongue; underwent 

contrast-enhanced CT before treatment; were negative for cervical lymph node metastasis 



before treatment; and underwent surgical operation or brachytherapy without additional 

treatment such as END, external beam radiation therapy to the neck lymph node, and 

chemotherapy as initial treatment. OCLNM was defined as cervical lymph node metastasis 

that was not detected by careful examinations including ultrasonography and radiographic 

studies before treatment but was evident after initial treatment without recurrence of the 

primary tumor within one year after initial treatment. Analysis was limited to one year after 

initial treatment because it was unlikely that lymph node metastases that were not identified at 

initial therapy would become apparent more than one year after treatment.  

     All patients with OCLNM underwent salvage surgery and were histologically proven to 

have metastatic squamous cell carcinoma. Patients with OCLNM who did not undergo 

salvage surgery and were not histologically proven to have metastatic squamous cell 

carcinoma were excluded. Patients without OCLNM were defined as those with no recurrence 

of cervical lymph node metastasis for at least 2 years after surgical operation or brachytherapy 

for tongue cancer. Among the patients without OCLNM, those without enough follow-up 

were excluded. Therefore, patients with a follow-up duration of less than 2 years without 

cervical lymph node metastasis were excluded from this study. The clinical TNM stage was 

defined according to the Tumor Node Metastasis classification (Union for International 

Cancer Control, 7th Edition). The study was approved by the Human Ethics Review 

Committee of Hiroshima University Hospital (E-1656). The need for informed consent was 



waived owing to the retrospective nature of the research. 

Segmentation 

Delineation of neck node levels 

Pretreatment contrast-enhanced CT images were available for 161 eligible patients who had 

had scans performed on an Aquilion One CT unit (Canon Medical Systems, Otawara, Tochigi, 

Japan). CT scans were of diagnostic quality and performed using tube voltage of 120 kV, tube 

current of auto exposure control (noise index 6), 1.3–5 mm slice thickness, and intravenous 

administration of non-ionic iodinated contrast material (500 mgI/kg at a rate of 1.5 mL/s). All 

CT images were imported into the Pinnacle Radiotherapy Treatment Planning System 

(Phillips Medical Systems, Fitchburg, WI, USA).  

     For all CT scans, each neck node level was contoured slice-by-slice in the axial plane 

on the Pinnacle Radiotherapy Treatment Planning System, referring to the 2013 update of the 

guidelines on neck nodal level delineation for head and neck tumors.17 Contouring was 

performed by two radiation oncologists without the use of software. Neck node levels 

included levels Ia, Ib, II, III, and IVa on the ipsilateral side of the neck. Contouring of neck 

node levels was divided between the two radiation oncologists for each case. Review after 

contouring was performed by the two initial radiation oncologists plus another radiation 

oncologist. All physicians had 10 years or more of professional experience.  

     Contouring was performed at each neck node level instead of the primary tumor 



because the objective was to detect evidence of OCLNM. In addition, it was sometimes 

difficult to contour the primary tumor accurately due to artifacts or small tumor size. 

Supplementary Table S1 shows anatomical level boundaries and Figure 1 depicts the 

contouring of neck node levels in this study. We analyzed the total neck node levels, including 

levels Ia, Ib, II, III, and IVa, and each neck node level, separately. For the analysis of total 

neck node level, 161 segments (1 for each case) were examined for the subsequent process. 

For the analysis at each neck node level, a total of 805 segments (1 at each level for a total of 

5 for each case) were used. Analysis of each neck node level was added to analysis of the total 

neck in the expectation that it would improve the accuracy in the diagnosis of OCLNM.  

     The total neck node level for each patient was labeled “positive” or “negative” for 

OCLNM based on the presence of at least one metastasis in any level (Figure 2a). Each neck 

node level was labeled individually as “positive” or “negative” for OCLNM based on the 

presence of at least one metastasis in that level (Figure 2b).  

Image processing 

Radiomics features were standardized using z-score normalization because of the variation in 

CT image protocols.18 

Feature extraction 

The creation of radiomics features was performed using an open-source package in Python 

(Pyradiomics software).19 The following features were created: first-order statistical features; 



shape-based features; and texture analysis features including gray level co-occurrence matrix 

(GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM), gray 

level dependence matrix (GLDM), and neighborhood gray tone difference matrix (NGTDM). 

The higher order statistical features used a wavelet imaging filter. The wavelet filter has 

low-pass (L) and high-pass (H) filters. The decompositions were constructed in the x, y, and z 

directions. For example, “wavelet-HLL” was interpreted as a wavelet subband image 

resulting from directional filtering with a high-pass filter along the x-direction (H), a low-pass 

filter along the y-direction (L), and a low-pass filter along the z-direction (L). 

Dimension reduction 

The predictive model was established by combining the extracted features through feature 

de-redundancy and dimensionality reduction, preconditioning, and machine learning-based 

classification. The least absolute shrinkage and selection operator (LASSO) logistic 

regression analysis with MATLAB code20, 21 was used to reduce dependency and redundancy. 

Model development 

We used various machine learning techniques to develop five models to predict the 

occurrence of OCLNM in patients with tongue cancer: k-nearest neighbor (kNN),22 support 

vector machine (SVM),23 classification and regression trees (CART),24 random forest (RF),25 

and Ada Boost (Ada).26 A 10-fold cross-validation was used to avoid overfitting. The prepared 

datasets incurred a data imbalance problem. To address this concern, we applied the synthetic 



minority oversampling technique (SMOTE).27 

k-nearest neighbor 

kNN is a simple machine learning method. The kNN classifier classifies unlabeled 

observations by assigning them to the class of the most similar labeled examples. The 

characteristics of observations are collected for both training and test datasets.22 

Support vector machine 

SVM is a widely used, supervised learning approach for classification or regression analysis. 

It can be applied to transform training data into a high-dimensional feature space and 

determine a linear optimal solution by separating a hyperplane that provides the smallest 

distance between the hyperplane points and the largest margin between the classes.23 

Classification and regression trees 

CART is a rule-based method that generates a binary tree through binary recursive 

partitioning that splits a subset (called a leaf) of the data set into two subsets (called 

sub-leaves) according to the minimization of a heterogeneity criterion computed on the 

resulting sub-leaves. Each split is based on a single variable; some variables may be used 

several times, while others may not be used at all.24 

Random forest 

RF is an ensemble supervised learning method composed of multiple decision trees 

corresponding to various subdatasets. Each tree calculates the results and obtains the average 



of the prediction outcomes. This approach allows for the reduction of variance in decision 

trees.25 

Ada Boost 

Ada is an ensemble learning algorithm used to elevate a weak classifier into a strong one. 

First, it trains a base classifier and assigns higher weights to the misclassified samples; 

thereafter, it is applied to the next process. This iterative process continues until a stop 

condition is reached, or the error rate becomes sufficiently small.26 

Model evaluation 

Accuracy, precision, and recall are significant indices for evaluating the performance of each 

model. These parameters are defined as follows: 

=  +   +  +  +   

=   +   

=   +   

     Receiver operator characteristic curves were created to compare the performance of 

each model. The optimal cutoff of significant variables for each model was calculated by the 

Youden index in the ROC curve analysis. The model with the highest accuracy was 

designated as the best model. The data analysis workflow is shown in Figure 3. 

  

Results 



Clinical characteristics 

Patient and tumor characteristics of the 161 patients enrolled in this investigation are 

summarized in Table I. Of the total number of patients, 46 (28.6%) had OCLNM, with 

metastasis detected at level Ia in 3 patients (6.5%), level Ib in 24 (52.2%), level II in 25 

(54.3%), level III in 8 (17.4%), and level IVa in 3 (6.5%). The median time of neck node 

recurrence was 3.5 months (range, 0–12 months) after initial treatment. The median follow-up 

at the time of evaluation was 56 months (range, 9–131 months) in the survivors. 

Model performance 

Radiomic sets were built after LASSO analysis. Seven features were selected for the analyses 

at both the total neck node level and each neck node level (Table II). For the analysis of the 

total neck node level, there were two first-order statistical features and five texture analysis 

features (GLCM, n = 5). For the analysis at each neck node level, there were one first-order 

statistical feature, two shape-based features, and four texture analysis features (GLRLM n = 

1; GLSZM n = 3). Table III and Figures 4 and 5 demonstrate the performance of the 

considered predictive models. Five classifiers, with or without SMOTE, were used to obtain 

the best model based on the feature set. For the analysis at the total neck node level before 

applying SMOTE, the SVM model achieved the best performance with the accuracy of 0.71. 

The precision, recall, and an area under the curve (AUC) score were 0.77, 0.69, and 0.72 

respectively. After applying SMOTE, the performance of all models increased, and the RF 



model was the best model with the accuracy of 0.85. The precision, recall, and an AUC score 

were 0.88, 0.82, and 0.92 respectively. For the analysis at each neck node level before 

applying SMOTE, the RF model achieved the best performance with the accuracy of 0.70. 

The precision, recall, and an AUC score were 0.84, and 0.66, and 0.65 respectively. After 

applying SMOTE, the SVM model was the best model with the accuracy of 0.96. The 

precision, recall, and an AUC score were 0.96, 0.95, and 0.98 respectively. 

 

Discussion 

OCLNM is one of the most serious problems after local treatment for early tongue cancer. 

Various studies have reported occult lymph node metastasis as a predictive factor for poor 

outcomes.3, 4, 5 Despite advances in imaging modalities, high-risk patients with OCLNM are 

unidentifiable. END is one treatment option that has the potential to manage occult lymph 

node metastasis. However, over half of the patients with early tongue cancer do not need END, 

which would result in overtreatment and treatment-related toxicities. Published investigations 

of END have yielded both positive and negative results.6, 7, 28 Hence, the efficacy of END 

remains controversial.  

     Recently, radiomics and machine learning have been applied to medical research, 

particularly in the context of head and neck cancers.11, 12, 13 Several studies reported machine 

learning models to predict occult lymph node metastasis. The best model performances, listed 



in Table IV, resulted in accuracy ranging from 0.74 to 0.95 and AUC scores ranging from 0.80 

to 0.96.14, 15, 16, 29, 30, 31 In this study, we developed predictive models for OCLNM in patients 

with tongue cancer using radiomics and machine learning from pretreatment 

contrast-enhanced CT. RF with SMOTE for the analysis of the total neck node level showed 

the best prediction accuracy of 0.85 with an AUC score of 0.92. SVM with SMOTE for the 

analysis at each neck node level showed the best prediction accuracy of 0.96 with an AUC 

score of 0.98. Although our results demonstrated similar efficacy compared to previous 

reports, the analysis at each neck node level was probably more useful than that of the total 

neck node level because of the high accuracy and the possibility that it could identify the level 

where occult lymph node metastasis occurred.  

     The major difference between previous reports and our study was that we chose the 

neck node level instead of the primary tumor as the volume of interest. In tongue cancer, 

when the primary tumor itself is the volume of interest, artifacts or small tumor size often 

prevent accurate delineation of the tumor. On the other hand, in the case of neck node level, 

the contouring method has been established, and there seemed to be fewer differences among 

individuals. Therefore, this study was meaningful in indicating that the predictive model for 

OCLNM using radiomics and machine learning has potential as a clinical decision-support 

tool. 

     Many studies have shown the relationship between occult lymph node metastasis and 



tumor depth and thickness. However, the cutoff depth of invasion (DOI) for the prediction of 

occult lymph node metastasis varies widely among reports, ranging from 3 to 10 mm. 32, 33, 34 

The National Comprehensive Cancer Network guidelines recommend the positive 

consideration of END when the thickness is greater than 4 mm and the evaluation of 

indications for END when the thickness is 2-4 mm.1 D'Cruz et al. reported that the percentage 

of patients with metastasis was 5.6% when the DOI in pathological specimens was 3 mm and 

16.9% when it was 4 mm.7 Indeed, there is a relationship between tumor thickness and occult 

lymph node metastasis; if the thickness is above a certain level, the recommendation for END 

may be considered. However, if all patients with tumor thickness greater than 4 mm 

underwent END for suspected cervical lymph node metastases, there would be a risk of 

overtreatment in most cases due to the high false positive rate. Our model, using radiomics 

and machine learning, showed high prediction accuracy for cervical lymph node metastasis. 

Therefore, this model could potentially help avoid unnecessary surgery among patients with 

tongue cancer and select appropriate cases for END. 

     When the datasets are imbalanced, accuracy can be misleading. In this study, as 

reported in other studies, the proportion of cases positive for occult lymph node metastases 

was lower than that of cases negative for it, resulting in an imbalance. SMOTE is an approach 

to construct classifiers from imbalanced datasets and is an oversampling technique that allows 

the generation of synthetic samples for minority categories.27 Several studies have reported 



the validity of SMOTE in unbalanced datasets.35, 36 We hypothesized that SMOTE could 

address the problem of the imbalanced dataset, and as a result, the performance of all models 

was improved with the use of this technique. Thus, SMOTE is a useful method to account for 

unbalanced data and can improve the capability of the models. 

     Our study had certain limitations, including its retrospective, single-institution design 

and limited sample size. In this study, not all patients were evaluated for tumor depth. The 

models predicted only ipsilateral neck node metastasis that was evident within one year after 

initial treatment, and did not include contralateral neck node metastasis. In addition, the time 

frame from acquisition of CT to treatment varied (median, 20 days; range, 1–132 days). 

Moreover, the imbalanced datasets were subjected to equalization processing using SMOTE. 

To overcome these limitations, a larger cohort would be needed for further validation of the 

model. Furthermore, because of this study design, individual factors related to occult lymph 

node metastasis were unknown. Finally, these limitations may have introduced potential 

biases. However, while the clinical application of radiomics and machine learning is 

advancing, reports of predictive models of OCLNM in patients with tongue cancer using these 

methods are limited. In addition, our models are useful because they may help predict 

OCLNM through simple methods using pretreatment CT. Compared to DOI, which has no 

established method of evaluation, CT-based contouring of lymph node levels is likely to result 

in fewer differences among individuals and institutions. Therefore, despite the limitations, this 



study provides useful information regarding the predictive model of OCLNM using radiomics 

and machine learning. Future research in the form of prospective studies are warranted to test 

this model in actual clinical practice. 

 

Conclusions 

We designed a predictive model for occult cervical lymph node metastasis in patients with 

tongue cancer using radiomics and machine learning from pretreatment contrast-enhanced CT. 

The models showed remarkable prediction accuracy, and SVM with SMOTE showed the best 

prediction accuracy of 0.96 with an AUC score of 0.98 which was comparable to other reports. 

The predictive model of occult cervical lymph node metastasis using radiomics and machine 

learning has potential as a clinical decision-support tool. 
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Figure legends 

Figure 1. Contouring of each neck node level. 

Blue, green, red, yellow, and purple lines show levels Ia, Ib, II, III, and IVa, respectively, in 

the ipsilateral neck side. The total neck node level consisted of these levels. 

Figure 2. Data labeling. 

a) Analysis in total neck node level. The total neck node level for each patient was labeled 

“positive” or “negative” for occult cervical lymph node metastasis (OCLNM) based on the 

presence of at least one metastasis in any level.  

b) Analysis in each neck node level. Each neck node level was labeled individually as 

“positive” or “negative” for OCLNM based on the presence of at least one metastasis in that 

level. 

Figure 3. Data analysis workflow. 

CT, computed tomography; LASSO, least absolute shrinkage and selection operator; kNN, 

k-nearest neighbor; SVM, support vector machine; CART, classification and regression trees; 

RF, random forest; Ada, Ada Boost; SMOTE, synthetic minority oversampling technique. 

Figure 4. Analysis of the total neck node level. Receiver operator characteristic (ROC) curves 

with accuracy and an area under the curve (AUC) scores for each model with or without the 

synthetic minority oversampling technique (SMOTE). 

a) k-nearest neighbor (kNN) 



b) Support vector machine (SVM) 

c) Classification and regression trees (CART) 

d) Random forest (RF) 

e) Ada boost (Ada) 

Figure 5. Analysis of each neck node level. Receiver operator characteristic (ROC) curves 

with accuracy and an area under the curve (AUC) scores for each model with or without the 

synthetic minority oversampling technique (SMOTE). 

a) k-nearest neighbor (kNN) 

b) Support vector machine (SVM) 

c) Classification and regression trees (CART) 

d) Random forest (RF) 

e) Ada boost (Ada) 

  



Table 1. Patient and tumor characteristics. 

  N = 161 100% 

Age, years, median (range) 65 (22–91) – 
Sex 
     Male 80 49.7 
     Female 81 50.3 
Location 
     Right 83 51.6 
     Left 78 48.4 
Clinical T category 
     Tis 28 17.4 
     T1 45 28.0 
     T2 81 50.3 
     T3 7 4.3 
Ulcer 
     Yes 38 23.6 
     No 122 75.8 
     Not available 1 0.6 
Smoking history 
     Yes 75 46.6 
     No 73 45.3 
     Not available 13 8.1 
Treatment 
     Surgery 102 63.4 
     Brachytherapy 59 36.6 
Occult neck metastasis 
     Yes 46 28.6 
     No 115 71.4 
Level of occult neck metastasis N = 46 
     Ia 3 6.5 
     Ib 24 52.2 
     II 25 54.3 
     III 8 17.4 
     IVa  3 6.5 
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