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Abstract

Machine learning is an application of artificial intelligence that makes systems learn the

ability and improve from experience automatically without being explicitly programmed.

In recent years, machine learning has been developing rapidly with the developing of Con-

volutional Neural Networks (CNNs). To reduce the computation time of them, Graphics

Processing Units (GPU) is mainly used for accelerator. In this dissertation, we research in

machine learning for image processing using the GPUs.

First, we present two tile art image generation algorithms using greedy algorithm and

machine learning as a greedy approach and a machine learning approach, respectively. The

greedy approach takes a large amount of computation time since it pastes tiles one by one.

Hence, we introduce a parallel greedy approach and implement it on the GPU. The parallel

greedy approach on NVIDIA TITAN V GPU can run up to 318 times faster than sequential

one. On the other hand, the machine learning approach generate tile art images by image

transformation networks. It can generate a tile art image of size 4096 × 3072 within 1.04

seconds while the parallel greedy approach takes 571 seconds. In addition, we propose an

improvement technique of the machine learning approach to generate a high quality tile art

image using iterative inference. As a result, in the tile art image with iterative inference

technique, the characteristics of tiles can be enhanced.

Second, we present a novel structured sparse Fully-Connected Layer (FCL) in the CNNs

for image classification problem. The proposed approach eliminates the connections be-

tween the input and the output nodes except for those in the same position of the feature
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maps. Since the proposed architecture is defined initially, it is suitable to parallel computa-

tion. Therefore, we introduce an efficient implementation for the proposed sparse FCLs on

the GPU. As a result for the large scale image recognition dataset, the proposed approach

achieves a 21.3 times compression with 0.68% top-1 accuracy and 0.31% top-5 accuracy

decrease for VGG-16 network. Also, in the experiment on NVIDIA RTX 2080 Ti GPU,

the GPU implementation for the proposed FCLs achieves speed-up factor 14.97 and 16.67

for forward and backward propagation compared to that for the non-compressed FCLs, re-

spectively. Furthermore, to confirm that our proposed approach is applicable to practical

image classification problems, we have trained the proposed models using transfer learning

on various datasets. The experimental results show the proposed approach can achieve high

test accuracy with high compression ratio on each dataset.
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Chapter 1

Introduction

1.1 Background

Machine learning is an application of Artificial Intelligence (AI) that makes systems learn

the ability and improve from experience automatically without being explicitly programmed.

In recent years, machine learning has been developing rapidly with the developing of Deep

Neural Network (DNNs). In particular, Convolutional Neural Networks (CNNs) have be-

come one of common architectures of DNNs. The CNNs are composed of convolutional

layers and fully-connected layers. In general, the convolutional layers are used as a fea-

ture extractor while the FCLs are used as a feature identifier. The CNNs are applicable to

various applications such as image classification, scene classification and visual instance

retrieval [1]. The ability of the CNNs is improved significantly in recent years. However,

this improvement causes the enlargement of the network size. Hence, several studies re-

lated to the reduction of the network size have been devoted. To support programming these

technique, various machine learning frameworks such as TensorFlow [2], PyTorch [3] and

MXNet [4] have been developed. In these frameworks, Graphics Processing Units (GPU)

is mainly used for accelerating the computation.
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The GPU is a specialized circuit designed to accelerate computation for building and ma-

nipulating images. Latest GPUs are designed for general purpose computing that include

the computation of machine learning, and can perform computation in applications tradi-

tionally handled by the CPU. NVIDIA corporation provides a parallel computing architec-

ture called Compute Unified Device Architecture (CUDA) [5]. Also, NVIDIA corporation

provides various libraries such as cuBLAS [6] and cuSPARSE [7]. cuBLAS supports basic

linear algebra subprograms (BLAS) on the CUDA runtime. On the other hand, cuSPARSE

is specialized for handling sparse matrices on the GPU.

1.2 Contributions

In this dissertation, we present tile art image generation methods and a novel structured

sparse fully-connected layer in the CNNs.

1.2.1 Proposals for tile art image generation algorithms

In this work, we focus on tile art image generation [8] which is non-photorealistic render-

ing technique [9]. The first contribution of this work is to propose a tile art image generation

method using the greedy algorithm as greedy approach. The greedy approach is based on

the human visual system which is used for digital halftoning that simulates continuous-tone

by varying size or density of tiny black dots. The goodness of a generated tile art image

is evaluated by the error between its projected image onto human eyes [10] and the orig-

inal image. The projected image is simulated on the computer using a two-dimensional

Gaussian filter. From the goodness, the approach generates tile art images by pasting tiles

one by one to the white canvas image. However, this approach takes a large amount of
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computation time since it pastes tiles sequentially. Therefore, we propose a parallel greedy

approach which can pastes tiles in parallel. To accelerate the computation of the parallel

greedy approach, we implement it on the GPU. The experiment results show the GPU im-

plementation of the parallel greedy approach on NVIDIA TITAN V GPU can run up to

318 times faster than the sequential CPU implementation of the greedy approach and 16.19

times faster than the multi-core CPU implementation of the parallel greedy approach with

160 threads.

Nevertheless, the computation time of the greedy approach is still long. Therefore, we

propose a tile art image generation method using machine learning as machine learning

approach. In machine learning approach, tile art images are generated by inferencing the

input image on the trained network. The training dataset is composed of tile art images

generated by the greedy approach. The network architecture we used is pix2pix [11] which

is based on the conditional GANs [12]. By training the networks using the training dataset,

the trained network can generate the tile art image that have feature of the original image

as well as the structure of tiles. Besides, with regard to computation time, the machine

learning approach only takes 1.04 seconds to generate tile art image of size 4096 × 3072,

while the greedy approach on the GPUs takes 571 seconds. However, in the tile art images

generated by the machine learning approach, some tiles have lack of edge and noises that

are not included in the greedy approach. Therefore, we propose a quality improvement

technique of the machine learning approach to generate a high quality tile art image using

iterative inferences. As a result, in the tile art image with iterative inference technique, the

characteristics of tiles can be enhanced.
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1.2.2 A proposal for a novel sparse fully-connected layer

In recent, the ability of the CNNs increases significantly. However, it causes enlargement of

the network size. Thus far, several works related to reduction of the network size have been

tackled [13, 14, 15, 16, 17, 18, 19, 20]. In many cases, these approaches result in producing

unstructured networks that is not suitable to parallel computation. To avoid this problem,

we propose a novel structured sparse fully-connected layer in the CNNs. This proposal

focuses on Fully-Connected Layers (FCLs) which occupy a large amount of network pa-

rameters. In the popular CNNs such as AlexNet [21] and VGG-16 [22], each input element

of the general FCLs is fully-connected to all output elements with any consideration. By

contrast, each input element of the proposed FCLs is fully-connected to the output elements

in the same position of the feature maps. Hence, the connections between the input and out-

put nodes are decreased, and it result in reduction of the network size. We have evaluated

the proposed approach for AlexNet and VGG-16 on ILSVRC-2012 dataset [23] and vari-

ous small datasets. As a result for ILSVRC-2012 dataset, the proposed approach achieves

a 14.7 times compression with 0.68% top-1 accuracy and 0.19% top-5 accuracy decrease

for AlexNet, and a 21.3 times compression with 0.68% top-1 accuracy and 0.31% top-5

accuracy decrease for VGG-16. Moreover, since our proposed architecture is structured,

the parallel efficiency is higher than that of the unstructured architecture. Also, to accel-

erate the computation of the proposed approach, we propose an efficient implementation

on the GPUs. In the experiment on NVIDIA RTX 2080 Ti GPU, the GPU implementation

for the proposed FCLs achieves speed-up factor 14.97 and 16.67 for forward and backward

propagation compared to that for the non-compressed FCLs, respectively. Furthermore,
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to confirm that our proposed approach is applicable to practical image classification prob-

lems, we have trained the proposed models using transfer learning on various datasets. The

experimental results show the proposed approach can achieve high test accuracy with high

compression ratio on each dataset.

1.3 Dissertation organization

This dissertation is organized as follows. In Chapter 2, we describe CNNs and its training

flow. In Chapter 3, we describe GPU and CUDA. In Chapter 4, we present the tile art

image generation methods using the greedy approach and the machine learning approach.

In Chapter 5, we present the structured sparse fully-connected layer in the CNNs. Finally,

we conclude this dissertation in Chapter 6.
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Chapter 2

Convolutional neural networks and its
training flow

In this chapter, we describe the convolutional neural networks and its training flow. In re-

cent years, machine learning has been developing rapidly with the developing of Deep Neu-

ral Network (DNNs). In particular, Convolutional Neural Networks (CNNs) have become

one of common architectures of DNNs. In 2012, Krizhevsky et al. [21] designed a CNN

architecture, called AlexNet, which is one of the triggers of the development for CNNs.

After that, several powerful CNN architectures such as VGG-16 [22], GoogLeNet [24] and

ResNet [25] have been proposed. These CNNs are often utilized as benchmarks to evaluate

the performance of novel machine learning algorithms. The general CNNs are composed

of convolutional layers and Fully-Connected Layers (FCLs), and applicable to various ap-

plications such as image classification, scene classification and visual instance retrieval [1].

These applications are implemented on a wide range of hardware platforms from embedded

devices [26, 27] to supercomputers [28, 29].

Since the CNNs have appropriateness for image processing, they are used for subroutines

in image transformation networks such as Generative Adversarial Networks (GANs) [30]
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conv1 conv2 conv3 conv4

input

conv5 FCL1 FCL2 FCL3

output

fully-connected layersconvolutional layers

Figure 2.1: The overall architecture of the general CNNs. The general CNNs consist of the
convolutional layers and fully-connected layers.

and pix2pix [11]. These network architectures are described in Chapter 4.

2.1 Convolutional neural networks

In this section, some techniques about the machine learning used in this dissertation are

described. Figure 2.1 shows the overall architecture of the general CNNs. In general, the

convolutional layers are used as a feature extractor while the FCLs are used as a feature

identifier. The convolutional layers extract the features of the input image as a feature

map, and then the FCLs identify what things are included in the images. The convolutional

layers process the image by computing two-dimensional convolution shown in Figure 2.2.

It has two trainable parameters; a kernel and a bias. First, an element-wise multiplication

of the input image and the kernel is performed. Second, the results of the multiplication are

reduced into one element by adding them. Finally, the result of the reduction and the bias

are added and outputted as one element of the elements in the output image. This procedure

is repeated by striding the kernel on the input image. In general, the stride is set to 1 shonw

in Figure 2.2 or 2. The trainable parameters are initialized by random values. Through the

training phase described in Section 2.2, the trainable parameters are updated and then the

convolutional layers can extract the features of the input image.
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0 0 0 0 0 0
0 1 2 3 4 0
0 5 1 3 2 0
0 1 4 3 2 0
0 3 2 5 4 0
0 0 0 0 0 0

0 1 3
1 2 4
3 1 2

input image

kernel

＊

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

＋

bias

＝

20 42 37 25

33 46 52 25

36 55 49 31

30 43 40 18

0×0 + 0×1 + 0×3 + 0×1 + 1×2 
+ 2×4 + 0×3 + 5×1 + 1×2 + 3 = 20

0×0 + 0×1 + 0×3 + 1×1 + 2×2 + 3×4 + 5×3 + 1×1 + 3×2 + 3 = 42

3×0 + 2×1 + 0×3 + 5×1 + 4×2 + 0×4 + 0×3 + 0×1 + 0×2 + 3 = 15

output image

Figure 2.2: The computation of the convolutional layer. This example shows the case when
the kernel size is 3 and the stride is 1. In each patch, a two-dimensional convolution and an
element-wise addition are computed.

In the CNNs, it is common to insert a pooling layer between the convolutional layers.

The role of this layer is to reduce the size of feature maps. This results in reducing the num-

ber of network parameters and computation in the CNNs. Hence, the overfitting problem

can be avoided. There are some kind of pooling layers such as max pooling and aver-

age pooling [31]. The max pooling is common in image classification problems, and have

achieved better performance than the other pooling layers. In this dissertation, we have

used the max pooling. Figure 2.3 shows the computation of the max pooling. It extracts a

maximum element from a patch of the image as shown in Figure 2.3. In general, the stride

is equal to the patch size, that is, these is no overlap of the patch. Note that the patch size

that is larger than the stride (called overlapping pooling) is used in this dissertation. This

procedure is repeated until the overall of the image is processed, and the size of feature

maps are reduced into one over the size of the patch.

On the other hand, the FCLs estimate what features in the input image indicated. The

FCLs process the features by computing a product-sum operation shown in Figure 2.4. It
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Figure 2.3: The computation of the max pooling layer. This example shows the case when
the patch size is 2 and the stride is 2. The maximum element is computed in each patch.

has two trainable parameters; the weight and the bias. First, the input features which are

two-dimensional is reshaped to one-dimensional elements to address in the first FCL. After

that, a product-sum operation of the reshaped elements and the weights are computed. The

product is repeated (the number of the input nodes) × (the number of the output nodes)

times. Therefore, the numbers of the input and the output nodes affect computational com-

plexity. Also, we need to allocate the above number of the weights, thus, the number of

the weights becomes the bottleneck in respect to the memory usage. Finally, the results

of the product and the biases are added, and the result is outputted. These procedures are

repeated for the number of FCLs, and the output of the last FCL will be the output of the

CNNs. In general, the number of output nodes of the CNNs is corresponded with the num-

ber of classes in the image classification problem. If the number of the classes is 1000, the

number of the output nodes of the CNNs is adjusted to 1000. Therefore, each output node

shows a probability what class the input is belonging via the softmax function. As same

as the training parameters of the convolutional layers, those of the FCLs are initialized by

random values. Through the training phase, the trainable parameters are updated and then
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Figure 2.4: The computation of the fully-connected layer. The output node can be com-
puted by product-sum operation. We note that these product-sum can be regard as matrix-
vector multiplication, therefore, it is suitable to parallel computation.

the FCSs can identify what the input image indicates.

After each computation of the convolutional layers and the FCLs, an activation func-

tion is applied to improve their representation ability. As the activation functions, several

functions such as sigmoid and rectified linear unit (ReLU) [32] have been used. In this dis-

sertation, we mainly use ReLU activation function that can be computed by the following

equation;

f (x) =


x (x ≥ 0)

0 (x < 0).

If the network ability is strong, it causes overfitting of the network for training datasets.

To avoid this problem, a dropout technique [33] has been developed. Figure 2.5 shows

what the dropout technique processes when the dropout rate is 50%. In this technique,

some nodes in the network are dropped and regarded as which are not exist. For example,

if the dropout rate is 50%, the training of the network is processing in the state of a half of

nodes is dropped. In other words, the weights which are connected to the dropped nodes

10



(a) Standard Network (a) After applying dropout

Figure 2.5: The process of the dropout technique (dropout rate 50%). A half of nodes is
dropped and the weights which are connected to the dropped nodes are regarded as zero.

will be regarded as zero and not updated. The dropped nodes are selected randomly per

step; therefore, the network can be regarded as the multiple small network. Hence, this

technique will improve the versatility of the network.

2.2 Training flow

In this section, the way to train the CNNs is illustrated. The training flow of the CNN is

composed of two steps; a forward propagation and a backward propagation. Figure 2.6

shows the training processes of the CNNs. The forward propagation as illustrated in Fig-

ure 2.6(a) is a process that the computation of the CNNs follows from the input to the

output. First, we input images and then the convolutional layers and the pooling layers

extract feature maps. From the feature maps, the FCLs estimate what the image indicates

as the probabilities. After the forward propagation, the loss which is the difference between

correct data and the inference result is computed.

The backward propagation as illustrated in Figure 2.6(b) is computed for leading weight

gradients. The weight gradients are used for updating the weights. To compute the weight

gradients, activation gradients are needed. The activation gradients are gradient for prop-
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CNNs (compute activation gradient)

weight gradients
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(a) Forward Propagation

(b) Backward Propagation

Figure 2.6: Training processes of the CNNs. They mainly consist of two steps; (a) a
forward propagation and (b) a backward propagation. The forward propagation computes
the outputs which show the probability of each class. The backward propagation computes
the amount of updating values which lead the network improvement.

agating the loss up to the first convolutional layer. Therefore, the backward propagation

is composed of computations for the activation gradients and the weight gradients. The

computation for activation gradients proceeds from the output to the input of the network.

Here, we explain the computations of them by focusing to the i-th layer. The activation

gradient of i-th layer can be computed by convolution and multiplication of the weights in

i-th layer and the activation gradients in (i+1)-th layer for the convotlutional layers and the

FCLs, respectively. The weight gradient of i-th layer can be computed by convolution and

multiplication of the feature maps in (i−1)-th layer and the activation gradients in i-th layer

for the convolutional layers and the FCLs, respectively. After the backward propagation,

the trainable parameters can be updated using the weight gradients. Since the computa-
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tional complexities of the forward and the backward propagations are high, the training is

processed by accelerators such as the GPUs. In the next chapter, we explain the GPU in

detail.

As the optimization for the trainable parameters, various techniques have been devel-

oped. In this dissertation, we mainly use mini-batch stochastic gradient descent [34]. This

optimizer adjusts the trainable parameters by subtracting the output of multiplication for

the weight gradients and a learning rate. The learning rate adjusts the amount of update in

the training and is scheduled over the training. In general, the learning rate is starting small

value such as 0.01 and decreased when the loss (or accuracy) is not to improve. To stabilise

the training in the early phase, the learning rate is set to smaller value than 0.01 [35]. The

mini-batch denotes that the number of images used in a update of the trainable parameters.

A set of the forward and backward propagations is called a step. Therefore, the network

consumes mini-batch images per a step. Consuming all images in the training dataset is

called a epoch. The training dataset is repeatedly loaded many times until defined num-

ber of epochs. Repeating these training process until multiple epochs, the training of the

network is finished.

13



Chapter 3

GPU and CUDA

In this chapter, we describe a NVIDIA GPU architecture and a CUDA. A GPU (Graphics

Processing Unit) is a specialized circuit designed to accelerate computation for building

and manipulating images. Latest GPUs are designed for general purpose computing that

include the computation of machine learning. They can also perform computation in appli-

cations traditionally handled by the CPU.

NVIDIA corporation provides a parallel computing architecture called a Compute Uni-

fied Device Architecture (CUDA) [5]. The CUDA allows developers access to the virtual

instruction set and memory in NVIDIA GPU. In many cases, the GPU has thousands of

processor cores and very high memory bandwidth. Therefore, the performance of the GPU

is more efficient than that of multi-core processors [36]. Figure 3.1 shows an architecture

of CUDA-enabled GPU. It is composed of a global memory and multiple Streaming Mul-

tiprocessors (SMs) each of which has execution cores and a shared memory. The global

memory is composed of an off-chip DRAM or an on-chip HBM2. It has large capacity,

but its access latency is very long. On the other hand, the shared memory is an extremely

fast on-chip memory with lower capacity. Therefore, the shared memory is often used as a
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Figure 3.1: NVIDIA GPU architecture. It is composed of multiple streaming multiproces-
sors and a global memory. Each streaming multiprocessor consists of a shared memory and
multiple cores.

scratchpad memory to cache data accessed frequently.

CUDA parallel programming model consists of three hierarchical thread groups: grid,

CUDA block, and thread. Figure 3.2 shows these hierarchical of CUDA. A grid has mul-

tiple CUDA blocks, each of which has equal number of threads. The CUDA blocks are

allocated to streaming multiprocessors such that all threads in a CUDA block are concur-

rently executed on the allocated streaming multiprocessor. With regard to the memory

access of parallel threads, all threads can access to the global memory, whereas threads in

a CUDA block can access to the shared memory of the streaming multiprocessor within

the same CUDA block. Since CUDA blocks are arranged to multiple streaming multipro-

cessors, threads in different CUDA blocks cannot share data in the shared memories. To

maximize the memory throughput, coalescing access is always desired. The coalescing ac-
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Figure 3.2: CUDA architecture. NVIDIA adopts three hierarchical group. A grid consists
of multiple CUDA blocks, and each CUDA block has equal number of threads to other
CUDA block.

cess illustrated in Figure 3.3(a) is an efficient memory access pattern to the global memory

by multiple threads [37]. By contrast, a stride access illustrated in Figure 3.3(b) is not de-

sired since its access throughput is quite slow. If the bus size of the global memory is four

elements, the coalesced access needs two accesses to the global memory while the stride

access needs four accesses. CUDA C is an extension to the C language by allowing the

programmer to define C functions, called kernels. By invoking a kernel, all CUDA blocks

in the grid are allocated in streaming multiprocessors, and threads in each CUDA block are

executed by processor cores in a single streaming processor in parallel.

Also, NVIDIA corporation provides various libraries such as cuBLAS [6] and cuSPARSE [7].

cuBLAS supports basic linear algebra subprograms (BLAS) on the CUDA runtime. It is
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(a) coalesced access

thread thread thread thread thread thread thread thread

global memory

(b) stride access

thread thread thread thread thread thread thread thread

Figure 3.3: The two types of global memory access. The coalesced access (a) is faster
than the stride access (b). This is due to the number of access to the global memory from
threads. If each thread access to distant elements, multiple accesses to the global memory
are needed.

highly tuned for NVIDIA GPUs and is used as an accelerator for deep learning frameworks

such as TensorFlow [2], PyTorch [3] and MXNet [4]. In this dissertation, we have used two

cuBLAS functions: level 2 functions and level 3 functions. The level 2 functions perform

matrix-vector multiplication and vector-vector addition. On the other hand, the level 3

functions perform matrix-matrix multiplication and matrix-matrix addition.

In addition, we have used a cuSPARSE which is a library for handling sparse matrices

on the GPU. This library is also highly tuned for NVIDIA GPUs as well as cuBLAS.

cuSPARSE can address multiple sparse matrix data formats such as Compressed Sparse

Row Format (CSR), Compressed Sparse Column Format (CSC) and Block Compressed
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Sparse Row Format (BSR). In this dissertation, a level 3 function which computes a matrix-

matrix multiplication between a sparse matrix and a dense matrix is used. Also, as the

sparse matrix data format, we have adopted the CSR data format which is often used in

machine learning.
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Chapter 4

Tile art image generation on the GPUs
and its approximation with machine
learning

4.1 Introduction

Tile art made by assembling small pieces of tiles is one of the artistic techniques and has

a long history [8]. While, in the field of computer graphics, tile art images are gener-

ated on the computer. Generating tile art images by computers is known as one of the

non-photorealistic rendering techniques which produce an image resembling artistic rep-

resentation. So far, several researches and studies of non-photorealistic rendering for tile

art have been devoted [9] and several photo retouch tools support such artistic image trans-

formation. Figure 4.1(b) shows mosaic image generated by GIMP [38] from Figure 4.1(a)

as an input image. This mosaic image is covered with non-overlapped hexagons. Each

hexagon has a black border and it is filled by a uniform color.

In this work, we propose two approaches for tile art image generation; a greedy ap-

proach and a machine learning approach. As the first contribution, we propose the greedy

approach for the tile art image generation. Figures 4.1(c) and (d) show generated tile art
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(a) input image (Lena) (b) mosaic image generated by GIMP

(c) square tile art image (d) circle tile art image

Figure 4.1: An example of our tile art image generation. We have used two tile patterns;
(c) square tiles and (d) circle tiles.

images with square and circle tiles, respectively. Unlike general tile art images as shown in

Figure 4.1(b), in this work, tiles can be overlapped. To generate tile art images, the idea of

the human visual system is adopted. This idea is used for digital halftoning that is a process

that simulates continuous-tone by varying size or density of tiny black dots. Analoui et al.

introduce the definition of the goodness of a generated binary image as the error between

its projected image onto human eyes and the original image [10]. The projected image is

simulated on the computer using a two-dimensional Gaussian filter that approximates the

characteristic of the human visual system. As a result, a high quality binary image that
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Fi g ur e 4. 2: A n o utli n e of t h e t w o a p pr o a c h es f or til e art i m a g e g e n er ati o n. ( a) T h e gr e e d y
a p pr o a c h g e n er at es t h e til e art i m a g e b y p asti n g til es o n e b y o n e. ( b) T h e m a c hi n e l e ar ni n g
a p pr o a c h g e n er at es t h e til e art i m a g e b y usi n g d e e p n e ur al n et w or k.

r e pr es e nts a gi v e n c o nti n u o us-t o n e i m a g e w ell is o bt ai n e d. T his i d e a h as als o b e e n utili z e d
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tile images consist of overlapped tile patterns, and also edges and gradations larger than the

square patterns are represented well. However, considering the computation time, it is not

realistic for practical applications. Therefore, in this work, we show a parallel method of the

greedy approach and its GPUs (Graphics Processing Units) implementation to accelerate

the computation. We efficiently use very high memory bandwidth and thousands of parallel

threads of the GPUs. The experimental results show that the GPU implementation of the

greedy approach can run up to 318 times faster than the sequential CPU implementation

and 16.19 times faster than the parallel multi-core CPU implementation with 160 threads.

However, the problem of the generation time still exists because it takes several minutes

to generate a large tile art image using the GPU implementation. Therefore, in this work,

we propose an approximation for tile art image generation using a machine learning ap-

proach. The approximation is to generate tile art images with a deep neural network for

image-to-image translation problems. The problems have been rapidly improved using ma-

chine learning for super-resolution images [45, 46, 47, 48], image colorization [49, 50, 51],

image completion [52, 53, 54, 55], image style translation [56, 57], among others. To solve

these problems, Convolutional Neural Networks (CNNs) and Generative Adversarial Net-

works (GANs) [30] have been used. Since the connections between neurons resembles the

organization of the receptive field, the feature of images, that is difficult for traditional fully

connected neural networks, can be caught by introducing CNNs. While, GANs have been

used for image generation problems. GANs are composed of two network models, the

generator and the discriminator. The generator is a network model that tries to generate

outputs that mimic training data, whereas the discriminator is a model that tries to distin-
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guish training data from outputs obtained by the generator. In network learning, these two

models are improved with each other by training these two models adversarially. However,

since the size of image is reduced once to extract the feature once, CNN-based models

often generate blurred images which have lack of details. To tackle this problem, Isola et

al. showed a general-purpose solution, called pix2pix [11]. The network of pix2pix is com-

posed of the conditional GANs [12] and various contrivances are devoted. Using pix2pix

technique, in this work, for a given input image, we generate a tile art image by inferring

the network shown in Figure 4.2(b). To construct the proposed network, we adapted the

idea of the pix2pix method. In addition, we use tile art images generated by the above

greedy approach as the training data set. Namely, the aim of the proposed network is to

generate tile art images close to those by the greedy approach. As a result, the proposed

network can generate tile art images that have feature of the original image as well as the

structure of tiles. With regard to computation time, the greedy approach on the GPUs takes

571 seconds to generate tile art image of size 4096 × 3072, while the machine learning

approach takes 1.04 seconds.

However, in the tile art images generated by the machine learning approach, some tiles

have lack of edge and noises that are not included in the greedy approach. Therefore, we

propose an improvement technique of the machine learning approach to generate a tile art

image using iterative inference.

This chapter is organized as follows. Section 4.2 explains the proposed tile art image

generation using greedy approach and shows the GPU implementation with the parallel

algorithm. In Section 4.3, we propose a tile art image generation method using machine
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learning. Section 4.4 shows the resulting tile art images and the computation time. In

Section 4.5, we propose an improvement technique for the machine learning approach to

enhance characteristic of tiles of output images. Section 4.6 concludes this work.

4.2 The greedy approach for tile art image generation

The main purpose of this section is to propose a tile art image generation method using

the human visual system. We first introduce the error between an original input image and

the output tile art image based on the human visual system. After that, we show a greedy

approach for generating tile art image with the error. In addition, to shorten the computation

time, we propose the parallelization of the greedy approach and its GPU implementation.

In this work, the target shape of tiles is either square or circle. For brevity of explanation,

the tile art image generation using square tiles is mainly considered below.

First, we introduce the error between an original input image and the output tile art

image based on the human visual system. In the following, we explain it for a gray scale

image for the sake of ease. After that we extend it to a color image. Consider an input

original image A = (ai, j) of size N × N, where ai, j denotes the intensity level at position

(i, j) (1 ≤ i, j ≤ N) taking a real number in the range [0, 1]. We note that for simplicity we

consider that an input image is square in what follows. The tile art image generation is to

find an image B = (bi, j) obtained by pasting a large number of tile patterns such that the

original input image A is reproduced. The error of the output image B from an input image

A can be computed using the two-dimensional Gaussian filter that simulates the feature of

the human visual system. Let G = gp,q denote a two-dimensional Gaussian blurred filter.
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The filter is composed of a two-dimensional symmetric matrix and the size of the filter is

(2w+1)×(2w+1), where each non-negative real number gp,q (−w ≤ p, q ≤ w) is determined

by a two-dimensional Gaussian distribution;

gp,q = s · e−
p2+q2

2σ2 , (4.1)

where σ is a parameter of the Gaussian distribution and s is a constant real number to

satisfy
∑
−w≤p,q≤w gp,q = 1. Let R = (ri, j) denote the projected gray scale image of an image

B = (bi, j) obtained by applying the two-dimensional Gaussian filter as follows:

ri, j =
∑

−w≤p,q≤w
gp,qbi+p, j+q (1 ≤ i, j ≤ N). (4.2)

As
∑
−w≤p,q≤w gp,q = 1 and gp,q is non-negative, each ri, j takes a real number in the range

[0, 1]. Hence, the projected image R is a gray scale image. An image B is a good approxi-

mation of the original input image A if the difference between A and R is small. The error

ei, j at each pixel location (i, j) is defined by

ei, j = ai, j − ri, j, . (4.3)

Using this error, the total error is defined by the sum of them:

Error(A, B) =
∑

1≤i, j≤N
|ei, j|. (4.4)

When Error(A, B) is small enough, we can consider that the image B reproduces original

input image A.

Using the above similarity based on the human visual system, we explain how we gen-

erate a tile art image. A tile art image is obtained by pasting fixed-size tiles of the same
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Figure 4.3: Two sets of tile patterns P. The square tiles (a) need to consider the rotation of
tiles, while the circle tiles (b) do not.

size (2t + 1) × (2t + 1). Every tile has white and black borders of width is 1 pixel each

and inside pixels of tiles are filled with a uniform color. Tiles are pasted one by one to a

white canvas of the same size as the input image, in which tiles are allowed to be rotated

and overlapped other tiles. Let P denote a set of square tile patterns and each element pu,v

(1 ≤ u ≤ NL, 1 ≤ v ≤ NR) in P denotes a tile pattern, where NL and NR be the numbers of

colors and rotation variation of patterns, respectively. Figure 4.3 depicts examples of pat-

terns of square tiles and circle tiles. For example, when NR = 4, square patterns are rotated

by 0, 22.5, 45, and 67.5 degrees. Thus, by considering each rotated pattern is distinct, the

total number of square tile patterns is NLNR. We note that since the shape of circles does

not change by rotation, NR = 1 for circle tiles and the total number of circle tile patterns is

NL.

We introduce an improvement value I of the total error in Eq. (4.4) by pasting a tile

pattern to explain where and which tile pattern is pasted:

I(A, B, p, i, j) = Error(A, B) − Error(A, B′), (4.5)

where B′ is a canvas image when a tile pattern p is pasted at (i, j) to B. We paste a tile
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pattern with the maximum value of the improvement I for all possible patterns to B. In

other words, we select a pattern qi, j whose value I is the maximum for each position (i, j)

(1 ≤ i, j ≤ N) such that

qi, j = argmax
p∈P

I(A, B, p, i, j).

From qi, j’s, we find the most improved pattern qbest whose improvement value is the maxi-

mum. After that, the pattern qbest is pasted to B. Whenever a tile pattern is pasted, improve-

ment values have to be recomputed and a new tile is pasted with them. This procedure is

repeated until no more improvement is possible, that is, the improvement value is negative

wherever any tile is pasted.

In general tile art, tiles are put on a blank canvas whose color is white or black and the

canvas might be seen from the gap of tiles. While, in this work, such background is entirely

covered by pasting tile patterns. In other words, the original color of canvas cannot be seen

in generated tile art images. This is because in our experiment, if the background is visible

through the gap, such part looks conspicuous noises. Therefore, in the following algorithm,

we first cover background pixels with tile patterns. We introduce the contribution ratio of

covering background pixels when a pattern p is pasted to canvas B at (i, j), expressed as:

C(B, p, i, j) =
the number of covered background pixels

the number of pixels of p
.

When a pattern is pasted on background pixels without any overlap, C(B, p, i, j) = 1,

whereas when a pattern is pasted on non-background pixels, C(B, p, i, j) = 0. Also, when

the ratio C(B, p, i, j) is larger, more background pixels are covered by a pattern p. To cover

background pixels, we choose and paste a pattern with the value of C(B, p, i, j) as large
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as possible. By extending Eq. (4.5), we define an improvement value Icover to consider the

background pixels covering:

Icover(A, B, p, i, j) = (C(B, p, i, j), I(A, B, p, i, j)). (4.6)

The improvement value is defined by a pair of ‘the contribution ratio of covering back-

ground pixels’ and ‘the improvement of the total error’ when a pattern p is pasted to B at

(i, j). We assume that the comparison of any two values of Icover(A, B, p, i, j) are based on

the lexicographical order, that is, Icover(A, B, p, i, j) > Icover(A, B, p′, i, j) if and only if

• C(B, p, i, j) > C(B, p′, i, j) or,

• C(B, p, i, j) = C(B, p′, i, j) and I(A, B, p, i, j) > I(A, B, p′, i, j).

To cover background pixels, we use Icover instead of I. We note that if background pixels

in the two-dimensional Gaussian filter application are included, the values of background

pixels that will be covered affect the total error. Therefore, until all background pixels

are covered, to exclude background pixels in the Gaussian filter application when Icover is

computed, instead of Eq. (4.3), we use the following error between an original image and

the canvas image;

ei, j = ai, j − bi, j.

Now, we extend the error computation for gray scale images to color images. We con-

sider RGB color whose value is specified with three real numbers in the range [0, 1] that

represent red, green, and blue, respectively. For color images, projected image R and the

error in Eq. (4.3) are computed for each color. Namely, for each color, two-dimensional
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Gaussian filter is applied, and the following error is computed. Let eRi, j, e
G
i, j, and eBi, j denote

the errors of red, green, and blue at each pixel location (i, j), respectively. Eq. (4.4) is

extended to the sum of each color value as follows;

Error(A, B) =
∑

1≤i, j≤N
(|eRi, j| + |eGi, j| + |eBi, j|). (4.7)

In the following, we show a tile art image generation method, called the greedy approach

using the above error between an original image and the tile art image based on the human

visual system. The idea of the greedy approach is to paste tile patterns one by one such that

the total error is minimized.

Consider an original input image A and a white canvas image B and let W(i, j) be a

square window of size (2t + 1) × (2t + 1) whose center is at position (i, j) as illustrated

in Figure 4.4. The window is the minimum upright square can include all tile patterns

including its rotation in Figure 4.3. Because we use a two-dimensional Gaussian filter

of size (2w + 1) × (2w + 1), pasting a tile pattern affects the errors in a square region of

size (2t + 2w + 1) × (2t + 2w + 1). In following, we call such region affected region.

Figure 4.5 illustrates a window and the affected region. We note that the best pasting of

a tile pattern can be chosen by computing the total errors of the affected region of size

(2t + 2w + 1) × (2t + 2w + 1) because pasting a tile pattern does not affect errors at pixels

outside the affected region. The error of a fixed pixel in an affected region can be computed

in O((2w+ 1)2) = O(w2) time with Eqs. (4.2) and (4.3). Hence, all the errors in the affected

region can be computed in O(w2(2t + 2w + 1)2) = O(w2(t2 + w2)) time. After that, their

sum can be computed in O((2t + 2w + 1)2) = O(t2 + w2) time. Thus, the total error in the

affected region can be computed in O(w2(t2 + w2)) time. Since it is necessary to check all
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Figure 4.4: A window W(i, j) of a tile.
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Figure 4.5: An affected region of the window
W(i, j).

the possible NRNL tile patterns in P, the best pasting can be obtained in O(NRNLw
2(t2+w2))

time.

4.2.1 Sequential algorithm for the greedy approach

In the following, we present a sequential algorithm for the greedy approach. Algorithm 1

shows the sequential algorithm for the greedy approach for a given input image A. A canvas

image B of the same size as A is initialized to a blank white image. After that, we find the

best tile pattern qi, j for every position (i, j) by computing the improvement value Icover in

Eq. (4.6). After that, we find the most improved pattern qbest that has the maximum value

of Icover from the tile patterns qi, j’s and then we paste qbest to the canvas. By repeating this

procedure, tile art image can be generated. However, in order to perform the finding qbest,

it is not necessary to find qi, j’s for all the points once all qi, j’s are obtained. If the projected

image in the affected region does not change, we can omit the search for the current window
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using the previous best pattern qi, j as the current best tile pattern. Let Ai, j denote a set of

positions in the affected region of the image in Figure 4.5 such that

Ai, j = {(i′, j′)|i − t − w ≤ i′ ≤ i + t + w, j − t − w ≤ j′ ≤ j + t + w}.

Therefore, we compute the total error at (i, j) in Eq. (4.4) by evaluating the following

formula for gray scale images:

∑
(i′, j′)∈Ai, j

|ei′, j′ |. (4.8)

Similarly, for color images, the total error in Eq. (4.7) can be computed by

∑
(i′, j′)∈Ai, j

(|eRi′, j′ | + |eGi′, j′ | + |eBi′, j′ |). (4.9)

Thus, in Algorithm 1, the tile pattern search that finds qi, j is performed for all positions.

After that, the search is performed only for positionsAi, j in the affected region and the best

tile pattern qbest is pasted. This procedure is repeated until no more improvement is possi-

ble. We note that pasting tile patterns and the total error computation require values from

pixels outside of the image boundaries when patterns are pasted around borders. Therefore,

in this work, the nearest border pixels in an original image A are extended as far as neces-

sary to perform the search for qi, j’s shown in the above around the boundaries [58]. More

specifically, an original image A of size N×N is extended to the (N+2t+2w)×(N+2t+2w)

image by copying the boundary pixel values.

To accelerate the above search finding qi, j’s, we introduce a partial search technique

that limits the search space for color of a pattern. More specifically, the color space of

the search space is reduced. In this technique, instead of the exhaustive search that finds
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Algorithm 1 Sequential algorithm for the greedy approach
Input: Original image A
Output: Tile art image B
1: B0 is initialized to a blank white image
2: for i = 1 to N do
3: for j = 1 to N do
4: Find qi, j.
5: end for
6: end for
7: k ← 1
8: loop
9: Bk ← Bk−1
10: for i = 1 to N do
11: for j = 1 to N do
12: Update qi, j if the projected image in the affected region ofW(i, j) for Bk and

Bk−1 are not identical.
13: end for
14: end for
15: Find the most improved pattern qbest from all qi, j’s
16: if the total error decreases when qbest is pasted to Bk then
17: Paste qbest to Bk

18: else
19: return Bk

20: end if
21: k ← k + 1
22: end loop

an optimal color of a tile pattern for all possible NL colors as illustrated in Figure 4.6(a),

the following partial search is performed. Beforehand, we make a list of NL colors of tile

patterns by sorting them in order of average brightness. Let α be a pattern that has the

closest color to the average brightness in windowW(i, j) of the original input image A. We

start the search in the list from α. By checking the neighboring tile patterns of the list in an

obvious way we can find the bottom of the concave sequence as illustrated in Figure 4.6(b).

Using this partial search technique, the search space can be reduced. One may argue that

the quality of the resulting tile art images that obtained by this partial search is inferior to
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that produced by the exhaustive search. In our preliminary experiment, however, there is

almost no difference of the total error and the quality of generated images between them.

4.2.2 Parallel algorithm for the greedy approach

In the above sequential algorithm of the greedy approach, tile patterns are pasted one by

one. However, two tile patterns of which affected regions overlap cannot be pasted since

such pastes affect each other. Therefore, it is difficult to parallelize the algorithm as it is.

Here, we show the parallel algorithm to paste multiple tile patterns at the same time. In

this parallel algorithm, we paste multiple tile patterns so that they do not share the affected

region in parallel. To do this, we split an original input image A and the canvas image B of

size N × N into subimages of size h × h. We classify the subimages into four groups such

that

• Group 1: odd columns and odd rows;

• Group 2: even columns and odd rows;

• Group 3: odd columns and even rows; and

• Group 4: even columns and even rows.

Figure 4.7 illustrates the four groups of the subimages. We note that, if h ≥ 2t+2w+1, then

the two-dimensional Gaussian filter of two subimages in a group never affect each other,

where the subimage is h× h and the affected region is (2t+ 2w+ 1)× (2t+ 2w+ 1). In other

words, affected regions of a certain group do not overlap with each other. In the parallel

algorithm, we perform the sequential algorithm in every subimage for Group 1, Group 2,
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Figure 4.6: The partial search technique to find color of a pattern. (a) The exhaustive search
needs to search for all color patterns. (b) The partial search technique can reduce the search
area since it explores the color patterns from the nearest neighbor color patterns.
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Figure 4.7: The groups of subimages and parallel execution without race condition. By
separating the image to four groups, each affected region within the same group will not
affect each other.

Group 3, and Group 4, in turn. Since there are N2

4h2 subimages in each group and at least one

tile pattern is pasted in each subimage, at most N2

4h2 tile patterns can be pasted for each group

execution. This parallel execution of the four group is repeated until no more improvement

is possible. In other words, the execution is finished when the total error cannot be reduced

by pasting a tile anywhere. Readers may think the generated tile art images using this paral-

lel algorithm is different from those by the sequential algorithm since multiple patterns are

pasted at the same time. However, in our preliminary experiment, there is a little practical

difference between them for the total error, the number of pasted tiles, and the quality. We

will show a GPU implementation using the above parallel execution technique in the next.

4.2.3 GPU acceleration

We propose an efficient GPU implementation of the parallel algorithm of the greedy ap-

proach to accelerate the computation. We first explain how we implement the parallel

algorithm of the greedy approach on the GPUs. We assume that an original input image of

size N × N is stored in the global memory in advance, the implementation writes the re-

sulting tile art image to the global memory. For these images, we repeat to invoke a kernel
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for Group 1, Group 2, Group 3, and Group 4 illustrated in Figure 4.7, in turn. Each kernel

consists of CUDA blocks, each of which is assigned to each subimage in one of the four

groups. In each subimage, multiple threads in an allocated CUDA block are used to find

qi, j’s for each position (i, j) in parallel. In other words, each CUDA block with multiple

threads is responsible for finding qi, j’s in a subimage. First of all, to reduce global memory

access, each CUDA block caches the elements of A and B that are necessary to perform the

computation, to the shared memory. To cache data to the shared memory, multiple threads

in the CUDA block cooperate to store the data in the global memory with coalescing access

in parallel. Multiple threads in a CUDA block are used to compute the improvement values

Icover in Eq. (4.6) for each tile pattern and then find the most improved pattern at (i, j) qi, j

whose value I is the maximum. After that, the most improved tile pattern qbest is selected

from qi, j’s and the pattern is pasted to the canvas. This procedure consisting of kernel calls

for the four groups is repeated until no more improvement is possible. We note that in

the first round consisting of kernels for the four groups, qi, j’s for all positions need to be

computed. However, once qi, j’s for all positions are computed, the following kernels up-

date qi, j’s only for the affected region where a tile pattern is pasted in the previous kernels.

Using this idea, the computation cost can be reduced greatly.

In addition to the above parallel computation, we use the following ideas efficient to

perform finding qi, j’s. As shown in Section 4.2.1, whenever a tile is pasted, the projected

image has to be updated. To update it, we compute the application of the two-dimensional

Gaussian filter in Eq. (4.2) for each pixel. In the GPU implementation, we replace the two-

dimensional convolution to addition of blurred tile patterns. More specifically, the sum of
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products in the convolution is replaced by the sum of additions. To do this, we compute

the projected tile patterns blurred by the two-dimensional Gaussian filter and store them

to the global memory in advance. Instead of the convolution, the following operations are

performed for each tile pattern using them. First, a tile pattern whose value is 0, that is,

black tile pattern, is pasted at which the tile is put in order to clear the pasted tiles so far.

After that, the blurred tile pattern is added to B instead of the application of the Gaussian

filter. By replacing the sum of product computation in the convolution to the addition, we

reduce the computation cost. In addition, to obtain the total error in Eq. (4.8) and Eq. (4.9),

the sum of the error values is computed. In the GPU implementation, we use the parallel

sum reduction technique using the warp shuffle instructions. A warp is a set of threads that

all share the same instructions and it consists of 32 threads in a CUDA block. The warp

shuffle instructions allow threads in a warp to perform the data communication between

them without the shared memory [37]. In this technique, the parallel sum computation is

efficiently performed using the warp shuffle instructions. We use this parallel sum reduction

technique in applying the two-dimensional Gaussian filter with addition in the above.

4.3 Tile art image generation using machine learning

The main purpose of this section is to propose a tile art image generation using machine

learning. In the greedy approach, a lot of tile patterns are repeatedly pasted on the can-

vas. On the other hand, in this machine learning approach, we directly generate a tile art

image for a given input image using a deep neural network. In other words, we obtain a

tile art image only by inference computation of the trained network without iteration of
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pasting. The architecture of the network in the proposed approach is based on the pix2pix

technique [11]. In the following, we explain the network model, network architecture, and

optimization method of the proposed machine learning approach.

4.3.1 Network models

In the proposed machine learning approach, we use Generative Adversarial Networks

(GANs) as a network model. GANs are a deep neural network model, that is based a

game theory [30], consisting two networks, a generator G and a discriminator D. The gen-

erator learns to output G(z) in a target domain, where z is a latent variable that is usually

random noise. Here, we consider that an image in the training data set is a real image,

and an output image generated by the generator is a fake image. The discriminator learns

to classify images as real or fake. More specifically, the discriminator tries to output a

probability assigned near to 1 for real images and near to 0 for fake images. The generator

and the discriminator are trained each other adversarially and simultaneously. During the

training, the generator tries to generate images that are not able to be identified as generated

images, whereas the discriminator aims to distinguish generated images by the generator

from training images. After training, the generator produces images indiscernible from

training images to trick the discriminator. To achieve the above training, we introduce a

loss function LGAN:

LGAN(G,D) = Ex[logD(x)] + Ez[log(1 − D(G(z)))], (4.10)

where Ex[·] and Ez[·] are expected values on the probability distributions of training images

x and latent variable z, respectively.
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In the above, the generator produces images only from latent variable z. However, in

image-to-image translation, the produced image must be related to an input source image.

Therefore, to associate a generated image with a source image, we employ conditional

GANs that are an extension of GANs [12]. In conditional GANs, a source image y is given

as an additional input for generator network G and discriminator network D. Figure 4.8

depicts the outline of conditional GANs. The generator has two inputs; latent variable z

and source image y and outputs image G(z, y). On the other hand, to the discriminator,

either a real pair or a fake pair is given. A real pair consists of training image x and source

image y, where a fake pair is composed of output image G(z, y) generated by the generator

and source image y. The discriminator learns to distinguish a fake pair and a real pair.

To train the networks of the conditional GANs, the loss function of conditional GANs

LcGAN(G,D) that is an extension of Eq. (4.10) is used:

LcGAN(G,D) = Ex,y[logD(x, y)] + Ey,z[log(1 − D(G(z, y), y))]. (4.11)

Additionally, in pix2pix technique, the following loss function is added to the above loss

function in Eq. (4.11) to generate images similar to the corresponding training images [11];

LL1(G) = Ex,y,z[∥x −G(z, y)∥1],

whereLL1(G) is the average value of absolute values of the difference at each pixel between

a training image x and the generated image G(z, y).

In addition, we introduce the feature matching [59] that is a loss function to stabilize the

learning of the generator. The loss function of feature matching LFM is defined by

LFM(G,D) = Ex,y,z

T∑
t=1

1
Nt

[∥D(t)(x, y) − D(t)(G(z, y), y)∥1],
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Figure 4.8: An outline of conditional GANs. The conditional GANs consist of the gen-
erator and the discriminator. The generator generates fake image G(z, y) from the source
image y and noise z. The discriminator discriminates whether the inputted pair is a real pair
by outputting the value in range 0 to 1. (1 means the inputted pair is discriminated as a real
pair.)

where T is the total number of intermediate layers in the discriminator, D(t) denotes the t-th

layer in the discriminator, and Nt is the number of nodes in D(t). Using this loss function,

the generator is trained such that it can produce diverse images from the target distribution

in the training data set. We note that the loss function of the original feature mapping

proposed in [59], mean squared error is utilized. While, in this work, we adopted average

error from our preliminary experiments.

Finally, the loss function in this work L(G,D) by combining the above loss functions is

used as

L(G,D) = LcGAN(G,D) + λ1LL1(G) + λ2LFM(G,D), (4.12)

where λ1 and λ2 denote hyper-parameters that control the weights of the terms for LL1(G)

and LFM(G,D), respectively. During training, the generator and the discriminator attempts

to minimize and maximize L(G,D), respectively. In other words, the purpose of training is
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to find the generator G∗ obtained by solving the optimization problem;

G∗ = argmin
G

max
D
L(G,D).

4.3.2 Network architectures

Using the proposed network model shown in the above, we show the details of architec-

ture of the generator network and the discriminator network as follows. In the proposed

architecture of the networks, we mainly use the idea of the pix2pix technique [11].

We use the idea of U-Net [60] in the generator network. Figure 4.9 depicts the proposed

architecture of the generator network. The architecture is composed of two parts, an en-

code network and a decode network. In pix2pix technique [11], there are 8 layers for the

encode network and 8 layers for the decode network. The number of layers is a little large

since it is able to deal with various applications for image-to-image translation. In our

preliminary experiments, we have evaluated 3 to 8 layers of the generator network and the

discriminator network each. As a result, the quality of generated tile art images using 5 to

8 layers is almost the same and the quality becomes worse for the networks of less than 5

layers. Therefore, we adopt a 5-layer network from image quality and computation time.

Also, in every downsampling and upsampling computation in the networks, the number of

convolutions is reduced compared with the original U-Net. We explain the detail of the

encode network and the decode network, as follows. The structure of the encode network

is a convolutional neural network. The network is composed of the repeated application of

a 4×4 convolution with stride 2 while spatial downsampling. After each convolution layer,
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as an activate function is applied, we use a leaky rectified linear unit (LeakyReLU) [32]:

f (x) =


x (x ≥ 0)

γx (x < 0),

(4.13)

where γ denotes a hyper-parameter in range (0, 1) that makes the slope small when the

input is negative. While, the decode network uses a deconvolutional, or up-convolutional,

network. Every step in the decode network consists of an upsampling of the feature map by

a 4×4 deconvolution with stride 2, and each followed by a rectified linear unit (ReLU) [32]:

f (x) =


x (x ≥ 0)

0 (x < 0).

On the other hand, in the original U-Net [60], the encode network consists of the repeated

application of two convolutions and a max pooling operation with stride 2 to downsam-

ple the image. Also, the decode network is composed of the repeated application of two

convolutions and an up-convolution to upsample the image. Therefore, in the encoder and

decoder networks, the numbers of convolutions and downsamples of pooling are reduced

compared with the original U-Net. Each layer of the decoder network has a concatenation

with the feature map from the encode network via skip connection [60]. This concatenation

via skip connection is employed to avoid losing pixel-level localization by downsampling

in the encode network. The output of three channels corresponds to the RGB color planes

of the output color image. We note that in U-Net, instead of inputting a latent variable z,

the dropout is applied to the generator network. The dropout is a training technique such

that a certain set of nodes which is selected randomly is ignored during the training phase.
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Figure 4.9: The architecture of the generator network. It consists of a encode network
which has 5 convolutional layers and a decode network which has 5 deconvolutional layers.
The dotted lines mean the skip connections to promote the backward propagation of the
loss.

The technique is used for reducing overfitting on the network. Since this dropout can be

considered as inputting a latent variable z, in the proposed architecture, we omit a latent

variable, that is, the input of the generator network is only a source image y.

Figure 4.10 depicts the architecture of the proposed discriminator network. We utilized

the architecture of patchGAN [61] as the discriminator network. In the discriminator de-

scribed in the above, one discriminating result is output for an input. On the other hand, in

the patchGAN, the input image is divided into small subimages and the result of the dis-

crimination for each subimage is output. The network is given by either a real pair or a fake

pair that is a concatenation of two images. A real pair consists of a source image y and a

training tile art image x generated by the greedy approach from y. In contrast, a fake pair is

a concatenation of a source image y and a tile art image obtained by the generator G(z). In

the discriminator network, there are three 4 × 4 convolution layers with stride 2 for spatial

downsampling and two 4 × 4 convolution layers with no strides. Also, each convolution

layer is followed by LeakyReLU [32]. Finally, for a given pair of images of size N × N
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Figure 4.10: The architecture of the discriminator network. It consists of 5 convolutional
layers. The input images are concatenated and inputted to the discriminator.

each, the output of the discriminator network is reduced to N
8 ×

N
8 . Each element of the

output corresponds to a resulting probability of the discrimination for a divided subimage.

We note that in this work, a trained network can only generate a tile art image in which

tiles are similar size and shape to those in the training tile art images. If different shape of

tiles is required, the network has to be trained again. Also, if the size of tile is changed,

the network structure may be changed since the number of layers in the generator and

discriminator networks depends on the size of tiles. The network structure shown in this

section is optimized for 23 × 23 square or circle tiles. We note that the trained network can

be used for any size of input images because the networks consist of convolutional layers.

4.3.3 Network optimization

We are now in position to train the proposed networks. We adopted a technique of mini-

batch stochastic gradient descent [34] that is one of the stochastic optimization methods in

training deep neural networks. The size of input images for the generator and discriminator

networks is set to 256 × 256, i.e., N = 256. If an input image is larger than 256 × 256, the
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convolutional operation is repeatedly applied for horizontal and vertical directions because

every layer of the generator network is either convolutional or deconvolutional layer. In

other words, for a given image, the generator network reduces the size while encoding

and then enlarges the size while decoding. For smaller images less than 256 × 256, an

original image is extended to the 256 × 256 by copying the boundary pixel values and

the resulting image is cropped to the original size. Therefore, the proposed networks can

be used for any size of images. With regard to the activate functions, in the LeakyReLU

(Eq. (4.13)), the slope of the leak is set to γ = 0.2 both in the generator and discriminator

networks. This is because in the original pix2pix technique, the slope is 0.2, and also from

our preliminary experiment, when the slope is 0.2, the quality of the resulting tile art image

is higher compared with the other value of the slope. We utilized the dropout technique

with a rate of 50% for the first and second layers in the decode network of the generator.

Also, in the discriminator, the technique is applied with the same rate to the first, second

and third layers. In addition, to accelerate training, we use the Adam optimizer [62]. We

set values of parameters in the Adam optimizer such that α = 0.0001, β1 = 0.5, β2 = 0.99,

and ϵ = 10−12. For the details of these parameters of the Adam optimizer, the interested

reader may refer to the reference [62]. All weight values in the generator and discriminator

networks were initialized from a zero-centered Gauss distribution with standard deviation

0.02. The learning rates of the generator network and the discriminator network were set

to 0.0002 and 0.00001, respectively. The control weights λ1 and λ2 in Eq. (4.12) were set

to 1.

Algorithm 2 shows a training algorithm for our proposed networks, where the size of
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mini-batch m is set to 4. The loop in the algorithm is repeated until the output image

almost does not change. Each loop corresponds to one epoch that is when a whole training

dataset is passed forward and backward through the networks only once. In our experiment

shown in the next section, we repeated the loop 200 times, that is, 200 epochs. The loop

in the algorithm consists of two parts. The former part is to train the generator network for

the fixed discriminator network. The latter part is to train the discriminator network for the

fixed generator network. We note that to balance the ability of the two networks from the

result of our preliminary experiments, the discriminator is trained once every two loops.

Algorithm 2 Training algorithm for the proposed networks
1: Normalize all pixel values of images in the training data set to [−1, 1].
2: k ← 1
3: loop
4: Randomly select a mini-batch of m examples of source images y1, . . . , ym with the

corresponding tile art images x1, . . . , xm.
5: Update the generator by ascending its stochastic gradient for the fixed discrimina-

tor:

∇θg
1
m

m∑
i=1

(log(1 − D(G(yi), yi)) + λ1(∥xi −G(yi)∥1)

+λ2(
T∑
t=1

1
Nt

(∥D(t)(xi, yi) − D(t)(G(yi), yi)∥1))).

6: if k is even then
7: Update the discriminator by ascending its stochastic gradient for the fixed gen-

erator:

∇θd
1
m

m∑
i=1

(logD(xi, yi) + log(1 − D(G(yi), yi))).

8: end if
9: k ← k + 1
10: end loop
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4.4 Experimental results

In this section, we show the resulting tile art images using the greedy approach and the ma-

chine learning approach. We also show training process in the machine learning approach.

After that, the generated tile art images are compared between two approaches. At the end

of this section, we evaluate the computation time of them.

4.4.1 Resulting tile art images using the greedy approach

First, we show the resulting tile art images using the greedy approach. We have used

Lena [63] of size 512 × 512 in Figure 4.1(a). We have generated square tile art images and

circle tile art images, where each tile pattern is 23×23 and 4096 colors. Square tile patterns

are also rotated with angles of 0, 30, and 60 degrees. In total, the number of patterns in

P is 4096 × 3 = 12288 for square tile patterns and 4096 for circle tile patterns. The two-

dimensional Gaussian filter in Eq. (4.1) has been set with parameters σ = 1.3 and w = 3.

Also, the size of subimage used in the parallel algorithm of the greedy approach is 39× 39,

that is, h = 39.

Figure 4.11 shows the snapshots of process of generating a tile art image by the greedy

approach. To generate the resulting tile art image in Figure 4.12(a), 2621 square patterns

have been pasted in total. From the resulting images, in first, tiles have been put to hide

the canvas due to Eq. (4.6). Therefore, until the canvas is almost filled by tiles, the detailed

part cannot be represented well. After that, we can see that tiles are put to represent the

original image.

Figure 4.12 shows the images generated by the sequential and parallel algorithms of
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245 squares (9%) 539 squares (21%) 784 squares (30%)

1029 squares(39%) 1321 squares(50%) 1559 squares(59%)

1835 squares(70%) 2089 squares(80%) 2361 squares(90%)

Figure 4.11: Snapshots of pasting tiles in the parallel greedy approach with square tile
patterns of size 23 × 23.
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(a) sequential algorithm (b) parallel algorithm

Figure 4.12: Square tile art images generated by the greedy approach. There is no differ-
ence between these images at a glance.

the greedy approach with square patterns. Compared with the images, all of them are a bit

different by looking at the detail, whereas the quality of these images seems to be almost the

same at a glance. In both images, the intricate parts such as her hair cannot be represented

well since the tile patterns are too large to represent such parts in detail. On the other

hand, principal edges and large gradations of colors are well-reproduced by overlapped tile

patterns even though the border of tiles is prominent.

4.4.2 Network training and generated tile art images for the machine
learning approach

In this work, we have trained two networks for machine learning approach, one is for

square tile image generator, and the other is for circle tile image generator. To train these

two networks, we use Caltech-256 [64] image database consisting of 30607 images about

256 object categories as source images. From the database, we have randomly chosen

20000 images and scaled them to 256 × 256. We have obtained tile art images generated

by the greedy approach from the source images with the same condition as the above. We
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epoch 1 epoch 5 epoch 10 epoch 20

epoch 50 epoch 100 epoch 150 epoch 200

Figure 4.13: The output images of the generator during the training. At epoch 1, the
original image still appears as it is. At epoch 50, tiles become visible, however, the edges
of tiles are thin. At epoch 200, tiles become clearly.

use the resulting tile art images as training dataset of images.

We have trained the networks by the optimization method shown in Section 4.3.3. We

have implemented the machine learning approach using TensorFlow version 1.12.0 [2].

The networks have been trained until the output tile art images are not changed. In our

experiment, the change of the output images almost disappeared at 200 epochs. The train-

ing takes approximately 25 hours using NVIDIA Tesla V100 GPU. Figure 4.13 shows the

snapshots of the resulting tile art images for Lena during the training. We note that the

image Lena is not included in the training data. From the images, in earlier epochs, the

original image still appears as it is. As the training progressed, the characteristic of tiles

become visible. After 150 epochs, the characteristic of tiles is more visible.
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(a) greedy approach (b) machine learning approach

Figure 4.14: The generated tile art images for square tile patterns. Comparing with the two
approaches, the quality of the greedy approach is higher.

4.4.3 Comparison between the greedy approach and themachine learn-
ing approach

Figures 4.14 and 4.15 show the generated tile art images for Lena of size 512 × 512 ob-

tained by the greedy approach both for square and circle patterns. The resulting images can

represent the original image well. Especially, we can see that the overlapped patterns can

form the outline consisting of long edges for the both patterns.

On the other hand, compared to the tile art images generated by the greedy approach,

those by the machine learning approach have the larger tendency to arrange the tiles reg-

ularly. Although the machine learning approach does not put tile patterns one by one, the

structure of each tile and the overlap between tiles can be represented in the generated im-

ages. However, there are chips in the edge of tiles and non-uniform color in some tiles. The

machine learning approach can generate higher quality circle tile art image compared with

the square tile image. This is because the shape of circle patterns is simpler than that of

square patterns since circle patters have no rotation. Also, Figures 4.16 and 4.17 show the

generated tile art images for a Full HD photograph of size 1920 × 1080 (Figure 4.16(a)).
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(a) greedy approach (b) machine learning approach

Figure 4.15: The generated tile art images for circle patterns. Unlike the case of square tiles
patterns, there is no difference between the generated images of the greedy approach and
the machine learning approach at a glance. In other words, the machine learning approach
can generate high quality tile art image since the generator does not need to consider the
rotation of tiles.

For these images, the resulting images by the greedy approach have the same tendency.

While, the generated images with the machine learning approach are also represented well

though the regular arrangement of tiles in the sky is more conspicuous both for square and

circle patterns.

Figure 4.18 shows the mosaic image generated by GIMP [38] for a Full HD image in

Figure 4.16(a). Since the mosaic image consists of non-overlapped hexagons that can be

distorted, it is difficult to compare them with the proposed method directly. At a glance the

quality of this image is higher than that of the tile art images generated by the proposed

approaches. However, the detailed parts such as buildings and trees cannot be represented

well. On the other hand, in the tile art images generated by the proposed approaches, such

detailed parts are clearer.

Table 4.1 shows the number of pasted patterns in the greedy approach and the total error

in Eq. (4.9) in the greedy and machine learning approaches for various size of images.
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(a) input image

(b) greedy approach

(c) machine learning approach

Figure 4.16: The generated square tile art image for a Full HD image (1920 × 1080).
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(a) greedy approach

(b) machine learning approach

Figure 4.17: The generated circle tile art image for a Full HD image (1920 × 1080).

Figure 4.18: Mosaic image generated by GIMP for a Full HD image(1920 × 1080).
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Table 4.1: The number of pasted patterns and the total error of generated tile art images for
square patterns

tile image size
greedy approach machine learning approach

# pasted patterns total error total error

square

256 × 256 960 13,335.4 13,464.7
512 × 512 2,587 49,407.7 57,982.5

1024 × 1024 9,936 231,624.1 229,231.0
1920 × 1080 16,037 358,615.5 409,735.2
2048 × 1536 28,346 538,732.2 539,549.4
4096 × 3072 128,725 2,640,159.2 2,682,169.8

circle

256 × 256 971 13,893.8 13,961.4
512 × 512 2,642 51,942.8 57,544.4

1024 × 1024 11,824 245,532.5 244,774.5
1920 × 1080 19,458 393,821.8 410,594.8
2048 × 1536 30,894 591,093.6 551,336.0
4096 × 3072 160,055 2,821,585.3 2,781,416.7

Regarding the number of pasted patterns in the greedy approach, circle tile patterns are

pasted more than square tile patterns since the size of circle patterns is less than that of

square patterns. We note that the total error of the both approaches strongly depends on

structural elements in an input image. For example, when an input image mainly consists

of straight borders, the total error of the square tile image tends to be smaller than that of

the circle tiles since the straight borders can be easily represented by the square tiles. Also,

the networks in the machine learning approach are trained so as to generate tile art images

that are close to tile art images generated by the greedy approach, but so as not to minimize

the total error. Therefore, the total error of the machine learning approach does not show

the quality of tile art images directly. However, since the total error shows the difference

from an input image, there are not large difference between tile art images generated by

the greedy approach and the machine learning approach because the difference of the total

errors is small.
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4.4.4 Evaluation of computation time

Finally, we have evaluated the computation time of the greedy approach and the machine

learning approach. We have used 4 Intel Xeon E7-8870V4 CPUs running in 3.0GHz with

1TB memory for CPU implementations. Each CPU has 20 physical cores each of which

acts 2 logical cores by hyper-threading technology, that is we use 80 physical cores or 160

logical cores in total. We have implemented two CPU implementations of the greedy al-

gorithm: the sequential CPU implementation and the parallel CPU implementation. In

the sequential CPU implementation, a single thread is used, whereas in the parallel CPU

implementation, 160 threads are used. In the parallel CPU implementation, each thread

concurrently finds qi, j’s at lines 4 and 12 in Algorithm 1. To implement parallel execution

of threads, we have used OpenMP 3.1 [65]. The source code programs of the CPU imple-

mentations are compiled by gcc version 4.8.5 with -O2 and -fopenmp options. In addition,

for the GPU implementation of the greedy approach, we have used NVIDIA TITAN V

GPU with 5120 processing cores running in 1.37GHz with 16GB memory The source code

program of the GPU implementation is compiled by nvcc version 9.0.176 with -O2 and

-arch=sm 70 options. On the other hand, for the machine learning approach, we have used

the same computing platform as the GPU implementation of the greedy approach. We

have implemented and evaluated the machine learning approach using Python 3.5.2 with

TensorFlow version 1.12.0 [2].

Table 4.2 shows the computation time of generating tile art images. In the computation

time of the GPU implementations, data communication time between the host PC and the

GPU is included. With regard to the greedy approach, the GPU implementation is much
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faster than the CPU implementations. In both of the parallel CPU implementation and the

GPU implementation, we perform the computation of qi, j’s in parallel. Furthermore, in the

GPU implementation, each computation of qi, j’s is concurrently executed by threads in a

CUDA block. On the other hand, compared with the parallel CPU implementation, the

GPU implementation runs at most 13.9 times faster. Also, in circle tile art image genera-

tion, the computation time of the GPU implementation reduced by a factor up to 283 over

the sequential implementation. The GPU implementation runs at most 16.2 times faster

than the parallel CPU implementation.

In the machine learning approach, we can see that it is much faster than the greedy

approach. Quite surprisingly, the machine learning approach takes approximately 1 second

even for the 4K image (4096 × 3072). The direct comparison of the computation time

may be pointless since the resulting images are not equivalent between them. However, the

machine learning approach can generate a tile art image 205 to 580 times faster than the

GPU implementation of the greedy approach.

4.5 Further improvement for themachine learning approach
using iterative inference

We have proposed the machine learning approach of generating a tile art image using the

conditional generative adversarial networks in Section 4.3. However, in the generated tile

art images, some tiles have lack of edge and noises that are not included in the greedy

approach. In this section, we propose an improvement technique of the machine learning

approach to generate a tile art image. The technique is very simple; a generated tile art
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Table 4.2: The computation time in seconds of generating tile art images for square and
circle patterns

tile
greedy approach machine learning approach

image size CPU CPU
GPU GPU

1 thread 160 threads

square

256 × 256 1404.75 69.02 4.98 0.011
512 × 512 2729.82 105.34 9.78 0.022
1024 × 1024 12376.38 365.97 40.64 0.070
1920 × 1080 18355.11 517.92 59.41 0.138
2048 × 1536 32598.81 881.20 110.82 0.222
4096 × 3072 181632.76 4561.27 571.18 1.040

circle

256 × 256 490.93 23.92 2.26 0.011
512 × 512 1206.47 73.99 4.57 0.021
1024 × 1024 6608.46 208.30 23.73 0.070
1920 × 1080 9528.28 249.75 33.56 0.139
2048 × 1536 15261.10 415.11 60.74 0.220
4096 × 3072 108354.55 2445.75 395.30 1.037

image obtained by the inference of the generator is given to the generator again as an input

image, and this iteration of inference is repeated several times as illustrated in Figure 4.19.

The aim of this technique is that the generate network further enhances the shapes of tiles

in the generated image.

Figures 4.20 and 4.21 show the generated tile art images using the iterative inference

technique for square and circle tile patterns, respectively. From the figures, we can see that

characteristics of tiles are enhanced using the this technique compared with non-iterative

images shown in Figures 4.14(b) and 4.15(b). However, the images become dark gradu-

ally in each iteration due to the effect of edges of tiles that excludes in the original image.

In our experiment, the iteration is repeated two or three times to obtain tile art images

with well-balance between characteristic of tiles and whole brightness. As shown in Sec-

tion 4.4.2, the discriminator learns to classify images as real or fake. More specifically,
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Table 4.3: Output value of the discriminator with varying the number of inferences
inference 1 2 3 4
square tiles 0.5004 0.5265 0.5400 0.5483
circle tiles 0.4867 0.5145 0.5409 0.5392

the discriminator tries to output a probability assigned near to 1 for real images and near

to 0 for fake images. In this work, real images correspond to tile art images generated

by the greedy approach. On the other hand, fake images are output images by the gen-

erator in the machine learning approach. Therefore, as a criterion to evaluate generated

tile art images, we use the output value of discriminator. Table 4.3 shows average output

values of the discriminator to the generated tile art images with varying the number of

inferences. Each value is an average of the output for N
8 ×

N
8 subimages of generated im-

ages in Figures 4.14(b), 4.15(b), 4.20 and 4.21. According to the table, the value without

iterative inference is smaller than those with iterative inference. This fact means that the

discriminator judges that the output images with iterative inference are more realistic tile

art images. On the other hand, the computation time simply increases in proportion to the

number of iterations. However, as shown in Table 4.2, since the computation time of the

machine learning approach is extremely short, the computation time of this improvement

technique is short enough for practical cases.

4.6 Conclusion

In this chapter, we have proposed two tile art image generation methods using greedy ap-

proach and machine learning approach. The greedy approach is inspired by characteristic

of the human visual system and the resulting tile art images well-reproduce the original
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generator

input image

first inference

second inference

third inference

Figure 4.19: The iterative inference for the machine learning approach. Note that the
generator is already trained and can generate tile art images. The generated tile art image
is inputted to the generator again as an input image.

(a) second inference (b) third inference (c) fourth inference

Figure 4.20: The generated tile art images for square patterns using iterative inferences.
We can see that the characteristics of tiles are enhanced. However, the images become dark
gradually in each iteration due to the effect of edges of tiles that excludes in the original
image.
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(a) second inference (b) third inference (c) fourth inference

Figure 4.21: The generated tile art images for circle patterns using iterative inferences. We
can see that the noise in the images are disappeared by this technique.

images without any image feature extraction techniques such as edges, corners, among

others. Also, to accelerate tile art image generation by this approach, we have proposed

its parallel algorithm and implemented it on the GPU. The experimental results show that

the GPU implementation can achieve a speed-up factor up to 318 over the sequential CPU

implementation. On the other hand, the machine learning approach approximates the tile

art image generation of the greedy approach using the deep neural networks. The pro-

posed network can generate tile art images that have the structure of tiles and reproduce the

original images well. As regards generating time, the GPU implementation of the greedy

approach takes 4561 seconds to generate a tile art image of size 4096 × 3072, whereas the

machine learning approach takes approximately 1 second. Furthermore, we have proposed

an improvement technique of the machine learning approach to generate a tile art image. In

the technique, a generated tile art image obtained by the inference of the generator is given

to the generator again as an input image, and this iteration of inference is repeated several

times. As a result, this technique can generate high quality tile art images with less noise

61



and pronounced tiles.
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Chapter 5

A novel structured sparse
fully-connected layer in CNNs

5.1 Introduction

In recent, the network ability has become stronger. However, these CNNs need a large

amount of memory to store their network parameters. We note that almost of CNNs mem-

ory usage is occupied by the FCLs. For example, in the case of VGG-16, there are 138.36

million parameters consisting of 14.71 million parameters in the convolutional layers and

123.64 million parameters in the FCLs. When each parameter is a 32-bit floating point

number, approximately 553 MByte memory is required to store them. To run these ap-

plications, we need to store the network parameters into the device memory. Therefore,

devices with a small amount of memory such as embedded devices may not be able to

perform CNN applications. Therefore, the compact models with a small network size are

often desired for the practical applications.

To solve this problem, several researches to reduce the amount of memory consumption

of CNNs such as pruning [13, 14, 15, 16, 17, 18, 66] and structured sparsity [19, 67, 68, 20]

have been devoted. Structured sparsity approaches aim to reduce the number of network
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Figure 5.1: Architectures of FCLs in convolutional neural networks. The output of the last
convolutional layer (a) in the general FCLs (b) is simply concatenated. On the other hand,
in the proposed sparse FCLs (c), the output of the last convolutional layer (a) is divided by
each position of the feature maps.

parameters by replacing the network architecture to smaller and more efficient one. On

the other hand, pruning approaches aim to reduce the number of network parameters by

removing unimportant network weights. However, in many cases, pruning approaches

produce irregular network structures. Such irregularity of weights prevents efficient parallel

computation.

In this work, we propose a structured sparse FCL in CNNs that can be efficiently com-

puted in parallel. Especially, we focus on the first FCL and make it sparse. Figure 5.1 is

outlines of the general structure of FCLs and the proposed sparse one. In the general FCLs,

the output of the last convolutional layer illustrated in Figure 5.1(a) is simply concatenated

as the input of the first FCL. Each element in the output of the first FCL is connected to all
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input nodes of the first FCL. Note that the number of the output nodes of the last convolu-

tional layer is larger than that of the FCLs generally. Hence, the number of parameters in

the first FCL is larger than that in the second and third FCLs. For example, in the case of

VGG-16, the numbers of parameters in the first, second, and third FCLs are 103 million,

17 million and 4 million, respectively.

In this work, therefore, we aim to reduce the number of parameters in the first FCL. In the

general first FCL, each output element is fully-connected to all input elements regardless of

the position and the channel in the feature maps of the output convolutional layer. However,

the connections may not have a strong relation between distant elements in the feature

maps, for instance, two distant elements in the upper-left and lower-right. Therefore, we

eliminate the connections between elements in different position from the first FCL. In

other words, the output elements are connected to the input elements only in the same

position of the feature maps. Figure 5.2 illustrates the general first FCL and the proposed

one. In this figure, we can see that the connections between the input and the output of

the first FCL are removed except for those in the same positions. Here, if we look at the

proposed architecture from another perspective, it can regard that the proposed first FCL is

composed of hw networks each of which reduces the channel of the feature maps from c

to c′. Hence, we call these networks in the proposed first FCL Channel Reduction Layers

(CRLs). Each CRL is a small fully-connected network whose numbers of input and output

nodes are c and c′, respectively. Note that the numbers of input and output nodes in the

general first FCL are hwc and hwc′, respectively. The proposed first FCL has hw CRLs,

therefore, the total number of parameters in the proposed first FCL is hw × (c × c′), while
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Figure 5.2: Connections of elements from the input of the first FCL (the output of the
last convolutional layer) to the output of the first FCL. The connections between distant
elements in the feature maps may not have a strong relation, therefore, we eliminate them
from the general first FCL.

that in the general first FCL is hwc × hwc′. Thus, we can reduce the number of parameters

to 1
hw by replacing the general first FCL to the proposed one. Our proposed approach can

be applied to the CNNs which have three FCLs such as AlexNet and VGG-16. Note that it

cannot be applied to the CNNs which have a single FCL such as GoogLeNet and ResNet.

We have evaluated the proposed architecture for image classification by applying to

AlexNet and VGG-16 on ILSVRC-2012 dataset [23]. For AlexNet, we can reduce the

number of parameters in the FCLs from 58.6 million to 4.0 million with top-1 accuracy

and top-5 accuracy decrease by 0.68% and 0.19% compared to the original architecture,

respectively. On the other hand, for VGG-16, we can reduce the number of parameters in

the FCLs from 123.6 million to 5.8 million with 0.68% top-1 accuracy and 0.31% top-5
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accuracy decreases compared to the original architecture. Also, to confirm that our pro-

posed approach is applicable to practical image classification problems, we have trained

the proposed models using transfer learning on three fine-grained datasets. The experi-

mental results show that the proposed approach can achieve high test accuracy with high

compression ratio on each dataset.

In addition, we propose an implementation of the above proposed sparse architecture on

Graphics Processing Units (GPUs) using cuBLAS [6]. We have evaluated the computation

time of forward and backward propagation for the FCLs using an NVIDIA GeForce RTX

2080 Ti GPU. When the batch size is 128, the implementations of forward and backward

propagation for the proposed architecture achieves speed-up factors 12.33 and 11.09 for

AlexNet compared to those for the original architecture, respectively. For VGG-16, the

implementations of forward and backward propagation for the proposed architecture can

run up to 13.19 and 16.79 times faster than those for the original architecture, respectively.

The remainder of this paper is organized as follows. Section 5.2 shows several works

related to the reduction of the network size for CNNs. Section 5.3 presents the proposed

sparse architecture. Section 5.4 shows the implementations of the proposed sparse architec-

ture using cuBLAS. Section 5.5 presents the experimental results for AlexNet and VGG-16.

Finally, Section 5.6 concludes our work.

5.2 Related works

With rapid development of the machine learning, many researches related to the reduction

of network size have been devoted. In the following, we introduce two types of network
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size reduction, network pruning and structured sparsity.

Network Pruning: Network pruning is one of the most popular methods in network

model compression. The main idea of this approach is removing unimportant network

weights from the trained network and then re-training the pruned network. The above

procedure is repeated until sufficient number of weights are eliminated and/or the test ac-

curacy drops. Han et al. proposed a network pruning technique [13, 14]. Their experi-

mental result shows that it achieves the improvement of the test accuracy as well as the

reduction of weights in the same time. However, their approach results in producing the ir-

regular weight matrices which prevent the efficient parallel computations. Therefore, they

proposed a special hardware accelerator to compute such irregular weight matrices [15].

Other network pruning approaches which produce regular weight matrices have been pro-

posed [16, 17, 18]. The idea of their approach is removing whole convolutional filter with

small sum of weights, not some weights in the convolutional filter. Since their approach

leads to almost regular weight matrices, there is no need to prepare any special hardware

accelerators. The disadvantage of the filter level pruning approach is that the accuracy

is lower compared to the element level pruning approach. Mao et al. explored the rela-

tion between granularity of pruning and test accuracy for the pruning approach [66]. They

changed the granularity of pruning from fine-grain to course-grain and measured the test

accuracy for CNNs. More specifically, the four types of granularity are used: element level

(one-dimensional), vector level (two-dimensional), kernel level (three-dimensional) and fil-

ter level (four-dimensional). Their experimental results for famous CNNs such as AlexNet,

VGGNet, GoogLeNet and ResNet50 show that the fine-grain pruning can achieve higher
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test accuracy than that of the course-grain pruning.

Structured Sparsity: Structured sparsity approaches aim to reduce weights in network

by changing the structure of the network. These approaches can produce complete regular

weight matrices by performing regularly sparsity, and then the hardware which performing

inference and training can benefit of the efficient parallel computing. However, it is diffi-

cult to compress the models with no accuracy decrease compared to the network pruning

approaches. In our proposed approach, this type of network size reduction is applied. One

of the methods related to the structured sparsity is proposed by Wen et al., that compresses

the model by replacing the weight value to zero in the convolutional filters in regularly [19].

Also, they proposed a GPU implementation of the compressed networks, and it achieved

speed-up factor 3 compared to that of the non-compressed networks for AlexNet with a

2% top-1 accuracy decrease. Also, Novikov et al. achieved both of network size reduc-

tion and improvement of test accuracy using Tensor-Train format (TT format) [67]. TT

format is a format that converts a large matrix to small ones. They applied this format to

the weight matrices in VGG-16. As a result, they achieved 7.9 times reduction with 1.3%

top-1 accuracy and 1.1% top-5 accuracy decrease and a speed-up factor 2.3 on the GPU.

In the paper [68], Cyclic Sparsely Connected (CSC) layer was proposed. The CSC layer

consists of two or three sparse weight matrices. In the experiment on AlexNet, this ap-

proach can reduce the size of the FCLs to 5% with 1.5% top-5 accuracy decrease, and the

compressed network can run in a half resources (energy cost and memory space) compared

to the original on the FPGA. Deng et al. proposed a model compress method PermDNN us-

ing permuted diagonal matrices [20]. The idea of PermDNN is to delete the weights which
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are not in diagonal or sub-diagonal components in regularly. This method can mainly be

applied to not only CNNs, but also some types of DNNs. Their experimental result shows

PermDNN can accelerate computation without significant test accuracy drop. Howard et al.

proposed MobileNet v1 [69], v2 [70] and v3 [71] which aim to implement on the mobile

devices mainly. They utilize a depthwise separable convolution algorithm. They reduce

the network by separating the two-dimensional convolution to the depthwise convolution

and the pointwise convolution. In addition, the other techniques such as global average

pooling [72], inverted residual block and Squeeze-and-Excite module [73] are used. Using

these networks, they achieved significant results for both of network size reduction and test

accuracy.

Another method related to the reduction of the network size is quantization. In the quan-

tization, model compression is achieved by reducing effective number of bits. Courbariaux

et al. proposed a binarization method for network weights for the forward propagation on

CNNs [74, 75]. They achieved the saving of memory utilization and the improvement of

test accuracy. The quantization may be applicable to our proposed sparse models. How-

ever, in this paper, we focus on the reduction of the number of weight parameters only by

changing network architecture.

5.3 Proposed sparse architecture

First, we propose a sparse CNN architecture that is suitable to the parallel computation.

The proposed method focuses on Fully-Connected Layers (FCLs) which occupy most of

the memory utilization in CNNs such as AlexNet [21] and VGG-16 [22]. We focus on
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the first FCL consisting of input nodes which corresponds to the output nodes of the last

convolutional layer and output nodes. Every output node connects to all input nodes. In

the proposed FCLs, the first FCL is replaced to Channel Reduction Layers (CRLs) each of

which is composed of a small fully-connected network by considering the structure of the

output of the last convolutional layer.

Figure 5.1 illustrates the network architectures of the FCLs in general CNNs and the

proposed CNNs. Let x0 be the output of the last convolutional layer. Also, let h, w and c be

the height, width and channel of x0. The general first FCL is composed of a fully-connected

network with hwc input nodes and c1 output nodes. The input nodes can be obtained by

simply concatenating the output nodes of the last convolutional layer. On the other hand,

the structure of the proposed first FCL consists of the hw CRLs. Each CRL is composed

of a small fully-connected network whose size of the input channel and the output channel

are c and c′, respectively. In other words, each CRL reduces the nodes from c to c′ with a

fully-connected network. The inputs of the proposed first FCL can be obtained by dividing

the output of the last convolutional layer based on each position in the feature maps. By

replacing the general first FCL to the proposed first FCL, the number of weights is reduced

from hwc × c1 = hwcc1 to hw (c × c′) = hwcc′. We note that hw × c′ equals to c1, that is,

c′ equals to c1
hw . Hence, when comparing to the general first FCL, the number of weights

in the proposed one is reduced to 1
hw . For simplicity, we assume that c1 is divisible by hw.

In addition, to achieve higher reduction rate of weights, we can decrease the numbers of

the input channels in the second FCL and the third FCL. In the following, the two types of

FCLs, that are the general FCLs and the proposed sparse FCLs, are explained in detail.

71



5.3.1 General fully-connected layers

In this subsection, we explain the general dense FCLs illustrated in Figure 5.1(b). The

general dense FCLs consist of three general FCLs. In the FCL1, the output nodes of the

last convolutional layer are fully-connected to those of the FCL1. The input of the FCL1

corresponds to the output of the last convolutional layer consisting of a three-dimensional

tensor x0 ∈ Rh×w×c. However, in the general FCLs, it is given to the FCL1 without any

consideration about the structure of the feature maps as illustrated in Figure 5.1(b). In

other words, the input is provided as a one-dimensional tensor x0 ∈ Rhwc. Thus, the output

of the FCL1 x1 ∈ Rc1 , is defined by

x1(i) = φ(
hwc∑
l=1

WT
FCL1(i, l)x0(l) + bFCL1(i)), (5.1)

where c1 is the number of the output channel, WFCL1 ∈ Rhwc×c1 is the weights and bFCL1 ∈

R
c1 is the biases of the FCL1. Also, φ(·) denotes an activation function such as sigmoid

and ReLU function [32]. Note that we use ReLU activation function in this work. Also,

the FCL2 and the FCL3 have the same structure as the FCL1. Therefore, the output of the

FCL2 x2 ∈ Rc2 is defined by

x2(i) = φ(
c1∑
l=1

WT
FCL2(i, l)x1(l) + bFCL2(i)), (5.2)

where c2 is the number of the output channel,WFCL2 ∈ Rc1×c2 is the weights and bFCL2 ∈ Rc2

is the biases of the FCL2. Also, the output of the FCL3 x3 ∈ Rc3 is defined by

x3(i) = φ(
c2∑
l=1

WT
FCL3(i, l)x2(l) + bFCL3(i)), (5.3)

where c3 is the number of the output channel,WFCL3 ∈ Rc2×c3 is the number of weights and

bFCL3 ∈ Rc3 is the biases of the FCL3.

72



5.3.2 Proposed sparse fully-connected layers

Next, we explain the proposed sparse FCLs illustrated in Figure 5.1(c). The proposed

FCLs are composed of the proposed FCL1, the general FCL2 and the general FCL3. The

proposed FCL1 is composed of the hw CRLs each of which is a fully-connected network

whose number of the input and the output nodes are c and c′, respectively. In other words,

each CRL performs the channel reduction of the feature maps from c to c′. Therefore,

in total, the proposed FCL1 performs the dimension reduction of the output of the last

convolutional layer x0 ∈ Rh×w×c, and then output a three-dimensional tensor x1 ∈ Rh×w×c′ .

The input of the FCL2 can be obtained by simply concatenating the output of the proposed

FCL1. Note that the total numbers of the input nodes and the output nodes of the proposed

FCL1 are the same as the general FCL1 described in Subsection 5.3.1. We define the output

of the proposed FCL1 x1 ∈ Rh×w×c′ as follow;

x1(i, j, k) = φ(
c′∑
l=1

WT
CRLi, j

(k, l)x0(i, j, l) + bCRLi, j(k)), (5.4)

whereWCRLi, j ∈ Rc×c′ is the weights and bCRLi, j ∈ Rc′ is the biases of CRLi, j (1 ≤ i ≤ h, 1 ≤

j ≤ w). As regards FCL2 and FCL3 in the proposed FCLs, the architectures are the same

as those of the general FCL2 and FCL3. Therefore, they can be computed by the same way

as Eqs. (5.2) and (5.3).

5.4 Implementation of proposed architecture using cuBLAS

In this section, we show implementations of the dense FCLs and CRLs described in Sec-

tion 5.3. To focus on the proposed method, we discuss them of only the FCLs. Therefore,
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the implementations of forward and backward propagation for the FCLs are explained.

Also, we assume that NHWC data format, which is one of data formats used in CNNs

and supported in TensorFlow [2] and Tensor Core [76], is used in the last convolutional

layer. In the data format, N represents the number of images in a batch, H and W represent

image size of vertical and horizontal direction, respectively, and C represents the number

of channels. This data format is one form of data representation that describes how four-

dimensional arrays are stored in one-dimensional memory address space. The elements in

right side of this format will store in one-dimensional memory address space firstly. Hence,

in NHWC data format, the elements are stored in one-dimensional memory address space

from those of channel-direction at first.

Our implementations use cuBLAS [6] which is a library supporting basic linear algebra

subprograms (BLAS) on the CUDA runtime. cuBLAS is highly tuned for NVIDIA GPUs,

and is used as an accelerator for deep learning frameworks such as TensorFlow [2] and

MXNet [4]. In this work, we have used two cuBLAS functions: level 2 functions and level

3 functions. The level 2 functions perform matrix-vector multiplication and vector-vector

addition. On the other hand, the level 3 functions perform matrix-matrix multiplication and

matrix-matrix addition.

5.4.1 Forward propagation

In this subsection, we explain implementations of forward propagation. First, the existing

GPU implementation for the general FCLs illustrated in Figure 5.1(b) is described. In

general, the dense FCL can be computed by performing a matrix-vector multiplication or
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a matrix-matrix multiplication. As shown in Eq. (5.1), the general FCL1 needs to perform

a matrix-vector multiplication for the weight matrix WFCL1 and the input activation vector

x0, and a vector-vector addition of its result and the bias vector bFCL1. Thus, we use the

level 2 function of cuBLAS. However, when the batch size is greater than 1, we need to

iterate the above process for the batch size. To avoid this iteration, multiple matrix-vector

multiplications are considered as one matrix-matrix multiplication. The input activation

vectors are converted to a batched input activation matrix X0 by concatenating its elements,

and the bias vector is extended to a batched bias matrix BFCL1 by broadcasting its elements.

Then, we can obtain the results of the general FCL1 for the batch size by applying the

level 3 function to the matrix-matrix multiplication for the weight matrix WFCL1 and the

batched input activation matrix X0, and the addition of the batched bias matrix BFCL1. This

process of the FCL1 can be applied to the FCL2 and FCL3 shown in Eqs. (5.2) and (5.3),

respectively.

Next, an implementation of forward propagation for the proposed CRLs illustrated in

Figure 5.1(c) is described. Note that we need to compute hw full connections since there

are hw small fully-connected networks in the proposed FCL1. When the batch size is 1,

the CRLs can be computed by hw matrix-vector multiplications. On the other hand, when

the batch size is greater than 1, we need to convert the hw input activation vectors to the

hw batched input activation matrices for efficient computation. In this conversion, we have

used the same idea described above. Thereby, the CRLs for the batch size can be computed

by hw matrix-matrix multiplications. Figure 5.3 shows the efficient computation approach

of the CRLs for a batch. In this figure, the forward computation for the hw full connec-
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Figure 5.3: The idea of computation for the CRLs in the implementation using cuBLAS
when the batch size is n. To compute the process of the n CRLs, the memory conversions
(NHWC to HWNC, and HWNC to NHWC) are performed. Thereby, the computation of
the n CRLs can be performed by a cuBLAS’s function at once.

tions of the batch size n is performed as hw matrix-matrix multiplications. Here, we note

that each hwmatrix-vector or matrix-matrix multiplication can be computed independently.

Thus, for any batch size, the CRLs can be computed by a stride batched function which is

cuBLAS function computing the independent multiple matrix-vector or matrix-matrix mul-

tiplications in efficiently. However, when the batch size is greater than 1, this implemen-

tation for the CRLs requires to convert the data format from NHWC to HWNC and from

HWNC to NHWC. Therefore, we have implemented two data format conversion kernels

using CUDA [5] that is a parallel computing platform for NVIDIA GPUs. In addition, we

have also implemented the ReLU activation function [32] using CUDA. Note that the order

of NHWC is equal to that of HWNC when the batch size is 1. In other words, the GPU

implementation of CRL with batch size 1 does not require the data format conversions.
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5.4.2 Backward propagation

In this subsection, we explain implementations of backward propagation using cuBLAS.

At first, we describe the implementations when the batch size is more than one. After that,

we describe them when the batch size is one. Here, we assume that the activation gradients

for the last FCL are obtained in advance.

In the following, the existing implementation of backward propagation for the general

FCLs is described. The backward propagation consists of two steps, activation gradient

computation and weight gradient computation. In general, these steps are performed by a

matrix-matrix multiplication when the batch size is greater than 1. We define the batched

activation gradient for the last convolutional layer as ∆X0, and the batched activation gra-

dient and the weight gradient for the l-th FCL as ∆Xl and ∆WFCLl (l = 1, 2, 3), respectively.

The l-th batched activation gradient ∆Xl can be computed as follow;

∆Xl =WFCLl∆Xl+1.

On the other hand, the weight gradient ∆WFCLl can be computed as follow;

∆WFCLl = Xl(∆Xl+1)T .

Therefore, to process the backward propagation for the general FCLs, we apply the level 3

function of cuBLAS to these matrix-matrix multiplications.

Next, an implementation of backward propagation using cuBLAS for the proposed FCLs

is described. We define the batched activation gradients for the last convolutional layer as

∆X0i, j and the weight gradients for the CRLs as ∆WCRLi, j (1 ≤ i ≤ h, 1 ≤ j ≤ w). Since

the CRLs consists of hw small fully-connected networks, hw matrix-matrix multiplications
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must be performed for each the activation gradient and the weight gradient computation.

In the proposed architecture, the batched activation gradient ∆X0i, j can be obtained by re-

peating the following equation hw times;

∆X0i, j =WCRLi, j∆X1i, j ,

where ∆X1i, j can be obtained by simply dividing ∆X1 per c1 elements. On the other hand,

the weight gradient matrices ∆WCRLi, j can be obtained by repeating the following equation

hw times;

∆WCRLi, j = X0i, j(∆X1i, j)
T .

In order to compute these hw matrix-matrix multiplications efficiently, we use the stride

batched function of cuBLAS. Also, same as the forward propagation, the data format con-

versions (NHWC to HWNC and HWNC to NHWC) are required in the activation gradient

computation step when the batch size is greater than 1. Therefore, we use the same kernels

as for the forward propagation. We note that they are not required when the batch size is

1 since the order of NHWC format will be equal to that of NCHW format. The compu-

tations of backward propagation in the FCL2 and the FCL3 are the same as those for the

general FCLs. In addition, we have implemented a kernel which compute the backward

propagation of ReLU activation function using CUDA.

Here, we describe the implementation of backward propagation using cuBLAS when the

batch size is one. In the existing implementation for the dense FCLs, the activation gradi-

ent computation can be performed by a matrix-vector multiplication for the weight matrix

and the activation gradient vector. On the other hand, the weight gradient computation can
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be performed by a multiplication of the input activation vector and transposed activation

gradient vector, and it results in a weight gradient matrix. Thus, we have used the level

2 function for the activation gradient computation and the level 3 function for the weight

gradient computation. Next, an implementation for the proposed FCL1 is described. In

the CRLs, hw matrix-vector multiplications of the weight matrices and the activation gra-

dient vectors are performed in the activation gradient computation step. On the other hand,

the weight gradient computation is performed by hw multiplications of the input activation

vector and transposed activation gradient vector. These computations contain hw multipli-

cations, hence, we have used the stride batched function.

5.5 Experimental results

In this section, we show the experimental results to evaluate the proposed sparse architec-

ture using AlexNet[21] and VGG-16[22]. AlexNet is the winner of ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) on 2012 that is competition for image classifi-

cation accuracy. The network of AlexNet is composed of 5 convolutional layers and 3

FCLs. On the other hand, VGG-16 is one of the networks called VGGNet which is the

first runner-up of ILSVRC on 2014 and has significantly improvement of accuracy over

AlexNet. The structure of VGG-16 is composed of 13 convolutional layers and 3 FCLs.

Since these networks have relatively simple architectures, they have been commonly used

as benchmarks for machine learning algorithms. The original FCLs for both of AlexNet and

VGG-16 are the general FCLs shown in Figure 5.1(b), where c1 = 4096 and c2 = 4096.

In addition, to make the effectiveness of the proposed approach clear, the original archi-
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tecture is simply compressed by reducing the channels c1 and c2. In this section, we refer

these simply compressed models as simple compression models, while we call the proposed

models, illustrated in Figure 5.1(c), proposed compression models. The last convolutional

layer shown in Figure 5.1(a) is given by h = 6, w = 6, c = 256 for AlexNet and h = 7,

w = 7, c = 512 for VGG-16. As the experimental environments, we have used CUDA

10.0, cuDNN 7.4.2, cuBLAS 10.0, python 3.6.7 and TensorFlow 1.13.1. Also, we have

used Intel Core i9-9960X CPU and 4 NVIDIA RTX 2080 Ti GPUs.

We have trained AlexNet models using a single GPU because the memory usage of the

parameters is much smaller than the size of the GPU memory. Also, we have used a single

GPU to perform the inference computation. The training time of the original, the simple

compression and the proposed compression models for AlexNet is approximately 65 hours

each using a single GPU. Even if the network size is reduced, the training time was not

changed. The reason of this is that the convolutional layers occupies most of the training

time of CNNs. In other words, the ratio of the training time of the FCLs is much smaller

than that of the convolutional layers. Therefore, the training time of CNNs was not changed

in spite of the reduction of the parameters in the FCLs.

On the other hand, in VGG-16, the models have been trained using four GPUs because

the memory usage of the parameters is much larger than the size of the GPU memory.

Also, we have used four GPUs to perform the inference computation. As same as the case

of AlexNet, the convolutional layers occupy most of the computation time. Therefore, the

network reduction of the FCLs does not shorten the computation time. However, every

GPU needs to broadcast updated parameters to the other GPUs via the PCI Express bus for
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each training step. The memory bandwidth of the PCI Express bus is lower than that of the

GPU. Therefore, the training time depends on the number of the updated parameters. In

other words, the training time is shorter if the compression ratio is higher. As a result, when

we trained the original, the simple compression and the proposed compression models, the

training time of each model was in the range of 60 to 125 hours.

5.5.1 Test accuracy and compression ratio

In this subsection, we show the training results of the proposed compression models for

AlexNet and VGG-16. After that, we evaluate the proposed compression models compared

to the original, the simple compression models. We have trained the models on ILSVRC-

2012 dataset [23]. ILSVRC-2012 dataset consists of one million or more training images

and 50000 evaluation images that are classified into 1000 classes such as goldfish, balloon

and microwave. Top-1 accuracy and Top-5 accuracy have been measured on the evaluation

images.

AlexNet: In this part, we show the training results for AlexNet on ILSVRC-2012 dataset.

We have trained both compression models on the hyper-parameters shown in [21] except

for using gradual warm-up technique [35]. Also, in the proposed compression models and

the simple compression models with c1 = 2304 and c1 = 1152, we set the dropout rate to

0.25 while that of the other models are set to 0.5. In the inference phase, we have used

the standard 10-crop testing [21] to evaluate the test accuracy of the models. The weights

of the CRLs have been initialized with a normal distribution with the zero mean and 0.01

variance. Also, the values of biases have been initialized to zero.
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Table 5.1: Test accuracy and the number of parameters for AlexNet on ILSVRC-2012
dataset

model c1 c2
number of compression top-1 top-5
parameters ratio (%) accuracy (%) accuracy (%)

original 4096 4096 58.6M 100.0 58.23 80.77
4608 4096 65.4M 111.6 58.43 80.93
4608 2048 54.0M 92.0 58.17 80.82

simple 4608 1024 48.2M 82.2 57.02 80.17
compression 2304 2048 28.0M 47.8 57.30 80.39

2304 1024 24.6M 42.0 56.08 79.58
1152 1024 12.8M 21.9 54.14 78.31
4608 4096 24.2M 41.7 57.82 80.60
4608 2048 12.7M 21.7 57.79 80.47

proposed 4608 1024 6.9M 11.8 57.45 80.24
compression 2304 2048 7.4M 12.5 57.96 79.84

2304 1024 4.0M 6.8 56.77 79.68
1152 1024 2.5M 4.3 55.17 78.90

Table 5.1 shows the training result of the original, the simple compression and the pro-

posed compression models. The number of parameters and the compression ratio are only

for the FCLs excluding the convolutional layers. We can see that the number of parameters

on the simple compression models cannot be reduced drastically in any channels. This is

because of its structure that the output nodes of the FCL1 must be connected to all nodes

in the output of the last convolutional layer. Nevertheless, the loss of test accuracy is sig-

nificant in the simple compression models which have high compression ratio.

By contrast, the proposed compression models have higher compression ratio than the

simple compression models in the same channels since the proposed FCL1 has 1
hw weights

compared to the general FCL1 in the simple compression models. Also, the test accuracy of

the proposed compression models are higher than those of the simple compression models

with a similar number of parameters. It seems that the reason for high test accuracy of the

proposed compression models is that the proposed architecture can promote the training by
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finding an advantage in the channels of feature maps. According to the table, the proposed

approach can reduce the network size up to 11.8% compression ratio compared to the

original model with almost the same test accuracy. On the other hand, the test accuracy

of the proposed models whose compression ratios are 6.8% and 4.3% is slightly decreased

compared to that of the original model. Therefore, as a further approach, we adopted fine-

tuning technique [77] to improve the accuracy for such cases.

Fine-tuning is a training technique that uses the weights and the biases of the pre-trained

model as initial values of a distinct model. We have used the trained original model of

AlexNet as the pre-trained model, and initialized the parameters of the convolutional layers.

The CRLs and FCLs are initialized by the same manner as described above. The learning

rate of the convolutional layers initialized with the pre-trained model were decreased from

0.01 to 0.001 to restrict major changes. Other training details are the same as described in

Krizhevsky et al. [21], except for reducing dropout rate from 0.5 to 0.25.

Table 5.2 shows the training result of the proposed compression models with fine-tuning.

According to the table, the proposed compression models achieve 1% test accuracy im-

provements in top-1 and top-5. Therefore, in the proposed compression model when c1 is

2304 and c2 is 1024, the test accuracy differences compared to the original are restricted

to 0.68% for top-1 and 0.19% for top-5. On the other hand, those of with the channel

c1 = 1152 and c2 = 1024 are 2.17% for top-1 and 1.25% for top-5. From the test accuracy

aspect, we should choose the channel c1 from 2304 or more for AlexNet on ILSVRC-2012

dataset. As a result, the proposed approach achieves high model compression ratio in al-

most the same accuracy compared to the original by using fine-tuning.
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Table 5.2: Test accuracy improvement with fine-tuning

model c1 c2
top-1 top-5

accuracy (%) accuracy (%)
original 4096 4096 58.23 80.77

proposed compression 2304 1024 56.77 79.68
(non-fine-tuning) 1152 1024 55.17 78.90

proposed compression 2304 1024 57.55 80.58
(fine-tuning) 1152 1024 56.06 79.52

VGG-16: Next, we show the training result for VGG-16 on ILSVRC-2012 dataset. We

have trained the original, the simple compression and the proposed compression models

using the pre-trained VGG-11 model. The pre-trained VGG-11 model had been trained on

the hyper-parameters shown in [22]. After training, some convolutional layers in VGG-16

were initialized with all convolutional layers in VGG-11. The VGG-16’s convolutional

layers which are not included in VGG-11, the CRLs and the FCLs have been initialized

with a normal distribution with the zero mean and 0.01 variance. Also, the values of biases

have been initialized to zero. In the simple compression and the proposed compression

models, the hyper-parameters are same as shown in [22] except for using gradual warmup.

Also, in the simple compression and the proposed compression models, we set the dropout

rate to 0.25 while that of the original model are set to 0.5. In the inference phase, we have

used the standard 10-crop testing[21].

Table 5.3 shows the test accuracy and the number of parameters for VGG-16 in the orig-

inal, the simple compression and the proposed compression models. We have trained the

simple compression model when c1 and c2 are 256 to compare with the proposed compres-

sion models which have high compression ratio. According to the table, the compression

ratios of the simple compression models are lower except for the model when the channels
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Table 5.3: Test accuracy and the number of parameters for VGG-16 on ILSVRC-2012
dataset

model c1 c2
number of compression top-1 top-5
parameters ratio (%) accuracy (%) accuracy (%)

original 4096 4096 123.6M 100.0 69.31 88.85
3136 2048 87.2M 70.5 69.23 88.91

simple 3136 1024 82.9M 67.1 68.85 88.55
compression 1568 1024 42.0M 34.0 68.54 88.30

256 256 6.7M 5.5 67.13 87.39
6272 4096 33.0M 26.7 68.60 88.35
6272 2048 18.1M 14.7 68.40 88.52

proposed 6272 1024 10.7M 8.6 68.73 88.60
compression 3136 2048 10.1M 8.2 68.61 88.56

3136 1024 5.8M 4.7 68.63 88.54
1568 1024 3.4M 2.8 68.02 88.07

are reduced significantly. However, since we have trained these models using fine-tuning,

the accuracy for the model with 34% or more compression ratio are almost the same as

those for the original model. By contrast, in the model with the 5.5% compression ratio,

the top-1 accuracy and the top-5 accuracy are decreased by 2.18% and 1.46%, respectively.

This is because of restriction of the network representation ability caused by the significant

reduction of its output nodes in the FCL1 and the FCL2.

On the other hand, the proposed compression models achieve high compression ratios

without significant decrease of the number of the output nodes in the FCL1 and the FCL2.

Therefore, the proposed model with 4.7% compression ratio can keep the test accuracy in

less than 1% while the simple compression model with 5.5% compression ratio cannot.

However, the top-1 accuracy of the proposed model when the channels c1 = 1568 and

c2 = 1024 is decreased by 1.29%. Considering the test accuracy, the channel c1 in the

proposed architecture should be 3136 or more for VGG-16 on ILSVRC-2012 dataset. As a

result, our proposed approach can achieve high model compression with a few test accuracy
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decrease even for VGG-16 network.

Now, let us consider the number of parameters in the whole network including the convo-

lutional layers for VGG-16. The total number of parameters in the whole non-compressed

network is 138.36 million. In the original model, the numbers of parameters in the convo-

lutional layers and the FCLs are 14.71 million and 123.64 million, respectively. In other

words, the parameters in the FCLs account for 89% of the total. On the other hand, the

number of parameters in the proposed compression model’s FCLs when c1 is 3136 and

c2 is 1024 is reduced from 123.64 million to 5.84 million. Therefore, the number of pa-

rameters in the proposed network including the convolutional layers is only 20.55 million.

Considering the actual memory usage to store the models when each parameter is a 32-bit

floating point number, we can reduce it from 553 MBytes to 82 MBytes. Therefore, using

the proposed sparse approach, it may be possible to execute even an embedded system with

limited memory usage.

The comparison with the sparse fully-connected layers divided by channel for VGG-

16: In the proposed compression models, we divided the output of the last convolutional

layers by position of the feature maps as shown in Figure 5.1. However, by dividing the out-

put of the last convolutional layers by channel as illustrated in Figure 5.4, we can consider

this structure is the structured sparsity as well. Therefore, we compare the compression

ratio and the accuracy of these structures. Table 5.4 shows the number of parameters in

the three FCLs, the compression ratio compared to the original model and the test accuracy

for VGG-16. From this table, we can see that the models divided by channel can compress

well. However, if the compression ratio is higher, the drop of the test accuracy is signifi-
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Figure 5.4: The sparse fully-connected layers divided by channel (b). The output of the
last convolutional layer (a) is divided by channel, and each divided two-dimensional map
is inputted to the CRL.

Table 5.4: The comparison with another compression structure for VGG-16

model c1 c2
number of compression top-1 top-5
parameters ratio (%) accuracy (%) accuracy (%)

original 4096 4096 123.6M 100.0 69.31 88.85
6272 4096 33.0M 26.7 68.60 88.35
6272 2048 18.1M 14.7 68.40 88.52

divide by position 6272 1024 10.7M 8.6 68.73 88.60
(proposed) 3136 2048 10.1M 8.2 68.61 88.56

3136 1024 5.8M 4.7 68.63 88.54
1568 1024 3.4M 2.8 68.02 88.07
4096 4096 21.1M 17.5 68.64 88.26
4096 2048 10.6M 8.6 68.18 88.52

divide by channel 4096 1024 5.4M 4.4 68.21 88.33
2048 2048 6.3M 5.1 67.94 88.03
2048 1024 3.2M 2.6 67.51 87.63

cant. For example, when we compare the two structures in approximately 4.5 compression

ratio, the test accuracy of the sparse model divided by channel is 0.41 and 0.23 lower for

top-1 and top-5 compared to the proposed model, respectively. As a result, the performance

of our proposed compression structure (divided by position) is higher than that of the other

compression structure (divided by channel).

The comparison with other network reduction approaches: Here, we compare the

test accuracy and compression ratio of the proposed sparse approach with those of the

87



Table 5.5: The comparison with other network reduction approaches for AlexNet
type of network

approach
number of compression top-1 top-5

reduction parameters ratio (%) accuracy (%) accuracy (%)
— original 62.4M 100.0 58.23 80.77

network pruning network pruning [13] 6.7M 10.7 57.23 78.33

structured sparsity

PermDNN [68] 16.6M 26.7 — 79.90
CSC Layers [20] 6.8M 11.0 — 77.60

ours (c1 = 2304, c2 = 1024) 7.7M 12.4 57.55 80.58
ours (c1 = 1152, c2 = 1024) 6.2M 10.0 56.06 79.52

Table 5.6: The comparison with other network reduction approaches for VGG-16
type of network

approach
number of compression top-1 top-5

reduction parameters ratio (%) accuracy (%) accuracy (%)
— original 138.3M 100.0 69.31 88.85

network pruning network pruning [13] 10.0M 7.5 68.66 89.12

structured sparsity
TT-format [67] 35.6M 25.7 68.50 88.50

ours (c1 = 3136, c2 = 1024) 20.5M 14.8 68.63 88.54
ours (c1 = 1568, c2 = 1024) 18.1M 13.1 68.02 88.07

pruning and structured sparsity approaches shown in Section 5.2. Table 5.5 shows the

comparison with other network reduction approaches [13, 68, 20] for AlexNet. Note that

the number of parameters and the compression ratio are for the overall network including

the convolutional layers and the FCLs. Therefore, in our proposed approach, the numbers

of parameters are increased compared to those shown in Table 5.1. From this table, the

proposed model with c1 = 2304, c2 = 1024 achieved the highest test accuracy with high

compression ratio among them.

Table 5.6 shows the comparison with other network reduction approaches [13, 67] for

VGG-16. In the comparison with the network pruning approach [13], the compression ratio

and the test accuracy of the proposed approach are lower than those of the network pruning

approach. However, we note that the network pruning approach produces the irregular

weight matrices which prevent the efficient parallel computation. On the other hand, the

proposed approach can achieve higher test accuracy with higher compression ratio than the
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existing structured sparsity approach [67].

As a result, our proposed approach can compress the networks in almost the same per-

formance compared to the network pruning approaches for AlexNet. Also, our approach

achieved higher compression ratio and higher accuracy compared to the other structured

sparsity approaches for AlexNet and VGG-16.

5.5.2 Computation time

In this subsection, we evaluate the forward and the backward propagation time of the pro-

posed compression models using a single GPU. We have used the network parameters of

AlexNet and VGG-16 on ILSVRC-2012 dataset. Therefore, the output of the last convolu-

tional layer is given by h = 6, w = 6, c = 256 for AlexNet and h = 7, w = 7, c = 512 for

VGG-16, and the last FCL is given by c3 = 1000 in the both architectures. Note that the

forward and the backward propagation time are measured for only FCLs to focus on our

proposed approach.

First, as a preliminary experiment, we evaluate the computation efficiency of the pro-

posed compression approach by comparing to the network pruning approach. The network

pruning approach has advantages of the compression ratio and the high test accuracy, while

it is not suitable to the parallel computation. On the other hand, our proposed compression

approach has these advantages and is also suitable to the parallel computation. To com-

pare these approaches, we show the computation time of the network pruning approach.

However, since Han et al. [13] did not evaluate the computation time and the trained net-

work parameters are not available, we can not measure the computation time with the same
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Table 5.7: The comparison of the forward propagation time between the network pruning
and the proposed compression approaches for the three FCLs when the batch size is 1.

approach c1 c2
compression forward propagation time [ms]
ratio (%) FCL1/CRLs FCL2 FCL3 total

original 4096 4096 100.0 0.7170 0.1250 0.0336 0.8757

4096 4096

26.7 0.6858 0.1127 0.0360 0.8346
14.7 0.3867 0.0601 0.0209 0.4677

network 8.6 0.1979 0.0319 0.0128 0.2426
pruning 8.2 0.1839 0.0347 0.0138 0.2324

4.7 0.1263 0.0281 0.0142 0.1687
2.8 0.0758 0.0172 0.0101 0.1031

6272 4096 26.7 0.0303 0.1865 0.0341 0.2509
6272 2048 14.7 0.0301 0.0964 0.0186 0.1452

proposed 6272 1024 8.6 0.0186 0.0513 0.0186 0.0884
compression 3136 2048 8.2 0.0186 0.0513 0.0186 0.0884

3136 1024 4.7 0.0185 0.0288 0.0112 0.0585
1568 1024 2.8 0.0126 0.0174 0.0114 0.0414

pruned parameters as the paper. Therefore, we generated three FCL networks with from

26.7% to 2.7% parameters pruned randomly. In general, the pruned network weights are

stored as a sparse data format to reduce the memory usage. As the sparse data format, we

adopted the Compressed Sparse Row (CSR) format which is a standard data format for the

sparse matrix. For the computation with the CSR format, we have used cuSPARSE 10.0

which is a library for handling sparse matrices on the GPU. Table 5.7 shows the forward

propagation time of the network pruning and the proposed compression approaches for

VGG-16 when the batch size is 1. From this table, we can see that the proposed compres-

sion approach runs faster than the network pruning approach. More specifically, when we

compare the network these approaches in the same compression ratio, the speed-up factors

of the proposed compression approach are in range from 2.5 to 3.3. Thus, our proposed

sparse network architecture is suitable to the parallel computation.
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Table 5.8: Computation time of the FCLs for the original, the simple compression and the
proposed compression model for AlexNet
batch

model c1 c2
forward propagation time [ms]

speed-up
backward propagation time [ms]

speed-up
size FCL1/CRLs FCL2 FCL3 total FCL1/CRLs FCL2 FCL3 total

1

original 4096 4096 0.2807 0.1248 0.0342 0.4397 1.00 0.5878 0.2544 0.0703 0.9125 1.00
4608 4096 0.3222 0.1572 0.0337 0.5130 0.86 0.6608 0.2866 0.0707 1.0181 0.90
4608 2048 0.3226 0.0806 0.0187 0.4219 1.04 0.6600 0.1504 0.0417 0.8521 1.07

simple 4608 1024 0.3226 0.0428 0.0112 0.3766 1.17 0.6597 0.0828 0.0268 0.7692 1.19
compression 2304 2048 0.1615 0.0394 0.0188 0.2197 2.00 0.3342 0.0835 0.0410 0.4587 1.99

2304 1024 0.1614 0.0230 0.0112 0.1955 2.25 0.3342 0.0485 0.0269 0.4095 2.23
1152 1024 0.0851 0.0145 0.0111 0.1108 3.97 0.1689 0.0326 0.0266 0.2281 4.00
4608 4096 0.0165 0.1576 0.0338 0.2079 2.11 0.0285 0.2847 0.0704 0.3836 2.38
4608 2048 0.0164 0.0806 0.0187 0.1157 3.80 0.0288 0.1497 0.0408 0.2193 4.16

proposed 4608 1024 0.0163 0.0435 0.0112 0.0710 6.19 0.0285 0.0810 0.0261 0.1356 6.73
compression 2304 2048 0.0108 0.0392 0.0187 0.0687 6.40 0.0195 0.0815 0.0404 0.1404 6.45

2304 1024 0.0109 0.0229 0.0113 0.0450 9.76 0.0194 0.0478 0.0255 0.0927 9.84
1152 1024 0.0085 0.0141 0.0112 0.0339 12.99 0.0158 0.0320 0.0262 0.0740 12.33

128

original 4096 4096 0.9288 0.3195 0.0925 1.3408 1.00 1.5848 0.7378 0.2007 2.5233 1.00
4608 4096 1.0799 0.4799 0.0921 1.6520 0.81 1.7711 0.8881 0.2004 2.8596 0.88
4608 2048 1.0913 0.2770 0.0540 1.4222 0.94 1.7776 0.4375 0.1120 2.3271 1.08

simple 4608 1024 1.0940 0.1341 0.0362 1.2644 1.06 1.7733 0.2453 0.0830 2.1016 1.20
compression 2304 2048 0.9061 0.1362 0.0518 1.0941 1.23 0.9041 0.2361 0.1100 1.2505 2.25

2304 1024 0.9052 0.0718 0.0349 1.0119 1.33 0.8989 0.1380 0.0833 1.1202 2.25
1152 1024 0.3058 0.0448 0.0346 0.3852 3.48 0.4584 0.0912 0.0837 0.6332 3.98
4608 4096 0.0813 0.4789 0.0883 0.6485 2.07 0.1111 0.8554 0.1947 1.1612 2.17
4608 2048 0.0828 0.2768 0.0512 0.4108 3.26 0.1096 0.4125 0.1064 0.6286 4.01

proposed 4608 1024 0.0820 0.1318 0.0346 0.2485 5.40 0.1062 0.2210 0.0805 0.4077 6.16
compression 2304 2048 0.0745 0.1386 0.0514 0.2646 5.07 0.0769 0.2186 0.1028 0.3983 6.33

2304 1024 0.0744 0.0737 0.0347 0.1829 7.33 0.0753 0.1223 0.0782 0.2757 9.15
1152 1024 0.0732 0.0478 0.0346 0.1556 8.62 0.0695 0.0819 0.0763 0.2276 11.09

AlexNet: Here, we evaluate the computation time of the proposed approach in some

settings. Table 5.8 shows the computation time of the FCLs for the original, the simple

compression and the proposed compression models for AlexNet. The computation time

of ReLU activation function is included in for each the column FCL1/CRLs and FCL2

regardless the batch size. Also, the computation time of the data format conversions are

included in only the column FCL1/CRLs for the proposed compression models when the

batch size is 128. According to the table, the implementation for the proposed compression

models can run faster than that for the original and the simple compression models. The

main reason is that the computational complexity of the proposed compression models is

highly reduced since the proposed compression model can compress the network with high

compression ratio. Also, the computation time of forward propagation is shorter than that
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of backward propagation because the computational complexity of forward propagation is

small. However, when the batch size is 128, the forward propagation time of the proposed

compression models with c1 = 2304 and c1 = 1152 have little difference compared to the

backward propagation time. This is caused by the algorithm of cuBLAS. cuBLAS mainly

uses a 128×64 matrix-matrix multiplication algorithm for the matrix-matrix multiplication

in smaller matrix size than 128×64 such as 64×64. Therefore, when 64×64 matrix-matrix

multiplication is performed, cuBLAS regards it as 128 × 64 matrix-matrix multiplication

and computes them by padding zeros. In other words, the computation time of 64 × 64

matrix-matrix multiplication is the same as 128 × 64 matrix-matrix multiplication. When

the batch size is 128, it is necessary to perform 64 × 128 and 32 × 128 matrix-matrix

multiplications about the forward propagation for the proposed compression models when

the channel c1 = 2304 and 1152, respectively. Thus, the computation time of them is close

to that of the proposed compression models with c1 = 4608 which performs 128 × 128

matrix-matrix multiplications. Note that the difference of the computation time between

the models with c1 = 4608 and c1 = 2304 is caused by including the ReLU and the GPU

functions of the data format conversions.

Nevertheless, the implementation of our proposed approach is much faster. More specifi-

cally, the forward propagation time of the proposed compression models achieved speed-up

factor up to 12.99 and 8.62 for the batch size 1 and 128, respectively. Also, the backward

propagation time can run 12.33 and 11.09 times faster for the batch size 1 and 128, respec-

tively.

VGG-16: Table 5.9 shows the computation time of the FCLs for the original, the sim-
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Table 5.9: Computation time of the FCLs for the original, the simple compression and the
proposed compression model for VGG-16
batch

model c1 c2
forward propagation time [ms]

speed-up
backward propagation time [ms]

speed-up
size FCL1/CRLs FCL2 FCL3 total FCL1/CRLs FCL2 FCL3 total

1

original 4096 4096 0.7170 0.1250 0.0336 0.8757 1.00 1.7385 0.2536 0.0708 2.0630 1.00

simple
3136 2048 0.5514 0.0517 0.0188 0.6219 1.41 1.3215 0.1112 0.0413 1.4740 1.40

compression
3136 1024 0.5512 0.0292 0.0112 0.5917 1.48 1.3218 0.0625 0.0268 1.4111 1.46
1568 1024 0.2799 0.0177 0.0112 0.3088 2.84 0.6335 0.0370 0.0267 0.6972 2.96
6272 4096 0.0303 0.1865 0.0341 0.2509 3.49 0.0579 0.3997 0.0702 0.5278 3.91
6272 2048 0.0301 0.0964 0.0186 0.1452 6.03 0.0581 0.2054 0.0409 0.3044 6.78

proposed 6272 1024 0.0300 0.0516 0.0114 0.0930 9.41 0.0579 0.1070 0.0263 0.1912 10.79
compression 3136 2048 0.0186 0.0513 0.0186 0.0884 9.90 0.0347 0.1088 0.0415 0.1850 11.15

3136 1024 0.0185 0.0288 0.0112 0.0585 14.97 0.0348 0.0625 0.0265 0.1238 16.67
1568 1024 0.0126 0.0174 0.0114 0.0414 21.16 0.0233 0.0370 0.0261 0.0864 23.88

128

original 4096 4096 2.6624 0.3325 0.0947 3.0895 1.00 4.2631 0.7532 0.2054 5.2217 1.00

simple
3136 2048 2.1978 0.1826 0.0547 2.4352 1.27 3.2770 0.3058 0.1143 3.6971 1.41

compression
3136 1024 2.2031 0.0937 0.0366 2.3334 1.32 3.2736 0.1952 0.0848 3.5535 1.47
1568 1024 1.4055 0.0556 0.0356 1.4966 2.06 1.6663 0.1142 0.0839 1.8644 2.80
6272 4096 0.1704 0.6331 0.0890 0.8926 3.46 0.2283 1.1090 0.2006 1.5379 3.40
6272 2048 0.1741 0.3788 0.0517 0.6047 5.11 0.2252 0.5557 0.1092 0.8901 5.87

proposed 6272 1024 0.1738 0.1775 0.0346 0.3859 8.01 0.2202 0.2800 0.0832 0.5834 8.95
compression 3136 2048 0.1513 0.1751 0.0513 0.3777 8.18 0.1511 0.2811 0.1053 0.5374 9.72

3136 1024 0.1509 0.0925 0.0345 0.2779 11.12 0.1499 0.1720 0.0807 0.4026 12.97
1568 1024 0.1449 0.0552 0.0344 0.2342 13.19 0.1366 0.0973 0.0772 0.3110 16.79

ple compression and the proposed compression models for VGG-16. We can see that the

tendency of the computation time for VGG-16 is similar to that for AlexNet. Also, when

the batch size is 128, the forward propagation time of the proposed compression models

with c1 = 3136 and c1 = 1568 is close to the backward propagation time. This is caused by

the same reason of the case for AlexNet, that is, cuBLAS uses the 128 × 64 matrix-matrix

multiplication for the matrix sizes 64 × 128 and 32 × 128 in the forward propagation with

c1 = 3136 and c1 = 1568, respectively.

As a result, the forward propagation time of the proposed compression models achieved

speed-up factor up to 21.16 and 13.19 for the batch size 1 and 128, respectively. Also, the

backward propagation time can run 23.88 and 16.79 times faster for the batch size 1 and

128, respectively. These results for AlexNet and VGG-16 imply that the proposed approach

can be utilized to accelerate the computation as well as compress the network models.
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Table 5.10: The performance of the proposed approach on the overall architecture including
the convolutional layers and the FCLs when the batch size is 1.

CNN model c1 c2
number of compression forward backward
parameters ratio (%) time (ms) speed-up time (ms) speed-up

AlexNet

original 4096 4096 62.4M 100.0 0.9910 1.00 1.9375 1.00
4608 4096 27.9M 44.8 0.7593 1.31 1.4086 1.38
4608 2048 16.4M 26.4 0.6671 1.49 1.2443 1.56

proposed 4608 1024 10.6M 17.1 0.6224 1.59 1.1606 1.67
compression 2304 2048 11.1M 17.9 0.6200 1.60 1.1664 1.66

2304 1024 7.7M 12.4 0.5964 1.66 1.1177 1.73
1152 1024 6.2M 10.0 0.5852 1.69 1.0990 1.76

VGG-16

original 4096 4096 138.3M 100.0 4.4919 1.00 11.2722 1.00
6272 4096 47.7M 34.5 3.8671 1.16 9.7370 1.16
6272 2048 32.8M 23.7 3.7614 1.19 9.5136 1.18

proposed 6272 1024 25.4M 18.3 3.7093 1.21 9.4004 1.20
compression 3136 2048 24.8M 17.9 3.7046 1.21 9.3942 1.20

3136 1024 20.5M 14.9 3.6747 1.22 9.3330 1.21
1568 1024 18.1M 13.1 3.6576 1.23 9.2956 1.21

5.5.3 Performance of the proposed approach on the overall network

In the above subsections, we evaluated the performance of only the FCLs. Here, we evalu-

ate the performance of the proposed approach on the overall network including the convo-

lutional layers and the FCLs. Table 5.10 shows the number of parameters, the compression

ratio, the computation time and the speed-up on the overall network when the batch size

is 1. The compression ratio is still high even if the number of parameters in the convo-

lutional layers is included. The speed-up is in range from 1.31 to 1.76 for AlexNet, and

from 1.16 to 1.23 for VGG-16. The speed-up factors of the proposed compression models

are lower than those in Tables 5.8 and 5.9. This is because the computational cost of the

convolutional layer is more expensive than that of the FCLs. However, in this work, our

proposed approach does not change the architecture of the convolutional layers. Therefore,

by combining the proposed approach and the other sparse approaches [16, 17, 18] for the

convolutional layers, we can shorten the computation time more.
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5.5.4 Transfer learning using VGG-16 on various datasets

In this part, to confirm reliability of the proposed approach, we tackle another experiment

using transfer learning for VGG-16. Considering the practical application, we have trained

the models when all convolutional layers are initialized by pre-trained model of VGG-16

taken from the Caffe model zoo1. This pre-trained model had been trained on ILSVRC-

2012 dataset [23]. Therefore, the source domain of transfer learning is various common

domain such as bird, fish, machine and construction. As datasets for transfer learning,

we have used three datasets which have different target domains, CUBS Birds [78], Stan-

ford Cars [79] and Stanford Dogs [80]. CUBS Birds dataset is the image dataset of birds.

This dataset contains 5994 training images and 5794 evaluation images classified into 200

classes of birds. Stanford Cars dataset is the image dataset of cars. It contains 8144 train-

ing images and 8041 evaluation images classified into 196 classes of cars. Stanford Dogs

dataset is the image dataset of dogs. It contains 12000 training images and 8580 evaluation

images classified into 120 classes of dogs. In the network training, we have mainly adopted

the training method by Krizhervsky et al [21]. The different points are shown as follows.

The evaluation images have been resized from 256 × 256 to 224 × 224 by cropping the

outside. The weights of all FCLs and the CRLs have been initialized with a normal distri-

bution with the zero mean and 0.01 variance. Also, the initial values of biases have been

set zero. As the optimization settings, the batch size has been set to 32, and the learning

rate has been set to 0.0005 and then decayed to 1
10 when the test top-1 accuracy is not im-

proved across 5 epochs. We have trained every model for 60 epochs. Top-1 test accuracy is

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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Table 5.11: The result of transfer learning for VGG-16 on CUBS Birds dataset and infer-
ence time of the FCLs

model c1 c2
number of compression top-1 inference time
parameters ratio (%) accuracy (%) total time [ms] speed-up

original 4096 4096 123.4M 100.0 65.49 0.8552 1.00
784 512 20.2M 16.8 67.87 0.1644 5.20
784 256 20.0M 16.6 68.37 0.1626 5.26

simple 392 256 10.0M 8.3 67.87 0.1003 8.53
compression 256 256 6.5M 5.4 67.47 0.0691 12.37

128 128 3.3M 2.7 65.59 0.0499 17.12
64 64 1.6M 1.3 53.28 0.0379 22.57
1568 1024 2.6M 2.2 66.97 0.0450 18.99
1568 512 1.7M 1.4 67.90 0.0381 22.43

proposed 1568 256 1.3M 1.0 66.75 0.0298 28.67
compression 784 512 0.9M 0.8 65.90 0.0298 28.72

784 256 0.7M 0.5 65.35 0.0279 30.69
392 256 0.4M 0.3 62.31 0.0274 31.26

measured for the evaluation images of each dataset. The training was repeated for 5 times

and the top-1 test accuracy we show are the maximum values among these training results.

CUBS Birds: Table 5.11 shows the training result of the original, the simple compres-

sion and the proposed compression models on CUBS Birds dataset and the inference time

when the batch size is 1. According to the table, the simple compression model when

the channels c1 = 784 and c2 = 256 achieved the highest test accuracy with slightly high

compression ratio. On the other hand, the proposed compression models achieved high

compression ratio with high accuracy. We can see that the proposed compression model

achieves high test accuracy compared to the simple compression model with almost the

same compression ratio. For example, the test accuracy of the proposed model with 1.4%

compression ratio is 14.62% higher than that of the simple compression model with 1.3%

compression ratio. Also, the proposed compression models can perform inference faster

owing to the significant reduction of the number of the network parameters.
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Table 5.12: The result of transfer learning for VGG-16 on Stanford Cars dataset and infer-
ence time of the FCLs

model c1 c2
number of compression top-1 inference time
parameters ratio (%) accuracy (%) total time [ms] speed-up

original 4096 4096 123.4M 100.0 79.91 0.8541 1.00
784 512 20.2M 16.8 83.36 0.1661 5.14
784 256 20.0M 16.6 83.41 0.1624 5.26

simple 392 256 10.0M 8.3 83.08 0.0997 8.56
compression 256 256 6.5M 5.4 82.56 0.0639 12.32

128 128 3.3M 2.7 79.75 0.0502 17.01
64 64 1.6M 1.3 62.43 0.0376 22.70
1568 1024 2.6M 2.2 82.56 0.0433 19.74
1568 512 1.7M 1.4 82.14 0.0385 22.21

proposed 1568 256 1.3M 1.0 81.68 0.0295 28.94
compression 784 512 0.9M 0.8 80.87 0.0293 29.16

784 256 0.7M 0.5 79.99 0.0279 30.65
392 256 0.4M 0.3 76.75 0.0270 31.69

Stanford Cars: Table 5.12 shows the training result on Stanford Cars dataset and the

inference time when the batch size is 1. We can see that the training result on Stanford

Cars dataset has the same tendency to that on CUBS Birds dataset. More specifically,

the difference of the top-1 accuracy between the simple compression model with 1.3%

compression ratio and the proposed compression model with 1.4% compression ratio is

19.71%. Therefore, the proposed compression models can achieve high test accuracy with

high compression ratios.

Stanford Dogs: Table 5.13 shows the training result on Stanford Dogs dataset and the

inference time when the batch size is 1. According to the table, the simple compression

model with c1 = 1568 and c2 = 512 achieved the highest top-1 accuracy. However, when

comparing to that model, the proposed compression model with c1 = 3136 and c2 = 512

achieves approximately 12 times reduction of the number of parameters with only 0.2%

top-1 accuracy decrease. In addition, when comparing two types of the compression mod-

els in almost the same compression ratio, the proposed compression models can get higher
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Table 5.13: The result of transfer learning for VGG-16 on Stanford Dogs dataset and infer-
ence time of the FCLs

model c1 c2
number of compression top-1 inference time
parameters ratio (%) accuracy (%) total time [ms] speed-up

original 4096 4096 120.0M 100.0 73.08 0.8522 1.00
3136 1024 82.0M 68.3 73.72 0.5884 1.45
3136 512 80.3M 66.9 73.74 0.5771 1.48

simple 1568 512 40.2M 33.1 73.95 0.2975 2.86

compression 1568 256 39.8M 33.0 73.36 0.2953 2.89
198 128 5.0M 4.1 72.39 0.0646 13.18
128 128 3.2M 2.7 71.84 0.0500 17.03
64 64 1.6M 1.3 65.78 0.0378 22.52
3136 1024 4.9M 4.1 73.66 0.0615 13.86

proposed 3136 512 3.3M 2.7 73.75 0.0488 17.46
compression 1568 512 1.7M 1.4 73.09 0.0377 22.61

1568 256 1.2M 1.0 72.45 0.0294 28.94

accuracy than that for the simple compression models. Also, regarding the inference time,

the proposed models can run faster than the simple compression models.

These results of transfer learning show our proposed sparse architecture can handle three

target domains with high test accuracy and high compression ratio. As a result, the reliabil-

ity of the proposed approach was proved in this subsection. However, it may be enough to

use the simple compression approach for these classification problems since it can achieve

the highest accuracy on each dataset. If high compression ratio with high accuracy is de-

sired, the proposed compression method should be implemented to achieve them.

5.6 Conclusion

In this work, we have proposed a structured sparse fully-connected layer in CNNs. The

proposed approach focuses on the first FCL and eliminates the connections between distant

elements in the feature maps. Using the approach, we succeeded in reducing the number

of parameters in the FCL with almost no loss of accuracy. In addition, we have shown
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implementations using cuBLAS for the proposed models. As a result, the proposed model

achieves a 14.7 times compression with 0.68% top-1 accuracy and 0.19% top-5 accuracy

decreases for AlexNet, and a 21.3 times compression with 0.68% top-1 accuracy and 0.31%

top-5 accuracy decreases for VGG-16 on ILSVRC-2012 dataset. The implementation for

the proposed FCLs achieved speed-up factors 12.33 and 11.09 compared to that for the

general FCLs on AlexNet architecture when the batch size is 128. Also, the implementation

for the proposed FCLs can run 11.12 and 12.97 times faster for forward and backward

propagation than that for the general FCLs on VGG-16 architecture when the batch size is

128. We believe that the proposed approach can compress the network with no accuracy

drop for CNNs which have three FCLs.

99



Chapter 6

Conclusion of the dissertation

In this dissertation, we have presented the two tile art image generation methods, and the

structured sparse FCL in the CNNs and its efficient GPU implementation.

In Chapter 4, we have presented the two tile art image generation methods; the greedy

approach and the machine learning approach. The experiment results show that the greedy

approach on the GPU can run up to 318 times faster than that on CPU with single thread

and the machine learning approach can generate a tile art image of size of size 4096×3072

within 1.04 seconds while the greedy approach on the GPU takes 571 seconds.

In Chapter 5, we have presented the structured sparse FCL in the CNNs that is suitable to

parallel computation. As a result for the large scale image recognition dataset, the proposed

approach achieves a 14.7 times compression with 0.68% top-1 accuracy and 0.19% top-5

accuracy decrease for AlexNet, and a 21.3 times compression with 0.68% top-1 accuracy

and 0.31% top-5 accuracy decrease for VGG-16. Also, in the experiment on NVIDIA

RTX 2080 Ti GPU, the GPU implementation for the proposed FCLs achieves speed-up

factor 14.97 and 16.67 for forward and backward propagation compared to that for the

non-compressed FCLs, respectively.
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