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Chapter 1 

1 Introduction 

1.1 Background and Purpose 

Caenorhabditis elegans (C. elegans) is a multicellular organism with a length and weight of 

approximately 1.0 mm and 0.5 μg, respectively. This organism's body and nervous system comprise 

approximately 1,000 cells and 302 neurons, respectively [1]. Despite such a small number of neurons, 

information processing flow in this organism occurs in a manner similar to that in higher organisms 

that sense environmental information and control muscles to perform appropriate movements. 

Therefore, this organism has been used herein to investigate the mechanisms of motion pattern 

generation and information processing. The connection structure of the C. elegans neural network has 

already been clarified, and in recent years, the function of each neuron has been clarified by imaging 

technology using fluorescent proteins and electrophysiological measurement technology. However, it 

is difficult to elucidate the information processing mechanism of the neural network using only a 

bottom-up experimental approach. Therefore, a top-down approach using a mathematical model has 

been adopted. However, these models don’t base on the actual connection structure of C. elegans. To 

make a model by the simplifying connection structure may lead to an incorrect interpretation of the 

information mechanism. 

In this study, we construct a neural network model that preserves the actual neural network structure 



and adjust the parameters using a learning algorithm called Backpropagation through time (BPTT) to 

simulate the internal representation of the chemical concentration gradient and the generation of 

forward and backward motion. Then, we clarify the function and feature of the neural circuit of C. 

elegans that contributes to information processing of chemotaxis and motion generation. 

 

1.2 Related Works 

1.2.1 Chemotaxis model and Simulation 

Chemotaxis is one of the fundamental abilities of sensing chemical information and approaching a 

favourable environment based on the sensory information. C. elegans employs two types of 

behavioural strategies to perform chemotaxis. Pirouette is a strategy characterised by a series of 

behaviours starting with backward movement followed by sharp turns to change the travelling 

direction, and its occurrence depends on the chemical gradient parallel to the travelling direction of 

the body[2]. Weathervane represents a strategy of making a gradual curve toward a chemical peak, 

where the curving rate depends on the chemical gradient perpendicular to the travelling direction of 

the body[3]. If multiple sensory neurons are located spatially apart from each other, the gradients could 

be internally represented by the difference between their responses. However, the sensory neurons, for 

example, ASEL and ASER in the case of salt chemotaxis, are located in close proximity at the nose 

tip. Therefore, the neural network is required to calculate and internally represent two types of 



gradients using the temporal responses of the sensory neurons. 

The input to a pair of interneurons (AIYL and AIYR) may play this role, as suggested by a study 

by Kocabas et al.[4], which found that the symmetric input to the neurons changes the frequency of 

pirouette and that the asymmetric input controls the curving rate. In addition, model studies have 

predicted neural processing related to the weathervane strategy. Ferrée et al.[5] constructed a simple 

nonlinear neural-network model to enable weathervane, and also extracted its computational rules 

using the impulse response of a linear neural network[6]. Morse et al.[7] then verified the neural 

network model by navigating a robot to a light source. Izquierdo and Lockery[8] subsequently 

proposed a simplified network structure that could adjust the curving rate from sensory inputs, and 

found that the nonlinearity and self-feedback of motor neurons may serve as key mechanisms for this 

function. Furthermore, their group demonstrated that the neural network model derived from the 

connectome was also able to perform weathervane[9]. Xu et al.[32] proposed a dynamic neural-

network model and simulated attraction and avoidance behaviour; in addition, their group recently 

combined a body dynamics model and a neural network model to enable chemotaxis[10]. 

An understanding of chemotaxis acquired from the previous studies can be interpreted from the 

viewpoint of Marr’s level of analysis[33]. The behavioural analysis[2,3] highlighted the problem at 

the computational level that the chemotaxis is closely related to the chemical gradients in the 

environments. The neural activity measurements[4] revealed the phenomena at the implementational 



level. The simulation approaches[5-10] analysed the information-processing mechanism at the 

algorithmic and implementational levels. However, these approaches did not directly treat the 

algorithm to calculate chemical gradients in the environments, which was explicitly or implicitly 

assumed given in the computational level. In other words, the relationships between the sensory input 

at the nose tip of C. elegans and internal representations of the two types of chemical gradients in the 

environments closely related to the observed strategies have not been formulated explicitly. Therefore, 

a gap exists between computational and implementational levels. Further, most previous models 

focused on revealing the mechanism of the weathervane and did not simulate the pirouette 

simultaneously. 

This dissertation presents a simple and comprehensive computational model based on the 

motion of the animal involved in chemotaxis to bridge the gap of understanding between 

computational and implementational levels. The ability of the computational model to convert sensory 

inputs at the nose tip of C. elegans into internal representations of the chemical gradient parallel and 

perpendicular to the travelling direction was verified using a chemotaxis simulator that can simulate 

the body motions of pirouette and weathervane. The chemotaxis performance of the model was 

compared with previous experimental data[3]. For additional analysis of the implementational level, 

a connectome-based neural network model was constructed to test whether the computation could be 

implemented. Based on these results, we also discuss the relationship between the proposed 



computational model and the findings of the experimental[4] and model[9] studies. 

 

1.2.2 Muscle Activity Generation Model and Simulation 

C. elegans produces various movement patterns by adjusting its whole-body movement according to 

diverse environmental stimuli [1–4]. Thus, the worm is a suitable model animal for investigating the 

mechanism of motion pattern generation. 

The neural circuit structure related to motion generation has been clarified to some extent by 

biological experiments. Chalfie et al. revealed the role of interneurons that control forward and 

backward movement through experiments involving laser irradiation [1]. The anatomical study carried 

out by White et al. successfully mapped the connectome of C. elegans [5], and updated data can be 

accessed through the web database WormAtlas [6]. Figure 1 shows the neuromuscular connectome 

related to movement based on the Connectome database (accessible at https://wormwiring.org/series/). 

Further experimental studies revealed the functions of the neural circuit structure. For example, Wen 

et al. [7] found that proprioceptive feedback is essential for motion generation, and Kawano et al. [8] 

showed that gap junctions are important for motion generation. 

Although the structure and role of neurons related to movement have been clarified by 

experimental methods, explicating the function of the neural circuit requires the measurement and 

interpretation of the activity of each neuron. However, performing these tasks using only a bottom-up 



experimental approach would be extremely difficult. Therefore, a top-down approach using a 

mathematical model has been employed. Niebur and Erdös constructed a body dynamics model 

incorporating the central pattern generator to analyze the forward movement of C. elegans [9], and 

postulated that stretch receptors are important for the generation of movement. Bryden and Cohen 

analyzed the gait generation mechanism of forward movement using a body model incorporating the 

command neuron AVB and motor neurons [10]. An integrated neuromechanical model proposed by 

Cohen’s group [10–12] is often used in recent research to study neuromuscular control. Olivares et al. 

[13] presented a model that incorporates the connectome and verified the existence of both a central 

pattern generator in the ventral nerve cord and the role of command neurons in switching between 

forward and backward motion. Fieseler et al. [14] found that suppression of proprioceptive feedback 

may contribute to the generation of an omega turn. Although various aspects of motion generation in 

C. elegans have been elucidated, these models assigned the same values to the same types of 

connection parameters, which is unrealistic because the synaptic strength follows a modified 

Boltzmann distribution according to observation in the actual animal [15]. This modified Boltzmann 

distribution indicates that the network is sparsely connected, consisting of a large number of weak 

connections and a small number of strong connections. 

In this study, we examined whether the motor neuron and muscle network could generate 

oscillation patterns for both forward and backward movement without imposing the unrealistic 



constraints for the strengths of synaptic and gap connections. The proposed model consists of 

command neurons that control forward and backward movement and motor neurons of classes A, B, 

D, AS, and muscle. Both gap junctions and synaptic connections are included based on the connectome 

data. We assumed on/off outputs of the command neurons based on their role in evoking forward and 

backward movements [1,8], and generated teacher data from measured muscle activities of a strain 

expressing calcium indicator in the body-wall muscle (HRB4). The connection parameters were then 

trained using a supervised algorithm. Finally, the trained model was driven by the untrained input of 

the command neuron to examine its generalizability, and the fit of trained weights to the modified 

Boltzmann distribution was tested. 



 
Figure 1. Structure of the neural network model regarding to chemotaxis in C. elegans. 
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1.3 Content Outline 

The dissertation is organized as follows: 

Chapter 2 describes the neural network model of C. elegans. This model is composed with 

integrate-and-fire neuron model which the membrane potential rises sharply when the time integration 

of the input signal exceeds the threshold value. Imitating the information transmission method of nerve 

cells in an actual organism, input to each neuron is composed with term which represent information 

transmission by synaptic connection and term which represent information transmission by electrical 

connection, and neurons are connected based on construct which is clarified by biologically. The 

strength of the connection is optimized using Backpropagation through time (BPTT), which is a 

learning algorithm for recurrent neural nets. 

In Chapter 3, we propose the computational model that generates an internal representation of the 

chemical concentration gradient which is guessed to be used when C. elegans chemotaxis, and 

simulate this internal representation using the model which proposed in chapter2. Computational 

model shows that bending angle of C. elegans head is needed to generate two types of internal 

representation of chemical concentration gradient which involve in chemotaxis, in addition to the 

chemical concentration sensed by the C. elegans head. As a result of inputting chemical concentration 

and bending angle of head to neural network model and learning the parameters, it is shown that it can 

implement computational model to connectome model of C. elegans. From the results, it was 



suggested C. elegans calculates the chemical concentration gradient by integrating the  chemical 

concentration information which is obtained by shaking the head from side to side and decomposing 

it into a chemical concentration gradient in the direction of movement and the direction of orthogonal. 

Furthermore, we performed a simulation of destroying the nerve cells of the model and compared it 

with the results of biological experiments. From the above, it was suggested that the constructed model 

may be able to predict the results of biological experiments. 

In Chapter 4, we focused on the forward and backward movement of C. elegans. This model is 

composed with interneurons, motor neurons, and muscles, and these are connected by connectome. In 

this simulation, we measured the fluorescence intensity corresponding to muscle activity using 

transgenic strain of C. elegans expressing fluorescent proteins on its body wall muscle, and   learning 

the parameter using this fluorescence intensity as a teacher signal. As a result, it was shown that motor 

neurons and muscles can generate muscle activity patterns corresponding to forward and backward 

according to the commands of interneurons. In addition, as a result of analyzing the parameters of the 

model, trained synaptic weights and conductance weights fitted the modified Boltzmann distribution 

well. It has been reported that the synaptic connection strength of the real organism also follows the 

modified Boltzmann distribution, it has been suggested that this model has the features of the neural 

circuit structure of the real organism. There is no model that has synaptic connection intensity 

distribution features similar to actual organisms and can reproduce the measured fluorescence intensity. 



Therefore, this model may be useful for analysis of the muscle activity generation mechanism. 

Chapter 5 describes the summary of this dissertation and future research topics. 

 

 

  



Chapter 2 

2 Model 

2.1 Introduction 

This chapter is organized as follows: Section 2.2 outlines the neural network model of C. elegans, 

before Section 2.3 details of the training algorithm. 

 

2.2 Neural Network Model 

The neural network model was defined based on the actual connection structure derived from 

WormAtlas[34] considering both synaptic connections and gap junction. The dynamic characteristic 

of a neuron is given as follows: 

𝑥௜(𝑡 + 1) =
1

1 + 𝑇௦𝜏௜
𝑥௜(𝑡) +

𝑇௦

1 + 𝑇௦𝜏௜
ቐ ෍ 𝑤௜௝𝑦௝(𝑡)

௡ା௠

௝ୀଵ

+ ෍ 𝑔௜௝

௡

௝ୀଵ

ቀ𝑥௝(𝑡) − 𝑥௜(𝑡)ቁቑ

+
1

1 + 𝑇௦𝜏௜
ቐ ෍ 𝑤௜௝

ௗ (𝑦௝(𝑡)

௡ା௠

௝ୀଵ

− 𝑦௝(𝑡 − 1))ቑ, 

(1) 

𝑦௜(𝑡) =
1

1 + exp൫−𝑥௜(𝑡)൯
, (2) 

where 𝑥௜(𝑡 + 1) corresponds to the electrical current to the i-th neuron, 𝑦௜(𝑡) corresponds to 

the membrane potential, 𝑇௦  is the sampling time, 𝜏௜  is the time constant caused by leakage 

current, 𝑤௜௝ , and 𝑤௜௝
ௗ   are the chemical synapse connection strengths from the j-th to the i-th 

neuron, 𝑔௜௝ = 𝑔௝௜ is the conductance of a gap junction, n is the total number of neurons, and m 

 



is the total input number. 

 
 

2.3 Training Algorithm 

Adjustments of chemical synapse connections 𝑤௜௝, 𝑤௜௝
ௗ  and gap junctions 𝑔௜௝, and time constant 𝜏௜ 

were performed using back-propagation through a time algorithm, which uses the chain-rule of partial 

differential on the following evaluation function:  

𝐸 =
1

𝑇

1

𝑛
෍ ෍

1

2
𝜇௜൫𝑑௜(𝑡) − 𝑦௜(𝑡)൯

ଶ
௡

௜ୀଵ

்

௧ୀଵ

, (3) 

where 𝜇௜ = 1  if index i corresponds to the neuron that outputs a gradient either parallel or 

perpendicular to the traveling direction; otherwise 𝜇௜ = 0, 𝑑௜(𝑡) is the target gradient that is desired 

to be outputted from the corresponding neuron, and T is the maximum step number of the simulation 

time. BPTT updates each parameter in a particular direction to minimize the evaluation function, 

which is determined by partial differentiation of the evaluation function for the corresponding 

parameter.  

The parameters 𝑤௜௝ , 𝑤௜௝
ௗ  , 𝑔௜௝  and 𝜏௜  are then iteratively updated based on the partial 

differential of E by the following equations:  

𝑤௜௝ ← 𝑤௜௝ − 𝜂௪

𝜕𝐸

𝜕𝑤௜௝
, (4) 

𝑤௜௝
ௗ ← 𝑤௜௝

ௗ − 𝜂௪೏

𝜕𝐸

𝜕𝑤௜௝
ௗ , (5) 

𝑔௜௝ ← 𝑔௜௝ − 𝜂௚ ቆ
𝜕𝐸

𝜕𝑔௜௝
+

𝜕𝐸

𝜕𝑔௝௜
ቇ , (6) 



𝜏௜ ← ቐ
𝜏௜ − 𝜂ఛ

𝜕𝐸

𝜕𝜏௜
     𝜏௜ > 0

            0            𝜏௜ ≤ 0

, (7) 

where 𝜂௪,𝜂௪೏,𝜂௚, 𝜂ఛ represent the learning rate. As shown in the above equations, the gap junction is 

constrained to 𝑔௜௝ = 𝑔௝௜, and the time constant is constrained to 𝜏௜ > 0.  

The error gradient for 𝑤௜௝, 𝑤௜௝
ௗ , 𝑔௜௝ and 𝜏௜ are given by the following variation equation each 

other, and the weights are updated in a batch using. 
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Where error gradient 
డா

డ௫೔(௧)
 is given by the following equation. 
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Chapter 3 

3 Chemotaxis Model and Simulation 

3.1 Introduction 

This chapter is organized as follows: Section 3.2 describes the proposed chemotaxis simulator which 

consist with environmental model, multibody model, and neural network model. Section 3.3 is the 

result of the simulation and we discuss the result in Section 3.4. Finally, Section 3.5 concludes the 

chapter. 

 

3.2 Materials and methods 

3.2.1 A Simple Computational Model 

Behavioural experiments revealed that pirouette and weathervane strategies are closely related to the 

chemical gradients parallel and perpendicular to the travelling direction[2,3], respectively, but how 

can these gradients related to the traveling direction be obtained by using only the information 

accessible by the animal? To answer this question, we focused on the fact that ASEL/R responds to 

the time derivative of NaCl concentration, and the time derivative can be approximated by a directional 

derivative (see S2 Appendix 2 for the detailed derivation process). The internal representation of the 

gradients can then be obtained by decomposing the directional derivative of NaCl concentration sensed 

at the nose tip into the directional components parallel and perpendicular to the travelling direction. 



Based on this idea, a computational model is derived by using the directional derivative and first mean 

value theorem for definite integrals. The derived computational model is expressed by equations (13) 

and (14), to describe the relationships between the chemical concentration sensed at the nose tip and 

the internal representations of the chemical gradient in the environments, respectively. 

 

𝑑𝑦௣

𝑑𝑡
= −𝑎௣𝑦௣ + 𝑏௣

𝑑𝑐(𝒙𝟎, 𝑡)

𝑑𝑡
+ 𝜖௣,                  (13) 

𝑑𝑦௪
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= ൞
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𝑑𝑐(𝒙𝟎, 𝑡)

𝑑𝑡
+ 𝜖௪     (𝑞଴ > 0)

−𝑎௪𝑦௪ − 𝑏௪

𝑑𝑐(𝒙𝟎, 𝑡)

𝑑𝑡
+ 𝜖௪     (𝑞଴ ≤ 0)

,                
(14) 

 

where 𝑦௣ and 𝑦௪ are the internal representations of the gradients parallel and perpendicular to the 

travelling direction at the body centre, respectively, and q0 is the head-bending angle (cf. Materials 

and Methods; Multibody model); 𝑎௣ and 𝑎௪ are the reciprocals of the time constants that smooth the 

time derivative of the NaCl concentration sensed at the nose tip, and 𝑏௣ and 𝑏௪ are the gain constants 

to scale the inputs. The parameters in the model were adjusted and then set as follows: 

𝑎௣ = 0.58, 𝑎௪ = 0.73, 𝑏௣ = 1.20, 𝑏௪ = 1.46 . Because the derivation process involves several 

assumptions and approximations, we use 𝜖௣  and 𝜖௪  to express the accumulated approximation 

errors (see S2 Appendix 2). 

 The computational model can be interpreted as follows: Equation (13) works as a low-pass filter 

to eliminate the head-bending component, and equation (14) allows the comparison of the NaCl 



concentration between the ventral and dorsal sides using head-bending angles required to calculate the 

internal representation of the gradient perpendicular to the travelling direction (note that C. elegans 

lies on its side and navigates by dorsoventral motions). 

 To test the computational model, a chemotaxis simulation involving both weathervane and 

pirouette strategies was performed by using a multibody model of C. elegans and the chemical 

environmental model. 

 

3.2.2 Neural Network Model 

The neural network model shown in Fig. 1 was defined based on the actual connection structure 

derived from WormAtlas[34] considering both synaptic connections and gap junction, and neurons 

included in the model were derived from Iino and Yoshida (2009)[3]. The model receives inputs of the 

head-bending angles and NaCl concentration at the nose tip of the multibody model from RIV(L/R) 

and amphid sensory neurons ASE(L/R), respectively. The ASEL and ASER responses are determined 

from the previous experimental data[11] and sent to the interneurons in both amphid and nerve ring. 

To facilitate the evaluation of implementability of the computational model on the neural network, we 

assumed that the interneurons could directly generate the gradients, although previous studies[4,8,9] 

have suggested that these gradients are not directly coded in the C. elegans neural network. In this 

case, PVC(L/R) and AVB(L/R) interneurons were assumed to output the gradient parallel to the 



travelling direction because these neurons are responsible for controlling forward motion[12] and may 

inhibit backward motion followed by a sharp turn. Additionally, interneurons RIA(L/R) and AIZ(L/R) 

were assumed to output the gradient perpendicular to the travelling direction because these neurons 

control head bending[35], which can generate turning bias. The following equations give a 

mathematical definition of the neural network model: 

The dynamic characteristic of a neuron is given as follows: 

 

𝑢௜(𝑡 + 1) =
1

1 + 𝑇௦𝜏௜
𝑢௜(𝑡) +

𝑇௦

1 + 𝑇௦𝜏௜
ቐ ෍ 𝑤௜௝𝑧௝(𝑡) + ෍ 𝑠௜௝ ቀ𝑢௝(𝑡) − 𝑢௜(𝑡)ቁ

௡

௝

௡ା௠

௝

ቑ 

+
1

1 + 𝑇௦𝜏௜
ቐ ෍ 𝑤௜௝

ௗ ቀ𝑧௝(𝑡) − 𝑧௝(𝑡 − 1)ቁ

௡ା௠

௝

ቑ, 
(15) 

𝑈௜(𝑡 + 1) =
1

1 + exp൫−𝑢௜(𝑡 + 1)൯
,   (16) 

 

where 𝑢௜(𝑡)  corresponds to the electrical current to the i-th neuron, 𝑈௜(𝑡)  corresponds to the 

membrane potential, 𝑇௦ is the sampling time, 𝜏௜ is the time constant caused by leakage current, 𝑤௜௝, 

and 𝑤௜௝
ௗ  are the chemical synapse connection strengths from the j-th to the i-th neuron, 𝑠௜௝ = 𝑠௝௜ is 

the conductance of a gap junction, n is the total number of neurons, and m is the total input number. 

Additionally, 𝑧௝(𝑡) = 𝑢௝(𝑡)  when 𝑗 ≤ 𝑛 , and 𝑧௝(𝑡) = 𝐼௝ି௡(𝑡)  when 𝑛 < 𝑗 ≤ 𝑛 + 𝑚  where 𝐼௝(𝑡) 

is the external input including NaCl concentration and head-bending angle q0(t).  

ASER and ASEL neurons were modelled based on the experimental data[11] as follows: 



 

𝐼ଵ(𝑡) = ൞
𝑎௅ log ൬𝑏௅

𝑑𝑐

𝑑𝑡
+ 1൰     (

𝑑𝑐

𝑑𝑡
> 0)

0                                     (
𝑑𝑐

𝑑𝑡
≤ 0)

,  (17) 

𝐼ଶ(𝑡) = ൞
𝑎ோ

ା log ൬𝑏ோ
ା

𝑑𝑐

𝑑𝑡
+ 1൰     (

𝑑𝑐

𝑑𝑡
> 0)

𝑎ோ
ି log ൬𝑏ோ

ି
𝑑𝑐

𝑑𝑡
+ 1൰      (

𝑑𝑐

𝑑𝑡
≤ 0)

 ,       (18) 

 

where I1(t+1) and I2(t+1) represent inputs to ASEL and ASER neurons, respectively. dc/dt is the NaCl 

concentration time derivative at the nose tip. The parameters 𝑎௅ , 𝑏௅ , 𝑎ோ
ା, 𝑏ோ

ା, 𝑎ோ
ି, 𝑏ோ

ି are adjusted to fit 

the response peaks of ASEL and ASER neurons. Figure 2 shows the fitting results, which confirms 

that the model could generate a response similar to the experimental data[11]. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Measured peak responses and the input to the model. 

(a) shows the input to ASEL. (b) shows the input to ASER. 

 

 

  



 Adjustments of chemical synapse connections wij and gap junctions sij were performed using 

back-propagation through a time algorithm, which uses the chain-rule of partial differential on the 

following evaluation function: 

𝐻 =
1

2
෍ ෍ 𝜇௜൫𝑈௜(𝑡) − 𝑑௜(𝑡)൯

ଶ
,

௡

௜ୀଵ

்

௧ୀଵ

 (19) 

where 𝜇௜ = 1  if index i corresponds to the neuron that outputs a gradient either parallel or 

perpendicular to the traveling direction; otherwise 𝜇௜ = 0, 𝑑௜(𝑡) is the target gradient that is desired 

to be outputted from the corresponding neuron. The chemical gradient is normalised to produce 𝑑௜(𝑡) 

by using the following equations as the output values of a neuron model are in the range of [0, 1]. 

𝑑௜(𝑡) =
𝑐఍(𝑡) − min

௧
ቀ𝑐఍(𝑡)ቁ

max
௧

ቀ𝑐఍(𝑡)ቁ − min
௧

(𝑐఍(𝑡))
 , (20) 

where 𝑐఍   is a gradient either parallel or perpendicular to the traveling direction. The parameters 

𝑤௜௝ , 𝑠௜௝ , 𝜏௜  are then iteratively updated based on the partial differential of H by the following 

equations: 

𝑤௜௝ ← 𝑤௜௝ − 𝜂௪

𝜕𝐻

𝜕𝑤௜௝
, (21) 

𝑠௜௝ ← 𝑠௜௝ − 𝜂௚ ቆ
𝜕𝐻

𝜕𝑠௜௝
+

𝜕𝐻

𝜕𝑠௝௜
ቇ, 

(22) 

𝜏௜ ← ቐ
𝜏௜ − 𝜂ఛ

𝜕𝐻

𝜕𝜏௜
, 𝜏௜ > 0

0 𝜏௜ ≤ 0

, (23) 

where 𝜂௪,𝜂௚, 𝜂ఛ represent the learning rate. As shown in the above equations, the gap junction is 

constrained to 𝑠௜௝ = 𝑠௝௜, and the time constant is constrained to 𝜏௜ > 0.  

 



3.2.3 Multibody Model 

C. elegans body was approximated using a multibody model, as shown in Fig. 3, defined by the 

following Newton-Euler equations based on a previous study[13]: 

𝑰(𝒒)
𝑑ଶ𝒙

𝑑𝑡ଶ
+ 𝒉 ൬𝒒,

𝑑𝒒

𝑑𝑡
൰ + 𝒈(𝒒) = 𝝆 + ෍ 𝑱௝

்𝑭௝

௝

, (24) 

𝑰𝑔(𝒒)
𝑑2𝒙𝑔

𝑑𝑡2
+ 𝒉𝑔 ൬𝒒,

𝑑𝒒

𝑑𝑡
൰ + 𝒈

𝑔
(𝒒) = ෍ 𝑭𝑗

𝑗

, (25) 

where 𝒙 = [𝑥௜ , 𝑦௜]𝐓 represents the i-th body centroid position, 𝒙𝐠 = ൣ𝑥௚ , 𝑦௚൧
𝐓
 represents the body 

centre position, 𝒒 = [𝑞଴, 𝑞ଵ, ⋯ , 𝑞௅ିଵ]୘ represents the angles between adjacent modules, 𝑰(𝒒) and 

𝑰୥(𝒒) represent the inertia matrix, 𝒉 ቀ𝒒,
ௗ𝒒

ௗ௧
ቁ and 𝒉୥ ቀ𝒒,

ௗ𝒒

ௗ௧
ቁ are centrifugal and Coriolis force terms, 

𝒈(𝒒)  and 𝒈𝐠(𝒒)  are gravity force terms, 𝝆 = [𝜌଴, 𝜌ଵ, ⋯ , 𝜌௅ିଵ]୘  is the driving torque generated 

from the motors, 𝑭𝒋 = [𝐹்,௝ , 𝐹ே,௝] is the friction vector between the floor and the j-th body, and 𝑱𝒋 is 

the Jacobian matrix. Please note that we omit the explicit notation of time dependence of the variables 

for simplification, but all variables depend on time in equations (24) and (25).The parameters related 

to inertia, centrifugal, Coriolis, and gravity forces are determined based on animal size and weight 

(Tables in S1 Appendix 1). The friction forces were determined based on the average velocity of the 

animal on the chemotaxis plate (0.12 mm/s)[3].  



 

Figure 3. Body of C. elegans and the multibody model. 
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3.2.4 Environmental Model 

The environmental model and its parameters were derived from a previous study[3]. NaCl 

concentration at an arbitrary position x can be calculated by solving Fick’s equation as follows: 

𝑐(𝑥, 𝑡) = 𝑁଴ ෍
exp ൬−

|𝒙 − 𝒙௞|
𝑟ଵ𝐷𝑡

൰

𝑟ଶ𝐸𝐷𝑡

௄

௞ୀଵ

 
(26) 

where 𝑁଴ is the NaCl solution concentration, D is the NaCl diffusion coefficient, E is the agar plate 

thickness, and xk is the coordinate of the k-th NaCl point.  

 Chemotaxis simulations were performed after 3600 s of NaCl diffusion, with each being 

performed for 1200 s and repeated 10 times using the multibody model. Notably, NaCl continued to 

diffuse during the simulation based on equation (26). 

 

3.3 Results 

3.3.1 Chemotaxis Simulation using Multibody Model 

To evaluate the computational model represented by equations (13) and (14), it is necessary to 

determine the true chemical concentration at the nose tip and responses of sensory neurons (ASEL and 

ASER) as well as internal representations of the gradient. However, it is difficult to retrieve this 

information using experimental approaches. Therefore, we constructed a chemotaxis simulator 

including a multibody model that can perform motions related to pirouette and weathervane and an 

environmental model that can simulate the NaCl distribution on the agar plate (cf. Materials and 



methods, Chemotaxis simulator). This method enables the verification of the computational model at 

the behavioural level without measurement of internal representations of the gradients in the actual 

neural network. Fig. 4(a) shows travelling path examples of the body centre obtained by chemotaxis 

simulation using the chemotaxis simulator. The chemotaxis simulation was repeated 10 times. In this 

simulation, the internal representation of the gradients parallel and perpendicular to the travelling 

direction were calculated using the computational model (equations (13) and (14)), and the calculated 

values were used to control the motion of the body model to perform pirouette and weathervane. The 

average travelling speed of the model was 1.28 ± 0.09 mm/s, which is consistent with the experimental 

data[3]. Figure 4(b) compares the chemotaxis index between the body model and the animals. Based 

on the previously defined chemotaxis index[3], it is calculated as (Tin−Tout)/Ttotal, where Tin is the time 

spent within ඥ(2/π) cm from any NaCl peak, Tout is time spent outside the area, and Ttotal is the total 

simulation and experiment time, which is 1200 s in this case. The figure confirms a chemotaxis index 

of 0.64 ± 1.38 for the simulation. A comparison between the multibody model and the animal is 

presented in S3 Supplemental information from the following aspects: the pirouette motion of the 

multibody model, a relationship between the curving rate and the gradient perpendicular to the 

traveling direction, a relationship between the bearing angles and the sharp turn angle, and evaluation 

of the error caused by converting body postures into the travelling path by using the multibody model. 

 



 

Figure 4. Chemotaxis simulation using the multibody model.  

(a) Schematic of four examples of chemotaxis paths out of 10 simulations. The body model was placed 

at the centre of the field and chemotaxis simulation was performed for 1200 s. The resultant paths of 

the body centre are shown as solid dark lines. The small red circles with the solid line indicate the 

NaCl peaks and the circles with the broken line indicate the threshold distance used to calculate the 

chemotaxis index[3]. (b) Chemotaxis indices of the simulation and the animal. The error bar represents 

the standard deviation of 10 simulations. 

  



The true values of the gradients parallel and perpendicular to the travelling direction, denoted as 

𝑦௣
ீ and 𝑦௪

ீ, respectively, were then geometrically calculated based on the chemotaxis simulation path 

of the body centre, as described in Materials and Methods (Geometrical calculations of NaCl gradient), 

and compared with the internal representation of the gradients calculated using the computational 

model (equations (13) and (14)). Figure 5 shows comparison examples. The figure confirms a high 

correlation of r = 0.91 (p < 0.01) and r = 0.89 (p < 0.01) for the gradients parallel and perpendicular 

to the travelling direction, respectively. The average correlations over 10 chemotaxis simulations were 

r = 0.90 ± 0.03 and r = 0.91 ± 0.02, and the average root mean square error (RMSE) values were 1.71 

± 0.32 × 10−6 mM/s and 0.14 ± 0.01 × 10−3 mM/cm, for the respective gradients. 



 

Figure 5. Comparison of the internal representation of the gradients generated by the 

computational model and geometrically calculated gradient (true value). 

Black lines indicate the true gradients geometrically calculated from the chemotaxis path shown in the 
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upper left side of Fig. 4.  

(a) NaCl concentrations at the nose tip of the multibody model and time differential of the 

concentration corresponding to dc/dt in equations (13) and (14). Spikes observed in the time 

differential of the NaCl concentration are caused by backward movement for the initiation of pirouette. 

(b) Comparison of the gradient parallel to the travelling direction. The correlation is r = 0.91 (p < 0.01) 

and RMSE is 1.78 × 10−6 mM/s. 

(c) Comparison of the gradient perpendicular to the travelling direction. The correlation is r = 0.89 (p 

< 0.01) and RMSE is 0.15 × 10−3 mM/cm.  

  



The computational model was derived based on several assumptions and approximations 

regarding the inputs. We thus tested input (𝑞଴, 𝑑𝑐(𝒙଴, 𝑡)/𝑑𝑡) dependency of the errors, as shown in 

Fig. 6. Here, the errors are defined as 𝑒௣ = 𝑦௣
ீ − 𝑦௣  and 𝑒௪ = 𝑦௪

ீ − 𝑦௪ , respectively, for the 

gradient parallel and perpendicular to the travelling direction. The figure confirms low correlations 

between the inputs and the errors. The average correlations of the 10 simulation results are as follows: 

𝑞଴ vs 𝑒௣: 0.01± 0.02 

𝑑𝑐(𝒙଴, 𝑡)/𝑑𝑡 vs 𝑒௣: 0.08± 0.05 

𝑞଴ vs 𝑒௪: 0.01± 0.02 

𝑑𝑐(𝒙଴, 𝑡)/𝑑𝑡 vs 𝑒௪: 0.1± 0.06 

*p < 0.001 for all correlations 

These results demonstrate low correlations between the errors and inputs, indicating almost no 

input dependency. 



 

Figure 6. Input dependency of error in gradients parallel and perpendicular to the traveling 

direction.  

Errors between the gradients calculated geometrically and those generated by the computational model 

are plotted against the inputs to the computational model. The errors and inputs are obtained from the 

chemotaxis simulation results shown in the upper left part of Fig. 4(a). 
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3.3.2 Generating Internal Representations of Chemical 

Gradient using Neural Network Model 

The computational model indicates that generating the internal representation of NaCl gradients 

requires the time derivative of NaCl concentration at the nose tip and head-bending angle. We thus 

tested whether the connectome-based neural network exhibited the ability to generate the internal 

representations from this information. A neural network model was constructed based on the neural 

connection structure derived from WormAtlas[34] and neurons included in the model were chosen 

based on those treated in Iino and Yoshida (2009)[3]. The simulation results were then compared with 

the computational model described by equations (13) and (14). The structure of the network model is 

shown in Fig. 1.  

 The model considers the response characteristics of sensory neurons ASEL and ASER using 

equations (17)–(18) (cf. Materials and Methods, Neural network model) based on measured data[11]. 

In addition, although previous studies[2,4,5] suggested that the gradients are not directly coded in the 

neural network of C. elegans, to facilitate the evaluation of the implementability of the computational 

model in the neural network, we assumed that the interneurons explicitly represent these gradients. In 

this case, PVC(L/R) and AVB(L/R) interneurons were assumed to output the gradient parallel to the 

travelling direction because these neurons are responsible for controlling forward motion[12] and may 

inhibit backward motion followed by a sharp turn. In addition, the RIA(L/R) and AIZ(L/R) 



interneurons were assumed to output the gradient parallel to the travelling direction because these 

neurons control head bending[36,14], which can generate turning bias. The model considers both 

chemical synapse connections and gap junctions; these connection weight parameters were trained 

using back-propagation through a time algorithm[15] modified to simultaneously train the parameters 

of both gap junctions and chemical synapses. The training datasets were generated using data from the 

chemotaxis simulation performed using the multibody model, wherein the inputs were the NaCl 

concentration sensed at the nose tip of the multibody model and the head-bending angles, and the 

teacher signals comprised true chemical gradients that were geometrically calculated from the path of 

the body centre obtained from the chemotaxis simulation. 

Figure 8a and b show an example of comparison results between the output of the trained neural 

network model and the true chemical gradients, where the data in the time interval of 0–300 s are used 

for training the neural network and the data in the remaining 300 s are used to validate generality. The 

result confirmed the correlations of r = 0.94 (p < 0.01) and r = 0.99 (p < 0.01) for the gradients parallel 

and perpendicular to the travelling direction in the training interval, and r = 0.92 (p < 0.01) and r = 

0.95 (p < 0.01) for the gradients parallel and perpendicular to the travelling direction in the validation 

interval, respectively. The average correlations over 10 chemotaxis simulation datasets were r = 0.91 

± 0.04 and r = 0.97 ± 0.03 for the gradients parallel and perpendicular to the travelling direction in the 

training interval, and r = 0.89 ± 0.04 and r = 0.91 ± 0.03 for the gradients parallel and perpendicular 



to the travelling direction in the validation interval, respectively. It should be noted that the gradients 

were normalised to a range of [−0.5, 0.5] considering the output range of the sigmoid function used in 

the neural network model. 

  



 
Figure 7. Comparison between the outputs of the connectome-based neural network (coloured 

lines) and true values of gradients (black lines).  

The y-axis shows the NaCl gradient normalised to a range of [−0.5, 0.5] and the x-axis represents time 

in seconds. The grey highlights indicate the time interval (from 0 to 300 s) used as training data, and 

the remaining intervals are for validation. 

(a) Comparison of the output of PVCL and the gradient parallel to the travelling direction. (b) 

Comparison of the output of AIZL and the gradient perpendicular to the travelling direction.  
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Finally, we compared the computational model with the neural network model. For this 

comparison, the outputs of the computational model (equations (13) and (14)) were calculated for the 

10 chemotaxis-simulation datasets using the previously described parameters. Figure 9(a) and (b) 

show examples of the outputs of the neural-network model and the computational model. Figure 9(c) 

shows the correlations between the outputs of the neural network model and those of the computational 

model where the average correlations were r = 0.93 ± 0.04 for both gradients parallel and perpendicular 

to the travelling direction and p < 0.01 for all simulation datasets.  

 



 
Figure 8. Comparison among the true gradients, the outputs of the neural network model, and 

the outputs of the computational model. 

(a) shows the comparison of the gradients parallel to the travelling direction. (b) shows the comparison 

of the gradients perpendicular to the travelling direction. (c) shows the average correlation between 

the neural network model and the computational model. The average correlations were calculated 

using 10 chemotaxis simulation results partially shown in Fig. 4. The error bars represent the standard 

deviations. 
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3.3.3 Ablation Simulation 

The trained model was used to simulate laser ablation experiments. The output of ASEL and ASER 

neurons were respectively fixed to 0, which corresponds to their laser ablation. Figure 10(a) show 

comparison of the average correlation of simulation and experimental pirouette index values, and Fig. 

10(b) show that comparison of the average correlations to weathervane index values. This result shows 

that the ASER sensory neuron is more important for salt chemotaxis than the ASEL sensory neuron. 

 

 

 



 

Figure 9. Laser ablation simulation.  

The blue bars represent the average correlation between the model outputs and true values of the NaCl 

gradient and the error bars indicate the standard deviations. The red bars represent experimental results 

derived from the literature [3]. (a) Comparison of the average correlation of simulation and 

experimental pirouette index values and (b) comparison of the average correlations to weathervane 

index values. Bonferroni correction was applied for multiple comparisons.  

  



3.4 Discussion 

i. Relationship between NaCl concentration at the nose tip and the internal 

representations of chemical gradients 

This dissertation presents the computational model that can describe the relationships between the 

chemical concentration sensed at the nose tip of C. elegans and the internal representations of chemical 

gradients closely related to pirouette and weathervane strategies, and tests if the computational model 

is implementable in the connectome-based neural network model. This analysis concept is based on 

Marr’s level of analysis where the computational model corresponds to the analysis on the 

computational level, and the neural network simulation corresponds to the analysis on the 

implementational level. 

To verify the computational model, we constructed a chemotaxis simulator which includes the 

environment model expressing NaCl distribution and the multibody model of C. elegans. The results 

shown in Fig. 4 and the supplemental data indicate that the chemotaxis simulator has the ability to 

simulate the behaviour during chemotaxis, and is therefore applicable for testing equations (13) and 

(14). Figure 5 then confirms that equations (13) and (14) could convert the NaCl concentration sensed 

at the nose tip into the internal representation of the NaCl gradient parallel and perpendicular to the 

travelling direction. Equation (14) indicates that generating the internal representation of the gradient 

perpendicular to the travelling direction requires the head-bending angle. It is commonly considered 



that head bending is generated by a central pattern generator[16] involving stretch receptors[37]; thus, 

its information may be obtained through these neurons. 

The derivation process (see S2 Appendix 2) shows that the directional decomposition of the time 

derivative of NaCl concentration requires cosine (symmetric) and sine (asymmetric) functions of the 

head-bending angle, respectively, for parallel and perpendicular to the travelling direction. Similar 

decomposition process could be performed in the pair of AIY neurons or their upstream neurons 

because the results of an experimental study[4] indicated that the symmetric input of the pair of AIY 

neurons controls the pirouette frequency and the asymmetric input controls the gradual turn 

(weathervane). 

In addition, one of the findings of the model study by Izquierdo & Beer[9] indicated that the 

asymmetrical response characteristics of the ventral and dorsal motor neurons are required to perform 

gradual turns (weathervane). That is, the response characteristic of either side of the motor neuron 

would be shifted to the region of lower sensitivity and the other side to that of higher sensitivity, by 

the sensory input, so that the motor neurons generate a biased sinusoidal wave to regulate body motion. 

From the computational model (equation (14)), it can be interpreted that the motor neurons perform 

the directional decomposition, and the gradient parallel to the travelling direction is coded in the 

motion of the animal.  

As described above, the proposed computational model suggests that both findings obtained from 



the observation of AIY neurons and motor neurons in the simulation could be explained by directional 

decomposition. From the viewpoint of Marr’s level of analysis, the computational model can bridge 

the gap between the problem defined in the computational level and implementational level. 

 

ii. Generating internal representations of chemical gradients based on the neural 

network structure of C. elegans. 

Figure 8 confirms that the training algorithm successfully adjusted the parameters of the neural 

network model and that it could internally represent gradients with respect to the travelling direction 

using the NaCl concentration sensed at the nose tip and the head-bending angle. High correlations 

between the respective gradients generated by the computational model, neural network model, and 

geometrical calculation (shown in Fig. 9) indicate that the computational model can be implemented 

in the connectome-based neural network. 

 

3.5 Conclusion Remarks 

In this study, a simple and comprehensive computational model was derived to convert the response 

of a single sensory input into two types of internal representations of the NaCl gradient parallel and 

perpendicular to the travelling direction and enabled simultaneous simulation of the pirouette and 

weathervane strategies. The derived computational model suggests that internal representations of the 

gradients can be generated by combining head-bending angles and sensory input from ASEL/R 



neurons. It could also be used to interpret the functions of AIY neurons and motor neurons, respectively, 

identified in previous experimental[4] and simulation studies[9] and thus can bridge the gap between 

the chemotaxis problems at the computational and implementational levels. 

The connectome-based neural network model included in the chemotaxis simulator demonstrated 

that the computational model could be implemented in it, although the coding manner of the chemical 

gradient might differ from that of the actual animals. The connectome-based neural network model 

may allow further analysis of the functions of respective neurons by introducing the biological 

constrictions and measured neural activities and by simulating ablation experiments. 

  



Chapter 4 

4 Muscle Activity Generation Model and 

Simulation 

4.1 Introduction 

This chapter is organized as follows: Section 4.2 describes the how to make teacher signal using C. 

elegans expressing fluorescent proteins on its body wall muscle and connectome-based motor neuron 

and muscle model. Section 4.3 is the result of the simulation and we discuss the result in Section 3.4. 

Finally, Section 3.5 concludes the chapter. 

 

4.2 Materials and Methods 

4.2.1 Fluorescent Amount Associated with Muscle Activity 

To clarify the relationship between muscle activities and local body-bending angles, we recorded a 

video of an animal freely moving on an agar plate by using a stereomicroscope. In this section, we 

describe the experimental and analysis methods. 

 

i. Strain 

In this study, we employed a transgenic strain (HBR4: goeIs3[pmyo-3::GCamP3.35::unc-54-3' 

utr, unc-119(+)]V) [38] of C. elegans expressing fluorescent proteins on its body wall muscle. The 

animals were cultured in an incubator at 20 degrees Celsius [39] over three days after hatching on the 



Nematode Growth Media (NGM) agar plate on which Escherichia coli (E. coli) OP50 was spread. The 

C. elegans strain and E. coli were obtained from the Caenorhabditis Genetics Center (University of 

Minnesota). 

 

ii. Video Recording 

We transferred an animal to the NGM agar plate one by one. Video recording was performed in a dark 

room using an epifluorescence microscope (SZX16, Olympus, Tokyo, Japan) on which an LCD digital 

camera (EX-F1, Casio computer, Tokyo) was mounted. The settings of the stereomicroscope and 

recording conditions are as follows. 

> Settings of stereomicroscope 

Objective lens ratio: 6.4 

Excitation light source: Xenon lamp 

Filter: Band-pass filter at wavelengths of 490–560 nm 

> Recording conditions 

Resolution: 480 × 640 [pixel] 

Frame rate: 29.97 [fps] 

 

 



iii. Extracting Local Bending Angles 

This section explains the procedures used to extract the local body-bending angles and fluorescence 

intensity at the corresponding location from the recorded video images.  

First, we binarized the video images and tracked the body using an image processing software 

(MoveTr2D; Library, Tokyo, Japan) and worm-tracking software (Wriggle Tracker; Library, Tokyo, 

Japan), respectively. To binarize the video image, the weighted sum of RGB components, R(x,y), 

G(x,y), and B(x,y), at pixel coordinates (x,y) was calculated using the following equation for each 

frame. 

𝐹(𝑥, 𝑦) = 𝑤௥𝑅(𝑥, 𝑦) + 𝑤௚𝐺(𝑥, 𝑦) + 𝑤௕𝐵(𝑥, 𝑦), (27) 

𝑌(𝑥, 𝑦) = ൜
1  (𝐹(𝑥, 𝑦) < 𝐹௧௛)

0  (𝐹(𝑥, 𝑦) ≥ 𝐹௧௛)
, (28) 

where 𝐹௧௛  is the threshold parameter, and 𝑤௥ , 𝑤௚ , 𝑎𝑛𝑑 𝑤௕  represent the weights of the RGB 

components. These parameters were determined by trial and error. The noise in the video image was 

removed by dilation and erosion processing, followed by the application of a median filter. The pixel 

with 𝑌(𝑥, 𝑦) = 0 was considered as a part of the body, as shown in Fig. 11. 

Binarized image 𝑌ᇱ(𝑥, 𝑦) of the body was thinned and divided into n equal points. The local body-

bending angle, 𝜃௜(𝑡) , was then calculated from the coordinates of three adjacent dividing points, 

𝒑௜ିଵ, 𝒑𝒊, 𝑎𝑛𝑑 𝒑௜ାଵ (𝒑௜ = (𝑥௜ , 𝑦௜), 𝑖 = 2,3, … , 𝑛 − 1)),  at each sampling time t. Angular velocity 

𝜃̇௜(𝑡) and angular acceleration 𝜃̈௜(𝑡) were calculated by applying a time differential filter once and 



twice, respectively. 

  



 
Figure 10. Fluorescence image and binarized image 

 

 
Figure 11. Measurement of distance di,l and configuration of the quadrangle for fluorescence 

strength extraction in the experimental and analysis methods 

  



iv. Extracting Fluorescence Intensity 

Based on the midpoint of the straight line connecting two adjacent dividing points, vertical unit vector  

𝑣௜ = (𝑎௜ , 𝑏௜)  was calculated with respect to the straight line, as shown in Fig. 12, and distance 

𝑑௜,௟(𝑙 ∈ D, V) from the midpoint to the outside of the body was measured, where D represents dorsal, 

and V represents ventral. We defined a unit sign scalar, 𝛿 ∈ {+1, −1}, and scanned coordinates 𝒉௞ =

(𝒑௜ିଵ + 𝒑௜)/2 + 𝑘𝛿𝒗௜ by incrementing k (𝑘 = 1,2, … , 𝐾). The distance was then defined as 𝑑௜,௟ =

𝑘𝛿 when 𝑌′(𝒉௞ିଵ) = 1 changed to 𝑌ᇱ(𝒉௞) = 0. If 𝑌′(𝒉௞) did not change to 0 after scanning up to 

K or if 𝑌ᇱ(𝒉଴) = 1 at k = 0, the video image was considered unanalyzable and the frame was skipped. 

Because the animal moved on the agar surface by alternately contracting and relaxing the ventral and 

dorsal muscles, we measured 𝑑௜,௟  in both the positive and negative directions of 𝛿 and assigned the 

distance to either the dorsal or ventral sides.  Based on 𝒑௜  and corresponding distance 𝑑௜,௟ , a 

quadrilateral with vertices’ coordinates 𝑨௜,௟ , 𝑩௜,௟ , 𝑪௜,௟ , 𝒂𝒏𝒅 𝑫௜,௟ was created on the video image, as 

shown in Fig. 12, where ൫𝑨௜,௟ = 𝒑௜ + 𝒑௜ିଵ/2, 𝑩௜,௟ = 𝑨௜,௟ + 𝛿𝑑௜,௟𝒗௜ , 𝑪௜,௟ = 𝑫௜,௟ + 𝛿𝑑௜,௟𝒗௜ାଵ, and𝑫௜,୪ =

(𝒑௜ + 𝒑௜ାଵ)/2൯. 

The fluorescence intensities of the pixels inside quadrilateral 𝑨௜,௟𝑩௜,௟𝑪௜,௟𝑫௜,௟ were averaged to 

represent the local muscle activity induced by the calcium current. Here, a pixel at coordinate P = (x,y) 

was considered to be inside the quadrilateral if it satisfied the following equations:  

 

 



 

 

𝜎ଵ = 𝜎ଶ = 𝜎ଷ = 𝜎ସ 

𝜎ଵ = 𝑠𝑔𝑛൛൫𝑩𝒊,𝒍 − 𝑨𝒊,𝒍൯ × ൫𝑷 − 𝑨𝒊,𝒍൯ൟ 

𝜎ଶ = 𝑠𝑔𝑛൛൫𝑪𝒊,𝒍 − 𝑩𝒊,𝒍൯ × ൫𝑷 − 𝑩𝒊,𝒍൯ൟ 

𝜎ଷ = 𝑠𝑔𝑛൛൫𝑫𝒊,𝒍 − 𝑪𝒊,𝒍൯ × ൫𝑷 − 𝑪𝒊,𝒍൯ൟ 

𝜎ସ = 𝑠𝑔𝑛൛൫𝑨𝒊,𝒍 − 𝑫𝒊,𝒍൯ × ൫𝑷 − 𝑫𝒊,𝒍൯ൟ. 

(3) 

 

The fluorescence intensity, L(P), at coordinate P was under threshold 𝐿௧௛  was considered as 

noise and was not included in the calculation for average fluorescence intensity. The averaged 

florescence intensity was normalized so that the maximum value was 1 and the minimum value was 0 

for each quadrilateral. The normalized average fluorescence intensity was denoted as 𝑀௜,௟(𝑡)(𝑙 ∈

𝐷, 𝑉) on the l side of dividing point 𝑖. 

 

v. Correlation and Multiple Regression Analysis 

To analyze the relationship between the local body-bending angles and the muscle activity, the partial 

correlation coefficients of 𝑀௜,௟(𝑡)  against 𝜃௜(𝑡),  𝜃̇௜(𝑡),  and 𝜃̈௜(𝑡)  were calculated. Multiple 

regression analysis was also performed on all division points of the analysis image using the following 

equation: 



𝑴𝒍 = aଵ,௟ 𝜽𝒍 + aଶ,௟𝜽𝒍
̇ + aଷ,௟𝜽𝒍

̈ + b௟ , (30) 

where ventral and dorsal muscle activities 𝑴𝒍 = [𝑴௟(0)், … , 𝑴௟(𝑇)்]்  ( 𝑴௟(𝑡) =

[𝑀ଵ,௟(𝑡), … , 𝑀௡ିଵ,௟(𝑡)] ) are objective variables, and angle 𝜽 = [𝜽ଵ(0)், … , 𝜽௡ିଵ(𝑇)்]்  (𝜽(𝑡) =

[𝜃ଵ(𝑡), … , 𝜃௡ିଵ(𝑡)] ), angular velocity 𝜽̇௜ = ൣ𝜽̇ଵ(0)், … , 𝜽̇௡ିଵ(𝑇)்൧
்
 ( 𝜽̇(𝑡) = [𝜃̇ଵ(𝑡), … , 𝜃̇௡ିଵ(𝑡)] ), 

and angular acceleration 𝜽̈௜ = ൣ𝜽̈ଵ(0)், … , 𝜽̈௡ିଵ(𝑇)்൧
்

 (𝜽̈(𝑡) = [𝜃̈ଵ(𝑡), … , 𝜃̈௡ିଵ(𝑡)])  are 

explanatory variables. 

 

vi. Experimental Configurations 

We recorded video images of three individuals and analyzed each individual for 5 s. The weights of 

the RGB components were set to 𝑤௥= 0.2989, 𝑤௚= 0.5870, and 𝑤௕= 0.1140. The maximum number 

of scans was set to K = 200. The fluorescence intensity threshold was 𝐿௧௛ = 45. 

 

4.2.2 Connectome-based Motor Neuron and Muscle Model 

Figure 1 shows the connection diagram of the model based on the connectome described in the 

nematode database WormAtlas [34]. In particular, the model consists of five pairs of ten command 

interneurons, seven types of 69 motor neurons, and four rows of 95 muscles [1,17,34]. The neurons 

and muscles are connected based on the adjacency matrix of the synaptic and gap connections 

accessible from the following URL: https://wormwiring.org/pages/adjacency.html [34]. 



The command interneurons are comprised of PVCL/R and AVBL/R (responsible for forward 

movement), in addition to AVAL/R, AVDL/R, and AVEL/R (responsible for backward movement) [12]. 

We assumed that the command interneurons have no specific polarity, and do not include an oscillating 

component to generate periodic muscle contractions [18-20,40]. 

Motor neurons control the muscles based on the outputs of the command neurons and are 

comprised of DB, DA, DD, VB, VD, VA, and AS (indicated by circles in Fig 13). Acetylcholinergic 

neurons, DB, DA, VB, VA, and AS were assumed to excite VD, DD, and muscles. GABAergic neurons 

VD and DD then inhibit the acetylcholinergic neurons and muscles. Although the polarities of the 

synaptic connections were determined based on the description in a previous study [1,34], they have 

not been fully confirmed experimentally. Therefore, it should be noted that these connections have the 

potential to be either excitatory or inhibitory in an actual animal. 

Proprioceptive feedback also plays an important role in generating undulatory movements, and 

the undifferentiated processes extending from A- and B-class motor neurons are responsible for 

proprioceptive feedback [18]. Because the model does not contain the body in order to focus on the 

neuromuscular system, we connected several muscles to an anterior A-class neuron and a posterior B-

class neuron to represent proprioceptive feedback, assuming that muscle activity correlates with body 

curvature. Here, we did not impose the polarities of the proprioceptive feedback connections. 

In Fig 13, the C. elegans muscle indicated by the ellipse is composed of 95 cells arranged in four 



rows, and the ventral and dorsal muscle cells alternately contract and relax to produce a smooth 

crawling motion. For simplification, we assumed the simultaneous activation in each left and right 

muscle pair, considering their two-dimensional movement on the agar. We trained the model using 

backpropagation through time, a supervised algorithm, to generate muscle activity patterns using two 

types of teacher data: a mathematically defined sinusoidal pattern, and an activity pattern measured 

from a fluorescence strain (HBR4). 

The command interneurons consist of forward command neurons (PVCL/R, AVBL/R) and 

backward command neurons (AVAL/R, AVBL/R, AVEL/R) that output control signals of 1 or 0. An 

output of 1 represents the activated state, and 0 represents the resting state. As shown in the following 

equations, the forward command neuron 𝐿௔(𝑡) outputs 1 and the backward command neuron 𝐿௖(𝑡) 

outputs 0 during a preset time [𝑇ଶ௩ିଵ, 𝑇ଶ௩) (𝑣 = 1, 2, … , 𝑜) to command forward movement. This 

output is reversed during [𝑇ଶ௩ , 𝑇ଶ௩ାଵ) to command backward movement: 

𝐿௔(𝑡)＝ ൜
1  (𝑇ଶ௩ିଵ ≤ 𝑡 < 𝑇ଶ௩)

0  (𝑇ଶ௩ ≤ 𝑡 < 𝑇ଶ௩ାଵ)
  , (31) 

𝐿௖(𝑡) = ൜
0  (𝑇ଶ௩ିଵ ≤ 𝑡 < 𝑇ଶ௩)

1  (𝑇ଶ௩ ≤ 𝑡 < 𝑇ଶ௩ାଵ)
 , (32) 

where 𝐿௔(𝑡) is the output of the forward command neurons (PVCL/R, AVBL/R) and 𝐿௖(𝑡) is the 

output of the backward command neurons (AVAL/R, AVBL/R, AVEL/R). The index a = 1, 2, 3, 4 

corresponds to a total of four forward command neurons, and c = 5, 6, ..., 10 corresponds to a total of 

six backward command neurons. 



In the motor neurons, a muscle contraction pattern is generated based on the output of the 

command neuron. The motor neuron is defined by the following equations: 

𝑥௜
ே(𝑡 + 1) =

1

1 + 𝐹௦𝜏௜
𝑥௜
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(33) 

𝑦௜
ே(𝑡) =

1

1 + exp ቀ−𝑥௜
ே(𝑡)ቁ

 (34) 

  

where 𝑥௜
ே(𝑡)  and 𝑥௨

ெ(𝑡)  are currents flowing into motor neuron i and muscle u at time t, 

respectively; 𝑦௜
ே(𝑡)  and 𝑦௨

ெ(𝑡)  are membrane potentials of motor neurons and muscles, 

respectively; 𝜔௜
௟଴  is the bias, 𝜏௜  is the first-order lag element, and Fs is the sampling frequency 

configured in the simulation procedure. 𝜔௜௝
ேே , 𝜔௜௨

ெே , 𝜔௜௣
ூே  are weights representing the synaptic 

connection strength among motor neurons, that from muscle to motor neuron, and that from the 

command neuron to motor neuron, respectively.  𝑔௜௝
ேே = 𝑔௝௜

ேே, 𝑔௜௨
ெே = 𝑔௨௜

ெே  are weights 

corresponding to the conductance of the gap junctions. J = 69 is the number of motor neurons, P = 10 

is the number of command neurons, and U = 95 is the number of muscle cells. 𝐼୮,௜(𝑡) represents the 

proprioceptive feedback to the A- and B-class motor neurons determined by the following equation. 



𝐼୮௜(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

෍ 𝑤௜{ଷ(௜ାଵ)ି௨}
ெே 𝑦{ଷ(௜ାଵ)ି௨}

ெ (𝑡)

ௌ
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ெே 𝑦{ଷ(௜ାଵ)ା௨}

ெ (𝑡)

ௌ

௨ୀଵ

, 𝑖 ∈ A– class motor neuron  

0, Otherwise

 (4) 

Here, 𝑤௜{ଷ(௜ାଵ)ି௨}
ெே  denotes the connection strength, 3(𝑖 + 1) − 𝑢 and 3(𝑖 + 1) + 𝑢 are the indexes 

of a muscle, and we set the proprioceptive feedback length as 𝑆 = 7 muscles. For the motor neurons 

located at the head and tail, S was set to the number of the existing anterior and posterior muscles. In 

this configuration, an A- and B-class neuron receives the outputs from up to seven anterior and 

posterior muscles. 

When the muscles receive the output from the motor neurons, they output the muscle activation 

level according to the following equations: 
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1
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𝑦௨
ெ(𝑡) =

1

1 + exp൫−𝑥௨
ெ(𝑡)൯

, (6) 

where 𝜔௨௝
ேெ  is a weight representing the synaptic connection strength from the motor neuron to 

muscle, and 𝑔௨௞
ெெ is a weight representing the conductance of the gap junctions between the muscle, 

K = 95 is the number of muscle cells. 

   According to the connectome data [34], the absence of connections was represented by restricting 



the weights of the synapse connection and gap junction to 0 during the following training. The 

following constraint condition is set for each parameter based on the type of connections. 

The parameters of the neural network model (first-order lag element, synaptic connections, and 

gap junctions) are trained using the BPTT algorithm [21]. The evaluation function is defined as: 

𝐸 =
1

𝑇

1

𝑈
෍ ෍

1

2
{𝑦௨

ெ(𝑡) − 𝑑௨(𝑡)}ଶ,

௎

௨

்

௧ୀଵ

 (38) 

where 𝑑௨(𝑡) is the teacher data, 𝑦௨
ெ(𝑡) is the activity level of the muscles, and T is the maximum 

step number of the simulation time. BPTT updates each parameter in a particular direction to minimize 

the evaluation function, which is determined by partial differentiation of the evaluation function for 

the corresponding parameter. In addition, the following constraint condition is set for each parameter 

based on the type of connections. 

・The synaptic connection strengths from the excitatory neurons DA (𝑖 = 1, 2, … , 8 ), DB (𝑖 =

9, 10, … , 16 ), VA ( 𝑖 = 23, 24, … , 34 ), VB ( 𝑖 = 35, 36, … , 45 ), and AS ( 𝑖 = 59, 60, … , 69 ) are 

constrained to positive values. 

・The synaptic connection strengths from inhibitory neurons DD (𝑖 = 17, 18, … , 22) and VD (𝑖 =

46, 47, … , 58) are constrained to negative values. 

・The first-order lag elements 𝜏௜, 𝜏௨ are constrained to positive values (𝜏௜ ≥ 0). 

The teacher data 𝑑௨(𝑡)  used for parameter adjustment are generated based on the motion 

analysis of C. elegans. As shown in Fig 14, we tracked seven points on the body of C. elegans while 



performing forward movement and plotted the time change of the angles between the two straight lines 

connecting adjacent points. In the figure, each angle shows a sinusoidal-like waveform that is 

transmitted from the head to the tail. Because the movement of C. elegans is generated by alternating 

activities of the muscles, the activity level is considered to have similar characteristics. Therefore, we 

express the teacher data for the activity level of the muscles according to equations (39)–(41). 

In the first period of forward movement (𝑇ଵ ≤ 𝑡 < 𝑇ଶ) , when the index q = 1, 2, …, 24 is 

sequentially defined for the muscles from the head to the tail, the teacher data for the left dorsal (u = 

1, 2, …, 24) and the right dorsal (u = 25, 26, …, 48) muscles are given by the following equation:  

𝑑௨(𝑡) = sin൫𝜔𝑡 + 𝜙௨(𝑡)൯      (𝑢 = 1, 2, … , 24, 25, 26, … , 48),  (7) 

where phase 𝜙௨(𝑡), ቀ𝜙௨(0) = −
గ௤

ଵଶ
ቁ  is changed when switching between forward and backward 

movement at a time 𝑇௩(𝑣 > 1) as defined below. 

𝜙௨(𝑡) = 𝜋 − 2𝜔𝑇௩ − 𝜙௨(𝑇௩ିଵ), (40) 

Similarly, the left and right ventral muscle (𝑢 = 49, 50, … , 72, 73, 74, … , 95)  are assumed to be 

active in opposite phases to the dorsal muscle cells, and are given by the following equation: 

𝑑௨(𝑡) = sin൫𝜔𝑡 − 𝜋 + 𝜙௨(𝑡)൯      (𝑢 = 49, 50, … , 72, 73, 74, … , 95). (41) 

Based on measured data, the angular frequency is set to ω = 1.6𝜋. 

In addition, we measured the muscle activities using a strain expressing calcium indicator in the 

body-wall muscle (HBR4: goeIs3[pmyo-3::GCamP3.35::unc-54-3' utr, unc-119(+)]V) [38], and 



trained the model using the measured fluorescence rate. We followed procedures in the literature [41] 

to measure the fluorescence intensity of the body-wall muscles. As shown in Fig 15, a video analysis 

software (WormLab, MBF Bioscience, Williston, USA) was used to track the body outline of the 

animal, and then the body was divided into 24 equal segments from the head to the tail. The 

fluorescence intensities at the dorsal (k = d) and ventral (k = v) sides of the divided i-th segment 𝐹௜,௧
௞  

were measured in the ventral and dorsal areas of each segment, and converted to fluorescence rates 

((𝐹௜,௧
௞ − 𝐹଴,௜

௞ )/𝐹଴,௜
௞ ), where 𝐹଴,௜

௞  is the minimum fluorescence intensity at the k side of the i-th segment. 

The fluorescence rates were fitted to multiple sinusoidal functions, as expressed by the following 

equation, to smooth the measured data: 

𝑑௨(𝑡) = ෍ 𝑎௨௜sin(𝜔௨௜𝑡 + 𝜙௨௜)

௡

௜ୀଵ

, (8) 

where 𝑛 = 8 is the number of the functions, t is the time, 𝑎௨௜, 𝜔௨௜, and 𝜙௨௜ are the amplitude, 

frequency, and phase of the i-th sinusoidal function, respectively. The fitted data were then 

concatenated to generate three cycles of forward and backward movement. The value of fluorescence 

intensity was normalized to a range [0.25, 0.75], and used as the teacher data to train the model. 

 

 

 

 



 

Figure 12. Diagram of neuro-muscular connections illustrated based on the WormAtlas 

database [5]. 

Synaptic connections and gap junctions of whole muscle cells (total 95) and motor neurons VA, VD, 

VB, DA, DD, and DB. The green oval represents the body-wall muscles, the upper side of the figure 

is the anterior direction, the lower side is the posterior direction, and, starting from the left row, it 

shows the left ventral side, right ventral side, left dorsal side, and right dorsal side. The circles 

represent motor neurons, and the difference in color corresponds to the types of motor neurons, as 

shown in the legend. Solid lines represent synaptic connections, and dotted lines represent gap 

junctions.  



 

Figure 13. Motion analysis of C. elegans. 

(A) Motion analysis capture of C. elegans using the image analysis software Wriggle tracker 

(Library Inc., Tokyo). (B) Points tracked by the image analysis software. (C) Temporal change in the 

angles between the straight lines connecting adjacent points. 

  



 

Figure 14. Measurement of fluorescence intensity.  

 (A) The measurement procedure. The body is divided into i = 1, 2 …, 24 segments using a video 

analysis software (WormLab, MBF Bioscience, Williston, USA). The average fluorescence intensities 

were extracted at the dorsal and ventral sides of the i-th segment. (B) Procedure of teacher data 

preparation. The left shows the block diagram of data preparation, and the right shows the 

corresponding images. 

  



4.2.3 Simulation Configurations 

The teacher data for training was configured as follows: the simulation time was set to T = 30 s, and 

the sampling frequency was set to Fs ＝ 0.05 s, the time for switching between forward and backward 

movement was set to T1 = 0.0, T2 = 8.7, T3 = 17.6, T4 = 22.8, T5 = 26.6. The initial value of each 

parameter was set at random according to a uniform distribution within the following range. 

・The excitatory synaptic connection 𝜔௜௝
ேே, (𝑖 = 1– 8, 9– 16, 23– 34, 35– 45, – 69): [0, 1] 

                               𝜔௨௜
ேெ, (𝑗 = 1– 8, 9– 16, 23– 34, 35– 45): [0, 1]  

・The inhibitory synaptic connection 𝜔௜௝
ேே, (𝑖 = 17– 22, 46– 58): [−1, 0] 

                               𝜔௨௜
ேெ, (𝑖 = 17– 22, 46– 58): [−1, 0] 

・The synaptic connections 𝜔௜௨
ெே , 𝜔௜௣

ூே, 𝜔௜
௟଴,  𝜔௨

௟ଵ: [−1, 1] 

・The gap junctions 𝑔௜௝
ேே, 𝑔௜௨

ெே, 𝑔௨௞
ெெ: [0, 1] 

・The first-order lag elements 𝜏௜ , 𝜏௨: [0, 0.01] 

The iterative adjustment of parameters terminates when the evaluation function (Eq. (38)) satisfies E 

≤ 0.005.  

Figure 16 A illustrates the teacher data generated using equations (31), (32), and (39), and B 

shows the teacher data generated using the measured muscle activity. The same teacher data were used 

to train the ipsilateral side, assuming movement on the 2D agar plane. The left part of Fig 16 shows 

the binary input from the command neurons. Color maps show the teacher data of the muscles. This 



figure shows that during forward movement, waves are transmitted from the head to the tail with some 

phase delay. Conversely, the waves are transmitted from the tail to the head during the period of 

backward movement. The phase of each wave is reversed at the time when the forward and backward 

movement switches. 

 

  



 
Figure 15. Teacher data for muscles. 

(A) Teacher data generated by equations (39)–(41). (B) Teacher data generated using the measured 

muscle activity. The red arrows represent the time duration of forward movement, and the blue arrows 

represent the time duration of backward movement. The output switches between forward and 

backward movement at the predetermined time. The x-axis represents the muscle cell number, indexed 

from head to tail, the y-axis represents time, and the color represents the teacher data for the muscle 

activation level. The same teacher data are used for the right side of the body-wall muscles. 

  



4.3 Results 

4.3.1 Fluorescent Amount Associated with Muscle Activity 

Fig. 15 shows the tracked images. The shape of the body of C. elegans was extracted using the method 

described in sections 2.2 and 2.3, and the fluorescences emitted from body wall muscles were included 

in the quadrilaterals. Fig. 16 shows the color maps of angle 𝜃௜(𝑡) and the dorsal and ventral muscle 

activities, 𝑀௜,௟. In the figure, the x-axis represents the dividing point, y-axis represents time, and the 

color corresponds to the local  

body-bending angle and fluorescence rate of each division point, as shown in the color bar. The figure 

shows that the muscle activity propagates from head to tail when the animal performs a forward 

movement and propagates from tail to head when the animal performs a backward movement. This 

figure confirms that contraction and relaxation patterns of muscle were extracted. 

To clarify the relationship between movement and muscle, partial correlation coefficients between 

fluorescence rate 𝑀௜,௟  and local body-bending angle 𝜃௜ , angular velocity 𝜃̇௜(𝑡) , and angular 

acceleration 𝜃̈௜(𝑡) were calculated. Fig. 19 shows the partial correlation coefficients. In the figure, the 

x-axis represents angle 𝜃௜(𝑡), angular velocity 𝜃̇௜(𝑡), and angular acceleration 𝜃̈௜(𝑡), and the y-axis 

represents the partial correlation coefficient. The figure shows that the partial correlation coefficient 

between the fluorescence rate and local body-bending angle 𝜃௜(𝑡) is the highest. 



The value of partial regression coefficients 𝑎ଵ, 𝑎ଶ, 𝑎𝑛𝑑 𝑎ଷ is shown in Fig. 20. In the figure, the 

x-axis shows partial regression coefficient 𝑎ଵ, 𝑎ଶ, 𝑎𝑛𝑑 𝑎ଷ, and the y-axis represents the value of the 

partial regression coefficients. The coefficient of determination, 𝑅ଶ, was 0.175 for the dorsal side and 

0.399 for the ventral side. The analysis results showed that the body bends of C. elegans, which are 

expressed by angle 𝜃௜(𝑡), angular velocity 𝜃̇௜(𝑡), and angular acceleration 𝜃̈௜(𝑡) could explain the 

dispersion of fluorescence intensity of 25±12%. 

  



 

Figure 16. C. elegans tracking image 

  



 

 
Figure 17. Color map of fluorescence rate 𝑴𝒊,𝒍 

 

 

 

 



 
Figure 18. Partial correlation coefficients 

 

 
Figure 19. Coefficients of multiple regression 

 

 

  



4.3.2 Muscle Activity Generated by the Trained Model 
 

i. Training of model parameters 

Figure 21 illustrates the convergence of the residual errors defined by the evaluation function (Eq. 

(38)) over ten training trials using the teacher data generated from Eqs. (39)–(41) and another ten 

training trials using teacher data generated from the measured muscle activity. By adjusting the model 

parameters, the evaluation function decreased as the learning iterations increased, and finally reached 

an error tolerance of E ≤ 0.005, although the convergence speeds differ depending on the random 

initial parameters. 

Figure 22 shows the residual errors of pre-training, post-training, and verification trials. 

Significant differences (p < 0.001) between pre-training and post-training, and pre-training and 

verification trials indicate that the model was successfully trained. Although significant differences 

were also found between the post-training and verification trials, we confirmed that the model could 

generate the oscillation of muscle activity and switch between oscillation patterns for forward and 

backward movements, as described below. 



 

Figure 20. Learning curve. 

The values of evaluation function converged through the BPTT learning algorithm for all five trials. 

The dotted red line represents the error tolerance. (A) Learning curve obtained from ten training trials 

using the teacher data generated from Eqs. (39)–(41). (B) Learning curve obtained from ten training 

trials using the teacher data generated from the measured muscle activity. 

 

 



 

 

Figure 21. Residual errors. 

(A) and (B) show the residual errors (see Eq. (38)) of the models trained by artificial teacher signals 

and measured muscle activity, respectively. Multiple comparisons with Bonferroni adjustment 

illustrate significant differences between the residual errors of the pre-training and post-training, and 

pre-training and verification trials (p < 0.001). 

  



 

ii. Muscle activity generated by the trained model 

Figure 23 shows examples of muscle activities generated by feeding trained input to the model. The 

two sample data shown in Fig. 23 are those with the median values of residual errors among the ten 

trials of training, respectively, for the two types of teacher data. The figure confirms that the muscle 

activity patterns corresponding to forward and backward movement are successfully generated based 

on the inputs from the command neurons. The muscle activity propagates from head to tail when the 

forward command neurons activate, and it propagates from tail to head when the backward command 

neurons activate. However, the model failed to generate activities in neck muscles, as shown in the 

output of the four–eight muscles from the head in each quadrant. This is because the model focuses 

on the ventral cord motor neurons and does not include the nerve ring motor neurons. The nerve ring 

is a neuropile involved in processing various information related to various behaviors in addition to 

forward and backward movement [1]. Four muscles from the head in each quadrant are innervated by 

the nerve ring motor neurons, and the next four muscles each in the head are innervated by both the 

body-wall motor neurons and head motor neurons [42]. This result indicates that the gap junctions 

between the muscles cannot transmit the activity pattern to the four muscles in the head, and these 

muscle cells are independently controlled by the nerve ring motor neurons. 

In the verification simulation, we inputted command neuron signals to evoke switching between 

forward and backward movement at different points in time from those in the teacher data. The 



switching times are T1 = 0.0, T2 = 4.7, T3 = 7.3, T4 = 17.25, T5 = 22.5, and T6 = 28 s for the model 

trained by the teacher data generated by Eqs. (39)–(41), and T1 = 0.0, T2 = 10.1 s for the model trained 

by the teacher data generated from the measured muscle activity. The outputs of the muscles are shown 

in Fig 24. Again, the two sample data shown in Fig 24 are those with the median values of residual 

errors among the ten training trials for the two types of teacher data. The results confirm that muscle 

activity patterns corresponding to forward and backward movement are successfully generated, as 

with the training data. This result indicates the generalizability of the time of switching between the 

forward and backward movements. 

 

 

 

 



 
Figure 22. Muscle activities generated by the trained input. 

The phases of the muscle activity are reversed as the inputs of the command neurons change. The four 

muscles from the head in each quadrant, controlled by the nerve ring, fail to generate oscillation 

patterns. In (A), the model is trained by the teacher data generated from Eqs. (39)–(41). In (B), the 

model is trained by the teacher data generated from the measured muscle activity. 



 

Figure 23. Muscle activities generated by the verification input. 

(A) and (B) show examples of the muscle activity generated by the trained models in a verification 

trial, which yielded the median value of the residual errors. The activity patterns corresponding to the 

forward and backward movements are successfully generated by switching the phase delay, as with 

the training data. 



4.3.3 Distribution of Synaptic and Conductance Weights 

Finally, we analyzed the trained parameters, which are synaptic and conductance weights. An analysis 

by Snider [43] showed that the number of synapses in the actual animal follows the modified 

Boltzmann distribution given by the following equation: 

𝑝(𝑤) = 𝐴
𝑒ିఉ(௔|௪|)

(𝑎|𝑤|)ଵି
ଵ
௡

    , (43) 

where 𝐴 and 𝑎 are the scaling factors, 𝛽 is the power index, and 𝑛 is the total number of synaptic 

connections. We adopted this equation to fit the strength distribution of the synaptic and conductance 

weights. Fig 25 plots the distribution of the trained synaptic and conductance weights for each of the 

10 training trials. The frequencies of weights in all training trials showed a similar trend of decreasing 

exponentially with the weight strength. Fig. 25 also shows the fitted line of the modified Boltzmann 

distribution to the mean frequency. The distribution of the trained synaptic weights and conductance 

weights fitted the modified Boltzmann distribution well, with coefficients of determination 𝑅ଶ =

0.972 (𝑝 = 1.04 × 10ିଶହ) and 𝑅ଶ = 0.993 (𝑝 = 7.23 × 10ିଵ଻), respectively. This result indicates 

the possibility that not only the number of synapses but also the synaptic strength could follow the 

modified Boltzmann distribution. In addition, Fig. 25B predicts that the conductance of the gap 

connection could also follow the modified Boltzmann distribution. 

 Theoretically, synapse connections following the modified Boltzmann distribution form a candidate 

network structures that can maximize the information storage [43]. In this study, the neural network 



model was trained to store the dynamic patterns corresponding to forward and backward motion using 

the BPTT algorithm, thus, as a consequence, the weights may have followed a modified Boltzmann 

distribution. 

  



 

Figure 24. Distribution of weight parameters.  

(A) Frequencies in the corresponding bins as a function of the synaptic weights. (B) Frequencies as a 
function of the conductance weights. The solid green lines represent the fit to the modified Boltzmann 
distribution. The distributions were obtained from 10 training trials with different initial values. The 
colors of the circles in the plots distinguish the different training trials. 
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4.4 Discussion 

This study formulated a neural network model consisting of 69 motor neurons and 95 muscle cells 

based on the connectome of C. elegans. After the parameters of the model were adjusted using machine 

learning, it was shown that the motor neurons could generate the activity patterns of the muscle cells 

corresponding to forward and backward movement based on the input from the command neurons 

modeled as binary values. However, the four–eight muscles in the head failed to generate oscillation 

patterns. This result suggests that the gap junction between muscle cells cannot transmit activity to 

generate head motion, and the nerve ring motor neuron is necessary to control the activity of these 

muscles. 

 Previous models assigned the values of parameters by various means [16,22-27,44,45], such as 

manually [20] or by using an evolutional algorithm [26,44]. However, the distribution of the assigned 

parameter values was not analyzed. In this study, we trained the proposed model using the BPTT 

algorithm. We found that the modified Boltzmann distribution was well fitted to the distribution of the 

trained parameters (synaptic and conductance weights). This result predicts that the motor neuron and 

muscle network downstream of the command neurons could form a sparse network in terms of 

connection strength, which is advantageous to code various movement patterns [43]. 

  While the previous models reproduced the frequency and wavelength of muscle activities, the 

proposed model reproduced the fluorescence rates measured from the body wall muscles using a 



fluorescence strain (HBR4). Therefore, the supervised learning approach taken in this study may allow 

further analysis of complex activity patterns associated with movements because it provides a 

framework to reproduce the measured muscle activity patterns of an actual animal. 

  The proposed model does not consider body dynamics, which renders it unable to explore the ability 

of gait adaptation through proprioceptive feedback. However, these aspects of motion have already 

been extensively analyzed in previous models [16,22-27,44,45]. Incorporating body dynamics models 

[19] Gait modulation in C. elegans: an integrated neuromechanical model. Incorporating body 

dynamics models [10,22,23,27,29-31] is certainly required for the further analysis of complex 

movements such as an omega turn. 

 

4.5 Conclusion Remarks 

In this chapter, we presented a connectome-based neuromuscular network model of C. elgans. The 

model is trained to generate muscle oscillation patterns for both backward and forward movements 

using a supervised learning approach. The main finding of this study is that a motor neuron and muscle 

network with a sparse connection strength can generate the oscillatory patterns. In addition, the model 

can be trained to generate measured muscle activity patterns. Therefore, the supervised learning 

approach taken in this study may allow further analysis of complex activity patterns associated with 

movements. 



Chapter 5 

5 Conclusions 

Chapter 2 described the neural network model of C. elegans. This model is composed with integrate-

and-fire neuron model which the membrane potential rises sharply when the time integration of the 

input signal exceeds the threshold value. Imitating the information transmission method of nerve cells 

in an actual organism, input to each neuron is composed with term which represent information 

transmission by synaptic connection and term which represent information transmission by electrical 

connection, and neurons are connected based on construct which is clarified by biologically. The 

strength of the connection was optimized using Backpropagation through time (BPTT), which is a 

learning algorithm for recurrent neural nets. 

In Chapter 3, we proposed a simple and comprehensive computational model, and derived to 

convert the response of a single sensory input into two types of internal representations of the NaCl 

gradient parallel and perpendicular to the travelling direction and enabled simultaneous simulation of 

the pirouette and weathervane strategies. The derived computational model suggests that internal 

representations of the gradients can be generated by combining head-bending angles and sensory input 

from ASEL/R neurons. It could also be used to interpret the functions of AIY neurons and motor 

neurons, respectively, identified in previous experimental[4] and simulation studies[9], and thus can 

bridge the gap between the chemotaxis problems at the computational and implementational levels. 



The connectome-based neural network model included in the chemotaxis simulator demonstrated that 

the computational model could be implemented in it, although the coding manner of the chemical 

gradient might differ from that of the actual animals. The connectome-based neural network model 

may allow further analysis of the functions of respective neurons by introducing the biological 

constrictions and measured neural activities and by simulating ablation experiments.  

In Chapter 4, we presented a connectome-based neuromuscular network model of C. elegans. 

The model is trained to generate muscle oscillation patterns for both backward and forward 

movements using a supervised learning approach. The main finding of this study is that a motor neuron 

and muscle network with a realistic weight distribution can generate the oscillatory patterns. In 

addition, the model can be trained to generate measured muscle activity patterns. Therefore, the 

supervised learning approach taken in this study may allow further analysis of complex activity 

patterns associated with movements. 

 

 

 

 

 

 

 

 

 

 



S1 Appendix 1 
Table S1 lists the symbols used in Eqs. (13) and (14). 

Table S1. Symbols used in the proposed computational model 

Symbol Interpretation 

𝑦௣, 𝑦̇௣ Gradient parallel to the traveling direction and its time derivative 

𝑎௣, 𝑏௣ Parameters to calculate the gradient parallel to the traveling direction 

𝑦௪ , 𝑦̇௪ Gradient perpendicular to the traveling direction and its time derivative 

𝑎௪, 𝑏௪ Parameters to calculate the gradient perpendicular to the traveling direction 

𝑞଴ Head-bending angle 

dc(x0, t)/dt Time derivative of the NaCl concentration sensed at the head tip of C. elegans 

 

Table S2 lists the parameters used in the multibody model. 

Table S2. Multibody model 

Parameter Value Source 

Weight 0.5 μg  

[14, 15] 

 

Length 0.10 mm 

Radius 40 μm 

Link number L 12 [23] 

Normal friction1) 10 μN mm/s [4] 

Tangential friction1) 1.5 μN mm/s 

1) The friction parameters were set so that the body model travelled with an average speed of 

1.2 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3 shows the parameters used in the chemotaxis simulator derived from previous studies. 

 

Table S3. Parameters used to implement pirouette and weathervane 

Parameter Value Source 

𝑞୑ୟ୶ 0.69 rad [22] 

𝜔 2𝜋 × 0.80 rad/s 

𝜓 1.54 rad [17] 

𝐶௪ 1.374 rad/mM  

[4] 

 

Δ𝑇 12 s 

𝐶௥ 0.35 rad 

Tb 6.0 s [21] 

𝑇௣ଵ
1) 1.0 s  

[4] 𝑇௣ଶ
1) 1.18 s 

𝑇௣ଷ
1) 1.0 s 

1) The total duration of a sharp turn is 𝑇௣ଵ + 𝑇௣ଶ + 𝑇௣ଷ = 3.18 s based on [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S2 Appendix 2 

 
Fig S1. Definition of vectors and symbols related to head path and travelling direction: The blue 

line indicates the head-bending path of the animal, the black line represents the travelling direction, 

x0=(x0, y0) is the position of the head, v is the unit vector of the travelling direction, n is the unit 

orthogonal vector to the travelling direction, d is the head-bending velocity vector, and θ denotes the 

angle between vectors d and v. The circle with grey gradation represents the NaCl concentration 

distribution, which is expressed by the function c(x, t). The two-dimensional coordinate of the agar 

surface is expressed as (x, y). 

 

This appendix shows the derivation process of the proposed computational model (equations (13) 

and (14)). First, based on directional decomposition, we formulate the instantaneous relationship 

between the NaCl concentration sensed at the nose tip and the NaCl gradients parallel and 

perpendicular to the traveling direction. We then take the time average of this instantaneous 

θ

θ

x0

x0

x

y

v
n

v

n

d

d

NaCl concentration distribution:



relationship so that the formulation only includes the parameters accessible by the worm. Please note 

that we omit the explicit notation of time dependence of the variables for simplification, but all 

variables depend on time, unless stated otherwise. For example, the head-bending velocity vector 

depends on time, but we use d instead of d(t). In the following equations, we use the dot operator (⋅) 

to express the inner product and the multiplication operator (×) to express the outer product. 

 

Step 1. Derive the instantaneous relationship between the NaCl concentration sensed at the nose 

tip and the NaCl gradients parallel and perpendicular to the traveling direction 

The sensory neurons ASEL/R located at the nose tip respond to the time derivative of NaCl 

concentration, which can be expressed by the following equation: 

𝑑𝑐(𝒙଴, 𝑡)

𝑑𝑡
=

𝜕𝑐(𝒙଴, 𝑡)

𝜕𝒙଴

𝑑𝒙଴

𝑑𝑡
+

𝜕𝑐(𝒙଴, 𝑡)

𝜕𝑡
 

                        = ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 +
𝜕𝑐(𝒙଴, 𝑡)

𝜕𝑡
,              (𝑠2 − 1) 

where the symbols are defined in the figure legend of Fig. S1. The first term of equation (s2-1) 

indicates the directional derivative of the NaCl distribution toward the head-bending velocity vector 

d, and the second term indicates the temporal change in the NaCl distribution. Here, the second term 

can be assumed to be much smaller than the first term because the animal moves much faster than the 

NaCl diffuses. Thus, we can focus on the first term and approximate the time derivative of NaCl 

concentration given to the ASEL/R neurons by the following equation: 



𝜕𝑐(𝒙଴, 𝑡)

𝑑𝑡
≈ ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅                                       (𝑠2 − 2) 

If the travelling direction v and its orthogonal vector n are given, the time derivative of NaCl 

concentration at the nose tip (Equation ( 𝑠2 − 1) )) can be decomposed into v and n direction 

components, which correspond to the gradients parallel and perpendicular to the travelling direction, 

respectively. This decomposition can be expressed by the following equations: 

𝑦௣ ≈ 𝑦෤௣ = ൛ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅ൟ(𝒅/|𝒅| ⋅ 𝒗) 

= ൛ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅ൟ cos 𝜃.                                         (𝑠2 − 3) 

𝑦௪ ≈ 𝑦෤௪ = ൛ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅ൟ(𝒅/|𝒅| ⋅ 𝒏) 

= ൛ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅ൟ(𝒅/|𝒅| × 𝒗) 

= ൛ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅ൟ sin 𝜃.                                        (𝑠2 − 4) 

where 𝑦෤௣ and 𝑦෤௪ represent the approximated gradients parallel and perpendicular to the travelling 

direction, respectively. Equations (s2-3) and (s2-4) give the instantaneous NaCl gradients parallel and 

perpendicular to the traveling direction, respectively. 

 

2. Eliminate the directional parameter 𝜃 that is not accessible by the animal 

Equations (s2-3) and (s2-4) include the parameter 𝜃, which represents the angle between the head-

bending direction 𝒅/|𝒅| and the travelling direction 𝒗, not likely accessible by the animal because 

the animal cannot observe the traveling direction on the global coordinates. Here, we take the time 



average of equations (𝑠2 − 3) and (𝑠2 − 4) (denoted by 𝑦ത௣ and 𝑦ത௪, respectively) to eliminate the 

parameter 𝜃: 

𝑦ത௣ =
1

𝑡ଶ − 𝑡ଵ
න 𝑦෤௣

௧మ

௧భ

𝑑𝑡 =
1

𝑡ଶ − 𝑡ଵ
න ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 cos 𝜃

௧మ

௧భ

𝑑𝑡 

𝑦ത௪ =
1

𝑡ଶ − 𝑡ଵ
න 𝑦෤௪

௧మ

௧భ

𝑑𝑡 =
1

𝑡ଶ − 𝑡ଵ
න ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 sin 𝜃

௧మ

௧భ

𝑑𝑡 

  Then, Steps 2.1 and 2.2 derive the NaCl gradient parallel and perpendicular to the travel direction, 

respectively. 

 

Step 2.1. The gradient parallel to the traveling direction 

Consider a time interval [t1, t2] where the sign of cos 𝜃 does not change (−
஠

ଶ
≤ 𝜃 ≤

஠

ଶ
), and 𝑐୪୭୵ ≤

ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧
୘

𝒅 ≤ 𝑐୦୧୥୦. The first mean value theorem for definite integrals indicates that there exist 

constants 𝑐୪୭୵ ≤ 𝜇෤௣ ≤ 𝑐୦୧୥୦ such that: 

𝑦ത௣ =
1

𝑡ଶ − 𝑡ଵ
න ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 cos 𝜃

௧మ

௧భ

𝑑𝑡 = 𝜇෤௣ ቊ
1

𝑡ଶ − 𝑡ଵ
න cos 𝜃 𝑑𝑡

௧మ

௧భ

ቋ.             (𝑠2 − 5) 

Because 𝜃 changes periodically, 
ଵ

௧మି௧భ
∫ cos 𝜃 𝑑𝑡

௧మ

௧భ
 becomes a constant value 𝐵௣ by setting the time 

interval [t1, t2] as the time duration of one 𝜃 cycle. Because 𝜃 is not accessible by the animal, we 

consider using the head-bending angle q0 instead. As 𝜃 approximately synchronizes with q0, q0 can 

be expressed by same frequency parameter f as 𝜃: 

𝜃 = 𝐴ఏsin(2𝜋𝑓𝑡) 

𝑞଴ = 𝐴௤sin(2𝜋𝑓𝑡 − 𝜓) 



As the time interval [t1, t2] is the duration of one 𝜃 cycle, the following relationship holds: 

𝐵௣ =
1

𝑡ଶ − 𝑡ଵ
න cos 𝜃 𝑑𝑡

௧మ

௧భ

≈
𝐴௣

𝑡ଶ − 𝑡ଵ
න cos 𝑞଴ 𝑑𝑡

௧మ

௧భ

,                              (𝑠2 − 6) 

where Ap is a gain constant. This time average operation thus allows us to eliminate 𝜃 from Equation 

(s2-5), and the equation can be rewritten as follows: 

𝑦ത௣ =
1

𝑡ଶ − 𝑡ଵ
න ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 cos 𝜃

௧మ

௧భ

𝑑𝑡 = 𝐵௣𝜇෤௣.                             (𝑠2 − 7) 

Here, we derive 𝜇෤௣  (𝑐୪୭୵ ≤ 𝜇෤௣ ≤ 𝑐୦୧୥୦ ) by using the NaCl concentration sensed at the nose tip, 

approximated as ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 in Equation (s2-2) by using the following leaky integration: 

𝑑𝜇෤௣

𝑑𝑡
= −𝑎௣𝜇෤௣ + 𝑏෨௣ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 

where 𝑎௣  is the reciprocal of the time constant, and 𝑏෨௣  is the gain constant to scale the NaCl 

concentration sensed at the nose tip. These parameters depend on the time duration of integration t2- 

t1 and the scale of the NaCl concentration sensed at the nose tip. Substituting the above equation into 

the time differentiated (s2-7) gives 

𝑑𝑦ത௣

𝑑𝑡
= 𝐵௣

𝑑𝜇෤௣

𝑑𝑡
 

= −𝑎௣𝐵௣𝜇෤௣ + 𝑏෨௣𝐵௣ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 

=  −𝑎௣𝑦ത௣ + 𝑏௣ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 

where 𝑏௣ = 𝐵௣𝑏෨௣. The gradient parallel to the travelling direction can be obtained by solving this 

differential equation. Then, because we approximated the time derivative of the chemical 



concentration given to the sensory neurons by 
ௗ௖(𝒙బ,௧)

ௗ௧
≈ 𝑏௣ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧

୘
𝒅, the above equation can 

be rewritten to Equation (13): 

𝑑𝑦௣

𝑑𝑡
= −𝑎௣𝑦௣ + 𝑏௣

𝑑𝑐(𝒙଴, 𝑡)

𝑑𝑡
+ 𝜖௣,                    (13) 

where the time constant 1/𝑎௣  smooths the time derivative of the NaCl concentration input 

𝑑𝑐(𝒙଴, 𝑡)/𝑑𝑡, and the gain constant 𝑏௣ scales the input. In addition, 𝜖௣ represents the accumulated 

error caused by the approximation errors in equation (s2-2), where the effect of NaCl diffusion is 

neglected, and equation (s2-6), where 𝜃 is replaced by 𝑞଴, and unexpected noises. This equation 

indicates that appropriate time averaging and scaling of the NaCl concentration sensed at the nose tip 

can generate the NaCl gradient parallel to the traveling direction. 

 

Step 2.2. The gradient parallel to the traveling direction 

A procedure similar to that described in step 2.1 can be used to derive equation (14) for calculating 

the gradient perpendicular to the travelling direction taking care of the sign of the sin function in 

Equation (𝑠2 − 4) as follows: 

𝑦ത௪ =
1

𝑡ଶ − 𝑡ଵ
න ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅 sin 𝜃

௧మ

௧భ

𝑑𝑡 

= 𝜇෤௪
ା ቐ

1
𝑡ଶ
2

− 𝑡ଵ

න sin 𝜃 𝑑𝑡

௧మ
ଶ

௧భ

ቑ + 𝜇෤௪
ି ቐ

1

𝑡ଶ −
𝑡ଶ
2

න sin 𝜃 𝑑𝑡
௧మ

௧మ
ଶ

ቑ , 

= 𝐵௪(𝜇෤௪
ା − 𝜇෤௪

ି )                                                        (𝑠2 − 8) 



where 𝜃 > 0 in the time interval [𝑡ଵ,
௧మ

ଶ
], and 𝜃 ≤ 0 in (

௧మ

ଶ
, 𝑡ଶ]. Using the head-bending angle q0 

instead of 𝜃 gives 

𝐵௪ =
1

𝑡ଶ
2

− 𝑡ଵ

න sin 𝜃 𝑑𝑡

௧మ
ଶ

௧భ

= −
𝐴௪

𝑡ଶ −
𝑡ଶ
2

න sin 𝑞଴ 𝑑𝑡
௧మ

௧మ
ଶ

≈
𝐴௪

𝑡ଶ
2

− 𝑡ଵ

න sin 𝑞଴ 𝑑𝑡

௧′మ
ଶ

௧ᇲ
భ

,        (𝑠2 − 9) 

where 𝑞଴ > 0 in the time interval [𝑡′ଵ,
௧ᇱమ

ଶ
]. The same holds for the time interval of [

௧మ

ଶ
, 𝑡ଶ]. Leaky 

integration for calculating 𝑐୪୭୵
ା ≤ 𝜇௪

ା ≤ 𝑐୦୧୥୦
ା  and 𝑐୪୭୵

ି ≤ 𝜇௪
ି ≤ 𝑐୦୧୥୦

ି  gives 

𝑑𝜇௪
ା

𝑑𝑡
= −𝑎௪𝜇෤௪

ା + 𝑏෨௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅    (𝑞଴ > 0) 

𝑑𝜇௪
ି

𝑑𝑡
= −𝑎௪𝜇෤௪

ି + 𝑏෨௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅    (𝑞଴ ≤ 0) 

Rewriting equation (𝑠2 − 4) gives the following equations: 

𝑑𝑦ത௪

𝑑𝑡
= 𝐵௪ ቆ

𝑑𝜇෤௪
ା

𝑑𝑡
−

𝑑𝜇෤௪
ି

𝑑𝑡
ቇ 

= ቊ
−𝐵௪𝑎௪(𝜇෤௪

ା − 𝜇෤௪
ି ) + 𝐵௪𝑏෨௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅      (𝑞଴ > 0)

−𝐵௪𝑎௪(𝜇෤௪
ା − 𝜇෤௪

ି ) − 𝐵௪𝑏෨௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅      (𝑞଴ ≤ 0)
 

= ቊ
−𝑎௪𝑦ത௪ + 𝑏௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅                  (𝑞଴ > 0)

−𝑎௪𝑦ത௪ − 𝑏௪ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧ ⋅ 𝒅                  (𝑞଴ ≤ 0)
 

where 𝑏௪ = 𝐵௪𝑏෨௪. Because 
ௗ௖(𝒙బ,௧)

ௗ௧
≈ 𝑏௣ൣ∇௫,௬𝑐(𝒙଴, 𝑡)൧

୘
𝒅, the above equation can be rewritten as 

the proposed equation (14)  

𝑑𝑦௪

𝑑𝑡
= ൞

−𝑎௪𝑦௪ + 𝑏௪

𝑑𝑐(𝒙଴, 𝑡)

𝑑𝑡
+ 𝜖௪    (𝑞଴ > 0)

−𝑎௪𝑦௪ − 𝑏௪

𝑑𝑐(𝒙଴, 𝑡)

𝑑𝑡
+ 𝜖௪    (𝑞଴ ≤ 0)

             (14) 

where 1/𝑎௪  is the time constant that smooths the time derivative of NaCl concentration input 

𝑑𝑐(𝒙଴, 𝑡)/𝑑𝑡, and 𝑏௪ is the gain constant to scale the input. Further, 𝜖௪ represents the accumulated 

error caused by the approximations in equations (s2-2) and (s2-9), and unexpected noises. This 



equation indicates that appropriate time averaging and scaling of the NaCl concentration sensed at the 

nose tip depending on the head-bending angle can generate the NaCl gradient perpendicular to the 

traveling direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S3 Appendix 3 

Figure S2 shows the pirouette of the body model and the animal. In this case, the pirouette performed 

by the model resulted in a change in the traveling direction by approximately 162°. The figure confirms 

that the body model can perform pirouette in the same manner as the animal. The turning angle largely 

depends on the posture when the sharp turn is initiated as well as the angle between the traveling 

direction and the NaCl peaks, as shown in Fig. S3.  

 

Figure S2. Body posture of C. elegans during a pirouette. 

(a) Diagram of an example of pirouette performed by the multibody model of C. elegans. The reversal 

lasts approximately 6.0 s followed by a sharp turn lasting approximately 3.18 s, then the body model 

moves forward. These time parameters were derived from previous studies2, 15. (b) shows the pirouette 

turn performed by C. elegans to facilitate comparison between the movement of the multibody model 

and the actual worm. 

 



Figure S3 compares the performance of weathervane and pirouette between the model and actual 

animal. Figure S3a shows the relationship between the spatial gradient and the average curving rate 

and Fig. S3b shows the distribution of bearing before the pirouette and the turning angles made by the 

sharp turns. Figure S3a confirmed that the weathervane index defined as the slope of the regression 

line is approximately 10.9, whereas that of the animal is approximately 12.0 according to the 

experimental data2. Figure S3b shows that both the simulation and animal make sharp turns with 

turning angles of approximately ±180° and the pirouette mostly occurs when the bearing angles are 

approximately ±180°. 

 



Figure S3 Curving rate and bearing obtained from chemotaxis experiments5 and multibody 

model 

Graphs on the left show the simulation results and those on the right show the experimental data 

derived from the literature2.  

(a) Weathervane performance of the model. The x-axis represents the spatial gradient and the y-axis 

denotes the average curving rate. The error bars show the standard deviation over results of 10 

simulations. On the basis of the previous study2, the slope of the regression line was defined as the 

weathervane index, which was 10.9 for the simulation results and 12.0 for the animal.  

(b) Pirouette performance of the model. The x-axis shows the bearing, which is defined as the angle 

between the traveling direction and the NaCl peak2, and y-axis represents the angles between the 

traveling directions before and after the sharp turn. 

 

Next, to evaluate the movement generation error caused by the multibody model, we carried out a 

simulation driving the multibody model by using the measured postures of the actual animal as shown 

in the following steps: 

 

(1) Video-recording of the wild-type animal 

The wild-type (N2) of Caenorhabditis elegans was maintained on the 6-cm petri plate (IWAKI 



60 mm/non-treated dish; AGC Techno Glass Co., Ltd., Shizuoka, Japan) containing 10 ml of 

nematode growth medium (NGM) spread with overnight-incubated Escherichia coli OP50 (food) 

as previously describedS1. An adult C. elegans (3.5 days) was picked up from the culture plate 

and washed twice with S basal buffer solutionS1. The washed animal was placed on a 3.5-cm petri 

plate (IWAKI 35 mm/non-treated dish) containing 3 ml of fresh NGM without food, and the 

locomotion was video-recorded for 10 s or more with a digital camera video-recorder (EX-F1, 

Casio Computer Co., Ltd, Tokyo, Japan) mounted on a stereomicroscope (SZX16, Olympus 

Corporation, Tokyo, Japan) with a frame rate of 300 fps and frame size of 640 x 480 pixels.  

 

 (2) Extracting the posture of the animal 

       By using the video analysis software specialized for C. elegans (Wriggle tracker, Library Inc., 

Tokyo, Japan) the centroid line of the body was extracted, and fit to the multibody model with 12 

links of equal length. Then, the angles between adjacent links were extracted from each video 

frame. Figure S4 shows the extracted angles. 



 

Fig. S4. Extracted angles between adjacent links. The vertical axis is time, the horizontal axis is the 

joint number, and the colour represents the angle corresponding to the colour bar shown on the right 

side. The animal showed reversal movement from around 2.5 s to 4 s, and performed an omega turn 

from around 4 s to 6 s. 

 

 (3) Driving the multibody model by using the extracted postures 

        The angles between adjacent links were substituted into the multibody model. The inverse 

dynamics problem was then solved to generate the traveling direction and the movement path. 

Figure S5 compares the paths of the multibody model and the animal. 



 

Figure S5. Comparison between the paths generated by the multibody model and the animal. 

The green lines with circles show the posture of the multibody model where the circles represent the 

joints between the adjacent links. The blue line represents the head path of the worm, and the red 

line represents the head path of the multibody model. 

 

     We have also attached the video file of this analysis (MultiBodyModel.avi) where the posture 

of the multibody model is plotted with green lines over the recorded video of the animal.  

 

(4) Evaluating the error 

Finally, we evaluated the errors between the paths. Figure S6 shows the error at each frame 

between the head position extracted from the video and that obtained from the multibody model. 

Here, the position error at each frame is normalized by the body length of the animal 

(approximately 1.03 mm). 



 

Fig. S6. Position error between the head position extracted from the video and that obtained 

from the multibody model. The result shows that the position error is less than 1% of body length. 

 

This simulation result suggests that the head path error caused by the multibody model is sufficiently 

small. 
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