令和3年度 修士論文

空隙構造の変化がセメント系材料の

線膨張係数制御に及ぼす影響

建築耐震工学研究室 戸田 滉大

目次

1章 序		1
1 はし	じめに	2
1.1	本論文の背景	2
1.2	本論文の目的	4
1.3	本論文の構成	4
1.4	参考文献	5
2章骨	*材の線膨張係数への影響	6
2 骨枝	材	7
2.1	はじめに	7
2.2	既往の研究	7
2.3	実験概要	8
2.3.	3.1 実験検討項目	8
2.3.	3.2 試験体概要	9
2.3.	3.3 実験方法	11
2.4	実験結果と考察	13
2.4.	4.1 複合則理論	13
2.4.	4.2 骨材種類,骨材の体積率の線膨張係数への影響	13
2.4.	4.3 骨材粒径の線膨張係数と圧縮強度への影響	14
2.4.	4.4 養生温度が異なる場合	16
2.5	結論	18
2.6	今後の課題	18
2.7	参考文献	
3章 セ	アメントペーストの線膨張係数	20
3 セン	メントペーストの線膨張係数	21
3.1	はじめに	21
3.2	既往の研究	21
1.1.	1.1 ケイ酸カルシウム水和物(C-S-H)の微細構造	21
1.1.	I.2 フライアッシュの混和による内部構造の変化	
1.1.	1.3 セメント硬化体の熱膨張への影響要因	
1.2	実験概要	
1.2.	2.1 調合および養生	

	1.2.2	線膨張係数測定方法	40
	1.2.3	相対湿度変化量試験	44
	1.3	実験結果	45
	1.3.1	線膨張係数の相対湿度依存性	45
	1.3.2	温度変化時の相対湿度変化	
	1.3.3	相対湿度変化量を用いた線膨張係数変化量の推定	47
	1.3.4	結晶化したセメント硬化体の線膨張係数	49
	1.4	まとめ	
2	参考	文献	
4	章 まと	めと今後の展望	
4	まと	めと今後の展望	
	4.1	まとめ	
	4.2	今後の展望	

1章 序論

1 はじめに

1.1 本論文の背景

コンクリートは外的要因(日射など)や内的要因(水和発熱)により温度変化を受けると 体積変化が生じる。温度変化による体積変化量は、温度変化量とほとんど比例関係にある。 この比例定数は、コンクリート構造物の設計において、1℃の温度変化あたりに生じるひず み変化量で表され、線膨張係数と呼ばれる。

温度変化時の体積変化は、温度ひび割れなどの劣化に直接的な影響を及ぼすため、温度応 力解析などにおいて線膨張係数を適切に評価することは重要である。

各種指針類においてコンクリートの線膨張係数は、一般的に 10×10℃として扱われている。これは、鉄筋の線膨張係数(11.8×10℃)とほとんど同じであり、鉄筋コンクリートが成り立つ前提の一つとされている。しかし、実際には材齢や調合、骨材種類などにより値が変化する。

若材齢時は、セメントの水和反応とともに線膨張係数が低下する¹。セメント水和物によって形成される骨格に比べて、水の線膨張係数は大きい。水和反応とともに、骨格が形成されることで拘束が大きくなり線膨張係数が低下する。一般的に、硬化セメントペーストの線膨張係数は10~20×10⁻⁶℃であり、骨材の線膨張係数は6~13×10⁻⁶℃である。骨材は骨材体積率や骨材種類によって線膨張係数が異なる。一般にシリカ含有量が少ない程、骨材そのものの線膨張係数が低くなる傾向がある。骨材の影響に関して、多くの研究が行われており、ひずみ予測式である複合則理論が提案されている^{たとえば2)}。二相材料としてのコンクリートの線膨張係数は、骨材量の増加および線膨張係数が低い骨材を使用することで線膨張係数 は低下することが複合則理論よりわかる。

一方で、セメントペーストについては、水分量によって値が変化する。実験的に取得され た相対湿度と線膨張係数の関係より、相対湿度 60~70%で最大となることが確認されてい る³⁾。収縮機構として毛細管張力、分離圧や表面エネルギーがあるが、高湿度域では、毛細 管張力が支配的となっており、乾燥とともに毛細管張力が緩和されることで線膨張係数が 増加し、低湿度域では分離圧、表面エネルギーの影響が強くなることで線膨張係数が低下す ると考えられている。しかし、セメント硬化体中の水分移動に関する研究は少なく未解決の 問題である。

表 1.1-1 に各指針におけるコンクリートの線膨張係数の例を示す。JCI マスコンクリート のひび割れ制御指針 2016 および 2012 版土木学会コンクリート標準指標書では,使用材料 や配合によって異なる値を設定することを推奨している。

2

	指針類	コンクリートの熱膨張係数
	鉄筋コンクリート構造計算基準10	10×10^{-6} °C
日本建築学会	マスコンクリートの温度ひび割れ制御設 計・施工指針(案)・同解説 ²⁾	調合・骨材種類を考慮し,試験または信頼のできる資料に基づき 設定する。
土木学会	コンクリート標準示方書 ³⁾	実験あるいは既往のデータに基づいて定める。 (参考値) ボルトランドセメント:10×10 ⁻⁶ /℃, 高炉セメント B 種:12×10 ⁻⁶ /℃
日本コンクリート工学会	マスコンクリートのひび割れ制御指針 ⁴⁾	使用材料,配(調)合を考慮して定める。 一般に、ポルトランドセメント、フライアッシュセメントB種の 場合は10×10 ⁻⁶ /℃,高炉セメントB種の場合は12×10 ⁻⁶ /℃を使 用してよい。
日本道路協会	道路橋示方書5	コンクリート構造物におけるコンクリート:10×10 ⁻⁶ /℃ 鋼桁とコンクリート床版の合成作用を考慮する場合:12×10 ⁻⁶ /℃
鉄道総合技術研究所	鉄道構造物等設計標準・同解説 コンク リート構造物 ⁶⁰	10×10^{-6} /°C

表 1.1-1 各指針におけるコンクリートの線膨張係数の例

また、コンクリート構造物はコンクリートだけでなく鉄筋、仕上げモルタル、タイルなど 複数の材料で構成されており、その物性は材料によって異なる。そのため温度変化時に部材 変形や異種材料界面で応力が発生し、ひずみが過大となることが剥離・剥落の原因となる。

線膨張係数が関係している劣化の一つである,温度ひび割れは,温度変化時の体積変化が 拘束されることで生じ,内部拘束と外部拘束によるものが存在する。内部拘束は,水和発熱 によって中央と表面で温度差が生じることによって,体積変化量に差が生じひび割れが発 生する。水和発熱によるものなので材齢初期に発生するひび割れである。また,外部拘束と は,周囲の部材などによって躯体の体積変化が拘束されることで生じるひび割れである。内 部拘束とは異なり,ある程度硬化したコンクリートで発生するひび割れである。水和発熱量 が大きいマスコンクリートで特徴的な劣化である。対策としては,フライアッシュなどの混 和材を入れることで,水和発熱による内部温度の上昇を低減することが挙げられる。

フライアッシュは、石炭火力発電所において排出される産業副産物である。産業副産物の 環境負荷は一般的にゼロとみなされ、フライアッシュとして加工する際に発生する環境負 荷のみがフライアッシュの製造時に排出される環境負荷とみなされる。そのため、フライア ッシュ製造時の環境負荷は、ポルトランドセメントと比較すると著しく小さく⁴、セメント の一部をフライアッシュに置換することで、製造時の環境負荷を低減することができる。フ ライアッシュの利用は、主にセメント原料である⁵。フライアッシュの特徴を十分に活かせ ていないことから、より有効的な利用も促進が求められている。

また、モルタル・タイルの剥離・剥落について、国内の建築物では、コンクリート片やモ ルタル、タイルなどの剥落事故が発生している。国土交通省の社会資本整備審議会では、特 定行政庁により報告を受けた建築物事故の概要が報告されている⁹。部材の落下による事故 については年間に 10 件程度であるが、死亡者がでる例もみられている。特定行政庁による 調査で、部材の落下事故の発生原因は、経年劣化によるひび割れからの雨水の浸入、接合部・ 支持部材の腐食、タイルの浮きなどがある。また、これらの劣化が発生しているところに台 風による強風の影響で落下している例もある。経年劣化によるひび割れは、中性化や塩害、 雨水などによる鉄筋の腐食,温度ひび割れ,乾燥収縮ひび割れなど,様々な影響が考えられる。タイルの浮きについては,下地コンクリートやモルタル,タイルの界面で温度変化時に ひずみが生じることで,発生すると考えられる。

1.2 本論文の目的

コンクリート材料は複合材料であり、大きく分けて骨材とセメントペーストによって構成されている。そのため、本論文においても線膨張係数の制御について骨材とセメントペーストの2つの面から考えた。骨材については、コンクリートのひずみ予測式として複合則理論が提案されており多くの研究が行われているが、モルタルへの適用性はわかっていない。コンクリートは粗骨材、細骨材が使用されるが、モルタルは細骨材のみであり粒径分布が異なる。コンクリートの線膨張係数は一般的に 10×10℃であるのに対して、モルタルの線膨張係数はわずかにおおきく 11×10℃とされる。モルタルにおいてもコンクリートの複合則理論と同様の傾向がみられるかどうか検討を行う。

セメントペーストについては、骨材とは異なり、水分の影響を大きく受けるため、相対湿 度依存性について検討を行った。セメントペーストはケイ酸カルシウム水和物(C-S-H)、水 酸化カルシウム(CH)などの非晶質、結晶質の水和生成物、未水和セメントによって構成 されている。また、多孔質材料であるため、C-S-H層間中の層間空隙やC-S-Hによって形成 されるゲル空隙、クリンカー粒子によって形成される毛細管空隙など様々な径の空隙を有 している。温度変化時には、これらの空隙中の水分移動により体積変化が生じる。ポルトラ ンドセメントを使用したセメント硬化体の相対湿度依存性については、実験的に明らかに なっているが、そのメカニズムについては分かっていない。

また,フライアッシュの混和によって生成する C-S-H の組成がポルトランドセメントと は異なることが報告されている。C-S-H の組成の変化により,層間距離や平均鎖長が変化す ることが明らかになっている。しかし,内部の構造が異なるセメント硬化体の水分移動に関 する研究については十分には行われていないため,線膨張係数への影響を明らかにする。

1.3 本論文の構成

本論文の構成を以下に示す。

2章では、複合則理論がモルタルにおいても同様の傾向を示すのか検討を行うため、骨材 種類や骨材体積をパラメータとしたモルタル試験体を作成し線膨張係数を測定する。また、 複合則理論では考慮されていない骨材粒径がことなるモルタル試験体についても線膨張係 数への影響を明らかにする。

3章では、セメントペーストおよびフライアッシュの置換率を変化させたセメントペースト,高温高圧養生を施し結晶化させたセメントペーストについて線膨張係数の測定を行い

内部構造の変化による線膨張係数の相対湿度依存性について考察する。また,既往の研究に よって,ケルビンラプラス式より,温度変化時の相対湿度変化から線膨張係数の相対湿度依 存性を算出している。これを参考に,温度変化時の相対湿度変化量試験を行い線膨張係数の 算出を行い,毛細管張力の変化による影響の検討を行った。

4章では2章,3章の結果をまとめ、結論とする。

- 1.4 参考文献
 - 寺本篤史,丸山一平:水和反応に起因する線膨張係数の経時変化に及ぼす収縮低減剤の影響,セメント・コンクリート論文集, Vol.70, No.1, pp.236-243, 2016
 - 2) 大野和男: モルタル及びコンクリートの乾燥収縮と亀裂防止に関する研究, 北海道大 学工学部研究報告, No.9, pp.49-110, 1953
 - Meyers S. L. : Thermal Expansion Characteristics of Hardened Cement Paste and of Concrete, Highway Research Board Proceedings, Vol.30, pp.193-203, 1950
 - 4) 土木学会:コンクリート技術シリーズ 62 コンクリートの環境負荷評価 (その 2),
 p.39の差替え表,平成16年
 - 5) 一般財団法人石炭エネルギーセンター:石炭灰全国実態調査報告書(令和元年度実績),令和3年3月
 - 6) 国土交通省 社会資本整備審議会資料 建築分科会 建築物等事故·災害対策部会第
 29 回

2章

骨材の線膨張係数への影響

2 骨材

2.1 はじめに

コンクリート構造物においてひび割れが発生していないものはほとんどない。主なひび 割れの発生原因の一つとして,温度膨張・収縮による体積変化が挙げられる。

また,ひび割れ発生後においても,ひび割れ幅が変化することが報告されている¹⁾。この ひび割れ幅の変化は,温度による影響が大きいと考えられており,補修後において補修材の 劣化に影響すると考えられている。

さらに、コンクリート構造物の外壁において、下地コンクリート、仕上げのモルタルやタ イルのそれぞれで物性が異なる。そのため、温度変化時に界面でひずみ差が生じ、ひずみが 過大になることがひび割れ発生の原因の一つとなると考えられる。

本研究の最終目的は、コンクリート構造物において、ひび割れの発生抑制およびひび割れ 補修後のひび割れ幅変化による補修材の劣化低減のために下地コンクリートや仕上げモル タルの最適な物性を提案することである。

そこで本稿では,基礎的研究として,骨材種類や粒径,養生温度による線膨張係数への影響を実験的に調査した。

2.2 既往の研究

コンクリートのひずみ予測式としては大量の実験値からの推定式によるものと複合則理 論によるものが提案されている。実験値による推定式では、式が簡単であり、実用的に使用 しやすいことが利点であるが、多種多様なコンクリートに対応するには複合則理論により 構成材料の物理特性や配合により推定する方がより汎用性が高いと考えられる。

複合材の弾性係数に関する古典的複合則には最小ポテンシャルエネルギーの定理から導かれた Voigt 近似²⁾および最小補足エネルギーの定理から導かれた Reuss 近似³⁾がある。これらは複合材の弾性係数の上限および下限を示していることが指摘されている。

Voigt 近似は、複合材の全ての構成素材が同じ一様なひずみを受けるという仮定のもとに 導かれている。また、Reuss 近似は、すべての構成素材が同じ一様な応力を受けるという仮 定のもとに導かれている。

Voigt モデル

図 2.2-1 各モデルの概念図

Hasin⁴⁾は複合球モデルにより種々の異なる径を有する弾性球を分散させた複合材の場合の体積弾性率とせん断弾性係数を定めた。

これらは、一様なひずみ、応力を仮定することでコンクリート中に生じるひずみの上限お よび下限を算出することができる。しかし、コンクリート中に生じるひずみは一様ではない ため、上限および下限の中間の値を示す予測式が提案されている。

表 2.2-1 に、コンクリートの収縮に関する複合則理論の一部を示す。

これらの式は、モルタルおよびコンクリートの構成をセメントペーストと骨材、また、モ ルタルと粗骨材の二相で考慮しているため二相モデルと呼ばれる。しかし、コンクリートの 場合には、細骨材の影響や、遷移体を考慮できないことから、多相モデルが提案されている。

第一著者	複合則式
大野 2)	$\varepsilon_c / \varepsilon_p = \{1 + (mn - 1)V_a\} / \{1 + (n - 1)V_a\}$
Hansen-Nielsen ⁴⁾	$n \ge 1 \varepsilon_c / \varepsilon_p = (1 - m)\{n + 1 - (n - 1)V_a^2 - 2nV_a\} / (n + 1) + m$
	$n \le 1 \varepsilon_c / \varepsilon_p = (1 - m)\{n + 1 - (n - 1)V_a\} / \{n + 1 - (n - 1)V_a\} + m$
川瀬の	$\varepsilon_c/\varepsilon_p = 1 - 3n(1-m)(1-v_p)V_a$
	$/\{2(1-V_a) + 2n(1-2v_p)V_a + n(1-v_p)\}$
岸谷-馬場7)	$\varepsilon_c / \varepsilon_p = \{1 - (1 - mn)V_a\}\{n + 1 - (n - 1)V_a\} / \{n + 1 + (n - 1)V_a\}$
	$m = \varepsilon_c / \varepsilon_p$, $n = E_c / E_p$,
	$K_a = E_a/(3-2v_a), \ K_p = E_p/(3-2v_p)$
	$\varepsilon_c, \ \varepsilon_p, \ \varepsilon_a$:コンクリート,セメントペースト,骨材のひずみ
	E_a , E_p : 骨材とセメントペーストのヤング係数
	$v_a, v_p: 骨材とセメントペーストのポアソン比$
	$V_a: 骨材体積比$

表 2.2-1 コンクリートの収縮に関する複合則理論

2.3 実験概要

2.3.1 実験検討項目

寺本⁸の文献を参考に、大野²が提案した複合則モデルより二相モデルによるひずみの算 定式を以下に示す。

$$\varepsilon_c / \varepsilon_p = \{1 + (mn - 1)V_a\} / \{1 + (n - 1)V_a\}$$
(1)

ここに
$$m = \varepsilon_a/\varepsilon_p$$
, $n = E_a/E_p$,
 ε_c , ε_p , ε_a : コンクリート, セメントペースト, 骨材のひずみ
 E_a , E_p : 骨材とセメントペーストのヤング係数
 V_a : 骨材体積比

よって本研究では、次の(a)~(c)の3つのパラメータについて、モルタルの線膨張係数に 及ぼす影響を、温度負荷サイクルを与えて、モルタルのひずみと温度の経時変化の関係から 比較検討することとした。

- (a) 骨材種類, 骨材の体積率が異なる場合
- (b) 骨材粒径が異なる場合
- (c) 養生温度が異なる場合

2.3.2 試験体概要

(a)については、石灰石砕砂と石英斑岩砕砂の2種類を使用した。石灰石砕砂は石英斑岩 砕砂と比較してシリカ含有量が少なく、骨材の線膨張係数が小さいという特徴がある。また、 骨材体積率は0,20,40%を設定した。

(b)については、石英斑岩砕石(25-10mm)および石英斑岩砕砂をふるいにかけ、5.0-1.2、 1.2-0.6、0.6-0.3、0.3-0.0mmに分けた。

(c)については、石灰石砕砂と石英斑岩砕砂を体積率 40% 使用した試験体を、養生温度 20℃ と 80℃の 2 つを設定した。

表 2.3-1 に作成した試験体の調合を示す。また,表 2.3-2,表 2.3-3 に使用した骨材のふ るい分け試験結果と粗粒率,使用した骨材の表乾密度をそれぞれ示す。試験体名は(骨材種 類)-(骨材体積率)で表した。ふるいにかけたものについては(骨材種類)(骨材の最大寸 法)-(骨材体積率)で表した。

試験体サイズは 40×40×160 mmで各調合ごとに 2 体ずつ作成した。打設後 24 時間で脱型 し, 材齢 7 日まで 20℃で水中養生を行った。養生温度 80℃のものは脱型後 48 時間, 80℃で 水中養生したのち, 材齢 7 日まで 20℃水中養生を行った。

調入挿粘	水セメント比	19.117年新	骨材粒径	骨材	養生温度	
前 一个里头只	(%)	月 17 1里知	(mm)	体積比(%)	(°C)	
Q-40		石英斑岩砕砂		40		
Q-20		(黒瀬)		20		
L-40		て広て私が	5.0 - 0.0	40		
L-20		口八口仲砂		20		
N-0		-		0		
GO 40		石英斑岩砕石	25.10		20	
GQ-40	40	(黒瀬)	25-10			
Q5-40	40		5.0 - 1.2	40		
Q1.2-40		石英斑岩砕砂	1.2 - 0.6	40		
Q0.6-40		(黒瀬)	0.6 - 0.3			
Q0.3-40			0.3 – 0.0			
0 40 80		石英斑岩砕砂		40		
Q-40-80		(黒瀬)	5.0 - 0.0	40	80	
L-40-80		石灰石砕砂		40		

表 2.3-1 試験体の調合

表 2.3-2 各骨材の表乾密度

表 2.3-2 谷宵材の表乾密度								
骨材種類	石英斑岩砕石(黒瀬) 石英斑岩砕		·砕砂(黒瀬)	石灰石砕砂				
表乾密度(g/cm³)	2.50	2.50		2.55				
粒径(mm)	5.0 - 1.2	1.2 – 0.6	0.6 - 0.3	0.3 - 0.0				
表乾密度(g/cm³)	2.41	2.47	2.47	2.57				

ふるいの呼 び寸法	粗骨材(黒瀬)		細骨材	†(黒瀬)
(mm)	重量 (g)	%	重量 (g)	%
20	433.6	13	0.0	
15	1414.8	43	0.0	
10	3269.4	100	0.0	
5	3269.4	100	0.0	
2.5	3269.4	100	86.1	6
1.2	3269.4	100	515.0	39
0.6	3269.4	100	939.1	72
0.3	3269.4	100	1192.2	92
0.15	3269.4	100	1297.4	98
0.15 以下	3269.4	100	1320.2	100
合計	3269.4		1293.9	
粗粒率		8.56		4.05

表 2.3-3 骨材のふるい分け試験結果と粗粒率

2.3.3 実験方法

線膨張係数は試験体内の相対湿度によって変化する。そのため、湿度変化による影響を低減するため、材齢7日まで水中養生を行った試験体を質量変化がほとんどみられなくなるまで十分に乾燥させた。また、セメントの水和反応を促進させ、構造を変化させないために40℃で乾燥を行った。測定は、乾燥14日と85日の2回行った。質量変化量は乾燥14日では最大で2.2g/日であり、乾燥85日では最大で0.5g/日であった。

写真 2.3-1 に実験の様子を示す。線膨張係数の試験前にひずみゲージを各試験体 2 つ貼り 付け,恒温槽内で温度負荷サイクルを与える実験を行った。図 2.3-1 に温度負荷サイクルの 概要を示す。温度負荷サイクル中の恒温槽内の温度分布は,最大で 0.4℃であった。また, 試験体表面と内部で温度差が生じ,拘束力が働くことを防ぐため,できるだけ試験体内の温 度が均一になるように温度上昇・低下は,20~45℃までを1℃/8 分で行った。予備実験とし て試験体に熱電対を 5 本埋め込み,温度分布を測定すると,温度差は最大で 0.9℃生じた。 また,試験体内温度差の影響が低減されていることを確認するために、1℃/5 分と1℃/8 分 で温度変化させた結果を図 2.3-2 に示す。1℃/5 分では,試験体内の温度差が最大で 1.6℃生 じていた。図 2.3-2 中で,B40-1-5,B40-2-5 は 1℃/5 分で,B40-1-8,B40-2-8 は 1℃/8 分で 温度変化させた結果である。図 2.3-2 より,1℃/8 分の方が 1℃/5 分よりばらつきが少ない ことがわかる。

実験結果は、各試験体に2つずつ貼り付けたひずみゲージの測定値を平均し、サイクルの 2回目の上昇時のひずみの経時変化をその試験体の線膨張係数とした。

図 2.3-1 温度負荷サイクル

写真 2.3-1 実験の様子

図 2.3-2 温度上昇速度の影響

2.4 実験結果と考察

2.4.1 複合則理論

コンクリートやモルタルの体積変化において骨材種類や骨材量の影響を考慮した評価手法として,種々の複合則理論が提案されている。複合則理論⁸は,1)粗骨材とモルタル, 2)骨材とセメントペーストに分けて考慮した二相モデルや骨材周辺の遷移体などを含めて 考慮した多相モデルが提案されている。

2.4.2 骨材種類,骨材の体積率の線膨張係数への影響

図 2.4-5 に骨材種類と骨材体積率の線膨張係数への影響を示す。赤線が石灰石を使用した 結果であり、黒線が細骨材(黒瀬)を使用したモルタルの線膨張係数である。一般的なコン クリートの線膨張係数は、骨材種類や骨材量に影響を受ける。骨材種類については、シリカ 含有量の小さい石灰石の線膨張係数は他の岩種と比較して小さくなり、線膨張係数が小さ い骨材を使用したコンクリートの線膨張係数も小さくなる。

寺本²⁾の文献を参考に,大野²⁾が提案した複合則モデルより二相モデルによる線膨張係数の推定を行った。以下の式によって示される。

$$\varepsilon_c / \varepsilon_p = \{1 + (mn - 1)V_a\} / \{1 + (n - 1)V_a\}$$
(1)

ここに $m = \varepsilon_a/\varepsilon_p$, $n = E_a/E_p$, ε_c , ε_p , ε_a : コンクリート, セメントペースト, 骨材のひずみ E_a , E_p : 骨材とセメントペーストのヤング係数 V_a : 骨材体積比

式(1)より,骨材の体積率の増加に伴いコンクリートの線膨張係数は小さくなる。また, 骨材の線膨張係数が小さくなるとコンクリートの線膨張係数は小さくなる。

図 2.4-5 より,乾燥 14 日では,骨材体積率 0%セメントペーストと比較すると骨材体積率 20%,40%のモルタルの線膨張係数はいずれも小さくなっている。しかし,骨材体積率 20% と 40%では,ほとんど違いがみられず,細骨材を使用したものは 20%から 40%にかけて線 膨張係数が大きくなる結果となった。

骨材種類については、石灰石と細骨材(黒瀬)の間に線膨張係数の違いがほとんど生じな かった。

乾燥 85 日では,骨材種類については,石灰石砕砂は石英斑岩砕砂に比べて線膨張係数が 小さくなった。また,骨材体積率が増加すると線膨張係数が小さくなる結果となった。これ らは,複合則理論と同様の傾向を示した。

乾燥 14 日と乾燥 85 日では,全体的に2 倍近くの差が生じており,乾燥が進むと線膨張 係数が低下する結果となった。

図 2.4-1 骨材種類・骨材体積率の線膨張係数への影響 (左:乾燥 14日,右:乾燥 85日)

2.4.3 骨材粒径の線膨張係数と圧縮強度への影響

図 2.4-2 に骨材粒径の線膨張係数への影響を示す。GQ-40 は粗骨材(25~10mm), Q5-40~Q0.3-40は単一粒径の骨材を使用した試験体であり,骨材粒径の最大寸法を表している。

図 2.4-2 より,乾燥 14 日では,骨材粒径が小さくなるほど,わずかに線膨張係数が大き くなる傾向がみられる。さらに,図 2.4-1 の細骨材(黒瀬)を使用した試験体の線膨張係数 と比較すると明らかに小さい値を示した。乾燥 85 日では,骨材粒径が小さくなるほど線膨 張係数が大きくなる傾向は変わらず,図 2.4-1 と同様に乾燥によって全体的に線膨張係数が 小さくなる結果となったが,その下がり幅はわずかとなった。さらに,Q0.3 を除き図 2.4-1 節で石英斑岩砕砂を使用したモルタルと比較して線膨張係数が小さくなる結果となった。 圧縮強度については,骨材粒径が小さくなるとともに値が大きくなる傾向が見られた。強度 試験の結果より,粒形が比較的大きい骨材を使用した場合,骨材とセメントペーストの温度 ひずみ差により界面に微細なひび割れが生じ,強度および線膨張係数に影響を与えた可能 性が考えられる。

仕入⁹の文献より,一般に細粒骨材ほど空隙量が大になり,空隙は収縮に対して無抵抗で あるため,乾燥収縮量が大きくなるとしている。

コンクリート中の空気量の影響に関して Zhu¹⁰らの解析的検討では,空気量の増加に伴い 線膨張係数は低下するが,その影響は3%程度の小さいものとしている。

よって,図 2.4-2 の結果については,骨材の粒径の大きさや形状などの要因が線膨張係数 に影響していると考えられる。

さらに,酒井田ら¹¹は,骨材粒径や分布の違いが,乾燥収縮ひずみ及びひび割れに与える 影響について検討している。結果より,粒径が大きい骨材の界面には,ひび割れが入る傾向 があり,連続粒度より,単一粒度において表面,内部ともにひび割れが局所的に多くはいる としている。 実際に,写真 2.4-1 に示すように,乾燥 3 日目において粗骨材を使用した試験体で表面全体的にひび割れが入っていることを確認した。

これらより,単一粒度の試験体は,細骨材(黒瀬)の試験体と比較して,内部の空隙構造 が大きく異なることが推察される。さらに,骨材粒径が大きいものは界面でひび割れが生じ ていることが推察される。

写真 2.4-1 粗骨材を使用した試験体の表面ひび割れ

図 2.4-2 骨材粒径の線膨張係数と圧縮強度への影響(左:乾燥 14 日,右:乾燥 85 日)

骨材の収縮特性に影響を及ぼす要因の一つとして吸水率があげられる。山田らは、単一骨 材粒径を使用した試験体について乾燥収縮ひずみを測定した。その結果、骨材粒径が小さく なるとともに乾燥収縮ひずみが小さくなる結果を得た¹⁴⁾。その要因に関して、骨材の気乾 含水率から考察している。骨材の気乾含水率と岩石コアの乾燥収縮ひずみに直線関係があ ることから、推定式を求めた¹³⁾。また、骨材の粒径により気乾含水率は異なり、粒径が小さ くなるとともに気乾含水率は大きくなる。そのため、骨材粒径が小さくなるとともに骨材の 乾燥収縮ひずみが大きくなり、モルタル試験体の乾燥収縮ひずみも大きくなると考察して いる¹⁴⁾。

また、収縮ひずみに影響を与える要因として、骨材の水分の吸脱着に伴う表面エネルギーの変化を取り上げる説が存在する。ここでは、比表面積と乾燥収縮ひずみに直線関係が成り 立ち、水分の吸脱着に伴う表面エネルギーの変化が長さ変化に影響を及ぼすことから考察 している。図 2.4-3 に、後藤ら¹²⁾によって測定された骨材の比表面積と乾燥収縮ひずみの関 係を示す。骨材の粒径が小さくなることによって体積率が同じ場合には、比表面積の増加が

考えられるが、線膨張係数と比表面積の関係についての研究は他では見られなかった。

図 2.4-3 骨材の比表面積と骨材の乾燥収縮ひずみの関係

図 2.4-4 乾燥条件の違いによる含水率への影響(左:40℃56日間,右:105℃28日間)

鎌田ら¹⁴⁾による 40℃封緘養生を 56 日間(40D)行ったコンクリートと 105℃封緘養生を 28 日間(105D)行った試験体の含水状態の比較を示す。本研究では、乾燥過程において内部の水 和生成物の状態を変化させないために 40℃による乾燥を行ったが、図 2.4-4 より、本論文 と同様の水セメント比である N40 を見ると約 25%の違いが生じていることから、40℃乾燥 は絶乾状態とはならず、内部にわずかに水分が残っている状態であると考えられる。

しかし、本論文の試験体中の含水率や骨材中の水分の分布,温度変化時に骨材で水分移動 が生じているのか、また、ひび割れの発生状況など不明な点は多くあるが、以上のような要 因が骨材粒径と線膨張係数の関係に影響を及ぼす可能性があると考えた。

2.4.4 養生温度が異なる場合

図 2.4-5 に細骨材(黒瀬)と石灰石使用したモルタルの養生温度の線膨張係数への影響をそ

れぞれ示す。黒線が養生温度20℃であり、赤線が養生温度80℃である。

図 2.4-5 より,細骨材(黒瀬)を使用したモルタルはわずかではあるが,80℃で高温養生したものの方が,線膨張係数が小さくなっている。これは,養生の初期に高温で養生することにより,水和反応が促進されたためであると推察した。

地濃ら¹⁰は,強度発現性状に及ぼす温度履歴の条件の影響について実験的検討を行って いる。高温養生されたコンクリートは,長期材齢における強度増進が緩慢になっている。材 齢28日までは養生温度が高い程強度が高くなっているが,材齢28日以降では逆転してい る。この強度の経時変化は,水和生成物の形態や細孔組織が大きく関係するとしている。

地濃ら ⁶ は、養生温度が 80℃の場合は、早期に水和生成物 (C-S-H) がみられるのに対 し、養生温度 20℃では、早期には C-S-H が見られないが、時間の経過とともに、結晶性が よくなり、80℃のときと比較すると、均一で小さく緻密な構造となる。また、細孔組織に関 しては、養生温度 80℃では、材齢 24 時間で 20℃より細孔径が小さいほうに細孔量のピー クがあり、その後の変化がない。養生温度 20℃では、材齢 24 時間では 80℃と比較すると細 孔径が大きく細孔量も多いが、時間の経過とともに細孔径分布の細孔量のピークが小さい 細孔に移行し、細孔量も少なくなっている。

図5より,石灰石を使用したモルタルは,線膨張係数がほとんど同じ値を示しており,養 生温度による影響が見られなかった。

今回の結果では,養生温度が高い方がわずかに線膨張係数が小さくなったが,地濃ら⁶⁾の研究では,強度や空隙構造にみられた傾向は材齢28日ごろから顕著に表れているため,継続して測定することで,線膨張係数への影響がみられる可能性がある。

乾燥 85 日では、図 2.4-1 と同様に線膨張係数が2倍近く小さくなった。しかし、養生温度による違いはみられずほとんど同じ値となったため、材齢初期の80℃高温養生による線膨張係数への影響はみられなかった。

図 2.4-5 養生温度の線膨張係数への影響

2.5 結論

本研究では,骨材種類,骨材の体積率,骨材粒径,養生温度の4つのパラメータについ てモルタルの線膨張係数に与える影響を実験的に検討した。以下に,本研究で得られた結論 を示す。

- (1) 細骨材(黒瀬)と石灰石を使用したモルタルの線膨張係数に大きな違いはみられなかった。
- (2) 骨材の体積率を変化させると、セメントペーストとモルタルでは、モルタルの方が線 膨張係数の方が小さくなり、骨材の影響が見られた。しかし、骨材体積率 20%と 40% では、大きな違いはみられなかった。
- (3) 体積率が一定で骨材粒径が異なる場合は、粒径が大きいモルタルの試験体ほど線膨張 係数が小さくなる傾向が見られた。
- (4)養生温度が異なる場合では、石灰石を使用したモルタルでは大きな違いはみられなかった。細骨材(黒瀬)を使用したモルタルでは、わずかではあるが、養生温度80℃の試験体の線膨張係数が小さくなった。

2.6 **今後の**課題

本研究では、種々の調合で線膨張係数の取得を行ったが、今回の考察では、骨材の剛性や 線膨張係数などの各種物性、試験体の空隙径や空隙量などの構造、界面でのひずみ差による ひび割れが発生している可能性など調査を行うことで、本研究で見られた線膨張係数の違 いが生じた要因を探していくことが課題である。

2.7 参考文献

- 大久保孝昭・森濱直之・流田靖博・長谷川拓哉・藤本郷史:実建築物の壁面に生じたひび割れ挙動計測に基づくひび割れ補修のための調査診断に関する考察,日本建築学会構造系論文集,第76巻,第662号,737-744,2011,4
- Voigt, W.: Über die Beziehung zwischen deu beiden Elastizitätskonstanten isotroper Körper, Wied. Ann., 38, 573, 1889
- Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49, 1929
- Hansen, T.C. and.Nielsen, K.E.C. : Influence of aggregate properties on concrete shrinkage, Jounal of ACI, Vol.62, No. 7, pp.783-794, 1961
- 5) 大野和男: モルタル及びコンクリートの乾燥収縮と亀裂防止に関する研究, 北海道大学 工学部研究報告, No.9, pp.49-110, 1953
- 6) 川瀬清孝:コンクリートの長さ変化率の推定式,日本建築学会論文報告集, p.28, 1966
- 7) 岸谷孝一,馬場明夫:建築材料の乾燥収縮機構,セメントコンクリート, No.346, pp.30-40, 1975

- 8) 寺本篤史: コンクリートの線膨張係数に関する研究一配(調)合の影響-, コンクリート工学, Vol.58, No.7, 2020, 7
- 9) 仕入豊和:セメントペースト量とコンクリートの乾燥収縮量に関する実験研究、日本建築学会関東支部研究報告集、No, 58, pp.13-16, 1961
- Zhu, X. et al. : Thermal expansion prediction of cement concrete based on a 3D micromechanical model considering interfacial transition zone , Construction and Building Materials, Vol. 171, pp.891-900, 2018
- 11) 酒井田智哉・篠野宏・伊藤充希・丸山一平:細骨材粒径がモルタルの乾燥収縮ひずみと ひび割れに与える影響の検討,第68回セメント技術大会講演要旨2014
- 12) 後藤幸正,藤原忠司:コンクリートの乾燥収縮に及ぼす骨材の影響,土木学会論文報告 集,第 286 号, 1979
- 13) 山田 一徳・中村 士郎・小田部 裕一・寺西 浩司: 複合則理論によるコンクリートの乾 燥収縮ひずみの推定, コンクリート工学年次論文集, Vol.35, No.1, 2013
- 14) 山田 一徳・中村 士郎・小田部 裕一・寺西 浩司:骨材粒径を考慮したコンクリートの 乾燥収縮ひずみの予測手法に関する一考察,コンクリート工学年次論文集, Vol.37, No.1, 2015
- 鎌田知久,岸利治:コンクリートの含水状態および空隙構造が塩分浸透に与える影響, Cement Science and Concrete Technology, Vol.71, pp.367-372
- 16) 地濃茂雄・仕入豊和:コンクリートの強度発現性状におよぼす温度の履歴条件(20~90℃)の影響,日本建築学会報告集,第337号,1984,3

3章

セメントペーストの線膨張係数

3 セメントペーストの線膨張係数

3.1 はじめに

コンクリートのひび割れ予測に対して線膨張係数の影響は大きい。コンクリートの線膨 張係数は、一般的に11×10⁻⁶/℃として扱われることが多いが、実際には材齢や調合、骨材種 類などにより値が変化する。その中でも、骨材の影響は大きく、古くからコンクリートのひ ずみ予測式として複合則理論が提案されている。

一方, セメント硬化体の線膨張係数については, 内部の水分量によって値が変化すること が知られている。

セメント硬化体はケイ酸カルシウム水和物(C-S-H),水酸化カルシウム(CH)などの非 晶質,結晶質の水和生成物,未水和セメントおよび空隙によって構成されている。この中で, 特に水分量による膨張・収縮量が大きいのが C-S-H である。C-S-H はセメント硬化体の構成 要素のうち 60%程度を占めているため,セメント硬化体の線膨張係数において水分量によ る影響は無視できないと考えられる。

そこで、フライアッシュの混和および高温高圧養生によって C-S-H の組成、内部構造を 変化させ、これらの変化がセメント硬化体の線膨張係数へ与える影響を明らかにすること を目的とした。

3.2 既往の研究

3.2.1 ケイ酸カルシウム水和物(C-S-H)の微細構造

(1) C-S-H とは

コンクリートはセメントペーストと骨材で構成されており、セメントと水の水和反応の 進行とともに硬化する。セメントは4つのクリンカー鉱物で構成されており、エーライト、 ビーライト、アルミネート相、フェライト相と呼ばれている。また、わずかにその他の鉱物 も含まれている。クリンカー鉱物の水和反応時に生成する水和物が C-S-H であり、AI や Mg によって一部置換されている。図 3.2-1 に C-S-H の生成過程を示す¹⁾。C-S-H はその生成過 程より大きく2つあり、水和初期からクリンカー表面に生成し、膜を形成する Outer C-S-H と水分子が Outer C-S-H の膜を透過し内部で生成する Inner C-S-H がある。クリンカー鉱物 表面から距離が離れるとともに C/S 比が低下し、その組成がことなる C-S-H が生成する。

しかし、セメントの水和反応によって生成する C-S-H と同じものは、天然では地球上に は存在しないことや構造が様々あること、その他の相と混ざり合っているため C-S-H 単相 を取り出すことが困難であることなどから、その構造を分析・評価することは困難であり 1 ~100 nm 程度の領域では、C-S-H の構造あるいは微細構造を正確にモデル化することはで きていない。

図 3.2-1 セメントの水和過程の概要1)

(2) 透過型電子顕微鏡(TEM)による観察

試料に電子線をあて,透過してきた電子線から観察を行う TEM では,数十 μ m(数百倍) から数 nm(数百万倍)まで観察することができる。

図 3.2-2 に、材齢 8 年の C₃S ペーストの TEM 画像を示す²⁾。図より、形態が異なる 2 つ の C-S-H (Ip C-S-H と Op C-S-H) が観察される。図 3.2-2 (b)より、Ip C-S-H は、小さな球状 粒子の凝集体であり、その粒子は 4~6nm 程度の大きさを持っている。図 3.2-2 (c)より、Op C-S-H は、100nm 程度の幅を持つ fibrillar 状 (層状) をしており、薄く細長い粒子の集合体 である。

また,図 3.2-3 に材齢1年のセメントペーストのTEM 画像を示す²⁾。図 3.2-3(b)より,セ メントペースト中の Ip C-S-H においても C₃S ペーストと同様に小さな球状粒子の凝集体と なっているが,その大きさは 6~8nm と C₃S ペーストのそれと比較してわずかに大きいこと がわかる。

図 3.2-2 (a)W/C=0.4, 20°Cで8年養生したC3SペーストのTEM画像²⁾ (b)Ip C-S-H, (c)Op C-S-H

図 3.2-3 (a)W/C=0.4, 20°Cで1年養生したセメントペーストの TEM 画像 ²⁾ (b)Ip C-S-H

(3) 吸着等温線

特定の相対圧での質量をプロットした吸着等温線は、約1-10nm スケールの構造を推測するために使用される解析手法の一つである。

図 3.2-4 にセメントの吸着等温線の例として青野ら³⁾による D-dry 乾燥を受けた試料の水 蒸気等温線と窒素吸着等温線を示す。水蒸気等温線と窒素吸着等温線では,外形がわずかに 異なり,脱着過程において窒素吸着等温線では P/Ps=0.5 が特異点となっているのに対し, 水蒸気吸着等温線では P/Ps=0.4, 0.1 で特異点となっている。また,どちらもヒステリシス が生じていることがわかる。

国際純正応用化学連合(IUPAC)では,吸着等温線の外形を吸着機構表面構造と関係させて6つに分類している。また,ヒステリシスのパターンは4つに分類されている。図 3.2-5 に吸着等温線のパターンの分類を示す⁴。またヒステリシスパターンを図 3.2-6 に示す⁵。

図 3.2-5 吸着等温線のパターンの分類 4)

図 3.2-4 と図 3.2-5 より, セメントの吸着等温線では, 吸着過程ではⅡ型, 脱着過程では はVI型に分類される。

II 型は、ミクロ細孔(~2nm)およびメソ細孔(2~50nm)がなく、分子から見てほぼ平坦 表面とみなせるマクロ細孔(50nm~)、および平坦表面について見られる。

VI 型は、吸脱着過程において急激に吸着量が変化する点がみられる。これは吸着性状が 変化するときにみられ、吸着相に相転移があるときなどによく観察される。

図 3.2-6 ヒステリシスパターンの分類 5)

またヒステリシスパターンについては、 H3 と H4 型の中間に分類される。H3 型・H4 型 は H1 型・H2 型とは異なり、相対圧が高いところで限界値をとらない。吸着限界を示す H1 型や H2 型は球状粒子や複雑な形状を持つ微粒子の凝集体であるのに対し、H3 型は、スリ ット型の空隙を形成する板状粒子の凝集体でみられ、H4 型は、狭いスリット型の細孔でみ られる。

(4) 粉末 X 線回折

粉末 X 線回折は,結晶構造の解析手法の一つである。粉末試料に X 線を照射し,原子の 周りにある電子によって発生する回折を測定し,結晶構造の同定や定量,結晶化度などの測 定を行うことができる。

図 3.2-7 に結晶の Tobermorite と合成 C-S-H(I), エーライト水和物の Tobermorite gel の粉 末 X 線回折の比較を示す ^の。図より, C-S-H は Tobermorite とピーク位置が類似しているこ とから,構造が似ているが, ブロードのピークがみられるため結晶性が悪く, 非晶質に近い

ものであると考えられている。ブロードのピークは,層間距離が異なる C-S-H が存在する ためであり,その層間距離は Ca/Si 比と H₂O/Si 比に依存しており,すなわちブリッジング シリケートの有無や層間水の有無に由来している。よってセメントペースト中は様々な構 造の C-S-H の混相となっていると考えられる。

図 3.2-7 Tobermorite 類の粉末 X 線回折図 ⁶⁾

よって C-S-H の特徴は、粉末 X 回折の結果から、Tobermorite と類似した構造を持つ水和 物であるが結晶性が悪く、非晶質に近い性質をもつこと。また、吸着等温線より、狭いスリ ット型の空隙を形成する板状粒子の凝集体であると考えられる。

図 3.2-8 と図 3.2-9 に Richardson によってまとめられた Ca/Si 比と層間距離の関係 n と, に Ca/Si 比と H₂O/Si 比の関係を示す n 。図中の黒ぬりの値は,常温で窒素などによる緩い乾 燥によるものであり,自ぬきの値は,110℃またはそれよりも高い温度による厳しい乾燥に よるものである。直線関係にある。また,Ca/Si 比と H₂O/Si 比の関係より,緩い乾燥を受け た C-S-H は厳しい乾燥を受けた状態と比較して図 3.2-9 から Si 1mol に対して H₂O 1mol 分 多い状態となっている。このとき,層間距離は,Ca/Si 比が低下することで大きくなり,乾 燥の程度によって 2Å程度大きくなっている。

トバモライトグループの結晶構造は、カルシウムレイヤーにシリケートチェーンと層間 カルシウムが挟まれた形で構成されている。よって、トバモライトと類似した結晶構造をも っ C-S-H(I)も同様の構造をもつと考えられている。図 3.2-10 に Richardson によって提案 された C-S-H(I)の5量体の結晶構造を示す⁷⁾。図 3.2-10中の(b)では、図を見やすくするた め、カルシウムレイヤーは描かれていない。図 3.2-10(b)より、シリケートチェーンはシリ ケートダイマーとシリケートダイマーをつなぐブリッジングシリケートによって構成され ている。このブリッジングシリケートの有無が Ca/Si 比を変化させる要因の一つとして考え られている。例えば、Ca/Si 比が低い C-S-H は空のブリッジングシリケートが少ないためシ リケートチェーンが長くなる。

図 3.2-10 C-S-H(I)の5量体の結晶構造 (a)b 軸方向, (b) a 軸方向⁷⁾

(5) C-S-H の微細構造

CSH の微細構造の特徴は大きく分けて2つ考えられている。1つ目は、CSH がコロイド 的特徴を持つことから、微細な粒子の凝集体として扱ったモデルである。2つ目は、電子顕 微鏡観察や類似鉱物の Tobermorite がシート状構造を持つことから、CSH もシート状構造で あるものとして扱ったモデルである。

1 つ目の C-S-H を微細な粒子の凝集体として扱ったモデルについては, Powers らをはじめとして研究されており

2 つ目の C-S-H をシート状構造として扱ったモデルについては, Feldman らをはじめとし て研究されている。

図 3.2-11 に Powers⁸による C-S-H ゲルのモデルを示す。Powers らは、主に全水分量と非 蒸発水分量、水蒸気収着等温線からの証拠に基づいたモデルによって、C-S-H ゲルの大まか な構造を提案した。C-S-H ゲルをゲル粒子と粒子間に存在するゲル空隙によって形成される とした。また、ゲル粒子を板状の C-S-H 層が 2~3 層の重なった層状構造であるとした。ペ ースト中の空隙は、毛細管空隙とゲル空隙に分けられるとした。また、ペーストに含まれる 水は、蒸発可能なものと蒸発不可能なものに分類され、後者は D-dry で保持されるものと定 義されている。蒸発可能な水が存在する場合、一部は毛細管孔に存在し、一部は水和物内に 存在すると考えた。この後者の水分をゲル水と呼ぶことにした。ゲル水の含有量は一定で、 約 2 nm のゲル孔の体積分率が 0.28 程度であると考えた。また、18 Åの層間中の水分の乾燥 による脱水は不可逆であるとした。

図 3.2-12 に Feldman & Sereda⁹による C-S-H 構造モデルを示す。 Feldman-Sereda モデル は、収着特性、空隙率、含水率と物性との関係の研究に基づくものであった。Daimon らが モデルを修正して、図のように C-S-H は不規則な構成,配置をもつ層状構造であるとした。 また、半径 1.6~100nm の空隙が存在し、ゲル中には 0.6~1.6nm の径のゲル空隙が存在すると した。ヤング率やクリープの挙動に対して、層間水の影響が大きく関係しているとし、層間 水の脱水は可逆的であるとしている点が Powers らとは異なる。

現在,最も詳細で広く使われているのは Feldman and Sereda のモデルであり様々な観測結 果と一致している。

図 3.2-13 に Jennings らが提案した Colloid model I (CM-I)を示す¹⁰⁾。CM-Iは, X線小角 散乱 (SAXS), SANS, 窒素吸着で測定された CSH の比表面積から, C-S-Hを base-unit とよ ばれる半径 1.1nm の球状粒子の集合体とした構造モデルである。水和の進行とともに半径 2.5nm 程度の globule を形成し, 粒子の割合から密度の異なる LD-CSH (密度が低い)と HD-CSH (密度が高い)が形成される。空隙の大きさによって Small gel pore (SGP: 1~3nm)と Large gel pore (LGP: 3~12nm)を定義した。Globule 内の 1 nm 以下の空隙を層間空隙とした。

のちに, CM-Iを発展させた CM-IIを提案した¹¹⁾。図 3.2-14 に CM-IIを示す。CM-IIでは, C-S-Hを globule と呼ばれる 3 層からなる層状構造の楕円粒子の集合体とした。これにより, 水蒸気等温線での挙動を説明した。

その後, Jennings らは CM-II にかわる新たなモデルを提案している¹²⁾。図 3.2-15 に示 す。ここでは,楕円体粒子の globule は定義せず, TEM で観察される outer product と類似 した層状構造の CSH を定義した。

(CM-I)¹⁰⁾

造モデル (CM-Ⅱ)¹¹⁾

図 3.2-15 Jennings による C-S-H 構造モデル¹²⁾

3.2.2フライアッシュの混和による内部構造の変化

(1) フライアッシュとは

フライアッシュは石炭火力発電における燃焼の際にできる石炭灰である。直径 30 µ m 程 度の超微粒子であり、電子顕微鏡で観察すると球形をしている。

フライアッシュは環境負荷低減効果に期待されている。フライアッシュ製造時に発生する CO₂排出量は,セメント製造時に比べて少ないため⁴,セメントの一部をフライアッシュ に置換することで,環境負荷の低減に貢献することができる。そのため,利用促進のために 1991 年に「再生資源の利用の促進に関する法律」が制定(2001 年に「資源の有効な利用の 促進に関する法律」に改定)された。

フライアッシュはポゾラン反応によって、セメントと同様に C-S-H を生成する。ポゾラン反応とは、主成分である非晶質シリカとセメントからの Ca²⁺および水、Al が結合しケイ酸カルシウム水和物等が生成する反応である。

ポゾラン反応はセメントの水和より遅く始まるため、水和熱の低減につながり、温度ひび 割れの抑制が可能になる。そのため、体積が大きく水和発熱が 80℃程度まで発生するマス コンクリートなどで利用されている。また、流動性が高くなりワーカビリティーが向上する ため中空鋼管柱などへの充填が容易になる。

(2) ポゾラン反応による C-S-H

図 3.2-16 にポゾラン反応相を示す。クリンカー鉱物表面およびポゾラン反応によりポゾ ラン粒子表面に、多孔性の C-S-H 水和物が生成する。さらに、ポゾラン粒子表面に生成する 水和物はクリンカー鉱物表面に生成する水和物より低 C/S 比である。ポゾラン反応によっ て生成する C-S-H に関して山本ら¹⁴)は、セメントと同様に 2 種類存在することを確認して いる。ここでは、内部反応相(板状結晶)と外部反応相(厚さ 15nmの板状結晶)と呼ばれ ている。内部反応相は、フライアッシュ粒子から遊離した Si, Al と C-S-H から遊離した Ca²⁺ が反応し粒子周囲に低 Ca/Si 比、高 Al/Ca 比の多孔質な相を形成する。また、外部反応相は、 フライアッシュ粒子から遊離した Si, Al をセメントの水和反応による C-S-H が取り込み低 Ca/Si 比、高 Al/Ca 比の相である。内部反応相に比べて外部反応相では Al/Ca 比が高くなる。 また、Ca/Si 比に関しては、材齢 378 日のセメントは、Ca/Si = 2.3 であるのに対し、ポゾラ ン粒子に近傍では Ca/Si = 1.1~1.4 であり、ポゾラン粒子表層に近くなるほど Ca/Si 比は低下 した。

佐伯,斎藤¹⁵⁾は、フライアッシュと Ca(OH)₂を用いて生成する C-S-H の Ca/Si 比について、反応式を仮定することで Ca/Si 比を算出し、Ca/Si 比は材齢とともに低下していき、結合水量と未反応水酸化カルシウム量に依存することを報告した。

内川¹⁶は、フライアッシュを40%置換した材齢4年のC-S-HのC/S比は1.01となった。

また,須田ら¹⁷⁾は,フライアッシュの置換率を変えたフライアッシュセメントを用いて, 材齢による Ca/Si 比の変化を調べた。図 3.2-17 に材齢による Ca/Si 比の変化を示す。置換率 15%では,養生温度 20℃,材齢 365 日で Ca/Si 比=1.25 程度であり,置換率 30%では,養生 温度 20℃,材齢 365 日で C/S 比=1.00 程度となった。普通ポルトランドセメントでは,Ca/Si 比=1.6~1.8 でほとんど一定の動きを示しているので,フライアッシュセメントでは,明らか に C/S 比が低下していることが分かる。

これらより、フライアッシュセメントでは、フライアッシュの産地や置換率によって C/S 比が変動する可能性はあるが、置換率を 30%以上にすると C/S 比を約 1.00 まで低下することができると考えられる。ただし、フライアッシュは産地によってその組成はさまざまであるため、注意が必要である。

31

(3) 空隙構造

フライアッシュセメントでは、ポルトランドセメントと比較して、空隙構造が緻密となる ため、化学抵抗性が高いこと、長期材齢で圧縮強度が高くなる。

山本ら¹⁴はポゾラン反応相が C-S-H 中の空隙を充填し, C-S-H 結晶群間の距離が縮小す ることで,水和組織が緻密化し強度が高くなるためとしている。図 3.2-18 に区分細孔容積 率の経時的変化を示す。細孔径分布の測定により,ポゾラン反応の進行に伴い,水和物の結 晶間空隙に当たると考えられる 3~20nm の空隙が増加し,フライアッシュの粒子近傍の空隙 と考えられる 20~330nm の空隙が減少したことからもわかる。

総空隙量は、材齢とともに減少する傾向がある。また、フライアッシュの粒子径の影響を 受け、セメントより大きな比表面積を持つ場合は空隙量が少なくなる。図7に普通ポルトラ ンドセメントとフライアッシュセメントの細孔の体積を示す。小野本らも同様にフライア ッシュセメントでは 40℃で特に 3~30nm の細かい細孔径の体積が多くなることを確認して いる。

Jingjing ら¹⁸)は、普通ポルトランドセメントとフライアッシュ、ボールミルで細かく砕い たフライアッシュを使用したモルタルを作成し水和反応とモルタルの機械的性質に及ぼす 影響に関する実験を行った。セメントの比表面積は 346 m²/kg であり、粉砕する前のフライ アッシュの比表面積は 384 m²/kg、粉砕したフライアッシュの比表面積は 651 m²/kg である。 作成したモルタルは砂:粉体=3:1,水粉体比=0.4 である。図 3.2-19,図 3.2-20 に圧縮強 度の経時変化と材齢 3 日と 365 日の空隙構造の比較を示す。

水和反応については,粉砕したフライアッシュの方がポゾラン反応の開始時期,速度が速 く,反応率も高くなる結果となった。空隙構造に関しては,径が20nm以上の細孔量が増加 し,20nm以下の細孔が増加した。また,圧縮強度も粉砕したフライアッシュを使用したモ ルタルの方が高くなった。

図 3.2-19 圧縮強度の経時変化¹⁸⁾

図 3.2-20 空隙構 18)

これらより,フライアッシュの置換によりポゾラン反応によって生成した水和生成物が 毛細管空隙などの空隙を充填していくことで,材齢とともに比較的大きな径空隙は減少す るが,ゲル空隙などの細かい空隙は増加する。総空隙量に関しては,材齢とともに減少する 傾向にあるが,セメントペーストと比較すると総空隙量は大きく,フライアッシュの粒径が 大きく影響している可能性がある。

(4) 水蒸気等温線

フライアッシュを混和したセメントでは,普通ポルトランドセメントと比較して水蒸気 吸着量が多くなることが確認されている。その結果,水蒸気吸着等温線から BET 理論によ って算出される比表面積も増加する。

五十嵐ら¹⁹は、合成した C-S-H の水蒸気吸着量および結合水量の測定を行った。また、

C-S-Hのunit モデルを提案し, C-S-Hの水蒸気吸着における比表面積予測モデルの構築を 行った。図 3.2-21,図 3.2-22 に Ca/Si 比の異なる C-S-Hの水蒸気吸着等温線, Ca/Si 比と比 表面積の関係をそれぞれ示す。図 3.2-21 より, Ca/Si 比が低下するとともに水蒸気吸着量は 増加し,図 3.2-22 より,比表面積も増加していることがわかる。

水の吸着サイトを親水性であるシラノール基などのヒドロキシ基などの化学吸着のみと することで、Ca/Si比の異なる C-S-H の水蒸気吸着挙動を評価することができている。しか し、C-S-H モデルおよび水蒸気吸着過程においていくつかの仮定を設けており、それらの検 証は必要である。

よってフライアッシュを混和した際に水蒸気吸着量が多くなる要因の一つとして、生成 する Ca/Si 比の低い C-S-H には、水の吸着サイトとなるシラノール基などが多いことが考え られる。

また,須田ら²⁰⁾は,合成 C-S-H は,任意の相対湿度下において C/S 比と H/S 比の間に直 線関係が成り立つことから, C-S-H の水蒸気吸着量をその組成から求める式を提案した。

図 3.2-23 に合成 C-S-H の水蒸気吸着等温線を示す。また, C/S 比の異なる合成 C-S-H の 水蒸気等温線を予測する式として以下の式を提案した。

$$A_{CSH} = \frac{18.02 \cdot (q_{RHi\%} - q_{RH0\%})}{56.08 \cdot p + 60.06 + 18.02 \cdot q_{RH0\%}} \tag{1}$$

ここに, A_{CSH}: C-S-H の水蒸気吸着量 (g/g) p: C/S 比

q_{RHi%}:相対湿度 i%における H/S 比

さらに、材齢 365 日のセメントペーストおよびフライアッシュを内割で 30%置換したセ

メントペーストについても水蒸気吸着試験を行い,式(1)を適用した。図 3.2-24 に OPC とフ ライアッシュを 30%置換したセメントペーストの水蒸気吸着等温線を示す。その結果,低 湿度域ではよく一致したが,相対湿度 50%以上では,誤差が生じた。その要因に関して毛細 管凝縮が生じたためであると考察している。

図 3.2-23 合成 C-S-H の水蒸気吸着等温線²⁰⁾(a) Ca/Si=1.25, (b) Ca/Si=2.00

図 3.2-24 水蒸気吸着等温線²⁰⁾(a)OPC,(b)FA30%置換

3.2.3セメント硬化体の熱膨張への影響要因

セメント硬化体の熱膨張への影響要因として Bazant²¹⁾は以下の3つを挙げている。

- 1. 固相そのものの熱膨張
- 2. 熱収縮および膨潤
- 3. 温度変化時に生じる相対湿度変化

1. については、セメント硬化体の骨格を構成する水和生成物による熱膨張である。主要 な水和生成物である C-S-H そのものの熱膨張係数について、Qomi²²⁾は分子動力学シミュレ ーションにより C-S-H の C/S 比によって計算上の熱膨張係数にはほとんど違いが生じない 報告しているものの実験上では明確に確認されていない。

2. については、化学ポテンシャル差に応じたゲル水(層間水、吸着水、ゲル水)と毛細

管空隙(数 nm 以上の空隙)中の水の移動による体積変化である。温度上昇時,セメント硬 化体の全吸着水に対するエントロピーは減少する方向に移動する。ゲル水のエントロピー は毛細管空隙中の水より小さく,急激な温度上昇が生じた場合はゲル水がより高い化学ポ テンシャルを持つため,ゲル空隙から毛細管空隙への水分移動が生じる。このとき,飽水状 態では,ゲル水圧が変化し,体積変化が生じる。また,一部乾燥状態では,ゲル水圧の変化 とともに毛細管空隙内のメニスカス半径が変化することにより毛細管張力が変化し体積変 化が生じる。さらに,メニスカス半径の変化はケルビンラプラス式より相対湿度変化も生じ るため,3.の影響とも関連している。

3. については、相対湿度の変化による体積変化である。温度上昇によりセメント硬化体 内部の相対湿度は上昇する²³)。相対湿度の上昇により毛細管張力の緩和が生じ膨張の駆動 力となる。温度上昇による相対湿度の上昇については、いくつかの物理的要因が考えられる。 上述の2. の水分移動もその一つであるが、温度上昇によりメニスカスを形成する水分の表 面張力が低下し、相対湿度を上昇させること、また、水の膨張によりメニスカス半径が増 大することによって相対湿度の上昇が生じる。

よって2.3.の主たる要因はどちらもセメント硬化対中の水分移動による体積変化である。セメント硬化体の線膨張係数の相対湿度依存性に関しては Meyers²⁴⁾をはじめいくつかの研究が行われている。図 3.2-25 に温度上昇時の2,3の影響による体積変化の概略図を示す。

図 3.2-25 水分移動による体積変化の概略図

Meyers²⁴⁾は、同一条件の試験体を異なる相対湿度で平衡させたセメント硬化体の線膨張係 数を測定し、相対湿度 70%程度で線膨張係数が最大となることを実験的に確認した。図 3.2-26 に測定された相対湿度と線膨張係数の関係を示す。さらに材齢の進行に伴い最大値が 小さくなり、オートクレーブ養生を施した試験体については相対湿度依存性がほとんどみ られなくなる結果を取得している。同論文の中では、セメント硬化体の水和度によって相対 湿度による影響の違いが表れる原因について、水和が進行するとともに蒸発可能な水分が 減少していることを要因として考察している。

Radjy ら²³⁾は,温度変化によるセメント硬化体中の相対湿度の変化を実験的に取得した。 図 3.2-27 に各平衡相対湿度における温度変化時に生じる相対湿度変化量を示す。この実験 によると相対湿度変化は,初期相対湿度が 50~70%RH の試験体で最大となり Meyers⁴⁾の線 膨張係数と同様の傾向がみられた。このことから線膨張係数が相対湿度依存性を有する原 因としては,温度変化時に試験体内の相対湿度の変化量に起因するとの説が有力視されて いる。

Grasley²⁵⁾らは,温度変化による相対湿度変化から、ケルビンラプラス式を用いて,線膨張 係数の変化量を算定し,線膨張係数の算定値と実験値が同様の傾向となることを確認した。

 $\Delta RH/^{\circ}C^{23}$

温度変化時に生じる C-S-H 中の水分移動について,Wyrzykowski²⁶⁾らは,¹H NMR により 初期相対湿度が RH75%の試験体を用いて,温度変化時に interlayer water (カルシウムシリケ ート層間中に存在する水。層間距離 0.73±0.03nm)と gel water (2.4±0.04nm の空隙中の水) の間で水分移動が生じることを確認した。図 3.2-28 に¹H NMR による各空隙中の水分量の 変化を示す。この水分の移動は,温度上昇時と温度下降時の双方で,温度変化にほとんどタ イムラグなく生じていることを考慮すると, interlayer water と gel water の移動が気相の相対 湿度に影響を与えている可能性が考えられるが,C-S-H 中の水分移動に関しては実験数が少 なく未解決の課題である。

図 3.2-28 ¹H NMR による各空隙中の水分量(初期相対湿度 75%)²⁶⁾

3.3 実験概要

本研究では、温度変化時に生じる内部水分の移動が線膨張係数に及ぼす影響を明らかに することを目的としている。内部水分の移動は、C-S-H などの水和物の組成、細孔構造およ び内在水分量などの影響を受けると考えられるため、調合および養生条件を変化させ、内部 構造の異なる試験体を作成し、線膨張係数の相対湿度依存性および温度変化時の相対湿度 変化について検討を行った。

3.3.1調合および養生

本研究では、水結合材比は 50%に固定し、研究用セメントに対してフライアッシュを内 割で 0, 15, 30, 45%置換した試験体を作製した。表 3.3-1 に研究用セメントの化学組成を 示す。また、表 3.3-2 に試験体調合の概要を示す。試験体名は(NF)-(フライアッシュ置換率) である。

フライアッシュを混和することで C-S-H の C/S 比を低下させることを意図とした。C-S-H の平均 C/S 比について須田ら¹⁷は,フライアッシュを 15%および 30%置換した場合には, 平均 C/S 比が 1.0~1.2 程度に低下することを確認している。C/S 比の低下によって,平均鎖 長 (MCL) が長くなり,層間間隔が広がる²⁷とされているため,先に紹介した interlayer water と gel water の間の水分移動に影響を与える可能性がある。

ブリージングを防ぐため練返しを 30 分毎に行い 5×10cm の円柱モールドに打設した後, フライアッシュを有意な量反応させるため,打設後 24 時間で脱型し,水分が逸散しないよ うアルミテープを巻いた試験体を40℃で88日間養生した。本研究ではフライアッシュの反 応率を測定できていないが、小早川ら28)はフライアッシュを養生温度40℃で56日養生する とそれ以降はフライアッシュの反応率が大きく変化しなくなることを確認している。

以上の試験体を用いて、フライアッシュの混和がセメント硬化体の線膨張係数の湿度依 存性に対してどのような影響を与えるかについて検討を行った。

また, セメント硬化体中の非晶質の結晶化が "固相そのものの熱膨張" に及ぼす影響を確 認するため、試験体の半数については、非晶質を結晶化させることとした。

フライアッシュを混和したセメント硬化体は高温高圧養生を施すことで結晶性水和物で あるトバモライトが生成されることが報告されている。トバモライトが生成される温度, 圧 力の条件は研究者によって種々の報告がある。例えば Luke²⁹⁾は, OPC(Class H)にフライアッ シュ(Class F, Class C)を 35%置換した試料を 180℃で高温高圧養生し, XRD 測定と強度試験 を行った。養生1日目で α-C₂S hydrogrossular と 1.1nm Al-tobermorite が主に生成しているこ とを確認している。井上 30は, 養生温度を 40~200℃, フライアッシュ置換率 0~70%のペ ーストを作成し, 強度試験と水和生成物の XRD 測定を行った。その結果, 置換率 40%以上 の試料は 120~180℃の間で温度上昇量とともに 11Åトバモライトの生成量が増加すること を確認している。

本研究では上記の研究を参考に、40℃養生の後に 120℃で 5 週間の密閉水中養生を行っ た。養生後, 線膨張係数測定用の試験体は研削機により 20×25×70mm に成形した。 研削の 際にできた破片は 300 µm 以下に粉砕し,温度変化時の相対湿度変化測定用および XRD 測 定に使用した。

	化学成分											
ig. Loss	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO_3	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Cl
1.02	21.4	4.84	3.2	64.98	1.08	2.02	0.33	0.43	0.24	0.18	0.1	0.009

表 3.3-1 研究用セメント化学組成

	众 5.5-2	武岡大平のノル		
試験体名	置換率(%)	水	セメント	FA
 NF0	0	0.5	1	0
NF15	15	0.5	0.85	0.15
NF30	30	0.5	0.7	0.3
 NF40	45	0.5	0.55	0.45

主 222 対験休の調入制入

3.3.2線膨張係数測定方法

線膨張係数測定用の試験体は、成形後、防水ひずみゲージを表裏2面に、熱電対を1面に 貼り付けた。防水ひずみゲージの取り付けの際には水分の影響によって剥離しないよう PS 接着剤を用いた。熱電対、ひずみゲージは SB テープによって固定した。

試験体は水和による水分消費により不飽和状態となっているため、低圧下で質量増加が 見られなくなるまで吸水し、これを飽水状態とした。その後アルミテープで封緘し飽水状態 で線膨張係数を測定した。アルミテープは4周巻いて隙間を粘土で埋めることで、水分逸散 がほとんど生じなくなった。

飽水状態の測定終了後は、アルミテープを取り除き、塩化リチウム飽和水溶液で調湿した 20℃環境のデシケータ内で試験体を乾燥させ、おおよそ2週間ごとに試験体を取り出し、取 り出した直後の試験体質量(ゲージ類を含む)を測定したあと、アルミテープで再び全周を 密封したのち線膨張係数の測定を行った。写真 3.3-1 に乾燥中の様子を示す。また、写真 3.3-2 に実験に用いた試験体の写真を示す。塩化リチウム飽和水溶液での乾燥でデシケータ ー中の相対湿度は 18~20%となっていた。ファンを中に入れて空気を循環させた際には相対 湿度 16%程度であった。

写真 3.3-1 乾燥中の様子

写真 3.3-2 試験体の様子

写真 3.3-3 に試験体表面に発生した微細ひび割れの様子を示す。乾燥開始初期に微細ひび 割れが発生しており、試験体のその他の面についても全体的にひび割れが発生していた。

写真 3.3-3 乾燥による表面ひび割れ

乾燥を行ったデシケータから取り出した不飽和の試験体は、表面から内部にかけて乾燥の分布を有するため、線膨張係数を取得するための20℃から45℃の温度サイクルを複数回与え、試験体内の水分分布の影響が見られなくなるまで測定を継続した。この間、温度サイクル前後の質量を測定し、温度サイクルによって外部への水分逸散が生じていないことを確認している。与えた温度サイクルは20~45℃の範囲を1℃/8分の昇温速度で行った。

線膨張係数のサイクル数による測定結果の一例を図 3.3-2 図 3.3-2 サイクル数による線 膨張係数の変化 (a)80%RH, (b)70%RH, (c)60%RH に示す。また図 3.3-1 に, このサイクル 間の温度-ひずみ関係の変化の一例を示す。

図 3.3-2 より、1~3 サイクル間で線膨張係数が減少し、6 サイクル程度で変化がほとんど みられなくなった。図-2(左)より、1 サイクル目と6 サイクル目を比較すると、この間に収 縮ひずみが発生していることがわかる。また、1 サイクル目では、温度上昇、低下時のひず み挙動に差が生じているが、6 サイクル目では、ほとんど差がみられない。1 サイクル目の ように、非平衡状態では温度変化時に生じる毛細管張力が不可逆的であるのに対し、おおよ そ平衡状態に達したと思われる 6 サイクル目では可逆的なひずみ挙動を示している。図-2(右)より、以降のサイクルではひずみ挙動に違いがほとんどみられないことから 6 サイク ル目で平衡に達していると判断した。

線膨張係数の測定後,アルミテープを外した試験体を密閉容器に入れ平衡相対湿度を測 定し,この相対湿度の値を線膨張係数測定時の試験体の内部相対湿度とした。

図 3.3-1 サイクル数による温度-ひずみ関係の変化

図 3.3-2 サイクル数による線膨張係数の変化 (a)80%RH, (b)70%RH, (c)60%RH

3.3.3相対湿度変化量試験

温度変化時の相対湿度変化測定用の試験体は、300µ以下に粉砕後、水を入れて相対湿度 100%に調整したデシケータ内で養生し、質量変化がみられなくなった後、各種の飽和塩溶 液で調湿したデシケータ内で質量変化が 0.05%/日になるまで養生したものを用いた。本実 験で設定した初期相対湿度と使用した飽和塩は 85%(塩化カルシウム)、75%(塩化ナトリ ウム)、58%(硝酸マグネシウム六水和物)33%(塩化マグネシウム六水和物)、21%(酢酸 カリウム)、11%(塩化リチウム)である。また高湿度域のデータを取得するため、相対湿度 100%から乾燥させ 90%となるよう調整した試料も用意した。

相対湿度変化量の測定は,温度変化時に極端な圧力変化が生じないよう,体積可変のアル ミバッグに温湿度計と試験粉末を入れ,密封し 20~30℃の温度サイクルを与えた。本実験 の昇温速度は 1.2℃/h である。

写真 3.3-4 温湿度計と粉体を入れたアルミバック

3.4 実験結果

3.4.1線膨張係数の相対湿度依存性

図 3.4-1 に 40℃で養生した試験体の線膨張係数の相対湿度依存性を示す。参考として Meyers²⁴⁾による測定の結果も併せて示した。フライアッシュを混和していない NF-0 では, Meyers の測定結果と同様, 相対湿度 70%程度まで線膨張係数が増大し続けるという傾向を 示しているが, 線膨張係数の変化量そのものは Meyers より小さかった。

また、フライアッシュを置換したものは高湿度域でセメント硬化体より大きい値となり、 ピーク位置も高湿度側に移動する傾向がみられた。この傾向は FA 置換率が大きいほど顕著 であった。

線膨張係数の相対湿度変化による駆動力は温度変化時に生じる毛細管張力の変化に起因 すると考えられている。フライアッシュの混和で、線膨張係数のピークが高湿度側に移動し た原因の一つは、C-S-Hの平均 C/S 比の低下によるものと推察される。

前述の通り,須田ら¹⁷⁾は,FA置換率0%,15%,30%のセメント硬化体について硬化体の 水蒸気吸着量からBET比表面積を算出し,平均C/S比の低下によって比表面積が増加する 結果を得ている。このことはフライアッシュの混和により親水性の高い固相表面が形成さ れたことを意味する。また,丸山ら³¹⁾は,収縮低減剤および高炉スラグを混和したセメント 硬化体の乾燥に伴う長さ変化試験の結果から,親水性の高い固相表面を有する試験体は高 湿度域で収縮量が増加することが報告している。

以上より、本実験で得られたフライアッシュの混和によるピーク位置の高湿度側への移動は C-S-H の平均 C/S 比の低下が一つの要因と考えられる。

図 3.4-1 相対湿度と線膨張係数の関係(40°C)

45

3.4.2温度変化時の相対湿度変化

5.2 の実験結果を毛細管張力によって説明する妥当性を検証するため、温度変化時に生じ る相対湿度の変化を取得した。同様の検討は Radjy ら²³⁾によって実施されているが、Radjy らは温度変化前後の圧力から相対湿度変化を算出しているのに対して、本研究では温度変 化による圧力変化を極力排除した条件で相対湿度を測定している。温度変化時には、温度変 化による飽和水蒸気量の変化と試験体内部から外部への水分の移動が同時に生じているた め、本研究では 20℃→30℃→20℃の温度サイクルが終了した直後に測定した相対湿度を、 20℃→30℃の温度変化で生じた水分移動の量と考え、温度変化時の相対湿度変化量を求め た。

図 3.4-2 に上記の方法で求めた温度変化時の相対湿度変化を示す。また, Radjy ら²³⁾による測定の結果についてもあわせて示した。

図より,全体的な傾向は Radjy ら²³⁾と同様であるが全体的に変化量が大きくなった。また,フライアッシュの置換率が増加するとともに,高湿度域での相対湿度変化量が大きくなる傾向がみられた。この結果は,線膨張係数と同様の傾向である。

図 3.4-2 温度変化時の相対湿度変化(40°C)

3.4.3相対湿度変化量を用いた線膨張係数変化量の推定

Mackenzie³²⁾は多孔質材料の膨張ひずみを推定する式(1)を提案している。式(1)は空隙中の 圧力変化によって生じるひずみの算定式である。

$$\varepsilon = \frac{S\Delta p}{3} \left(\frac{1}{k} - \frac{1}{k_s} \right) \tag{1}$$

ここに, ε:線形ひずみ

Δp: 平均の静水圧変化 (GPa)

k : 多孔質材料の体積弾性率 (GPa)

k_s: 骨格の体積弾性率 (GPa)

S:体積含水率(m³/m³)

式(1)は飽和した多孔質材料が弾性体であれば厳密に成り立つが、部分的に飽和した材料 に対しては Saturation factor とよばれる係数で材料に働く平均的な毛細管張力を求めている ため近似的なものになる。

式(1)を参考に, Grasley ら²⁵⁾はセメント硬化体の内部相対湿度の変化から線膨張係数への 算定を行った。温度による空隙中の圧力変化 Δp は式(2)より求めている。

$$\Delta p = \frac{-\ln(RH_i)RT_i}{\nu} - \frac{-\ln(RH_f)RT_f}{\nu}$$
(2)

ここに, RH_i:温度負荷前の相対湿度

 $T_i: 温度負荷前の温度 (°C)$

RH_f:温度負荷後の相対湿度

 $T_f: 温度負荷後の温度 (°C)$

R: 気体定数(J/mol/K)

ν:水のモル体積(m³/mol)

また, 佐藤ら³³⁾は, 含水量が変化によって生じる体積変化の収縮ひずみを求める式を提 案している。式(1)と同様にケルビンラプラス式を用いているが, 負圧が働く面積を考慮す るために体積含水率を用いている点が異なる。

本研究では佐藤らの研究を参考に,式(1)の Saturation factor について体積含水率を用いて 温度変化時に生じる毛細管張力による体積変化量の算出を行った。

さらに,式(1)と 5.2 節で測定した飽和時の線膨張係数より,式(7)から各相対湿度での線 膨張係数を算出した。

$$CTD = CTD_{solid} + \frac{\varepsilon}{\Delta T}$$
(3)

Grasley ら²⁵⁾を参考に, 骨格の体積弾性率 (*k*_s) は, すべての試験体で26/3GPa とし, また, 体積弾性率 (*k*) は, 8GPa とした。なお, Grasley らの研究でもこの *k*_s と *k* は実験的に取得

したものではなく、多分にフィッティングパラメータ的な意味合いが含まれている。実際に は両者の値は相対湿度の影響を受け変化するため、各湿度毎の値を厳密に測定することは 極めて難しい。本論文では、相対湿度変化量と線膨張係数の変化量の相関性を確認するため に上記の仮定を便宜的に用いている。

*CTD*_{solid}については、飽和時には温度変化時に毛細管張力の変化がほとんど見られず、固相そのものの線膨張係数に近いと考えられるため各試験体の飽和時の線膨張係数を用いた。

図一5 に 40℃養生した試験体の相対湿度と線膨張係数の関係と温度変化による相対湿 度変化から算出した計算値との比較をそれぞれ示す。

図 3.4-3 相対湿度と線膨張係数の関係(40℃) 測定値と計算値の比較(NF0, NF45)

図より,毛細管張力の影響を考慮することで,線膨張係数に特有の湿度依存性の傾向を再 現できている。しかし,算定値は線膨張係数変化量をやや大きめに評価していることがわか る。この結果に関して,Bentz ら³⁴⁾は,式(1)を用いた乾燥収縮のモデリングでも相対湿度 80%以下の場合,測定値との差異が生じやすくなり,その原因は 5-10nm の空隙径でのケル ビンラプラス式の妥当性に疑問を投げかけている。また,式(1)では,膨潤を評価できていな いことを指摘している。

本実験のようにフライアッシュを混和し高温で長期間養生した試験体では C-S-H 生成量 が増加するため、いわゆるゲル水(層間水,吸着水,ゲル水)が増加すると考えられる。そ の結果、膨潤の影響により生じる駆動力が強くなることが推察される。よって、より高精度 な検証を実施していくためには XRD/リートベルト解析およびフライアッシュ反応率より C-S-H 生成量の算出、また、¹H NMR による水分移動の評価が必要である。

次に,線膨張係数のピーク位置が高湿度側に移動する原因について比表面積の観点から 考察する。そもそも式(1)では比表面積について考慮されておらず,比表面積の影響は暗な 形で相対湿度に組み込まれている。丸山ら¹²は、質量含水率を比表面積で除した値である 統計的吸着厚さを用いて分離圧の観点から収縮挙動を評価しており、比表面積と収縮駆動 力の関係を明な形で表現している。このモデルでは膨潤現象を吸着厚さが増加する膨張と して考慮することができる。本モデルを用いて、著者らは収縮低減剤が線膨張係数抑制効果 に及ぼす影響を定量的に評価しており、本実験系でも同様の検討を行うことでより明快な 説明が可能となるかもしれない。

3.4.4結晶化したセメント硬化体の線膨張係数

結晶化が固相そのものの線膨張係数に及ぼす影響について実験的検討を実施した。

結晶化の確認のために粉末 X 線回折による定性分析を行った。測定は、ターゲット CuKa、 管電圧 30kV, 走査範囲 5~65°(2 θ), ステップ幅 0.02°, スキャンスピード 1.2°/min の 条件で行った。図 3.4-4 に各試験体の 40℃養生および 120℃養生 5 週間行った試料の粉末 X 線回折の結果を示す。40℃養生を行った試験体では、置換率の増加とともに Ca(OH)2のピー ク値が小さくなっており、ポゾラン反応および単位セメント量の減少の影響であると考え られる。120℃で高温高圧養生を行った試料では、NF45 のみ、7~8℃付近に 1.1nm Altobermorite の回折ピークがみられ C-S-H の結晶化が発生したことがわかる。しかし、フラ イアッシュ置換率が 15%と 30%の試験体については結晶化を確認できなかった。さらに、 40℃封緘養生時にはみられた Ca(OH)2のピークがみられなくなった。

図 3.4-4 粉末 X 線回折

写真 3.4-1 に高温高圧養生を行った試験体の写真を示す。乾燥の程度によって色の違いは

あるが,結晶化を確認できた NF45 は,その他の試験体と比較してわずかに青味がかった色をしており,きらきらと反射する結晶のようなものが表面にみられた。

写真 3.4-1 試験体の様子(高温高圧養生)

40℃封緘養生を行った試験体と同様に、低圧下で質量増加が見られなくなるまで吸水し、 これを飽水状態とした。その後アルミテープで封緘し飽水状態で線膨張係数を測定した。測 定では温度サイクルを3回行った。図3.4-5に高温高圧養生を施した各試験体の温度-ひず み関係を示す。図より、セメントペーストおよびフライアッシュ置換率15%の結果は、線形 となった。しかし、フライアッシュ置換率30%および45%については、線形にはならず、温 度サイクルごとに同じような曲線を繰り返した。低温側では、温度上昇時と低下時でひずみ 挙動がことなるが、高温側では温度上昇時と低下時でほとんど平行のひずみ挙動をしてい る。この要因については、低圧下で吸水を行ったが、水分が入り込めない空隙が存在し、試 験体内が不飽和の状態となっており、温度変化によって水分移動が生じたためではないか と考えた。

図 3.4-6 に 120℃で養生した試験体の飽水状態での線膨張係数を示す。図より,120℃で 養生し1.1nm Al-tobermorite の回折ピークが確認された試験体では,線膨張係数が3×10⁻⁶程 度低下する結果が得られた。

飽水状態では毛細管張力の影響がほとんど見られないため、この実験結果は固相そのものによる熱膨張によるものと考えられる。セメント硬化体の C-S-H は、分子動力学シミュレーション上は C/S によらず線膨張係数は変化しないとされているが、本実験では、結晶化後の試験体で線膨張係数が低下する傾向がみられた。

図 3.4-6 飽水時の線膨張係数

3.5 まとめ

本研究では、フライアッシュの混和及び高温高圧養生を施したセメント硬化体について、 線膨張係数の相対湿度依存性、温度変化時による相対湿度変化量について実験を行った。以 下に、本研究で得られたことをまとめる。

・40℃養生を行った試験体は、フライアッシュ置換率の増加とともに、異なる初期相対湿度での線膨張係数のピーク位置は高湿度側に移動する。

・温度変化による相対湿度変化の測定結果より、線膨張係数の算出を行った。毛細管張力 による影響を考慮することで、測定値と同様の傾向を示す結果となった。

・高温高圧養生を行った試験体は、フライアッシュを45%置換したもので、結晶性水和生成物であるトバモライトの生成を確認した。C-S-Hが結晶化することにより線膨張係数が変化する可能性がある。

本研究では、フライアッシュの混和により、高湿度域で線膨張係数が増加する傾向があ り、温度ひずみが増大する可能性が示された。また、毛細管張力の影響を考慮することで、 定性的な検討はできるが体積弾性率に関して測定を行っていないことや、使用した式では 線膨張係数に影響を与える要因について考慮できていないものがあると考えられるため、 さらなる検討が必要である。

4 参考文献

- 1) H. F. W. Taylor : Cement chemistry 2nd edition, 1997
- I.G. Richardson : Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement and Concrete Research 34, pp.1733-1777, 2004
- 3) 青野 義道・松下 文明・柴田 純夫・濱 幸雄: ガス吸着等温線による硬化セメントペースト中の C-S-H の構造解析, コンクリート工学年次論文集, Vol.31, No.1, 2009
- K.S.W. Sing: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure and Applied Chemistry, Vol.57, No.4, pp.603-619, 1985
- K.S.W. Sing: Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure and Applied Chemistry, Vol.57, No.4, pp.603-619, 1985
- 6) H.F.W. Taylor, The Chemistry of Cements, I, p. 183, 1964, London.
- I.G. Richardson, Model structures for C-(A)-S-H(I), Structural Science, Crystal Engineering and Materials, B70, pp.903-923, 2014
- T.C. Powers: Structure and Physical Properties of Hardened Portland Cement Paste, Journal of the American Ceramic Society, Vol.41, No.1, pp.1-6, 1958
- R.F. Feldman, P.J. Sereda: A Model for Hydrated Portland Cement Paste as Deduced from Sorption-Length Change and Mechanical Properties, Matériaux et Constructions, Vol.1, No.6, pp.509-520, 1968
- H.M. Jennings: A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste, Cement and Concrete Research, Vol.30, No.1, pp.101-116, 2000
- H.M. Jennings: Refinements to Colloid Model of C-S-H in Cement: CM-II, Cement and Concrete Research, Vol.38, No.3, pp.275-289, 2008
- Mathew B Pinson et al. : Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste, American Physical Society, 064009, 2015
- 13) 土木学会:コンクリート技術シリーズ 62 コンクリートの環境負荷評価 (その 2),
 p.39の差替え表,平成 16 年
- 14) 山本武志,金津努:フライアッシュのポゾラン反応に伴う組織緻密化と強度発現メカ ニズムの実験的考察,土木学会論文集 E, Vol.63, No.1, pp.52-65, 2007
- 15) 佐伯竜彦, 斎藤太佳裕: フライアッシュが生成する C-S-H の組成に関する基礎的研

究, セメント・コンクリート論文集, 第 59, pp.8-13, 2005

- 16) H. Uchikawa : Proceeding of 8th ICCC, Vol. I, pp. 249-280, Rio de Janerio (1986)
- 17) 須田裕哉,田中洋介,佐伯竜彦: C-S-Hの組成と物理的性質に関する基礎的研究,土
 木学会論文集 E, Vol.66, No.4, 528-544, 2010
- J. Feng et al. : The Influence of Ground Fly Ash on Cement Hydration and Mechanical Property of Mortar, Hindawi Advances in Civil Engineering, Volume2018
- 19) 五十嵐豪, 丸山一平: 水蒸気吸着による C-S-H の BET 比表面積と C-S-H が有する反応基との相関に関する基礎的考察, Cement Science and Concrete Technology, No.65, pp.140-145, 2011
- 20) 須田裕哉, 斎藤豪, 佐伯竜彦: セメント系硬化体の水和物の水蒸気吸着等温線に関す る研究, Cement Science and Concrete Technology, Vol.66, pp.167-174, 2012
- Bazant Z. P.: Delayed Thermal Dilatations of Cement Pate and Concrete Due to Mass Transport, Nuclear Engineering and Design, Vol.14, pp308-318, 1970
- 22) Qomi M. J. A., Ulm F. J. and Pellenq R. J. M. : Physical Origins of Thermal Properties of Cement Paste, Physical review applied, Vol.3, 064010, pp.1-17, 2015
- 23) Radjy F., Sellevold E. J. and Hansen K. K. : Isotherms Vapor Pressure-Temperature Data for Water Sorption in Hardened Cement Paste : Enthalpy, Entropy and Sorption Isotherms at Different Temperatures, Report BYG • DTU R-057 Technical University of Denmark, 2003
- Meyers S. L. : Thermal Expansion Characteristics of Hardened Cement Paste and of Concrete, Highway Research Board Proceedings, Vol.30, pp.193-203, 1950
- Grasley Z. C. and Lange D. A. : Thermal Dilation and Internal Relative Humidity of Hardened Cement Paste, Materials and Structures, Vol.40, pp.311-317, 2007
- 26) Wyrzykowski M. et al. : Water Redestribution within the Microstructure of Cementitious Materials Due to Temperature Changes Studied with ¹H NMR, The Journal of Physical Chemistry, Vol.121, pp.27950-27962, 2017
- 27) H. Matsuyama and J. F. Young : Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution, Adv. Cem. Res., Vol.12, pp.29-33, 2000
- 28) 小早川 真,黄 光律,羽原 俊祐,友澤 史紀:水比,混合率及び養生温度がフライア ッシュのポゾラン反応に及ぼす影響,コンクリート工学年次論文報告集, Vol.21, No.2, 1999
- 29) K. Luke : Phase studies of pozzolanic stabilized calcium silicate hydrates at 180°C, Cement and Concrete Research, 34, pp.1725-1732, 2004
- 30) 井上憲弘, 恒松修二, 野問弘昭, 原尚道: フライアッシュ富配合セメントの加熱養生, セメント技術年報, Vol.42, pp.72-75, 1988
- 31) 丸山一平,岸直哉:セメント硬化体の収縮理論,日本建築学会構造系論文集, Vol.74, No.642, pp.1395-1403, 2009

- Mackenzie J. K. : The elastic constants of a solid containing spherical holes, Proc. R. Soc. A 224, 1950
- 33) 佐藤健,後藤孝治,酒井公弐:セメント硬化体の乾燥収縮を低減する有機質混和剤の 作用機構,セメント技術年報, Vol.37, pp.65-68, 1983
- 34) P Bentz et al. : Modelling drying shrinkage in reconstructed porous materials : application to porous Vycor glass, Modelling Simul. Master. Sci. Eng. 6, pp.211-236, 1998

4 章

まとめと今後の展望

5 まとめと今後の展望

5.1 まとめ

コンクリートの線膨張係数は、一般的に 10×10℃として扱われるが、材齢や配合など によって値が変化する。各種仕様書においても、セメント種類によって値を定義することや、 実験値などによって設定するようにするなどと定められており、定量的な予測式は提案さ れておらず、温度による変形のメカニズムは解明されてない部分が多い。

本論文では、セメント硬化体の線膨張係数制御について、セメント硬化体を構成する骨材 およびセメントペーストの2つの面から実験を行った。

以下に各章で得られたことをまとめる。

2章では、骨材の影響について複合則理論から考え、パラメーターとして骨材種類と骨材 体積率を設定した。また、複合則理論では考慮されていない骨材粒径および養生温度につい ても実験を行った。

- 1. 細骨材(黒瀬)と石灰石を使用したモルタルの線膨張係数に大きな違いはみられなかった。
- 3. 体積率が一定で骨材粒径が異なる場合は、粒径が大きいモルタルの試験体ほど線膨張 係数が小さくなる傾向が見られた。
- 養生温度が異なる場合では、石灰石を使用したモルタルでは大きな違いはみられなかった。細骨材(黒瀬)を使用したモルタルでは、わずかではあるが、養生温度 80℃の試験体の線膨張係数が小さくなった。

3章では、セメントペーストの線膨張係数の相対湿度依存性について内部構造の異なる試験体を作成し実験を行った。

- 40℃養生を行った試験体は、フライアッシュ置換率の増加とともに、異なる初期相対 湿度での線膨張係数のピーク位置は高湿度側に移動する。
- 温度変化による相対湿度変化の測定結果より、線膨張係数の算出を行った。毛細管張力による影響を考慮することで、測定値と同様の傾向を示す結果となった。
- 3. 高温高圧養生を行った試験体は、フライアッシュを 45%置換したもので、結晶性水和 生成物であるトバモライトの生成を確認した。C-S-H が結晶化することにより線膨張 係数が変化する可能性がある。

5.2 **今後の展**望

骨材の影響については、古くから複合則理論によるコンクリートのひずみ予測式が提案 されている。乾燥収縮ひずみや弾性係数の予測式として多くの研究が行われており、線膨張 係数への適用は少ないが同様の傾向を示すことが示された。より精度の高い予測式とする には、内部の微細ひび割れや骨材界面に生成される遷移体の影響、骨材の比表面積の影響な どを考慮する必要があると考える。がデータの蓄積が必要である。

セメントペーストの線膨張係数については, Bazant が挙げている要因のうち,相対湿度 変化に伴う毛細管張力の変化の影響について明らかにした。また,フライアッシュを混和す ることで内部構造が異なる試料の相対湿度の影響についても毛細管張力の変化による影響 を考慮することで線膨張係数と同様の傾向が示されたが,本論文での検討は定量的な検討 とは言えない。水分移動による体積変化の要因は毛細管張力のみだけではなく,低湿度域で は分離圧や表面エネルギーの影響が支配的になることや,膨潤の影響も考えられる。水分移 動については,層間空隙,ゲル空隙,毛細管空隙間での移動が考えられるが,C-S-H は構造 が変化しやすいため,乾燥によって水分が入り込めない

丸山らは、平均的吸着厚さを考慮した分離圧の式により、吸着厚さの増加により膨潤の影響を考慮した。式の見直しとともに、混和材などによって C-S-H 組成が異なる、すなわち異なる物理特性を有する硬化体についての幅広い検討が必要であると考える。

謝辞

本研究を行うにあたり、大久保孝昭教授や寺本篤史教授に、多くの助言を頂き本当に感謝しております。

大久保教授には,社会に出てリーダーとして活躍できるよう,研究だけでなく社会的な面 についてもご指導いただきました。

寺本先生には,研究の面で厳しくご指導いただきました。疑問点について丁寧に教えてい ただき,研究に関して多くの助言をくださいました。

たくさんのご迷惑をおかけしましたが,お二方のおかげでさらに成長できたと感じてい ます。ありがとうございました。

また,建築材料学研究室の先輩方や同輩にとは,お互いに意見を出し合いながら考察を深 めていくことができました。この研究室の仲間と1年間,一緒に活動できたことをうれしく 思います。

最後に,両親に感謝を申し上げ,謝辞とさせていただきます。本当にありがとうございま した。