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Abstract
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Master of Engineering

Nonlinear Dimensionality Reduction with q-Gaussian Distribution

by Motoshi ABE (M206466)

In recent years, dimensionality reduction has become more important as the number
of dimensions of data used in various tasks such as regression and classification has
increased. As popular nonlinear dimensionality reduction methods, t-distributed
stochastic neighbor embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) have been proposed. However, the former outputs only one low-
dimensional space determined by the t-distribution and the latter is difficult to con-
trol the distribution of the distance between each pair of samples in low-dimensional
space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-
Gaussian distribution, called “q-Gaussian distributed stochastic neighbor embed-
ding” (q-SNE) and “q-Gaussian distributed uniform manifold approximation and
projection” (q-UMAP). The q-Gaussian distribution is a probability distribution de-
rived by maximizing the tsallis entropy by escort distribution with mean and vari-
ance, and a generalized version of Gaussian distribution with a hyperparameter q.
Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyper-
parameter q, q-SNE and q-UMAP can intuitively derive different embedding spaces.
However, they are applicable for a given data set and it is not possible to map new
samples into the embedded space. To address this issue for the t-SNE, parametric t-
SNE has been proposed. The parametric t-SNE constructs the nonlinear mapping by
using a feed-forward neural network. We proposed a novel technique called para-
metric q-SNE as an extension of parametric t-SNE by using a convolutional neural
network (CNN). To show the quality of the proposed method, we compared the vi-
sualization of the low-dimensional embedding space and the classification accuracy
by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, Oliv-
erttiFaces, and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive
better embedding spaces than t-SNE and UMAP. Empirical results on MNIST, COIL-
20, and FashionMNIST demonstrate that the parametric q-SNE can derive better
embedding spaces than parametric t-SNE and PCA.
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Chapter 1

Introduction

Recently, the number of dimensions of data has been increasing in the world. The
dimensionality reduction has been widely used to the high-dimensional data for re-
gression, classification, feature analysis, and visualization [23] [36]. Dimensionality
reduction produces a low-dimensional mapping of the high dimensional data that
preserves some features of interest in the data [11]. The principal component anal-
ysis (PCA) [31], multidimensional scaling (MDS) [10], Fisher’s linear discriminant
analysis (LDA) [29], canonical correlations analysis (CCA) [45], linear regression,
and locally linear embedding (LLE) [38] have been proposed as linear dimension-
ality reduction techniques. The kernel PCA [40], neural network (NN), stochastic
neighbor embedding (SNE) [18], Sammon mapping [39], Isomap [44], Maximum
Variance Unfolding (MVU) [49], Laplacian Eigenmaps [6], curvilinear components
analysis (CUCA) [12], Visualizing Large-scale and High-dimensional Data (LargeVis)
[43], t-distributed SNE (t-SNE) [26], and uniform manifold approximation and pro-
jection (UMAP) [28] have been proposed as nonlinear dimensionality reduction tech-
niques. Dimensionality reduction aims to preserve the structure and features of
high-dimensional data as much as possible and project them to lower dimensional
space.

For the visualization of high-dimensional data by using linear dimensionality,
the PCA [31] is the most popular technique. For example, it is used for visualization
of activation mapping of deep neural network [1] [19], experimental comparisons
of dimensionality reduction [18] [44] [26] [28], or using compressed data for input
[26]. It uses a matrix to map to low-dimensional space. This matrix is derived from
eigenvectors of covariance matrix of high-dimensional data. It is called mapping
function or mapping matrix. Since the PCA makes mapping matrix, it can map
the new coming sample to same low dimensional space which is fitted by training
samples.

For the visualization of high-dimensional data by using non-linear dimension-
ality reduction, the SNE[18], t-SNE [26], and UMAP [28] are often used. They give
better embedding in low-dimensional space than PCA, Sammon mapping, Isomap,
and LLE, because they consider the proximity between high-dimensional space and
low-dimensional space using a probability distribution. The Gaussian distribution
is used in high-dimensional space as a probability distribution by SNE, t-SNE, and
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UMAP. They can consider the probability of similarity between samples in high-
dimensional space by using the Gaussian distribution. In low-dimensional space,
the SNE uses the Gaussian distribution. The SNE embeds the similarity between
samples in the high-dimensional space which are defined by using local Gaussian
distribution into the low-dimensional space which are also defined by using local
Gaussian distribution. The SNE uses the Kullback-Leibler divergence [20]. It mea-
sures the similarity between two probability distributions. The Kullback-Leibler di-
vergence between the local Gaussian distributions of the original high-dimensional
space and the embedded low-dimensional space is used to measure the goodness
of the embedded space. It is known that the SNE can visualize the distributions of
the high-dimensional data in 2 or 3-dimensional embedded space. However, the
SNE has some problems in which the Gaussian distribution in the embedded low-
dimensional space does not give enough weights for the distant samples from the
center point and the separation between the clusters or the samples is not enough
in the embedded space. On the other hand, the t-SNE uses the t-distribution in
low-dimensional space instead of the normal Gaussian distribution of SNE. In the
paper of t-SNE, it can make better visualization than SNE because the t-distribution
allows samples with closer distances to be embedded closer together and samples
with large distances to be embedded farther apart. However, the t-SNE has some
problems. It takes long computational time when the total number of samples is
large [28], can not control the low-dimensional space, because distribution in low-
dimensional space can not be changed. To improve computational time, several al-
gorithms are proposed [46, 7, 47]. The UMAP has been proposed as an extension of
t-SNE. The UMAP can reduces the computational time than t-SNE because it does
not use all samples when computing similarity in high-dimensional space. It also
can control the low-dimensional space, because it uses a changeable curve which
is similar to the probability distribution in low-dimensional space. These methods
consider the Gaussian distribution, the t-distribution, and the curve which is simi-
lar to probability distribution to embed the proximity of high-dimensional data into
low-dimensional space.

However, these method can not embed the new coming samples for the same
embedding space, which is fitted by training samples, like a PCA [31], because these
methods do not construct the mapping function from the high dimensional space to
the low dimensional embedding space. To address this problem, the parametric t-
SNE [48] has been proposed as an the variants of t-SNE. The parametric t-SNE uses
a feed-forward deep neural network [5] as a mapping function. In the parametric
t-SNE, the mapping function from the high dimensional space to the embedding
space are modeled by using a feed-forward deep neural network. In that paper,
the parametric t-SNE uses deep multi-layered perceptron (MLP) [27] with only fully
connected layers with sigmoid activation function as a feed-forward deep neural
network. It can embed the new coming samples to the same embedding space which
is fitted by training samples.
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One of the feed-forward neural network, convolutional neural network (CNN)
[3] has been proposed. The CNN has been widely used for image classification [15]
[16] [22] [41], image recognition [51] [4], object detection [14] [25] [37], and so on. For
each task of image data, the CNN can achieve great success, because the structure
of CNN specializes to extract good features of images. The CNN is constructed by
some convolutional layers, pooling layers, and fully connected layers.

The Gaussian distribution and t-distribution are very famous. In statistics, they
are often appeared. There are not only them, but also many probability distributions.
The q-Gaussian distribution [42] is also proposed as one of them. The q-Gaussian
distribution is a probability distribution obtained when the Tsallis entropy is maxi-
mized by escort distribution with mean and variance. The q-Gaussian distribution
is the generalized version of the Gaussian distribution with a hyperparameter q. It
has Gaussian distribution when q → 1, moreover it has t-distribution with degrees
of freedom ν when q = 1+ 2

ν+1 and Cauchy distribution when q = 2. The advantage
of the q-Gaussian distribution is that several distributions can be selected smoothly
by tuning the hyperparameter q.

In this paper, we proposed a new non-linear dimensionality reduction method
using the q-Gaussian distribution to improve t-SNE and UMAP. Since the q-Gaussian
distribution can change the distribution smoothly, using the q-Gaussian distribu-
tion provides intuitive operation by choosing hyperparameter q. We experimentally
verified the advantages of the proposed method by changing the conventional dis-
tributions to the q-Gaussian distribution. These are called q-Gaussian distributed
stochastic neighbor embedding (q-SNE) [2] and q-Gaussian distributed uniform man-
ifold approximation and projection (q-UMAP). For q-SNE, it can control visualiza-
tion and can be same as t-SNE by tuning the hyperparameter q. For q-UMAP, it can
also control visualization and provide intuitive selectivity of distribution for low-
dimensional space by choosing hyperparameter q than UMAP.

We also proposed a novel parametric non-linear dimensionality reduction tech-
nique called parametric q-SNE. The proposal q-SNE has same problem as t-SNE
which can not embed the new coming samples. Since we focused on image data as
input data, the parametric q-SNE uses a convolutional neural network instead of the
MLP of parametric t-SNE. The CNN is modeled to minimize the loss function of q-
SNE. The parametric q-SNE can embed the new coming samples to same embedding
space.

Next section, we describe related works to introduce our proposal. First, we
describe about probability distribution. We show the formulation of Gaussian dis-
tribution, t-distribution, and q-Gaussian distribution. Since the q-Gaussian distribu-
tion is related to our proposal techniques, we describe detail and show the graphs
in Fig.2.1 Second, we describe about linear dimensionality reduction. Third, we de-
scribe about non-linear dimensionality reduction. We show the formulation of SNE,
t-SNE, and UMAP. Finally, we describe about parametric non-linear dimensionality
reduction and CNN. We show the formulation of parametric t-SNE and CNN.
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Third section, we describe our proposal techniques about q-SNE and q-UMAP.
The q-SNE improves t-SNE by using q-Gaussian distribution. The q-UMAP im-
proves UMAP by using q-Gaussian distribution. In experiments, we show the the
effectiveness of q-SNE and q-UMAP by comparison of embedding visualization and
classification accuracy by using k nearest neighbor (k-NN) [34]. First, we show the
preliminary experiments by using swissroll data in Fig.3.2. This experiment shows
the change of embedding when the hyper parameter q of q-Gaussian distribution
is moved. For comparison experiments we used MNIST [13], COIL-20 [35], Oliv-
erttiFaces [24], and FashionMNIST [50] dataset. We show the change of embedding
when the hyper parameters are moved in Fig.3.4, Fig.3.5, Fig.3.6, and Fig.3.7. We
also show the classification accuracy scores in Table 3.1. The q-SNE and q-UMAP
can control visualization intuitively and they can achieve better classification accu-
racy than t-SNE and UMAP.

Forth section, we descrbe our proposal techniques about parametric q-SNE. In
experiments, we show the the effectiveness of parametric q-SNE by comparison of
embedding visualization and classification accuracy by using k nearest neighbor (k-
NN). We show the change of embedding when hyper parameter q of q-Gaussian
distribution is moved in Fig.4.2. It also shows embedding by using test samples. We
also show the classification accuracy scores in Table 4.2. The parameteric q-SNE can
derive better embedding spaces than parametric t-SNE and PCA, and it can map the
new coming samples for the same embedding space which is fitted training samples.

Finally, we describe about our conclusion. We summarized our proposal, exper-
iments, and future works.
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FIGURE 2.1: This figure shows the graphs about a Gaussian distribu-
tion, a t-distribution, and some q-Gaussian distributions. In legend,
Gaussian denotes the Gaussian distribution as blue line, t denotes the
t-distribution of degrees of freedom 1 as orange line, and q=2.5, q=2.1,
q=1.5, q=1.1 and q=-1.0 denote the q-Gaussian distributions as green,
red, purple, brown and pink line, respectively. When q=2.0, the q-

Gaussian distribution becomes t-distribution.

Chapter 2

Related Works

2.1 Probability Distribution

2.1.1 Probability Distribution

The probability distribution is used for most dimensionality reduction techniques
because they can take into account the proximity of high-dimensional data. The
Gaussian distribution is used for SNE [18], t-SNE [26] and UMAP [28] in high-
dimensional space. For SNE [18], it also use the Gaussian distribution in low-dimensional
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space. The Gaussian distribution with a 1-dimensional observation s is defined as

P(s; µ, σ) =
1√

2πσ2
exp

(
− (s− µ)2

2σ2

)
, (2.1)

where µ and σ are mean and variance.
The t-SNE [26] uses the t-distribution in low-dimensional space. The t-distribution

is defined as follows.

Pt(s; ν) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

) (1 +
s2

ν

)−( ν+1
2 )

, (2.2)

where ν is degree of freedom.

2.1.2 q-Gaussian distribution

The q-Gaussian distribution is derived by the maximization of the Tsallis entropy of
escort distribution with mean and variance and is a generalization of the Gaussian
distribution.

Let s be a 1-dimensional observation. The q-Gaussian distribution for the obser-
vation s is defined as

Pq(s; µ, σ2) =
1

Zq

(
1 +

q− 1
3− q

(s− µ)2

σ2

)− 1
q−1

(2.3)

where µ and σ are the mean and the variance, respectively. The normalization factor
Zq is given by

Zq =


√

3−q
q−1 Beta

(
3−q

2(q−1) , 1
2

)
σ, 1 ≤ q < 3

√
3−q
1−q Beta

(
2−q
1−q , 1

2

)
σ, q < 1

(2.4)

where Beta() is the beta function. It is known that the q-Gaussian distribution de-
fined by Eq.(2.3) always satisfies the inequality

1 +
q− 1
3− q

(s− µ)2

σ2 ≥ 0. (2.5)

The q-Gaussian distribution has the parameter q as shown in Eq.(2.3) and we can
recover the Gaussian distribution and the t-distribution by setting the parameter q
in the q-Gaussian distribution. Fig.2.1 shows the graph of the Gaussian distribution,
the t-distribution, and the q-Gaussian distributions with a few different parameters
q. In this graph, we set µ and σ to 0 and 1. If q→ 1, then the q-Gaussian distribution
becomes the Gaussian distribution. If q = 1 + 2

n+1 , then the q-Gaussian distribution
becomes the t-distribution of degrees of freedom n. If q < 1, we call compact support
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to this case and s has the region of cutoff as

−
√

3− q
1− q

σ + µ < s <

√
3− q
1− q

σ + µ. (2.6)

We show the example of compact support as pink line in Fig.2.1. From Fig.2.1, it
is noticed that the q-Gaussian distribution has a more sharp peak at 0 than the t-
distribution.

2.2 Linear Dimensionality Reduction

The linear dimensionality reduction produces linear low-dimensional mapping of
high-dimensional data. The John P. et al. [11] defined linear dimensionality reduc-
tion as a matrix optimization problem. Let X = [x1, x2, · · · , xN ] ∈ RD×N , where D is
a high dimension and N is a number of samples, be high-dimensional samples. The
low-dimensional projection Y = [y1, y2, · · · , yN ] ∈ Rd×N , where d is a low dimen-
sion, is obtained by linear projection function fM(X) as follows,

Y = fM(X) = MTX, (2.7)

where M ∈ RD×d is a linear projection matrix with d orthonormal columns. The
optimization framework is written by

minimizeM‖X−MMTX‖2

subjecttoM ∈ M (2.8)

where M = M ∈ RD×d : MMT = I is a orthogonality constraint for linear ma-
trix.

2.2.1 Principle Component Analysis

The PCA is one technique of the linear-dimensionality reduction. In [11], PCA is
derived from 2.8. Let O be orthogonal matrices, the PCA is written by

minimizeM‖X−MMTX‖2

subjecttoM ∈ OD×d. (2.9)

Let 1
N XXT be covariance matrix, the decomposition is written as XXT = QΛQT

which produces an optimal point M = Qr, where Qr denotes the columns of Q
assosiated with the largest r eigenvalues of XXT and Λ denotes a matrix of eigen-
values.
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2.3 Non Linear Dimensionality Reduction

2.3.1 SNE

The SNE embeds the pairwise similarities between samples in the high-dimensional
space into the low-dimensional space. The goodness of the low-dimensional space is
evaluated as the Kullback-Leibler divergence between the conditional probabilities
of the samples in the high-dimensional space and the low-dimensional space. Both
the conditional probabilities in the high-dimensional space and the low-dimensional
space are defined by using local Gaussian distribution.

Let {xi|i = 1 . . . N} be a set of the samples in the high-dimensional space. We as-

sume that the vectors of each samples are represented as xi =
[

xi1 xi2 · · · xiD

]T

and the dimension of the vector is D > 2.
To define the pairwise similarities between samples in the high and low-dimensional

space, we define the conditional probability by using the local Gaussian distribution.
The conditional probability in the high-dimensional space is defined as

pj|i =
exp (−‖xi − xj‖2/2σ2

i )

∑N
k 6=i exp (−‖xi − xk‖2/2σ2

i )
, (2.10)

where σi is the variance of the local Gaussian distribution around sample xi which
is determined by binary search by using the entropy defined as

log k = −
N

∑
j 6=i

pj|i log pj|i, (2.11)

where k is called perplexity. Eq.(2.10) defines the local Gaussian distribution in high-
dimensional space for all samples around the sample xi, and pi|i is set to be 0 because
we are interested in only the pairwise similarities.

Let {yi|i = 1 . . . N} be a set of the embedded vectors in the low-dimensional
space of the samples {xi|i = 1, . . . N}. The vectors in the embedded low-dimensional

space are represented as yi =
[
yi1 · · · yid

]T
and the dimension of the low-dimensional

space is much smaller than the original space as d < D.
Similarly, the conditional probability in the embedded low-dimensional space is

defined as

rj|i =
exp (−‖yi − yj‖2)

∑N
k 6=i exp (−‖yi − yk‖2)

, (2.12)

where ri|i is also set to be 0. Eq.(2.12) defines the local Gaussian distribution in the
embedded low-dimensional space for all samples around the sample yi.

The Kullback-Leibler divergence between these conditional probabilities in the
original high-dimensional space and the embedded low-dimensional space is used
to measure the goodness of the embedded space and is maximized to obtain the
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vectors in the embedded space. The Kullback-Leibler divergence is defined as

C =
N

∑
i

N

∑
j 6=i

pj|i log
pj|i
rj|i

. (2.13)

The SNE finds the embedded vectors {yi} in the low-dimensional space of the
samples {xi} in the high-dimensional space by minimizing the Kullback-Leibler di-
vergence C. The update rule of yi by the gradient decent is given as

yt+1
i = yt

i − η
∂C
∂yi

+ α(t)(yt
i − yt−1

i ), (2.14)

where t, η, α(t), and ∂C
∂yi

are respectively the iteration, the learning rate, the momen-
tum of iteration t, and the gradient defined as

∂C
∂yi

= 2
N

∑
j
(pj|i − rj|i + pi|j − ri|j)(yi − yj). (2.15)

The details of derivation of Eq.(2.15) is shown in Appendix.
Hinton et al. proposed the symmetric SNE in [26]. The symmetric SNE uses

joint probability instead of the conditional probability in the original SNE. The joint
probability in the high-dimensional space is defined as

pij =
1
2
(pi pj|i + pj pi|j) =

pj|i + pi|j
2N

, (2.16)

where pi = pj =
1
N , pii is 0, and pij = pji for ∀i, j. Similarly, the joint probability in

the low-dimensional space is define as

rij =
exp (−‖yi − yj‖2)

∑N
l ∑N

k 6=l exp (−‖yl − yk‖2)
, (2.17)

where rii is 0, and rij = rji for ∀i, j.
Then, the Kullback-Leibler divergence is defined as

C =
N

∑
i

N

∑
j 6=i

pij log
pij

rij
. (2.18)

The optimization is performed by using the same equation with Eq.(2.14) and the
gradient for this case becomes more simple and is defined as

∂C
∂yi

= 4
N

∑
j
(pij − rij)(yi − yj). (2.19)

The details of derivation of Eq.(2.19) is shown in Appendix.
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2.3.2 t-SNE

The conditional probability or joint probability in the low-dimensional space is de-
fined by using the local Gaussian distribution in the SNE or the symmetric SNE.
However, the separation between the clusters or the samples is not enough in the
embedded space because the Gaussian distribution can not give enough weights for
the distant samples from the center point.

To improve this problem, the t-SNE has been proposed as an extension of the
SNE. The t-SNE uses the local t-distribution in low-dimensional space instead of
the local Gaussian distribution in the SNE. Since the kurtosis of the t-distribution is
larger than the Gaussian distribution, it is expected that the separation between the
clusters of the samples in the embedded low-dimensional space by the t-SNE can be
improved than the SNE for the visualization.

The joint probability in the high-dimensional space is defined by using the lo-
cal Gaussian distribution similar to the symmetric SNE. The joint probability in the
embedded low-dimensional space is defined by using t-distribution as

rij =
(1 + ‖yi − yj‖2)−1

∑N
l ∑N

k 6=l(1 + ‖yk − yl‖2)−1
, (2.20)

where rii is 0, and rij = rji for ∀i, j. The Kullback-Leibler divergence and the update
rule for optimization are almost the same as Eq.(2.18) and Eq.(2.14). The gradient for
the t-SNE is given as

∂C
∂yi

= 4
N

∑
j
(pij − rij)(yi − yj)(1 + ‖yi − yj‖2)−1. (2.21)

It is known that the t-SNE can produce a more understandable plot of the sam-
ples in the low-dimensional embedded space.

2.3.3 UMAP

The t-SNE is great for visualization, but is computationally time consuming when
the number of samples is large. The Uniform manifold approximation and projec-
tion (UMAP) has been proposed as a non linear dimensionality reduction technique.
The UMAP requires less computation time than t-SNE since it uses only a subset of
samples when calculating joint probabilities in high-dimensional space. The condi-
tional probability in high-dimensional space is defined as

pj|i = exp

(
−

max(0, ‖xi − xj‖2 − ρi)

σi

)
, (2.22)

where ρi is the nearest neighbor distance between one sample and i-th sample and
σi is the variance which is determined by binary search by using the entropy defined
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as

u = 2∑j∈β pj|i , (2.23)

where u is the number of nearest neighbor and β is a set of u nearest samples. This
factor makes the UMAP faster than t-SNE in terms of computational time because it
does not use all samples. To consider the symmetry, the joint probability is defined
as

pij = pj|i + pi|j − pj|ipi|j (2.24)

where pii = 0 and pij = pji for ∀i, j. The joint probability in low-dimensional space
is defined as

rij = (1 + a‖yi − yj‖2b)−1, (2.25)

where a and b are fitted by

(1 + a‖yi − yj‖2b)−1 ≈1 i f ‖yi − yj‖ ≤ min_dist

exp (−‖yi − yj‖ −min_dist) otherwise,
(2.26)

where min_dist is a hyperparameter to control joint probability function in low di-
mensional space. Then the loss function is binary cross-entropy(CE) instead of Kullback-
Leibler divergence defined as:

CE = −
N

∑
i

N

∑
j 6=i

pij log rij + (1− pij) log (1− rij). (2.27)

The gradient is derived as follows:

∂CE
∂yi

=
N

∑
j

(
pij

rij
+

1− pij

1− rij

) (
yi − yj

) 2ab‖yi − yj‖2b−1

(1 + a‖yi − yj‖2b)2 . (2.28)

The details of derivation of Eq.(2.28) is shown in Appendix. Since the joint proba-
bility in low-dimensional space is changed by tuning min_dist, the UMAP can make
various embedding and better visualization than t-SNE.

2.4 Parametric Non Linear Dimensionality Reduction

2.4.1 Parametric t-SNE

The t-SNE and UMAP can not embed the new coming samples for the embedding
space like a PCA[31], because they do not construct the mapping from the high di-
mensional space to the low dimensional embedding space. To address this problem,
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the parametric t-SNE[48] has been proposed as an extension of t-SNE. The paramet-
ric t-SNE uses a feed-forward deep neural network to map the input vector in the
high-dimensional space into the low-dimensional embedding space.

Let f be the deep neural network. f (xi|W) is the output vector of deep neural
network by high-dimensional sample xi, where W is weights of deep neural net-
work. The network architecture of the original parametric t-SNE is the deep multi-
layered perceptron (MLP) with only fully connected layers with sigmoid activation
function. We assume that the dimension of the output vector is d, where D > d. The
conditional probability in the high-dimensional space is defined as Eq.(2.16). The
joint probability in the low-dimensional space is defined as

rij =
(1 + ‖ f (xi|W)− f (xj|W)‖2)−1

∑N
l ∑N

k 6=l(1 + ‖ f (xk|W)− f (xl |W)‖2)−1
, (2.29)

where rii is 0, and rij = rji for ∀i, j.
To train the deep neural network f of the parametric t-SNE [48], a stack of re-

stricted Boltzmann machines (RBMs) [17] is used for pre-training. After the pre-
training, the parameters of the deep neural network are trained by using the training
samples.

Similar with the standard t-SNE, the Kullback-Leibler divergence defined as Eq.(2.18)
is used for the objective function for the optimization. The gradient for the paramet-
ric t-SNE is given as

∂C
∂W

=
∂C

∂ f (xi|W)

∂ f (xi|W)

∂W
, (2.30)

where

∂C
∂ f (xi|W)

= 4
N

∑
j
(pij − rij)( f (xi|W)− f (xj|W))

(1 + ‖ f (xi|W)− f (xj|W)‖2)−1, (2.31)

and ∂ f (xi |W)
∂W is computed using the standard backpropagation learning algorithm. In

the training, the parametric t-SNE uses fixed 5,000 data points for batches to prepare
the conditional probability in the high-dimensional space.

2.4.2 CNN

The Convolutional Neural Network (CNN)[3] has achieved great success for image
classification, image recognition, object detection, and so on. The CNN consists of
several convolutional layers, pooling layers, and fully connected layers. We show
the overview of CNN in Fig.2.2. The convolutional layers have the filtering with the
trainable weights. Let I ∈ [0, 1]IH×IW be an feature mapping, where IH and IW de-
note height and width of image respectively. A trainable weights of a convolutional
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FIGURE 2.2: This figure shows overview structure of CNN. Convolu-
tion denoted convolutional layer. Pooling denotes max pooling layer.

Fully connected denotes fully connected layer.

filter is defined as w ∈ R f H× f W , where f H and f W denote height and width of filter
respectively. The computation of a convolutional layer is written by

I(L+1)
p,q =

f H−1

∑
a=0

f W−1

∑
b=0

wa,b I(L)
p+a,q+b + w0 (2.32)

where w0 is bias term, p, q, a, and b denote position of pixel, and L is a number of
layer.

The pooling layer is called sub sampling layer. It narrows down the size of the
input feature map by half. To narrow down, some techniques have been proposed.
The max pooling is often used as one of them. The computation of a max pooling
layer 2× 2 is written by

I(L+1)
p,q = max

gi∈β
gi

β = {I(L)
p,q , I(L)

p+1,q, I(L)
p,q+1, I(L)

p+1,q+1} (2.33)

The fully connected layer is just linear regression. A trainable weights of a fully
connected layer is defined as W ∈ RiH×iW , where iH and iW denote the number of
input neurons and the number of output neurons respectively. The computation of
a fully connected layer is written by

A(L+1) = WT A(L) + W0 (2.34)
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where A ∈ RiH is the input neurons, W0 is biases. In the deep neural network like
a CNN, the activation function is necessary after every layer. The ReLU function[30]
is often used for CNN. The formulation of ReLU defined as follows

h = max h, 0 (2.35)

The ReLU function prevents gradient vanish and it allows to construct deep neu-
ral networks. By using them, the CNN can extract good features from image data.
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Chapter 3

Non Linear Dimensionality
Reduction with q-Gaussian
Distribution

3.1 q-Gaussian Stochastic Neighbor Embedding

Since the t-SNE makes better visualization than the SNE, we can understand that the
embedding depends on a low-dimensional probability distribution.

However, t-SNE cannot change the low-dimensional probability distribution, be-
cause we can not control it. Therefore, t-SNE cannot change the proximity between
each sample in the embedding space.

To solve this problem, we proposed to use q-Gaussian distribution[42] in low-
dimensional space instead of t-distribution as an extension and improvement of
t-SNE. This novel method is called q-Gaussian stochastic neighbor embedding (q-
SNE) [2]. The symmetric joint probability in high-dimensional space is the same as
in Eq.(2.16). The joint probability in low-dimensional space is defined as follows by
using the local q-Gaussian distribution:

rij =
(1 + q−1

3−q‖yi − yj‖2)−
1

q−1

∑N
l ∑N

k 6=l(1 +
q−1
3−q‖yl − yk‖2)−

1
q−1

, (3.1)

where q is the hyperparameter of q-Gaussian distribution, rii = 0, and rij = rji for
∀i, j. The Kullback-Leibler divergence is same as Eq.(2.13) The gradient is derived as

∂C
∂yi

=
4

3− q

N

∑
j
(pij − rij)(yi − yj)(1 +

q− 1
3− q

‖yi − yj‖2)−1. (3.2)

The details of derivation of Eq.(3.2) is shown in Appendix. Since the q-SNE uses
the q-Gaussian distribution for low-dimensional probability distribution instead of
t-distribution of t-SNE, the q-Gaussian distribution can express various probability
distributions by tuning the hyperparameter q. Therefore, q-SNE can provide more
various embedding and visualizations than t-SNE. We can find the best visualization
by choosing hyperparameter q. We show the effectiveness of q-SNE in experiments.
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FIGURE 3.1: This figure shows the graphs about Gaussian distribu-
tion, t-distribution (dotted line), q-Gaussian distribution (solid line)
and the joint probability function of Eq.(2.25) of UMAP (dashed line)
by setting various hyperparameter q and min_dist respectively. When
q → 1, the graph is close to usual Gaussian distribution (green solid
line and blue dashed line). When q = 2, the graph is close to t-
distribution of degrees of freedom 1 (purple solid line and orange

dashed line).

3.2 q-Gaussian Distributed Uniform Manifold Approxima-
tion and Projection

The UMAP can perform faster than t-SNE and can control low-dimensional space
by changing the shape of the curve in low-dimensional space. However, the joint
probability function Eq.(2.25) can not be determined intuitively because parameters
a and b are fitted by hyperparameter min_dist, and it is difficult to control the em-
bedding results. In Fig.3.1, we show the set of q-Gaussian distributions by setting
various values of the hyperparameter q, and the joint probability function Eq.(2.25)
of UMAP with parameter a and b fitted by setting various hyperparameter min_dist.
According to this figure, the q-Gaussian distribution is smoothly changed by setting
q and we can determine the shape of the probability distribution intuitively. In con-
trast, the shapes of most curves in the function Eq.(2.25) of UMAP are similar (except
green dashed line), it is difficult to determine their shapes intuitively. Also we can
not know the shapes of curve before fitting a and b.

To solve this problem, we propose to use q-Gaussian distribution in low-dimensional
space instead of the curve of UMAP. This novel technique is called q-Gaussian dis-
tributed uniform manifold approximation and projection (q-UMAP).
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FIGURE 3.2: This figure shows embedding of swissroll dataset by us-
ing q-SNE, q-UMAP, t-SNE, and UMAP with each parameter. When
q = 2.0 of q-SNE, the embedding is same as t-SNE. The most of left
shows 3-d mapping of swiss roll dataset. The perplexity for q-SNE
and t-SNE is 30. The number of nearest neighbor for q-UMAP and

UMAP is 15.

The joint probability in high-dimensional space is the same as Eq.(2.24). The joint
probability in low-dimensional space is defined as follows:

rij =

(
1 +

q− 1
3− q

‖yi − yj‖2
)− 1

q−1

, (3.3)

where q is hyperparameter of q-Gaussian distribution. Then, the loss function is the
same binary cross-entropy (CE) as in Eq.(2.27). The gradient is derived as

∂CE
∂yi

=
2

3− q

N

∑
j

(
pij

rij
+

1− pij

1− rij

) (
yi − yj

) (
1 +

q− 1
3− q

‖yi − yj‖2
)− 1

q−1−1

. (3.4)

The details of derivation of Eq.(3.4) is shown in Appendix. Since the q-Gaussian dis-
tribution is used in low-dimensional space, the fitting part of UMAP for parameters
a and b is not necessary. The q-UMAP can control the embedding result intuitively
with less computational time than UMAP by using the q-Gaussian distribution. We
show the effectiveness of q-UMAP in experiments.

3.3 Experiments

3.3.1 Preliminary Experiment using Swissroll Data

To show the effectiveness of dimensionality reduction using q-Gaussian distribution,
we have done experiments using the swissroll dataset. The swissroll dataset is 3D
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(A) MNIST (B) COIL-20

(C) OlivettiFaces (D) FashionMNIST

FIGURE 3.3: This Figure shows images of each dataset MNIST, COIL-
20, OlivettiFaces, and FashionMNIST.

data and includes 1500 data points. We embedded swissroll data on 2-dimensional
space by UMAP, q-SNE, t-SNE, and q-UMAP. For UMAP, we set the hyperparameter
min_dist to 0.005, 0.01, 0.05, 0.1, and 0.5. For q-SNE and q-UMAP, we set the hyper-
parameter q to 1.1, 1.5, 2.0, 2.5, and 2.9. When q = 2.0 of q-SNE, it denotes t-SNE. For
q-SNE and t-SNE, we set the perplexity to 30. For q-UMAP and UMAP, we set the
number of nearest neighbor to 15. The experimental setting of q-SNE and t-SNE is
below. To obtain the embedded low-dimensional vectors of each sample, the update
rule is applied 1000 times starting from the random initial vectors in the optimiza-
tion. The learning rate is set to 200 and the momentum is controlled such that it is set
to 0.5 for the first 250 iterations and 0.8 for the remaining iterations. To speed up the
optimization in the early stages, the joint probability in the high-dimensional space
pij is multiplied 12 for the first 250 iterations. These settings are almost the same
as the implementation of t-SNE in the scikit-learn [32]. The experimental setting of
UMAP and q-UMAP is below. To obtain the embedded low-dimensional vectors of
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Test Accuracy (%)
UMAP q-UMAP q-SNE

min_dist q q
nn 0.01 0.05 0.5 1.0 1.1 1.5 2.0 2.5 pl 1.1 1.5 2.0(t-SNE) 2.5

M
N

IS
T

5 94.5 94.6 92.8 88.8 88.6 93.3 94.0 94.3 5 94.9 95.8 95.6 95.5
50 93.0 92.8 90.8 88.3 83.0 90.9 92.2 92.7 15 88.9 95.8 95.7 95.6
100 90.8 91.0 89.1 85.4 81.3 87.1 91.3 91.7 25 89.0 96.1 95.9 95.7
200 91.1 90.5 85.3 80.3 78.3 86.3 89.8 91.1 35 88.2 95.7 95.8 95.6
300 90.4 90.2 82.7 79.4 76.4 81.9 88.3 90.6 40 87.3 95.6 95.8 95.5

C
O

IL
-2

0

5 95.9 95.8 95.9 93.9 95.8 95.7 96.1 96.4 5 99.8 99.9 99.9 99.6
50 90.7 90.7 90.5 89.1 88.3 89.7 90.5 91.5 15 96.6 99.4 99.9 99.9
100 90.5 90.5 87.5 85.3 86.3 88.1 89.5 90.9 25 94.7 99.1 99.9 99.5
200 90.6 90.6 86.9 83.6 84.1 86.8 89.0 91.2 35 92.7 98.8 99.7 99.5
300 89.9 89.2 85.1 82.5 82.3 86.4 88.5 90.3 40 91.7 98.5 99.8 99.5

O
liv

et
te

5 90.6 91.4 91.2 86.7 86.3 90.9 92.4 91.8 5 92.5 94.0 92.0 89.5
50 80.1 78.9 69.6 61.1 61.3 69.6 76.1 79.1 15 85.0 94.5 90.8 90.0
100 76.1 76.7 64.5 56.2 57.2 64.9 73.2 75.0 25 80.8 90.3 92.3 89.5
200 73.9 71.8 59.6 51.5 51.9 60.2 68.7 74.3 35 75.3 90.0 91.3 90.5
300 71.3 69.6 58.3 52.3 51.8 59.3 66.6 74.0 40 71.3 89.3 91.8 87.8

Fa
sh

io
n

5 84.2 83.9 81.0 78.4 79.9 81.3 83.0 83.8 5 82.9 86.8 86.3 86.1
50 81.4 81.0 78.8 77.7 78.2 79.2 80.3 81.0 15 81.0 86.8 86.7 86.2
100 80.4 80.3 78.1 77.0 77.2 78.5 79.3 80.2 25 80.5 86.1 86.6 86.3
200 79.7 79.7 77.8 76.6 76.7 77.9 79.0 79.4 35 79.4 85.1 86.6 86.3
300 79.7 79.5 77.5 76.1 76.2 77.6 78.8 79.4 40 78.9 84.7 86.3 86.3

TABLE 3.1: This table shows classification accuracy of t-SNE, UMAP,
q-UMAP, and q-SNE by using k-NN at embedding space on MNIST,
COIL-20, OlivettiFaces, and FashionMNIST dataset. The nn and pl
means nearest neighbor of UMAP and q-UMAP, and perplexity of t-
SNE and q-SNE respectively. When q = 2.0 of q-SNE, the results is
same as t-SNE. The bold scores denote the best score of each tech-

nique.

each sample, the update rule is applied 200 times starting from the random initial
vectors in the optimization. The learning rate is set to 1.0. These settings are almost
the same as the implementation of UMAP.

The embedding is shown in Fig.3.2. The visualization of 3D swissroll data is
shown at most left in Fig.3.2. When q = 2.0 for q-SNE, the embedding is the same
as t-SNE. When q = 1.1 for q-SNE, the embedding is close to SNE. For UMAP, we
can see that the results of embedding are almost similar if the value of min_dist is be-
tween 0.005 and 0.1, because the shape of the curve is almost similar, as shown in Fig
3.1. It is difficult to express an embedding intuitively when min_dist is between 0.1
and 0.5. As the value of q increases, the shape of the distribution in Fig.3.1 becomes
sharper, and the results of embedding in Fig.3.2 becomes more clustered. According
to these results, q-SNE and q-UMAP can obtain various embedding results by using
the characteristics of the q-Gaussian distribution for each hyperparameter q. We can
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Computational time (seconds)
q-UMAP

q-SNEnn
5 10 50 100 150 200 250 300

MNIST 6.11 7.34 13.21 18.24 23.06 26.64 28.20 30.70 2033.86
COIL-20 12.93 12.95 13.30 13.51 13.65 13.90 14.42 14.57 36.84
OLivetti 1.80 1.70 1.83 1.87 1.91 1.93 1.95 1.97 3.60
Fashion 6.19 7.53 13.16 18.32 22.54 24.54 26. 59 28.33 2188.27

TABLE 3.2: This table shows comutational time of q-UMAP and
q-SNE. For q-UMAP, it is measured with different hyperparameter
nearest neighbor nn. The value of hyperparameter q is not taken into

account because it is not involved in the computation time.

see that the embedding when q = 1.5 of q-SNE is the best visualization for swiss-
roll. By using q-Gaussian distribution, we can intuitively create various embedding
spaces.

3.3.2 Comparison Experiments using Image Dataset

In this section, we show the embedding results and classification accuracy by using
k nearest neighbor (k-NN) [34] in the embedding space on MNIST [13], COIL-20
[35], OliverttiFaces [24], and FashionMNIST [50] dataset. We show the images of
each dataset in Fig.3.3. To compare the embedding visualization and accuracy, we
used t-SNE, UMAP, q-SNE, and q-UMAP. The MNIST dataset is the gray scale image
dataset of handwritten digits from 0 to 9. It has 60,000 images and the size of each
image is 28× 28 pixels. For the embedding and classification, we randomly chose
10, 000 images preliminary. The COIL-20 dataset is the gray scale image dataset of 20
objects. It has 1, 440 images and the size of each image is 128× 128 pixels. Each object
was placed on a motorized turntable against a black background. The turntable
was rotated through 360 degrees to vary object pose with respect to a fixed camera.
Images of the objects were taken at pose intervals of 5 degrees. The OlivettiFaces
dataset is the gray scale image dataset of 40 person. It has 400 images and the size
of each image is 92× 112 pixels. The FashionMNIST dataset is the gray scale image
dataset of 10 fashion items. It has 60,000 images and the size of each image is 28×
28 pixels. For the embedding and classification, we randomly chose 10,000 images
preliminary.

First, we show the embedding of MNIST dataset by using t-SNE, UMAP, q-SNE,
and q-UMAP with different hyperparameters in Fig.3.4. The experimental settings
of UMAP, q-SNE, and q-UMAP are same as preliminary experiments. We can know
the relationship between hyperparameter n_neighbors and min_dist, perplexity and
q, or n_neigbors and q. According to Fig.3.4.(a), it is difficult to adjust embedding
space because the figures in the top two rows or the bottom two rows make little
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TABLE 3.3: Top 29 words around "man" in order from closer words
by using q-SNE with each parameter q.

q = 1.1 q = 1.5 q = 2.0 q = 2.5
remembered old boy woman

faculty woman woman boy
teaches boy old girl
pride girl girl old
visits died childhood her
retire herself life she
kid survived family herself

theology her dying blind
student surviving die drunk
marines life boys himself
world family girls him
guard she men his
loves dying alive couple

taught childhood women alien
undergraduate independent athletes life

joy die lovers family
likes drunk gods lived

arrives blind beloved lives
her represents prophet living

herself represent loving childhood
territories lived jesus dying
command representing lived die

sacred represented divine child
saturday lives lives families

lived chose child children
ritual living living parents
love god christ elderly

recalled masses god mothers
economics evil survived male

difference, respectively. According to Fig.3.4.(b) and 3.4.(c), we can know the grad-
ually changing the embedding by changing hyperparameter q. We can easily and
intuitively control the embedding by using q-Gaussian distribution characteristics.

We also show the other embedding of COIL-20, OlivettiFaces, and FashionM-
NIST by using t-SNE, UMAP, q-SNE and q-UMAP with different hyperparameters
in Fig.3.5, Fig.3.6, and Fig.3.7 respectively. In Fig.3.6, we have shown images of 20
persons in OlivettiFaces.

Next, we show the embedding of MNIST, COIL-20, OlivettiFaces, and Fashion-
MNIST by using PCA, Isomap, t-SNE, UMAP, q-SNE, and q-UMAP in Fig.3.8. Also
we show the classification accuracy by using k-NN at embedding space by t-SNE,
UMAP, q-SNE and q-UMAP in Table.3.1. The k of k-NN is 5. The classification ac-
curacy is averaged 5 trials with different seeds. In Fig.3.8, the hyperparameters for
each embedding are used when classification accuracy of the Table3.1 is the best.
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TABLE 3.4: Top 29 words around "man" in order from closer words
by using q-UMAP with each parameter q.

q = 1.1 q = 1.5 q = 2.0 q = 2.5
ambulance must event men

cats circumstances milestone woman
u.n. fantastic inaugural boy

animals demise sacrifice kid
marble pressed landmark kids
animal thoroughly advisor women
erected impossible hosted girl
walls crush hosts children
cow momentum hosting ladies

communist thought host girls
deer supicious occasion child
tall non-families adviser boys

parks send historic female
dog properly ritual male
door absolutely aide females
d.c. amazing aides males

dynasty rid advisers parents
grand wonderful mark adults
insects exciting marked youth
plastic will senior teens

title differently breakthrough young
yard unless replacement youngsters
dogs play woman adult
pet poison marking baby
asia incredible replacing infant

oldest repeat replace teenagers
sheep should mourning herself

competing bang forthcoming teen
glass chances occasions aging

According to Fig.3.8, q-SNE are embedded more tightly together than t-SNE. The
embedding of q-UMAP becomes almost same as the embedding of UMAP, however
q-UMAP can control intuitively than UMAP according to Fig.3.4. Table3.1 shows
that q-SNE scores better than the other methods on all datasets. When consider-
ing the pairs of all samples in high-dimensional space like q-SNE, it is better that
the sample is embedded so that it spreads by choosing lower q. When considering
the pairs of some samples in high-dimensional space like q-UMAP, it is better that
the sample is embedded so that it solidifies by choosing higher q. For UMAP and
q-UMAP, the hyperparmeter min_dist= 5 is the best for all cases. Table3.2 shows
computational time of q-UMAP and q-SNE for each dataset. The times are also av-
eraged 5 trials with different seeds. According to this table, q-UMAP can give faster
computational time.

The q-SNE can give the higher score than q-UMAP, because it uses all samples
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in high-dimensional space. The q-UMAP can give the faster than q-SNE, because it
uses some samples in high-dimensional space. This indicates that the best classifica-
tion can be selected by setting the hyperparameter q of the q-Gaussian distribution.
The advantage of our proposed method is that it can provide an embedding space
with high accuracy even if it is small, and the space can be controlled in various
ways.

3.3.3 Embedding using Word Dataset

We did the experiments of embedding using word dataset. The word is converted
to vectors using a technique called word2vec [9]. It is important to analysis the sim-
ilarity between each words. The GloVe dataset [33] is one of the word dataset. The
GloVe dataset contains 400,000 words which has a 300 dimensions vector. For our
experiments, we randomly chose 10,000 words in the dataset. We show the embed-
ding of q-SNE and q-UMAP with several hyperparameter q. The hyperparameter
perplexity of q-SNE is 30. The hyperparameter n_neighbor of q-UMAP is 5. Other
experimental settings of q-SNE, and q-UMAP are same as preliminary experiments.

We show the 30 words close to the word "man" in the 2-dimensional embedded
space for the cases with parameters q = 1.1, q = 1.5, q = 2.0, and q = 2.5 in
Fig.3.9. To confirm the 30words around "man", we show them in Table3.3 for q-
SNE and Table3.4 for q-UMAP. According to embedding, when hyperparameter q
increases, each words becomes more cluster. The words around "man" are better
when hyperparameter q is higher in both thecniques. For q-SNE, the words related
to people appeared than q-UMAP.

3.3.4 Locus of Embedding by Changing Hyperparameter q

We did experiments of locus of embedding by changing hyperparameter q. To con-
firm it, we used MNIST, COIL-20, and FashionMNIST. For q-SNE, experimental
settings are same as comparison experiments using image dataset. We show the
locus of q-SNE embedding when q = 1.1, q = 2.0, and q = 2.9 in Fig.3.10 on
MNIST. These embedding are plotted at the same time, and we show the locus by
arrow. The arrows are used for random 25 samples. According to this figure, we
can know that q-SNE expanded the embedding space when q increases, and made
more cluster after expansion. For COIL-20 and FashionMNIST, we show the locus
in Fig.3.11 and Fig.3.12 respectively. For these cases, the same phenomena is also
observed as MNIST. We open the animation of locus for each dataset in my GitHub
(https://github.com/i13abe/qSNE). Also we show the locus of q-UMAP embed-
ding when q = 1.1, q = 2.0, and q = 2.9 in Fig.3.13 on MNIST. These embedding are
also plotted at the same time, and we show the locus by arrow. The arrows are used
for random 25 samples. According to this figure, we can know that q-UMAP slightly
expanded the embedding space than q-SNE when q increases, and made more clus-
ter after expansion. For COIL-20 and FashionMNIST, we show the locus in Fig.3.14
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and Fig.3.15 respectively. For these cases, the same phenomena is also observed as
MNIST.
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(a) UMAP

(b) q-SNE (t-SNE when q = 2.0)
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(c) q-UMAP

FIGURE 3.4: This figure shows embedding of MNIST dataset by using
(a)UMAP, (b)q-SNE(t-SNE), and (c)q-UMAP with different hyperpa-
rameter. When q = 2.0 of q-SNE, the embedding is same as t-SNE.

The n_neighbors, perplexity, min_dist, and q are hyperparameter.
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(a) UMAP

(b) q-SNE (t-SNE when q = 2.0)
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(c) q-UMAP

FIGURE 3.5: This figure shows embedding of COIL-20 dataset by us-
ing (a)UMAP, (b)q-SNE(t-SNE), and (c)q-UMAP with different hyper-
parameter. When q = 2.0 of q-SNE, the embedding is same as t-SNE.

The n_neighbors, perplexity, min_dist, and q are hyperparameter.
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(a) UMAP

(b) q-SNE (t-SNE when q = 2.0)
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(c) q-UMAP

FIGURE 3.6: This figure shows embedding of OlivettiFaces dataset
by using (a)UMAP, (b)q-SNE(t-SNE), and (c)q-UMAP with different
hyperparameter. When q = 2.0 of q-SNE, the embedding is same as
t-SNE. The n_neighbors, perplexity, min_dist, and q are hyperparam-

eter.
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(a) UMAP

(b) q-SNE (t-SNE when q = 2.0)
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(c) q-UMAP

FIGURE 3.7: This figure shows embedding of FashionMNIST dataset
by using (a)UMAP, (b)q-SNE(t-SNE), and (c)q-UMAP with different
hyperparameter. When q = 2.0 of q-SNE, the embedding is same as
t-SNE. The n_neighbors, perplexity, min_dist, and q are hyperparam-

eter.
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FIGURE 3.8: This figure shows embedding of MNIST, COIL-20,
OlivettiFaces, and FashionMNIST dataset by using PCA, Isomap, t-
SNE, UMAP, q-SNE, and q-UMAP. The hyperparameters for each em-
bedding of t-SNE, UMAP, q-SNE and q-UMAP are used when the

classification accuracy of the Table3.1 is the best.
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(a) q-SNE
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(b) q-UMAP

FIGURE 3.9: This figure shows embedding of GloVe dataset by using
(a)q-SNE, and (b)q-UMAP with different hyperparameter q. When
q = 2.0 of q-SNE, the embedding is same as t-SNE. These embedding

shows 30 word around "man".



36 Chapter 3. Non Linear Dimensionality Reduction with q-Gaussian Distribution

FIGURE 3.10: This figure shows locus of q-SNE embedding on
MNIST dataset with hyperparameter q = 1.1, q = 2.0, and q = 2.9.
These embedding are plotted at the same time, and locus is written

by arrow.

FIGURE 3.11: This figure shows locus of q-SNE embedding on COIL-
20 dataset with hyperparameter q = 1.1, q = 2.0, and q = 2.9. These
embedding are plotted at the same time, and locus is written by ar-

row.
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FIGURE 3.12: This figure shows locus of q-SNE embedding on Fash-
ionMNIST dataset with hyperparameter q = 1.1, q = 2.0, and q = 2.9.
These embedding are plotted at the same time, and locus is written

by arrow.

FIGURE 3.13: This figure shows locus of q-UMAP embedding on
MNIST dataset with hyperparameter q = 1.1, q = 2.0, and q = 2.9.
These embedding are plotted at the same time, and locus is written

by arrow.
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FIGURE 3.14: This figure shows locus of q-UMAP embedding on
COIL-20 dataset with hyperparameter q = 1.1, q = 2.0, and q = 2.9.
These embedding are plotted at the same time, and locus is written

by arrow.

FIGURE 3.15: This figure shows locus of q-UMAP embedding on
FashionMNIST dataset with hyperparameter q = 1.1, q = 2.0, and
q = 2.9. These embedding are plotted at the same time, and locus is

written by arrow.
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FIGURE 4.1: This figure shows an architecture of parametric q-SNE
with a convolutional neural network. FC denotes a fully connected

layer.

Chapter 4

Non Linear Parametric
Dimensionality Reduction with
q-Gaussian Distribution

4.1 Parametric q-SNE with CNN

We propose a novel technique called the parametric q-Gaussian distributed stochas-
tic neighbor embedding (the parametric q-SNE) with a convolutional neural net-
work (CNN). The parametric q-SNE uses q-Gaussian distribution instead of t-distribution
of the parametric t-SNE. It can map a new samples in the high-dimensional space
into the low-dimensional embedding space by using CNN.

Let f ′ be the CNN with the ReLU function. The ReLU function is a non-linear
activation function. Then the output vector of the CNN for the sample xi in the high-
dimensional space is represented by f ′(xi|W ′), where W ′ is weights of the CNN. We
assume that the dimension of output vector d where D > d. The conditional proba-
bility in the high-dimensional space is defined as Eq.(2.16). The joint probability in
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TABLE 4.1: This table shows the construction of CNN for experi-
ments. The activation function is ReLU.

Layer Operator Output Channels
1 Convolution 32
2 Convolution 32
3 Convolution 64
4 Convolution 64
5 Fully Connected -

the low-dimensional space is defined as

rij =
(1 + q−1

3−q‖ f ′(xi|W ′)− f ′(xj|W ′)‖2)−
1

q−1

∑N
l ∑N

k 6=l(1 +
q−1
3−q‖ f ′(xk|W ′)− f ′(xl |W ′)‖2)−

1
q−1

, (4.1)

where rii is 0, and rij = rji for ∀i, j. The Kullback-Leibler divergence is defined as
Eq.(2.18) and is used to train the parameters of the CNN.

The gradient for yi is given as

∂C
∂W ′ =

∂C
∂ f ′(xi|W ′)

∂ f ′(xi|W ′)

∂W ′ , (4.2)

where

∂C
∂ f ′(xi|W ′)

=
4

3− q

N

∑
j
(pij − rij)( f ′(xi|W ′)− f ′(xj|W ′))

(1 +
q− 1
3− q

‖ f ′(xi|W ′)− f ′(xj|W ′)‖2)−1, (4.3)

and ∂ f ′(xi |W ′)
∂W ′ can be computed by using the standard automatic differentiation.

The architecture of parametric q-SNE with CNN is shown in Fig.4.1. The pairs
xi and xj are used in the training. This is very similar with Siamese neural network
[8]. To consider the similarity between some samples, such construction is very im-
portant.

Since the q-Gaussian distribution can express t-distribution when q = 2.0, the
proposed parametric q-SNE can generate the same low-dimensional embedded space
with the parametric t-SNE. By choosing hyperparameter q, the parametric q-SNE
gives better results than parametric t-SNE.
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(a) MNIST

(b) FashionMNIST

(c) COIL-20

FIGURE 4.2: This figure shows the 2-d mapping of (a) MNIST, (b)
FashionMNIST, and (c) COIL-20 dataset by using PCA, parametric t-
SNE, and parametric q-SNE. When q = 2.0 of parametric q-SNE, the
parametric q-SNE becomes the same as parametric t-SNE. The per-
plexity for each 2-mapping is used when the classification accuracy

of the Table4.2 is the best.
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TABLE 4.2: This table shows classification accuracy by using para-
metric q-SNE on MNIST, FashionMNIST, and COIL-20 dataset. The
Perp denotes the perplexity. When q = 2.0 of parametric q-SNE, then

parametric q-SNE becomes the same as parametric t-SNE.

Parametric q-SNE
q

Perp 1.1 1.3 1.5 1.8 2.0 (t-SNE) 2.3 2.5 2.8

M
N

IS
T

Tr
ai

n

5 0.9455 0.9544 0.9609 0.9621 0.9668 0.9652 0.9650 0.9626
10 0.9331 0.9353 0.9375 0.9519 0.9549 0.9608 0.9645 0.9654
20 0.9039 0.9364 0.9504 0.9560 0.9590 0.9577 0.9631 0.9651
30 0.9154 0.9226 0.9323 0.9508 0.9586 0.9604 0.9610 0.9589
40 0.8911 0.9153 0.9210 0.9477 0.9489 0.9508 0.9611 0.9630
50 0.8834 0.9211 0.9203 0.9542 0.9561 0.9567 0.9558 0.9625

Te
st

5 0.9276 0.9386 0.9492 0.9527 0.9599 0.9594 0.9590 0.9572
10 0.9070 0.9143 0.9165 0.9389 0.9463 0.9549 0.9592 0.9606
20 0.8712 0.9211 0.9387 0.9466 0.9508 0.9488 0.9565 0.9592
30 0.8898 0.9030 0.9156 0.9390 0.9500 0.9527 0.9543 0.9512
40 0.8561 0.8916 0.9002 0.9351 0.9368 0.9407 0.9531 0.9566
50 0.8462 0.9022 0.8971 0.9438 0.9471 0.9483 0.9471 0.9547

Fa
sh

io
nM

N
IS

T Tr
ai

n

5 0.7589 0.7630 0.7627 0.7636 0.7609 0.7613 0.7668 0.7742
10 0.7676 0.7695 0.7738 0.7757 0.7749 0.7707 0.7707 0.7746
20 0.7585 0.7628 0.7680 0.7673 0.7677 0.7699 0.7740 0.7749
30 0.7573 0.7600 0.7629 0.7647 0.7669 0.7664 0.7686 0.7731
40 0.7557 0.7614 0.7641 0.7708 0.7718 0.7740 0.7740 0.7758
50 0.7545 0.7639 0.7681 0.7705 0.7755 0.7765 0.7725 0.7765

Te
st

5 0.6652 0.6726 0.6735 0.6692 0.6682 0.6716 0.6762 0.6865
10 0.6780 0.6785 0.6876 0.6879 0.6875 0.6816 0.6810 0.6865
20 0.6666 0.6714 0.6753 0.6739 0.6805 0.6775 0.6833 0.6891
30 0.6646 0.6681 0.6688 0.6749 0.6780 0.6760 0.6788 0.6842
40 0.6603 0.6695 0.6727 0.6800 0.6860 0.6884 0.6834 0.6863
50 0.6619 0.6718 0.6783 0.6831 0.6880 0.6892 0.6839 0.6905

C
O

IL
-2

0

Tr
ai

n

5 0.9290 0.9306 0.9350 0.9310 0.9162 0.8872 0.8726 0.8684
10 0.9384 0.9340 0.9424 0.9356 0.9092 0.8892 0.8942 0.8816
20 0.9108 0.9196 0.9196 0.9162 0.9066 0.8848 0.8772 0.8788
30 0.8920 0.9014 0.9100 0.9058 0.9012 0.8884 0.8870 0.8820
40 0.8622 0.8922 0.9016 0.8936 0.8990 0.8948 0.8958 0.8862
50 0.8710 0.8916 0.9008 0.9078 0.8964 0.8900 0.8866 0.8860

Te
st

5 0.8327 0.8395 0.8527 0.8605 0.8400 0.8155 0.7927 0.7873
10 0.8591 0.8491 0.8582 0.8650 0.8355 0.8200 0.8250 0.8136
20 0.8359 0.8373 0.8350 0.8350 0.8277 0.8036 0.8050 0.8109
30 0.8041 0.8214 0.8168 0.8268 0.8200 0.8036 0.8136 0.8023
40 0.8000 0.8182 0.8214 0.8277 0.8241 0.8155 0.8250 0.8100
50 0.8091 0.8214 0.8232 0.8323 0.8177 0.8223 0.8150 0.8209
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4.2 Experiments

4.2.1 Mapping Experiments

In this section, we will show the 2-d visualization of image datasets MNIST, Fashion-
MNIST, and COIL-20 by using principal component analysis (PCA), the parametric
t-SNE, and parametric q-SNE with several hyperparameter q. The MNIST dataset
has 60,000 training images and 10,000 test images. Each image is a grayscale hand-
written digit. The size of the image is 28× 28. The FashionMNIST dataset has 60,000
training images and 10,000 test images. Each image is a grayscale fashion item. The
size of the image is 28 × 28. The COIL-20 dataset has 1,440 images of 20 objects.
Each image is that the objects were placed on a motorized turntable against a black
background. The turntable was rotated through 360 degrees to vary object pose
concerning a fixed camera. Images of the objects were taken at pose intervals of 5
degrees. The size of each image is 128× 128. For experiments, we divided randomly
1,000 training images and 440 test images.

In experiments, we use CNN in Table 4.1. Each convolutional layer has a 7× 7
kernel with no padding. We use the ReLU function as an activation function. The
optimizer is stochastic gradient descent (SGD)[21] with momentum. A learning rate
is 0.05 or 0.01 for MNIST or FashionMNIST and COIL-20 respectively. Weight decay
is 0.0001 or 0.001 for MNIST and FashionMNIST or COIL-20 respectively. A mo-
mentum is 0.8 An epoch is 500 or 3000 for MNIST and FashionMNIST or COIL-20
respectively. The learning rate is multiplied by 0.1 every 100 or 500 epochs for MN-
SIT and FashionMNIST or COIL-20. The dimension of the output of CNN is 2. For
COIL-20 dataset, we applied resize from 128× 128 to 32× 32 as a pre-processing.
Before training, we use fixed 5,000 data points for bachs to prepare the conditional
probability in the high-dimensional space.

We show the 2-d mapping in Fig.4.2 by using principal component analysis (PCA),
parametric t-SNE, and parametric q-SNE. When q = 2.0, the 2-d mapping is the same
as parametric t-SNE. The perplexity for each 2-d mapping is used when the classi-
fication accuracy of the Table4.2 is the best. According to Fig.4.2, the larger q is, the
more samples are clustered. The parametric q-SNE can express different embedding
by choosing hyperparameter q.

4.2.2 Comparison Experiments

In this section, we compared classification accuracy by using the parametric t-SNE
and parametric q-SNE. The settings of experiments for the training phase are the
same as visualization experiments. For classification accuracy, we use k nearest
neighbor (k-NN). we fitted k-NN on embeddings of the training sample, and we
got test sample classification accuracy by it. In this experiment, we set k to 5. The
classification accuracy is averaged 5 trials with different seeds. In Table 4.2, We show
the classification accuracy of training or test sample by using parametric t-SNE and
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parametric q-SNE on MNIST, FashionMNIST, and COIL-20. When q = 2.0 of para-
metric q-SNE, the parametric q-SNE becomes the same as parametric t-SNE. The
parametric q-SNE gives better classification accuracy for each dataset than the para-
metric t-SNE.
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Conclusion

5.1 q-SNE and q-UMAP

In section 3, we described our proposal. We proposed to use q-Gaussian distribu-
tion for dimensionality reduction. These are called q-Gaussian distributed stochastic
neighbor embedding (q-SNE) and q-Gaussian distributed uniform manifold approx-
imation and projection (q-UMAP). The q-SNE uses q-Gaussian distribution in low-
dimensional space instead of t-distribution of t-SNE. The q-UMAP uses q-Gaussian
distribution in low-dimensional space instead of curve of UMAP. Through the ex-
periments, our proposal can control intuitively embedding space by choosing hy-
perparameter q. The UMAP can also control embedding space, but our proposal can
control more intuitively. In classification experiments, our proposal achieved higher
classification accuracy score than UMAP and t-SNE on MNIST, COIL-20, Olivetti-
Faces, and FashionMNIST dataset. The q-SNE and t-SNE need long computational
time than UMAP, but q-UMAP can run fast as same as UMAP. Since the q-SNE in-
cludes t-SNE, we can use our proposal instead of t-SNE. Since the q-UMAP can con-
trol intuitively embedding space than UMAP and give faster computational time
as same as UMAP, we can use our proposal instead of UMAP. However, they can
not map new coming sample to low-dimensional space, because they don’t make
mapping function.

5.2 parametric q-SNE

In section 4, we descrived our second proposal. We also proposed parametric q-
SNE with convolutional neural network(CNN) to construct the nonlinear mapping.
The CNN is trained to minimize q-SNE loss between outputs of CNN. Through
the experiments, we can control the embedding and map the new coming sam-
ple to same embedding space. In classification experiments, the parametric q-SNE
achieves higher classification accuracy score than parametric t-SNE on MNIST, COIL-
20, and FashionMNIST dataset.
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5.3 Future Work

Our proposal extended the previous works by using q-Gaussian distribution. We
confirmed effectiveness from experiments. In our experiments, we evaluated the
accuracy scores by using teacher labels, however we can not know the goodness
of mapping for each dataset without teacher labels. In such situations, we have to
evaluate by seeing the mapping ourselves. The important future work is to find the
best hyperparameter q of the q-Gaussian distribution, and to define the way to score
the embedding.



47

Appendix A

Derivation

A.1 Gradient of SNE

In this section, we show the derivation of SNE gradient Eq.(2.15). The SNE mini-
mizes the Kullback-Leibler divergence between conditional probability introduced
by Gaussian distribution.

We show the formulation again.

pj|i =
exp (−‖xi − xj‖2/2σ2

i )

∑N
k 6=i exp (−‖xi − xk‖2/2σ2

i )
, (A.1)

rj|i =
exp (−‖yi − yj‖2)

∑N
k 6=i exp (−‖yi − yk‖2)

, (A.2)

C =
N

∑
i

N

∑
j 6=i

pj|i log
pj|i
rj|i

=
N

∑
i

N

∑
j 6=i

pj|i log pj|i − pj|i log rj|i. (A.3)

And to consider more simple, we set

dij = ‖yi − yj‖, (A.4)

S =
N

∑
k 6=i

exp (−d2
ik). (A.5)

Then the gradient of the cost function C for yi is defined as

∂C
∂yi

=
N

∑
j

(
∂C
∂dij

+
∂C
∂dji

)
(yi − yj). (A.6)
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the gradient ∂C
∂dij

is defined as

∂C
∂dij

= −
N

∑
u

N

∑
v 6=u

pu|v
∂(log ru|v)

∂dij

= −
N

∑
u

N

∑
v 6=u

pu|v
∂(log ru|vS− log S)

∂dij

= −
N

∑
u

N

∑
v 6=u

pu|v

(
1

ru|vS
∂ru|vS

∂dij
− 1

S
∂S
∂dij

)

= −
N

∑
u

N

∑
v 6=u

pu|v
ru|vS

∂ exp (−d2
uv)

∂dij
+

N

∑
u

N

∑
v 6=u

pu|v
S

∂S
∂dij

. (A.7)

The gradient ∑N
u ∑N

v 6=u
pu|v

ru|vS
∂ exp (−d2

uv)
∂dij

is only non zero when u = i and v = j.

Hence the gradient of ∂C
∂dij

becomes

∂C
∂dij

= 2
pi|j

ri|jS
exp (−d2

ij)− 2
N

∑
u

N

∑
v 6=u

pu|v
S

exp (−d2
ij). (A.8)

Noting that ∑N
u ∑N

v 6=u pu|v = 1 and ri|j =
exp (−d2

ij)

S , the gradient simplifies to

∂C
∂dij

= 2pi|j − 2ri|j. (A.9)

Finally, we can get the gradient as

∂C
∂yi

= 2
N

∑
j
(pj|i − rj|i + pi|j − ri|j)(yi − yj). (A.10)

A.2 Gradient of symmetric SNE

In this section, we show the derivation of symmetric SNE gradient Eq.(2.19). The
symmetric SNE minimizes the Kullback-Leibler divergence between joint probabil-
ity introduced by Gaussian distribution.

We show the formulation again.

pij =
1
2
(pi pj|i + pj pi|j) =

pj|i + pi|j
2N

, (A.11)

rij =
exp (−‖yi − yj‖2)

∑N
l ∑N

k 6=l exp (−‖yl − yk‖2)
, (A.12)

C =
N

∑
i

N

∑
j 6=i

pij log
pij

rij

=
N

∑
i

N

∑
j 6=i

pij log pij − pij log rij. (A.13)
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And to consider more simple, we set

S =
N

∑
l

N

∑
k 6=l

exp (−d2
lk). (A.14)

Then the gradient of the cost function C for yi is defined as

∂C
∂yi

=
N

∑
j

(
∂C
∂dij

+
∂C
∂dji

)
(yi − yj)

= 2
N

∑
j

∂C
∂dij

(yi − yj). (A.15)

the gradient ∂C
∂dij

is defined as

∂C
∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruv)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruvS− log S)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv

(
1

ruvS
∂ruvS
∂dij

− 1
S

∂S
∂dij

)

= −
N

∑
u

N

∑
v 6=u

puv

ruvS
∂ exp (−d2

uv)

∂dij
+

N

∑
u

N

∑
v 6=u

puv

S
∂S
∂dij

. (A.16)

The gradient ∑N
u ∑N

v 6=u
puv

ruvS
∂ exp (−d2

uv)
∂dij

is only non zero when u = i and v = j.

Hence the gradient of ∂C
∂dij

becomes

∂C
∂dij

= 2
pij

rijS
exp (−d2

ij)− 2
N

∑
u

N

∑
v 6=u

puv

S
exp (−d2

ij). (A.17)

Noting that ∑N
u ∑N

v 6=u puv = 1 and rij =
exp (−d2

ij)

S , the gradient simplifies to

∂C
∂dij

= 2pij − 2rij. (A.18)

Finally, we can get the gradient as

∂C
∂yi

= 4
N

∑
j
(pij − rij)(yi − yj). (A.19)

A.3 Gradient of t-SNE

In this section, we show the derivation of t-SNE gradient Eq.(2.21). The t-SNE
minimizes the Kullback-Leibler divergence between joint probability introduced by
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Gaussian distribution and t-distribution.
We show the formulation again.

rij =
(1 + ‖yi − yj‖2)−1

∑N
l ∑N

k 6=l(1 + ‖yk − yl‖2)−1
, (A.20)

C =
N

∑
i

N

∑
j 6=i

pij log
pij

rij

=
N

∑
i

N

∑
j 6=i

pij log pij − pij log rij. (A.21)

And to consider more simple, we set

S =
N

∑
l

N

∑
k 6=l

(1 + d2
lk)
−1. (A.22)

Then the gradient of the cost function C for yi is defined as

∂C
∂yi

=
N

∑
j

(
∂C
∂dij

+
∂C
∂dji

)
(yi − yj)

= 2
N

∑
j

∂C
∂dij

(yi − yj). (A.23)

the gradient ∂C
∂dij

is defined as

∂C
∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruv)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruvS− log S)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv

(
1

ruvS
∂ruvS
∂dij

− 1
S

∂S
∂dij

)

= −
N

∑
u

N

∑
v 6=u

puv

ruvS
∂(1 + d2

uv)
−1

∂dij
+

N

∑
u

N

∑
v 6=u

puv

S
∂S
∂dij

. (A.24)

The gradient ∑N
u ∑N

v 6=u
puv

ruvS
∂(1+d2

uv)
−1

∂dij
is only non zero when u = i and v = j.

Hence the gradient of ∂C
∂dij

becomes

∂C
∂dij

= 2
pij

rijS
(1 + d2

ij)
−2 − 2

N

∑
u

N

∑
v 6=u

puv

S
(1 + d2

ij)
−2

= 2(pij − rij)(1 + d2
ij)
−1. (A.25)
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Noting that ∑N
u ∑N

v 6=u puv = 1 and rij =
(1+d2

ij)
−1

S , the gradient simplifies to

∂C
∂dij

= 2(pij − rij)(1 + d2
ij)
−1. (A.26)

Finally, we can get the gradient as

∂C
∂yi

= 4
N

∑
j
(pij − rij)(yi − yj)(1 + ‖yi − yj‖2)−1. (A.27)

A.4 Gradient of UMAP

In this section, we show the derivation of UMAP gradient Eq.(2.28). The UMAP
minimizes the Cross Entropy Loss between joint probability introduced by Gaussian
distribution and curve which is similar to the probability distribution.

We show the formulation again.

pj|i = exp

(
−

max(0, ‖xi − xj‖2 − ρi)

σi

)
, (A.28)

pij = pj|i + pi|j − pj|ipi|j, (A.29)

rij = (1 + a‖yi − yj‖2b)−1, (A.30)

CE = −
N

∑
i

N

∑
j 6=i

pij log rij + (1− pij) log (1− rij). (A.31)

Then the gradient of the cost function C for yi is defined as

∂CE
∂yi

=
N

∑
j

∂CE
∂dij

(yi − yj)

(A.32)

the gradient ∂CE
∂dij

is defined as

∂CE
∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruv)

∂dij
+ (1− puv)

∂(log (1− ruv))

∂dij

= −
N

∑
u

N

∑
v 6=u

puv

ruv

∂ruv

∂dij
− 1− puv

1− run

∂ruv

∂dij
. (A.33)
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The gradient is only non zero when u = i and v = j. Hence the gradient of ∂CE
∂dij

becomes

∂CE
∂dij

= −
pij

rij

∂rij

∂dij
+

1− pij

1− rij

∂rij

∂dij

= −
(

pij

rij
−

1− pij

1− rij

)
∂rij

∂dij

= −
(

pij

rij
−

1− pij

1− rij

) ∂(1 + ad2b
ij )
−1

∂dij

=

(
pij

rij
−

1− pij

1− rij

) 2abd2b−1
ij

(1 + ad2b
ij )

2
. (A.34)

Finally, we can get the gradient as

∂CE
∂yi

=
N

∑
j

(
pij

rij
+

1− pij

1− rij

) (
yi − yj

) 2ab‖yi − yj‖2b−1

(1 + a‖yi − yj‖2b)2 (A.35)

A.5 Gradient of q-SNE

In this section, we show the derivation of q-SNE gradient Eq.(3.2). The q-SNE
minimizes the Kullback-Leibler divergence between joint probability introduced by
Gaussian distribution and q-Gaussian distribution.

We show the formulation again.

rij =
(1 + q−1

3−q‖yi − yj‖2)−
1

q−1

∑N
l ∑N

k 6=l(1 +
q−1
3−q‖yl − yk‖2)−

1
q−1

, (A.36)

C =
N

∑
u

N

∑
v 6=u

puv log
puv

ruv

=
N

∑
u

N

∑
v 6=u

puv log puv − puv log ruv, (A.37)

And to consider more simple, we set

S =
N

∑
l

N

∑
k 6=l

(1 + d2
lk)
− 1

q−1 . (A.38)

Then the gradient of the cost fucntion C for yi is defined as

∂C
∂yi

=
N

∑
j

(
∂C
∂dij

+
∂C
∂dji

)
(yi − yj)

= 2
N

∑
j

∂C
∂dij

(yi − yj). (A.39)
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the gradient ∂C
∂dij

is defined as

∂C
∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruv)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruvS− log S)

∂dij

= −
N

∑
u

N

∑
v 6=u

puv

(
1

ruvS
∂ruvS
∂dij

− 1
S

∂S
∂dij

)

= −
N

∑
u

N

∑
v 6=u

puv

ruvS

∂(1 + q−1
3−q d2

uv)
− 1

q−1

∂dij
+

N

∑
u

N

∑
v 6=u

puv

S
∂S
∂dij

. (A.40)

The gradient puv
ruvS

∂(1+ q−1
3−q d2

uv)
− 1

q−1

∂dij
is only non zero when u = i and v = j.Hence the

gradient of ∂C
∂dij

becomes

∂C
∂dij

= −
pij

rijS
−1

q− 1
2(q− 1)

3− q
(1 +

q− 1
3− q

d2
ij)
− 1

q−1−1

+
N

∑
u

N

∑
v 6=u

puv

S
−1

q− 1
2(q− 1)

3− q
(1 +

q− 1
3− q

d2
ij)
− 1

q−1−1. (A.41)

Noting that ∑N
u ∑N

v 6=u puv = 1 and rij =
(1+ q−1

3−q d2
ij)
− 1

q−1 )

S , the gradient simplifies to

∂C
∂dij

=
pij

rij

2
3− q

rij(1 +
q− 1
3− q

d2
ij)
−1 − 2

3− q
rij(1 +

q− 1
3− q

d2
ij)
−1

=
2

3− q
(pij − rij)(1 +

q− 1
3− q

d2
ij)
−1. (A.42)

Finally, we can get the gradient as

∂C
∂yi

=
4

3− q

N

∑
j
(pij − rij)(yi − yj)(1 +

q− 1
3− q

‖yi − yj‖2)−1. (A.43)

A.6 Gradient of q-UMAP

In this section, we show the derivation of q-UMAP gradient Eq.(3.4). The q-UMAP
minimizes the Cross Entropy Loss between joint probability introduced by Gaussian
distribution and q-Gaussian distribution.
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We show the formulation again.

pj|i = exp

(
−

max(0, ‖xi − xj‖2 − ρi)

σi

)
, (A.44)

pij = pj|i + pi|j − pj|ipi|j, (A.45)

rij =

(
1 +

q− 1
3− q

‖yi − yj‖2
)− 1

q−1

, (A.46)

CE = −
N

∑
i

N

∑
j 6=i

pij log rij + (1− pij) log (1− rij). (A.47)

Then the gradient of the cost function C for yi is defined as

∂CE
∂yi

=
N

∑
j

∂CE
∂dij

(yi − yj)

(A.48)

the gradient ∂CE
∂dij

is defined as

∂CE
∂dij

= −
N

∑
u

N

∑
v 6=u

puv
∂(log ruv)

∂dij
+ (1− puv)

∂(log (1− ruv))

∂dij

= −
N

∑
u

N

∑
v 6=u

puv

ruv

∂ruv

∂dij
− 1− puv

1− run

∂ruv

∂dij
. (A.49)

The gradient is only non zero when u = i and v = j. Hence the gradient of ∂CE
∂dij

becomes

∂CE
∂dij

= −
pij

rij

∂rij

∂dij
+

1− pij

1− rij

∂rij

∂dij

= −
(

pij

rij
−

1− pij

1− rij

)
∂rij

∂dij

= −
(

pij

rij
−

1− pij

1− rij

) ∂
(

1 + q−1
3−q d2

ij

)− 1
q−1

∂dij

=

(
pij

rij
−

1− pij

1− rij

)
2

3− q

(
1 +

q− 1
3− q

d2
ij

)− 1
q−1−1

. (A.50)

Finally, we can get the gradient as

∂CE
∂yi

=
2

3− q

N

∑
j

(
pij

rij
+

1− pij

1− rij

) (
yi − yj

) (
1 +

q− 1
3− q

‖yi − yj‖2
)− 1

q−1−1

. (A.51)
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