題目 Tailoring the microporous structure of a ceramic composite for development of molecular sieving membranes

(セラミック複合物のマイクロポーラス制御による分子ふるい膜の開発)

LAWAL Sulaiman Oladipo

In this thesis, organic coordination/complexation ligands have been applied for the modification of a SiO₂-ZrO₂ ceramic composite. The various sections seek to deepen the understanding and access further opportunities offered by organic coordination/complexation ligands modification of ceramic composite membranes.

First, the chemical modification of SiO₂-ZrO₂ via the sol-gel method was successfully accomplished by chelating acetylacetonate (acac⁻) with zirconium tetrabutoxide (ZrTB) prior to co-hydrolysis and condensation with tetraethoxysilane (TEOS), which was then used to fabricate a gas separation layer. The acac⁻-modified SiO₂-ZrO₂-derived membrane showed a high H₂ permeance of 9.9 x 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹ with a H₂/SF₆ permeance ratio of 7,600, which was better than the results when using a pure SiO₂-ZrO₂-derived membrane (H₂ permeance: 1.4 x 10⁻⁶ mol m⁻² s⁻¹ Pa⁻¹, H₂/SF₆ permeance ratio: 11).

In the next phase, the microstructural control of ligand-modified SiO₂-ZrO₂ composite membranes was attempted. Hybrid materials with crosslinking between the organic moieties were made by utilizing network forming Si precursor and chelating ligands. The effects of using a network-forming and network-modifying ligand were studied. Gas permeation experiments showed that the organic crosslink-derived membranes possess molecular sieving properties (H₂ permeance: $\approx 10^{-7}$ mol m⁻² s⁻¹ Pa⁻¹; H₂/N₂ selectivity: $\approx 20-30$) that are superior to those of non-crosslink-derived membranes (H₂ permeance: $\approx 10^{-7}$ mol m⁻² s⁻¹ Pa⁻¹; H₂/N₂ selectivity: $\approx 7-11$).

Furthermore, the preparation of a carbonized SiO₂-ZrO₂ composite membrane was studied. The sol synthesis of the precursor SiO₂-ZrO₂-acetylacetonate composite was optimized by studying the effect of water/alkoxide molar ratio and relative Si/Zr atomic ratio on the final carbon-SiO₂-ZrO₂ properties. A combination of SiO₂ and ZrO₂ in a ratio of 9/1 in a carbon-SiO₂-ZrO₂ membrane showed an H₂ permeance of 16 x 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹ over a similarly pore-distributed unmodified SiO₂-ZrO₂ membrane with an H₂ permeance of 3 x 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹. More interestingly, a combination of SiO₂ and ZrO₂ in a ratio of 5/5 displayed a unique pressure-induced CO₂ flow switching behaviour.

The various modification techniques offered more insights for molecular separations.