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Abstract

In this thesis, we consider quantum states in an external gravitational field. The
quantum nature is important on a microscopic level, whereas the gravity is important on
a large scale. There are at present few examples in which the two important physics are
simultaneously involved. The gravity is treated as a classical field so that our approach
is semi-classical. However, the subject is of interest for theories and experiments in the
future. We explicitly study the quantum states of a particle in an external gravitational
field and bouncing on the floor of a perfectly reflecting mirror from the classical perspective.
The gravitational acceleration is constant, such that the potential is linear with respect
to distance. We focus upon the relativistic effects in gravitational quantum states from
the perspective of the equivalence principle under appropriate boundary conditions. We
investigate the problem for free Klein—Gordon, Dirac, and Majorana particles repeatedly
bounced off by a uniformly accelerated mirror in Minkowski space. For the Klein—-Gordon
particle, we adopt the Dirichlet boundary condition of a vanishing scalar field at the mirror
surface. The boundary condition for Dirac and Majorana particles is nontrivial. As an
alternative, we use the boundary condition from the MIT bag model. The results show that
the transition frequencies between the two energy eigenstates of all relativistic bouncing
particles exceed their nonrelativistic limits, and the relativistic corrections to the transition
frequencies of Dirac and Majorana bouncers exceed those of a Klein—-Gordon bouncer. To
further our understanding of the roles of boundary conditions, we also revisit the system of
a Dirac particle confined in a 1D box in the absence of a gravitational field, using the chiral
MIT boundary conditions. We discuss how the system depends on the boundary condition
parameterized by the chiral angle. We find that the boundary condition for a Dirac particle
in some specific initial spin orientations can generate the asymmetric distributions of the

probability and scalar densities of a Dirac particle inside a box.
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Chapter 1

Introduction

The interplay of quantum physics and gravity is of considerable interest. One remarkable
example of this interplay is Hawking radiation [I]: By considering quantum fields on a
Schwarzschild black-hole spacetime, Hawking demonstrated that a black hole emits thermal
radiation with a temperature depending on its mass. A similar effect arises in uniformly ac-
celerated systems; that is, the accelerated observer sees the Minkowski vacuum as a thermal
state with a temperature [2]. Thus, studies on quantum effects under the influence of grav-
itational fields are challenging; furthermore, very few phenomena can be observed or tested
in the laboratory. One example system that can be tested in experiments is the quantum
bouncer; this comprises a particle trapped in a linear gravitational potential, bouncing on
the fixed floor of an ideal mirror. Theoretical analysis of the quantum bouncer has been
presented and explored in many literatures (see, e.g., Refs. [3HI3]). Interestingly, the gravi-
tational quantum states have been experimentally checked using ultracold neutrons (UCNs)
[14] (see also, e.g., Refs. [15-20]).

In realistic situations, the potential surrounding the glass mirror is described by a
Fermi-pseudo potential. This potential is considerably larger than the transversal energy of
the particle, where the lowest energy of neutrons quantum bouncer is of the order of peV (see,
e.g., Ref. [21]); thus, we can approximate that the bouncing particle sees an infinite potential
around the mirror surface. In a nonrelativistic treatment of the quantum bouncer, the wave
function should vanish at the boundary surface because the particle is perfectly reflected by
an infinite potential barrier, such that the stationary bound states exhibit discrete energy
levels associated with the normalizable wave function. An observer attached to the mirror
would experience the effect as a gravitational field. In this approach, which is based on

the equivalence principle of relativity [22], we investigate the quantum bouncer problem for
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relativistic bouncing particles under appropriate mirror boundary conditions. Namely, a
particle bouncing on a fixed mirror under the influence of a gravitational field is equivalent
to a free particle repeatedly bounced off by a uniformly accelerated mirror in Minkowski
space. To describe the trajectory of the uniformly accelerated mirror, we introduce Rindler
coordinates. We primarily discuss the relativistic effects in gravitational quantum states
by solving the quantum bouncer problem for Klein—-Gordon and Dirac equations in Rindler
coordinates under the mirror boundary conditions. Note that the system of a Klein-Gordon
bouncing particle under a uniformly accelerated ideal mirror has been previously investigated
by Ref. [24]. The study was extended to a Dirac bouncing particle in Ref. [23]. In the
nonrelativistic limit, the energy levels of Klein—Gordon and Dirac bouncing particles reduce
to familiar eigen-energies for the Schrodinger equation in a gravitational field under the

Dirichlet boundary condition of an ideal mirror, as has been shown by Ref. [23].

To investigate the bound state of a Klein-Gordon bouncer, we follow Ref. [24] to use
the Dirichlet boundary condition of a vanishing scalar field at the mirror surface; this is ap-
plicable because the particle approximately sees an infinite Fermi pseudo-potential barrier.
As noted in Ref. [23], the extension to a Dirac bouncing particle is nontrivial. Imposing
the Dirichlet boundary condition on the Dirac equation causes the Dirac wave function to
vanish everywhere trivially [23]. Therefore, Ref. [23] used an alternative boundary condition
to discuss the problem for the Dirac bouncing particle (cf. Refs. [25H27]). In this thesis,
we follow Ref. [25] to use the boundary condition given in the MIT bag model (BC-MIT)
[28, 29] (see also Ref. [30] for a review) as an alternative for the Dirac equation to represent
the description of the Fermi pseudo-potential barrier of the mirror while avoiding the Klein
paradox problem [31]. The BC-MIT ensures the vanishing of the normal probability current
and scalar densities at the boundary surface [32]. The probability density of a Dirac particle
does not vanish around the boundary surface (see Ref. [26] for the confinement system).
This behavior implies that the chiral symmetry is broken. To resolve this issue, Ref. [33]
introduced the chiral bag model (see also Refs. [34H42]), which restores the symmetry break-
ing via a pion field outside the bag [37, 43]. However, in our mirror model for the UCN, the
boundary thickness is of the order of 0.1 nm, far larger than the size of a hadron. Hence,
we choose to adopt the BC-MIT rather than boundary condition given in the chiral (or
little/cloudy) bag model [33-42], even though the chiral bag model is more realistic than
the MIT bag model for hadrons.

The neutron can also be presented as a Majorana fermion when neutron-antineutron
oscillation exists [44H51]. Therefore, it is also essential to discuss the UCN quantum bouncer

problem using a Majorana particle under an appropriate mirror boundary condition for
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the complementary. In this study, the Majorana wave function is obtained from a linear
combination of the Dirac wave function and its charge conjugation [49] under an additional
condition (i.e., that the charge conjugation of the Majorana wave function is the same as
itself), which ensures that the Majorana wave function also satisfies the Dirac equation.
A similar problem to that of the Dirac particle occurs at the boundary condition for the
Majorana particle; that is, the Dirichlet boundary condition cannot be applied to investigate
the bound system. Instead, we use the BC-MIT [28-30] as an alternative boundary condition

for the Majorana particle, as we apply for the Dirac particle.

Alongside the above approximations, we investigate the energy levels and transition
frequencies between two energy eigenstates for all relativistic bouncing particles. We com-
pare the results for relativistic bouncing particles with their nonrelativistic limits. This
comparison indicates the presence of relativistic corrections. Then, we apply the relativistic
corrections thereby obtain to the transition frequencies for the UCN. In our system, the
boundary conditions play a critical role because the precise properties of the wave func-
tion cannot be discussed without an appropriate boundary condition. We further discuss
how the boundary condition affects the density functions, namely, the particle localization

probability, current density in the normal direction, and scalar densities.

The likelihood of experimental observations of gravitationally quantum bound states
of Ps atoms has been discussed in Refs. [52, 53] (cf. Refs. [54] [55] for the discussion on
the feasibility of the gravitational free-fall experiment of Rydberg Ps atom). Compared to
the UCN, the Ps atom has a lighter mass; thus, the energy levels of the Ps atom quantum
bouncer are smaller than those of the UCN. In contrast, the relativistic corrections to the
Ps atom transition frequencies exceed those of the UCN. In this thesis, we also apply the

analytical results for the Ps atom.

The Foldy—Wouthuysen transformation [56] (see also Refs. [57H59]) for the Hamilto-
nian of the Dirac equation in Rindler coordinates (see, e.g., Refs. [23] 60762]E[) can be used
to investigate the relativistic corrections of the energy levels of relativistic particles [23]. Us-
ing this transformation, the relativistic Hamiltonian from the Dirac equation reduces to the
nonrelativistic one. We can perform a perturbation approximation to obtain the relativistic
corrections to the energy level [23]. Using this approximation, we find that the first-order
relativistic energy level corrections obtained from the lowest order of the Foldy—Wouthuysen
transformed Hamiltonian coincide with those of the Klein—-Gordon bouncing particle under

the Dirichlet boundary condition of a vanishing field at the mirror surface. This condition

1Refs. [23, 60H62] have computed the Foldy—Wouthuysen transformation for the Hamiltonian of the
Dirac equation in Rindler coordinates using the metric first given in Ref. [63].
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may give an additional hint that the boundary condition would be essential to investigate

the energy level of bouncing particles.

The authors of Refs. [34] introduced the general form of the BC-MIT, which keeps
ensuring a vanishing normal probability current density at the boundary surface. The general
form of the BC-MIT conditions that includes the contribution of the chiral angle is referred
to as the chiral MIT boundary conditions (BC-chiral MIT) [34] 64] [65]. The energy levels
of a particle under these boundary conditions may depend on the chiral angle [65]. Several
studies have applied the BC-chiral MIT, e.g., Refs. [66-69] used it to confine Dirac fermions
in a rotating system. Interestingly, the author of Ref. [25] reported that the BC-chiral MIT
could be used to analyze the change of spin orientations; there, the wave function was written
as a linear combination of the incident and reflected wave components associated with their

spin orientations.

To further our understanding of the roles of boundary conditions, we also revisit the
system of a Dirac particle confined in a 1D box in the absence of a gravitational field, using
the BC-chiral MIT to describe the properties of the walls or mirrors [70]. Such systems
have been discussed in Ref. [20] (cf. Ref. [27] for a discussion of the system in a 3D box);
however, they there used the BC-MIT as an alternative boundary condition to avoid the
Klein-paradox problem. Other previous studies into confined relativistic particles can be
found in, e.g., Refs. [43] [71H78]. Along with this analysis, we investigate how the discrete
momenta and energy levels of a Dirac particle behave under boundary conditions. Then, we
discuss how the spin orientations change, owing to reflections at the mirrors. Because the
boundary conditions relate to the behaviors of density functions, we recast our analysis of
the quantum bouncer to analyze the behavior of the probability, normal probability current,
and scalar densities of a Dirac particle inside a box. Our calculation for this system is
limited to one dimension; however, our study may facilitate exploration of related topics
on finite-size effects and chiral symmetry breaking, although this subject has already been
considered in, e.g., Refs. [66] 67] (cf. Ref. [79] for a discussion on the Nambu—-Jona-Lasinio
(NJL) model using the BC-MIT).

The remainder of this thesis is organized as follows. In Chap. [2| we briefly review the
bound states of a nonrelativistic bouncing particle in a homogeneous gravitational field with
an ideal mirror boundary condition; here, we also briefly review the properties of UCNs and
Ps atoms. In Chap.[3] we discuss the bound states of a Klein-Gordon bouncing particle under
the Dirichlet boundary condition of a vanishing scalar field at the mirror surface. In Chap. [}
we investigate the bound states of Dirac and Majorana bouncing particles under the BC-

MIT in the case of arbitrary spin orientations. In Chap. [5| we discuss the roles of boundary
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conditions in the quantum states of bouncing particles in a homogeneous gravitational field,
by comparing the energy levels and transition frequencies between two energy eigenstates
for all bouncing particles, as well as discussing their density functions (especially around the
mirror surface); in this chapter, we also discuss the Foldy—Wouthuysen transformation for
the Dirac equation in Rindler Coordinates, and we investigate relativistic corrections to the
energy levels, using the perturbation approximations. In Chap. [0 we analyze the roles of
the BC-chiral MIT on the system of a Dirac particle confined in a 1D box in the absence of
a gravitational field. We discuss how the discrete momenta and energy levels depend on the
chiral angle parameters. We also analyze how the reflections with the boundary surface under
the BC-chiral MIT generate changes of the spin orientations, and we discuss the behaviors
of the density functions with respect to the chiral angle and initial spin orientation. In
Chap. [7, we provide our summary and conclusions. In Appendix [A] we briefly review the
solution to the Dirac equation in Minkowski coordinates. In Appendix [B], we briefly review
the two alternative boundary conditions that we apply to the Dirac equation: the BC-MIT
and BC-chiral MIT. Throughout this thesis, we use units of ¢ = h = 1.



Chapter 2

Gravitational Quantum States of a
Bouncing Particle in Nonrelativistic

Quantum Mechanics

In this chapter, we primarily learn the well-known feature of the quantum bouncer, which is
the existence of the bound states of a particle trapped in a gravitational field and bouncing
above a perfectly reflecting mirror in the viewpoint of nonrelativistic quantum mechanics.
We explicitly discuss the quantum bouncer problem by investigating the Schrodinger equa-
tion in a linear gravitational potential with an ideal mirror. We start with a brief review of
the properties of UCNs and Ps atoms. Then, we discuss the bound state under the Dirichlet
boundary condition of a vanishing wave function at the mirror surface. We will show that
the quantum bouncer exhibits discrete energy levels, as demonstrated in the literatures (see,
e.g., Refs. [3H12]). We also briefly discuss the applications of the analytic solution of energy
levels to UCN and Ps atoms.

2.1 Ultracold Neutrons and Positronium Atoms

2.1.1 Ultracold Neutrons

The research on neutron optics has been discussed and reported, e.g., in Refs. [R0-H89]; see
also Ref. [90] for the discussion on the transmission of the electromagnetic wave through an

accelerated dielectric slab. The observation of the gravitational quantum states of UCNs
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[T4H20] is an application of neutron optics under the influence of a gravitational field, in
which the particle bouncing above a reflecting mirror and exhibits discrete energy levels; see
also Refs. [91, 02] for the observation of UCNs. Another quantum bouncer system, namely,
the centrifugal quantum states near the cylindrical mirror is discussed in Refs. [93, 94]. In
such a system, the particle experiences a centrifugal force. UCNs are neutrons with kinetic
energy lower than the step barrier of the Fermi pseudo-potential of materials [95]. Under
this condition, UCNs can be totally reflected by appropriate materials at arbitrary incidence
angles. The mass of neutron is approximately 0.94 GeV [96]. The neutron lifetime is longer
than the observational time of the quantum bouncer under the gravitational field [14]. Along
with the mentioned properties and neutrality of neutrons, they can be successfully used as an
experimental object to observe gravitationally quantum bound states [14] (see also Refs. [15-
20]), for which a reflecting mirror must be used to trap the particle in a linear gravitational

potential [14].

2.1.2 Positronium Atom

As mentioned in the introduction, the possibility of observing the gravitationally quantum
bound states of Ps atoms has been discussed in Refs. [52] [53]. Ps atom consists of an electron
and positron (matter and antimatter); it has a total mass of approximately 1 MeV, which
is roughly around 10% times smaller than neutron mass. Furthermore, the lifetime of a Ps
atom is shorter than the observation time. To increase its lifetime, Ps atom should be placed

in the Rydberg state n’; this can increase its lifetime by a factor of n® [52, 54].

2.2 Quantum Mechanical Description of a Bouncing

Particle in a Gravitational Field

In the following, we review the quantum mechanical description of the quantum bouncer in
141D system. We consider a particle bouncing on a rest floor under the influence of a linear

gravitational potential

V() maz, for z > 0, (2.1)
z) = .
00, for z < 0.
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Here, m and a = g denote the mass and uniform (gravitational) acceleration of the particle,
respectively. In this system, we take the approximation in which the potential around the

mirror surface at z = 0 is infinite; hence, the particle can only move in the region of z > 0.

2.2.1 Schrodinger Equation in a Gravitational Field

The dynamics of a particle bouncing above a perfectly reflecting mirror in a linear gravi-
tational potential (2.1)) can be described by the time-dependent Schrédinger equation, as
follows

1 PPV(z,1)

5 + mazV(z,t). (2.2)

0
—W(z,t) =
(e,
By introducing the following general solution
U(z,t) = e Erlah, (2), (2.3)

we find that the wave function v, (z) satisfies the time-independent Schrédinger equation,
as follows

1 P(2)

5 o2 + mazip,(z2) = Enibn(2). (2.4)

To solve the above equation, it is more convenient to introduce the parameter of ( = z/B,
where B is the gravitational length scale explicitly given by [7]

~1/3

B = (2m*a) (2.5)

Then, the above time-independent Schrodinger equation (2.4) can be written as follows

()
d¢?

+ (C - Cn)¢n(g) =0. (2'6)

Here, (, is defined as ¢, = FE,/(maB). The second-order differential equation is
the Airy differential equation, which takes a solution consisting of a linear combination of
Airy function Ai(¢ — (,) and Airy function Bi(¢ — (,) [97]. The Airy function Ai({ — ¢,)
converges goes to zero as ( goes to infinity. By contrast, the Airy function Bi(¢ — (,)
diverges goes to infinity with the growth of ¢ (see Fig. 2.1). In the quantum bouncer, the
wave function vanishes under the increases of height z(= B(), which is described by the

boundary conditions ¢(z — oo) = 0. Therefore, the Airy function Bi cannot be used as a
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FIGURE 2.1: The solid black line is Airy function Ai(z/B), the dashed red line is Airy
function Bi(z/B), and the dotted green line is second kind of the modified Bessel function
Kio (meaz/a). Here, we used mass m = 10, uniform acceleration a = 1, w = 11, and B

is the length scale defined in Eq. (2.5). Both the Airy function Ai and modified Bessel
function converges goes to zero as the increases of z. In contrast, the Airy function Bi
diverges goes to infinite as the increases of z. This figure is reproduced from Ref. [31].

solution, and an appropriate solution for the equation (2.6) can be given by Airy function
Ai(¢ — ¢,) only; this is explicitly given as

1/}71(() = NnAi(C - Cn) (2‘7)

Here, N, is the normalization constant, defined as

| P = [T P = [T BN PRC-GPd =1 28)

where we have used the relation of z = B{ with the parameter values (,, are determined by

the boundary condition, as we will show below.

2.2.2 Bound States of a Bouncing Particle in a Gravitational Field

As mentioned above, in a realistic system, the contact potential around the glass mirror is
finite and may depend on the momentum of the bouncing particle [98, @9]. However, the
potential around the mirror is considerably much larger than the energy of the UCN [21].

Under this condition, we can assume that a bouncing particle sees an infinite potential at
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the mirror surface; thus, the Dirichlet boundary condition of a vanishing wave function at
the floor is sufficient to investigate the bound system. Imposing this Dirichlet boundary
condition to the wave function (2.7) at the reflecting mirror located at z = 0 leads to the

following condition [7]
Ai(=¢) =0, n=123,... (2.9)

From the boundary condition (2.9), we can see that —(, refers to the zeros of the Airy func-
tion, which takes negative and discrete values (see Fig. [2.1)). Hence, the value of parameter
(, is discrete positive. The essential feature from the boundary condition (2.9)) is that the

energy of a bouncing particle for states n is also discrete and explicitly given by
E, = maB(,, (2.10)

where its values are also always positive; see Table for the lowest few energy levels of a

neutron.

It is well-known that the analytical expression of the zeros of the Airy function —(,
cannot be found exactly in an analytic way. However, the Wentzel-Kramers-Brillouin (WKB)

approximation gives a high precision; approximately, it is given as [5] [7]

3 1 2/3
(WEB ~ [7 (n — 1)} , (2.11)

and the normalization constant under the WKB approximation is approximately given by
(see Ref. [7])

VBN WKB 8 V6
B ~ [— 2.12
N |, (212
The turning point of a classical particle is given by [17, 20]

z2n = By, (2.13)

which is also discrete. From the above derivations, we can see that the mass dependences of
the energy level and the turning point appear in the factors m'/? and m~=%/3,
respectively. Therefore, the energy level and turning point of the Ridberg Ps atom are 10
times smaller [52] and 10? times higher than for those of the UCN at the same state n,

respectively.
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TABLE 2.1: The first six values of the parameters (, (left column) in comparison with

those of (\VXB (middle column). Here, we also provides the first six values of the energy

level E,, (right column) of a neutron with mass m ~ 0.94 GeV and uniform acceleration
a = 2.15 x 1073 GeV.

n_ G Go By (peV)
1 2338  2.320 1.406
2 4.088  4.082 2.458
3 5.521  5.517 3.319
4  6.787  6.784 4.080
5 7.944  7.942 4.776
6 9.023 9.021 0.424

Table provides the first six values of the parameter (,, and the energy level E,, for
the neutron with mass m ~ 0.94 GeV [96] and acceleration a & 2.15 x 10732 GeV. From this
table, we can also see that the values of parameter (\VXB obtained from WKB approximation

approaches to the value of parameter (,, as the increases of the state n.



Chapter 3

Gravitational Quantum States of a

Klein—(Gordon Bouncing Particle

In this chapter, we discuss the bound states of a Klein—-Gordon bouncer in the viewpoint
of the equivalence principle of relativity. We analyze the problem by investigating the
Klein—-Gordon equation in Rindler coordinates under the boundary condition of an ideal
mirror. We begin by briefly deriving the solution to the Klein—-Gordon equation in Rindler
coordinates [100] (cf. Ref. [101]). Then, we follow Ref. [24] to use the Dirichlet boundary
condition of the vanishing scalar field at the mirror surface to derive the energy eigenstates
of a Klein—Gordon bouncer. From the obtained boundary condition, we proceed to express
the energy level using the approximation formula given in Ref. [102]. The application of this
solution to the UCN and Ps atom, as well as the comparison with the energy levels of the

other bouncing particles, will be discussed in Chap. [5

3.1 Rindler Coordinates

Rindler coordinates (1, z,y,&) describe a uniformly accelerated observer in Minkowski co-
ordinates (t,z,y, z); these two coordinate systems can be related via the following transfor-

mation:

e e®
t = —sinhan and z = — coshan. (3.1)
a a

12
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Here, a denotes a uniform acceleration in the z-direction. The line element in Minkowski

coordinates is given by
ds® = N dx!dx” = dt? — da® — dy? — d2?, (3.2)

where in the present thesis we use 7,, = diag.(1,—1,—1,—1). Using the transformations
given in Eq. (3.1)), the line element in Rindler coordinates can be expressed as [103, [104]

§" = gpax”axr” =e n— —ar” —ay-, .
ds® datdz” = e (dn? — d€?) — da® — dy? 3.3

where g, = diag.(e?*¢, —1, —1, —e?%%).

3.2 Klein—Gordon Equation in Rindler Coordinates

We consider a free massive scalar field ¢ in curved spacetime, with an action given by

S = % / d*z/=g (9" 0,00,0 — m*¢?) , (3.4)

where m is the mass of the scalar field. Taking the variation of the above action, we obtain

the Klein—Gordon equation in curved spacetime, as follows

=0, (V=30"0,6) + w6 = 0. (3.5)

Using the Rindler metric (3.3]), the Klein-Gordon equation in Rindler coordinates reads

0? 0? oue O )

3 2,2af

————c ¢+ m-e P =0, (3.6)
(8772 &2 ox?

where &, = (x,y) denotes the coordinates perpendicular to the direction of the uniform

acceleration a. To proceed, we introduce the ansatz for the positive-frequency solution as

¢wku_ — EJ(IS_ eikj_-mj_fiwn, (37)

where k; = \/k? + k3 is the momentum perpendicular to the direction of the uniform accel-
eration a. Substituting the positive-frequency ansatz solution (3.7)) into the Klein-Gordon
equation ([3.6)), we obtain a differential equation, known as the modified Bessel differential
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equation, as follows

1 iw\
2 2 2a,

The solution of the modified Bessel differential equation consists of a linear combination
of the second kind of modified Bessel function K, (z) and the first kind of modified Bessel
function 1,(z); I,(z) diverges to infinity as the parameter z increases; meanwhile, K, (z)
converges to zero under z increases [97] (see also Fig. [2.1]). Therefore, the solution to the
above differential equation consists of the second kind of modified Bessel function K, (z)
only, and is given as (see, e.g., Ref. [100])

K a ik ) —iw
qbka(n?g? wL) = kaﬁ_K% (ae 5) € e 177 (39)
where k = \/m? + k% and Nfﬁ is a normalization constant determined depending on the
boundary condition. We will see that w should be discrete in the presence of the mirror

boundary condition. In contrast, w will takes the continuous values 0 < w < oo in the

absence of the mirror.

3.3 Bound States of a Klein—Gordon Bouncing Parti-

cle

Similar to the above solution of the Schodinger equation, the infinite potential around the
mirror for the scalar field (3.9)) can be represented via the Dirichlet boundary condition of
the vanishing scalar field at the boundary surface, which implies that [24]

K

K. <E> —0, (3.10)

and leads that w in the condition of Eq. (3.10)) must be discrete. The boundary condition
(3.10) can be written in the first kind of a Hankel function [97, [T02]; explicitly, this is written
as HY) (Ze™/2) =0 [23].

Here, we discuss the bound system for the case of a suppressed perpendicular mo-
mentum; that is, where k; = 0. In this case, K = m and the boundary condition of the

bouncing Klein—-Gordon particle leads to

H (ip) =0, (3.11)

a
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where 1 = m/a. To explicitly obtain the zeros of the first kind of the Hankel function in
the boundary condition (3.11]), we use the approximation formula given in Ref. [102], taking
advantage of the expansion of p in the case of w/a > 1. We obtain the solution of the

discrete w, for a Klein—-Gordon bouncer; this is explicitly as

Wn o o—1/3,,1/3 <521/3 -1/3
S G2 A a2

1 G

- /3 12
. 700)u + O3, (3.12)

where (,, can be obtained from the zeros of the Airy function.

The solution of the energy level of a Klein—-Gordon bouncer can be directly found using
the relation of w,, = &, +m for Eq. . Then, we can see that in the nonrelativistic limit,
the energy level of a Klein—-Gordon bouncer reduces to the eigen-energy for the Schrodinger
equation in a linear gravitational potential under the Dirichlet boundary condition, which
appears at the second term on the right-hand side of Eq. . The remaining terms on
the right-hand side can be understood as relativistic corrections to the energy levels of a
Klein-Gordon bouncer determined by the Dirichlet boundary conditions. Thus, we can write

the energy level of a Klein—-Gordon bouncer as
EXG — gNR L AEKG (3.13)

where EXR(= E,,) is the energy level in the nonrelativistic limit given by Eq. (2.10) and

AEKG is the relativistic correction to the energy level of a Klein-Gordon bouncer.



Chapter 4

Gravitational Quantum States of
Dirac and Majorana Bouncing

Particles

In this chapter, we expand upon the previous discussion of Dirac and Majorana bouncing
particles under appropriate mirror boundary conditions [31]; see also Ref. [23] for an earlier
discussion on the Dirac bouncing particle. We start with the derivation of the Dirac wave
function from the Dirac equation in Rindler coordinates, which have been studied in many
previous works. Here, we follow the procedure given in Refs. [100, [T03H108] to obtain
the solution to the Dirac equation in Rindler coordinates; this procedure uses the Dirac
representation. In the present study, we initially derive the solution to the Dirac equation
written in the Majorana representation [109 [IT0]. Then, the obtained solution is directly
transformed to that written in the Dirac representation using the unitary matrix [109], [110].
From the obtained Dirac wave function, we solve for the Majorana wave function by taking
a linear combination of the Dirac wave function and its charge conjugation [49] so that the
Majorana wave function consists of positive- and negative-energy components. We apply the
condition that the charge conjugation of the Majorana wave function is the same as itself.
To obtain the energy eigenstates, we adopt the BC-MIT [28-30] (instead of the Dirichlet
boundary condition) as alternative boundary conditions for Dirac and Majorana bouncing
particles. Then, we calculate the analytic energy eigenstate solutions for Dirac and Majorana
bouncers in the nonrelativistic limit using the approximation formula given in Ref. [102].
In this chapter, we also briefly discuss the application of the BC-chiral MIT for the Dirac

bouncing particle in the particular case.

16
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4.1 Dirac Bouncing Particle in a Homogeneous Gra-

vitational Field

As mentioned above, we here discuss the bound states of Dirac and Majorana bouncers in
the viewpoint of equivalence principle of relativity. We analyze the bouncer problems by
investigating the Dirac equations in Rindler coordinates under appropriate mirror boundary

conditions.

4.1.1 Dirac Equation in Rindler Coordinates

The Dirac equation for a Dirac wave function QZD written in the Majorana representation in
Rindler coordinates is given by [104]
ik 9 p) —m PP =0 (4.1)
R\ Qzn ~ " ’ '
where m is the rest mass of the particle, fu is the spin connection written in the Majorana
representation, 75 are gamma matrices in the Rindler coordinates written in the Majorana

representation, and o represents the spin orientation. In Rindler coordinates, the spin

connection is given by fu = (%ioig’, 0,0,0).

The gamma matrices in Minkowski and in Rindler coordinates written in the Ma-
jorana representation satisfy the anti-commutation relations {7#,7"} = 2n*” and {95, L} =
2g"¥ respectively. From these anti-commutation relations, the gamma matrices in Minkowski

coordinates can be related to those in the Rindler coordinates as follows
To=e" =7, R=7% =" (4.2)

The gamma matrices in Minkowski coordinates written in the Majorana representation 4*
can be obtained from those written in the Dirac representation v* by using the following
relation [109, 110]

A = UytU". (4.3)

In this thesis, we use the gamma matrices v given in Refs. [IT1], 112] as

o_ (10 i 0 o ' =1,2,3 (4.4)
= ) = ) Z = ) b ) *
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where [ is a 2 X 2 identity matrix and o; are Pauli matrices that satisfy anti-commutation

relations {o;,0;} = 20;;1. The detail expression of the Pauli matrices are given by

0 1 0 —2 1 0
01:<10>, U2:<i 0), 03:(0 _1>. (4.5)

The above gamma matrices satisfy anti-commutation relations {7, v} = 2n*", where in the
present study we adopt n*” = diag.(1, —1,—1,—1). To use the transformation in Eq. (4.3),
we adopt the unitary matrix U as [109]

vovt—yi= L1 ) (4.6)
\/§ 02 —I

In the Majorana representation, we can obtain a real solution for the Dirac equation [110].
Applying the unitary transformation (4.3) to the gamma matrices written in Dirac repre-
sentation y* (4.4)), we obtain Majorana representation counterparts 3 as [109]EI

~ 0 () ~ iO'g 0 ~ 0 —09 ~ —iUl 0
30 = , 7= . A= , 7= - @)
oy 0 0 o3 o 0 0 —ioy

See also Ref. [I10] for the other set of gamma matrices written in the Majorana representa-
tion. From their expressions given in Eq. (4.7), we can see that the gamma matrices written

in the Majorana representation satisfy [110]

Gy == (4.8)

which explicitly means that the gamma matrices written in the Majorana representation 4*

are purely imaginary [109, [110].

4.1.2 Dirac Wave Function in Rindler Coordinates

We represent the wave function for the UCN as the positive-frequency solution of the Dirac
equation (4.1) [I12]. Then, we introduce an ansatz of the positive-energy solution for the
Dirac equation as

~(]3kJ_O' = ~u])DkJ_O'(€)€ikJ_'wJ_eiiwn’ (49)

!The choice of the gamma matrices written in the Majorana representation is not limited to Eq. (4.7))
because there is an infinite choice of the gamma matrices in the Dirac representation [110].
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where f ,ua(é ) denotes a four-component Dirac spinor written in the Majorana representa-
tion. To further proceed, we here follow the procedure in Refs. [100, T05H108]. Inserting the
ansatz (4.9) into Eq. (4.1]), the Dirac equation reads

- o -
wfh (&) = {me“%’ - i%@g — idga—é + k1e®a, + k:ge“g&g} foe 0(8), (4.10)

where § = 4° and &; = 4°57 are explicitly given by

~ 0 0 - I 0 0
B={" 7)., a-= ) Gy = Gy = %) (a1)
g9 0 —01 0 0 -1 —O03 0

D

Next, we decompose the four-component Dirac spinor f

(¢) into the upper two-component

spinor x1(§) and lower two-component spinor y»(§), as follows

o (€)= (ii;) . (4.12)

Inserting the form of the four-component Dirac spinor (4.12)) into the Dirac equation (4.10)),

we have

wx1(§) = me™oaxa(€) + ig%f@(f) + iUﬁ%S) — e“kio1X2(8) + e“haxa(§),  (4.13)

wXa(€) = me™oaxa (€) + %035(1(5) + wsaia;é(é) — " ko1X1(€) — €“haxa(€).  (4.14)
Further calculation yields

= [mt ) T - s oy, (4.15)

%aa—;fcz = [(mz +k1) %6%5 + z}l - i—j} X2 + %03921- (4.16)

From Egs. (4.13)) and ( - or Egs. (4.15)) and - we see that the two-component spinors

X1 and Yo are coupled each other. The Dirac equation is a first-order differential equation;
therefore, we cannot use the Dirichlet boundary condition of a vanishing wave function at
the boundary surface [20], and we employ an alternative boundary condition to compute the

bound states of a Dirac particle. We introduce another two-component spinor as follows

T LS
P =X1F X2 = (5i(g)>' (4.17)
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Then, Eqgs. ) and - 4.16]) yield

1o - 2 | 1.2 2a¢ iw 1\?|

?a_é-gﬂ (€) = |(m” + k1)—e™ + (;jFé) (), (4.18)
, .

O [y Ry GRS N ) (4.9

respectively. Both Egs. (4.18) and (4.19)) are Bessel differential equations (cf. Eq. (3.8)).
The solutions to these differential equations are given by the modified Bessel function of the

second kind, as (see, e.g., Refs. [100], TO5H108])

VEE) = ALK (), () = BLKL(9), (4.20)

where K4 (§) = K,w jE1( e®). Here, AL and By are complex coefficients which store the
information of spin orlentations. From the two-component spinor in Eq. (4.17)), the upper

two-component spinor x1(£) can be rewritten as

NGEE (fg . ﬁg__(f))) , (121
while the lower two-component spinor x»(&) reads
~ ~ — ~+ 9—
st (U808

Then, by using the solution in Eq. (4.20]), we obtain the Dirac spinor in Rindler coordinates

written in the Majorana representation, as follows

Ot - K_(§)+ A_K,(¢)

Y I R B (429
SN I R 2 [ ALK () + A_K,(€)
oty ~By K. (§) + BLK_(§)

From the Dirac spinor (4.23)), we obtain the positive-frequency solution to the Dirac equation
written in the Majorana representation for an arbitrary spin orientation expressed in terms

of coefficients Ay and B..

To physically interpret the coefficients A, and B., we next substitute back the so-
lution of the Dirac spinor (4.23) into the Dirac equations (4.13)) or (4.14]). Thus, we obtain



Gravitational Quantum States of Dirac and Majorana Bouncing Particles 21

that the coefficients AL and By satisfy the relations in the following four equations (cf.

Ref. [I08] for expression in the Dirac representation)

i/‘iA.i_ + kQA_ -+ (zm + k?l)B+ = 0, (zm — k’l)A_ + k’gB+ —+ ’i/fB_ = 0, (424)
k2A+ — kA — (zm + k?l)B_ = 0, (zm - l{il)A+ + iliB+ - kQB_ = 0. (425)

From the above relations, the coefficients By can be written in terms of the coefficients
AL; then, the four-component Dirac spinor in Rindler coordinates written in the Majorana

representation can be written in terms of the coefficients Ay only, as follows

ALK (€)+ AK, ()
1 _ikAy+ko A K+(f) + ko Ay —ikA_ K (6)

??kJ_U _ 2t (im—+k1) (im+k1) ) (426)
2 ALK (€)+ AK.(6)
BASAIC (6 + B K ()

In the previous discussion, we successfully obtained the solution to the Dirac equation
in the Rindler coordinates written in the Majorana representation. Here, we discuss the

solution in the Dirac representation. The Dirac wave function in the Dirac representation

D
wk | o

can be obtained by applying a unitary transformation >, =U QZD [109, 110],

wk, o wk, o

which is explicitly given as

PK, (&) + QK _(¢)
D
Bk - & REK.(§)+SK_(¢) eikaLe—iwn’ (4.27)
L (im + k1) | =PK, (&) + QK_(€)

RE (&) — SK_(£)

where the details of coefficients P, Q, R, and S are given as follows

P = [rkAL + (im+ ki —iko)A_], Q= [(im+ ki —iks)Ay — rA_], (4.28)
R=[—ikAy — (m—ik +ky)A_], 8= [(m —iki + k2)Ay —irA_], (4.29)

with the unitary matrix U given in Eq. (4.3]) [I09]. Here, is a normalization constant

ko
determined depending on the boundary condition, as shown later in Sec. [5.5] The general
solution to the Dirac equation in the Rindler coordinates for the case of general momentum
and arbitrary spin orientations (written in the Dirac representation) has been calculated

and discussed elsewhere (e.g., Refs. [I07, [I08]; see also the solution provided in Ref. [I13]).

Interestingly, the coefficients P, Q, S, and R in the solution (4.27) can be seen as
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1, C, C3, 4 Of Ref. [108]EL respectively. From this fact, we have the relations between the
coefficients Ay, By and ¢y, g, c3, ¢4 of Ref. [I0§]. This relation indicates that it is also
acceptable to operate using other representations because they can be transformed into
each other using a specific unitary matrix [109, T10]. We can set these coefficients to obtain
the solution in a specific direction of spin orientation (see Refs. [107, T08]). However, in the
present study, we discuss the system in the general spin orientation, which is expressed via

the coeflicients A..

In the following, we consider the Dirac solution for a simpler case: that of suppressed
perpendicular momentum k; = 0. In this case, Kk = m and the Dirac wave function in

Rindler coordinates written in the Dirac representation (4.27)) reduces to the following form:

(—iAy + A ) Ko 1 (%e) + (A +iA) Kiw 1 (e®)

D _ g [ AT IADK  (Ge%) = (AL + AR (2 | () o)
(iAy = A K (%) + (Ay +iA)Kie (e
(_A+ + ZA_)KZ%_’_é(%eaf) + (ZA+ + A_)KZ%_%(%GCL&)

When A, = +iA_, the Dirac wave function (4.30)) has a spin orientation in the +z-direction;
see Refs. [100] [105], 106] for the explicit form of the Dirac wave function in the case of k; =0
with spin orientation is in the +z-direction. Below we will discuss the bound system for an

arbitrary spin orientation.

4.1.3 Bound States of a Dirac Bouncing Particle in a Homoge-

neous Gravitational Field

Here, we discuss the bound states of a Dirac bouncing particle in the case of suppressed
perpendicular momentum. We here utilize the BC-MIT [28-30] as the boundary condition
for the Dirac wave function in Rindler coordinates ¢ at & = 0, given by (see Appendix

for a brief review)

Z.NN’Y{:L{@ZJD‘&:O = ¢D‘§:O ) (431)

where an inward normal unit vector to the boundary is given by N, = (0,0,0,e%). By

decomposing the Dirac wave function into upper and lower two-component spinors P =

2The coefficients in Ref. [I08] are originally denoted by ¢, cy, ¢4, ¢}, where n in that reference denotes
the direction of the spin state.
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(x1, x2)T, the boundary condition (4.31)) yields

iU3X1|§:0 + X2|§:0 = 0. (432)

Imposing the boundary condition (4.32)) to the Dirac wave function in Rindler coordinates
for the case of k; =0 (4.30]), we obtain

m m

)+ Koy (2) =0, (4.33)

2 \a

Kiv (
%4_5 a

See our work in Ref. [31] for the boundary condition of a Dirac bouncing particle in the
case of general momentum. We can see that the boundary condition in Eq. (4.33]) does
not depend on the spin orientation; thus, the boundary condition (4.33)) holds for all spin

orientations.

The boundary condition (4.33) leads w must be discrete, for which the analytical
solution for the case of w/a > 1 can be found using the approximation formula in Ref. [102];

the discrete solutions w, are approximately given by

2760
+O(u~?), (4.34)

n 1 2 n 1 3 1
% ~ G2 S &21/%{1/3 + %21/3M2/3 + (_ _ 5Sn _) ul

where 1 = m/a. Similar to the Klein-Gordon bouncer, the energy level of a Dirac bouncer
in Eq. can be found using w,, = EP + m. The results show that, in the nonrelativistic
limit, the energy levels of a Dirac bouncer also reduce to eigen-energies for the Schrodinger
equation in a linear gravitational potential with an ideal mirror. This can be seen from the
second term of the right-hand side of the energy levels of a Dirac bouncer in Eq. .
The remaining terms on the right-hand side can be understood as a relativistic effect of the
bouncing Dirac particle associated with the BC-MIT. Thus, we can write the energy level

of a Dirac bouncer as
ED = ENR 1 AEP, (4.35)

where EN}(= E,,) is the energy level in the nonrelativistic limit given by Eq. (2.10) and
shared with the Klein-Gordon bouncer in the same limit. Here, AEP is the relativistic

correction to the energy level of a Dirac bouncer.

Here, we briefly discuss the bound states of a Dirac bouncing particle under the BC-

chiral MIT. Similar to the previous discussion, we here compute the case of a suppressed
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perpendicular momentum k; = 0. The BC-chiral MIT [64] for the Dirac wavefunction in
the Rindler coordinates at £ = 0 is given by (see Appendix [B|for a brief review)

N AP = e WP, (4.36)

where +° = i7°y19?93 and the inward normal unit vector to the boundary is given by
N, = (0,0,0,e%) and shared with that of the BC-MIT (4.31). The BC-chiral MIT ({4.36])

can be decomposed into two equations, as follows:

i(og +sin O )y =0, (4.37)

0. (4.38)

— cos Oxy

|§ =0 |§:0

i(o3 —sin©OI)x + cos Oy,

‘5 -0 |g=0 -

Here, both boundary conditions (4.37) and (4.38)) are equivalent: The two-component Dirac
spinors in Eq. (4.37)) trivially satisfy Eq. (4.38)).

Imposing the boundary condition (4.37)) to the Dirac wave function in the case of a
suppressed perpendicular momentum (4.30]), we obtain two equations that can be rewritten

in the form of a multiplication between two matrices as

ow)-) o

where

(14 sin©)(K(0) +iK_(0)) +icos O(—K,(0) + :K_(0)), (
(1+sin©)(—iK(0) — K_(0)) +icos O(1 K, (0) — K_(0)), (4.41
(=1 +sinO)(—iK(0) — K_(0)) +icosO(—iK(0) + K_(0)), (
(= (

T
U =
v _
W= (-1+sin0)(—K,(0)+iK_(0)) +icos O(—K,(0) —iK_(0)).

K_(
(
For the arbitrary non-zero coefficients A, we require the vanishing of the determinant of
the 2 x 2 matrix in Eq. (4.39)); this implies the following condition:

m i m
Ky (Z) 469Ky (2) =0 (4.44)

a2 a Qa

The presence of the chiral angle in Eq. (4.44]) determines the explicit structure of the bound-
ary conditions. For example, in the non-chiral case (6 = 0), the boundary condition (4.44)
generated by the BC-chiral MIT reduces to the boundary condition (4.33). For the case of



Gravitational Quantum States of Dirac and Majorana Bouncing Particles 25

chiral angle © = 7, one has the following boundary condition

m m
Ki s (-) ~Ku (—) = 0. (4.45)

a a a

Both the boundary conditions in Egs. (4.33)) and (4.45]) coincide with the boundary condition
in Ref. [23].

The authors of Ref. [23] showed that the behavior of the lowest few energy eigenstates
energy obtained from the boundary conditions differed from those of the Klein—Gordon
bouncing particle (3.11)). In Chap. [ we restrict our discussion to the non-chiral case (6 =
0) applicable for realistic UCN systems, and we compare the energy levels and transition
frequencies of a nonrelativistic bouncer with those of a Klein—-Gordon bouncer. Meanwhile,
we also compare the results against those of Ps atoms, using the analytic Klein—Gordon
bouncer solution. In addition, the study of the effects of chiral angle on the confinement

system has been discussed in Ref. [70], as we will also present in this thesis.

4.2 Majorana Bouncing Particle in a Homogeneous

Gravitational Field

Here, we turn to discuss the quantum bouncer problem for the Majorana particle in the
viewpoint of the equivalence principle. We investigate a Majorana solution of the Dirac
equation in Rindler coordinates under appropriate mirror boundary condition. Here, we
adopt the condition that the mirror properties are described by the BC-MIT so that the
normal probability current and scalar densities of a Majorana bouncing particle vanish at
the mirror surface. We start with a derivation of the Majorana wave function in Rindler
coordinates. There are several ways to obtain the solution of the Majorana wave function
(see, e.g., Refs. [49, 109, 110, 114]). In the present study, we follow the procedure given in
Ref. [49], in which the Majorana wave function is constructed using a linear combination of
the Dirac wave function and its charge conjugation. We use an additional condition for the
Majorana particle. Namely, the charge conjugation of the Majorana wave function is the
same as itself. Then, we apply the boundary condition to the Majorana wave function to

discuss its bound state.
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4.2.1 Majorana wave function in Rindler Coordinates

The Majorana wave function in Rindler coordinates written in the Dirac representation is

given by [49]

W = % (65,0 + MR, )] = AWM, )°, (4.46)

where A\ = £1 and ¢ , is the positive-frequency Dirac wave function . Here, the
charge conjugation is defined by ¥ = iy%*. We can see that the Majorana wave function
(4.46|) consists of positive- and negative-energy components. For the parameter A = +1, the
charge conjugation of the Majorana wave function is completely the same as itself and the

components of the Majorana wave function satisfy

X1

R A (4.47)
—102X1

This means that one can obtain the complete solution of the Majorana wave function from

the upper or lower two-components of the Majorana wave function only [110].

4.2.2 Bound States of a Majorana Bouncing Particle in a Homo-

geneous Gravitational Field

In the following, we consider the bound states of a Majorana particle in the case of a
suppressed perpendicular momentum k; = 0 and arbitrary spin orientation. Because the
Majorana wave function is derived from the same equation as the Dirac wave function, i.e.,
the Dirac equation, the same problem regarding boundary conditions also appears for the
Majorana bouncing particle. Then, similar to the case of the Dirac bouncing particle, we
here adopt the BC-MIT for the Majorana wave function ; this gives us the

following boundary condition:
m m —iw . wwn (: A* *
|:Kla+é(_) +Kwé(—):| {6 n(A++ZA_)+)\6 n(ZA+—A_) =0. (448)

The solution of w in the boundary condition must satisfy for all . Therefore, each
term e ™" and e™" of the boundary condition (4.48]) must vanish separately. From this
requirement, we finally find that for both cases A = +1, the boundary condition of the
Majorana bouncing particle reduces to the boundary condition given in Eq. ;
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this yields the discrete w, as given in Eq. (4.34)), where the solutions for both cases A = +1
are shared with those of the Dirac bouncing particle. This means that the energy levels of
a Majorana bouncer and its relativistic correction are the same as those of a Dirac bouncer.

In the following chapter, we will discuss the case of A = +1 only.



Chapter 5

Roles of Boundary Conditions on
Gravitational Quantum States of

Bouncing Particles

In the previous chapters, we discussed the bound systems for four types of bouncing par-
ticles associated with the boundary conditions. We showed that the bound systems of all
relativistic bouncing particles can be compared to their nonrelativistic limits. In this chap-
ter, we discuss the roles of boundary conditions on the behaviors of bouncing particles in a
homogeneous gravitational field by analyzing the energy levels, transition frequencies, and

density functions using the results in Ref. [31].

5.1 Energy Levels of Quantum Bouncing Particles

We first summarize and compare the energy levels of four types of bouncing particles in
the case of suppressed perpendicular momentum, which are derived and discussed in the

previous chapters.

Nonrelativistic Particle. The energy level of a nonrelativistic bouncing particle under

the Dirichlet boundary condition of a vanishing wave function at the mirror surface is given

from Eq. (2.10)) as
ENR m 1/3
In _9-1/3 <_) Cn, (5.1)

a a

28
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where m is the mass of the particle, a is uniform (gravitational) acceleration, B is the length
scale defined by Eq. (2.5]), and , is obtained from the zeros of the Airy function Ai(—¢,) =0

(2.9).

Klein—Gordon Particle. The energy level of a Klein-Gordon bouncing particle under

the Dirichlet boundary condition of a vanishing scalar field at the mirror surface is obtained

gKG  gNR 2 a\1/3 1 G\ a
N n g onol/3( —— 5.2
a a * 60 (m> i (70 700) m (5:2)

from the analytic expansion given in Eq. (3.12)) after inserting u = m/a and w,, = EX¢ +m.

as

Using this approximation in the nonrelativistic limit, the energy levels of a Klein—Gordon
bouncer (5.2)) can be clearly compared with those of a nonrelativistic bouncer, where the
energy levels of a Klein—Gordon bouncer has the additional terms approximately given as

follows:

KG KG NR 2 1/3 3
a a a 60 m 70 700/ m

These additional terms can be understood as relativistic corrections to the energy levels
generated by the Dirichlet boundary condition; their values are dominated by the first term
of Eq. and are positive. In other words, the energy levels of a Klein—-Gordon bouncer
always exceed those of the nonrelativistic bouncing particle for all states n. In Table [5.1],
we shows an example of such properties of a Klein-Gordon bouncer for mass m = 10 and
uniform acceleration a = 1. In addition, from Eq. , we can also see that the relativistic

corrections to the energy levels go to zero in the large-mass and small-acceleration schemes.

Dirac and Majorana Particles. The energy levels of Dirac and Majorana bouncing

particles under the BC-MIT are given by

DM NR 2 1/3 2/3 3
m

a a 2 60 m 6 m

which is obtained from the analytic expansion given in Eq. (4.34) with 4 = m/a and w,, =
EPM . Comparing the energy levels of Dirac and Majorana bouncers in the nonrelativistic

limit to those of a nonrelativistic bouncer, we find the extra terms approximately given as

AEPM 1 2 a\"? ¢ a\*? 1 & 1Y\ a
=T~ 4 onol/3f 7 no-1/3( 2 —_on - ) 2 )
a 2760 (m) % <m) * ( > ’ (5:5)
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TABLE 5.1: Energy levels of quantum bouncers for the lowest six states. The left column

is for a nonrelativistic bouncer, the middle column is for a Klein—-Gordon bouncer, and

the right column is for Dirac and Majorana bouncers. Here, we use mass m = 10, uniform
acceleration a = 1, and each energy level is scaled by a factor maBB [31].

n ENY ImaB EXG /maB EPM /maB
1 2.338 2.369 2.103
2 4.088 4.179 3.931
3 5.521 5.683 5.446
4 6.787 7.028 6.800
5 7.944 8.270 8.049
6 9.023 9.438 9.223

which can be understood as relativistic corrections to energy levels. It can be seen that in
the lowest few states, the correction is dominated by the first term of Eq. and has a
negative contribution. However, when the state n is sufficiently large, the correction gives a
positive contribution. As an example, Table. [5.1] shows that the energy levels of Dirac and
Majorana bouncers with mass m = 10 and uniform acceleration a = 1 are lower and higher
than those of nonrelativistic bouncing particle for n < 3 and n > 4, respectively. Similar to
the Klein—-Gordon bouncer, the relativistic corrections from Dirac and Majorana bouncers
also go to zero in the case of large-mass and small-acceleration. A comparison of the scaled
energy level of a Dirac bouncer to those for a Klein-Gordon bouncer has previously been
discussed in Ref. [23] (see Figs. 1 and 2 of Ref. [23]).

TABLE 5.2: The lowest six relativistic corrections to energy levels of quantum bouncers

in Table 5.1l The left column is for a Klein-Gordon bouncer, and the middle column is

for Dirac and Majorana bouncers. The right column provides the differences values of the

transition frequencies between a Klein—Gordon bouncer and Dirac and Majorana bouncers.

Here, we use mass m = 10, uniform acceleration a = 1, and each relativistic correction to
the transition frequency is scaled by a factor maBB.

n AEXC ImaB AEPM /maB (AERG — AEDM) /maB
1 0.031 -0.235 0.266
2 0.091 -0.157 0.248
3 0.162 -0.075 0.237
4 0.241 0.013 0.228
5 0.326 0.105 0.221
6 0.415 0.200 0.215

Table provides the relativistic corrections to the energy levels of Klein—Gordon
(left column) and Dirac and Majorana bouncers (middle column) for mass m = 10 and

uniform acceleration a = 1. The results show that the relativistic corrections to the energy
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levels of a Klein—-Gordon bouncer are always positive for all states n. In contrast, those of
Dirac and Majorana bouncers are negative for the lowest three states and positive for the
higher states n > 4. This table also provides the lowest six scaled differences values of the
transition frequencies between a Klein—Gordon bouncer and Dirac and Majorana bouncers
(right column). The results show that, for the lowest few states, the differences give the

smaller value as the increases of the state n.

In the realistic situation, where the mass of the neutron is m =~ 0.94 GeV [96] and the
gravitational acceleration on the Earth’s surface is a = 9.8 m/s? &~ 2.15 x 1073? GeV, the
first six energy levels of a nonrelativistic bouncer of the UCN are approximately given by
ENR ~1.406, 2.458, 4.080, 4.776, and 5.424 peV for n = 1,2,3,4,5, and 6, respectively (see
the values in Table [2.1)). The first term of the relativistic corrections to the energy levels of
the Klein-Gordon bouncing particle (5.3), when compared with EX%/a is (,(2a/m)?? /60,
which is about 4.984 x 1072 for the lowest state of the UCN. We can see that the order
is fairly small. Meanwhile, the first term of relativistic corrections to the energy levels of
the Dirac and Majorana bouncers (5.5)), compared with EX®/a is —(a/4m)"/?/C,, which is
about —7.339 x 107!2 for the lowest state of the UCN. This order is also fairly small.

As we mentioned above, observations of gravitational quantum states have recently
been proposed not only for UCNs but also for Ps atoms [52, 53], whose masses are 1073
times smaller. The dependence of the energy levels and first-order relativistic corrections to
energy levels on the mass appear in the factors m!/? and m /3, respectively. Therefore, the
energy levels and the relativistic corrections to there for the Rydberg Ps atom are 10 times

smaller [52] and 10 times larger than for those of UCNs at the same state n, respectively.

5.2 Relativistic Corrections to Energy Levels of a Clas-

sical Particle in Rindler Coordinates

In the previous section, we discussed how the energy levels behave under specific boundary
conditions. To further our understanding of the boundary conditions, we calculate the
relativistic corrections to the energy levels for a classical particle in Rindler coordinates by
using a perturbation approximation (see, e.g., Refs. [23, 115, [116]). Below, we consider the
first-order correction to the energy level. We start with the derivation of the nonrelativistic
Hamiltonian of the Dirac equation in Rindler coordinates. The derivation is applicable
for both Dirac and Majorana particles because we adopt that the Majorana wave function

satisfies the Dirac equation, similar to the Dirac wave function.
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5.2.1 Hamiltonian of Dirac equation in Rindler Coordinates

We start with the action of a relativistic particle of mass m in Rindler coordinates, as given
by

S=— /m ¢2a (1 - £2>dn - /Ldn, (5.6)

where ¢ = d¢ /dn and we have suppressed the transverse motion in the x and y directions.

The Hamiltonian is defined as

) P2
H:Pg—L:meaﬂ/mH, (5.7)

where P is the conjugate momentum given by

p_ 05 me*g
e -

Using the expansion of v1+z =1+ 3z — 327 + O(2%) and €” = 1+ z + 122 + O(2%), we
obtain
P2 a2£2 P4 CL§P2

m
H ~ Hyg = — — .
L L S

(5.9)

The first term of Eq. is the rest-mass, which can be excluded from the total Hamil-
tonian. The second and third terms of Eq. describe the Hamiltonian of a particle in
a linear gravitational field; this takes a solution in the form of the Airy function Ai, as we
previously discussed in Sec. 2.2l Thus, the particle’s energy from the Hamiltonian ([5.9)
can be calculated using the perturbation approximation, as we demonstrate in the following

subsection; see also the calculation in Ref. [23].

5.2.2 Relativistic Corrections to Energy Levels

We classify the nonrelavitistic Hamiltonian (5.9)) into two terms: perturbed and unperturbed

Hamiltonians. That is,

HNREHO+H/, (510)
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where the unperturbed Hamiltonian consists of the kinetic and potential terms explicitly

given by
2

H° = 5+ mag, (5.11)

which will form the nonrelativistic Hamiltonian if we replace the & here by the z given in

Sec. 2.2} furthermore,
ma*¢?*  P*  alP?
2 8m3  2m

is the relativistic correction, which is a perturbed terms in our approximation.

H = (5.12)

To obtain the relativistic corrections, we write £ in the above Hamiltonians as the
z in Sec. and quantize the system by introducing [z, P] = ¢. With this parameter, we

obtain the energy levels from the unperturbed Hamiltonian via

2

P
= <¢n|% + ma2|¢n>
= maB¢, = ENR, (5.13)

which matches that of the energy levels of a nonrelativistic bouncer (2.10). Here, |¢,) is
the nth energy eigenstate, whose wavefunction v, (z) = (z|t,,) is in the function of the Airy
function (2.7)). Next, we discuss the first-order correction, which can be obtained using the

perturbation approximation as

EV ~ (Wu|H 1)
ma? 1

2y _ e
AT

2m<zP2). (5.14)

(P

Here, all expectation values are taken with respect to the state |1,). The second term of

Eq. (514) gives

1 1
—%(P‘l) = —w(élmz(Ei — 2mazE, +m*a®z%))
E2
= —ﬁ + aE,(z) — ma*(z?), (5.15)
where we have used the relation
Py = 2m(E, — maz)[iy), (5.16)

from the Schrédinger equation (2.4). Then, by exploiting Eq. (5.16]), the commutation
relation [z, P?] = 2iP, and the fact that (1,|P|¢,) = 0, the last term of Eq. (5.14)) can be
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written as

_%@p% = —aB, () + ma2(z2). (5.17)

Combining Eqgs. (5.15)) and (5.17)), the first-order correction (5.14]) yileds
- L2
EW = —— 4 mad(z?). (5.18)

The contribution of the first term of Eq. (5.18) is —ma?(%¢?/2, which is obtained after
inserting the explicit expression of the energy level E,(= &,,) given in Eq. (2.10). Meanwhile,

the second term of Eq. (5.18]) gives
ma?(:2) — ma’B / (O (O)dC
0
= maBAG [ A - G)c
0
9 8
= ma°B 15Cn, (5.19)

where we have used ( = z/B. Combining the first and second terms of Eq. ([5.18)), we obtain

the total first-order correction as

1 8
EW ~ —§ma282(2+ﬁma282gs

1
~ %maQBQCS, (5.20)

which matches that of a Klein—-Gordon bouncer (j5.3)) and gives a positive correction. From

this result, we learn that the boundary condition is important to analyze the bound system.

5.3 Foldy—Wouthuysen Transformed Hamiltonian for

Dirac Equation in Rindler Coordinates

In this section, we apply the Foldy—Wouthuysen transformation [56-59] to the Hamilto-
nian of the relativistic spin-1/2 particle, to obtain its nonrelativistic approximation. The

Hamiltonian for the Dirac equation in Rindler coordinates is given by [100} 113]

a
H = e%my’ — 25043 — o3 P

~ 4'm +~"ma¢ + 70%a2£2 - igag + as P, (5.21)
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where we have used the expansion of ¢* =14z + %mz + O(z?), —28% = P, and we have

suppressed the coordinates perpendicular to the direction of acceleration a. The Hamiltonian
(5.21)) can be classified into three terms as

H=pm+e+0 (5.22)
with 8 =~ Here, € and O are even and odd operators that satisfy
Be =¢€B, BO=-0p, (5.23)

respectively. We classify the even and odd operators for the relativistic Hamiltonian (}5.21)

as follows
L 5.0 a
e =ma&f + Zma &p, 0= —i503 + agPs. (5.24)

The Foldy—Wouthuysen Hamiltonian is given by [56, 57]
0> 0! 1

Inserting Eq. (5.24) into Eq. (5.25), we obtain the lowest order of the Foldy—Wouthuysen
Hamiltonian transformation for Eq. (5.21]), as follows:

P2 2¢2 P4 P2
przﬁ[m—k%—kma{—l—mag - _ % .

2
2 8m3 2m (5.26)

It can be seen that the Foldy—Wouthuysen transformed Hamiltonian consists of positive
and negative eigenvalues under gamma matrix S(= 7°) (see Eq. for the detail ex-
pression of the gamma matrices). Here, we discuss the positive eigenvalues only. Then,
the results show that the lowest orders of the Foldy—Wouthuysen transformed Hamiltonian
coincides with the nonrelativistic Hamiltonian after replacing the & here by the
z. Thus, Foldy—Wouthuysen transformed Hamiltonian give the same first-order correction
as Eq. . Note that our Hamiltonian ([5.26)) was obtained using the Rindler metric given
in Eq. (3-3). When one uses the metric first given in Ref. [63], expressed as

ds® = (1 + au)?dt® — da® — dy* — du?, (5.27)
the Hamiltonian is given by

H = Bm + pmgu + a3P, + agaul,, (5.28)
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where the perpendicular coordinates @, = (z,y) are supressed. The odd and even operators
of the Hamiltonian (5.28) are given by ¢ = fmgu and O = a3P, + azauP,, respectively.
Then, the lowest order of the Foldy—Wouthuysen transformed Hamiltonian is given by (see,
e.g., Refs. [23] [60H62])

pP? azP? pt

Huw ~ — - 5.29
rw ~ 3 m+2m+ma2+ v e B ( )

after treating u as z. Comparing to the lowest order of the Foldy—Wouthuysen transformed
Hamiltonian given in Eq. , we can see that our Hamiltonian is not exactly
identical, because we use the metric given in Ref. [103], which is suitable for uniformly
accelerated observers at £ = 0 [I17]. However, taking the advantage of the Hamiltonian
of the Schrodinger equation as the unperturbed Hamiltonian of and , both the
perturbed terms of their Hamiltonian give the same correction, as we will see below. Note
that the relativistic correction from the Hamiltonian has also been previously discussed in
Ref. [23] using the metric given in Ref. [63]. The first-order correction from Hamiltonian

(5.29) under the perturbartion approximation is given as follows

1
gV~ Lpy o~ (pt
" 2m<z ) 8m3< )
3 E?
~ 2aF — —ma?(2?) —
ab,(z) 5ma (%) o
1
~ %mchQCZ, (5.30)

which is identical to our first-order correction to energy levels of a Klein-Gordon bouncer
given in the first term of Eq. (5.3]). The relativistic correction is also identical to Eq. ((5.20)).

The above obtained Foldy-Wouthuysen transformed Hamiltonian is applicable for
both Dirac and Majorana particles because both Dirac and Majorana wave functions satisfy
the Dirac equation. Thus, the relativistic corrections for the energy level of the Dirac bouncer

also apply to the Majorana one.
5.4 Transition Frequencies between Two Energy Eigen-

states of Bouncing Particles

In the previous section, we presented the bouncing particles’ energy levels and their rel-

ativistic corrections. Unfortunately, the parameter of the shift of energy spectrum is not
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detectable in the laboratory. However, the parameter of the transition frequencies between
the energy eigenstates of the two quantum states can be observed, e.g., by using gravita-
tional resonance spectroscopy [II8-122]. The transition (angular) frequency between the

two energy eigenstates &, and &, is given by
Whnon! = gn/ - gn, (531)

where we have used A = 1. Below, we compare the transition frequencies for four types of

bouncing particles.

Nonrelativistic Particle. The transition frequency between the two energy eigenstates

ENR and EXF for a nonrelativistic bouncer is given by

maQ

1/3
w}j;;_l = mCZB(CnJrl - Cn) = (T) (CnJrl — Cn) (532)

From the property of the zeros of the Airy function, the value of (.1 > (,, guarantees that
the transition frequencies of a nonrelativistic bouncer ([5.32)) remain positive for all states n.

However, its value goes to zero when the states n increase.

Klein—Gordon Particle. The transition frequency between the two energy eigenstates

EXG and EXC for a Klein-Gordon bouncer is approximately given by

KG NR 1 2a4 Y 2 2 1 a 3

The first term on the right hand side of Eq. ((5.33) is the transition frequency of a nonrela-
tivistic bouncer, while the remaining terms can be understood as relativistic corrections to

the transition frequency of a Klein—-Gordon bouncer, given by

KG KG NR 1 (2a*\" 2 2 1 a 3
Awn,n—l—l = Wpnt1 ~ Whnt1 60 <H> (Cn—l—l —G) — 700 m ( mi1 — G ). (5.34)
From Eq. , we can see that the relativistic corrections to transition frequency are
dominated by the first term and give the positive values, where we here have used the case
of w/a > 1. The relativistic corrections to the transition frequencies of a Klein—-Gordon
bouncer go to zero in the large-mass and small-acceleration schemes, which is similar to

those of the energy levels of a Klein-Gordon bouncer. In addition, the analytic relativistic

corrections of the transition frequencies of a Klein—-Gordon bouncer are quite small when we
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apply for the realistic parameters of the UCN and Ps atom, as we see below.

Dirac and Majorana Particles. The transition frequencies between the two energy

: DM : : .
eigenstates &, and EXM of Dirac and Majorana bouncers are given by

1 /2a*\"? a® \?
w,]i’,i\L ~ wifi‘ﬂ + = 0 ( ) (Ci =)+ (2m2) (Cnt1 = Cn)
1 a?,

and the relativistic corrections to the transition frequencies of a nonrelativistic bouncer are

given by

1 92 1/3 5 1/3 1
2 o (B) (G- @4 g (gm) o= G = il — 6. (530

The contribution of a/2, responsible for the negative correction to the lowest few energy
levels, is canceled in the transition frequencies. Thus, the relativistic corrections to the
transition frequencies are dominated by the first term of Eq. and give positive values.
In other words, the obtained results show that the transition frequencies for all relativistic
bouncing particles exceed those of a nonrelativistic one. As an example, we compare the
transition frequencies for mass m = 10 and uniform acceleration ¢ = 1 in Table [5.3] Com-
pared to the results obtained for the Klein—-Gordon particle, the relativistic corrections to
transition frequencies of Dirac and Majorana particles feature one additional term, explicitly
given in the second term of Eq. (5.36).

TABLE 5.3: The transition frequencies between the nth and (n + 1)th energy eigenstates

of the bouncers in Table The left column is for a nonrelativistic bouncer, the middle

column is for a Klein—-Gordon bouncer, and the right column is for Dirac and Majorana

bouncers. Here, mass m = 10, uniform acceleration ¢ = 1, and each transition frequency
is scaled by a factor maBB [31].

n nnH/maB nnH/maB nnH/maB
1 1.750 1.810 1.828
2 1.433 1.504 1.515
3 1.266 1.345 1.354
4 1.157 1.242 1.249
5 1.079 1.168 1.174

Table[5.4|shows the relativistic corrections to the transition frequencies of a Klein-Gordon

bouncer (left column) and Dirac and Majorana bouncers (middle column) from the obtained
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TABLE 5.4: The relativistic corrections to the transition frequencies between the nth

and (n + 1)th energy eigenstates of the bouncers. The left column is for a Klein-Gordon

bouncer and the middle column is for Dirac and Majorana bouncers. The right column

is for the differences values of the scaled relativistic corrections to transition frequencies

between a Klein—Gordon bouncer and Dirac and Majorana bouncers. Here, mass m = 10,

uniform acceleration a = 1, and each relativistic correction to the transition frequency is
scaled by a factor maB.

n AwES | /maB Awaﬂl/mab’ (Awfi\il — Awggﬂ)/mab’
1 0.060 0.078 0.018
2 0.071 0.082 0.011
3 0.079 0.088 0.009
4 0.085 0.092 0.007
5 0.089 0.095 0.006

results in Table 5.3l We can see that that the relativistic corrections to the transition fre-
quencies for all Klein—-Gordon, Dirac, and Majorana particles increase under the increase of
states n. This table also provides the differences values of the scaled relativistic corrections
to transition frequencies between a Klein—Gordon bouncer and Dirac and Majorana bounc-
ers (right column). The results show that, for the lowest few states, the differences decrease

as the increase of states n.

In the realistic situation for UCNs, the relativistic corrections to the transition fre-
quencies and 1) AV = Awf, /(2m) and Ayg;ll\il, are both on the order
of 1072° Hz for the lowest states, which are too small to be detected with the present
technology. For comparison, the transition frequencies of UCNs in the lowest few states
are approximately given by 1/71:{5_,_1 ~ 254.44, 208.31, 184.11, 168.30, and 156.82 Hz for
n =1,2,3,4, and 5, respectively. The mass dependence of the first-order relativistic correc-
tion to transition-frequencies corrections also appears in the factor m~='/3. Therefore, these
relativistic corrections to transition frequencies for the Ps atom are 10 times larger than for
the UCN, though still too small to be detected with the present technology.

5.5 Density Functions of Quantum Bouncing Particles

In this section, we discuss the density functions for bouncing particles in the case of sup-
pressed perpendicular momentum k; = 0 [3I]. We compare the probability, normal proba-
bility current, and scalar density of the bouncers. We may represent the functions in z or &

using the relation of az = % — 1.



Roles of Boundary Conditions on Gravitational Quantum States of Bouncing Particles 40

5.5.1 Probability Density of Bouncing Particles

First, we discuss the comparison of the probability densities of four types of bouncing par-

ticles in the case of suppressed perpendicular momentum.

Nonrelativistic Particle. The probability density of a nonrelativistic bouncer is given
by

PR () = Wt 2))? )
= N[ [Ai (%—Cn)] : (5.37)

where we have used the wave function in Eq. with v, (2) as given in Eq. . Here,
B is the gravitational length scale given in Eq. , N,, is the normalization constant de-
termined by the condition in Eq. (2.8)), and the parameter ¢, is defined in Eq. (2.9). From
the second line of Eq. , we can see that the probability density for a nonrelativistic

bouncer is time-independent.

Klein—Gordon Particle. The probability density of a Klein—-Gordon bouncer is given

by normalizing

) = i 92 - o, 2]
= 2w [NEG K (Te)] g (5.38)

where we have used the solution given in Eq. with w, = EXS + m determined by the
boundary condition (3.10). Note that the probability density of a Klein—-Gordon bouncer
can also be written in the function of z by using the relation of e = az + 1, as mentioned
above. From Eq. , we can see that the probability density of a Klein—-Gordon bouncer
is time-independent, similar to the nonrelativistic one. Here, the normalization constant

NEG i5 determined by the following condition

| ose@esas = [ e =1 (5.39)
0 0
with dz = e®d¢.

Dirac Particle. The probability density of a positive-energy Dirac bouncing particle can
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be obtained in a coordinate-independent way (see e.g., Ref. [123]) by normalizing

Pos(&) = novl, (0. )mvo, (0,

= SIND (AL £ AP (Teney[” (5.40)

Kiw_
a

m
L (=
2 a
which is obtained from the solution in Eq. (4.30) with w, = EPM + m determined by
the boundary condition (4.33). The continuity equation of the Dirac equation in Rindler
coordinates is given by d,(v/—g ¥7hY) = V=g V,.(Vyke) = 0. Here, n, is the normal
vector perpendicular to the constant time hypersurface. The normalization constant N2 is

determined by the following condition
| beeis = [ iR )z =1 (5.41)
0 0

with dz = e®d¢. From Eq. , we can see that the probability density of a Dirac bounc-
ing particle is time-independent, similar to the Klein—-Gordon and nonrelativistic bouncing
bouncers. In addition, the probability density of a Dirac bouncer does not depend on the
spin orientation because the factor (|A,|* + |A_|?) gives real constant values that can be

absorbed into the normalization constant.

Majorana Particle. We here define the probability density of a Majorana bouncer in

the case of k; = 0 by normalizing

pon(n.€) = notle(n, )Vvns(n,€)

= L (A + 4P { Ky

m
1(—
2 a

[ 220 Re | (104 (2e))] L

from the Majorana wave function given in Eq. (4.46)) with w, = E?M +m determined by the
boundary condition (4.33) shared with the Dirac particle. Here, NM is the normalization

constant of the Majorana wavefunction in the case of k; = 0, determined by the condition

/;%moﬁﬁz/;%mawzl (5.43)
0 0

In contrast to the Dirac bouncer, the behavior of the probability density for a Majorana

bouncer depends on time 7 as well as spin orientation (determined by the values of A.) via
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the factor

i [(A2 4 A2) ]
2(| A +]A)

a(n) = (5.44)
When the spin orientation is in the +z-direction (A; = +iA_) [100, 105, 106], we have
4 = 0 and the probability density of the Majorana bouncer exactly matches that of the
Dirac bouncer. In the other spin orientations, we have 4 # 0 in the last term of Eq. ((5.42)
that corresponds to the Zitterbewegung; it is explicitly given by

a

A 0.6) = =8 AL o (42 42) e 2] e | (1 y (B} ] e

This Zitterbewegung arises from the interference between the Dirac wavefunction and its
charge conjugation, or from the positive- and negative-energy components of the Majorana
wave function [T11]. However, this Zitterbewegung rapidly oscillates and might not
be resolvable using experimental apparatus [31]. Thus, we can assume the vanishing of
this factor; under this condition, the probability density of the Majorana bouncing particle
exactly matches that of the Dirac bouncing particle (see Fig. for the case of 4 = 0).

Figure [5.1] shows the probability density of the nonrelativistic, Klein-Gordon, Dirac,
and Majorana bouncers for the case of suppressed perpendicular momentum k; = 0 with
mass m = 10 and uniform acceleration a = 1 for the ground, first-excited, and second-excited
states. From this figure, we can see that the probability density of the nonrelativistic and
Klein-Gordon bouncers vanishes around the boundaries & = 0 or z = 0. This property is
associated with the Dirichlet boundary conditions. For a Dirac bouncer, the probability
density under the BC-MIT does not vanish around the boundary surface for arbitrary coef-
ficients A4. For a Majorana bouncer, the behavior around the boundary surface depends on
the coefficients A.. This figure presents three cases for the probability density of a Majorana
bouncer, which are presented for the three values of factor 2 = 0, +0.5, and —0.5. From this
figure, we can see that at 4 = 0, the probability density for both the Dirac and Majorana
bouncing particles produce an identical pattern that does not vanish at the boundary. For
4 = +0.5, the probability density of a Majorana bouncer vanishes around the boundary sur-
face, which matches the behaviors of the nonrelativistic and Klein—Gordon bouncers around
the boundary surface. However, their physical meaning differs: Both the nonrelativistic and
Klein—Gordon cases are determined by the boundary conditions, whereas the Majorana one
does not. In contrast, when 4 = —0.5, the probability density of a Majorana bouncer does

not vanish around the boundary surface and is higher than in other cases.
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FIGURE 5.1: The probability densities of the bouncers with the transverse dimensions
x and y suppressed. We demonstrate for the case of lowest three states: the ground
state n = 1 (upper panel), first-excited state n = 2 (lower-left panel), and second-excited
state n = 3 (lower-right panel). For the probability density of a Majorana bouncer, we
depict three cases for various values of factor 4: 4 = 0 is for the case of Ay = +iA_
(corresponding to the spin orientations in the +z-directions), 4 = +0.5 is for the upper
limit of 4 = 40.5sin(2wn) from purely real coefficients A4 with Ay = A_, and 4 =+40.5
is for the lower limit of 2 = —0.5sin(2wn) from purely imaginary coefficients Ay with
A, = A_. Here, mass m = 10, uniform acceleration a = 1, and az = e — 1. Both
the probability densities of nonrelativistic and Klein—Gordon bouncers vanish around the
boundary surface while a Dirac bouncer does not. For a Majorana bouncer, its behavior
around the boundary surface depends on coefficients Ay. These figures are reproduced
from Ref. [31].

Here, we discuss the physical interpretation or implications of the presence of the
Zitterbewegung, which depends on the coefficients AL and oscillates in the function of time
7. In the above discussion, we mentioned that the coefficients A, store the information
regarding spin orientations. However, the presence of the Zitterbewegung in the probability
density of a Majorana bouncer does not indicate a dependence of the Zitterbewegung on the
spin orientation. As mentioned above, the BC-MIT requires vanishing the normal probability
current density vanishes at the boundary surface. Therefore, the particle is perfectly reflected

under all spin orientations [31] (cf. Ref. [25] for the reflection system, and see also the system
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of a Dirac particle confined in a box, described in the next chapter).

5.5.2 Normal Probability Current Density for Dirac and Majo-

rana Bouncing Particles

In this subsection, we turn to discuss the normal component of the probability current den-
Sity Inwo (1,€) = Yuo (1, E) V0o (1, €) of Dirac and Majorana bouncers in arbitrary spin

orientations, for the case of a suppressed perpendicular momentum k; = 0.

Dirac Particle. The normal probability current density for a Dirac bouncer vanishes

everywhere; that is

INwo(&) = V0, (0,9)7° 00, (n,€)
_ 0. (5.46)

This can be mathematically explained in more detail as follows. The Dirac wavefunction
consists of four components: ¥P = (P, 1P, P, P)T. Thus, from the first line of Eq. (5.46)),
we have the summation of four terms: ¥P*¢P — pP*Y + pP*P — wP*P. Substituting
each component of the Dirac wavefunction into those four terms, we find that the
first and third terms cancel each other, likewise for the second and fourth terms. Finally,
we find that the total contribution vanishes everywhere (see also the analysis in Ref. [23]).
Here, we do not directly use the vanishing of the normal probability density as the boundary
conditions for Dirac particle and further for Majorana particle to avoid the ambiguity of the

chiral angle. If we apply this vanishing as the boundary condition, we have an extra result

as given by Eq. (4.45).

Majorana Particle. In general, the normal component of the probability current den-

sity of a Majorana bouncer does not vanish; it is explicitly given by

INwo(1,6) = (0,70 (0,€)
m

— 8AVM[*Re| (4% + 42) e—ziw”}lm[(K%é(—eaﬁ))Q}, (5.47)

a

where MM is normalization constant determined by the condition in (5.43). We can see

that the normal probability current of a Majorana bouncer is time-dependent. In addition,
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it also depends on the coefficients A.. These dependences corresponds to the Zitterbewe-
gung, which are similar to that of the probability density. This Zitterbewegung arises from
the contribution of the interference between the positive- and negative-energy components
of the Majorana wavefunction (4.48). When the spin orientation is in the +z-directions
(corresponding to the chosen values of the coefficients A, = +7A_), the normal probability
current density of a Majorana bouncer vanishes everywhere. In this condition, the normal
probability current density of a Majorana bouncer is identical to the Dirac one. Discussions
of the role of spin orientation on the probability density of a Majorana bouncer are limited.
However, from the result in Ref. [25], we learn that the non-chiral case of the boundary con-
ditions from the MIT bag model does not generate a change of spin orientation for a Dirac
particle (see also our discussion in the next chapter). Furthermore, the BC-MIT requires the
vanishing normal probability current density at the boundary surface. This property means
that the particle is perfectly reflected for all spin orientations. Thus, the normal probability

current density does not depend on the spin orientation.

5.5.3 Scalar Density of Dirac and Majorana Bouncing Particles
In the following, we discuss the scalar density q(n, &) = 1¥(n, £)¥(n, €) of Dirac and Majorana

bouncers in arbitrary spin orientations, for the case of suppressed perpendicular momentum.

Dirac Particle. The scalar density of a Dirac bouncer is explicitly given by

Qs (€) = Ve (0, €)Y (1,€)

_ D |2 2 2 (M ag r

= SB[ (AP + A i Ky (Be] ] (5.4
obtained from the Dirac wave function given in Eq. (4.27)), with w,, = EPM + m determined
by the boundary condition (4.33) and the normalization constant N2 determined by the
condition in Eq. (5.41). It can be seen that the scalar density of a Dirac bouncer does
not depend on the spin orientation, because the contribution of (JA,|*> + |A_|?) gives a real
constants value that can be absorbed by the normalization constant. From this formalism,

we can also see that the scalar density of a Dirac bouncer is time-independent.

Figure[5.2]depicts the scalar density of ground, first-excited, and second-excited states
for a Dirac bouncer with mass m = 10, uniform acceleration a = 1, and arbitrary spin orien-
tations o, where the normalization constant is defined by the condition given in Eq. (5.41]).

The scalar density is plot as a function of z by using the relation of az = ¢ — 1. This figure
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FIGURE 5.2: The scalar density of a Dirac bouncer for arbitrary spin orientation and

suppressed perpendicular momentum k; = 0. We demonstrate for the case of the lowest

three states: the black solid curve is for the ground state n = 1, the red dashed curve is

for the first-excited state n = 2, and the green dotted curve is for the second-excited states

n = 3. Here, we use mass m = 10, uniform acceleration a = 1, and az = e — 1. The

scalar density for all states vanishes around the boundary surface, which is consistent with
the property of the BC-MIT. This figure is reproduced from Ref. [31].

shows that the scalar density of a Dirac bouncer for all states n vanishes at the boundary
surface z = 0 or £ = 0. This property arises from the consequence of the usage of the mirror
under the BC-MIT; see Eq. (B.2)) for the non-chiral case © = 0.

Majorana Particle. The scalar density of a Majorana bouncer vanishes everywhere; that

is,

Goe(1.8) = Vi, vhy(n.€)
-0 (5.49)

This vanishing occurs because the charge conjugation of the Majorana wave function is
entirely the same as itself. This can be understood in more detail as follows. We write
the Majorana wave function into four components as Y™ = (YM, 2, —pd* YMT (see
Eq. ), which satisfy the condition in Eq. . Inserting these four components into
the first line of Eq. (5.49), we obtain four terms as [/} |2 + |32 — |32 — | [2. Then, it

is clear that the total scalar density of a Majorana bouncer is zero everywhere.



Chapter 6

Roles of Chiral MIT Boundary
Conditions on a Dirac Particle
Confined in a 1D Box

In the previous chapters, we discussed the bound states of four types of bouncing particles
in a gravitational field under the mirror boundary conditions. We utilized the Dirichlet
boundary condition for nonrelativistic and Klein—Gordon bouncers, and used the BC-MIT
to describe the property of the mirror for Dirac and Majorana bouncers while avoiding the
Klein paradox problem. There, we discussed the relativistic effects generated by boundary
conditions associated with types of relativistic bouncing particles. To further understand
the roles of the boundary conditions, especially in the Dirac equation, we turn to discuss the
system of a Dirac particle confined in a 1D box, though in the absence of a gravitational field
[70]. To solve the problem, we first discuss the setup of the physical system, from which we
derive the discrete momentum solution and its energy levels, by following the procedure in
Ref. [26] but using the BC-chiral MIT [34] 64 [65] in describing the properties of the mirrors.
In our setup, the presence of the mirrors under the BC-chiral MIT can be seen as an infinite
mass of the particle at the boundary surfaces [25], as proposed for the MIT bag for hadron
[28-30]. Thus, one can propose to write the mass in the function of position of the particle
so that the problem of Klein paradox can be avoided [26] 27]. We investigate how the spin
orientation changes under reflection. We review the spin orientation changes produced by
the reflection at the first mirror by following Ref. [25] but using the chiral angle defined in
Ref. [64]. Using the same procedure, we analyze the spin orientation change generated by
the reflection at the second mirror. We also discuss the relation between the reflection at the

first mirror and that of the second. At the end of the chapter, we demonstrate the density
47
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functions for a Dirac particle in a 1D box, where the property of the boundary surface is

described by the BC-chiral MIT, as we mentioned above.

6.1 Setup of a Dirac Particle in a Box

6.1.1 Total Dirac Wave Function

We consider a Dirac particle confined to a 1D box consisting of two perfectly reflecting
mirrors under the BC-chiral MIT. The first mirror is placed at z = 0, while the second
mirror is placed at z = £. In other words, the box size is ¢. Inside the box, the particle moves
with momentum k3 along the z-axis, and the perpendicular momentum is suppressed. We
set the total Dirac wave function to consist of a linear combination of left- and right-moving
wave components, where each component is associated with a spin orientation. At the first
mirror, the incident component is associated with the left-moving wave which propagates
in the —z-direction; the reflecting component is associated with the right-moving wave
component, which propagates in the +z-direction. At the second mirror, the reverse is true:
The incident component is associated with the right-moving wave and the reflecting one is
associated with the left-moving wave component. Note that the reflection system consisting
of one perfectly reflecting mirror under the BC-chiral MIT has been previously discussed in
Ref. [25]. There, the author of Ref. [25] discussed how the reflected spin orientation behaves
owing to the reflection with the floor or wall. For the 141D Dirac equation, one can use the
formalism on the basis of the 2 x 2 gamma matrices (see, e.g., Refs. [65], [73]). Using such
formalism, one can clearly discuss the bound system as well as spin orientation. However,
in the present study, we work in the basis of the 4 x 4 gamma matrices because it may be
easier to extend the discussion for the more general cases (cf. Ref. [27]). From the above
description, we propose the total wave function for a Dirac particle with the momentum k5

inside the box, as

e ] (i el (R 6.1
osks 5 —o3ks §L
(m+E)SRs (m+E)SL:s

where the coefficients B and C are complex constants, m is the mass, and E = /m? + k2

is the energy of the Dirac particle. Here, we use {g s and £, s to denote the two-component

spinors of the right- and left-moving wave components, respectively, where s represents the

spin orientation. Note that each component of the Dirac wave function W(t, z) = t(z)e £

satisfies the Dirac equation in Eq. (A.1]).
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6.1.2 Initial Setup of Spin Orientation

As we mentioned above, the two-component spinor specifies the direction of the spin orien-

tations. Thus, it is more convenient to decompose the two-component spinors £, s and &g s

Qg s QR s
s — 7 s s — 7 . 6.2
£L7 <6L,s> gR’ (61%,3) ( )

In general, the two-component spinor {;(g)s consists of a linear combination of a two-

into

component spinor with a spin-up (+z-direction) &gy +. = (1,0)T and a spin-down (—z-

direction) &r(r)—» = (0,1)T as

(8%
§L(R),s = QEL(R)+- + BEL(R),—> = <5> , (6.3)

where the normalized two-component spinor requires that fz( R).sSL(R)s = la|*+]8]*> = 1. The
normalized two-component spinor {1(g) s With a spin orientation in some specific direction

is given by

1 1 1 1
§L(R) 42 = 7 (1> , EL(R)—a = 7 (_1> , (6.4)

1 (1 1 (1
SR+ = 5 <Z> NG (_Z> : (6.5)

In our setup, we first define the arbitrary spin orientation for the left-moving wave com-
ponent, which is stored in the values of oy s and 1. Owing to the interaction with the
mirror, the two-component spinor £, s can be related to the two-component spinor {g s. This

relation is controlled by a rotation operator in the spin space [25].

6.2 Discrete Momenta and Energy Levels of a Dirac

particle in a Box

At the first mirror, the incident component is associated with the left-moving wave, the
reflected component is associated with the right-moving wave, and the inward normal unit
vector to the boundary is given by N, = (0,0,0,1). Therefore, the BC-chiral MIT [64] for
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the Dirac wave function 1) = (®,, ®,)" yields the following equations

i(o3 +sin©)Py|,—g — cos OPq|,—o = 0, (6.6)
i(og —sin©I)®y|,— + cos OPy|,—o = 0. (6.7)

Similar to the boundary conditions generated by the BC-MIT, both the boundary conditions
(6.6) and (6.7 are equivalent, which indicates that we need only one of them [25]. One can
simply check that both the two-component spinors in Eq. trivially satisfy Eq. (6.7)).

Imposing the boundary condition on the Dirac wave function (6.1)) at the first

mirror z = 0, we have

B |i(I + sin O03) — Cos @1'1 §rs =C [Z(I + sin @03)L + cos @I} €Ls, (6.8)

m (m + E)

which can be rewritten in terms of a multipication between 2 x 2 and 2 x 1 matrices as

i(1 4+ sin @)(m]ffE) —cosO|ags [—i(l+sin 6)(m]$)E) —cosO| ag (B) —0, (6.9)

i(1 —sin®) s — cosO| Br. —i(l—sin@)(m]fﬁE)—cos@ Brs) \C

(m+E)

after decomposing the two component-spinors g s and &g s using Eq. (6.2). Note that the
coefficients B or C' cannot be zero because if one sets one or both of them are zero, the wave

function will trivially vanish everywhere. As a consequence, we require the 2 x 2 matrix in
Eq. to vanish, which implies the following condition

1ks tan ©

B (aR,sﬁL,s + 6R,saL,s> =0. (610)

(OéR,SBL,S - 6R,saL,s> -

This condition indicates a relation between the incident and reflected spin orientations,
expressed as a function of chiral angle ©, where in the non-chiral case (© = 0), the spin
orientation does not change; the reflected spin orientation is the same as the incident 0neE|.
We will discuss this point in more detail later in Sec. Meanwhile, from Eq. , we

obtain the relation between coefficients B and C, given as

i(1+sin®)ks/(m+ E) —cos© ar,
=B : A1
¢ i(1+sin®)ks/(m+ E) +cosO ar s (6-1)
i(1 —sin®)ks/(m + E) — cos O frs
= B . A2
¢ i(1 —sinO)ks/(m+ E) + cos© B’ (6.12)

n the non-chiral case, one can use the Dirac wave function given in Ref. [26], where the reflected and
incident spin orientations are not distinguished.
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where both relations in Egs. (6.11)) and (6.12)) are equivalent, though Eq. (6.11]) connects
the coeflicients ap, and «ap s while Eq. (6.12) connects the coefficients frs and 1. To

obtain the solution of discrete momentum, it is necessary to proceed with the reflection at
the second mirror under the BC-chiral MIT.

At the second mirror, the incident component is associated with the right-moving
wave, the reflected component is associated with the left-moving wave, and the inward
normal unit vector to the boundary is given by N, = (0,0, 0, —1). Therefore, the BC-chiral
MIT [64] for the Dirac wave function 1) = (®;, )T reads

i(o5 —sinOI)Ps| _, + cos ©P4| _, =0, (6.13)
i(og +sin©I)Pq|,_, — cos©D,y| _, =0, (6.14)

where both boundary conditions (6.13) and (6.14) are also equivalent. By imposing the
boundary condition ([6.13)) upon the Dirac wave function (6.1]) at the second mirror z = ¢,

the relation between left- and right-moving waves can be obtained as
Be'st {z([ — sin 6)03)L +cosOI | &g s
(m+ E) ’

= Ce st lz’([ — sin Oa3) — cos @I] 3 (6.15)

(m+E)

Decomposing the two-component spinors £z and &1 5 as given in Eq. (6.2)), the relation

(6.15) gives

. k
Betkst [2(1 — sin @)(m——iE) + cos @] QR

— (e ikst [2(1 —sin 6)(ka3E) — oS @] QL s (6.16)
Be'kat {z(l + sin @)(kagE) + cos @] Br.s
— Cethkst [z(l + sin @)ﬁ — o8 @] BL.s, (6.17)

where both of these relations are also equivalent. Similar to the relations at the first mirror,
the coefficients relation in Eq. (6.16) connects agrs and o s. Meanwhile, the coefficients
relation in Eq. (6.17) connects g and (. Taking the advantages of such properties, we

can derive the discrete momentum solution.
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6.2.1 Discrete Momenta of a Dirac Particle in a Box

Inserting the coefficients relation (6.11]) into Eq. (6.16)), we arrive at the following equation

for the momentum ks

Ctan(ksl) 1
ks mcos®

(6.18)

This requires the allowed momenta to be discrete. Note that we can also obtain the condition
for discrete momenta by inserting the relation between coefficients B and C' in Eq.
into Eq. . It is clear that the discrete momentum solutions do not depend on
spin orientation for all chiral angles ©. This is because the contribution of spin orientation,

which is stored in apg(zy s or Br(r),s can be factorized out.

4 — _(g;%gk;)/kg
: """ Yy,
3' y(lvﬂ-/4)
S I N I (R P - y(1,37/4)
21 | - —-y(1,m)

FIGURE 6.1: Plot of the curve — tan(kj)/k4; and the horizontal line 1/m’ cos © = y(m/, ©)

as a function of momentum k4. The intersection between the curve — tan(k%)/k% and the

horizontal line y(m’, ©) gives the solutions for the discrete momentum k5, with k5, > 0

and n = 1,2,3,.... Here, we adopt the parameter m’ = 1 and four values of the chiral
angle © = 0,7/4,7,3mw/4. This figure is reproduced from Ref. [70].

To further discuss the discrete momentum, it is more convenient to introduce the

following two new parameters

ky =kst, m'=ml. (6.19)
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FIGURE 6.2: Discrete momentum solution k%, for Eq. as a function of 1/m’ cos ©.

Each curved is normalized by a factor m. We demonstrate for the case of the lowest four

states. The black solid curve is for n = 1, the dashed red curve is for n = 2, the green

dotted curve is for n = 3, and the blue dash-dotted curve is for n = 4. This figure is
reproduced from Ref. [70].

Thus, we have

Ctan(ky) 1
K, — mcos®’

(6.20)

With these parameters, the discrete momentum solution k%, is expressed as a function
of m’ and chiral angle ©. In other words, the discrete momentum depends on the mass
m, chiral angle ©, and box’s size (. Figure plots the curves of —tan(k})/k% and
1/m/cos©® = y(m/,0) as a function of momentum k%, where the intersection between the
lines of —tan(k})/k% and 1/m’cos©® = y(m’, ©) provides the solution for discrete momen-
tum ks,,, where n denotes the state. This figure demonstrates the various chiral angles with
the fixed m’. The curves show that the solution for discrete momentum depends on the chi-
ral angle, as expected. Figure demonstrates the momentum solution &3, for Eq. ,

normalized by 7 as a function of 1/m’cos© for n =1,2,3, and 4.

The authors of Refs. [26], 27] showed that the box’s size determines whether the system

behaves relativisticaly or approaches nonrelativistic or ultrarelativistic limits. Therefore, it
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is also essential to discuss the nonrelativistic and ultrarelativistic limits of the discrete mo-
mentum. In the nonrelativistic limit m’ > 1, the discrete momentum ([6.20)) approximately
reduces to

1
ENR ~ [ 6.21
3n mr( m/ cos @)’ (6.21)

where the dependence of the discrete momentum on the chiral angle is coupled to m/ in the
second term. The contribution of the second term increases under an increase in states n.
In the ultrarelativistic limit m’ < 1, the discrete momentum ([6.20) approximately reduces

to

(2n — )m N 2m’ cos ©
2 (2n — )1

KR ~ (6.22)
In the ultrarelativistic limit, the dependence of the discrete momentum on the chiral angle
is coupled with the m’ in the second term, similar to that in the nonrelativistic limit.
However, the contribution of this second term decreases under the growth of states n. In the
significantly nonrelativistic limit, the discrete momentum approximately reads ki ~ nr,
which recovers the solution for that of the Schrodinger equation in an infinite potential well.
While in the significantly ultrarelativistic limit, the discrete momentum approximately reads
k4R ~ (2n — 1)7/2. In these two limits, the results are shared with those of under the BC-
MIT at the same limits [26] 27], where the results do not depend on the chiral angle.

6.2.2 Energy Levels of a Dirac Particle in a Box

From the above discussion, it is clear that the mirrors under the BC-chiral MIT for the
Dirac particle confined in a 1D box require the allowed momenta must be discrete. As a
consequence, the energy of a Dirac particle in a 1D box under the BC-chiral MIT is also

discrete; this is explicitly expressed as

E, = \/m?+ k2, (6.23)

where E], = E, ¢ and the momentum solution kj, satisfies Eq. (6.20)). Similar to the discrete
momentum, the energy level solution does not depend on the spin orientation but depends

on mass m, chiral angle ©, and the box’s size /.
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We next discuss the nonrelativistic and ultrarelativistic limits of the energy level

(6.23). In the ultrarelativistic limit, the energy level approximately reduces to

— 7 2m'cos®

2n
B~ i 2 T @n-Dn

(6.24)

We can see that the energy level in the ultrarelativistic limit approximates that of the discrete
momentum in the same limit, where the dependence of the energy level on the chiral angle
appears in the second term and is coupled with the parameter m’. Here, the contribution of
the second term decreases under an increase in states n. For the significantly ultrarelativistic
limit, we find that the energy level does not depend on the chiral angle; it is approximately
given by E''® ~ (2n — 1)7/2. Under this limit, the result corresponds to that of under the
BC-MIT [26, 27]. In the nonrelativistic limit, the energy level approximately reduces to

(kg ) (nm)?
ENR ~m/ 4 23—m, ~ m/ S (6.25)

In this limit, the first and second terms of the energy level do not depend on the chiral
angle because their dependence are in higher order. For the significantly nonrelativistic limit,
we find that the energy level of a Dirac particle confined in a 1D box is approximately given
by the rest mass m/, which does not depend on the chiral angle and is shared with that of
under the BC-MIT [26, 27], similar to the behavior in the ultrarelativistic limit.

6.3 Changes of Spin Orientation due to Reflections at

Both Boundaries of Mirrors

In this section, we discuss the changes of spin orientation owing to reflections with both the

boundaries following the procedure in Ref. [25].

6.3.1 Changes of Spin Orientation at First Mirror

In the following, we discuss the spin orientation changes generated by the reflection at the
first mirror located at z = 0, by following Ref. [25] and applying the BC-chiral MIT in
Ref. [64]. To discuss the changes of spin orientation, it is more convenient to write the

relation between the left- and right-moving wave components in Eq. as

Ere = Q) 'QVEL = UV, (6.26)
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where
. . ks,
g) =B {2([ + sin @Ug)m — cos @]} , (6.27)
R o~ . k3n
L = C |:Z([ -+ sin @O‘g)m -+ cos @I:| s (628)

and U is the rotation operator in spin space, given as [25]

(1) (1)

U = ex [cos(%)] — isin(%)T(I) -a] . (6.29)

Here, eix(l), 90%1), and Y denote the pure phase, chiral angle, and rotation axis generated
by the reflection at the first mirror, respectively. Inserting the coefficients in Egs.
and into Eq. , we obtain the relation between the incident and reflected spin
orientations at the first mirror; this can be written as

C cos©

SR = B (ikl, —m/ cos ©)

(E;.LI + ’Lk‘én tan @03) 5L75. (630)

Decomposing two-component spinors in Eq. (6.30)), the components of the right-

moving wave can be connected with those of the left-moving wave, as follows

Qrs\ 9 cos ©® (B! + ik}, tan ©)ary, (6.31)
Br,s B (iky, —m' cos ©) \ (E], — ik}, tan©)By, ) '

To obtain the explicit expression, we next take the equivalent expressions in Eq. (6.26]) with
Egs. (6.29) and (6.30]), which yields

oo )€ Beome

= — 6.32

‘ 2 ) B (ik}, — m’ cos ©)’ (6.32)
4 (1) ks

N sin(P) Y g = _C Hsn SO (6.33)

2 B (ik},, —m/ cos ©) 75

It is clear that the role of pure phase can be canceled, and we obtain the expression for the

rotation angle and rotation axis at the first mirror as

oD kg, tan©

5) = 7 and TW =z (6.34)

tan(

respectively, where Z is the unit vector in the direction of the z axis. Note that, from

Eqgs. (6.32) and (6.33)), we may choose the rotation axis Y) = —2 but with the opposite
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sign of the rotation angle gog).

As mentioned above, the discussion for the system featuring one perfectly reflecting
mirror under the BC-chiral MIT at z = 0 has been previously discussed in Ref. [25]. Our
result for the rotation axis given in Eq. matches that of Ref. [25]; however, our
rotation angle has the opposite sign. The difference comes from the different definitions of

chiral angle; here, we used the definition provided in Ref. [64].

6.3.2 Changes of Spin Orientation at Second Mirror

In this subsection, we consider the changes of the spin orientation generated by the reflection
at the second mirror. The procedure at the second mirror matches that of the first mirror.
Thus, it is more convenient to write the relation between the incident and reflected spin

orientations produced by the reflection at the second mirror as

€= Q) QYR = UP R, (6.35)
where
(LQ)S = Ce Fan {2([ — sin @O’3)L — oS @I} , (6.36)
’ (m'+ E')
g,)s — Bekhn {Z([ — sin 903)% + cos @]} , (6.37)

and U® denotes the rotation operator for the reflection at the second mirror, which can be
written as follows [25]

U@ — ix? o (P &)
=e COS(T)]—ZSID(T)T co|. (6.38)

Here, we use eix(g), 90%2), and Y to denote the pure phase, rotation angle, and unit rotation

axis generated by a reflection at the second mirror, respectively. Inserting the two parameters

in Egs. (6.36]) and (6.37)) into Eq. (6.35]), the relation between the incident and reflected spin

orientations at the second mirror can be written as

Be?Fsn cos ©
C  (ik}, —m cos©)

SL,S = (E/I — Zkén tan 60'3) fR,s- (639)

n

Decomposing the two-component spinor in Eq. (6.39), the relation between the incident and

reflected spin orientations at the second mirror can be written as can be written explicitly
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as

<%s>  Bevth, cos© <(E; — ik, tan @)aR,s> (6.40)

Br,)  C  (ik, —m/cos©) \ (B! + ik, tan ©)Bx.

Taking the equivalence expressions in Eq. (6.35) with Egs. (6.38) and (6.39)), we obtain the

following relations

ix® (90%2) Be?ksn E] cos©
5 —

= 6.41

‘ 2 ) C  (ikh, —m/cosO)’ (6.41)
(2) 2ik} I

ix® o (PN @) o Be%n 4, SIN O 6.49

e sin( 2 ) 7 C  (ik}, —m/ cos @)03’ (642)

Similar to the reflection at the first mirror, the role of the pure phase eX'” can be factorized

out. The rotation angle and rotation axis at the second mirror are expressed as

@ kb, tan ©
tan<‘0; ) = —% and Y@ = 2, (6.43)
respectively. Here, we choose the rotation axis at the second mirror as Y?) = —2 because we

have chosen the rotation axis at the first mirror as Y = 2 (6.34)). The opposite direction of
the rotation axis is derived from the normal unit vector N, opposite to the first and second
mirrors. In addition, if we choose the rotation axis Y(!) = —2, we can choose the rotation

axis Y = 2 with the opposite sign to the rotation angle 90%2).

6.3.3 Total Reflections inside a Box: Relations between Reflec-

tions at First and Second Mirrors

At the previous subsections, we discussed the changes of the spin orientation at both the

mirrors. In the following, we discuss the relation between the reflections at the first and
second mirrors. Inserting Eq. (6.31)) into Eq. (6.40), we have

Qb)) — gz (OB ) (6.44)
5L,s /BL,S
The phase factor €= in Eq. (6.44]) is explicitly given by

= ¥ (—ikl —m/cos©)
== L 6.45
€ (ikh, —m/cos©) ( )
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which equals 1 for the allowed momentum ((6.20]). This condition indicates that the reflected
spin orientation at the second mirror matches the incident spin orientation at the first one;

hence, we can use the Dirac wave function in Eq. (6.1)) for this system.

From the reflection at the first mirror (6.31) and second mirror ([6.40), we find that

2 _

the normalized two-component spinor of the left-moving wave component |agy s|* + |01 s
|C|?/|B|? implies that |ags|* + |Brsl* = |C]*/|B|?. In other words, the normalisation two-
component spinor of the right-moving wave component |apsl|* + |Srs|> = 1 entails that
|C|?> = |BJ? (cf. Refs. [27, [74]). Comparing the obtained results in Eqgs. and (6.43),

we obtain the relation for the parameters in both mirrors as
<p§) = gpg), and Y® = O, (6.46)

which means that the rotation angles for reflection at both mirrors are identical but their
rotation axes are in opposite directions?} From Eqgs. (6.34) and (6.43)), we can also see that

the rotation angle depends on the momentum, mass, and chiral angle.

We next discuss the behavior of the rotation angle under the chiral angle in ultra-
relativistic and nonrelativistic limits. In the ultrarelativistic limit, the rotation angle at the
first and second mirror are approximately given by

(1),UR (2),UR

tan(Z"—) = tan(2

) ~ — tan ©. (6.47)

From this result, we can see that the rotation angle only depends on the chiral angle. More
explicitly, the rotation angles are given by gaq(ll)’UR = ¢£L2)’UR ~ —20. This indicates that the
spin orientation does not change for chiral angle ® = 0, 7. In the nonrelativistic limit, the

rotation angles are approximately given by

(1),NR (2),NR

tan(% ) = tan( nr

)~ - tan ©. (6.48)

For the significantly nonrelativistic limit, the spin orientation remains identical for all chiral
angles; this is explicitly expressed by the condition of gogll)’NR = 90%2)’NR = 0. Thus, the result
corresponds to those of under the BC-MIT. In this case, we can adopt the total Dirac wave
function given in Refs. [20], 27], where the incident and reflected two-component spinors are

not distinguished.

2We may choose the conditions where the rotation axis for the reflection at both mirror are identical
but their rotation angles are in opposite, as we mentioned in the previous subsections.
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6.4 Density Functions of a Dirac Particle in a Box

In this section, we analyze the behavior of three types of density functions: the probability,
normal probability current, and scalar densities [70]. Here, we use the parameter z'(= z//);

thus, the particle is confined to a box with a scaled size of 2/ = 1.

6.4.1 Probability Density of a Dirac Particle in a Box

First, we start the discussion of the density functions by considering the probability density
of a Dirac particle confined in a 1D box, where the energy eigenstate and discrete momentum
are determined by the BC-chiral MIT. To obtain the explicit expression for the probability
density, we use the relations of normalized two-component spinors: |az ¢|? + |81.s]*> = 1 and
lars|* + |Brs|* = |C?/|B)*(= 1). Furthermore, we use the relation between coefficients B
and C given in Egs. and (6.12)). Then, we find that the probability density of a Dirac

particle in a 1D box is given by

pkénﬁ(zl) = _Eéixs(z/)vow}?éixs(zl)
2|C’|2 / — 24k, 2! * 24kl 2/ /
- m[QEn—l—(Dne ¥’y D 2k )m], (6.49)

where the coefficient D,, is given by

(—E! cos © + ik}, sin O(Jag > — |8r.s?))

D, =
(ikh,, +m' cos ©)

(6.50)

From the above expression, we can see that the probability density of a Dirac particle in a
1D box under the BC-chiral MIT depends on the chiral angle and spin orientation. This
dependence appears in the second term of the numerator in Eq. . It arises from the
interference between the left- and right-moving wave components. Here, the coefficient |C|?

is determined using the following condition
1
/ pry, s(2)d2 =1 . (6.51)
0

We demonstrate the dependence of the probability density on the spin orientation in
Figs. and [6.4] for the parameters m’ = 10 and m’ = 2, respectively. Here, we use five
values of the chiral angles as © = 0, 7/4, 7/2, 3w /4, 7. More specifically, in the top panel, we

consider the case of a spin orientation in the +z- or +y-directions, where |z s|* —|8L s> = 0.
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FIGURE 6.3: The probability densities of the ground state Dirac particle confined in a
1D box as a function of 2z’ with the parameter m’ = 10 and five values of the chiral angle
© =0,7/4,7/2,31/4, 7. We demonstrate three conditions for the spin orientation of the
left-moving wave component. The upper panel corresponds to the condition in which the
left-moving wave component has a spin orientation in the £x- or £y-direction (|ay ¢/* —
|BL.s|> = 0), the lower-left panel corresponds to the +z-direction (|az s|* — |BLs|> = 1),
and the lower-right panel corresponds to the —z-direction (|ar s> — |B8L.s|> = —1). These
figures are reproduced from Ref. [70].

In these directions, we can see that the distributions of the probability density inside a box
are symmetrical. In contrast, when the spin orientation is in the 42- or —z-directions,
asymmetrical distributions are observed (see the lower panels). These properties correspond
to the chiral angle and behavior of the spin direction at the first and second mirrors. It
can be discussed in more detail as follows. From Egs. and , we can see that
when “sin® = 0”7 and/or “lags|? — |Brs|> = 07, the distributions will be symmetrical.
When the chiral angle takes value © = 0,7, the distributions will be symmetrical for all
spin orientations. When we have “|ay ¢|* —|8L.s|> = 07 (e.g., when the spin orientation is in
the £x- or ty-directions), the distributions inside a box will be symmetrical for all chiral
angles. The condition of the spin orientation in the +2-directions related to the condition of
“lar.s|*—|Br.s)* # 0”. This may explain why we have asymmetrical distribution for the chiral

angle © # 0, 7. Furthermore, when the incident spin orientation is in the +z-directions, the
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reflected spin state has the same direction as the incident one.
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FIGURE 6.4: Similar to Fig. but for the parameter m’ = 5. The behaviors for each
panel have similar properties to those of Fig. [6.3]

We next discuss the properties of the probability density as a function of the box’s size.
As has been shown by Refs. [20], 27], the box’s size determines whether the system approach
ultrarelativistic or nonrelativistic limits. In the nonrelativistic limit, the probability density
for a Dirac particle in a box approximately reduces to

P (2') = 2|C? (1 + Fe 2 .F*eméliRZ’) : (6.52)

where we the coefficient F is approximately given by

—m’ cos © — kR + i kNR sin O (Jay, 4> — |Br.s]?)

7= 2m/ cos ©

: (6.53)

For the significantly nonrelativistic limit in the non-chiral case, we obtain the approximate
probability density of a Dirac particle in a 1D box as 4|C|? sin?(ka2z’). In this limit, we can
see that the probability density reduces to the familiar probability density for the Schodinger
equation in an infinite potential well or in a box. Furthermore, we can also see that the

probability density does not depend on the spin orientation. In the ultrarelativistic limit,
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FIGURE 6.5: The probability density of the ground state Dirac particle confined in a

1D box with the values of the parameter m’ = 0.5,2,5, and 10 in the non-chiral case in

comparison with the nonrelativistic (NR) and ultrarelativistic (UR) limits. The probability

density in the nonrelativistic limit vanishes at both the boundaries 2z’ = 0 and 2’ = 1. In

the ultrarelativistic limit, the probability density gives the constant value along 2’ inside
the box. This figure is reproduced from Ref. [70].

the probability density for a Dirac particle in a box (6.49) approximately reduces to

2 C 2 21./ ! 21,/ /
Prprs(2) =~ ,J,,UlL (Qké[iR — 2m/ 4 Ge T 4 g*eQZ’fs‘iRZ) : (6.54)
" 3n

where the coefficient G is approximately given by
G ~im/cos© +m'sin O(|ar.|* — |Brs]?). (6.55)

For the significantly ultrarelativistic limit in the non-chiral case, we obtain the approximate
probability density of a Dirac particle in a 1D box as 4|C?, which generates a constant
distribution along 2’ inside the box. In addition, the probability density does not depend

on the spin orientation, similar to the results obtained using the BC-MIT.

Figure depicts the probability density for a Dirac particle confined in a box for the
parameter m’ = 0.5,2,5, and 10 in the non-chiral case, in comparison with the significantly
nonrelativistic and ultrarelativistic cases. This figure shows that a smaller m’ brings the
probability density close to the ultrarelativistic limit. In contrast, a larger parameter m’
brings the probability density close to the nonrelativistic one. From this figure, we can
see that the different limits give different curves. For the nonrelativistic limit, the curve
is proportional to sin® kfNR2’). While in the ultrarelativistic limit, the probability density

is given by a constant along 2/, as we previously mentioned. Note that the value of |C|?
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is determined by the condition in Eq. . The authors of Ref. [26] have previously
demonstrated the behavior of the probability density as a function of the box’s size (see Fig. 5
of Ref. [20]); they showed that a larger box size pushes the probability density towards the
nonrelativistic limit. From this figure, we can also see that the distribution for all parameters

m' gives the symmetrical distribution. This is because we use the non-chiral case.

The different nature between the probability densities in the nonrelativistic and ul-
trarelativistic limits may be associated with the boundary conditions’ roles at both limits.
The BC-chiral MIT for the significantly nonrelativistic limit of the Dirac wave function ap-
proximately reduces to the Dirichlet boundary condition of a vanishing Dirac wave function
at the boundary surface; this coincides with the Schrodinger equation in a box. In contrast,
the BC-chiral MIT for the significantly ultrarelativistic limit does not reduce to the Dirichlet
boundary condition. In this limit, the boundary condition remains to depend on the chiral
angle. This kind of property does not appear for the nonrelativistic one. Later, we will
show that the different properties at both limits also appear for the scalar density as well

as rotation angle.

6.4.2 Normal Probability Current Density of a Dirac Particle in

a Box

The normal component of the probability current density of a Dirac particle confined in a

1D box is expressed as

JN’kgns(zl) = Jlgéns(zl) = &kéns(zl)’ygzﬁkéns(zl)a (656)

which vanishes everywhere. This is similar to the case of a Dirac particle in Rindler coor-
dinates [23, 31]. Note that to obtain complete results for the normal probability current,
we use the same strategy as for probability density; that is, we use |az|? + |B.]*> = 1,
larl? + |8r|? = |C]?/|BJ*(= 1), and the relation between B and C given in Egs. and
(6.12]).

The detailed contributions of each term are as follows: The contribution of the left-
moving wave component to the normal probability current density is canceled by that of
the right-moving one. The interference term between the left- and right-moving wave com-
ponents vanishes everywhere. Finally, we find that the total normal probability density
vanishes trivially everywhere as well. This indicates that we cannot directly use the vanish-

ing normal probability current density at the boundary surface as a boundary condition for
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our system. Furthermore, when we use this condition as the direct boundary condition, we

lose the role of the chiral angle.

6.4.3 Scalar Density of a Dirac Particle in a Box

The scalar density of a Dirac particle in a 1D box as a function of 2’ is given by

e, s(2) = Uiy (2 )iy, o(2)
_ Ar [Qm' + (Dne "o’ + Dy ) B (6.57)
(B! 4+ m/) " "l
where D,, is given by Eq. and shared with the probability density. Similar to the
probability and normal probability current densities, to obtain the scalar density, we used
lap s+ |Brsl? =1, |ars|> + |Brs|> = |C]?/|B)*(= 1), and the relation between B and C' in
Eq. . Here, the coefficient |C'|? is determined by the condition given in Eq. .
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FIGURE 6.6: Scalar density for the ground state Dirac particle in a 1D box. Here, we used

the same parameters for the chiral angle and spin orientation as those given in Fig. for

each panel. The scalar density for the case of the chiral angle © = 0, 7w vanishes at both

the boundaries, as a consequence of the boundary condition. These figures are reproduced
from Ref. [70].
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FIGURE 6.7: Similar to Fig. but for the parameter m’ = 5. The behaviors for each
panel have similar properties to those of Fig. @

Figures and demonstrate the curves for the scalar density of the ground state
Dirac particle in a 1D box for the parameters m’ = 10 and m’ = 5 with various chiral
angles and spin orientation, respectively. The curves show that the scalar density vanishes
at the boundary surface when the chiral angle takes the following two values as © = 0, 7.
This behavior is consistent with the default properties of the boundary condition that we
adopt (i.e., the BC-chiral MIT), which ensures a vanishing scalar density around the mirror
for the chiral angle ® = 0, 7. In these chiral angles, the scalar density does not depend
on the spin orientation because the second term of the numerator in Eq. becomes
zero. The distributions inside a box in these chiral angles are symmetrical. Similar to
the probability density, the scalar density for the Dirac particle in a box also depends on
the chiral angle and spin orientation in general. For example, when the left-moving wave
component has a spin orientation in the +z- or ty-directions (see the upper panel), the
distribution of scalar density is symmetrical; however, when the left-moving wave component
has a spin orientation in the +z- or —z-directions (see the lower panels), the distribution
of the scalar density is asymmetrical. Similar to the probability density, this difference of

behavior depends on the chiral angle and spin orientation.
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FIGURE 6.8: The scalar density of the ground state Dirac particle confined in a 1D box
with the variational values of the parameter m’ in the non-chiral case in comparison with
the nonrelativistic and ultrarelativistic limits. The scalar density in the non-chiral case
for all states n vanishes at both the boundary surfaces. This behavior is a consequence or
requirement the boundary conditions. This figure is reproduced from Ref. [70].

In the ultrarelativistic limit, we have the approximation form for the scalar density

of a Dirac particle in a 1D box as follows

2 C 2 s 1.7 ! 2 1./ !
() = 2ATF (o 4 pe st i), (6.59)
" 3n

where the coefficient P is given by
P =~ (im' cos © + kit —m')(icos © +sin O(|a s> — |Brsl?). (6.59)

For the significantly ultrarelativistic limit in the non-chiral case, the scalar density approxi-
mately reduces to 4|C? sin(2k4'R). In this condition, we can see that the scalar density does
not depend on spin orientation. We can also see that its form differs from the probability
density in the same limit. In the nonrelativistic limit, we obtain the approximate form for

the scalar density as
i, (1) = 2ICP (14 Fer 205 o o 26 (6.60)

where F is given by (6.53]), which is shared with the probability density of the nonrelativistic
limit. For the significantly nonrelativistic limit in the non-chiral case, the scalar density of
a Dirac particle in a 1D box is approximately given by 4|C|?sin®(kN®2’), which is shared

with the probability density of a Dirac particle in the same limit and case.

Figure shows the curves of scalar density for the ground state Dirac particle
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FIGURE 6.9: The difference between the curves of the probability density (Fig. and

scalar density , as defined by Ag,(2') = pgy o(2') — auy, <(2") for certain values of

the parameter m’ in the non-chiral case. The difference becomes larger as the decreases

of the parameter m/. In contrast, the differences becomes smaller as the increases of the
parameter m/'.

in a 1D box with m’ = 0.5,2,5, and 10 in the non-chiral case, in comparison with the
significantly nonrelativistic and ultrarelativistic limits. This figure shows that the scalar
density for all states n vanishes at the boundary surfaces. This behavior can be understood
as a consequence of the non-chiral case of the chiral MIT boundary condition. Similar to
the behavior of probability density, the scalar density approaches the nonrelativistic limit
at larger m’ and approaches the ultrarelativistic limit at smaller m’. From this figure, we
can also see that the distribution of the scalar density inside a box is symmetrical, which is

generated by the non-chiral case.

When one tries to compare the probability density in Fig. [6.3 with the scalar densities
in Fig. the two densities look to give the same distributions inside the box. This is
because we used the parameter m’ = 10, which is relatively close to the nonrelativistic
limit [26], 27]. In addition, in Figs. and , we can see that the probability and scalar
densities in the case of the nonrelativistic limit produce the same approximation. However,
for certain values of the chiral angle, their behaviors around the boundary surface differ. The
probability density for the relativistic particle under the BC-chiral MIT does not vanish at
the boundary surface. Instead, its scalar density vanishes when the chiral angle takes the
values of the parameter ® = 0,7. In the case of the parameter m’ = 10, the order of
the difference between the probability and scalar densities is relatively small. If we choose
smaller values of parameter m/, the difference becomes significant (see Fig. . In the
nonrelativistic limit, both the probability and scalar densities exhibit a similar curve (see

Fig. and Eqgs. (6.52) and ) However, the curve of probability density in the
ultrarelativistic limit differs from its scalar density in the same limit. The behavior of the
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ultrarelativistic limit of probability density in the non-chiral case resembles the relativistic
probability density in the case © = 7, which becomes constant along the 2’ axis. Meanwhile,
this property does not arise for the scalar density in the ultrarelativistic limit of the case
© = 0. Its behavior inside the box for m’ = 0 and © = 0 is described by the sine function,

sin(2k,0R2), rather than a constant along the 2’ axis.



Chapter 7

Summary and Conclusion

We studied quantum states in an external gravitational field. Quantum systems under the
influence of a gravitational field are interesting to discuss because quantum mechanics and
relativity operate simultaneously within them. One phenomenon that can be observed in
the laboratory is the existence of gravitationally quantum bound states of the UCN [14-20],
which are consistent with the theoretical predictions for the quantum bouncer problem of the
Schrodinger equation in a linear gravitational potential under a perfectly reflecting mirror
(see e.g., Refs. [3HI2]). In such situations, the quantum bouncer exhibits discrete energy

levels associated with the normalizable wave function.

In this thesis, we revisited the quantum bouncer problem, focusing on the relativistic
effects in gravitational quantum states. Using the equivalence principle [22], the system
can be seen as a free particle repeatedly bounced off by a uniformly accelerated mirror in
Minkowski space. Alongside the scenario, we discussed the properties of the Klein—Gordon
and Dirac equations in Rindler coordinates under the mirror boundary conditions. As shown
in Refs. [23], in the nonrelativistic limit, the energy levels of relativistic bouncing particles
reduce to familiar eigen-energies for the Schrodinger equation in a linear gravitational field

under a perfectly reflecting mirror.

For the Schrodinger equation, we adopted the Dirichlet boundary conditions to repre-
sent the barrier step Fermi-pseudo potential, where a bouncing particle is assumed to see an
infinite potential around the mirror. The main feature of this boundary condition is that it
requires a vanishing wave function around the mirror. The same boundary condition is ap-
plied for the Klein—Gordon equation, where a free massive scalar field in Rindler coordinates
was imposed to vanish at the floor [24]. However, if one imposes the Dirichlet boundary

conditions upon the Dirac equation, the solution will vanish trivially everywhere [23] (see

70
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also Ref. [26]). As an alternative, in the present study, we adopted the BC-MIT [28-30] to
represent the finite fermi pseudo potential barrier while avoiding the Klein paradox problem.
This boundary condition guarantees a vanishing normal probability current and scalar den-
sities at the boundary surfaces. In this discussion, it was unnecessary to discuss the Dirac
equation using the boundary condition from the chiral bag model [33-42], despite its being

more general than the MIT one.

Using the above analysis, we compared the energy levels of all bouncing particles.
We found that the energy level of a Klein—Gordon bouncer always exceeds its nonrelativistic
limit for all states, while the energy levels of Dirac and Majorana bouncers are lower than
their nonrelativistic limits for the lowest few states and are shifted to exceed that limit
for sufficiently large states. The differences in values from the relativistic to the nonrela-
tivistic can be understood as relativistic corrections associated with the specific boundary

conditions.

The parameter of the shift of the energy spectrum is not detectable in the labora-
tory. However, one can measure the parameter of the transition frequencies between two
energy eigenstates of the bouncing particles, for example, by using gravitational resonance
spectroscopy [118H122]. From our analysis of the quantum bouncers, we found that the tran-
sition frequencies between the two energy eigenstates of all relativistic bouncers exceeded
their nonrelativistic limits for all states, where the transition frequencies for Dirac and Ma-
jorana particles exceeded those of the Klein—Gordon ones. We applied the obtained analytic
solutions to both the UCN and Ps atoms. The energy levels of the quantum bouncer for the
Ps atom were smaller than those of the UCN. In contrast, the relativistic corrections to the
transition frequency of the Ps atom exceeded those of the UCN. However, the relativistic
corrections of the transition frequencies for both UCN and Ps atoms were too small to be

detectable with present technology.

The different behaviors of the energy levels for bouncing particles may be associ-
ated with the behavior of their wave functions, in particular around the boundary surface.
Therefore, in the present study, we also discussed the density functions for the bouncing
particles: the probability, normal probability current, and scalar densities. The distribution
shows that the probability densities of nonrelativistic and Klein—-Gordon bouncers exhibit
the same behavior: that of vanishing at the mirror surface. This behavior is a consequence
of the Dirichlet boundary condition. We also found that the probability densities of both
nonrelativistic and Klein—-Gordon bouncers are time-independent. The probability density
of a Dirac bouncer does not vanish at the mirror surface, in contrast to those of nonrela-

tivistic and Klein—-Gordon bouncers. In addition, the probability density of a Dirac bouncer
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is also time-independent. The probability density of a Majorana bouncer includes a factor
that rapidly oscillates as a function of time. This factor corresponds to the Zitterbewegung
and depends on the spin orientation. For example, when the spin orientation is in the
+z-directions, the Zitterbewegung vanishes for all states. In the condition of vanishing Zit-
terbewegung, the probability density of a Majorana bouncer coincides with that of a Dirac
bouncer. The Zitterbewegung also appears in the normal probability current density of a
Majorana bouncer. When the Zitterbewegung in the normal probability current density of
a Majorana bouncer vanishes for all states, its distributions coincide with that of a Dirac
bouncer, which vanishes everywhere. The presence of the Zitterbewegung does not come
from the BC-MIT, rather from the interference between the positive- and negative-energy
components of the Majorana wave function. The scalar density of a Dirac bouncer does not
vanish in general; however, it vanishes at the floor as a consequence of the BC-MIT (see
Fig. . In contrast, the scalar density of a Majorana bouncer vanishes everywhere because
the charge conjugation of the Majorana wave function is completely identical to itself. The
normal probability current density of a Dirac bouncer vanishes everywhere while that of the
Majorana particle does not. The normal probability current density of a Majorana bouncer

vanishes at the mirror surface, as required by the BC-MIT.

Note that one can also introduce more general boundary conditions that retain the
vanishing normal current density around the boundary surface [42]. A general form of the
BC-MIT, which includes the chiral angle, is the BC-chiral MIT [42] 64, 65]. In the non-
chiral case, the BC-chiral MIT reduces to the BC-MIT. For the reflection system of the
wave function comprising incident and reflected components, one can discuss the interaction
between the particle and boundary surface, e.g., the changes of spin orientations under the

boundary conditions [25].

To investigate the roles of boundary conditions in more detail, we revisited the system
of a Dirac particle confined to a 1D box, using the BC-chiral MIT in describing the properties
of the boundary surfaces of the box. A similar confinement system has been previously
discussed in Ref. [26] (cf. Ref. [27]), though they used the BC-MIT. The results show that
the Dirac particle has discrete momentum and energy levels; generally, these depend on the
chiral angle but not on the spin orientation. In the non-chiral case, the results reduce to
the results in Refs. [26, 27]. In the significantly nonrelativistic limit, the energy levels of a

Dirac particle reduce to the results for the problem of the Schrodinger equation in a box.

For this confinement system, we also discussed the change of spin orientation produced
by reflections between the particle and mirrors for the confinement system under the BC-
chiral MIT (cf. Ref. [25]). We found that the changes of spin orientation depend on the
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chiral angle. For the non-chiral case, we found that the spin orientation does not change.
This may explain the reflection for the above Dirac and Majorana bouncing particles under
the BC-MIT. The obtained results show that in the confinement system, the reflected wave
component at the second mirror exactly matches the incident wave component at the first
one, which means that the spin state is in a consistent state to repeat the reflections at both

Mmirrors.

We further discussed the behavior of the density functions for a Dirac particle confined
in a 1D box. The results show that the distribution of the probability and scalar densities can
be asymmetric, depending on the chiral angle and initial spin orientations. In contrast, the
normal probability current density of the Dirac particle vanishes everywhere. As shown in
Refs. [206], 27], the box’s size determines whether the system approaches the ultrarelativistic
or nonrelativistic limits. A study into the boundary conditions for the confinement system

might also be helpful in related topics such as the finite volume effect (cf. Refs. [66, [69]).
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Appendix A

Dirac Equation in Minkowski

Coordinates

The Dirac equation for a particle with mass m in Minkowski coordinates is given by
(iv"0, — m)Vs(t,x) = 0, (A.1)

where s denotes the spin orientation and v* are gamma matrices in the Dirac representation

given in Eq. (4.4). To proceed, we introduce the general solution to the Dirac equation as
Ups(t, ) = upee Flet®, (A.2)

where E' = \/m? + |k|? is the energy of the Dirac particle and ug; is a four-component Dirac
spinor. Then, the Dirac spinor ug, can be decomposed into the upper two-component spinor

&5 and lower two-component spinor x, as

XS

Substituting back the Dirac spinor (A.3)) to the Dirac equation (A.1]), we obtain the following

two coupled equations

(E—m)é —o-kys =0, (A.4)
(E+m)xs — o - k& =0, (A.5)

1)
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where Egs. (A.4) and (A.5]) are associated with the negative- and positive-energy solutions,
respectively. Herein, we focus on the solution for positive-energy, which implies that the

Dirac solution can be written explicitly as

(m+E)

Upes(t, ) = Nis ( U% ¢ ) e itk (A.6)

where &, is the normalized two-components spinor f;fﬁs = 1, and Ny, is the normalization

constant obtained by

(\I/ks, qjk:’s’) = /d3w\DL$\I}k’s’ = (S(k - k’)éssl. (A?)



Appendix B

Alternatives Boundary Conditions for
Dirac Equation from MIT Bag Model

In this chapter, we briefly review the alternative boundary conditions for the Dirac equation
that we use in this study, namely, the BC-MIT [28-30] and BC-chiral MIT [34] 64, [65]. The
BC-chiral MIT is a generalization of the BC-MIT, which includes the contribution of the
chiral angle. Therefore, we start with a discussion on the BC-chiral MIT for the wavefunction

of a relativistic spin-1/2 particle ¢ at the boundary surface [64], expressed as
. —i~0
iN,yp = ey, (B.1)

where © € [0,27) denotes the continuous chiral angle. Here, N, is an inward normal unit
vector perpendicular to the boundary surface. At the boundary surface, the BC-chiral MIT

ensures a vanishing probability density as

iJy = iN = he” Oy
= —ve %
= 0, (B.2)

where the first line comes from the multiplication of both the left- and right-hand sides of
BC-chiral MIT with ¢(= ¥°) from the left, and the second line comes from the
Hermition conjugate of BC-chiral MIT multiplyed by 4% from the right [65]. The
relations in Eq. also indicates that the scalar density 1t vanishes when then chiral

angle takes values of © = 0, 7, where © = 0 represents the non-chiral case. For the non-chiral

7
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case, the boundary conditions (B.1)) reduces to BC-MIT [28-30)]:

iNA D = 1. (B.3)

Here, the normal probability current and scalar densities vanish at the boundary surfaces

(see Eq. (B.2)), as stated above.
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