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Organization of this thesis
The subject of this thesis is to study and give characterizations of the exis-
tence and non-existence of “good point arrangements” for sets with math-
ematical structures. In Chapter 1, we study 3-dimensional digital nets (in
base 2), which are point arrangements on a cube [0, 1)3. In Chapter 2, we
study pre-difference sets, which are point arrangements on a finite group.

We give an abstract for each chapter below:

Chapter 1. We study 3-dimensional digital nets over F2 generated by ma-
trices (I, B,B2) where I is the identity matrix and B is a square matrix.
We give a characterization of B for which the t-value of the digital net
is 0. As a corollary, we prove that such B satisfies B3 = I.

Chapter 2. We gave a construction of a pre-difference set in G = NA with
A an abelian subgroup and N a subgroup satisfying N \ A = {e},
from a difference set in N ⇥A. This gives a (16, 6, 2) pre-difference set
in D16 and a (27, 13, 6) pre-difference set in UT (3, 3), where no non-
trivial difference sets exist. We also give a product construction of pre-
difference sets similar to Kesava Menon construction, which provides
infinite series of pre-difference sets that are not difference sets. We
show some necessary conditions for the existence of a pre-difference set
in a group with index 2 subgroup. For the proofs, we use a rather
simple framework “relation partitions”, which is obtained by dropping
an axiom from association schemes. Most results are proved in that
frame work.
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Chapter 1

Characterization of matrices B
such that (I, B,B2) generates a
digital net with t-value zero

1.1 Introduction and main result
Let F2 = {0, 1} be the field of two elements, m � 1 be a positive integer,
and Fm⇥m

2 be the set of m ⇥ m matrices over F2. For C1, . . . , Cs 2 Fm⇥m
2 ,

the digital net generated by (C1, . . . , Cs) is a point set in [0, 1)s defined as
follows. For 0  l < 2m, we denote the 2-adic expansion of l by l = ◆0+ ◆12+
· · ·+ ◆m�12m�1 with ◆0, . . . , ◆m�1 2 F2. We define yl,j 2 Fm

2 for 1  j  s as

yl,j := Cj(◆0, . . . , ◆m�1)
> 2 Fm

2 .

Then we obtain the l-th point

xl := (�(yl,1), . . . ,�(yl,s)) (1.1)

where � : Fm
2 ! [0, 1) is defined as

�((y1, . . . , ym)
>) :=

y1
2

+
y2
22

+ · · ·+ ym
2m

.

The digital net generated by (C1, . . . , Cs) is the point set {x0, . . . ,x2m�1} ⇢
[0, 1)s. Digital nets are introduced by Niederreiter and have been widely
used to generate point sets in Quasi-Monte Carlo (QMC) theory, see [16] for
details.
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A popular criterion of the uniformity of digital nets is the t-value. Let
m � 1, 0  t  m, and s � 1 be integers. A point set P = {x0, . . . ,x2m�1} ⇢
[0, 1)s is called a (t,m, s)-net over F2 if, for all nonnegative integers d1, . . . , ds
with d1+ · · ·+ds = m�t, the elementary intervals

Qs
i=1

⇥
ai/2di , (ai + 1)/2di

�

contain exactly 2t points for all choices of 0  ai < 2di with ai 2 Z for
1  i  s. In this paper we study t-values of specific 3-dimensional digital
nets over F2. Small value of t is preferable for QMC integration [16].

To state our main result, we introduce our notation. Let Im be the
m ⇥ m identity matrix. Let Jm be the m ⇥ m anti-diagonal matrix whose
anti-diagonal entries are all 1, and Pm be the m⇥m upper-triangular Pascal
matrix, i.e.,

Jm =

0

B@
0 1

. .
.

1 0

1

CA , Pm =

✓✓
j � 1

i� 1

◆◆m

i,j=1

=

0

BBBB@

�
0
0

� �
1
0

�
. . .

�
m�1
0

�

�
1
1

� ...
. . .

...�
m�1
m�1

�

1

CCCCA
,

which are considered in modulo 2. If there is no confusion, we omit the
subscripts and simply write as I, J , and P . Let Lm (resp. Um) be the
set of m ⇥ m lower- (resp. upper-) triangular matrices over F2. Note that
Lm\Um = {I} holds. For matrices C1, . . . , Cs 2 Fm⇥m

2 , t(C1, . . . , Cs) denotes
the t-value of the digital net generated by (C1, . . . , Cs).

Now we are ready to state our main result.

Theorem 1.1.1. Let m � 1 be an integer and B 2 Fm⇥m
2 . Then the following

are equivalent.

(i) t(I, B,B2) = 0.

(ii) There exists L 2 Lm such that B = LPJL�1.

Moreover, if one of the above holds, then we have B3 = I.

Note that for digital nets over F2, t(C1, . . . , Cs) = 0 is achievable if and
only if s  3 (see [16, Corollary 4.21] or [8]). Thus, the above theorem shows
that this extreme s = 3 can be realized in the special form t(I, B,B2).

4



Background. Our original motivation is to find a periodic sequence for
Markov Chain Quasi-Monte Carlo (MCQMC) method. Let us recall the
rough idea. Let x1, x2, . . . be a sequence of points in [0, 1). For an integer
s � 1, we define

x̄(s)
i = (xi, xi+1, . . . xi+s�1) 2 [0, 1)s, (1.2)

where they are made up of overlapping consecutive s-tuples from the se-
quence. The sequence is said to be completely uniformly distributed (CUD)
if x̄(s)

1 , x̄(s)
2 , . . . is uniformly distributed in [0, 1)s for all s � 1.

We do not explain on MCQMC method, but it is shown that CUD se-
quence can be used instead of uniformly i.i.d. uniform random numbers in
[0, 1). Markov Chain Monte Carlo (MCMC) with the driving sequence being
CUD is consistent to the original MCMC, see [2].

Constructions for CUD points given in [15] are not convenient to imple-
ment. Instead, it was suggested by Tribble [18] to use multiple congruential
generators and linear feedback shift registers. Chen et. al. [3] considered a
periodic sequence x1, x2, . . . with period p, the s-dimensional point set

Ss := {x̄(s)
i = (xi, xi+1, . . . xi+s�1) 2 [0, 1)s | i = 1, . . . , p} (1.3)

whose cardinality is p as a multi set. It is expected to work well for MCQMC
if Ss is hyperuniform for every s. Assume that Ss [ {0} is a F2-sub vector
space (this condition is necessary to compute t-value in a practical time)
of, say, dimension m. Here, each xi is assumed to be identified with an
element in Fm

2 through �. Let V be this vector space Ss [ {0}. We further
require that S1 is a (0,m, 1)-net. Then, the projection to the first component
pr1 : V ! Fm

2 is linearly isomorphic. This implies that the second projection
pr2 : V ! Fm

2 is also isomorphic since the images of them are the same. Thus
pr2 � pr�1

1 is also isomorphic. This means that there is a fixed B 2 Fm⇥m
2

such that
xi+1 = Bxi

holds for i = 1, 2, . . .. Moreover, since we have assumed that Ss [ {0} is a
m-dimensional vector space, xi must take all non zero values once for 1  i 
p� 1. This is equivalent that B is primitive (i.e., the multiplicative order of
B is 2m � 1 and p = 2m � 1). This type of pseudorandom number generator
is well studied, such as combined Tausworthe generators, see L’Ecuyer et. al.
[14]. Under our assumptions, we observe that the set

{x̄(s)
i | 0  i < 2m � 1} [ {0}
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is the digital net generated by (I, B,B2, . . . , Bs�1), as a set.
Our original interest is to obtain such a maximal periodic B with small

t-value for wide s, to generate a pseudo-CUD sequence. For example, t = 0
might be possible for s = 2, which is the theoretical bound stated above
(below Theorem 1.1.1). However, an exhaustive search for matrices B with
t(I, B,B2) = 0 for m  5 resulted non-primitive B. Actually, we obtained
a negative result Theorem 1.1.1: For s = 3 and m � 3, the digital net
generated by (I, B,B2) is a (0,m, 3)-net only if B3 = I. Thus there is no
B 2 Fm⇥m

2 satisfying our assumptions for m � 3. Hence we conclude that our
construction of F2-linear generator with maximal period is not optimal with
respect to the t-value for s = 3. We need to consider some looser condition,
such as considered in [3].

1.2 Preliminaries
We first recall results for t-value of digital nets. It is known that t-value
of digital nets is related to the linear independence of column vectors of
generating matrices.

Lemma 1.2.1 ([6, Theorem 4.52]). Let C1, . . . , Cs 2 Fm⇥m
2 and denote by

cji the j-th row of Ci. Assume that, for all choices of nonnegative integers
d1, . . . , ds with d1+ · · ·+ds = m� t, m� t vectors {cji | 1  j  di} are linear
independent. Then the digital net generated by (C1, . . . , Cs) is a (t,m, s)-net
over F2.

Lemma 1.2.2. Let C1, . . . , Cs 2 Fm⇥m
2 and L1, . . . , Ls 2 Lm. Let G 2 Fm⇥m

2

be non-singular. Then we have t(C1, · · · , Cs) = t(L1C1G, · · · , LsCsG).

Proof. Since G is non-singular, (L1C1, · · · , LsCs) and (L1C1G, · · · , LsCsG)
generate the same digital net (as set) and hence we have t(L1C1, · · · , LsCs) =
t(L1C1G, · · · , LsCsG). Further, since L1, . . . , Ls 2 Lm, multiplying them
from left does not change the linear independence appearing in Lemma 1.2.1.
Thus it does not change the t-value, i.e., t(C1, · · · , Cs) = t(L1C1, · · · , LsCs).

In the rest of this section, we give explicit B where the digital net gen-
erated by (I, B,B2) is a (0,m, 3)-net over F2. To this end, we introduce the
notion of (t, s)-sequence.
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Definition 1.2.3. Let t � 0 and s � 1 be integers. A sequence x0,x1, . . . of
points in [0, 1)s is said to be a (t, s)-sequence over F2 if, for all integers k � 0
and m > t, the point set {xn | k2m  n < (k + 1)2m} forms a (t,m, s)-net
over F2.

There are many known explicit constructions of digital nets with low t-
value. Among them we introduce the Faure sequence [8]. The Faure sequence
over F2 is a (0, 2)-sequence where the l-th point xl 2 [0, 1)2 is generated as
in (1.1) by matrices (Im, Pm) (note that it gives the same xl even if m is
different), see, for example, [6, Section 8.1].

From (t, s)-sequence, we can generate (t,m, s+ 1)-net [16, Lemma 4.22].

Lemma 1.2.4. Let {xi}i�0 be (t, s)-sequence over F2. Then {(xi, i2�m)}2m�1
i=0

is a (t,m, s+ 1)-net over F2.

When {x0, . . . ,x2m�1} is the first 2m points of the Faure sequence over
F2, which is the digital net generated by (Im, Pm), the 3-dimensional point
set {(xi, i2�m)}2m�1

i=0 is found to be a digital net generated by (Im, Pm, Jm).
Thus it follows from Lemma 1.2.4 that

t(Im, Pm, Jm) = 0. (1.4)

We move on to the property of the matrix PJ .

Lemma 1.2.5. For any positive integer m, we have

P 2 = J2 = (PJ)3 = I in Fm⇥m
2 .

Proof. It is clear to check J2 = I. We now prove P 2 = I in Fm⇥m
2 . Let k be

a field and k(x) a field of rational functions. Define two ring endmorphisms:

P : k(x) ! k(x); x 7! (1� x), K : k(x) ! k(x); x 7! x�1.

Define also a k-linear map

J : k(x) ! k(x); f(x) 7! xm�1 · K(f(x)).

Let Vm := h1, x, . . . , xm�1i be a k-linear subspace of k(x). Then the
restriction of P and J on Vm are k-linear endomorphisms. We find that the
representation matrix of P restricted to Vm has coefficients of P 0

m defined as

P 0 = P 0
m :=

✓
(�1)i�1

✓
j � 1

i� 1

◆◆m

i,j=1
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Note that P = P 0 in modulo 2. It is clear that the representation matrix
of J restricted to Vm is Jm. We will show equalities between matrices via
showing corresponding equalities between k-linear endomorphisms on k(x).

For two k-ring endomorphisms F1,F2 : k(x) ! k(x), F1 = F2 holds if
and only if F1(x) = F2(x) holds, since k(x) is generated by x as a ring (to be
precise we need to consider x�1 as well, but the inverse element is preserved
by a ring homomorphism). From this property we have

P2 = K2 = PKPKPK = idk(x), (1.5)

since all of them map x to itself. Thus, by restricting P2 = idk(x) on Vm, we
have P 02 = I. Hence P 2 = I in Fm⇥m

2 .
We now show (PJ)3 = I in Fm⇥m

2 . For a 2 k(x), we define the multipli-
cation map

(a⇥) : k(x) ! k(x), f(x) 7! af(x).

Then
P � (a⇥) = P(a) · P and K � (a⇥) = K(a) · K

hold. Using this property and (1.5), we have

PJPJPJ = P � (xm�1⇥) �KP � (xm�1⇥) �KP � (xm�1⇥) �K
= P(xm�1) · PKP(xm�1) · PKPKP(xm�1) · PKPKPK
= (�1)m�1idk(x).

By restricting above to Vm, whenever k has characteristic 2 we have

(PJ)3 = I,

as we wanted.

We now show that the matrix PJ is what we want.

Lemma 1.2.6. For any positive integer m, we have

t(Im, PmJm, (PmJm)
2) = 0.

Proof. Lemma 1.2.5 implies (PJP )�1 = JPJ . Further JPJ 2 Lm holds.
Hence by Lemma 1.2.2 with (L1, L2, L3) = (J, I, JPJ) and G = J we have

t(I, PJ, (PJ)2) = t(J, P, I) = 0,

where the last equality follows from (1.4).
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1.3 Proof of Theorem 1.1.1
To prove Theorem 1.1.1, we need the following lemmas which will be shown
in Section 1.4.

Lemma 1.3.1. Let B 2 Fm⇥m
2 . Then the following are equivalent.

(i) t(I, B) = 0.

(ii) There exist L1, L2 2 Lm such that B = L1JL2.

Lemma 1.3.2. Let A,B,C,C 0 2 Fm⇥m
2 . Suppose that t(A,B,C) = t(A,B,C 0) =

0. Then there exists L 2 Lm such that LC = C 0.

Assuming the above lemmas, we show the main theorem.

Proof of Theorem 1.1.1. First we assume (ii). By Lemma 1.2.2 with (L1, L2, L3) =
(L�1, L�1, L�1) and G = L we have

t(I, B,B2) = t(I, LPJL�1, LPJPJL�1)

= t(I, PJ, PJPJ) = 0.

Here the last equality follows from Lemma 1.2.6. Hence (i) follows.
We now assume (i). By Lemma 1.3.1, there exists L1, L2 2 Lm such that

B = L1JL2. Then by Lemma 1.2.2 with (L1, L2, L3) = (L�1
2 , L1, L1) and

G = L2 we have

t(I, J, JL2L1J) = t(I, L1JL2, (L1JL2)
2) = t(I, B,B2) = 0.

On the other hand, from (1.4) we have t(I, J, P ) = 0. Hence it follows from
Lemma 1.3.2 that there exists L3 2 Lm such that L3JL2L1J = P and thus
L3 = P (JL2L1J)�1. Since L3 2 Lm and P (JL2L1J)�1 2 Um hold, both
are equal to I. Thus L3 = I and JL2L1J = P hold, and the latter implies
L2 = JPJL�1

1 . Hence B = L1JL2 = L1PJL�1
1 , which shows (ii).

We now assume that one of them holds (and thus (ii) holds). Then there
exist L 2 Lm such that B = LPJL�1. Hence we have

B3 = (LPJL�1)3 = L(PJ)3L�1 = LL�1 = I,

where the the third equality follows from Lemma 1.2.5.
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1.4 Proofs of lemmas
1.4.1 Proof of Lemma 1.3.1
Proof of Lemma 1.3.1. First we assume (ii). By Lemma 1.2.2 with (L1, L2) =
(L�1

2 , L�1
1 ) and G = L�1

2 we have

t(I, B) = t(I, L1JL2) = t(I, J) = 0.

and thus (i) follows.
We now assume (i). From this we have t(J,BJ) = t(I, B) = 0. From

t(J,BJ) = 0, we can show that all of the leading principal minor matrices
of BJ are non-singular. Hence there exist L 2 Lm and U 2 Um such that
LBJU = I. Thus we have

B = L�1U�1J = L�1J2U�1J = L�1J(JU�1J).

This shows (i) since JU�1J 2 Lm.

1.4.2 Proof of Lemma 1.3.2
Here we prove two lemmas to show Lemma 1.3.2.

Let us denote

A =

0

BBB@

a1

a2

...
am

1

CCCA
, B =

0

BBB@

b1
b2
...
bm

1

CCCA
, C =

0

BBB@

c1
c2
...
cm

1

CCCA
, C 0 =

0

BBB@

c01
c02
...
c0m

1

CCCA
.

Lemma 1.4.1. Let A,B,C 2 Fm⇥m
2 and assume that t(A,B,C) = 0. For

i, j 2 N with i+ j  m� 1, we define a subspace Vi,j of F1⇥m
2 as

Vi,j := ha1, . . . ,ai, b1, . . . , bm�i�j�1, c1, . . . , cji.

Let 1  k  m� j and 0  i1 < · · · < ik  m� 1� j be integers. Then the
following holds true.

dim
k\

l=1

Vil,j = m� k, (1.6)
�����

\

0im�j�1

V c
i,j

����� = 2j. (1.7)
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Proof. First we show (1.6) by induction on k. The assumption that t(A,B,C) =
0 implies that dimVi,j = m � 1 for all i and j. This shows the lemma
for k = 1. We now assume the lemma for k � 1 and show for k. Fix
0  i1 < · · · < ik  m � 1 � j and let U :=

Tk
l=2 Vil,j. It follows from

t(A,B,C) = 0 that ai1+1 /2 Vi1,j. Combining this with ai1+1 2 U , we have

m = 1 + dimVi1,j  dim(U + Vi1,j)  m,

which shows dim(U + Vi1,j) = m. Further we have dimU = m � k + 1 by
induction assumption. Thus we have

dim(U \ Vi1,j) = dimU + dimVi1,j � dim(U + Vi1,j)

= (m� k + 1) + (m� 1)�m

= m� k.

This shows the lemma for k.
Now we show (1.7). By (1.6) and the inclusion-exclusion principle, we

have
�����

\

0im�j�1

V c
i,j

����� =
��F1⇥m

2

���
X

;6=S⇢{0,1,...,m�j�1}

(�1)|S|

�����
\

i2S

Vi,j

�����

= 2m �
X

;6=S⇢{0,1,...,m�j�1}

(�1)|S|2m�|S|

= 2m �
m�jX

k=1

(�1)k2m�k
X

;6=S⇢{0,...,m�j�1},|S|=k

1

= 2m �
m�jX

k=1

(�1)k2m�k

✓
m� j

k

◆

= 2j
m�jX

k=0

(�1)k2m�j�k

✓
m� j

k

◆

= 2j(2� 1)m�j

= 2j.

This shows (1.7).
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Lemma 1.4.2. Under the assumption and notation of Lemma 1.4.1, we
further assume that C 0 2 Fm⇥m

2 and t(A,B,C 0) = 0. For i, j 2 N with
i+ j  m� 1 we define a subspace Wi,j of F1⇥m

2 as
Wi,j := ha1, . . . ,ai, b1, . . . , bm�i�j�1, c

0
1, . . . , c

0
ji.

Then the following holds true.
(i) c0j 2 cj + hc1, . . . , cj�1i for j � 1 ,

(ii) hc1, . . . , cji = hc01, . . . , c0ji for j � 1

(iii) Vi,j = Wi,j for all i and j,
Proof. We show the lemma by induction on j. When j = 0, trivially Vi,0 =
Wi,0. We now assume the claim for j and show for j + 1. It follows from
t(A,B,C) = 0 that cj+1 /2 Vi,j for all i. Further we have hc1, . . . , cji ⇢ Vi,j

for all i. Hence
cj+1 + hc1, . . . , cji ⇢

\

0im�j�1

V c
i,j. (1.8)

The cardinality of the left hand side is 2j, and that of the right hand side is
also 2j from Lemma 1.4.1. Thus we have

cj+1 + hc1, . . . , cji =
\

0im�j�1

V c
i,j.

In the same way, it holds that
c0j+1 + hc01, . . . , c0ji =

\

0im�j�1

W c
i,j =

\

0im�j�1

V c
i,j.

where the last equality follows from induction assumption. Hence we have
cj+1 + hc1, . . . , cji = c0j+1 + hc01, . . . , c0ji.

In particular, using the induction assumption of (ii), we have
hc1, . . . , cj+1i = hc01, . . . , c0j+1i and c0j+1 2 cj+1 + hc1, . . . , cji.

This shows (i) and (ii) for j + 1. This implies
Vi,j+1 = ha1, . . . ,ai, b1, . . . , bm�i�j�2, c1, . . . , cj+1i

= ha1, . . . ,ai, b1, . . . , bm�i�j�2, c
0
1, . . . , c

0
j+1i = Wi,j+1,

which shows (iii) for j + 1.
Now Lemma 1.3.2 is easy to show: Lemma 1.4.2 (i) directly implies that

there exists L 2 Lm such that LC = C 0.
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Chapter 2

Non-existence and construction
of pre-difference sets, and
equi-distributed subsets in
association schemes

2.1 Pre-difference sets
Let G be a finite group, e its unit, and Z[G] its group ring. For D ⇢ G, we
denote by the same symbol D an element of Z[G] defined by

P
g2D g, and

D�1 :=
P

g2D g�1. Let v be the order of G, and k the cardinality of D. If
the equality

D�1D = �G+ (k � �)e

holds for an integer �, D is called a (v, k,�)-difference set. This is equivalent
to that the cardinality of the set {(x, y) 2 D ⇥D | x�1y = g} is � for every
g 2 G if g 6= e. The parameters satisfy �(v � 1) = k(k � 1). The difference
sets are well-studied, see for example [10]. In a previous paper [11], the
authors introduced the notion of pre-difference set.

Definition 2.1.1. Let G be a finite group of order v, and D its subset with
cardinality k. For g 2 G, [g] denotes the conjugacy class of g. If the value

#{(x, y) 2 D ⇥D | x�1y 2 [g]}/#[g]

is � 2 Q for any g 2 G � {e}, then D is called a pre-difference set with
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parameter (v, k,�). If k is one of 0, 1, v, v� 1, then D is a pre-difference set,
called trivial.

We showed the following [11]:

1. If G is abelian, the notion of difference sets and that of pre-difference
sets coincide.

2. A difference set is a pre-difference set.

3. If a pre-difference set exists, � is an integer satisfying �(v�1) = k(k�1),

4. The dihedral group D16 has a (non-trivial) (16, 6, 2) pre-difference sets,
whereas D16 has no non-trivial difference sets. (Note that it is an open
conjecture that dihedral groups have only trivial difference sets [7].)

5. Classification of all the pre-difference sets in the non-abelian groups of
order 16.

We introduced this notion of the pre-difference sets in the following representation-
theoretic context. It is well-known that the function space CG is decomposed
as �⇢V⇢ for ⇢ runs over the equivalent classes of irreducible representations
of G, and for f 2 CG let f⇢ 2 V⇢ ⇢ CG denote the V⇢ components. Let
�D : G ! C be the characteristic function of D ⇢ G. Then, D is a pre-
difference set if and only if ||�⇢D||/ dim(⇢) is independent of ⇢ if ⇢ is a non-
trivial character ([11, Theorem 3 and §2], where the notation @⇢(D) there
means || 1

#D�
⇢
D||, and the norm comes from the standard Hermittian inner

product). There, the notion of pre-difference set is proved to be equivalent
to a solution of a certain optimization problem. A natural generalization to
association schemes is given in §5 there.

In this paper, in §2 we give a general frame work as a preliminary: the
notion of “unital relation-partition” (which contains association schemes) and
the notion of “equi-distributed subset in a unital relation-partition.” The
notion of equi-distributed subsets is equivalent to the notion of difference
sets if the relation-partition is a thin-group association scheme, and to the
pre-difference sets if the relation-partition is a group association scheme.
The complement of an equi-distributed subset of a unital regular relation-
partition is proved to be an equi-distributed subset, which implies the similar
statements for difference sets (well-known) and for the pre-difference sets.
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In §2.3, we show a construction method of a pre-difference set which
in particular yields a (16, 6, 2) pre-difference sets in the dihedral group D16

(where no non-trivial difference sets exist, as mentioned above) and a (27, 13, 6)
pre-difference set in the upper triangle group UT (3, 3) which has no non-
trivial difference sets.

In §2.4, we discuss on the product of equi-distributed subsets, when those
have parameters satisfying v = 4k�4�, generalizing the results for difference
sets [13]. This yields some infinite families of groups having a pre-difference
set which is not a difference set.

In §2.5, we show some necessary conditions for existence of pre-difference
sets. For example, it is shown that every group G of order 2pm for p odd
primes have only trivial pre-difference sets, generalizing [17].

2.2 Relation partition, equi-distribution and
difference set

We introduce rather primitive mathematical objects and properties, which
should have names but we could not find in the literatures, so we named
“relation-partition” and “equi-distribution.”
Definition 2.2.1. Let X, I be sets, and R : X ⇥X ! I a surjection. We
call (X,R, I) a relation-partition. For each i 2 I, R�1(i) gives a relation
on X named Ri. This gives a partition of X ⇥ X. Let Ai be the incidence
matrix of Ri with the rows and columns are indexed by elements of X.

A morphism from (X1, R1, I1) to (X2, R2, I2) is a pair of functions f :
X1 ! X2 and g : I1 ! I2 such that the following diagram commutes:

X1 ⇥X1 ! I1
f ⇥ f #  # g

X2 ⇥X2 ! I2.

This gives a category of relation-partitions. The two objects are isomorphic
if and only if f and g are bijective.
Definition 2.2.2. A relation-partition is regular, if for every i the number of
ones in every column of Ai is constant, and the same holds for every row. Let
ki denote this positive integer, named the i-th valency of the regular relation-
partition. This regularity is equivalent to the regularity of the directed graph
induced from Ri, and ki is the valency of the graph.
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A relation-partition is unital if there is i0 2 I with Ri0 being the identity
relation, and i0 is called the unit of (X,R, I). Clearly, X and I are non-
empty. A morphism of unital relation-partition is a morphism between two
relation-partitions that are both unital. Then g : I1 ! I2 maps the unit to
the unit.

From now on through this paper, we assume that X in a relation-partitions
is a finite set.

Definition 2.2.3. (Equi-distribution.) Let (X,R, I) be a relation-partition.
Let D ⇢ X. Then, we define �i(D) := #((D ⇥D) \Ri) and the ratio ri(D)
of D in Ri by �i(D)/#(Ri). If the relation-partition is unital, we say D is
equi-distributed if ri(D) is independent of the choice of i 2 I � {i0}. In this
case, ri(D) is called the ratio of D and denoted by r. We define � := r#X,
v := #X and k := #D. We call D an equi-distributed subset in (X,R, I)
with parameter (v, k,�).

If the relation-partition is regular, then the equi-distribution property is
equivalent to that �i(D)/ki (= ri(D)v) is independent of the choice of i 6= i0.
Then we have �i(D)/ki = �.

We point out that the i-th inner distribution ai in Delsarte theory [4, §3]
is defined by ai = �i(D)/#D. We remark that association schemes (cf.[1])
are regular unital relation-partitions, so the notion of the equi-distributed
subsets is defined for the association schemes (see [11, §5], where this notion
is studied using Delsarte theory). Thus, all the results in this paper proved
for regular unital relation-partitions hold for association schemes. Since the
notion of relation-partitions is far weaker than association schemes, it might
seem to be an abstract-nonsense, but it turns out to be somewhat useful.
One may think that the denominator in the ratio is artificial, but it seems
to be natural because of the following lemma.

Lemma 2.2.4. Let (X,R, I) be a relation-partition, and h : I ! J a surjec-
tion. Then, we have a relation partition (X,R0, J) defined by R0 = h �R.

1. Suppose that (X,R, I) is unital. If h�1(h(i0)) = {i0} holds, then
(X,R0, J) is unital. If D ⇢ X is equi-distributed in (X,R, I) with
ratio r, then D is equi-distributed in (X,R0, J) with the same ratio
r. Thus, if D has parameter (v, k,�) in the former, D has the same
parameter in the latter.
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2. If (X,R, I) is regular, so is (X,R0, J). The valency k0
j for the latter isP

i2h�1(j) ki.

Proof. Note that R0�1(j) = R�1(h�1(j)) is the disjoint union of R�1(i) with
i 2 h�1(j). The condition h�1(h(i0)) = {i0} implies that (X,R0, J) has unit
h(i0) 2 J . The ratio r0j(D) for (X,R0, J) is

P
i2h�1(j) �i(D)

P
i2h�1(j) #R�1(i)

,

but the equi-distribution property in (X,R, I) implies that

�i(D)

#R�1(i)
= r

for any i 6= i0, which implies the equi-distribution property in (X,R0, J) with
ratio r. The inheritance of regularity follows similarly.

Corollary 2.2.5. Let (X,R, I) be a unital relation-partition, and D an equi-
distributed subset. Then r = k(k�1)

v(v�1) and �(v � 1) = k(k � 1) holds. In
particular, this equality holds for difference sets and pre-difference sets (see
Lemma 2.2.7 below).

Proof. We consider a surjection h : I ! J = {i0, i00} defined by h(i0) = i0
and h(i) = i00 for i 6= i0. If D is equi-distributed with ratio r in (X,R, I),
then the above lemma implies that D is equi-distributed with the same ratio
in (X, h�R, J). Since (h�R)�1(i00) is the complement of the identity relation
(h � R)�1(i0), its cardinality is v2 � v. Also, we have �i00

(D) = k2 � k and
r = ri00(D) = (k2�k)/(v2�v). Since � = rv, �(v�1) = k(k�1) follows.

Lemma 2.2.6. (Probabilistic view point.) Let (X,R, I) be a relation-partition.
Take (x, y) 2 X ⇥X uniformly randomly. The ratio ri(D) is the conditional
probability that under the condition (x, y) 2 Ri, the event (x, y) 2 D ⇥ D
occurs. This is because the probability for (x, y) 2 Ri is #(Ri)/#(X ⇥ X),
and the probability for (x, y) 2 (D⇥D)\Ri is #((D⇥D)\Ri)/#(X ⇥X).
The equi-distribution property is saying that this conditional probability is
independent of the choice of i if i 6= i0.

The inheritance of equi-distribution and ratio in Lemma 2.2.4 is natural:
R0

j (j 6= h(i0)) is a disjoint union of Ri with i 2 h�1(j) (and by the assumption
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we have i0 /2 h�1(j)), and the conditional probability rj(D) that “under the
condition (x, y) 2 R0

j (x, y) 2 D ⇥ D occurs” is r, since if (x, y) 2 R0
j then

(x, y) 2 Ri for some i 6= i0 and the probability for (x, y) 2 D⇥D is ri(D) = r
independent of i.

The following lemma relates the equi-distribution property with difference
sets.

Lemma 2.2.7. 1. Let G be a finite group. Then R : G ⇥ G ! G given
by (x, y) 7! x�1y is a unital regular relation-partition, called the thin-
association scheme of G. A subset D ⇢ G is a difference set if and
only if D is equi-distributed in the (G,R,G).

2. Let C(G) be the set of conjugacy classes of G, and ⇡ : G ! C(G)
the mapping g 7! [g]. Then R0 : G ⇥ G ! C(G) obtained by the
composition R0 := ⇡ �R is a unital regular relation-partition, called the
group association scheme of G. A subset D ⇢ G is a pre-difference set
if and only if D is equi-disributed in (G,R0, C(G)).

3. If D is a difference set with parameter (v, k,�), then D is a pre-
difference set with the same parameter.

Proof. (1). The unit is e 2 G, and the regularity follows since kg = 1 for every
g 2 G. Thus #Rg = #G, and the ratio rg(D) is #{(x, y) 2 D ⇥D | x�1y =
g}/#G. Thus, D is equi-distributed if and only if D is a difference set.

(2). The unit is [e], and the regularity follows from (1) and Lemma 2.2.4(2)
with k[g] = #⇡�1(g) = #[g]. Then #R[g] = k[g]#X = #[g]#G holds, and the
ratio r[g](D) is #{(x, y) 2 D ⇥ D | [x�1y] = [g]}/(#[g]#G). Thus, by def-
inition, the pre-difference set property is equivalent to the equi-distribution
property.

(3). This follows from Lemma 2.2.4 (1).

Lemma 2.2.8. (Complement) If D is a (v, k,�) equi-distributed subset in a
unital regular relation-partition (X,R, I), then Dc is a (v, v � k, v � 2k + �)
equi-distributed subset. We write � := v � 2k + �. The value ri(Dc) (i 6= i0)
is 1� 2k/v + r, which is denoted by r.

Proof. The counting argument in the proof in Proposition 5.17 in [11] will
do. Here instead, we give a proof by Lemma 2.2.6. Take (x, y) 2 X ⇥ X
uniformly randomly. Assume that (x, y) 2 Ri. We consider two cases: (A)
(x, y) 2 D⇥X and (B) (x, y) 2 X⇥D. Let pA be the probability (A) occurs,

18



and pB for (B). Then “(A) and (B)” is (x, y) 2 D ⇥D, and the probability
is ri(D) = r for i 6= i0. The complement of “(A) or (B)” is (x, y) 2 Dc ⇥Dc,
and its probability is ri(Dc), which is 1� pA � pB + r. Now, pA = pB = k/v
follows from the regularity: #Ri = vki and #((D ⇥ X) \ Ri) = kki (since
for each x 2 D we have ki = #{y 2 X | (x, y) 2 Ri}) and thus pA =
(kki)/(vki) = k/v holds. The same argument gives pB = k/v. We obtained
ri(Dc) = 1� 2k/v+ r, independent of the choice of i 6= i0, which shows that
Dc is equi-distributed with ratio r = 1�2k/v+r. By multiplying v, we have
� = v � 2k + �.

2.3 Construction of pre-difference sets from
difference sets

Theorem 2.3.1. Let G be a finite group, A its abelian subgroup, and N its
subgroup. Assume that the map ' : N ⇥ A ! G defined by (n, a) 7! na is
bijective (i.e. N \ A = {e} and ' is surjective). If the direct product group
N ⇥ A has a difference set D, then its image '(D) in G is a pre-difference
set of G with the same parameter as D.

Proof. Consider the thin-association scheme (N⇥A,R,N⇥A), R((n1, a1), (n2, a2)) =
(n�1

1 n2, a
�1
1 a2). Then D is equi-distributed there. There is a surjection

h : N ⇥ A ! C(G), given by (n, a) 7! [na]. Then by Lemma 2.2.4, D
is equi-distributed in (N ⇥ A, h � R,C(G)) with the same ratio. We claim
that the diagram

(N ⇥ A)⇥ (N ⇥ A)
R! N ⇥ A

'⇥ ' #  # h

G⇥G
R0
! C(G)

commutes, and then since (N⇥A, h�R,C(G)) is isomorphic to (G,R0, C(G)),
'(D) is equi-distributed there with the same ratio, that is, '(D) is a pre-
difference set in G with the same parameter. To show the claim, we take
(n1, a1), (n2, a2) at the left top corner. Its image to the right top is (n�1

1 n2, a
�1
1 a2),

and its image by h is [n�1
1 n2a

�1
1 a2]. A diagram chase via the left bottom cor-

ner gives [(n1a1)�1(n2a2)]. Since A is abelian, n�1
1 n2a

�1
1 a2 = n�1

1 n2a2a
�1
1 and

it is conjugate to a�1
1 n�1

1 n2a2 = (n1a1)�1(n2a2), which proves the commuta-
tivity of the diagram.
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Corollary 2.3.2. The dihedral group D16 has a pre-difference set with pa-
rameter (16, 6, 2), and the group UT (3, 3) of the upper half triangle matrices
with diagonal being 1 in GL3(F3) has a pre-difference set with parameter
(27, 13, 6).

Note that the non-existence of non-trivial difference sets in these groups
is well-known (e.g. [12]).

Proof. The group D16 is a semi-direct product of C8 and C2. It is known
that C8 ⇥ C2 has a difference set with parameter (16, 6, 2) (which goes back
to [19]). Theorem 2.3.1 for N = C8 and A = C2 in D16 shows the existence
of a pre-difference set.

The group UT (3, 3) has a presentation
⌦
a, b, c | a3 = b3 = c3 = 1, ac = ca, bc = ca, ba = abc

↵
,

and it is a semi-direct product of N := ha, ci and A := hbi, where the former
is C3 ⇥ C3 and the latter is C3. Paley’s construction ([20, Theorem 27.5])
gives a (27, 13, 6) difference sets in C3

3 = N⇥A, and Theorem 2.3.1 shows the
existence of a pre-difference set with the same parameter in UT (3, 3).

Remark 2.3.3. By using GAP[9], we checked that D36 has no non-trivial
pre-difference set (though there are nine groups having (36, 15, 6) difference
sets [12]).

Remark 2.3.4. If we use the notion of fusions of association schemes (cf.
[21, P.28]), we see that the proof of Theorem 2.3.1 shows that the group as-
sociation scheme (NA,R0, C(NA)) is a fusion of a thin association scheme
(N ⇥A,R,N ⇥A). This group association scheme is also a fusion of a thin
association scheme (NA,R,NA), and gives an example that a group associ-
ation scheme is a fusion of two non-isomorphic thin association schemes, if
NA is not isomorphic to N ⇥ A.

2.4 Product for the case v = 4k � 4�

Definition 2.4.1. The product of two relation-partitions (X1, R1, I1) and
(X2, R2, I2) is defined as (X1 ⇥X2, R1 ⇥ R2, I1 ⇥ I2). If both are unital (or
regular), then so is the product. If both are association schemes, then so is
the product. If both are group association schemes, so is the product. If both
are thin-group association schemes, so is the product.
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The following is a direct generalization of a result in [13] on the difference
sets in groups.

Theorem 2.4.2. Let D1 be a (v1, k1,�1) equi-distributed subset in a unital
regular relation-partition (X1, R1, I1) with D1 6= ;, X1, and D2 be a (v2, k2,�2)
equi-distributed subset in a unital regular relation-partition (X2, R2, I2) with
D2 6= ;, X2. Then, D := (D1 ⇥D2)

`
(Dc

1 ⇥Dc
2) is an equi-distributed subset

in the product relation-partition if and only if vi = 4(ki��i) holds for i = 1, 2.
In this case, D has the parameter (v, k,�) satisfying v = 4(k � �). If D1 or
D2 is not equi-distributed, then D is not equi-distributed.

Proof. Let i1 2 I1 and i2 2 I2. For P ⇢ (X1 ⇥X2)2 = X2
1 ⇥X2

2 , we define

�i1,i2(P ) := P \ (Ri1 ⇥Ri2).

Note that the cardinality of �i1,i2(D ⇥D) is �i1,i2(D). We have

�i1,i2(D ⇥D) = �i1,i2((D1 ⇥D2)⇥ (D1 ⇥D2)) + �i1,i2((D1 ⇥D2)⇥ (Dc
1 ⇥Dc

2))

+�i1,i2((D
c
1 ⇥Dc

2)⇥ (D1 ⇥D2)) + �i1,i2((D
c
1 ⇥Dc

2)⇥ (Dc
1 ⇥Dc

2)).

Computing the cardinality, we have

�i1,i2(D) = �i1(D1)�i2(D2) + hAi1�D1 , �X1 � �D1i hAi2�D2 , �X2 � �D2i
+ hAi1(�X1 � �D1), �D1i hAi2(�X2 � �D2), �D2i
+�i1(D

c
1)�i2(D

c
2)

= �i1(D1)�i2(D2) + 2(ki1k1 � �i1(D1))(ki2k2 � �i2(D2))

+�i1(D
c
1)�i2(D

c
2).

We divide this by ki1ki2 to obtain

�i1,i2(D)/(ki1ki2) =
�i1(D1)

ki1

�i2(D2)

ki2
+ 2

✓
k1 �

�i1(D1)

ki1

◆✓
k2 �

�i2(D2)

ki2

◆

+
�i1(D

c
1)

ki1

�i2(D
c
2)

ki2
. (2.1)

If i1 6= i0 and i2 6= i0, (2.1) becomes

�1�2 + 2(k1 � �1)(k2 � �2) + �̄1�̄2, (2.2)
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where �̄1, �̄2 is the �-parameter for Dc
1, Dc

2, respectively. If i1 = i0 and
i2 6= i0, since ki0 = 1, (2.1) becomes

k1�2 + 2(k1 � k1)(k2 � �2) + (v1 � k1)�̄2 = k1�2 + (v1 � k1)�̄2. (2.3)

Computing (2.2) minus (2.3), we have

(�1 � k1)�2 + 2(k1 � �1)(k2 � �2) + (�̄1 � v1 + k1)�̄2

= (�1 � k1)�2 + 2(k1 � �1)(k2 � �2) + (�1 � k1)�̄2

= (�1 � k1)(�2 � 2k2 + 2�2 + �̄2)

= (�1 � k1)(�2 � 2k2 + 2�2 + v2 � 2k2 + �2)

= (�1 � k1)(v2 � 4k2 + 4�2),

since �̄i = vi � 2ki + �i. If k1 = �1, then �1(v1 � 1) = k1(k1 � 1) impies
k1 = 0 or v. Then D1 = ; or X1, contradicting the assumption. For the case
i1 6= i0 and i2 = i0, the difference is (�2 � k2)(v1 � 4k1 � 4�1). Thus, D is
equi-distributed if and only if vi � 4ki � �i = 0 holds for i = 1, 2.

Let (v, k,�) be the parameter of D. Then, v = v1v2, k = k1k2 + (v1 �
k1)(v2 � k2), and � is given by (2.2). Then

k � � = k1k2 + (v1 � k1)(v2 � k2)� �1�2 � 2(k1 � �1)(k2 � �2)� �̄1�̄2

= 4(k1 � �1)(k2 � �2)

holds (through a long computation), and hence

v = v1v2 = 4(k1 � �1) · 4(k2 � �2) = 4(k � �)

follows.
Suppose that D2 is not equi-distributed. Then, for the case i1 = i0 and

i2 6= i0, the computation of (2.3) gives

�i1,i2(D)/(ki1ki2) = k1
�i2(D2)

ki2
+ (v1 � k1)

�i2(D
c
2)

ki2

Using

�i2(D
c
2) = hAi1(�X2 � �D2), (�X2 � �D2)i = ki2v2 � 2ki2k2 + �i2(D2),
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we have

�i1,i2(D)/(ki1ki2) = k1
�i2(D2)

ki2
+ (v1 � k1)

ki2v2 � 2ki2k2 + �i2(D2)

ki2

= v1
�i2(D2)

ki2
+ (v1 � k1)(v2 � k2).

Since v1 6= 0, we notice that this value varies if �i2 (D2)

ki2
varies. Since D2 is not

equi-distributed, this value varies if i2 varies among i2 6= i0. Thus, D is not
equi-distributed.

Corollary 2.4.3. Let D be a pre-difference set in a finite group G with
parameter (v, k,�), v = 4(k � �), which is not a difference set in G. Let
D0 ⇢ G0 be a pre-difference set in G0 with v0 = 4(k0 � �0). Then, the direct
product construction in the product G ⇥ G0 yields a pre-difference set which
is not a difference set. This gives infinitely many examples of groups with
a pre-difference set which is not a difference set. For example, Gn has a
pre-difference set which is not a difference set for any positive integer n. We
may use a pre-difference set in G = D16 which is not a difference set (shown
in Corollary 2.3.2).

2.5 Non-existence of pre-difference sets in some
groups

As a necessary condition on the parameter for the existence of a difference
set, the following Bruck-Ryser-Chowla condition (cf. [20, Theorem 19.11]) is
known:

Theorem 2.5.1. Suppose that a (v, k,�) difference set exists. If v is even,
k � � is a square. If v is odd, then the equation

(k � �)X2 + (�1)(v�1)/2�Y 2 = Z2

has a nontrivial integer solution.

At present, we don’t know the answer to the following question.

Question 2.5.2. Is the Bruck-Ryser-Chowla condition a necessary condition
for the existence of a pre-difference set with parameter (v, k,�)?
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On the other hand, we show that a necessary condition proved in [17] for
the existence of difference sets is a necessary condition for the existence of
pre-difference sets.

Theorem 2.5.3. Let N ⇢ G be a normal subgroup of a finite group G
with index 2. Let D ⇢ G be a pre-difference set. Put m := #N = v/2,
D1 := D\N , D2 := D\N , k1 := #D1, and k2 := #D2. (Hence k = k1+k2.)
Then, the following hold.

A1 �(m� 1) = k1(k1 � 1) + k2(k2 � 1).

A2 �m = 2k1k2.

As a consequence, k�� = (k1�k2)2 follows, and hence Bruck-Ryser-Chowla
condition holds in this case. If D is not trivial, then k1 < m and k2 < m
hold.

Remark 2.5.4. 1. The above two conditions are given in [17, (2.3),
(2.4)].

2. Summation of the above two implies

�(v � 1) = k(k � 1),

hence any two of the three equalities imply the other.

3. Let b 2 N c. Then G = N
`

Nb. If D is a pre-difference set as above,
Db = D2b [ D1b is a pre-difference set with D0

1 := D2b ⇢ N and
D0

2 = D1b ⇢ N c, and thus a pre-difference set with #D0
1 = k2 and

#D0
2 = k1 exists.

Proof. Let f : X ! Y be a map between finite sets, C ⇢ Y be a non-empty
subset. Then we define the density of f on C by #f�1(C)/#(C). Let D ⇢ G
be a subset of a finite group G. It is easy to see that D is a pre-difference
set if and only if

R|D : D ⇥D ! G, (x, y) 7! x�1y

have the density � on every conjugacy class C ⇢ G except C = [e].
Because N is normal, N is a union of conjugacy classes, and N c is a union

of conjugacy classes. Thus, any conjugacy class C of G is contained one of
N or N c.
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It is easy to see that

R : G⇥G ! G, (x, y) 7! x�1y

is the direct sum of the two maps:

R1 : (N ⇥N)
a

(N c ⇥N c) ! N, R2 : (N ⇥N c)
a

(N ⇥N c) ! N c.

This implies that the restrictions of each map to D ⇥D gives

R0
1 : (D1 ⇥D1)

a
(D2 ⇥D2) ! N, R0

2 : (D1 ⇥D2)
a

(D2 ⇥D1) ! N c,

and the density of R0
1 on every conjugacy class C ⇢ N (except C = [e]) is �.

Thus, the density of R0
1 on N � {e} is �. Since the inverse image of e by R0

1

is the union of the diagonal sets in D1 ⇥D1 and D2 ⇥D2, the inverse image
of N � {e} by R0

1 has cardinality (k2
1 � k1) + (k2

2 � k2), which is equal to
�(#(N)� 1) = �(m� 1), hence A1 holds. Since the density of R0

2 on every
conjugacy class C ⇢ N c is �, we have k1k2+k2k1 = �m, hence A2 holds. A1
minus A2 gives

�� = (k1 � k2)
2 � (k1 + k2).

Since k = k1 + k2, k � � = (k1 � k2)2 follows.
Clearly k1  m holds. Suppose that the equality holds. Then �k1 =

2k1k2, and hence � = 2k2. Thus

2k2(k1 � 1) = k1(k1 � 1) + k2(k2 � 1).

This is equivalent to

(k1 � k2)(k1 � k2 � 1) = 0.

Since k1 = m, this implies that k2 = m or k2 = m� 1. In either cases, D is
trivial. If k2 = m, then k1 = m or m� 1, and again D is trivia l.

Corollary 2.5.5. Let G be a group of order 2p↵ for an odd prime p and
integer ↵. Then, G has only trivial pre-difference sets.

Proof. The proof is the same as [17, Corollary 2.4]. There it is proved that
G has a subgroup of index 2, and then show that A1 and A2 have no integer
solution.
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Corollary 2.5.6. Let G be a group of order 4p↵ with p prime and ↵ odd.
Assume that G has an index 2 subgroup. Then there is no non-trivial pre-
difference set in G.

Proof. It is proved that A1, A2 have no nontrivial integer solutions in [5,
Proposition 2.2].

Suppose that v = 4(k� �). If Bruck-Ryser-Chowla condition holds, then
k � � = u2, and it is easy to show that (v, k,�) = (4u2, 2u2 � u, u2 � u)
if k  v/2. This parameter is called Hadamard-type. For a pre-difference
set, it is open whether k � � is a square or not for even v. Nevertheless,
it is interesting to consider the Hadamard-type parameters for a group with
index 2 subgroups, because they have a (unique) solution to A1 and A2,
{k1, k2} = {u2, u2 � u}.

Question 2.5.7. Are there interesting examples of pre-difference sets with
Hadamard-type parameter, in a group G having index 2 subgroup? For u = 2
in D16, yes. For u = 3 in D36, there is no non-trivial pre-difference set
(checked by a computer program).

We have a straight forward generalization of Theorem 2.5.3 to relation-
partitions.

Lemma 2.5.8. Let (X,R, I) be a relation-partition. Let F2 denote the corre-
sponding association scheme (F2, R0,F2) defined by R0(x, y) = x� y. Assume
that there is a morphism (f, g) : (X,R, I) ! F2 with f being surjective.
Let X+ ⇢ X (X� ⇢ X) be the inverse image of 0 (1, respectively ) by
f : X ! F2. Then

(gR)�1(0) = (X+⇥X+)
a

(X�⇥X�), (gR)�1(1) = (X+⇥X�)
a

(X�⇥X+)

hold. If (X,R, I) is regular, then #X+ = #X� = #X/2. hold.

Proof. Since f is surjective, g is surjective, too. The definition of mor-
phism (Definition 2.2.1) implies that gR(x, y) = f(x) � f(y) with gR, and
gR(x, y) = 0 holds if and only if x, y 2 X+ or x, y 2 X�, and gR(x, y) = 1
holds if and only if (x, y) 2 (X+ ⇥X�)

`
(X� ⇥X+).

Assume the regularity. The relation-partition (X, gR,F2) is regular by
Lemma 2.2.4(2). For x 2 X+, the valency of x in the relation (gR)�1(0) is
#X+, and that in (gR)�1(1) is #X�. By regularity, they are equal. Since
#X = #X+ +#X�, the claim follows.
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Theorem 2.5.9. Assume that a regular unital (X,R, I) satisfies the condition
of Lemma 2.5.8. Let D be an equi-distributed subset in X with parameter
(v, k,�). Let m := #X/2, k1 := #(X+ \D), k2 := #(X� \D). Then, the
conditions A1, A2 and the statements below them in Theorem 2.5.3 hold.

Proof. Let us define h : I ! {i0,+,�} =: J by h(i0) = i0, h(i) = + if
i 6= i0 and g(i) = 0, h(i) = � if g(i) = 1. By Lemma 2.2.4, (X, hR, J) is
a regular unital relation-partition, and D is equi-distributed there with the
same parameter. The cardinality #hR�1(j) is if j = +

#((X+ ⇥X+)��X+)
a

((X� ⇥X�)��X�) = 2m(m� 1)

where �X+ means the diagonal subset, and if j = �

#((X+ ⇥X�)
a

(X� ⇥X+)) = 2m2.

The �j(D) is if j = +

#((D+ ⇥D+)��D+)
a

((D� ⇥D�)��D�) = k1(k1 � 1) + k2(k2 � 1)

and if j = �
#((D+ ⇥D�)

a
(D� ⇥D+)) = 2k1k2.

Computing the ratio, we have

(k1(k1 � 1) + k2(k2 � 1))/(2m(m� 1)) = �/v = 2k1k2/(2m
2).

By v = 2m, we have A1 and A2. The rest of the proof is the same as that of
Theorem 2.5.3.

As a corollary, if (X,R, I) satisfies the conditions in Lemma 2.5.8 and
#X = 2p↵ (p odd prime and ↵ integer) or #X = 4p↵ (p prime and ↵ odd
integer) as in Corollaries 2.5.5 and 2.5.6, then there is no non-trivial equi-
distributed subset. Note that this theorem implies Theorem 2.5.3 since there
is a surjective morphism (G,R0, C(G)) ! F2 defined by f : G ! G/N ⇠= F2

which factors through g : C(G) ! F2. The necessary commutativity is that
R0(x, y) = [x�1y] 7! x�1yN 2 G/N equals to f(x) � f(y) 2 F2 through the
identification G/N ⇠= F2, which is easy to check.
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