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A novel error mapping of bi-directional angular

positioning deviation of rotary axes in a SCARA-type

robot by “open-loop” tracking interferometer
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Abstract

To further extend the application of an industrial robot to e.g. the machining,

it is crucial to ensure its three-dimensional (3D) positioning accuracy over

its entire workspace. Numerous past works presented numerical compensa-

tion based on the robot kinematic model containing position and orientation

errors of rotary axes average lines, widely known as Denavit-Hartenberg (D-

H) parameters. This paper presents two novel contributions. First, this

paper proposes a kinematic model with the angular positioning deviation

“error map” of each rotary axis, which is given as a function of command

angular positions. Furthermore, to model the backlash influence, it is mod-

eled dependent also on the direction of rotation. The second contribution

is on the proposal of the “open-loop” tracking interferometer measurement

to indirectly identify the angular positioning deviation of each rotary axis.
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It measures the distance from the retroreflector, fixed on the table, to the

robot’s end effector at many points over the entire workspace by using a

laser interferometer attached to the robot’s end effector. The identified kine-

matic model’s accuracy is experimentally investigated, and is compared to

the conventional D-H model.

Keywords: SCARA robot, error calibration, volumetric accuracy, tracking

interferometer, kinematic model
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1. Introduction

In today’s industry, industrial robots are mostly programmed by the teach

method, where a human operates the robot manually by using a teach pen-

dant, and the robot memorizes it. On the other hand, NC (numerically con-

trolled) machine tools are typically programmed on a CAM (computer-aided

manufacturing) software based on a 3D model of workpiece. This difference

is partly due to a robot’s significantly lower volumetric accuracy; a human

operator’s manual adjustment is often inevitable to successfully perform the

given task. The volumetric accuracy, the term in [1], represents the 3D po-

sitioning accuracy over the entire workspace. If a robot is ensured to have

higher volumetric accuracy, its application can be significantly expanded.

One of its potential applications is the machining. The review paper [2, 3, 4]

presented recent numerous works on robotic machining.

Lower stiffness is an inherent issue for industrial robots, particularly for

machining applications. In many industrial robotic machining applications,

a workpiece is chosen such that it does not give significant cutting forces. For

example, when a workpiece is made by “near-net” casting [5], the depth of

cut in its machining processes can be minimized. Typically, machining op-

erations cannot be teach-programmed. When a robot is offline-programmed

based on a virtual model, a robot is critically required to have sufficient vol-

umetric accuracy over the entire working space. As the offline programming

is expected to grow in various industrial robot applications, it becomes more

important to ensure a robot having higher volumetric accuracy [6].

For a robot to have higher volumetric accuracy, numerous research ef-

forts have been devoted to a model-based compensation. Its review can be
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found in [6, 7, 8, 9]. Past works can be categorized, firstly, by the model

used. Some works are based on the model containing link length errors and

rotary axis angular offsets [10, 11, 12, 13]. More recent works employ the

model with a full set of position and orientation errors of rotary axis average

lines [14, 15, 16, 17, 18, 19]. The axis average line, the term defined in [1],

represents the mean position and orientation of the axis of rotation. The

position and orientation errors of rotary axis average lines are often called

the D-H (Denavit-Hartenberg) parameters in the literature.

Even when these errors are compensated, in many cases a robot’s vol-

umetric error is still roughly 10 to 100 times larger than typical machine

tools [13, 6]. Many works discussed the influence of joint compliance and

friction [20, 21]. An interesting result was reported by Nubiola et al. [22].

They measured the angular positioning deviation of each rotary axis inde-

pendently by using a laser tracker, which clearly showed nonlinear influence

of link weights and friction. More researchers [23, 15, 24] recently presented

the modeling of such an “residual” error, but they adopted a non-geometric

model, such as a neural network model. A notably unique work was reported

in 2018 by Hörler et al. [25]. They measured the angular positioning devia-

tion of two rotary axes in a SCARA-type robot, and modelled it as a function

of command angular position. The kinematic model presented in this paper

adopts the same modeling scheme. While Hörler et al. [25] directly measures

the end effector orientation by a special measuring instrument (a fiber po-

sitioner system for massive spectroscopic surveys), this paper adopts a laser

interferometer widely used for error calibration of e.g. machine tools. Hörler

et al. also measured the backlash (hysteresis) of each axis but its inclusion
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into the kinematic model was not clearly presented in [25].

Past works can be categorized, secondly, by an instrument to measure

the robot end effector’s position. Many recent works use either a tracking

interferometer (the term in [1], or a laser tracker) [13, 14, 15, 16, 20, 22] or

a vision-based measurement system [10, 11, 17, 18, 19]. One practical issue

is its higher cost. Another potential issue is their measurement uncertainty.

It is significantly higher than measuring instruments used for machine tool

error calibration, e.g. a laser interferometer.

This paper presents two original contributions. First, a novel kinematic

model is proposed to significantly improve its prediction accuracy. The con-

ventional D-H model, employed in many past works, is constructed based on

the local coordinate systems aligned to the axis average lines. During the

rotation of a rotary axis, its axis of rotation may displace or tilt. The axis

average line represents its mean position and orientation only. This paper

proposes a model including the angular positioning deviation of each rotary

axis, which cannot be described by the position and orientation of the axis

average lines. The angular positioning deviation represents the actual angu-

lar position of a rotary axis minus the command angular position in the plane

perpendicular to the axis of rotation [1]. In a robot rotary axis, it is typically

caused by the pitch error of a gear or a timing belt, or the joint compliance.

Therefore, it cannot be constant – this paper models it as a function of the

command angular position. Furthermore, a robot rotary axis can be subject

to significant influence of gear backlash. To model it, the proposed model is

dependent also on the direction of rotation.

This paper’s second novel contribution is on the proposal of a scheme
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to identify the angular positioning deviation profile of each rotary axis by

measuring the distance to the robot’s end effector. A laser interferometer

is attached to a robot’s end effector. When the robot’s end effector is po-

sitioned at the given set of command positions, its orientation is regulated

such that the laser beam is oriented to a retroreflector, fixed on the table.

The proposed scheme is called the “open-loop” tracking interferometer

measurement in this paper. A conventional tracking interferometer auto-

matically regulates the laser beam direction to follow the retroreflector by

feedback control based on the reflected laser spot position. In the pro-

posed scheme, the end effector’s angular position is calculated based on

its command position and the pre-estimated retroreflector position – in an

“open-loop” control manner. Lower implementation cost is its major prac-

tical advantage. This scheme was proposed for machine tools by Ibaraki et

al. [26, 27, 28, 29]. This paper’s scheme can be seen as its extension to an

industrial robot. While the algorithms in [26, 27, 28, 29] are for machine

tools with three linear axes orthogonal to each other, this paper reformulates

them for a robot kinematics.

Its measurement uncertainty can be potentially lower than a conven-

tional tracking interferometer. For a conventional tracking interferometer,

the uncertainty in the angle measurement of laser beam direction imposes

significant contribution on the 3D position measurement uncertainty. The

multilateration [1, 30, 31] is based only on the distances, and thus it gener-

ally has significantly lower measurement uncertainty. The application of the

multilateration to machine tool error calibration has been long studied and

now is commercially available [30]. This paper’s scheme can be seen as its
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extension to an industrial robot.

Fundamental ideas in this paper come from machine tool error calibra-

tion. For machine tools, the volumetric error compensation [32] is available

on many latest CNCs (computerized numerical controllers), where error mo-

tions of each axis are modelled as a function of command position – as an

“error map.” Many schemes are available to indirectly identify the error maps

from the tool center point position measurement (see a review in [33, 34]).

Typical machine tools have orthogonal X, Y and Z axes. This paper recon-

structs the multilateration-based error calibration scheme for robot kinemat-

ics.

This paper studies its application to the 2D positioning by a SCARA

(Selective Compliance Assembly Robot Arm)-type robot (see Fig. 1). It has

a simpler kinematics and significantly less error parameters than a 6 DOF

(degrees of freedom) robot. It should be emphasized that a SCARA robot

is usually not for the applications requiring higher rigidity. We do not in-

tend to apply a SCARA robot to machining operations. The application

to a SCARA robot is studied to investigate the fundamental validity and

performance of this new methodology. Potential benefits with the improved

volumetric accuracy of a SCARA robot include significant reduction of time

and effort for the teaching of robot tasks, or possibly, its complete elimina-

tion (offline programming). The improved volumetric accuracy may further

extend the robot’s new applications, e.g. the geometric measurement by in-

stalling a touch-triggered probe or a non-contact scanner at end effector. The

extension of the proposed scheme to a 6 DOF robot will be studied in our

next research step.
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2. Proposed measurement scheme

This paper targets a SCARA-type robot shown in Fig. 1. The 2D posi-

tioning accuracy by J1- and J2-axes on the XY plane is considered in this

paper. The robot has J3- and J4-axes to translate/rotate the end effector

to/around the Z-axis, but their accuracy is out of the algorithm’s scope. The

nominal link lengths are shown in Table 1 (“Nominal value”).

Figure 1 illustrates the proposed measurement scheme. A laser interfer-

ometer is attached to the end effector such that its direction can be regulated

by J4-axis. The laser beam approximately intersects with the J4-axis of ro-

tation. The laser beam is approximately in the X-direction when θ4 = 0◦,

where θ4 is the J4 -axis angular position. A cat’s eye retroreflector is fixed

on the floor. A cat’s eye retroreflector is a spherical glass of sufficiently

high geometric accuracy with its hemispheric surface coated by the total-

reflection metal-film deposition [35]. Its position is roughly estimated as

Pj = (Pj,x, Pj,y) ∈ R2. When the k-th command position of the end effec-

tor is given by p∗(k) = (p∗x(k), p
∗
y(k)) ∈ R2 (the superscript “∗” represents

commanded values throughout this paper), the laser beam is directed to the

retroreflector by regulating the J4-axis angular position, θ
∗
4(k), such that:

tan θ∗4(k) =
Pj,y − p∗y(k)

Pj,x − p∗x(k)
(1)

See Fig. 2. At each command position, the distance from the end effector

to the retroreflector is measured. It is emphasized that the proposed scheme

measures the distance only; the orientation of the laser beam is not used

in the calculation in Section 3. This is repeated at different retroreflector

positions, j = 1, · · · , Nt.
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Clearly, the estimation error of the retroreflector position, and the J4-axis

angular positioning error, can result in an error in the laser beam direction.

Their influence will be discussed in Section 5.

Remark 1: The position of the retroreflector center can be roughly esti-

mated as follows: position the end effector at p∗search(k) ∈ R2. By manually

rotating the J4-axis, search for the J4-angle, θ4(k), such that the laser beam

is directed to the retroreflector and comes back the interferometer. This is re-

peated at k = 1, · · · , Nsearch. The command end effector positions, p∗search(k),

should be selected such that they cover the entire workspace.

When θ4 = 0, the laser beam is aligned approximately to the X-axis

direction but it can have significant alignment error. This orientation is rep-

resented by θ40 ∈ R. From the searched set of θ4(k) (k = 1, · · · , Nsearch), the

retroreflector position, Pj = (Pj,x, Pj,y), and the J4-axis angular offset, θ40,

can be identified by solving the following minimization problem:

min
Pj,x,Pj,y,θ40

(2)

∑
k=1,··· ,Nsearch

{
θ4(k)−

(
tan−1

(
Pj,x − p∗search,x(k)

Pj,y − p∗search,y(k)

)
− θ40

)}2

Remark 2: The laser interferometer’s horizontal position should be adjusted

such that the laser beam approximately intersects with the J4-axis of rota-

tion. This can be done as follows: orientate the laser beam to a retroreflector.

Rotate J4-axis within the range where the laser displacement is measurable.

Adjust the interferometer’s position such that the variation in the measured

displacement is minimized.

Remark 3: The influence of the misalignment of the laser beam position

from the J4-axis of rotation on the measurement uncertainty will be discussed
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Figure 1: The SCARA robot configuration and the proposed “open-loop” tracking mea-

surement scheme.

in Section 5.
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Table 1: Link lengths and joint angular offset. ∗: In the proposed model, the angular

offset is included in the J2-axis angular positioning deviation shown in Fig. 6b.

Error parameter Nominal Identified Identified

value (Conventional) (Proposed)

Link 1 length, L1 325.0 mm 324.971 mm 324.964 mm

Link 2 length, L2 225.0 mm 225.004 mm 224.998 mm

J2-axis angular offset, θ20 0 -5.55 mdeg ∗

Pj P P

k

p* k px* k py* k

Figure 2: Measurement setup.

3. Identification of bi-directional angular positioning deviation of

rotary axes

3.1. Conventional error calibration algorithm

As reviewed in Section 1, most of the past works [9-16] employ the kine-

matic model containing the D-H parameters only. During the rotation of a

rotary axis, its axis of rotation may displace or tilt. The line representing

its mean position and orientation is called the axis average line in [1]. The

conventional D-H model is constructed based on the local coordinate sys-
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tems aligned to the axis average lines. The D-H parameters represent the

position and orientation of one local coordinate system respect to the other.

For the 2D positioning by a SCARA-type robot, when the end effector Z-

displacement and orientation errors are not considered, the following three

parameters, shown in Table 1, are the D-H parameters: the length of Link 1,

L1, the length of Link 2, L2, and the J2-axis angular offset, θ20. As a basis for

the proposed algorithm presented in Section 3.2, this subsection first presents

an algorithm to identify them. The measurement scheme in Section 2 is new

but the algorithm presented here can be seen conventional.

When command J1- and J2-axis angular positions are respectively given

by θ∗1(k) and θ∗2(k) (k = 1, · · · , N), the end effector’s position in the XY

plane is given by the following kinematic model with the three parameters

in Table 1. The origin of the coordinate system is at the J1-axis of rotation

(see Fig. 2).

p̂(k) =

⎡
⎣ L1 cos(θ

∗
1(k)) + L2 cos(θ

∗
1(k) + θ∗2(k) + θ20)

L1 sin(θ1(k)) + L2 sin(θ
∗
1(k) + θ∗2(k) + θ20)

⎤
⎦ (3)

In the measurement scheme in Section 2, the retroreflector positions, Pj ,

can be estimated only roughly. Furthermore, a laser interferometer can only

measure the displacement relative to the laser beam initial length. This

initial length, i.e. d0j ≡ ‖p̂(1) − Pj‖, is called the dead path length. The

present algorithm identifies them too. Define the parameters to be identified

by:

econventional =
[
L1, L2, θ20, P

T
1 , · · · , P T

Nt
, d01, · · · , d0Nt

] ∈ R3+3Nt (4)

Suppose that the measured laser displacement between the k-th command

end effector position, p∗(k), and the retroreflector position, Pj , is given by
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dj(k) ∈ R. Then, econventional in Eq. (4) can be estimated by solving the

following problem:

min
econventional

∑
k=1,··· ,N,j=1,··· ,Nt

(‖p̂(k)− Pj‖ − d0j − dj(k))
2 (5)

3.2. Proposed algorithm

3.2.1. The proposed kinematic model and error parameters to be identified

Some past works, e.g. [22, 23, 15, 24], or the experiment in Section 4.3

(Fig. 11c), showed that the kinematic model (3), with the error parameters

in Table 1, cannot model the robot’s 2D positioning error in a sufficient ac-

curacy. This paper proposes to model this “residual” error by including the

angular positioning deviation of J1- and J2-axes into the kinematic model.

The angular positioning deviation of a rotary axis is typically caused by the

transmission (a timing belt or a gear) pitch error or the joint compliance,

and thus is a function of its command angular position. Furthermore, robot

joints are generally subject to significant backlash. To take its influence into

consideration, the angular positioning deviation of each rotary axis is mod-

eled dependent also on the rotation direction.

Denote the in-th nominal (command) angular position of the Jn-axis

(n = 1, 2) by θ∗n,map(in) ∈ R (in = 1, · · · , Nn). The angular positioning devi-

ation of the Jn-axis at this angle is represented by Δθn,map(in, sgn(θ̇
∗
n(in))),

where sgn(θ̇∗n,map(in)) is +1 (or -1) when θ̇∗n,map(in) ≥ 0 (or θ̇∗n,map(in) < 0).

θ̇∗n,map(in) represents the angular velocity of Jn-axis at θ
∗
n,map(in).
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The objective of the present algorithm is to identify:

e =
[
L1, L2, P

T
1 , · · · , P T

Nt
, d01, · · · , d0Nt , (6)

Δθ1,map(1,+1), · · · ,Δθ1,map(N1,+1),

Δθ1,map(1,−1), · · · ,Δθ1,map(N1,−1),

Δθ2,map(1,+1), · · · ,Δθ2,map(N2,+1),

Δθ2,map(1,−1), · · · ,Δθ2,map(N2,−1)]

∈ R2+3Nt+2N1+2N2

Such representation of the angular positioning deviation is called the “er-

ror map” in this paper.

3.2.2. Identification Algorithm

In the measurement scheme in Section 2, suppose that the command Jn-

axis angular position (n = 1, 2) is given by θ∗n(k). The angular positioning

error at this angle is parameterized by a linear interpolation of θ∗n,map(in,±1)

as follows:

θ1(k) = θ∗1(k) + α1(k) ·Δθ1,map(i1, sgn(θ̇1(k)))

+(1− α1(k)) ·Δθ1,map(i1 + 1, sgn(θ̇1(k)))

θ2(k) = θ∗2(k) + α2(k) ·Δθ2,map(i2, sgn(θ̇2(k)))

+(1− α2(k)) ·Δθ2,map(i2 + 1, sgn(θ̇2(k))) (7)

where in (n = 1, 2) meets:

θ∗n,map(in) ≤ θ∗n(k) ≤ θ∗n,map(in + 1) (8)

The interpolation weights, αn(k) (n = 1, 2) , are given by:

αn(k) =
θ∗n(k)− θ∗n,map(in)

θ∗n,map(in + 1)− θ∗n,map(in)
(9)
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When J1- and J2-axes are respectively commanded at θ∗1(k) and θ∗2(k),

the actual end effector position, p̂(k), is formulated by substituting θ1(k)

and θ2(k) in Eq. (7) into θ∗1(k) and θ∗2(k) in Eq. (3). When the measured

laser displacement between the command end effector position, p∗(k), and

the retroreflector position, Pj, is given by dj(k), the error parameters, e in

Eq. (6), can be estimated by solving the following minimization problem:

min
e

∑
k=1,··· ,N,j=1,··· ,Nt

{‖p̂(k)− Pj‖ − d0j − dj(k)}2 (10)

An iterative linearization-based approach can be used to locally solve the

problem (10).

Remark 1: When the number of the retroreflector positions, Nt, is three

or more, the end effector’s actual 2D position, p(k), can be calculated by

applying the multilateration algorithm presented in [31] (Nt = 2 is sufficient

only if the retroreflector positions are exactly known). This implies that the

problem (10) is generally solvable when Nt ≥ 3. When Nt < 3, and the num-

ber of the unknowns, i.e. 2 + 3Nt + 2N1 + 2N2 in Eq. (6), is larger than the

number of the measurements, i.e. N ·Nt in Eq. (10), then the problem (10)

may be solvable but the uncertainty can be significantly higher.

Remark 2: It is well known that the uncertainty in the multilateration

measurement can strongly depend on the setup of the fixed stations (retrore-

flector positions in this paper’s case) [30, 31]. For example, in the setup

shown in Fig. 5, three reflector positions, P1 to P3, lay almost in a line. It

is predictable that the uncertainty would be significantly larger if the end

effector is on this line. The uncertainty analysis, presented in Section 5, is

essential for the design of retroreflector positions.
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Figure 3: Experimental setup.

Figure 4: Installation setup of the laser interferometer at the robot’s end effector.

4. Experiment

4.1. Experimental setup

A SCARA-type robot, RH-3FRH-5515-D by Mitsubishi Electric Corp.

was used. Figure 3 shows the experimental setup. The angular positioning
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Figure 5: End effector command positions, p∗(k), and retroreflector positions, P1, P2 and

P3.

resolution of J1-, J2-, and J4-axes is 1 mdeg. Their encoder resolution is

not disclosed by the manufacturer. The positioning repeatability is, accord-

ing to the manufacturer’s specifications, ±0.012 mm in X-Y composite, and

±0.004◦ for J4-axis. The laser interferometer, Distax L-IM-300A by Tokyo

Seimitsu Co., Ltd., was used. It was attached to the robot’s end effector

via a screw-driven stage as shown in Fig. 4. The interferometer’s horizon-

tal position can by adjusted by it such that the laser beam approximately

intersects with the J4-axis of rotation. Furthermore, its orientation can be

adjusted by vertical screws such that the laser beam is approximately parallel

to the robot’s XY plane. The cat’s eye retroreflector by Etalon AG was used

(viewing angle: ±80◦, optical form deviation (circularity): < 0.2μm).

Figure 5 shows the end effector command positions, p∗(k) (k = 1, · · · , 176).
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The J2-axis is indexed at:

θ∗2 = [0◦, 20◦, · · · , 140◦, 140◦, 120◦, · · · , 0◦] ∈ R16 (11)

This is repeated at each of the J1-axis angular positions:

θ∗1 = [−140◦,−120◦, · · · , 60◦, 60◦, 40◦, · · · ,−140◦] ∈ R22 (12)

Note that all the command points are positioned bidirectionally. The

number of command positions is thus N = 22 × 16 = 352. In Fig. 5, three

retroreflector positions, Pj (j = 1, 2, 3, Nt = 3), are also shown. The same

measurement was repeated for each retroreflector position.

4.2. Error identification

First, the conventional algorithm, presented in Section 3.1, was applied

to identify link lengths, L1 and L2, and the J2 angular offset, θ20. Table 1

(“Identified (Conventional)”) shows the identified values. Then, by applying

the algorithm proposed in Section 3.2, the bidirectional angular position-

ing deviations of J1- and J2-axes, a) Δθ1,map(i1,±1) and b) Δθ2,map(i2,±1),

are identified as shown in Fig. 6. The difference in the identified deviations

in positive and negative directions shows the backlash influence. Table 1

(“Identified (Proposed)”) shows L2, J2 and θ20 identified by the proposed

algorithm.

Remark 1: in a machine tool, the bi-directional angular positioning devia-

tion of a rotary axis is typically measured by using e.g. a laser autocollimator

and a reference indexing table or an optical polygon [36]. Such a direct mea-

surement is difficult or impossible for a robot, since it is generally difficult

18



a)

b)

Figure 6: Identified bi-directional angular positioning deviations, Δθn,map(in,±1) for a)

J1-axis (n = 1), b) J2-axis (n = 2). Red: for positive direction (+1) and blue: for

negative direction (−1). Error bars represent the uncertainty (k = 1) in the estimates (see

Section 4)

to install a reference mirror on the axis of rotation. The proposed scheme

indirectly estimates it by measuring the distance to the robot’s end effector

at many points.

Remark 2: This robot’s J1 and J2 axes are driven via a speed reducer and

its backlash is often caused by the elastic deformation of the gear or other

components. Approximately constant difference in bidirectional angular po-
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sitioning deviation profiles is likely caused by such elastic deformation.

4.3. Experimental validation

The prediction accuracy of the proposed model was compared to the con-

ventional model with the D-H parameters only. On the path shown in Fig. 7

(“Measured path”) (X = 200 mm and Y = −500 to 500 mm), the robot’s

2D positioning error was measured by using a commercial tracking inter-

ferometer, AT960-XR by Leica Geosystem (the measurement uncertainty:

Uxyz = ±15μm + 6μm/m, according to the manufacturer’s specifications) .

Figure 8 shows the measurement setup.

Figure 9 compares the measured trajectory in the Y-direction, i.e. the

bidirectional linear positioning deviation in Y direction, EY Y , with a) its

estimates by the conventional D-H model and b) the estimates by the pro-

posed model. The conventional D-H model is given by Eq. (3) with the

three D-H parameters, i.e. the link lengths, L1 and L2, and the J2 angular

offset, θ20. The proposed model is given by Eq. (3) with the identified J1-

and J2-axis angular positioning deviations shown in Fig. 6, in addition to the

D-H parameters. Similarly, Fig. 10 compares the measured trajectory in the

X-direction, i.e. the straightness deviation, EXY , with a) its estimates by

the conventional D-H model and b) the estimates by the proposed model.

Both Figs. 9a and 10a clearly show that the conventional D-H model

has a significant prediction error from the measured trajectory. On the other

hand, in Figs. 9b and 10b, the estimated deviations show a good match with

the measured deviations.

For the comparison over the entire workspace, the 2D trajectory were

measured by the tracking interferometer for the command trajectory shown

20



Figure 7: End effector path measured by the tracking interferometer.

Figure 8: Tracking interferometer measurement setup.

by black dots (•) in Fig. 11 (a to d). Figure 11a shows the measured trajec-

tories (red and blue dots, ◦ and ◦, for different directions). An error vector

from command to measured positions is magnified 1,000 times, i.e. an er-

ror 200 μm is plotted as a vector of the length 200 mm (see “Error scale”).

Figure 11b shows the estimated trajectory by the proposed model with the

identified J1- and J2-axis angular positioning deviations. For the comparison,

Fig. 11c shows the trajectory estimated by the conventional D-H model.

When compared to the measured trajectory in Fig. 11a, the conventional
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a)

b)

Figure 9: Comparison in the bidirectional linear positioning deviation in Y direction,

EY Y , between the measured trajectory by the tracking interferometer (x in red and blue

for different directions) and a) its estimates by the conventional D-H model (◦ in green)

and b) it estimates by the proposed model (◦ in blue and red for different directions).

model (Fig. 11c) clearly cannot predict the 2D positioning accuracy in a suf-

ficient accuracy. On the other hand, the proposed model (Fig. 11b) shows

significantly higher prediction accuracy. It is emphasized that the tested

path (black dots (•)) is completely different from the path used in the er-

ror calibration (Fig. 5). Figure 11d shows the difference of the trajectories

measured by the tracking interferometer (Fig. 11a) and those estimated by

the proposed model (Fig. 11b). If the robot’s positioning repeatability is suf-

ficiently high, Fig. 11d represents the positioning error when the identified
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a)

b)

Figure 10: Comparison in the bidirectional straightness deviation in X for Y-motion, EXY ,

at X=200 mm between the measured trajectory by the tracking interferometer (x in red

and blue for different directions) and a) its estimates by the conventional D-H model (◦
in green) and b) its estimates by the proposed model (◦ in blue and red for different

directions).

angular positioning deviations are compensated for.

Remark: In Fig. 11d, relatively larger estimation error can be observed

in the mean Y-position at Path X1 (at Y380 mm). This may be partly at-

tributable to the robot’s thermal deformation caused by the temperature dif-

ference between the tracking interferometer measurement and the proposed

measurement. Recent studies, e.g. [37], clarified that thermal influence on a

robot’s volumetric accuracy can be significant. Further investigation will be
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left for our future research.

5. Uncertainty analysis

The proposed “open-loop” tracking measurement has uncertainty con-

tributors that are in principle negligible in conventional automated tracking

interferometers. The present uncertainty analysis emphasizes the investiga-

tion of their contribution.

Table 2 shows the extended uncertainty, U(k = 1) (k: coverage factor), of

the laser displacement when the end effector is located at p∗(k) = (100, 100)

mm and the retroreflector is at P1 in Fig. 5. Some uncertainty contributions

were assessed by actually measuring the experimental instrument, e.g. u21 to

u23. Others were assessed based on the instrument’s catalogue. The uncer-

tainty in the laser displacement depends on the position of the end effector

and the retroreflector. Table 2 merely shows an example for a single point

to illustrate each contributor’s influence.

In the proposed “open-loop” tracking measurement, the laser beam di-

rection is commanded by Eq. (1) based on the initial estimate of the retrore-

flector position, Pj, and the command end effector position, p∗(k). Both can

have a significant error. Furthermore, J4-axis may have significant angular

positioning error. They all cause an error in the laser beam direction. For the

cat’s eye retroreflector used in the experiment, the laser beam may deviate

from its center by about 1 mm at maximum – if it is larger than this, the

laser beam would not be reflected back to the interferometer. The uncer-

tainty in the laser beam direction is assessed by this “maximum” deviation.

Even with this large direction error, its contribution to the laser displacement
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a)
b)

c)
d)

Figure 11: a) The 2D trajectory measured by the tracking interferometer, b) the one

estimated by the proposed model with the identified J1- and J2-axis angular positioning

deviations, c) the one estimated by the conventional D-H model, and d) the difference

between a) and b). Red and blue dots (◦ and ◦) are for different directions (shown by

red and blue arrows). Black dots (•) represent command positions. The positioning error

from the command position is magnified 1,000 times (“Error scale”).
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Table 2: Uncertainty budget (k = 1) for laser displacement when the end effector is located

at p∗(k) = (100, 100) and the retroreflector is at P1 in Fig. 5.

Symbol Contributor Uncertainty in laser displacement (k = 1)

u1 Uncertainty in laser length 10 μm

u11 Wavelength accuracy 0.04 μm

u12 Wavelength correction 0.19 μm

u13 Environmental change 0.09 μm

u14 Robot’s repeatability 10 μm

u2 Uncertainty in interferometer position 12 μm

in laser direction

u21 Radial error motion of J1-axis 5 μm

u22 Radial error motion of J2-axis 5 μm

u23 Radial error motion of J4-axis 10 μm

u3 Uncertainty due to laser beam 0.31 μm

orientation error

u31 Uncertainty in laser beam orientation by J1-axis 7.17× 10−4 rad

u32 Uncertainty in laser beam orientation by J2-axis 7.17× 10−4 rad

is sufficiently small (u31 and u32 in Table 2), since it gives only the “cosine

error.”

There can be a significant misalignment error of the laser beam from the

centerline of J4-axis (see Remark 2 in Section 2). The laser beam is, however,

nominally oriented to the retroreflector. If there is no orientation error, the

influence of the laser beam misalignment error on the laser beam length is

constant, regardless of the J4-axis angle, and thus does not influence the test

result at all. Since there exists the laser beam orientation error, its influence
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is not zero, but it is negligibly small. The misalignment of the laser beam

direction to the robot’s XY plane only gives the “cosine error” on the mea-

sured displacement and thus negligibly small.

The uncertainty in the laser displacement at each command position prop-

agates into the uncertainty in the estimated angular positioning deviations

of J1- and J2-axes. This relationship can be described by Eqs. (3)(7) and

(10), but is too complex to algebraically calculate the uncertainty propa-

gation. In such a case, the Monte Carlo simulation can be applied for the

uncertainty evaluation [38]. Analogous analysis is presented in [39, 27, 28].

The simulation procedure is outlined as follows: a measurement error of the

laser displacment, dj(k), is given for every j and k as a normally distributed

random number based on the uncertainty budget shown in Table 2. Then,

solve the problem (10) to calculate e in Eq. (6). The standard deviation of

each estimate is evaluated.

The contribution of the contributors in Table 2 on the uncertainty (k = 1)

in the estimated angular positioning deviations is evaluated and shown by

error bars in Fig. 6.

Remark: The present uncertainty evaluation based on Monte Carlo simu-

lation is time-consuming. Olarra et al. [40] presented the uncertainty evalu-

ation methodology based on the Jacobian matrix for the problem (10) with

an application to parameter identification for a parallel kinematic robotic

machine tool.

6. Conclusion and future work

The contributions of this study are summarized below.
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• The conventional kinematic model of a robot only contains position and

orientation errors of rotary axes average lines, widely known as the D-

H parameters. The first major novel contribution of this paper is on

the proposal of a kinematic model of a SCARA-type robot with the

bidirectional angular positioning deviation “error map” of each rotary

axis. The angular positioning deviation of a rotary axis is typically

caused by the transmission pitch error or the joint compliance, and

thus is a function of its command angular position. Furthermore, to

model the influence of the gear backlash, it is modelled dependent also

on the rotation direction. For the paths that are not included in the

paths used for the model identification, the proposed model showed

a significantly better prediction performance of the end effector’s 2D

positions compared to the conventional D-H model.

• The “open-loop” tracking interferometer test was proposed to indirectly

identify the angular positioning deviation profile of the two rotary axes.

For machine tools, the researchers [30, 31] developed the multilateration

scheme to indirectly identify all the error motions of each linear axis.

This paper’s scheme can be seen as a novel extension to an industrial

robot.

This paper only considered a SCARA-type robot. It is to investigate the ef-

fectiveness of the proposed model in the simplest robot kinematics, minimiz-

ing the influence of other potential error sources in a six-axis robot, such as

the gravity influence that changes with a robot’s pose. The first contribution

of this paper, a kinematic model with the bidirectional angular positioning
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deviation of each rotary axis, can be straightforwardly extended to the 3D

positioning by a six-axis robot. The author’s group started studying this

extension (its preliminary result is presented in [41]). This paper presents

the fundamental principle of the proposed model in a simplified robot kine-

matics.

This paper’s second contribution, the “open-loop” tracking interferom-

eter test, can be also potentially extended to a six-axis robot. Unlike the

SCARA robot case, however, the regulation of laser beam direction will be

three dimensional, which can makes it significantly more difficult or time-

consuming to set up the initial laser beam direction and retroreflector posi-

tion (see Remark in Section 2). Furthermore, more importantly, when this

test is performed by a six-axis robot, all the six axes must be driven to direct

the laser beam to a retroreflector. Unlike the SCARA robot case, it will not

be possible to separately measure each rotary axis by this test. The exten-

sion of the proposed “open-loop” tracking measurement scheme to a six-axis

robot is possible, but more careful study will be needed especially on the

uncertainty in the estimation of the angular positioning deviation. This is

left to our future research.

In this paper, the angular positioning deviation of each rotary axis is as-

sumed dependent only on its command angle and rotation direction. Mainly

due to the gravity influence, the position and orientation of the axis average

line of a rotary axis, or its angular positioning deviation, can vary depending

on the angular position of other axes. It is predictable that such an “axis-

to-axis crosstalk” is more significant on a six-axis robot. Such an influence

will be studied in our future research.
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