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In recent years, deep neural networks have become deeper and wider, requiring
excessive parameters to achieve superior performance, which increases the compu-
tational cost and causes over-fitting. However, these methods utilizing the larger
predefined network with handcrafted or existing architecture has an upper bound of
the network performance. Searching the optimal network architecture while keep-
ing network performance has been proposed by many researchers. In this paper, we
present novel 2 type of neural network architecture search methods. One is decre-
mental training algorithm called pruning and the other is an incremental training
algorithm called planting.

The pruning method can remove unnecessary channels using the hierarchical
group sparse regularization. It is shown in our previous work that the regularization
is effective in obtaining sparse networks in which filters connected to unnecessary
channels are automatically close to zero. After training the convolutional neural
network with the regularization, the unnecessary filters are selected based on the
increase of the classification loss of the randomly selected training samples to obtain
a compact network. It is shown that the proposed method can reduce more than 50%
parameters of ResNet for CIFAR-10 with only 0.3% decrease in the accuracy of test
samples. Also, 34% parameters of ResNet are reduced for TinyImageNet-200 with
higher accuracy than the baseline network.

The planting method can search the optimal network architecture for training
tasks with smaller parameters by planting channels incrementally to layers of the
initial networks while keeping the earlier trained channels fixed for improving the
network performances. Also, we propose to use the knowledge distillation method
for training the channels planted. By transferring the knowledge of deeper and
wider networks, we can grow the networks effectively and efficiently. We evaluate
the effectiveness of the proposed method on different datasets such as CIFAR10/100
and STL-10. For the STL-10 dataset, we show that we are able to achieve comparable
performance with only 7% parameters compare to the larger network and reduce the
overfitting caused by a small amount of the data.

We can find optimal neural networks structure by using the pruning method and
the planting method.
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Chapter 1

Introduction

Deep neural networks (DNNs) have been successful with superior performance in
computer vision tasks such as image classification [27, 57]. Meanwhile, the network
becomes deeper and wider, requiring excessive amount of parameters to achieve
excellent performance [15, 21], which increases the computational cost and cause
overfitting.

However, these methods utilizing the larger predefined network with hand-
crafted or existing architecture has an upper bound of the network performance.
To search automatically optimal network architecture, Neural Architecture Search
(NAS) is introduced. NAS explore the width and depth of networks efficiently for
the training task, by using a recurrent neural network as the controller [79], using
graph-based algorithm [49, 8], or optimizing search space [62].

To improve performance while reducing the computational cost, various net-
work pruning approaches for compressing the size of the network have been pro-
posed. Network pruning can reduce unnecessary parameters while keeping net-
work performance, by using the Taylor expansion of the loss function [29, 14], en-
forcing unnecessary parameter to be 0 with sparse regularization [13, 61, 43], evalu-
ating the importance of the parameter based on the norm [31, 17] or using the scaling
parameter of batch normalization layers [37].

An approach similar to NAS is incremental training[58]. Incremental training is
a dynamic configuration technique for DNNs, that initially train a subset of channels
in each layer and gradually add in more channels while keeping the earlier trained
channels fixed. By training with this method, we can obtain a flexibility in the net-
work training, which can dynamically adjust the DNNs to reduce the computational
cost as long as the accuracy of the classification results is not compromised.

There is another way to compress the size of networks, called knowledge dis-
tillation. Knowledge distillation is a technique for transferring the knowledge of
a deeper and wider network or ensemble network (teacher networks) to smaller
and shallower networks (student networks) by getting close the output of student
networks to teacher networks. To transfer the knowledge, the L2 loss or the KL-
divergence is used as the loss function of the method [3, 19].

In this paper, we propose a two types of NAS method, one is a filter pruning
method, the other is a incremental training method.
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First, We propose a filter pruning method with the hierarchical group sparse
regularization based on the feature-wise grouping , whose grouping consider as a
group the kernels connected to a input channel. By this grouping, we can prune un-
necessary output channels in layer l − 1 (the input channels in layer l). After training
with the hierarchical group sparse regularization, we calculate the influence of each
channel on the classification loss of the randomly selected training samples, and
prune the channels based on the increase of the classification low. After we obtain a
compact network by the filter pruning, the parameters of the compact network are
retrained from scratch.

Finally, we introduce a novel incremental training method for DNNs called “plant-
ing“. The existing incremental training method uses the handcrafted network ar-
chitecture as a base network and divides it into several sub-networks. There is an
upper bound of the network performance since the architecture of the sub-networks
is fixed. Our planting method can search the optimal network architecture for the
training task with smaller parameters by planting channels incrementally to initial
networks while keeping the earlier trained channels fixed for improving the net-
work performances. Explore the architecture of the network by planting channels in
a layer where the error is reduced by adding channels. For the training of the planted
channels, the proposed method utilizes the knowledge transfer method. The param-
eters in the augmented channels are trained to complement the error of the earlier
trained network by imitating the behavior of the teacher network.

Next section, we describe related works to introduce our proposal. First, we de-
scribe about Convolutional Neural Network. Second, we describe about sparse reg-
ularization and network pruning. Third, we describe about knowledge distillation.
Finally, we describe about incremental training.

Third section, we describe our proposal filter pruning techniques with the hier-
archical group sparse regularization based on the feature-wise grouping. To confirm
the effectiveness of the proposed method, we have performed experiments with dif-
ferent network architectures (VGG and ResNet) on different data sets (CIFAR-10,
CIFAR-100, and TinyImageNet-200). The results show that we can obtain the com-
pact networks with about 50% less parameters without decrease of the classification
accuracy.

The contributions of this section are summarized as follows:

• We propose a filter pruning method with the hierarchical group sparse regular-
ization based on the feature-wise grouping, the regularization can prune filters
more adequately depending on the structure of the network and the number
of channels than non-hierarchical sparse regularization.

• The feature-wise grouping can prune the filters connected to unnecessary in-
put channels by removing the channels with low influence on the classification
loss.
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• The effectiveness of the proposed pruning method is confirmed through ex-
periments with different network architectures (VGG and ResNet) on different
data sets (CIFAR-10, CIFAR-100, and TinyImageNet-200).

Forth section, we describe our proposal incremental training techniques for DNNs
called “planting“. We evaluate the effectiveness of the proposed method on different
datasets such as CIFAR-10/100 and STL-10. For the STL-10 dataset, we show that
we are able to achieve comparable performance with only 7% parameters compared
to the larger network and reduce the overfitting caused by a small amount of the
data.

The contributions of this section are summarized as follows:

• We propose a novel incremental training method for DNNs called planting,
that can train smaller network with excellent performance and find the optimal
network architecture automatically.

• We introduce the knowledge transfer to train planted channels.

• We have performed experiments to evaluate the effectiveness of the proposed
method on different datasets (CIFAR-10, CIFAR-100, and STL-10).
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Chapter 2

Related Works

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is inspired by a biological model [42] and is
widely used for image and motion picture recognition. A general CNN has convo-
lution layers, pooling layers, and fully connected layers as shown in Fig. 2.1.

In this part, the image convolution process is represented by a neural network.
Calculation of convolution is given as

f (l)p,q = h(
convy−1

∑
s=0

convx−1

∑
t=0

w(l)
s,t f (l−1)

p+s,q+t + b(l)), (2.1)

where w(l)
s,t and b(l) are the weight and bias of the convolution layer whose size is

convx × convy. Furthermore, h is an activation function and we assume here that it
is ReLU and consider only when f (l)p,q ≥ 0 as

f (l)p,q =
convy−1

∑
s=0

convx−1

∑
t=0

w(l)
s,t f (l−1)

p+s,q+t + b(l). (2.2)

Next, the calculation formula of the back propagation of the convolution layer is
shown. We define an error δ

(l)
p,q as

δ
(l)
p,q ≡

∂En

∂ f (l)p,q

. (2.3)

Equation (2.3) is transformed as

δ
(l)
p,q =

∂En

∂ f (l)p,q

=
convy−1

∑
s=0

convx−1

∑
t=0

∂En

∂ f (l+1)
p−s,q−t

∂ f (l+1)
p−s,q−t

∂ f (l)p,q

=
convy−1

∑
s=0

convx−1

∑
t=0

δ
(l+1)
p−s,q−t

∂ f (l+1)
p−s,q−t

∂ f (l)p,q

. (2.4)
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FIGURE 2.1: The structure of general CNN.

FIGURE 2.2: The illustration of Neural Architecture Search methods.

∂ f (l+1)
p−s,q−t

∂ f (l)p,q
is calculated as

∂ f (l+1)
p−s,q−t

∂ f (l)p,q

=
∂

∂ f (l)p,q

convy−1

∑
s′=0

convx−1

∑
t′=0

w(l+1)
s′,t′ f (l)p−s+s′,q−t+t′ + b(l+1)

= w(l+1)
s,t . (2.5)

Substituting into Equation (2.4) results in

δ
(l)
p,q =

convy−1

∑
s=0

convx−1

∑
t=0

δ
(l+1)
p−s,q−tw

(l+1)
s,t . (2.6)

From the Equation (2.3), the following equation is obtained. Where m and n are the
size of the input.
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∂En

∂w(l)
s,t

=
m−convy

∑
p=0

n−convx

∑
q=0

δ
(l)
p,q

∂ f (l)p,q

∂w(l)
s,t

=
m−convy

∑
p=0

n−convx

∑
q=0

δ
(l)
p,q f (l−1)

p+s,q+t (2.7)

∂En

∂b(l)
=

m−convy

∑
p=0

n−convx

∑
q=0

δ
(l)
p,q

∂ f (l)p,q

∂b(l)

=
m−convy

∑
p=0

n−convx

∑
q=0

δ
(l)
p,q. (2.8)

Therefore, error information can propagate to the previous layer and the network
can learn a filter that reduces the error. The amount of computation required for
learning is small due to weight sharing, and the trained network gives better results
than multilayer perceptron.

Pooling layer is placed behind the convolution layer and has the function of re-
ducing the calculation cost and strengthening it to a minute position change. The
pooling method has an average pooling that takes the average value within each
region and a maximum pooling that takes the maximum value within each region.
Currently it is common to use maximum pooling.

Fully connected layer is generally used just before output, and it has the function
of obtaining feature variable from feature data extracted by convolution layer and
so on. The feature map obtained in the last convolution layer f (r)p,q is input to the fully
connected layer in the form of ap∗convx+q vector.

f (r)p,q = ap∗convx+q (2.9)

The error δ
(r)
p,q of the last convolution layer is expressed as follows using weights

w(1)
ji , w(1)

kj of the fully connected layer.

δ
(r)
p,q =

∂En

∂ f (r)p,q

=
∂En

∂ap∗convx+q

=
J

∑
j=1

∂En

∂zj

∂zj

∂ap∗convx+q

=
J

∑
j=1

∂En

∂yk

∂yk

∂zj

∂zj

∂ap∗convx+q

=
J

∑
j=1

δkw(2)
kj w(1)

p∗convx+qj. (2.10)

The above equation shows that the error obtained from the fully connected layer
is propagated to the last convolution layer.
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A general CNN has a fully connected layer, but our proposed network does not
use the fully connected layer because the output is an image. Such a network is
called Fully Convolutional Network (FCN).

2.2 Network Architecture Search

The Deep Neural Networks network becomes deeper, wider, and more complex
to achieve excellent performance, where complex neural architectures are designed
manually. NAS, the process of automating architecture engineering, automatically
finds the optimal neural network structure. NAS methods have outperformed man-
ually designed architectures on some tasks such as image classification.

The illustration of NAS methods is shown in Fig. 2.2. A search strategy selects
an architecture A from a predefined search space α. The architecture is passed to a
performance estimation strategy, which returns the estimated performance of A to
the search strategy.

NAS methods have been proposed by many researchers. Zoph et al. [79] used a
recurrent neural network as the controller to search the optimal neural network ar-
chitecture in variable-length architecture space. Zoph et al. [80] proposed the NAS
algorithm to search for an architectural building block on a small dataset, and then
the block was transferred to a larger dataset. This approach is quite flexible as it
may be scaled in terms of computational cost and parameters to quickly address
a variety of problems. Pham et al. [49] proposed an efficient neural architecture
search method by searching for an optimal subgraph within a large computational
graph. Also, Cai et al. [5] proposed an efficient architecture search method based
on a reinforcement learning agent as the meta-controller. Cai et al. [4] introduced
ProxylessNAS that can directly learn neural network architectures on the target task
and target hardware without any proxy. Liu et al. [36] and Dong and Yang [8] pro-
posed a gradient-based NAS approach, that represents the search space as a directed
acyclic graph. Real et al. [50] introduce the tournament selection evolutionary algo-
rithm. Wu et al. [62] presented a differentiable neural architecture search framework
that optimizes over a layer-wise search space and represents the search space by a
stochastic supernet.

2.3 Network Pruning

Network pruning can efficiently prune redundant weights or filters to compress
deep CNN while maintaining accuracy. Various method have been proposed.

Network pruning consists of the following steps: 1) Train the network with the
sparse regularization. 2) Prune the weights with smaller influence on the loss.

There is two methods of network pruning in which unstructured pruning using
unstructured sparse regularization and structured pruning using structured sparse
regularization.
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2.3.1 Sparse Regularization

In this section, we review sparse regularization criteria for pruning of deep neural
networks.

We assume that the objective function of the optimization for determining the
trainable weights is given by

J(W) = L( f (x, W)|y) + λ
L

∑
l=1

R(W l) (2.11)

where (x, y) denotes the pair of the input and target, W is a set of all trainable
weights of all the L layers in the CNN, L(·) is the standard loss for the CNN, and
R(W l) is the regularization term at layer l. The parameter λ is used to balances the
loss and the regularization term.

Also, we assume the weight in the layer l as W l ∈ RCl×Cl−1×Kl×Kl , where Cl and
Cl−1 are the number of output channels and input channels, Kl is the kernel size of
the layer l respectively. In the fully connected layers, Kl = 1

Unstructured Sparse Regularization

L2 Regularization The most popular and often used sparse regularization is the L2
regularization defined as

RL2(W l) = ∥W l∥2
2 =

|W l |

∑
i

wl
i
2
, (2.12)

where |W l | is number of elements of weights in the layer l, which is also called 2-
norm and it can reduce variance of the model and suppressed over fitting. This
regularization is often used in deep neural networks as weight decay.

L1 Regularization Tibshirami [59] proposed most simple non-structural Sparse
Regularization L1 regularization for linear model, which is defined as

RL1(W l) = ∥W l∥1 =
|W l |

∑
i
|wl

i |, (2.13)

which is also called 1-norm. L1 regularization works to make unnecessary individ-
ual parameters to be zero. In deep neural networks, L1 regularization is known as
the primary method of sparse regularization to prevent overfitting by neglecting in-
dividual parameters both in the convolution layers and the fully connected layers.
This regularization is also known as weight decay. However, it will be difficult to
remove subsets of weights such as filters or channels on CNN.

Structured Sparse Regularization

Group Lasso Regularization
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Yuan and Lin [72] and Schmidt [53] proposed group lasso regularization. In
order to reduce subsets of weights like filters or channels, it is necessary to treat
the subsets as groups in the regularization criterion. Yuan and Lin [72] and Schmidt
[53] proposed this regularization for a linear model that can treat sets of parameters
as a group in the criterion. Group lasso forces subsets of unnecessary parameters to
be simultaneously zero. The regularization criterion of group lass is defined as

RGL(W l) = ∑
g∈G

∥W l
g∥2 = ∑

g∈G

√
∑

i
wl

g,i
2, (2.14)

where g ∈ G is a group in the set of groups G, W l
g is the weight matrix or the weight

vector for the group g that is a sub matrix or sub vector in W l and wl
g,i is a weight

with index i in the group g. Group lasso introduces sparseness at the group level
and can reduce the number of active neurons or active filters. Alvarez et al. [2] pro-
posed an approach to automatically determine the number of neurons in each layer
of a DNN during learning, and they showed that group lasso regularization could
reduce the number of parameters and even improve network accuracy. Wen et al.
[61] proposed a structured sparsity learning (SSL) method to regularize the struc-
tures of deep neural networks by group lasso as structured sparse regularization.
They introduced several structures of group lasso.

Sparse Group Lasso Regularization
Friedman et al. [11] and Simon et al. [54] proposed sparse group lasso by com-

bining L1 regularization and group lasso, applied to linear regression. Sparse group
lasso forces parameters to be zero at both the group and the individual feature level.
Scardapane et al. [52] proposed to use sparse group lasso for deep neural networks.
The criterion of the sparse group lasso is written as

RSGL(W l) = α ∑
g∈G

∥W l
g∥2 + (1 − α)∥W l∥1, (2.15)

where α is a balancing parameter to control strength of both group lasso and L1
regularization. By this combination, unnecessary parameters in the network can be
pruned at both the group level and the individual feature level.

Exclusive Sparse Regularization
Zhou et al. [77] and Kong et al. [26] proposed exclusive lasso for multi-task

feature selection. Exclusive lasso introduces competition among parameters in the
same group and can prune neurons in neural networks. It is also called exclusive
sparsity and the regularization criterion is defined as

RES(W l) =
1
2 ∑

g∈G
∥W l

g∥2
1 =

1
2 ∑

g∈G

(
∑

i
|wl

g,i|
)2

. (2.16)

Combined Group and Exclusive Sparse Regularization
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Yoon and Hwang et al. [69] proposed a pruning criterion called combined group
and exclusive sparsity (CGES) for deep neural networks, which combines group
lasso and exclusive sparse regularization. The authors claim that CGES can make
the network sparse and also remove any redundancies among the features to fully
utilize the capacity of the network.

Group L1/2 Regularization
L1/2 regularization, proposed by Xu et al. [65] [66] [73], can make the network

to be more sparse than L1 regularization and much simpler than L0 regularization.
Fan et al. [63] [9] applied L1/2 regularization for pruning the neurons in the hidden
layer of feedforward neural networks. Li et al. [30] [1] also applied a group L1/2

regularization for feedforward neural networks. L1/2 regularization can make not
only the redundant hidden nodes to be zero but also the redundant weights of the
surviving hidden nodes of the neural networks to be zero. In this paper, we define
the criterion of the group L1/2 regularization for deep neural network as

RGL1/2(W
l) = ∑

g∈G
∥W l

g∥1/2
1 = ∑

g∈G

√
∑

i
|wl

g,i|. (2.17)

Out-In-Channel Sparse Regularization
Li et al. [32] proposed Out-In-Channel Sparse Regularization (OICSR) for com-

pact deep neural networks. In OICSR, the correlations between successive layers are
taken into consideration to keep the predictive power of the compact network.

The Way of Grouping
To prune filters that connected unnecessary channels, there are three types of

grouping, namely the filter-wise grouping, the neuron-wise grouping and the feature-
wise grouping. The way of grouping for convolutional kernels are shown in Fig. 2.3.

In these groupings, structured sparse regularization treats subset of kernels as
individual weight in the same group. So, mutual interaction between kernels in the
group is not taken into account.

The Hierarchical Group Sparse Regularization

To introduce such interactions in the structured sparse regularization criterion, our
previous work [25] propose the concept of the hierarchical group sparse regulariza-
tion.

There are several possibilities to define the hierarchical interactions between ker-
nels in the group for structured sparse regularization such as group lasso, exclusive
sparsity and group L1/2. They consider two ways of the integration, namely the
square root of the sub-groups and the square of the sub-groups.

The hierarchical group sparse regularization criterion is defined by taking the
square root of the sub-groups as

rSQRT(W l
g) =

√
∑
k∈K

r(W l
g,k), (2.18)
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where k ∈ K is a kernel in the set of kernels K and wl
g,k is a kernel in the group

g and r(·) is non-hierarchical group sparse regularization such as group lasso, ex-
clusive sparsity and group L1/2. In this criterion, the square root of the sub-groups
are taken to defined the structured sparse regularization criterion. The hierarchi-
cal group sparse regularization criterion is also defined by taking the square of the
sub-groups as

rSQ(W l
g) =

(
∑
k∈K

r(W l
g,k)

)2

. (2.19)

They also proposed the hierarchical group sparse regularization criterion com-
bined the L1 regularization criterion, which can prune unnecessary weights at indi-
vidual level and group level.

2.3.2 Unstructured Pruning

The way of unstructured pruning reduces the individual weight of neural networks
[29, 14, 13, 12, 56, 39]. Optimal brain damage [29] and optimal brain surgeon [14]
prune unimportant weight from a network to compute the influence of each weight
on the training loss based on Hessian matrix. S. Han et al. [13] and C. Louizos et
al.[39] utilized unstructured sparse regularizations such as L1 regularization to make
a sparse networks, which reduce unnecessarily individual weights by enforcing to
be 0. These unstructured pruning method makes network weights sparse, but it can
only achieve speedup and compression with dedicated libraries and hardware.

2.3.3 Structured Pruning

Li et al. [31] proposed a method to prune filters with relatively low weight magni-
tudes based on weight norm. Hu et al. [20] proposed Average Percentage of Zeros to
measure the percentage of zero activations of a neuron after the ReLU mapping. Wen
et al. [61], Alvarez and Salzmann [2], Lebedev and Lempitsky [28], and Zhou et al.
[75] utilized group sparse regularization during training to prune networks. Liu et
al. [37] and Ye et al. [68] proposed pruning method with scaling parameter of batch
normalization layers. Huang and Wang [23] applied a similar method to scale the
outputs of specific structures, such as neurons, groups or residual blocks. He et al.
[18] proposed a channels selection step based on lasso regression, and feature map
reconstruction step with linear least squares. Luo et al. [41] proposed ThiNet that
prune filters using statistics information computed from its next layer. Yu et al. [71]
proposed the neuron importance score propagation algorithm to propagate the im-
portance score of final responses to every neurons in the network. Molchanov et al.
[46] proposed a criteria based on Taylor expansion that approximates the change in
the cost function included by pruning network parameter. Suau et al. [64] proposed
principal filter analysis, whose method exploited the intrinsic correlation between
filter responses within network layers to recommend a smaller network footprint.
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Huang et al. [22] proposed pruning method, that was totally automatic and data-
driven and possible to control the tradeoff between network performance and its
scale during pruning without involving humans in the loop. Chin et al. [6] pro-
posed the layer-compensated pruning that uses meta-learning to learn a set of latent
variables that compensated for the layer-wise approximation error and it was able
to improve the performance for various heuristic metrics. He et al. [17] proposed
soft filter pruning, that enabled the pruned filters to be updated when training the
model after pruning. Lin et al. [34] proposed a novel global and dynamic pruning
scheme to prune redundant filters. Lin et al. [33] proposed runtime neural prun-
ing, that conducted pruning according to the input image and current feature maps
adaptively. Wang et al. [60] introduced SkipNet, a modified residual network, that
used a gating network to selectively skip convolutional blocks based on the activa-
tions of the previous layer. Mittal et al. [44] shows that even if randomly prune the
filters, its performance after fine-tuning is not much worse than any of the above
approaches such as [31] [46] [40] [20]. Zhu and Gupta [78] show that large-sparse
(training a large model, but pruned to obtain a sparse model with a small number
of nonzero parameters) models outperform comparably-sized small-dense models
(with size comparable to the large-sparse model). Frankle and Carbin[10], Zhou
et al. [76], and Morcos [47] find that a randomly-initialized, dense neural network
contains a subnetwork (winning tickets) that is initialized such that when trained
in isolation it can match the test accuracy of the original network after training for
at most the same number of iterations. The winning tickets they find have won the
initialization lottery: their connections have initial weights that make training par-
ticularly effective. Liu et al. [38] finds that fine-tuning a pruned model only gives
comparable or worse performance than training that model with randomly initial-
ized weights. They also show that the winning tickets initialization as used in Fran-
kle and Carbin[10] only brings improvement when the learning rate is small (0.01),
however such small learning rate leads to a lower accuracy than the widely used
large learning rate (0.1). Peng et al. [48] proposed collaborative channel pruning,
that quantitatively analyzed the joint influence of pruned/preserved channels to the
final loss function, based the secondorder Taylor expansion. Molchanov et al. [45]
described two variations of their method using the first and second order Taylor ex-
pansions to approximate a filter’s contribution. Lin et al. [35] proposed a generative
adversarial learning, that was able to jointly prune redundant structures, including
filters, branches and blocks to improve the compression and speedup rates. Dong
and Yang [7] proposed Transformable Architecture Search, which can search for the
width and depth of the networks effectively and efficiently, the parameters of the
searched/pruned networks are then learned by knowledge transfer. He et al. [16]
proposed Filter Pruning via Geometric Median (FPGM) to prune the most replace-
able filters containing redundant information. They also analyzed the norm-based
criterion, which prunes the relatively less important filters.
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2.4 Knowledge Distillation

Knowledge distillation can transfer the knowledge of DNNs with a large parame-
ter (teacher networks) to smaller shallow networks (student networks). Ba et al. [3]
proposed to use L2 loss between the input vectors of the softmax activation function
(logits) of the teacher network and the student network. Hinton et al. [19] intro-
duced to use the KL-divergence with a temperature parameter to make the softmax
outputs of the teacher network and the softmax outputs (probability) of the student
network similar. Romero et al. [51] introduced to map the student hidden layer to
the prediction of the teacher hidden layer. Zhang et al. [74] presented a deep mu-
tual learning (DML) strategy where, rather than one-way transfer between a static
pre-defined teacher network and a student network, an ensemble of students learn
collaboratively and teach each other throughout the training process.

2.5 Incremental Training

Incremental training algorithm is a dynamic configuration technique for DNNs that
achieves energy-accuracy trade-offs in runtime by training a network incrementally
as sub-networks. Tann et al. [58] proposed an incremental training algorithm in
which the subsets of the weights in the network were incrementally trained by keep-
ing the remaining weights trained in earlier steps. Xun et al. [67] proposed a dy-
namic DNNs using incremental training and group convolution pruning. In the
dynamic DNNs, the channels of the convolution layer are divided into groups. At
runtime, the following groups can be pruned for inference time/energy reduction
or added back for accuracy recovery without model retraining. Istrate et al. [24]
proposed an incremental training method that partitions the original network into
sub-networks, which are then gradually incorporated in the running network dur-
ing the training process. Yu et al. [70] introduced slimmable neural networks, that
permit instant and adaptive accuracy-efficiency trade-offs at runtime by training di-
vided networks.



2.5. Incremental Training 15

(a) the filter-wise

(b) the neuron-wise

(c) the feature-wise

FIGURE 2.3: The way of grouping for convolutional filters. (a) the
filter-wise grouping Each filter is considered as a group. We call this
grouping the filter-wise grouping. By this grouping, we can prune
unnecessary filters. (b) the neuron-wise grouping The weights con-
nected to a output neuron are consider as a group. We call this group-
ing the neuron-wise grouping. By this grouping, we can prune un-
necessary output neurons. (c) the feature-wise grouping The weights
connected to a input neuron are considered as a group. We call this
grouping the feature-wise grouping. By this grouping, we can prune
unnecessary the output channels in (l − 1)th layer (the input channels

in (l)th layer).
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Chapter 3

Filter Pruning using Hierarchical
Group Sparse Regularization

3.1 Proposed Method

We propose the feature-wise filter pruning algorithm for deep convolutional neural
networks. First, a brief description of the algorithm. Fig. 3.1 shows the flow-chart
of the feature-wise filter pruning procedure. The illustration of the proposed the
feature-wise filter pruning is shown in Fig. 3.2. It consists of the following steps; 1)
Train the large network as the initial network. 2) Train the network with the struc-
tured sparse regularization based on the feature-wise grouping to find unnecessary
filters connected to input channels by enforcing the weights of unnecessary filters to
be zero. 3) Prune the filters with smaller influence on the classification loss. 4) Train
the obtained compact network from scratch. 5) Obtain the compact network from
scratch. The details of these steps are explained in the next sub-sections.

3.1.1 Training with The Hierarchical Sparse Regularization Based on The
Feature-Wise Grouping

First, we train the network as the initial network without sparse regularization.
After obtaining the initial network, we train the network with the structured

sparse regularization based on the feature-wise grouping such as group lasso, ex-
clusive sparsity, group L1/2 regularization, and the hierarchical group sparse reg-
ularization to get the sparse network. In this paper, we propose to use the hierar-
chical group sparse regularization, which is proposed by Mitsuno et al. [25], and
show that the hierarchical group sparse regularization performs better than the non-
hierarchical regularization.

The feature-wise group sparse regularization is defined as

R(W l) =
cl−1

∑
j=1

r(W l
,j,,). (3.1)

The structured sparse regularization criterion based on the feature-wise grouping
enforces the filters connected to unnecessary input channels of the convolutional
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FIGURE 3.1: Flow-chart of the feature-wise filter pruning procedure.

layer to be zero. As a result, we can remove unnecessary filters connected to out-
put channels in layer l − 1 by forcing the unnecessary filters connected to the input
channels in layer l to be zero. Since the unnecessary input channels connected to
the filters don’t have influences to the outputs of the layer and final loss of the net-
work, we can prune the filters connected to the output channels of the layer l − 1
(the unnecessary input channels of the layer l).

In the next section, we explain the method to choose the filters that are pruned.

3.1.2 Filter Pruning

After training with the structured sparse regularization based on the feature-wise
grouping, we obtain sparse network in which all weights of the filters connected
to the unnecessary input channels are close to zero. Thus we can prune the filters
connected to the unnecessary output channels of layer l − 1 (the unnecessary input
channels of the layer l) if the filters have less influence to the classification loss after
pruning. We can implement the filter selection method for pruning as shown in
Algorithm. 1.

Algorithm 1 Filter Pruning (backward filter selection)

Input: filter of the sparse model W ∈ RL, the number of conv layer Lc, the number
of all output channel of the conv layer Cc, filter mask ml

cl ∈ Ml , training sample
s ∈ x, loss L(·), pruning rate P

Output: weight of pruned model W∗ ∈ RL

1: M = 1
2: for n in 1 . . . CcP do
3: for l in 1 . . . Lc do
4: for c in 1 . . . Cc

l do
5: M∗ = M
6: m∗l

c = 0
7: el,c = L( f (s, W ⊙ M∗)|y)
8: end for
9: end for

10: arg min
l∗∈Lc,c∗∈Cc

l

el∗,c∗ s.t. ml∗
c∗ == 1

11: ml∗
c∗ = 0

12: end for
13: pruning W∗ = W[M == 1]
14: return W∗



3.2. Experiments and Results 19

Molchanov et al. [46] proposed to use a criteria based on Taylor expansion for
ranking and pruning one filter at a time. Chin et al. [6] also introduced a global
ranking approach.

Here we use the global ranking for filter pruning to automatically obtain the
pruned network architecture. We introduce a binary mask ml

cl ∈ Ml for each output
channel of the layer l, ml

i ∈ {0, 1}. By using these masks, we can prune ith filter
of the layer l by making ml

i = 0. We search the filter which has the minimum loss
increase after the filter is pruned. The increase of the classification loss after pruning
is represented as

arg min
l∗∈Lc,i∗∈Cc

l

|L( f (s, W)|y)− L( f (s, W ⊙ M)|y)| (3.2)

where W ⊙ M denotes the element-wise product. The classification loss L are eval-
uated by using randomly selected training samples. By updating the mask and re-
peating the filter selection algorithm until the number of the masked channels are
CcP channels. After the filters for pruning are selected, we prune the filters from the
network, where ml

i = 0. We also prune the batch normalization layers connected
to the pruned output channels at the same time. Then we can obtain the compact
network architecture with small parameters and less computational operations.

The obtained compact network after pruning can achieve almost the same accu-
racy with the original large network by fine-tuninig. But Liu et al. [38] examined
and showed that the fine-tuning of the pruned model can only give comparable or
worse performance than the training of the compact model with randomly initial-
ized weights. So we trained the obtained compact network from scratch. After that,
we obtain small network with higher accuracy.

3.2 Experiments and Results

To confirm the effectiveness of the proposed pruning method, we have performed
experiments using different data sets (CIFAR-10, CIFAR-100, and TinyImageNet-
200) and different network architectures (VGG nets [55] and ResNet [15]). CIFAR-10
contains 60,000 color images of ten different animals and vehicles. They are divided
into 50,000 training images and 10,000 testing images. The size of each image is
32 × 32 pixels. CIFAR-100 also contains 60,000 color images of 100 different cate-
gories and 50,000 images are used for training and the remainings are used for test.
The size of each image is also 32 × 32 pixels. TinyImageNet-200 contains 110,000
color images of 200 different categories and 100,000 images are used for training and
10,000 images for test. The size of the image is 64 × 64 pixels.

We show the images of each dataset in Fig3.3.
In the following experiments, the number of channels of the network at each

layer is adjusted to prevent overfitting, depending on each dataset.
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3.2.1 Preliminary Experiments

In this section, we observe the difference of the sparse regularization and the differ-
ence of the sparsity of the network trained with the sparse regularization for pruning
using ResNet18 on CIFAR-10.

Experimental Setting

Networks

For CIFAR-10, we trained ResNet20 (19 convolution(conv) + one fully connected(fc)
layers) with batch normalization layers.

Initial Network

All the initial networks are trained from scratch by using SGD optimizer with a
momentum of 0.9. We used the weight decay with the strength of 5 ∗ 10−4 to prevent
overfitting. The mini-batch size for CIFAR-10 was set to 128 and the network was
trained for 200 epochs. The initial learning rate was set to 0.1 and it was divided by
0.2 after [60, 120, 160] training epochs.

Train with Sparse Regularization

The sparse regularization was applied to the weights except for the bias term in all
convolutional layers. All the networks were trained by using SGD optimizer with a
momentum of 0.9. For CIFAR-10, the mini-batch size was set to 128 and the network
was trained for 100 epochs. The initial learning rate of 0.01 which is divided by 0.1
after 1/3 and 2/3 training epochs. The hyper-parameter λ, which balances the cross-
entropy loss and the sparse regularization criterion, was experimentally determined
by grid search in the range from 10−1 to 10−7.

We used hierarchical squared GL1/2 regularization (HSQ-GL12), hierarchical square
rooted GL1/2 with L1 regularization (SHSQRT-GL12) and hierarchical squared GL1/2

with L1 regularization (SHSQ-GL12) [25] in the experiments to compare the sparse
regularization criteria. We used HSQ-GL12 for sparse regularization in the exper-
iments to compare the sparse regularization criteria. For SHSQRT-GL1/2, SHSQ-
GL1/2, we set the parameter α, which balances the L1 regularization and the group
sparse regularization criterion, to be 0.5. To evaluate the sparsity of the trained net-
work, the ratio of the zero weights was calculated by assuming that the weights
whose absolute value is less than 10−3 are zero.

After training the networks with sparse regularization, we selected one best
trained network from the trained networks with the various hyper-parameter λ in
sparse regularization.
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Pruning and Training of the Pruned Networks

Then the channels at the convolutional layers except for the output channel of the
final convolutional layer were pruned based on the influence of the pruning of each
channel to the classification loss. To evaluate the influence of the pruning, we calcu-
late the increase of the classification loss for the 128 randomly selected samples from
the training samples.

The pruning rate P, which is a ratio of the pruned channels in the whole chan-
nels of the networks, was changed from 0.1 to 0.9. When the number of channels of
a layer becomes 0, the experiments are stopped. After pruning, we can obtain com-
pact networks. The parameters of the obtained compact network were trained from
scratch using the same hyper-parameters as the training of the initial networks.

Results

The results on CIFAR-10 are shown in Fig. 3.4.
We calculate the ratio of the active parameters as the ratio of the number of whole

parameters of the network and the remaining parameters after pruning.
From Fig. 3.4 (a), the performances of pruned networks with various sparse

regularization are almost the same. For all experiments, we train the large networks
with HSQ-GL12 for channel selection.

From Fig. 3.4 (b), it is better for pruning to use a sparser model for channel
selection even if lower accuracy of the network than a baseline network. So we
select a sparser network with the strong hyper-parameter λ for channel selection.

3.2.2 Pruning of VGG Nets

To confirm the effectiveness of the proposed pruning method, we have performed
experiments using VGG14 (13-conv + 1-fc layers) with batch normalization layers
for different data sets (CIFAR-10, CIFAR-100, and TinyImageNet-200).

All the initial networks are trained from scratch by using SGD optimizer with a
momentum of 0.9. We used the weight decay with the strength of 5 ∗ 10−4 to prevent
overfitting. The mini-batch size for CIFAR-10/100 was set to 128 and the network
was trained for 200 epochs. For TinyImageNet-200, the mini-batch size was set to
256 and the network was trained for 200 epochs. The initial learning rate was set to
0.1 and it was divided by 0.2 after [60, 120, 160] training epochs.

Then the hierarchical sparse regularization was applied to the weights except for
the bias term in all convolutional layers. All the networks were trained by using
SGD optimizer with a momentum of 0.9. For CIFAR-10/100, the mini-batch size
was set to 128 and the network was trained for 100 epochs. For TinyImageNet-200,
the mini-batch size was set to 256 and the network was trained for 100 epochs. The
initial learning rate of 0.01 which is divided by 0.1 after 1/3 and 2/3 training epochs.
The hyper-parameter λ, which balances the cross-entropy loss and the hierarchical
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sparse regularization criterion, was experimentally determined in the range from
10−1 to 10−7.

We used hierarchical squared GL1/2 regularization (HSQ-GL12)[25], which has
shown outstanding performance compare to various sparse regularization criteria
in our previous work. To evaluate the sparsity of the trained network, the ratio of
the zero weights was calculated by assuming that the weights whose absolute value
is less than 10−3 are zero.

After training the networks with sparse regularization, we selected one best
trained network from the trained networks with the various hyper-parameter λ in
sparse regularization.

To obtain the compact network, the channels at the convolutional layers except
for the output channel of the final convolutional layer were pruned based on the
influence of the pruning of each channel to the classification loss. To evaluate the
influence of the pruning, we calculate the increase of the classification loss for the
128 randomly selected samples from the training samples.

The pruning rate P, which is a ratio of the pruned channels in the whole chan-
nels of the networks, was changed from 0.1 to 0.9. When the number of channels of
a layer becomes 0, the experiments are stopped. After pruning, we can obtain com-
pact networks. The parameters of the obtained compact network were trained from
scratch using the same parameter settings as the training of the initial networks.

The results for VGG14 are shown in Fig. 3.5. For CIFAR-10, the propose method
is scceeded to prune 85% of parameters with only 0.53% drop of the test accuracy. It
is impressive that the network in which 41% parameters are pruned achieves better
test accuracy than the baseline network. Similarly, we can prune 41% of parameters
with only 0.85% drop of the test accuracy for CIFAR-100. For TinyImageNet-200,
37% of parameters can be pruned with only 0.70% drop of the test accuracy.

For all datasets, we observe similar tendency of pruning such that the parameters
in the deep layer are pruned much more than the shallow layer.

3.2.3 Pruning of ResNet

We also have performed experiments with ResNet for CIFAR-10, CIFAR-100, and
TinyImageNet-200. For CIFAR-10/100, we trained ResNet20 (19 convolution(conv)
+ one fully connected(fc) layers) and ResNet32 (31-conv + 1-fc layers) with batch
normalization layers. For TinyImageNet-200, ResNet18 (17 convolution(conv) + one
fully connected(fc) layers) and ResNet34 (33-conv + 1-fc layers) were trained with
batch normalization layers. Parameter settings are the same with the experiments
for VGG net.

The results with ResNet are shown in Fig. 3.6 and Fig. 3.7. By using the pro-
posed pruning method, we can obtain the compact network which has only 54% of
the parameters with the baseline network but can achieve almost same test accuracy
with the baseline network (only 0.31% drop) for ResNet20 on CIFAR-10. The pruned
network with 16% parameters gives better test accuracy than the baseline network.
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Similaly, for ResNet20 on CIFAR-100, the network with 15% parameters gives al-
most same test accuracy with the baseline network (only 0.85% drop). The network
pruned 34% of the parameters for ResNet18 on TinyImageNet-200 achieved higher
test accuracy than the baseline network. The network pruned 54% of the parame-
ters for ResNet32 on CIFAR-10 and the network pruned 13% of the parameters for
ResNet32 on CIFAR-100 are also gives the almost same test accuracy (only 0.73%
drop and only 1.2% drop). For ResNet32 on TinyImageNet-200, we can prune the
network for 16% of the parameters with only 3.8% drop of the test accuracy. From
the right figures, it is noticed that the parameters in the deep layer of each residual
block are pruned more.

3.2.4 Comparison with The State-of-the-art Method

The proposed method was compared with one of the state-of-the-art filter pruning
methods FPGM-mix. The filter pruning via geometric median (FPGM) [16] is one of
the state-of-the-art method and FPGM-mix is a mixture of FPGM and their previous
norm-based method [17]. We have performed experiments with the same pruning
rate of P. The ratio of FPGM and the norm-based method is determined according to
the paper [17]. Namely, 3/4 of the filters are selected with FPGM and the remaining
1/4 filters are selected with the norm-based criterion.

The results of the comparisons are shown in Fig.3.5, Fig.3.6 and Fig.3.7. For VGG
nets, ResNet20 and ResNet18, the performance of the pruned network with the pro-
posed method is better than the FPGM-mix for all pruning ratios. For ResNet32 and
ResNet34, the test accuracy of the pruned network with the proposed method gives
better than the network obtained by FPGM-mix when the pruning rate is larger than
60%. Our proposed method consider the structure of the networks to prune unnnec-
essary parameters. So that, the proposed method gives better performance than the
FPGM-mix when the pruning rate is high.

These results show the effectiveness of the proposed method compares to the
state-of-the-art method, especially when the network is pruned more than 50% of
the parameters.
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Input channels 
of layer !

Convolutional filters of layer !

Output channels 
of layer !

Convolutional filters of layer ! + 1

Output channels 
of layer ! + 1

Unnecessary output channel
to be pruned 

Sparse kernels

(a) Sparse kernels of layer l + 1 which are connected to the unnecessary output
channel of layer l

(b) Pruning the filter of layer l and sparse kernels of layer l + 1, which are
connected to the unnecessary output channel of layer l keeping the same output

channel of layer l + 1

FIGURE 3.2: An illustration of filter pruning via Hierarchical sparse
group regularization based on the feature-wise grouping. In convo-
lutional layer, each filter makes one output channel (activation), these
colors are the same. For example, the filter of orange of layer l makes
orange output channel of layer l. (a) The Hierarchical sparse group
regularization based on the feature-wise grouping make the weights
of the unnecessary kernels to be almost zero. Since the output of con-
volution from the input channel connected to the unnecessary kernels
will be zero in the layer l + 1, the output channels are not influenced
by the pruning the unnecessary kernel. (b) If the increase of the clas-
sification loss of the network after pruning the filters connected to the
unnecessary output channel of layer l is very small, we can prune the
filters of layer l and kernels of layer l + 1 connected to the unneces-
sary output channel of layer l. Then the output channels of layer l + 1

are almost the same as the output channels before pruning.
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(a) CIFAR-10

(b) CIFAR-100

(c) TinyImageNet-200

FIGURE 3.3: This Figure shows images of each dataset CIFAR-10,
CIFAR-100, and TinyImageNet-200
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(a) Comparison of pruned networks with various sparse regularizations

(b) Comparison of pruned networks with various sparsity

FIGURE 3.4: The results with ResNet20 on CIFAR-10 (a) Comparison
of test accuracy of pruned networks with different sparse regulariza-
tion for training the sparse network (average of three trials). (b) Com-
parison of test accuracy of pruned networks with different sparsity of
the networks that trained with sparse regularization (average of three

trials).
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(a) VGG14 on CIFAR-10

(b) VGG14 on CIFAR-100

(c) VGG14 on TinyImageNet-200

FIGURE 3.5: The results with VGG14 on CIFAR-10/100 and
TinyImageNet-200. Comparison of test accuracy of the pruned net-
works (left). For CIFAR-10/100, the average of three trials are shown.
The numbers of the pruned channels in each layer is shown in the
right figure. Each line shows the numbers of the pruned channels at
each layer. Different colors denote the results with different pruning
rates P. Param means ratio of parameter remaining of a pruned net-

works.
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(a) ResNet20 on CIFAR-10

(b) ResNet20 on CIFAR-100

(c) ResNet18 on TinyImageNet-200

FIGURE 3.6: The results with ResNet20 and ResNet18. Comparison
of test accuracy of the pruned networks (left). The average of three
trials is shown. The numbers of the pruned channels in each layer of

the networks are shown in the right figure.
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(a) ResNet20 on CIFAR-10

(b) ResNet20 on CIFAR-100

(c) ResNet18 on TinyImageNet-200

FIGURE 3.7: The results with ResNet32 and ResNet34. Comparison
of test accuracy of pruned networks (left). For CIFAR-10/100, the
average of three trials is shown. Right figure shows the numbers of

pruned channels in each layer of the networks.
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Chapter 4

Channel Planting using
Knowledge Distillation

4.1 Proposed Method

In this section, we propose a novel incremental training method for DNNs called
planting. In the proposed incremental training method, channels on a small network
are incrementally added to improve classification accuracy. The parameters of the
added channel are trained by using the knowledge distillation to imitate the behav-
ior of the large network (the teacher network). The optimal network architecture is
searched by incrementally selecting the best channels among the possible candidates
of the additions in terms of the classification accuracy (on the validation set). The
illustration of the proposed planting procedure on a typical DNN is shown in Fig.
4.1.

In summary, our planting approach consists of the following training processes:
(0) training a large network as the teacher network. (1) training a small network with
fewer channels of each layer by a standard classification training method. (2) incre-
mentally adding channels on the small network by using a knowledge distillation
method with the teacher network.

4.1.1 Planting Approach

Preparation. We assume that the objective function of the optimization for deter-
mining the trainable weights is given by

J(W) = L( f (x, W)|y) (4.1)

where (x, y) denotes the pair of the input and target, W is a set of all trainable
weights of all the L layers in the CNN, L(·) is the standard loss for the CNN.

Also, we assume the weight in the layer l as W l ∈ RCl×Cl−1×Kl×Kl
, where Cl and

Cl−1 are the number of output channels and input channels, Kl is the kernel size of
the layer l respectively. In the fully connected layers, Kl = 1.

Initial network. First, we train a small network with a few channels of each layer
by a standard classification training procedure. Also, we train a large network by a
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input

…

input input

Small network

Teacher network

Knowledge transfer 

Planted network
with the smallest 

validation loss

Final network

Trained weight

Initial weight

Fixed weight

Planting procedure

Train planted networks

FIGURE 4.1: Illustration of Planting Procedure on a typical DNNs

standard classification training procedure as the teacher network. It is expected that
the teacher network has the optimized number of channels with maximum perfor-
mance in terms of classification accuracy.

Search for the best layer for planting. For considering the impact of planted
channels on a network, we divide the layer of the small networks into several groups
G, where 1 ≤ G ≤ L. When using a very deep network, we plant channels in
multiple layers by dividing a small network into groups to increase the impact of
the planting. Then, we add n channels on the layer of group g. The number of
channels of the added layer is given by

Cl + n s.t. g ∗ L
G

≤ l < (g + 1) ∗ L
G

. (4.2)

The weights of the added channels of the small networks are trained by a knowledge
distillation procedure while keeping the remaining weights are fixed. The planted
channels are learned to reduce the classification loss of the small network. For exam-
ple, when adding n channels on the layer l, the weights W l

Cl :Cl+n,:,:,: and W l+1
:,Cl :Cl+n,:,:

are trained.
We search the best group g which minimizes the loss

arg min
g

JKL(WS′
, WL), (4.3)

where WS′
is the small network with the additional layer of group g and WL is the

large network. The detail definition of the loss JKL(WS′
, WL) is explained in the next
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FIGURE 4.2: This Figure shows images of each dataset STL-10

sub section. The best layer to add is searched by using the brute-force search method
or the random search method if there are many groups. In the random search, some
groups from G are randomly selected to reduce the calculation cost, and the best
group is determined from the selected groups. After we determined the best layer
to reinforce, fix the planted channels and explore the next channel. By repeating this
planting process while reducing the classification loss than the previous network,
we can obtained the best network architecture.

After this method, we obtain a small network with fewer channels, which has
higher performance than the networks obtained in a standard training procedure
and can prevent over-fitting. The network architecture is automatically optimized
by the proposed planting procedures. The details of the planting algorithm is shown
in Algorithm 2.

4.1.2 Knowledge distillation

Knowledge distillation is an effective method for training the small network. In this
study, we employ the Kullback Leibler (KL) Divergence. Suppose the predictions by
the small network and the large network are zS and zL respectively, the KL diver-
gence from zS to zL is given by

LKL(zL||zS) = ∑
i

exp zL
i

∑j exp zL
j

log

(
exp zS

i

∑j exp zS
j

)
. (4.4)

The objective function for the proposed planting method is defined as follows

JKL(WS, WL) = λL( f (x, WS)|y)
+(1 − λ)LKL( f (x, WL)|| f (x, WS)), (4.5)
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Algorithm 2 Planting algorithm

Input: WS : trained small network, WL : trained teacher network, G : the number
of group, n : the number of planted channels, (xtrain, ytrain) and (xval , yval) : the
training samples and the validation samples obtained by splitting the training
set into two disjoint subsets.

1: while 1 do
2: for g in 1 . . . G do
3: WSg = WS

4: for l in 1 . . . L do
5: if g ∗ L

G ≤ l < (g + 1) ∗ L
G then

6: plant n channels on layer l of WSg

7: end if
8: end for
9: train WSg via JKL(WSg , WL) on (xtrain, ytrain)

10: end for
11: gmin = arg min

g∈G
|J(WSg)| on (xval , yval)

12: if J(WSgmin ) ≥ J(WS) on (xval , yval) then
13: break
14: end if
15: WS = WSgmin

16: end while

s.t. 0 ≤ λ ≤ 1
where λ is used to balance the standard classification loss L( f (x, WS)|y) and KL
divergence LKL( f (x, WL)|| f (x, WS)).

4.2 Experiments and Results

To confirm the effectiveness of the proposed method, we have performed experi-
ments with the image classification task using different datasets (CIFAR-10, CIFAR-
100, and STL-10).

4.2.1 Experiments using CIFAR-10

In the experiments on CIFAR-10, we used the 7-layers CNN models with five convo-
lutional layers and two fully connected layers, the structure of the network is shown
in Table.4.1. All the experiments, we set the number of channels of the fully con-
nected layers to [128, 10]. All the number of channels of convolutional layers were
set to 8 for initial network and 128 for the teacher network.

The initial network and the teacher network were trained from scratch by using
SGD optimizer with a momentum of 0.9. We used the weight decay with the strength
of 5 ∗ 10−4 to prevent over-fitting. The mini-batch size for CIFAR-10 was set to 128
and the network was trained for 150 epochs. The initial learning rate was set to 0.01
and it was multiplied by 0.2 after [40, 80, 120] training epochs.
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TABLE 4.1: The structure of networks

For CIFAR-10/100 For STL-10
ReLU(conv1(kernel=3)) ReLU(conv1(kernel=3))

max pooling(2*2) max pooling(2*2)
ReLU(conv2(kernel=3)) ReLU(conv2(kernel=3))

max pooling(2*2) max pooling(2*2)
ReLU(conv3(kernel=3)) ReLU(conv3(kernel=3))
ReLU(conv4(kernel=3)) max pooling(2*2)
ReLU(conv5(kernel=3)) ReLU(conv4(kernel=3))

max pooling(2*2) ReLU(conv5(kernel=3))
ReLU(fc1()) max pooling(2*2)
output=fc2() ReLU(fc1())

output=fc2()

In the planting operation, we used the weight decay with the strength of 5 ∗ 10−5,
the number of the group G was set to 5, and other parameter settings are the same
with the training of the initial network. We added 4 channels to the layers at one
planting operation. In the training of planted channels, the hyper-parameter λ of
KL loss (KLLoss) was set to 0. In the calculation for finding the smallest validation
loss, the hyper-parameter λ of KLLoss was set to 1.

For comparing the performance of the proposed method, we trained the baseline
networks with cross entropy loss (CELoss) as the standard classification loss, and
KLLoss as loss function of knowledge transfer. All the number of channels of the
convolutional layer for the baseline networks were set to 8, 16, 32, 64 and 128, and we
used the same teacher networks with the planting operation. The hyper-parameter
λ of KLLoss was set to 0. Parameter settings are the same with the training of the
initial network.

TABLE 4.2: Results on CIFAR-10 dataset. The average of three trials
are shown.

Network Params Test Err. Test Acc. Loss func
Teacher[128]
Student[128]

857.5K
0.5007 88.10% CELoss
0.3823 88.51% KLLoss

Initial Network
(Student[8])

20.4K
0.8300 71.55% CELoss
0.8245 71.69% KLLoss

Student[16] 43.9K
0.6071 79.42% CELoss
0.6108 79.23% KLLoss

Student[32] 104.8K
0.4898 84.03% CELoss
0.4791 84.02% KLLoss

Student[64] 282.0K
0.4431 86.83% CELoss
0.4103 86.80% KLLoss

Ours 40.6K 0.4825 84.35% KLLoss

The results for CIFAR-10 are shown in Table 4.2. In this table, the average of three
trials are shown. The number of channels of the convolutional layers after planting
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operation were [12, 20, 16, 16, 12], [12, 16, 16, 16, 16] and [12, 16, 16, 16, 16]. For CIFAR-
10, the proposed method is succeeded to train a network with higher classification
accuracy, which has only 39% parameters compare to a network where all the con-
volutional layers are 32 channels.

4.2.2 Experiments using CIFAR-100

In the experiments on CIFAR-100, we used the same network structures with the
experiments on CIFAR-10. All the experiments, we set the number of channels of
the fully connected layers to [128, 100]. All the number of channels of convolutional
layers were set to 16 for the initial network and 128 for the teacher network. In the
calculation for finding the smallest validation loss, the hyper-parameter λ of KLLoss
was set to 0. Other parameter settings are the same as the experiments on CIFAR-
10. For comparison of the performance of the proposed method with the standard
methods, we trained the baseline networks on the settings of the same experiment
with the experiments on CIFAR-10.

TABLE 4.3: Results on CIFAR-100 dataset. The average of three trials
are shown.

Network Params Test Err. Test Acc. Loss func
Teacher[128]
Student[128]

869.1K
2.5010 57.76% CELoss
1.6232 60.05% KLLoss

Student[8] 32.0K
2.5280 36.53% CELoss
2.5053 36.90% KLLoss

Initial Network
(Student[16])

55.5K
2.1190 45.45% CELoss
2.0679 46.66% KLLoss

Student[32] 116.5K
1.9022 52.15% CELoss
1.7805 53.72% KLLoss

Student[64] 293.6K
1.9510 55.74% CELoss
1.6707 57.71% KLLoss

Ours 78.5K 1.7584 54.31% KLLoss

The results for CIFAR-100 are shown in Table 4.3. In this table, the average of
three trials are shown. The number of channels of the convolutional layers after
planting operation were [20, 24, 20, 24, 24], [20, 24, 20, 24, 24] and [20, 24, 24, 24, 20].
For CIFAR-100, the proposed method is succeeded to train a network with higher
classification accuracy, which has only 67% parameters compare to a network where
all the convolutional layers are 32 channels.

4.2.3 Experiments using STL-10

STL-10 contains 13,000 color images of ten animals and vehicles. The size of the
image is 96× 96 pixels. They are divided into 5,000 training images, 1,000 validation
images and 7,000 testing images.

We show the images of STL-10 dataset in Fig4.2.
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In the experiments on STL-10, we used the 7-layers CNN models with five convo-
lutional layers and two fully connected layers, the structure of the network is shown
in Table.4.1. In all the experiments, we set the number of channels of the fully con-
nected layers to [128, 10]. All the number of channels of convolutional layers were
set to 8 for initial network and 64 for the teacher network.

The network was trained for 100 epochs, the initial learning rate was set to 0.01
and it was multiplied by 0.1 after every epoch/3 training epochs. In the planting
operation, we used the weight decay with the strength of 5 ∗ 10−4. In the calculation
for finding the smallest validation loss, the hyper-parameter λ of KLLoss was set to
0. Other parameter settings are the same with with the experiments on CIFAR-10.

For comparing the performance of the proposed method, we trained the baseline
networks on the settings of the same experiment with the experiments on CIFAR-10.

TABLE 4.4: Results on STL-10 dataset. The average of three trials are
shown.

Network Params Test Err. Test Acc. Loss func
Teacher[64]
Student[64]

445.8K
1.5360 66.33% CELoss
1.1807 66.47% KLLoss

Initial Network
(Student[8])

40.8K
1.2776 55.55% CELoss
1.2682 54.99% KLLoss

Student[16] 84.9K
1.2924 59.34% CELoss
1.1998 61.10% KLLoss

Student[32] 186.8K
1.2213 64.57% CELoss
1.1712 64.07% KLLoss

Student[128] 1.2M
1.7612 67.04% CELoss
1.1643 67.71% KLLoss

Ours 82.6K 1.0772 67.12% KLLoss

The results for STL-10 are shown in Table 4.4. Again the average of three tri-
als are shown in this table. The number of channels of the convolutional layers af-
ter planting operation were [28, 20, 20, 12, 12], [28, 16, 20, 20, 16] and [12, 20, 16, 28, 16].
For STL-10, the proposed method is succeeded to train a network with higher classi-
fication accuracy, which has only 7% parameters compare to a network where all the
convolutional layers are 128 channels with CELoss. The test loss of planted network
is the smallest than all the comparison networks and also the planting method can
train to reduce over-fitting.
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Chapter 5

Conclusion

We propose a two types of NAS method, one is a filter pruning method, the other is
a incremental training method.

First, we propose a filter pruning method with the hierarchical group sparse
regularization based on the feature-wise grouping for pruning filters, which con-
nected to unnecessary input channels, using the influence of the classification loss.
At first the network was trained with the hierarchical sparse regularization. We take
the strategy of the step-wise pruning of the filters by searching the filter with the
minimum loss increase. Then the obtained compact network was retrained from
scratch. Experiments using CIFAR-10/100 and TinyImageNet-200 datasets show
the outstanding performance than the state-of-the-art pruning method. Especially
the performance of the pruned network is better than the state-of-the-art pruning
method when more than 50% of the parameters are pruned.

Finally, we proposed a novel incremental training algorithm for deep neural net-
works called planting. Our planting approach can automatically search the optimal
network architecture for training tasks with smaller parameters by planting chan-
nels incrementally to layers of the initial networks while keeping the earlier trained
channels fixed for improving the network performances. Also, we proposed to use
the knowledge distillation method for training the channels planted. By transferring
the knowledge of deeper and wider networks, we can grow the networks effectively
and efficiently. We evaluated the effectiveness of the proposed method on different
datasets. We confirmed that the proposed approach was able to achieve comparable
performance with smaller parameters compare to the larger network and reduce the
over-fitting caused by a small amount of the data.
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