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Abstract

Optimizing the extraction of feature sets for anomaly detection tasks (AD) is still
a fundamental and challenging problem in the field of deep leaning. Anomaly
detection is an identification of instances, events or observations, which do not
conform to an expected pattern or other instances in dataset.

To perform AD tasks, we extract the discriminative features and efficient coding in
the latent space. Information from detection structure is encoded using convolutional-
based schemes and later is mapped in the low-dimensional space. We propose several
architectures to extract features of normal data for AD that encode the information
according to multiple learning strategy. Our models are based on autoencoder,
which can learn disrciminative information in encoder-decoder pipeline and a tight
boundaries is set for normal data.

For the one-dimensional data, we proposed vector-based convolutional autoen-
coder (V-CAE) for one dimensional anomaly detection. Given the good performance
of convolution network on matrix data, it is promising to transform one-dimensional
data into a matrix form and learn important relationship features by convolutional
network. The core of this model is a linear autoencoder, which is used to construct
a low-dimensional manifold of feature vectors for normal data. At the same time,
we used vector-based convolutional neural network (V-CNN) to extract the features
from vector data before and after the linear autoencoder (fully connected autoencoder
with F-norm reconstruction error and linear activation function) that makes the
model learn deep features for efficient anomaly detection. The V-CNN is used to
extract non-linear feature vector from the input vector by 2-D convolutional neural
network. In this study, we used input data as a vector form and only the features
extracted from the normal input data are used to train our proposed model.

However, the reconstruction error and abnormal score introduced in the afore-
mentioned studies used to tune the threshold only for latent sampled variables, and
as a result, such methods reported poor reconstruction performance in the abnormal
data. Unlike in the previous studies on applying CVAE to anomaly detection in which
the intention of variational autoencoder (VAE) deviated from learning an acceptable
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pattern for anomalous data identification. As for AD classification through the
normal data, examining the latent representation is promising and effective. Thus,
we introduce maximization of mutual information (MMI) regularization that help
in low-dimensional representation of learned features to emerge. The proposed
convulutional variational autoencoder (CVAE) is optimized by combining the repre-
sentations learned across the three different objectives targeted at MMI on both local
and global variables with the original training objective function of Kullback-Leibler
divergence distributions. This feature leads to the losses of information about the
input data distribution and mapping to the prior probability distribution, thereby
generating the output with the high false positives. Therefore, the application of
VAEs to anomaly detection tasks needs to be facilitated by adding suitable regular-
ization techniques . In the present study, we investigate the possibility to address
this issue by regularizing multiple discriminator spaces aiming to estimate how
precisely the output matches its input, rather than relying only on the encoder latent
space.

Though, the above latent-based methods for AD achieved better results for vector
datasets, it is not ideal for matrix datasets. Furthermore, those methods considered
detection using only one latent space and did not consider the possibility of a
mixture of low-dimensional nonlinear manifolds of multiple latent spaces. Linearly
combining different manifolds in latent spaces can generate best latent representation.
However, most of the existing AD methods solely based on the reconstruction errors
or latent representation using a single low-dimensional manifold are often not
ideal for the image objects with complex background. In this study to realize the
promise of multi-manifold latent information for AD, we propose a mixture of
experts ensemble with two convolutional variational autoencoders (CVAEs) and
convolution network (MEx-CVAEC) which explicitly learns manifold relationships
of data that make use of multiple encoded detections. In addition, in order to
enhance the model detection performance, we re-encode the output of the CVAE
by generating a new data manifold for AD. Thereby each expert is developed to
comprise an encoder-decoder-encoder pipeline (EDE) based on CVAE. Additionally,
we use a tower structure in the mixture-of-expert model to assign a latent score to
each latent representation.

Inspired by multi-space detection in autoencoder, orthogonal projection is in-
troduced to capture the null subspace that consists of noisy information for AD,
which is explicitly ignored in the existing approaches. The exploration of double
subspaces, called normal space (NS) and abnormal space (AS) can improve the
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discriminative manifold information. All these insights have a direct application to
the low-dimensonal representation of latent space in autoencoder-based methods
for the field of anomaly detection. The range subspace and null subspace are two
subspaces of the original space decomposed by their direct sum. To comprehensively
exploit the manifolds in two subspaces for robust AD, in this study, we propose an
autoencoder framework based on an orthogonal projection constraints (OPC) learn-
ing method. The primary objective involves the calculation of projected norms in
the range and null subspace. By constraining the projection operator to approximate
the orthogonal projections, the model can be trained in an end-to-end manner via
BP. In the proposed autoencoder framework model, the features are firstly extracted
from the raw input and projected into the subspaces by projection operator.

Compared with the state-of-the-art methods, the proposed methods achieve the
best performances, which demonstrates the effectiveness and robustness of anomaly
detection using the autoencoder-based method. In the future, we will try to redesign
the discrimination objective of the generator to further enhance the generator’s
ability to recognize anomalies.
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Chapter 1

Introduction

1.1 Motivation

With the improvement in the field of big data and the great improvement of computer
hardware, artificial intelligence (AI) technology is advancing by leaps and bounds,
and more and more attention is being paid to it in various fields. Therefore, as an
important branch of artificial intelligence, machine learning technology is particularly
important. Humans obtain information from the real world and use brain to process
the data. Data in the real world mainly includes signals, images and videos. It is
very limited for humans to manually process high-dimensional complicated data,
and difficult to pay a attention to all the information, so the use of machine learning
will effectively solve this problem. Machine learning has demonstrated its superior
strength in many difficult and high- dimensional data analysis tasks.

With the development of technology, artificial intelligence has been applied to
all walks of life. As an important branch of artificial intelligence, detection plays
an important role. In the industrial field, inspection is the most effective means to
ensure safety and quantity. Departments engaged in hazardous industries, such
as high-voltage power transmission and nuclear industries, mainly use manual
detection, which consumes a lot of manpower and material resources. At the same
time, such industries have high requirements for response. Manual detection will
reduce accuracy, detection efficiency, and prolong response time. Also, in order
to ensure the quantity of products in production lines, a lot of manpower is often
required to inspect products, which will undoubtedly bring a heavy burden to the
finances. In addition, artificial intelligence is also in great demand in the hospital
system, which have a greater demand for monitoring the patient’s physical condition.
In the field of security, whether it is a private place or a public place, intelligent
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monitoring and analysis play an important role in the safety of public life and
property. Compared with traditional manual monitoring, intelligent monitoring
analysis has huge advantages in monitoring. With the increase in international anti-
terrorism demand, the flow of people at airports and railway stations has increased,
and manual security detection cannot always pay attention to all important places.
In addition, the scanning of a large number of luggage items will bring visual fatigue
to the inspectors, which will greatly increase the missed detection rate and the false
detection rate. And people’s attention can only be concentrated for a short time,
which requires a large number of personnel to conduct inspections. Recruiting
a large number of video inspectors will increases the cost of enterprises. At the
same time, camera technology and monitoring and detection algorithms continue to
improve, and intelligent video analysis systems are applied to more scenarios and
tasks.

Anomaly detection (AD) technology is a cutting-edge technology in computer
vision and intelligent monitoring, and has a wide range of application values in
security and convenience services. First of all, AD is generally considered a binary
classification, and abnormal data is rarely or even unavailable. In most cases, the
system is running under normal condition; only a few cases will be abnormal, and the
abnormal state is unknown and unpredictable. Secondly, abnormal condition may be
fatal, so extremely fast response time is required. For example, in network intrusion
detection, once abnormal access is encountered, it needs to be blocked immediately
to ensure information security. However, this also requires accurate identification of
abnormal states supported by effectiveness of monitoring system. Because of the
uncertainty of abnormal conditions, the boundary division of normal data is very
important. A compact boundary based on normal features can effectively prevent
abnormalities. AD is a complex and widely used technology in computer vision.
The basic assumption of anomaly detection is that only normal data is available,
and abnormal data can only be used during testing. This is also in line with the
reality, that is, the normal state is the majority, and the abnormal state rarely occurs.
Therefore, the core task of anomaly detection is to learn the discriminative features
of normal data to distinguish between normal and abnormal data.

1.2 Structure of thesis

The human brain is simulated by a computer and stored in the computer in the form
of parameters, which is a way of memory. The parameters represent the running state
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of the system, and this idea is applicable in many disciplines. Designing algorithms
for feature learning and anomaly detection requires an in-depth understanding of
related knowledge and the direction that may improve performance. Map high-
dimensional data to low-dimensional data through unsupervised learning, which
provides valuable information on how to understand and evaluate. Therefore, when
performing anomaly detection tasks, the effectiveness of feature extraction needs to
be considered. Useless features will reduce the accuracy of detection. This work must
first understand the features of normal data, and extract and analyze all the steps
of this information for model design. The reconstruction task will be an important
step in anomaly detection. The low-dimensional popularity of low-dimensional
space represents the most fundamental feature of the data, which is essential for
reconstruction. In addition, the distribution of low-dimensional space will become
more and more concentrated during the training process. The more concentrated
the normal clustering, the more accurate the detection of abnormal points.

Chapter 2 provides a brief overview of anomaly detection (AD) and the way
knowledge is extracted and used for AD tasks. We analyze one-dimensional data
in the learning process by analyzing the influence of vector-based convolutional
networks in this chapter. During deep network training, a low-dimensional represen-
tation of the learned features will appear in the linear autoencoder. This is expected
to improve the generalization ability of the network and set a tight boundary on
normal data. These findings are confirmed by experiments on classification tasks.
Chapter 3 follows the neural network model in Chapter 2 to study the feature loca-
tion ability after mutual information learning is introduced into the convolutional
neural network. In this chapter, we propose a model based on a linear autoencoder
to classify image AD tasks, and it performs better than the most state-of-the-arts
methods. We have studied the applicability of events learned in three different
targets of MMI. The original training target is KLD for accurate anomaly detection.
In addition, we believe that the adaptability of the model is important for different
domains of the input data. Therefore, we evaluated the proposed objective function
on image and vector data.

Chapter 4 propose a mixture of experts ensemble with two convolutional varia-
tional autoencoders and convolution (MEx-CVAEC) model. The manifolds informa-
tion are extracted using the convolutional variational autoencoder (CVAE) which
can be trained end-to-end via back-propagation (BP). Moreover, to obtain more
manifold information in the latent space, we map the reconstructions into the new
low-dimensional latent space in each CVAE using an encoder-decoder-encoder (EDE)
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pipeline . Furthermore, in order to obtain a quantitative index from the latent space
which is used to measure whether the manifold of the latent space can represent
the discriminative features of anomaly-free data, a tower structure is used in the
mixture-of-expert model to assign a latent score to each latent representation.

In Chapter 5, we propose a convolutional autoencoder based on orthogonal
projection constraint (OPC-CAE). The space after the CNN is called as the full signal
space. The data in the full signal space are projected into the range and null subspace
by the projection operator. The range subspace and null subspace are named as
normal space (NS) and abnormal space (AS), respectively. The NS contains the main
information related to normal data; the information not related to the normal data is
projected to AS. To ensure disjoint that it is disjoint between the two subspaces, OPC
are adopted for the projection operator. Using OPC, we can obtain two mutually
orthogonal subspaces. Orthogonality is responsible for the disjoint between two
subspaces, implying that there is no common non-zero element between them. To
the best of our knowledge, this is the first study that introduces an AEs-based model
with two orthogonal subspaces for AD.

Appendix A gives full mathematical definition of the maximization of mutual
information learning of the proposed deep models in chapter 4. The update rules
with maximization of mutual information are proposed in this appendix highlighting
the benefits of MMI training for the generalization and robustness. Appendix B
gives detailed results on each dataset, which can demonstrate the stability and
effectiveness of our proposed model.



Chapter 2

Detection of One Dimensional
Anomalies using a Vector-based
Convolutional Autoencoder

2.1 Introduction

Deep learning has achieved encouraging performance in many visual task applica-
tions, which were included with labels. The cost of labeling increases, as the amount
of data increases. Generally unusual data appeared in real life entities cannot be
effectively trained by a classification model because of less number of data. Hence
anomaly detection algorithms is used to identify unusual/abnormal samples by
training the model using normal samples [23]. For example, the practical application
of anomaly intrusion detection demonstrates the anomaly detection task as shown
in Fig. 2.1. The red color points in the plot represents the abnormal data and it took
various positions and values due to different external factors.

In general, anomaly detection tasks used large number of normal samples to
train the model parameters Θ to generate the feature distribution p(x) for normal
samples. However, in training phase the number of abnormal samples are very
small or sometimes not available to identify the abnormal samples in the test phase.
In this case, only normal samples can be used to optimize the parameters of the
model and hence the abnormal score S(x) can be calculated using the test data for
identifying the abnormal samples.

Varying number of neurons and layers has been observed to largely affect the
performance of the anomaly detection models [76, 43]. Several intrusion classification



6
Detection of One Dimensional Anomalies using a Vector-based Convolutional

Autoencoder

Fig. 2.1 Demonstration of intrusion detection on KDD99 dataset. The two features of
network connections are represented as ’dst host count’ and’ dst host srv count’. The
green and red color points indicated the normal and abnormal network connections

models have focused deep belief networks with stacked Restricted Boltzmann
Machine and showed superior performance in identifying anomalies [7? ]. Inspired
from the aforementioned studies, we proposed to develop a V-CAE model for
anomaly detection. The core of the proposed architecture is a linear autoencoder,
which is used to find the sub space of the normal data by using the feature vectors
extracted by the vector-based convolutional neural network (V-CNN) [38]. The
V-CNN is used to extract non-linear feature vector from the input vector by 2-D
convolutional neural network. The proposed V-CAE framework for identifying
anomalies is shown in Fig 2.2. In this study, we used input data as a vector form
and only the features extracted from the normal input data are used to train our
proposed model.

The main contributions of this paper are as follows: 1) We used a autoencoder
based on mutual information to enable the encoder and decoder to learn the most
significant features of the input data. 2) We added a linear autoencoder to construct
a low-dimensional manifold of the normal samples. 3)We used combined abnormal
score computed from two different reconstruction errors: first one is calculated



2.2 Related Works 7

Fig. 2.2 Pipeline of the proposed approach for anomaly detection. The parameters of
the model shown in this figure are selected according to the feartures of KDD dataset.
In fc1,conv1,conv2 the activation functions are leaky relu; In deconv1,deconv2 the
activation functions are relu; In fc2 the activation function is tanh.The parameters
in this figure are the size of the output data of each layer. The input data is 43-
dimensional vector data and first passes through fc1 layer. Then the data dimension
becomes 64-dimensional. And the data is converted into matrix with 8× 8× 1 format
as the input of conv1 after fc1; After output from conv2 layer, the data is changed
into vector form, as input of linear encoder. The dimension of output data of linear
encoder is 64; The process of data output from decoder to the whole model is similar
to the previous process.

between the input and output of the model, and the second one is calculated between
the input and output of the linear autoencoder. 4)The effectiveness of the proposed
method is experimentally evaluated by comparing with the state-of-the-art methods.
5)We conducted ablation study on our proposed framework by removing linear
autoencoder in detecting anomalies.

2.2 Related Works

Anomaly detection has always been the focus of researchers, especially in the fields
of finance, information security, video surveillance and medical imaging. The
traditional methods are used to measure the similarity between data based on
distance [78], density [13], angle [47], isolation and [56], clustering [30], etc. These
algorithms are actually similar in lower dimension, because the core assumption
is that "the representation of abnormal points is different from normal points and
also it is a minority group". However, most similarity based algorithms will face
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the curse of dimensionality, that is, common similarity measures (such as Euclidean
distance) will often fail on high-dimensional data [113][83].

In order to solve this problem, many methods have been proposed, including:

1. Dimension reduction or feature selection [68]

2. Subspace methods, such as detection and merging on multiple low-dimensional
spaces, random projection (randomly generating multiple subspaces and
modeling separately on each subspace, feature bagging) and random forest.

3. Graph based methods are used to represent the relationships and extracted
features of data [6].

4. Intrinsic dimensionality based reverse nearest neighbors methods[77]

Furthermore, based on the availability of data labels, anomaly detection technol-
ogy can be divided into the following two types:

Supervised anomaly detection: The supervised anomaly detection mode assumes
that we have labeled normal data and abnormal data. The most typical method
is to transform the problem into a special two-class problem and establish a
predictive classification model. Many general machine learning classification
algorithms can be applied to model training [26]. The predicted data can be
used to determine whether it is normal or abnormal. The supervised anomaly
detection mode mainly has two application difficulties. Firstly, in the training
data, the amount of abnormal data is far less than the amount of normal
data, which brings a common data imbalance problem in the field of machine
learning and data mining. Secondly, it is very challenging to obtain accurate
and representative anomaly class label data. Researchers have been proposed
sampling, price sensitivity, active learning and other methods to solve the above
two problems. However, in practical application, the supervised anomaly
detection model is still very limited.

Unsupervised anomaly detection: Unsupervised anomaly detection does not need
to label data sets, and only normal data in the training set, so it has the widest
applicability. This technique contains an implicit assumption that normal
samples occur more frequently and are easier to obtain than abnormal samples.
This assumption is also based on the fact that the number of abnormal samples
in the data set is far lesser than the number of normal samples. Khreich et
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al.[40] used one-class support vector machine (SVM) to map the data to high-
dimensional space by kernel function, looking for hyperplanes to maximize
the interval between the data and the origin of coordinates. Tax et al. [113]
used support vector domain description (SVDD) method to map the data to
high-dimensional space by using kernel function to find the hypersphere as
small as possible to wrap the normal data. Yang et al. [105] modeled the
normal data with Gaussian mixture model and estimated the parameters with
maximum likelihood. When anomaly detection is carried out, the probability
that it belongs to normal data can be obtained by bringing its features into the
model. Liu et al. [57] used isolation forest method for anomaly detection.This
method is suitable for the case where there are few abnormal points, and adopts
the method of constructing multiple decision trees for anomaly detection. It
is entirely based on the concept of isolation to detect anomalies without any
distance or density measurement. He et al. [30] heuristically divided the data
set into large and small clusters. If an example belongs to a large cluster, the
abnormal score is calculated by using the example and the large cluster to
which it belongs; if an example belongs to a small cluster, the abnormal score
is calculated by using the example and the nearest large cluster.

2.3 Proposed Method

2.3.1 Overview

This paper proposes an anomaly detection method based on vector-based convolu-
tional autoencoder. The flow chart of our proposed method is shown in Fig. 2.2. In
this study, we consider the anomaly detection in one dimensional feature vectors.
After the one dimensional feature vector is fed into the first fully connected layer,
the vector data is converted to two dimensional matrix form. Then the deep features
are extracted by the standard convolutional layers. The core of our model is a linear
autoencoder, whose function is to reduce the dimension of data and finds the linear
subspace of the normal samples. It is expected that this linear autoencoder in the
middle of the convolutional autoencoder can help to find the tight boundary of
the normal samples. The reconstructed vector by the linear autoencoder are used
to reconstruct the output vector by using the deconvolutional layers. In the test
phase, an abnormal sample is detected by using the scores defined by using two
reconstruction errors of the convolutional autoencoder and the linear autoencoder.
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2.3.2 Vector-based Convolutional Autoencoder

In order to extract the non linear manifold of the normal data, we adopt the vector-
based convolution autoencoder. As shown in Fig. 2.2, the vector-based autoencoder
includes an input layer, fully connected (FC) layers, a linear autoencoder, convolution
layers before and after the linear autoencoder and output layer.

Let X = {x1, x2, ...., xn} be the set of one dimensional feature vectors in the normal
data and xi ∈ Rm where m is the dimension of each sample.

The input vector first passes through FC layer and is converted into the two
dimensional array. Then convolution neural network is used to extract the features
of the input vector. The extracted features are converted into the vector form and
then it is used as a input into the linear autoencoder. This procedure is defined by a
function C(.) and the flattened feature vector x̂i ∈ Rd is given as

x̂i = C(xi) (2.1)

where d = l × h × ch and h, l, and ch are the width, the height and the number of
channels of the output of the conv2 layer, respectively.

The linear autoencoder extracts the dimension reduced feature vector zi from the
flattened feature vector x̂i as

zi =Wx̂i + b (2.2)

where W ∈ Rd× k and b ∈ Rk are the weights and the bias of the linear encoder. The
dimension of the extracted feature vector zi is shown as k. The approximation ŷi of
x̂i is calculated by

ŷi =W′zi + b′ (2.3)

where W′
∈ Rk×d and b′ ∈ Rd are the weights and the bias of the linear decoder,

respectively.
The approximation ŷi of x̂i by the linear autoencoder is reshaped into the original

tensor format. It is used as the input of the next deconvolution layers. Finally, the
output vector yi of the vector-based convolutional autoencoder is obtained through
another FC layer. This procedure is defined by function C′(.) as

yi = C′(ŷi). (2.4)
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The loss function is defined based on the mean squared errors (MSEs) of the
convolutional autoencoder and the embedded linear autoencoder as

ℓ = α(
1
n

n∑
0

(xi − yi)2) + (1 − α)(
1
n

n∑
0

(̂xi − ŷi)2), α ∈ [0, 1] (2.5)

where the first term is the mean squred errors (MSE) between the input vector xi and
its approximation yi by the convolutional autoencoder and the second term is the
mean squared errors (MSE) between the feature vector x̂i and its approximation ŷi by
the linear autoencoder. The parameter α is used to adjust the degree of contribution
of these two MSEs to the objective function ℓ.

2.3.3 Anomaly Scores

In the test phase, the model calculates the anomaly score of each test sample
x. Again the anomaly score is defined based on the reconstruction error S1(x)
of the convolutional autoencoder and the reconstruction error S2(x) of the linear
autoencoder as

S(x) = λS1(x) + (1 − λ)S2(x) (2.6)

where λ is the tuning parameter that can be adjusted according to the tasks. The
reconstruction error S1(x) between the input vector x and it approximation y by the
convolutional autoencoder is defined as

S1(x) = ||x − y||2 (2.7)

Similary, the reconstruction error S2(x) between the feature vector x̂ and its approxi-
mation by the linear autoencoder is defined as

S2(x) = ||̂x − ŷ||2 (2.8)

In order to evaluate the impact of the overall anomaly detection performance,
the anomaly score are normalized. At first, the anomaly scores S = {S(xi)|xi ∈ X} for
all training samples X are calculated and the maximum max(S) and the minimum
min(S) of the anomaly scores are obtained. Then the anomaly score S(x) for the new
samples is normalized as

p =
S(x) −min(S)

max(S) −min(S)
(2.9)
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2.4 Experimental Setup

2.4.1 Data Set

In order to confirm the effectiveness and the efficiency of the proposed method, we
have performed experiments using three benchmark data sets which are KDD99,
Optdigits, default of credit card clients. We first carried out experiments on KDD99
abnormal intrusion data, treating the ’normal’ class data in the training phase and
defining other classes as abnormal data. The test set contains normal as well as
abnormal data. Optdigits data is experimented by treating one class (class ’3’) being
an anomaly, while another class (class ’1’) is considered as the normal data. Default
of credit card clients data set is an open source data set of a foreign organization.
The content of the data includes some attributes such as gender, education, marriage,
age, etc. It also includes the credit card consumption and bill situation of the user
over a period of time. ’Payment next month’, which only includes 0 or 1, is one of
the feartures from data indicates whether the user has repaid the credit card bill, ’1’
indicates repayment, and we classify this sample with 1 as category 1; Similarly,and
’0’ indicates no repayment. We classify the samples with features of ’Payment next
month’ which equal to ’1’ into class ’1’; Similarly, We classify the samples with
features of ’Payment next month’ which equal to ’0’ into class ’0’

The data sets used in our experiments are converted into binary data sets, i.e.
normal and abnormal data. The class which is considered as normal data is used to
train the model. The labels of the data sets are converted into binary labels, which
are used during testing. We calculated the abnormal scores of the test sets in each
data set and selected an appropriate threshold to distinguish them. The original
data set is randomly divided into training/testing with a ratio of 7/3. The details of
the data set used in our experiments are shown in Table 1.

Table 2.1 Details of the benchmark datasets used for performance evaluation.

Datasets Features Normal class abnormal class
KDD99 43 1 Others

Optdigits 47 1 3
Default of credit card clients 24 0 1
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2.4.2 Parameter Settings and Evaluation

We used adam to optimize the network parameters. The proposed method is
implemented in tensorflow. The parameter α is adjusted depending on the data sets.
The training was done with 1,000, 2,000 and 400 epochs for KDD99, Optdigits and
default of credit card clients, respectively. In the experiments, we compared the
proposed method with nine state-of-the-art methods, including several traditional
supervised methods and unsupervised methods. The proposed method is compared
with the four most advanced supervised methods including active learning (AL)
[96], feature packing (FB) [53], local outlier factor (LOF) [13] and pattern window
(PW) [107]. The proposed method is compared with the four unsupervised methods
including sparse coding (SC) [3], L21 − SRC(L21) [20], reverse nearest neighbors
(RNN) [77] and self-representation outlier detection (SRO) [108]. In addition to these
eight methods, the proposed method is also compared with the sparse reconstruction
(SR) method proposed by Hou et al. [32]. We computed area under the curve (AUC)
value using receiver operating curve analysis as the main evaluation measure for
performance evaluation. If the AUC score is large, then the performance of the
anomaly detection algorithm is good. Furthermore, we used precision, recall and F1
score to evaluate the performance of the proposed system.

2.5 Results

2.5.1 Comparison with the State-of-the-art Methods

Table 2 presented the results of our experiments. Based on this our method showed
more robust performance, which is better than those of the nine state-of-the-arts
methods. Among all the compared models, our model scored the highest AUC
score on all the three data sets, especially it is much higher compared over the latest
method [32]. Experiments on KDD99 and Optdigits selected the best α of 0.5 for
detecting the anomaly data. Experiment with default of credit card clients, the best
α is chosen as 0.4. By adjusting the values of λ , the detection results of the model
will also change accordingly. On the KDD99 and Optdigits, the choice of λ has little
influence on the model, because the distribution of S1 and S2 terms is enough to
separate the abnormal data, so the choice of λ is 0.5. But on default of credit card
clients dataset, the choice of λ has great influence on the results. We chose λ=0.6 by
assigning more weight on approximating S1 which plays a leading role in the data
set of credit card detection.
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Table 2.2 Performance comparison of ours and the state-of-the-art methods in terms
of AUC

Data sets FB AL LOF PW SC
KDD99 0.140 0.2971 0.134 0.196 0.627

Optdigits 0.577 – 0.523 0.734 0.589
Default of credit card clients 0.535 0.484 0.524 0 .643 0.496

Data sets L21 RNN SRO SR Ours
KDD99 0.799 0.798 0.368 0.819 0.996

Optdigits 0.833 0.767 0.515 0.722 0.996
Default of credit card clients 0.599 0.506 0.600 0.606 0.657

Figure 3 shows the distribution of anormaly scores on the KDD99 dataset. Based
on the distribution of anomaly scores of S1 and S2, it is suggested that these two
terms are sufficient to distinguish normal from abnormal data.

Table 2.3 Performance statistics of our proposed model in terms of precision, recall
and F1-score

Data sets Precision Recall F1-socre
KDD99 0.9932 0.9932 0.9932

Optdigits 0.9677 0.9928 0.9831
Default of credit card clients 0.6200 0.6201 0.6192

The detection results of the proposed model on default of credit card clients
are not as good as those of the other two datasets. It is because it showed very
poor relationship between the data and its features. Fig. 4 shows the correlation of
features and the data set. It clearly explained that there is no significant correlation
between the characteristics of some of its features (sex, education, marriage and age)
and the categories of the data sets. Therefore, the appearance of these irrelevant
features increases the difficulty of finding the anomaly data.

2.5.2 Ablation Study on Proposed Framework

The core of our model is using linear autoencoder, whose function is to reduce
the dimensions as well as compress the boundary of normal data. If the linear
autoencoder is removed from the framework, the anomaly score can be calculated
only from the term S1. As shown in Figure 3(c), removing the linear autoencoder has
no effect on KDD99 dataset, and the same is true for Optdigits dataset. For default
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(a) First subfigure (b) Second subfigure

(c) Second subfigure

Fig. 2.3 Detection of distributions of abnormal scores using our proposed method on
KDD99. (a) distribution of S1 (b) distribution of S2 and (c) without linear Autoencoder.
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Fig. 2.4 Interpreting of correlations between categories of data set and its features

of credit card clients dataset, the detection performance will be drastically reduced.
As can be seen from Table 4, the proposed framework without linear autoencoder
showed less value of AUC compared over the framework with linear autoencoder.
Furthermore, the precision, recall and F1-score of our method with linear autoencoder
is significantly better than those values without linear autoencoder.

Table 2.4 Performance of our proposed framework with and without linear autoen-
coder interms of AUC

Datasets with linear AE without linear AE
KDD99 0.9973 0.9953

Optdigits 0.9986 0.9967
Default of credit card clients 0.6570 0.5894

As can be seen from Figure 5, the results of our proposed method are better
than without autoencoder on KDD99 data set and Optdigits dataset. Meanwhile,
the results on default of credit card clients data set, our proposed framewok with
linear autoencoder is better than that without linear autoencoder. It proved that
our proposed V-CAE structure has potential ability to detect abnormal samples. In
addition, as shown in Tables 5 and 6, the precision, recall and F1-score results of
our method with or without linear autoencoder are almost similar. According to
Table 7, those measures on default of credit card clients data set, our method with
linear autoencoder showed better performance than those values without linear
autoencoder.
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(a) KDD (b) Optdigits

(c) Default of credit card clients

Fig. 2.5 Comparison of ROC curves for abnormal scores on different data sets. (a)
KDD, (b) Optdigits and (c) Default of credit card clients.
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Table 2.5 Performance of our proposed framework using with and without linear
autoencoder on KDD99

Measures with linear AE without linear AE
Precision 0.9932 0.9908

Recall 0.9932 0.9908
F1 socre 0.9932 0.9908

Table 2.6 Performance of our proposed framework using with and without linear
autoencoder on Optdigits

Measures with linear AE without linear AE
Precision 0.9946 0.9945

Recall 0.9946 0.9942
F1 socre 0.9945 0.9940

As can be seen from Table 8, We removed the vector-based convolutional neural
network(V-CNN) before and after the linear Autoencoder, and only used the linear
Autoencoder for experiments. We found our results were better than the results of
structure without the V-CNN.

Overall, experimental results can clearly explained that our proposed system
with linear autoencoder can perfectly separate the abnormally distributed data as
shown in Fig.3. The reconstruction error of the abnormal data is always larger than
that of normal data and thus the results demonstrated that the anomaly data can
be well detected by our proposed V-CAE approach. However, the differences of
reconstruction errors between the normal and abnormal data is not very high on
the credit card data set. Hence it is difficult to distinguish the anomalies from the
normal data set. But still our proposed model achieved the second highest score in
detecting anomalies on credit card data set.

Table 2.7 Performance of our proposed framework using with and without linear
autoencoder on default of credit card clients

Measures with linear AE without linear AE
Precision 0.6200 0.5613

Recall 0.6201 0.5698
F1 socre 0.6192 0.5649



2.5 Results 19

Table 2.8 Performance of our proposed framework with and without V-CNN interms
of AUC

Datasets with V-CNN without V-CNN
KDD99 0.9973 0.9958

Optdigits 0.9986 0.9914
Default of credit card clients 0.6570 0.5268





Chapter 3

Extensive framework based on novel
convolutional and variational
autoencoder based on maximization
of mutual information for anomaly
detection

3.1 Introduction

With the rapid development of science and technology, greater attention has been
paid to the questions of establishing security. As a security-related task, anomaly
detection has been attracting the interest of the increasing number of researchers.
It has been widely used in the fields of video surveillance [14, 29], defect detection
[50, 101] and medical imaging [90, 38]Anomaly detection can be used to identify
various patterns in a sample often including important information. In reality,
considering that using abnormal samples are insufficient, only normal samples are
employed to train the network aiming to learn the parameter Θ to generate the
feature distribution p(x) of the normal data for anomaly detection. The target of
anomaly detection task is to distinguish between normal samples and abnormal
samples, which is considered as a binary classification. Several research works on
anomaly detection attempted to identify abnormalities in samples using machine
learning and reported that with an increase in the abnormal score, the probability
of finding an outlier augmented as well [77, 13]. However, significant limitations
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associated with hand-engineered features deviated the goals of learning anomalous
events, due to the lack of flexibility required to detect local anomalies. Moreover,
estimating the amount of anomalies in advance is difficult.

It was found that deep structures could be parameterized by nonlinear functions
and can learn numerous conceptual representations to detect anomalies. Hence
researchers attempted to improve the effectiveness of feature extraction by incor-
porating deep network structures into vectors, images and videos for anomalies
[77, 13, 81, 15, 41]. Recently, deep generative models are widely employed for
anomaly detection. These approaches applied to learn probability distributions
by training a model on an anomaly-free dataset and therefore, outliers could be
identified according to their deviation from the probability model. Generative
adversarial neural (GAN) networks were implemented to efficiently train a model
aiming to fit a data distribution for anomaly detection [111, 63]. The convolutional
autoencoder (CAE) was applied to estimate the probability of data distribution based
on the criterion of large reconstruction errors [17]. Denoizing autoencoder [90] used
to identify whether the anomaly data prior distribution is an interdependent set
of the normal prior distribution in the latent space. However, the reconstruction
error and abnormal score introduced in the aforementioned studies used to tune the
threshold only for latent sampled variables, and as a result, such methods reported
poor reconstruction performance in the abnormal data.

To resolve these issues, in the present paper, we propose a novel convolutional
kernel based on a variational autoencoder (CVAE) to obtain robust reconstruction
results for both normal and abnormal samples. Unlike in the previous studies
on applying CVAE to anomaly detection in which the intention of variational
autoencoder (VAE) deviated from learning an acceptable pattern for anomalous
data identification, we propose to introduced the concept of the maximization of
mutual information (MMI) between multiple discriminator spaces to regularize the
objective of CVAE. The generalization ability of variational autoencoders (VAEs) is
higher compared with that of the autoencoders (AEs), as it relies on probabilities.
Therefore VAEs have been widely applied in various anomaly detection tasks
[75, 8]. However, VAEs employ the regularization, which minimize or maximize the
Kullback-Leibler divergence (KLD) distributions to control the space of the encoder,
and no regularization is considered in the generator. This feature leads to the losses
of information about the input data distribution and mapping to the prior probability
distribution, thereby generating the output with the high false positives. Therefore,
the application of VAEs to anomaly detection tasks needs to be facilitated by adding
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suitable regularization techniques [58, 39]. In the present study, we investigate
the possibility to address this issue by regularizing multiple discriminator spaces
aiming to estimate how precisely the output matches its input, rather than relying
only on the encoder latent space. This can be achieved by maximizing the mutual
information (MI) between three different pairs of variable targets, including both
local and global information in multiple discriminator spaces.

To show the effectiveness of our proposed approach in distinguishing anomalies,
we utilized toy sampled data using normal samples from Gaussion distribution
with mean 1, standard deviation 2, abnormal samples from Gaussion distribution
with mean 2, standard deviation 2 and the size of 1000 × 40 (normal and abnormal
samples are both 1000) as shown in Fig. 1(a). We intend to maximize the mutual
information (MMI) between the raw input and the latent space, which can effectively
constrain the representation of the latent space. It makes the latent space to learn the
discriminative features of the raw data effectively and thus avoid the noise which
is being projected into the latent space is shown in Fig. 1(b). For visualization, we
used principal components analysis (PCA) to reduce the dimensionality of the raw
data and the latent representation to the two dimension vectors.

As shown in Fig. 1 the performance of the proposed approach is highly acceptable
in distinguishing the anomalies from anomaly-free data, compared over the methods
using manifolds of the latent space by convolution variational autoencoder (CVAE)
without MMI (Fig. 1(c)), and OCGAN [70] (Fig. 1(d)). Because the conventional
methods were not implementing constraints on the latent space, the noise information
of the raw data could also be possible to be mapped into the low-dimensional latent
space and important features are ignored for accurate anomaly detection.

However, it is not a simple task to introduce the maximization of MI in the
high-dimensional space as a measure of the true dependence between variables
for anomaly detection. A recent thread of research works have been focused on
representing MI in deep generative models concerning various domains and tasks
[11, 36, 65]. These approaches have integrated MI maximization with prior matching
to restrict the learning process depending on necessary statistical properties [60]. The
approaches for realization of MI have diverged, including Jensen-Shannon divergence
(JSD) [12], Monte-Carlo method [46], and the original objective of KLD [33] between
the joint and marginal for data reconstruction. Unlike in the aforementioned studies,
in the present research work, we investigate the applicability of the events learned
across the three different objectives targeted at MMI with original training objective of
KLD for accurate anomaly detection. Furthermore, we consider that the adaptability
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Fig. 3.1 Performance visualization of the proposed approach over conventional
methods for anomaly detection based on the toy sampled data. (a) The distribution
of the raw input, (b) latent representation of the proposed method, (c) latent
presentation of CVAE, and (d) latent representation of OCGAN.

of a model is important for the different domain of the input data, and therefore, we
evaluate the proposed objective function on both image and the vector data. To the
best of our knowledge, this is the first study suggesting the CVAE-MMI model for
anomaly detection.

The main contributions of this paper can be summarized as follows:

1. We proposed a novel convolutional kernel based on a variational autoencoder
(CVAE) for complex image anomaly detection by the maximization of MI (MMI)
through regularizing multiple discriminator spaces to control the boundary of
the distribution.
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2. We investigated the suitability of MMI that was learned considering the three
different objectives targeted at both the local and global variables facilitate to
achieve the additional supervision power for accurate detection of anomalies.

3. We intuitively verified that the proposed approach was robust and easy to
adopt for image and vector anomalies, including the convolutional and the
fully connected layers, respectively, for the encoder-decoder structure in the
proposed MMI-based framework.

4. Extensive experiments were conducted to confirm the reliability of the pro-
posed MMI-based loss (LMMI) and anomaly score (SMMI) for the detection of
abnormality in the convolutional autoencoder-based architecture.

5. We compared the performance of the proposed framework with the state-of-
the-art approaches for the detection of image and vector anomalies.

6. The ablation study was conducted to check the capability of the network with
or without our proposed objectives for anomaly detection concerning both
image and vector datasets.

3.2 Related Work

In this section, we briefly review the related works dedicated to the decision
boundary and density estimation models, as well as to applying autoencoder and
deep generative techniques for anomaly detection.

3.2.1 Decision boundary and density estimation models

To solve the anomaly detection problem, several studies have proposed different
terms such as abnormality detection [35], one-class classification [62], and outlier
detection [82]. Although the used terminology differs across the papers, the idea of
solving the problem is basically the same. It is considered that estimating a decision
boundary between different anomalies with maximal separability using support
vector machine (SVM) allows effectively solving high-dimensional data modeling
problems under finite sample conditions [100]. One class SVM (OCSVM) [40] has
been introduced assuming that the hyperplane represented by the support vector
can classify the target class samples against the anomaly origin within the maximum
interval.
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Support vector data description has been proposed [98] to identify a super sphere
including target samples called optimal hypersphere. This approach allows easily
identifying anomalous points located outside of the hypersphere. A density-based
method for anomaly detection has utilized the Parzen window [107] to measure the
locality information and distribution density of data. The nearest neighbor method
[45] has been implemented to estimate the local density of data based on the distance
between two points and to calculate the number of neighbors aiming to determine
the outlier. The method inspired by the aforementioned studies [78] has improved
the local density estimation approach by estimating the distance between each point
and its neighbors. It was used to identify outliers by traversing the neighboring
points.

3.2.2 Deep autoencoder and generative models

In recent years several deep generative networks have been developed to perform
parameter projection and data reconstruction. Generally, it is assumed that the
outliers produce larger residuals compared with the regular data. Convolutional
autoencoder (CAE) [15] can be used to learn characteristics of data distribution based
on the anomaly-free data, at the same time, generating larger reconstruction errors in
the abnormal data. Linear-based CAE (LCAE) [109] can be utilized as the core part
to better learn the manifold of data and compress the boundaries of normal data. A
denoizing autoencoder based on bidirectional long short-term memory recurrent
neural networks (RNN) [61] has been applied to process the auditory spectral
features and to compute the reconstruction error between the input and output of an
autoencoder to detect new events. A sparse representation framework [97] introduced
to learn dictionaries based on the latent space of a variational autoencoder can be
used to find the anomalous data that exhibit significant reconstruction errors. Similar
denoizing autoencoder [70] has been introduced to explicitly specify constraints
in the latent space to determine the given class for anomaly detection. However,
existing autoencoder network architectures rely on mean square error loss (MSE) to
comply with the features of anomaly detection, which is not optimal to establish
representational learning in hidden layers. To address this deficiency, in the present
study, we construct a model to learn the stabilized comprehensible features for both
local and global variables that preserve the required information represented by the
input to the greatest possible extent.

A simple VAE using the Monte-Carlo reconstruction probability has demonstrated
the superior performance compared with AE[21]. However, a generative VAE [22]
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approach constructed with intrinsic limitations without the knowledge of specific
regularization is not applicable to secured anomaly detection. Therefore, in this
study, we aim to addresses the problem of distribution by introducing a more
generative model that can be tuned according to different problem domains by
combining the ability of variational autoencoder (VAE) with MMI. The proposed
network can be used to learn the features based on MMI and set the tight boundary
around the normal data. The models based on GAN have introduced a discriminator
considering the latent representations (either a generator input or from the encoder)
for anomaly detection [111]. To exploit both generator and discriminator [54], the
trained discriminator has been coupled with the residuals observed between the
reconstructed and actual data concerning possible anomalies. The generative model
f-anoGAN [89] has been introduced as a fast mapping technique based on a trained
encoder and anomalies have been detected considering a combined anomaly score.
Similarly, in the current study, we are motivated to use the combined MI-based
anomaly scores to control the boundary of the distribution.

3.3 Background

3.3.1 Variational autoencoder

The goal of applying VAE is to make the posterior distribution as close as possible to
the prior one. The idea underlying VAE is similar to that of AEs, with the difference
that the encoder of VAE forces the representation code Z to prior probability
distribution P(Z), and the decoder generates new realistic data with code Z sampled
from P(Z). The conditional distributions of both encoder and decoder are represented
as follows: Qϕ(Z|X), and Pθ(X|Z). VAE employs the regularization of KLD to limit
the capacity of the encoder and to measure the similarity between two distributions.
To estimate the maximum likelihood, VAE maximizes the evidence variational lower
bound (ELBO) L(x). To optimize KLD between Qϕ(Z|X) and Pθ(X|Z), the encoder
calculates the vectors of Gaussian distribution Qϕ(Z|X), and the vectors are denoted
as mean µ and standard deviation σ.

To optimize the probability distributions, VAE aims to minimize the reconstruction
errors between the inputs and the outputs. Given the data point x ∈ R, the objective
function can be written as follows:

LV = LMSE(x,Gθ(Z)) + λLKLD(Eϕ(x)) (3.1)
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Parameters G and E denote the generator and encoder, respectively. The term
LMSE(x,Gθ(Z)) represents MSE between the inputs and their reconstructions. The
term LKLD(Eϕ(x)) regularizes the encoder by enabling the approximate posterior
Qϕ(Z|X) to match the prior P(Z). To maintain the trade-off between these two targets,
each KLD target term is multiplied by a scaling hyperparameter λ and defined by
the following equation:

LKLD(Eϕ(x)) =
∑
x∈X

1
2

(−logσ2(x) + µ2(x) + σ2(x) + 1) (3.2)

where x ∈ X, σ(.) andµ(.) correspond to the mean and standard deviation, respectively,
according to the given x [44]. AE computes the reconstruction error as an anomaly
score in the test phase, whereas VAE obtains the reconstruction probability to
estimate anomalies [69]. To compute the probabilistic anomaly score, VAE samples Z
according to the prior Pθ(X|Z) N times and calculates the mean average reconstruction
error as the reconstruction probability [95].

3.3.2 Mutual Information

MI is utilized to learn the model distribution Pθ(X) aiming to fit the true data
distribution Q(X) in the best possible way. In information theory, MI between two
random variables is a measure of the mutual dependence between variable defined
as follows:

I(X; Z) = H(X) −H(X|Z) (3.3)

where H is the Shannon entropy, and H(X|Z) is the conditional entropy of Z with
regard to the given X. MI is minimum when two random variables are statistically
independent, or maximum when two variables contain identical information. There-
fore, if MI is high, the variables are highly predictive with regard to each other.
Unlike the correlation coefficient, MI captures nonlinear statistical dependencies
between variables, and therefore, it can be applied to measure true dependence of
variables [60].

MI is equivalent to KLD between the joint distribution PXY and the product of
the marginals PX

⊗
PY, as defined by the following equation

H(X; Y) = DKL(PXY|PX

⊗
PY) (3.4)

where P represents the probability distribution of variables X and Y, and DKL is
defined as follows:
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DKL(PXY|PX

⊗
PY) =

∫ ∫
p(y|x)p(x)log

p(y|x)p(x)
p(y)p(x)

dxdy (3.5)

Here, x ∈ X and y ∈ Y, p denote the probability densities of P. Therefore,
according to Eq. 3, the larger the divergence between the joint and the product of the
marginals, the stronger the dependence between X and Y. If two variables X and Y are
dependent, then KL divergence of the joint and the marginal probability distributions
represents the closeness to independent variables. To reduce bias and variance, recent
works have suggested employing MI and bave relied on approximating the Gaussian
data distribution, as well as estimating entropy with varying neighborhood sizes
and dual representations of the KLD [103]. However, these MI estimators have failed
to be scaled effectively corresponding to a sample dimension and therefore, several
studies have aimed at maximizing the mutual information under the generative joint
distribution Pθ(X,Z) [16, 22]. However, in the present study, we aim to maximize
MI under ensemble learning considering different variational joint distributions
Qϕ(X,Z), which forces VAE to learn robust features for image and vector datasets. MI
could capture nonlinear statistical dependencies between variables, and therefore, we
exploit the maximization criterion for MI estimation across three different objectives
as key information

3.4 Method

In the present study, we proposed a novel CVAE combined with multiple MI-based
anomaly discriminator space variables that maximize the relative similarity between
the input and the output feature map. The features of CVAE combined with
maximization of MI (CVAE-MMI) facilitate achieving the additional supervision
power over the original training objective function of the KLD term of in VAE
model. The adoptability of the proposed architecture is evaluated for the image
and vector datasets. Concerning image anomaly detection, convolutional neural
network (CNN) including fully connected (FC) layer is used as the core element in
the encoder-decoder structure of the proposed CVAE-MMI framework, as shown in
Fig. 2. Concerning vector-based anomaly detection, FC layers is embedded in the
encoder-decoder structure of the FVAE-MMI framework, as shown in Fig.3.
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Table 3.1 CVAE-MII structure for image anomaly detection

CVAE Discriminator

conv1(channel:32, filter:5) conv1(channel:32, filter:5)
batch normalization batch normalization

max pooling(2*2) max pooling(2*2)
conv2(channel:64, filter:5) conv2(channel:64, filter:5)

batch normalization batch normalization
conv3(channel:128, filter:5) conv3(channel:128, filter:5)

batch normalization batch normalization
max pooling(2*2) max pooling(2*2)

fully-connected(500) fully-connected(neuron:100,activation:ReLU)
fully-connected(2048) fully-connected(neuron:1,activation:Sigmoid)

deconv1(channel:64, filter:5)
batch normalization

up sampling(2*2)
deconv2(channel:32, filter:5)

batch normalization
up sampling(2*2)

deconv3(channel:3, filter:5)
batch normalization

up sampling(2*2)
1 CIFAR10 dataset is considered as an example

Table 3.2 FVAE-MMI structure for vector anomaly detection

FVAE Discriminator

fully-connected(neuron:20,activation:ReLU) fully-connected(neuron:20,activation:ReLU)
fully-connected(neuron:10,activation:ReLU) fully-connected(neuron:10,activation:ReLU)
fully-connected(neuron:5,activation:ReLU) fully-connected(neuron:5,activation:ReLU)

fully-connected(neuron:10,activation:ReLU) fully-connected(neuron:1,activation:Sigmoid)
fully-connected(neuron:20,activation:ReLU)
fully-connected(neuron:43,activation:ReLU)

1 KDD99 dataset is considered as an example
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Fig. 3.2 Proposed convolutional and variational autoencoder framework with maxi-
mization of mutual information for image anomaly detection.

3.4.1 Convolutional and VAE-MMI Ensemble Framework for Anomaly
Detection

We implement three convolutional layers in the encoder network with 5 × 5 kernels,
and the stride is fixed to be 1 aiming to establish spatial downsampling. Each
convolutional layer is followed by batch normalization, a leaky rectified linear unit
(ReLU)activation function, and the max poolinglayer. Then, two FC output layers
are added in the encoder to retrieve mean and variance of input datasets. The mean
value and the variance value are used to calculate the KLD loss and latent sample
variables. In the decoder, we implement three transpose convolutional and three
upsampling layers with 5 × 5 kernels and set stride to 1. Each convolutional layer is
followed by batch normalization, a ReLU activation function and the upsampling
layer; however, in the third convolutional layer, we utilize tanh activation function.

We introduce three discriminators so that each of them includes two convolution
layers with 5 × 5 kernels. We set stride equal to be 1. Each convolutional layer in
the discriminators is followed by batch normalization, a ReLU activation function
and the max pooling layer. Finally, a FC layer is included in the discriminator. The
details of the proposed CVAE-MMI architecture is are provided in Table 1. The
approximation discriminator allows estimating MI between the input and the output
of the entire model. The latent discriminator retrieves MI between the input and
the latent representation phase. The hidden discriminator computes MI between
the output of the first convolutional layer in the encoder part (l1, l1 ∈ L1) and the
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Fig. 3.3 Proposed fully connected and variational autoencoder framework with
maximization of mutual information for vector anomaly detection.

input of the last convolutional layer in the decoder part (l′1, l′1 ∈ L′1) in terms of
forward-propagation.

Additionally, to confirm the applicability of the proposed FVAE-MMI framework
to the vector data input, we replace the convolutional layers with a FC network in
the encoder-decoder. We utilize two FC layers in the encoder followed by ReLU
activation function. The number of neurons is set to 20 and 10 in the first and second
layers, respectively. Similarly as in the decoder we use two FC layers followed by the
ReLU activation function. In the discriminators of FVAE-MMI for vector datasets,
we replace two convolutional layers with two FC ones. Therefore, we implement
totally 3 FC layers, so that first two FC layers are followed by the ReLU activation
function. The details of the proposed FVAE-MMI for vector data are provided
in Table 2. The aim of each discriminator used in the proposed architecture is to
maximize MI between two variables. In fact, it is rather difficult to estimate the MI
from input. To solve this problem the proposed CVAE network is optimized using
multiple discriminators of MMI to promote the shared information representation
from input [63].

3.4.2 MMI based Training Objective

Inspired by [63, 31], we aim to develop a network incorporating MMI between two
distributions. In the training process, we train CVAE-MMI using normal samples
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and therefore, the encoder-decoder and encoder parts are fit for normal samples.
We define the objective function as the combination of three discriminators loss
functions with the original KLD term. In such way, the proposed CVAE-MMI model
is optimized based on the entire context information presented in the input data.

The first loss function computes the MI in the latent discriminator between the
input and its encoded representation latent space. This step is used to narrow the
difference between the original input and the latent representation and is defined as
follows:

I(X,Z) =
∫ ∫

p(z|x)p(x)log
p(z|x)
p(z)

dxdz (3.6)

where X is a set of original input and x ∈ X. The parameter Z is defined as a set of
encoded latent representations, and z is a vector, where z ∈ Z. Here, p(.) represents
probability distribution.

According to the study [63], Eq. (5) can be transformed and optimized as follows

I(X,Z) ≈ D(x, z) = E(x,z)∼p(z|x)p(x)[logH(x, z)] + E(x,y)∼p(z)p(x)[logH(x, z)] (3.7)

where E denotes an expectation value. The variable H(.) is equal to 1
1+exp(−v(.)) ,

where v(.) is a function that can be defined according to [65] .
To solve v(x, z) function, negative sampling estimation (NSE) is introduced based

on noise-contrastive estimation [31]. Latent discriminant network D(x, z) is used so
that x and its corresponding z are regarded as a positive sample pair. The variable
x and its non-corresponding (not encoded by x) z are regarded as a negative pair.
Similarly, we define approximation discriminator D(x, y) and hidden discriminator
D(l1, l′1), as shown in Fig. 2 and 3 .

The second loss function corresponds to the feature matching error that is used
to stabilize the training in the approximation discriminator. It computes the MI
distance between the original image feature representation and the generated output
image, which can be written as follows:

I(X,Y) ≈ D(x, y)

= E(x,y)∼p(y|x)p(x)[logH(x, y)] + E(x,y)∼p(y)p(x)[logH(x, y)]
(3.8)

The parameter Y is a set of the outputs, and y ∈ Y.
The third loss function corresponds to the active tensor space in the hidden

discriminator. The latent and approximation discriminators can enable the generator
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to learn the stabilized context correlated features for classification. The hidden repre-
sentation is capable of obtaining the comprehensible features of spatial correlations
between the input and output and therefore, it is highly significant to improve the
quality of the output. The hidden discriminator calculates the MI between the first
convolutional layer output of the encoder and the last convolutional layer input of
the decoder. It is defined as follows:

I(L1,L′1) ≈ D(l1, l′1)

= E(l1,l′1)∼p(l′1|l1)p(l1)[logH(l1, l′1)]

+ E(l1,l′1)∼p(l1)p(l′1)[logH(l1, l′1)]

(3.9)

Here, the parameters L1, and L′1 are the output of the first convolutional layer and
the input of the last convolutional layer in the encoder and decoder, respectively,
in terms of the forward propagation network. The variables l1 ∈ L1 and l′1 ∈ L′1
are generated from the set of input data x. According to the knowledge of data
processing inequality (DPI) in [110], we consider I(X,Y) > I(L1,L′1) as a loss network
to train the classification. Therefore, we compute the maximization of MI between L1

and L′1 , which allows increasing the lower bound of MI between X and Y represented
as I(X,Y).

The final MMI-based reconstruction loss (LMMI) combines the three aforemen-
tioned discriminator loss functions along with the KLD loss to control the boundary
of the distribution. The goal of this study is to maximize the MI thereby theoretically
minimizing the KLD, which is equivalent to maximizing MI between data distri-
butions. Hence the objective function to train the proposed network is defined as
follows:

LMMI = λKLDDKL(P(Z)|Q(Z)) − (λI(X,Z) + λAI(X,Y) + λHI(L1,L′1))

= λKLDEx∼p(x)[DKL(P(Z|X)||Q(Z))]

− λL

{
E(x,z)∼p(z|x)p(x)[logH(x, z)] + E(x,z)∼p(z)p(x)[log(1 −H(x, z))]

}
− λA

{
E(x,y)∼p(z|x)p(x)[logH(x, y)] + E(x,y)∼p(y)p(x)[log(1 −H(x, y))]

}
− λH

{
E(l1,l′1)∼p(l′1|l1)p(l1)[logH(l1, l′1)] + E(l1,l′1)∼p(l′1)p(l1)[log(1 −H(l1, l′1))]

}
(3.10)

where λKLD , λL, λA, and λH are the weighting parameters of discriminators that
are used to adjust the impact of individual losses on the overall objective function
λL = λKLD + λ. We can reformulate the proposed objective function presented in Eq.
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(9) as follows:

LMMI = λKLDEx∼p(x)[DKL(P(Z|X)||Q(Z))] − λLD(x, z) − λAD(x, y) − λHD(l1, l′1) (3.11)
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The detailed specific inference processes related to the considered training
objective functions are described in Appendix A. The proposed MMI-based training
objective function is summarized in Algorithm 1.

Algorithm 1: Training objective of the proposed model
Input: Set of training data x, x ∈ X, iteration size N, weighting parameters

λKLD , λL, λA, and λH.
Output: Y, Z, L1, L′1
Process from x to z is defined as En(x), so z = En(x) ;
Similarly we can get: y = De(z), l1 = En(x), l′1 = En(z);
initialization;
for iteration 1→ N do

Take a mini-batch of M [x1, ..., xm] as the input;
zi = En(xi), zj = En(x j), xi, x j ∈M, i , j;
yi = De(zi), y j = De(zj);
l1i = En(xi), l1 j = De(xi);
l′1i = En(zi), l′1 j = De(zj);

if Latent discriminator update then
Hreal ← concatenating(xi, zi) ;
H f ake ← concatenating(xi, zj), i , j;
D(x, z)← D(Hreal, 1) +D(H f ake, 0);
Back-propagate D(x, z) to change D;

end
if Approximate discriminator update then

Hreal ← concatenating(xi, yi) ;
H f ake ← concatenating(xi, y j, i , j);
D(x, y)← D(Hreal, 1) +D(H f ake, 0);
Back-propagate D(x, y) to change D;

end
if Hidden discriminator update then

Hreal ← concatenating(l1i, l′1i) ;
H f ake ← concatenating(l1i, l′1 j, i , j);

D(l1, l′1)← D(Hreal, 1) +D(H f ake, 0);
Back-propagate D(l1, l′1) to change D;

end
Optimized
LMMI = λKLDEx∼p(x)[DKL(P(Z|X)||Q(Z))]− λHD(x, z)− λAD(x, y)− λLD(l1, l′1)

end
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3.4.3 Anomaly Score

In the proposed CVAE-MMI both the trained encoder, latent representation and
output of decoder part contribute to detecting anomalies. Spontaneously, the trained
representation should be able to separate normal data from abnormal ones. Given a
test sample t, t ∈ T, the encoder estimates the parameters of the latent variables µ and
σ as the output of the encoder. The generated latent representation, and the output
of the decoder received these from encoder as inputs and outputs the representation
z′, and y′, respectively.

If the model takes an anomalous sample as an input, the differences between the
representation and the average calculated during training is large. This difference
in the scores can be calculated using the MMI-based anomaly score (SMMI) as
SMMI = {s : V(t), t ∈ T}, where V(t) is the abnormal score of each sample. It is defined
as follows:

V(t) = λSa(t) + (1 − λ)Sl(t), λ ∈ [0, 1] (3.12)

where λ is the tuning parameter adjusted according to the task. The outlier at
the output representation for testing sample Sa(t) can be defined by calculating the
Euclidean distance between the generated average ym of training data X and the
output y′ according to t . It is defined as follows:

Sa(t) = ||y′ − ym||
2 (3.13)

where ym =
1
n

∑
y∈Y

y, y ∈ Y.

Similarly, the outlier at the latent space for testing sample Sl(t) can be defined
by calculating the Euclidean distance between the average latent sampled vector zm

obtained in the training phase and the generated latent output z′ in VAE:

Sl(t) = ||z′ − zm||
2 (3.14)

where zm =
1
n

∑
z∈Z

z, z ∈ Z. Here, the MMI-anomaly score is normalized to the interval

of [0, 1]. The abnormal score close to 1 indicates the higher abnormality of the
data. To address this, we set the following threshold: if V(t) > threshold, then it is
considered as the abnormal data. The normalized score is defined as follows:

s̃ =
s −min(SMMI)

max(SMMI) −min((SMMI)
(3.15)
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3.5 Experimental Setup

3.5.1 Dataset

We intuitively whether verified the proposed CVAE-MMI and FVAE-MMI models
can be robust and easy to adopt for image and vector datasets, respectively. For
image datasets we used CIFAR10, CIFAR100, STL-10, and IMAGENET, the most
challenging and complex datasets including various contents compared to the other
properly aligned object recognition datasets such as Fashion Mnist and COIL.

The datasets CIFAR10 and STL-10 comprise the images corresponding to ten
different classes, whereas CIFAR100 and IMAGENET included the images regarded
to multiple classes. Therefore we select only ten classes from CIFAR100 and
IMAGENET for the evaluation of the proposed anomaly detection framework.
In order to simulate a anomaly detection setting for image datasets, one class is
considered as the normal class, the union of other classes are considered as abnormal
class, as proposed in [1, 85, 70]. The network is trained using only samples of the
normal class. During testing, we use the mixture of the normal samples and the
abnormal samples for test data. For vector datasets, we employ the KDD99 abnormal
intrusion data including five classes: one normal class and four abnormal classes.
Moreover, we consider the Default of credit card clients dataset composed of two
classes: one normal class and one abnormal class.

3.5.2 Experimental Evaluation and Performance Measure

The effectiveness of both CVAE-MMI and FVAE-MMI models are evaluated to
through training on normal samples and testing on the mixture of the normal and
abnormal samples. The existing training and testing data proportions was adopted,
including CIFAR10 [48], STL10 [19], and CIFAR100 [48] for image datasets and
KDD99 [73] and default of credit card clients [106] for vector ones, while in the
case of IMAGENET [21] we set the training and testing ratios of 60% and 40%,
respectively.

To confirm the reliability of the proposed (LMMI) and (SMMI) using CVAE for
anomaly detection, it is compared with MSE loss ((lmse) and Euclidean distance-
based anomaly score (seu) considering the CAE-based model. Furthermore, the
effectiveness of CVAE-MMI in image anomaly detection is evaluated through the
comparison with nine state-of-the-art methods. This included One-class Gaussian
mixture model (GMM) [18], kernel density estimation (KDE) [52], CAE [17], VAE
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[44], pixel convolutinal neuron network decoders (Pixel CNN) [99], GAN [90], skip
connected ganomaly (SCG) [5] , anomaly detection with generative adversarial
networks (AnoGAN) [90], and one-class GAN (OCGAN) [70].

The effectiveness of the proposed framework in terms of vector anomaly detection
is tested through the comparison with seven state-of-the-art methods that, including
active learning (AL) [2], feature packing (FB) [53], local outlier factor (LOF) [13],
sparse coding (SC) [3], reverse nearest neighbors (RNN) [77], self-representation
outlier detection (SRO) [3], and sparse reconstruction (SR) [32]. The individual and
overall class performance of the proposed networks and state-of-the-art methods on
the image and vector datasets is evaluated and compared in terms of an average
area under the curve (AUC) value of the receiver operating characteristic (ROC)
curve. The high AUC score indicates the good performance of a method in detecting
anomalies.

3.5.3 Parameter Settings

We apply Adam optimizer to optimize the network parameters for the image and
vector datasets. We set the parameters β1(0.5) and β2(0.99) for the image and vector
datasets, respectively. The network is trained using 1,000 epochs for the CIFAR10,
CIFAR100, STL10 and IMAGENET datasets and 2,000 epochs for the KDD99 and
Default of credit card clients datasets. For image datasets, we set the learning rate of
0.0001 for CIFAR10 and CIFAR100, 0.00005 for STL10 and IMAGENET, and for each
iteration, we specify the batch size of 100. For vector datasets, we set the learning
rate equal to 0.00005 and the batch size of 200 for each iteration. The proposed
framework is implemented in Python 3.6 using Tensorflow 1.9.

3.6 Experimental Results

3.6.1 Performance Comparison considering the CAE-based net-
works

We conduct several experiments to confirm the reliability of the proposed (LMMI)
and (SMMI) using CVAE for anomaly detection . It is done through estimating the
performance in terms of MSE loss ((LMse) and Euclidean distance-based anomaly score
(SEu) considering the convolutional autoencoder-based model on the CIFAR10 and
STL-10 datasets. To ensure fair comparison, the performance of CVAE is compared
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with the CAE [15] and LCAE [109] methods in terms of the AUC value. Overall, we
conduct four different experiments considering the cases with and without using the
proposed loss and anomaly score to compare the prediction performance estimates of
on CAE, LCAE, and CVAE, which are represented as follows: 1) structures with (lmse)
and (seu), 2) structures with (lmse) and proposed (SMMI), 3) structures with proposed
(LMMI), and (seu), 4) structures with both proposed (LMMI) and (SMMI).

Table 3.3 Performance comparison of CAE, LCAE, and CVAE in terms of average
AUC.

Datasets CAE LCAE CVAE

lmse+seu

CIFAR10 0.5234 0.5942 0.6193
STL10 0.5698 0.5853 0.6017

lmse+SMMI

CIFAR10 0.5137 0.6005 0.6071
STL10 0.5306 0.5989 0.6038

LMMI+seu

CIFAR10 0.5303 0.6026 0.6091
STL10 0.5262 0.5772 0.5816

LMMI+SMMI

CIFAR10 0.5519 0.6472 0.6590
STL10 0.5426 0.6418 0.6448

According to Table 3, the performance of all architectures incorporating the
proposed LMMI+SMMI learning outperforms the other combinations of learning
methods. Consequently, we demonstrate that the proposed CVAE-MMI model
performs better compared with the other two basic models in all combinations of
learning methods. This is achieved by addressing latent space irregularities with
appropriate regularization. We can also observe that the performance of LCAE is
acceptable compared with the simple CAE owing to effectively compressing the data
boundaries.
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3.6.2 Performance Comparison against State-of-the-art methods

As a result of the conducted experiment, we observe that the performance of the
proposed CVAE-MMI model based on the considered ten classes corresponding
to each of the four datasets achieved a better performance in terms of the average
AUC value compared with those of the considered nine state-of-the-art methods for
anomaly detection (Table 4 and Fig. 4). It confirms that in detecting rating image
anomalies, the proposed model achieved rather better performance compared with
the advanced OCGAN model [70]. Specifically, the performance of the proposed
framework is much better than those of the other state-of-the-art approaches on the
complex datasets (STL-10 and IMAGENET).

Table 3.4 Performance comparison of CVAE-MMI and the state-of-the-art methods
on overall classes in image datasets in terms of mean AUC

Datasets GMM KDE CAE VAE Pixel CNN

CIFAR10 0.5875 0.6097 0.5234 0.5833 0.5506
Cifar100 0.6170 0.6456 0.4912 0.5081 0.5146
STL10 0.6156 0.5842 0.5698 0.5942 0.5002

IMAGENET 0.5706 0.5310 0.5602 0.5769 0.4911

Datasets GAN SCG ANOGAN OCGAN Proposed

CIFAR10 0.5916 0.6172 0.6179 0.6566 0.6590
Cifar100 0.4774 0.4886 0.4678 0.6526 0.7128
STL10 0.5043 0.5155 0.5212 0.6177 0.6448

IMAGENET 0.5537 0.5405 0.5780 0.6225 0.6583

The stable performance of the CVAE-MMI framework in the case of image
anomalies on the four data sets is represented in Fig. 5. We observe that the proposed
framework outperforms the state-of-the-art methods by achieving the relatively
stable and high average AUC values on all four datasets in terms of detecting
image anomalies. Then, the performance of the proposed CVAE-MMI framework
in terms of estimating anomalies based on each individual class is compared over
the state-of-the-art methods on CIFAR10, CIFAR100, STL-10, and IMAGENET, as is
presented in Tables 7,8,9, and 10 in Appendix B. Among the considered ten classes,
the classes number four, eight, five, and three corresponding to CIFAR10, CIFAR100,
STL-10, and IMAGENET, respectively, demonstrate higher AUC in the case of the
proposed framework compared with the other methods, as shown in Figure 6.
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Fig. 3.4 Performance comparison of our proposed over the state-of-the-artmethods
on image datasets in terms of mean AUC values.

To verify the generality and adaptability of the proposed FVAE-MII on the vector
datasets, we conduct the experiments considering seven state-of-the-art methods. As
represented in Table 5 and Fig. 7, the proposed model outperforms the state-of-the-art
methods in the case of the KDD99 dataset. However , in the case of the Default of
credit card clients dataset, the proposed framework demonstrate the performance
estimate lower than those of SRO and SR methods , even though still achieving the
high AUC value.

3.6.3 Convergence of the proposed architecture

Several reconstruction error detection methods [5, 4] used less (below 50 epochs)
training iterations. Using a less number of iterations often results in a high AUC
score; however, it may not be sufficiently stable to produce a well-reconstructed
image result. Specifically, in the case of complex datasets, the autoencoder-based
standard reconstruction error detection model often tends to produce an identity
mapping. To overcome these problems, the proposed model learning process is
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Fig. 3.5 Performance comparison of CVAE-MMI and the state-of-the-arts on overall
classes of four data sets in terms of AUC

implemented using the large number of iterations (1,000 epochs), and therefore,
produce more reliable and sound results compared with the conventional methods.
To demonstrate the convergence of the proposed framework, we randomly select a
class (bag) from the IMAGENET dataset and analyze the corresponding its iterative
curve.

As seen in Fig 8, the learning curve of the proposed model converge and stabilize
after the 700th epoch. In addition, the image anomaly detection performance of the
proposed network improve with an increase in the number of iterations with the high
AUC value and it tends to be stable after 700 iterations according to Fig 9. Similarly,
all class performance estimates on the image and vector datasets demonstrate the
similar tendency in their learning convergence curves. According to Fig 10, AUC
values tend to be stable after 700 and 1200 iterations corresponding to KDD99 and
Default of credit card clients, respectively.
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Fig. 3.6 Performance of CVAE-MMI on each class in four datasets in terms of AUC.

3.6.4 Ablation study

The effectiveness of the CVAE-MMI and FVAE-MMI frameworks components is
validated by ablation experiments conducted using both image and vector datasets,
respectively. We consider the following three learning settings: 1)implemented the
complete three discriminator spaces model, 2) removed the latent discriminator and
3) removed both latent and hidden discriminators. The experimental results are
presented in Table 6. For image datasets, it is observed that in the cases of settings 2
and 3, the anomaly detection performance deteriorate by almost 1% and more than
1%, respectively, compared to the performance of the complete model using setting
1. For vector datasets, the anomaly detection performance in settings 2 and 3 using
KDD decrease by more than 4% and in the case of using Default dredit card clients
datasets it decline by more than 2% compared to that of the complete model.

3.6.5 Performance Visualization on Latent Space

The latent space is visualized by using PCA that reduce the dimensionality of the
latent space into two dimensions. The performance of the latent distribution of the
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Table 3.5 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning CIFAR10

Method PLANE CAR BIRD CAT DEER DOG

GMM 0.635 0.433 0.618 0.498 0.733 0.515
KDE 0.658 0.520 0.657 0.497 0.727 0.496
CAE 0.606 0.271 0.655 0.549 0.701 0.532
VAE 0.700 0.386 0.679 0.535 0.748 0.523

Pix CNN 0.788 0.428 0.617 0.574 0.511 0.571
GAN 0.708 0.458 0.664 0.510 0.722 0.505
SKG 0.717 0.494 0.662 0.527 0.736 0.504

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620

Ours 0.682 0.614 0.604 0.620 0.704 0.562

Method FROG HORSE SHIP TRUCK MEAN

GMM 0.696 0.540 0.675 0.531 0.5874
KDE 0.758 0.564 0.680 0.540 0.6097
CAE 0.537 0.408 0.653 0.322 0.5234
VAE 0.687 0.493 0.696 0.386 0.5833

Pix CNN 0.422 0.454 0.715 0.426 0.5506
GAN 0.707 0.471 0.713 0.458 0.5916
SKG 0.726 0.560 0.680 0.566 0.6172

AnoGAN 0.585 0.625 0.758 0.665 0.6179
OCGAN 0.723 0.575 0.820 0.554 0.6566

Ours 0.734 0.639 0.756 0.675 0.6590

proposed model is compared with that of the SCG and OCGAN based on CIFAR100
dataset. It is found that the latent representation distribution of the proposed (Fig
11. (a), and (d)) is more efficient to distinguish between normal and abnormal
samples than that of SCG model (Fig. 11(b) and (e)) and OCGAN (Fig. 11(c) and
(f)). Compared with the GAN-based method, the proposed method makes the
distribution more compact, which shows that the MMI can enable the model to learn
more discriminative features from the raw input.
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Table 3.6 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning CIFAR100

Method APPLE BED BICYCLE ELEPHANT TRUCK PINE TREE

GMM 0.521 0.602 0.661 0.660 0.576 0.733
KDE 0.714 0.593 0.695 0.631 0.586 0.709
CAE 0.440 0.414 0.456 0.601 0.592 0.589
VAE 0.445 0.424 0.476 0.681 0.594 0.587

Pix CNN 0.484 0.393 0.422 0.654 0.517 0.462
GAN 0.399 0.370 0.422 0.532 0.594 0.587
SKG 0.380 0.388 0.456 0.613 0.609 0.603

AnoGAN 0.289 0.367 0.411 0.536 0.606 0.592
OCGAN 0.653 0.623 0.711 0.651 0.560 0.720

Ours 0.530 0.672 0.777 0.766 0.673 0.811

Method ROCKET TELEPHONE TRAIN TURTLE MEAN

GMM 0.676 0.528 0.645 0.568 0.6170
KDE 0.772 0.446 0.662 0.648 0.6456
CAE 0.450 0.238 0.571 0.565 0.4912
VAE 0.456 0.269 0.574 0.575 0.5081

Pix CNN 0.419 0.688 0.444 0.663 0.5146
GAN 0.456 0.280 0.564 0.570 0.4774
SKG 0.417 0.286 0.549 0.585 0.4886

AnoGAN 0.406 0.282 0.591 0.598 0.4678
OCGAN 0.770 0.563 0.627 0.648 0.6526

Ours 0.729 0.752 0.754 0.664 0.7128

Fig. 3.7 Performance comparison of FVAE-MMI and the state-of-the-arts on overall
classes of two data sets in terms of AUC
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Table 3.7 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning STL-10

Method PLANE BIRD CAR CAT DEER DOG

GMM 0.694 0.595 0.583 0.631 0.739 0.564
KDE 0.625 0.610 0.570 0.578 0.663 0.553
CAE 0.654 0.560 0.332 0.652 0.698 0.613
VAE 0.659 0.601 0.403 0.635 0.728 0.584

Pix CNN 0.592 0.595 0.228 0.591 0.703 0.546
GAN 0.362 0.454 0.358 0.459 0.716 0.499
SKG 0.373 0.535 0.466 0.615 0.681 0.527

AnoGAN 0.368 0.559 0.607 0.574 0.626 0.514
OCGAN 0.688 0.548 0.627 0.611 0.701 0.527

Ours 0.712 0.514 0.626 0.690 0.762 0.573

Method HORSE MONKEY SHIP TRUCK MEAN

GMM 0.588 0.632 0.693 0.437 0.6156
KDE 0.549 0.603 0.608 0.483 0.5842
CAE 0.499 0.621 0.698 0.371 0.5698
VAE 0.584 0.635 0.699 0.414 0.5942

Pix CNN 0.498 0.576 0.433 0.240 0.5002
GAN 0.567 0.558 0.669 0.401 0.5043
SKG 0.422 0.563 0.581 0.392 0.5155

AnoGAN 0.407 0.560 0.541 0.456 0.5212
OCGAN 0.533 0.590 0.751 0.601 0.6177

Ours 0.673 0.688 0.691 0.519 0.6448
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Table 3.8 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning IMAGENET

Method BAG BOTTLE CAP BOX CAR PUMPKIN DOG

GMM 0.514 0.564 0.605 0.554 0.439 0.600
KDE 0.486 0.527 0.532 0.495 0.519 0.531
CAE 0.466 0.456 0.651 0.426 0.768 0.682
VAE 0.524 0.544 0.629 0.636 0.369 0.589

Pix CNN 0.365 0.543 0.501 0.556 0.184 0.611
GAN 0.543 0.472 0.453 0.483 0.826 0.472
SKG 0.455 0.540 0.555 0.507 0.517 0.733

AnoGAN 0.645 0.514 0.491 0.493 0.740 0.491
OCGAN 0.579 0.589 0.657 0.538 0.809 0.538

Ours 0.576 0.577 0.664 0.734 0.803 0.684

Method FISH POT ROOSTER DRESS MEAN

GMM 0.691 0.519 0.654 0.566 0.5706
KDE 0.608 0.509 0.546 0.557 0.5310
CAE 0.446 0.573 0.464 0.670 0.5602
VAE 0.603 0.560 0.681 0.634 0.5769

Pix CNN 0.478 0.501 0.597 0.575 0.4911
GAN 0.677 0.487 0.559 0.565 0.5537
SKG 0.517 0.540 0.510 0.531 0.5405

AnoGAN 0.709 0.486 0.600 0.611 0.5780
OCGAN 0.715 0.524 0.608 0.668 0.6225

Ours 0.750 0.553 0.613 0.629 0.6583

Table 3.9 Performance comparison of FVAE-MMI and the state-of-the-art methods
on overall classes of vector data sets in terms of AUC

Data sets FB AL LOF SC

KDD99 0.140 0.297 0.134 0.627
Default of credit card clients 0.535 0.484 0.524 0.496

Data sets RNN SRO SR Proposed

KDD99 0.798 0.368 0.819 0.948
Default of credit card clients 0.506 0.600 0.606 0.582



3.6 Experimental Results 49

Fig. 3.8 Convergence curve of the proposed model on the ’bag’ class of in IMAGENET
dataset. The horizontal axis and the vertical axis represent the number of epochs
and loss values respectively. It can be clearly seen that the model tends to a fixed
point at the 700th epoch.

Fig. 3.9 Anomaly detection performance of CVAE-MMI increases with the increasing
number of iterations interms of mean AUC on image dataset.



50
Extensive framework based on novel convolutional and variational autoencoder

based on maximization of mutual information for anomaly detection

Fig. 3.10 Anomaly detection performance of FVAE-MMI. It improves with the
increasing number of iterations in terms of AUC based on the vector dataset.

Table 3.10 Performance comparison based on ablation validation in terms of average
AUC

Datasets Setting 1 Setting 2 Setting 3

Image data

CIFAR10 0.6590 0.6441 0.6428
Cifar100 0.7128 0.6990 0.6939
STL10 0.6448 0.6271 0.6198

IMAGENET 0.6583 0.6454 0.6333

vector data KDD99 0.948 0.903 0.896
Default of credit card clients 0.582 0.570 0.564
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Fig. 3.11 Latent space visualization comparison of the proposed model and the
state-of-the-art models( SCG and OCGAN) for anomaly detection on CIFAR100. (a),
(b) and (c) shows the performance of the proposed, SCG, and OCGAN, respectively,
based on the normal class ’Bicycle’, and (d), (e), and (f) the performance of the
proposed, SKG and OCGAN, respectively based on the normal class ’Pine tree’
dataset.





Chapter 4

Mixture of experts with convolutional
and variational autoencoders for
anomaly detection

4.1 Introduction

In today’s complex social environment, public security issues have become increas-
ingly prominent and it is one of the hot issues in several countries. In recent years
anomaly detection (AD) is gaining more and more attention in many applicative
disciplines. It is widely used in video surveillance [14, 29], defect detection [50, 80],
fraud detection [42], and medical imaging [38]. AD is considered as the identification
of instances, events, or observations that are inconsistent with expected patterns or
other instances in the dataset [23, 37, 59]. This study also follows the basic definition
of the AD task by using anomaly free samples to train the model parameters θ to
generate normal data distribution p(x). However, the classical AD methods relied
on reconstruction errors, whereas the recent studies using deep autoencoders can
effectively map the data to the low-dimensional feature spaces, where data is more
easily presented [90]. Hence, this study also considers the binary classification
problem in the latent space that is capable of classifying the samples into normal
and abnormal samples.

Convolutional autoencoder (CAE) for AD based on reconstruction error learn the
features of the normal data through the convolutional neural network and calculated
the Euclidean distance (reconstruction error) between the input and its generation to
distinguish the normal from abnormal samples [109]. To make the latent space close
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to the Gaussian distribution and achieve a better reconstruction result, convolutional
variational autoencoder (CVAE) [25] is employed for anomaly detection, which
results better than CAE. However, the aforementioned methods did not pay attention
to the possibility of using latent space for AD. However, several recent studies have
noticed the latent space importance in detecting various types of anomalies. Latent
domain representation methods [49] learned a set of latent representation vectors in
the source domain through examples of normal samples. Thereby, introducing the
latent representation vectors from the source domain to the target domain establishes
a tight boundary which can distinguish the normal from abnormal data.

Latent variable-based AD method [66] trained to encode a large amount of
data into the latent space, then it detected anomalies by calculating the distance
between the observation and previously defined normal cluster. Though, the above
latent-based methods for AD achieved better results for vector datasets, it is not
ideal for matrix datasets. Furthermore, those methods considered detection using
only one latent space and did not consider the possibility of a mixture of low-
dimensional nonlinear manifolds of multiple latent spaces. Linearly combining
different manifolds in latent spaces can generate best latent representation. In order
to solve the shortcomings of AD based on reconstruction error or latent detection,
we propose a mixture of experts ensemble with two convolutional variational
autoencoders and convolution (MEx-CVAEC) model. Inspired by MoE [34], we
divide the dataset into two equal but non-repeating subsets as inputs of the two
experts models respectively aiming to linearly combine the encoded latent spaces of
the two experts. In addition, in order to enhance the model detection performance,
we re-encode the output of the CVAE by generating a new data manifold for AD.
Thereby each expert is developed to comprise an encoder-decoder-encoder pipeline
(EDE) based on CVAE. Additionally, we use a tower structure in the mixture-of-expert
model to assign a latent score to each latent representation.

The main contributions of this study are as follows:

1. Propose a novel gating mixture-of-experts based on two CVAEs and convolution
(MEx-CVAEC) network which explicitly learns the underlying manifold of
a group of similar objects for AD. Each expert is developed by an encoder-
decoder-encoder (EDE) pipeline with VAE as a core element.

2. Introduce a convolutional autoencoder (CAE) as a gating network that learns
multiple distributional information by automatically adjusting the param-
eter between the modelling shared information and the manifold-specific
information.
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3. Evaluate the efficiency of the MEx-CVAEC based on CAE gating network is
compared with two other mixtures of MEx-CVAE using ED pipeline based on
logistic regression (MEx-L) and based on CAE (MEx-C) gating structures for
AD.

4. Compare the performance of the proposed MEx-CVAEC approach over state-
of-the-art methods.

4.2 Related Works

4.2.1 Reconstruction-based methods

The reconstruction-based methods assume that outliers probably produce large
reconstruction residuals. The parameters of the model for projection and reconstruc-
tion are learned from the normal samples. In traditional sparse coding [112, 20], new
instances were projected into a learned subspace, and the linear combinations of
the basis vectors are used to represent the normal examples. With the rise of deep
learning, many researchers use autoencoders to construct a projection subspace.
The CAE [109] can construct the latent space (projection space) for normal data and
reconstruct the original input samples from the vectors in the latent space. Then we
can use the reconstruction error to distinguish abnormal samples from the normal
samples. In [90], the discriminator network of an adversarial framework was used
as a novelty detector, and anomaly samples were detected by jointly using the
discriminator with the reconstruction error. In OCGAN [70], taking the effectiveness
and the availability of the latent space into account, the entire latent space must be
used to reconstruct the normal samples. However, the studies mentioned above
focused solely on the issues of reconstruction of input data. The AD methods based
on reconstruction errors are not ideal for the data sets with complex backgrounds.
Hence this study explored the manifold of latent space information that efficiently
minimizes the false-positive rates for reliable identification of anomalies.

4.2.2 Latent space detection-based models

The latent space detection-based models mainly explore the distribution in the
constructed manifold after the data are encoded. A Markov jump particle filter (MJPF)
method [93] captured the low dimensional state of the video by probabilistically
representing the latent space in the VAE and identified clusters with similar vectors
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in the space. The latent likelihood method [10] learns the distribution of latent space
by introducing an adversarial autoencoder. Given the prior distribution, adversarial
learning can narrow the distance between the distribution in the latent space and
the prior distribution. Compared with normal data, the likelihood of abnormal data
became very small, and therefore, anomalies could be detected by comparing the
estimated likelihood.

Based on [10], a dual encoder composed of a graphics encoder and a feature
encoder [24] was used to encode the features and generate the correlation of the
samples into a low-dimensional latent space. Then the decoder was used to
reconstruct the data. Finally, a separate estimation network was used as a Gaussian
mixture model to estimate the density of the latent embeddings, which led to
detect the anomalies by finding the likelihood of the distribution of the observed
samples from normal samples. It is motivated in this study by using the idea of a
linear combination of different manifolds corresponding to the different latent space
selected by the gating network helps to enable better mapping of high-dimensional
data to the low-dimensional space.

4.2.3 Mixture-of-experts model for AD

Several researchers have been paying attention to AD using a mixture of expert
models. The combined models [64], includes two k-nearest neighbors (k-NN),
random forest (RF), joint probability approaches (RF + JP), local correlation integral
(LoCI), and learned probability distribution (LPD) into a mixture-of-experts model.
Though the above mentioned model used the advantages of the multiple different
sub-models and performed well on vector datasets, it is not suitable on tensor
datasets for AD. Different from this, our proposed approach maps the different
domain data to the latent space through the EDE pipeline and thus utilizes the full
use of the representation of the latent space of each model for anomalies.

4.3 Proposed Mixture of Experts network

We proposed a MEx-CVAEC netwrok model for AD composed of two convolu-
tional VAEs and convolutional neural networks ensemble with a combination of
reconstruction error and latent information distributions (Fig. 1). The variational au-
toencoder is used as a core element in the encoder-decoder-encoder (EDE) structure.
Each CVAE and convolution framework works as an expert with exactly similar
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procedural structure. The expert structures jointly improve the detection effect by
utilizing the efficiency of the MoE model for highly relevant information and a
convolutional autoencoder is used to train the gating network, as shown in Fig
2(a). Expert structures proposed in this study effectively combine the advantages of
reconstruction and latent space learning by utilizing the multiple latent spaces (Fig.
2b).

Fig. 4.1 Proposed mixture of convolutional variational autoencoder structure for
anomaly detection

4.3.1 Constructing an Experts Network Structure

The proposed mixture-of-experts composes of two experts named as expert1 and
expert2 respectively. Here we intuitively analyze the structure of experts. Each
expert in our model consists of an encoder-decoder-encoder (EDE) pipeline. Each
element of the expert is represented as encoder1, decoder, encoder2 as shown in Fig.2
(b). In the structure from encoder1 to decoder part (encoder1 − decoder) of EDE, a 3-layer
convolutional variational autoencoder (CVAE) is used. After CVAE (the ED part),
a 3-layer convolutinal neuron networks (CNN) is connected, which consists of 3
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convolutional layers, 3 pooling layers and a fully connected layer. The details of
MEx-CVAEC structure are presented in expert1 and expert2 columns of Table 1.

Fig. 4.2 Proposed gating network and experts structure.(a) Convolutional autoencoder
gating network. (b) Convoltional variational autoencoder and convolution showing
encode-decoder-encoder pipeline in experts structure. zg represents the latent
representation of gateAE. zl1 and zl2 are latent representation corresponding to expert1

and expert2, and ze1 and ze2 is latent representation corresponding to expert1 and
expert2.

Let us consider x is a sample from the normal dataset X as original inputs, and
x ∈ X. z is the latent representation by encoding x, z ∈ Z. The variable y is the
output of CVAE and y ∈ Y. The parameters ŷ and x̂ are the input and the output of
the VAE, respectively. Then the loss function of the expert1-decoder is defined as:

ℓ1 = λ1

1
n

∑
x∈X

(x − y)2

 + λ2

1
n

∑
x∈X

(̂x − ŷ)2


+λ3DKL(p(z|x)|q(z)|), λ1, λ2 ∈ [0, 1]

(4.1)

where p(z|x) represents the probability density function (PDF) of the latent repre-
sentation distribution generated by x and DKL is the Kullback-Leibler divergence
distribution. The parameter q(z) is defined as the prior Gaussion distribution.

In the expert structure, the encoder2 can generate its output close to the latent
space of the encoder1 − decoder structure. Let us consider the output of the encoder2 is
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z′ and z′ ∈ Z′. Then the loss function of the encoder2 is defined as

ℓ2 = λ4

1
n

n∑
0

(z − z′)2

 . (4.2)

Therefore, the loss function of the expert1 is the summation of the distribution of
both expert1-decode and encoder2 in expert1 which is defied as

ℓex1 = ℓ1 + ℓ2 (4.3)

where λ1, λ2, λ3, and λ4 are the weighting parameters that adjust the impact of
individual loss on the overall objective function. Similarly, we obtained the objective
function ℓex2 of expert2.

4.3.2 Gating network based on Convolutional Autoencoder

We introduced a gating network gateAE for learning multiple distributional infor-
mation as shown in Fig. 2(a). We used a convolutional autoencoder as the gating
network, which is inspired by [51]. The representation of the latent space is used
as the output of the gating network. The gating network utilizes input functions
and output sigmoid gates to assemble experts with different weights, and thereby
different learning can make full use of experts. Gating networks can learn to “select”
a subset of experts to use conditioned on the input sample. This is desirable for
a flexible parameter sharing in the multi-learning situation. As a special case, if
only one expert with the highest gate score is selected, the gating network actually
linearly separates the input space into n regions in which each region corresponds
to an expert. This strategy forces the model to learn the diverse relationships in a
sophisticated way by deciding how the separations resulted by different gates can
overlap with each other. This method facilitates the complete model for knowledge
transfer that benefits multi-information by learning as much information as possible.
We randomly select the same number of samples as each expert from the original
dataset which is used as input Xs into the gating network. The objective function is
defined as follows:

ℓgate = λg1

1
n

∑
xg∈Xg

(xg − yg)2

 + λg2

1
n

∑
xg∈Xg

(̂xg − ŷg)2


λg1, λg2 ∈ [0, 1]

(4.4)
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Where xs is a sample from the normal dataset, xg ∈ X. The variable yg is the
output of the gating network and yg ∈ Yg. The parameters x̂g and ŷg are the input
and the output of the linear AE, respectively .

4.3.3 Training Gated Mixture of Experts structure

Our proposed MEx-CVAEC model fused with experts and gating neural network. It
can capture the differences of latent spaces by encoding data and modeling the data
as a mixture of low-dimensional nonlinear manifolds. Through the gating network,
experts are assembled with different weights and thereby, different manifolds can
make full use of experts. Then, the results of the gathered experts are transferred
to the manifold-specific tower network (we will explain later in this section). In
this way, the gating network is applied to learn different mixed modes of expert
assembly, aiming to capture manifold relationships. Most importantly, we added a
separate gating network g from gateAE according to multi-learning. Therefore, we
defined the latent space output of gateAE as zg = [zg

1 , z
g
2 , z

g
3 , z

g
4] and we can get

g(xg) j = s j(z
g
j )

s.t.
n∑

j=1

g(xg) j = 1
(4.5)

where xg is the input of gateAE, xg ∈ Xg, n = 4 and zg
j is a scalar, s j represents the

output of jth neuron in sigmoid layer. For expert1 and expert2, the manifold of latent
space is connected by the gating network gateAE. The latent representations in
encoder2 − decoder are named as zl1 in expert1 and zl2 in expert2, respectively. The
encoded representation of encoder2 in expert1 and expert2 is denoted as ze1 and ze2,
respectively. In the Tower1 and Tower2, a one-neuron fully connected layer with
sigmoid activation function is used. The function of Tower1 and Tower2 is represented
as ft1 and ft2, respectively. The output y1 of Tower1 and y2 of Tower2 is defined as:

y1(x) = ft1(g(x)1zl1 + g(x)2zl2)

y2(x) = ft2(g(x)3ze1 + g(x)4ze2)
(4.6)
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where zl1, zl2, ze1, and ze2 are represented as vectors. We label each normal data with
‘0’ and it is used to train the model parameters as follows:

ℓ3 = λt1
1
n

∑
x∈X

(y1(x) − 0)2 + λt2
1
n

∑
x∈X

(y2(x) − 0)2,

λt1, λt2 ∈ [0, 1]
(4.7)

Finally, the loss function of the proposed MEx-CVAEC n is defined as

ℓ = λex1ℓex1 + λex2ℓex2 + λTℓ3 + λgℓgate,

λex1, λex2, λT, λg ∈ [0, 1]
(4.8)

4.4 Testing Anomaly Score

In the test phase, the model calculates the anomaly score of each test sample x′,
x′ ∈ Xtest, which is used as the input of expert1, expert2, and gateAE. Let us consider
calculating the anomaly score in expert1. It is defined based on the reconstruction
error S1(x′) of the convolutional autoencoder and the reconstruction error S2(x′) of
the VAE as

S′(x′) = λS1(x′) + (1 − λ)S2(x′) (4.9)

λ is the weighting parameter controlling the relative importance of the score
functions. The reconstruction error S1(x′) between the input x′ and it approximation
y′ by the encoder1 − decoder section is defined as

S1(x) = ||x′ − y′||2 (4.10)

Similary, the reconstruction error S2(x′) between the feature vector x̂′ and its approxi-
mation ŷ′ by the VAE is defined as

S2(x) = ||̂x′ − ŷ′||2 (4.11)

Similarly, we can calculate the anomaly score S”(x) of expert2. We can obtain the
latent score y1(x′) and y2(x′) through the tower network according to Eq. (6) as
follows

Sg1(x′) = y1(x′)2,Sg2(x′) = y2(x′)2 (4.12)
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Finally, the overall anomaly score is defined as follows

S(x) = ω1S′(x) + ω2S′′(x) + ω3Sg1 + ω4Sg2 (4.13)

where ω1, ω2, ω3, and ω4 are the weighting parameters adjusting the impact of
individual score to the overall score function. In order to evaluate the impact of the
overall anomaly detection performance, the anomaly scores are normalized. At first,
the anomaly scores S = {S(x′)|x′ ∈ Xtest} for all test samples Xtest are calculated and
the maximum max(S) and the minimum min(S) of the anomaly scores are obtained.
Then the anomaly score S(x′) for the new samples is normalized as

s′ =
S(x′) −min(S)

max(S) −min(S)
(4.14)

The use of Eq. (14) ultimately yields an anomaly S′(s′ ∈ S′) for the final evaluation
of the test set Xtest.

4.5 Experimental Setup

4.5.1 Dataset

The effectiveness of the proposed method is evaluated using three publicly available
multi-class object recognition datasets (CIFAR10, CIFAR100, and STL10). The
CIFAR10 [48] and STL10 [19] comprise the images corresponding to ten different
classes. In the Cifar100 dataset [48], we used 10 different classes for the experiments.
In order to simulate a AD setting, the network is trained using only normal class.
The union of the rest of the classes are used as abnormal samples in testing the
network. We divide the training set of each class into two equal and non-repeating
subsets, which are fed into the input of expert1 and expert2. In addition, we randomly
sample the entire dataset for gateAE, to make the input number of experts the same
as the input number of the gating network gateAE.

4.5.2 Experimental Evaluation and Performance Measure

The efficiency of the proposed MEx-CVAEC incorporating EDE pipeline based on
CAE gating network is compared with two other mixtures of Mo-CVAE using ED
pipeline based on CAE (MEx-C) and based on logistic regression (MEx-L) gating
networks (Figures 3a and 3b, respectively). Both MEx-C and MEx-L use only one
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tower. The MEx-L model use convolution kernel in the logistic regression gating
network. Furthermore, the performance of our proposed method in detecting

Fig. 4.3 Mixture of encoder-decoder models on ED pipline (a) convolutional varia-
tional autoencoder based on convolutional autoencoder gating network (b) convolu-
tional variational autoencoder based on logistic regression gating network

anomalies is evaluated through the comparison with nine state-of-the-art methods,
including one-class Gaussian mixture model (GMM) [105], kernel density estimation
(KDE) [52], convolutional autoencoder (CAE) [17], VAE [44], pixel CNN decoders
(Pixel CNN) [99], GAN [90], skip-connection Ganomaly (SCG) [5] , anomaly detection
with generative adversarial networks (AnoGAN) [90] and one-class GAN (OCGAN)
[70]. The comparison standard of our proposed and state-of-the-arts is measured
using the area under the curve (AUC) of the receiver operating characteristic curve
method.

4.5.3 Parameter Settings

All experiments carried out in this study are implemented on Python 3.6 and
Tensorflow 1.9. RMSProp optimizer is used to train the network parameters. The
learning rate is 0.00005 for CIFAR10 and STL10, 0.0001 for CIFAR100. The parameters
decay is 0.9, momentum is 0.9. We set 300, 300 and 500 epochs corresponding to
CIFAR10, STL10, and CIFAR100.
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4.6 Experimental Results

4.6.1 Performance Comparison based on Encoder-Decoder Mix-
ture Models

We conducted experiments and compared our proposed MEx-CVAEC with MEx-C
and MEx-L to verify the effectiveness of the elements used in the architecture.
To realize the linear association of multiple potential spaces through the expert
structure it is obvious that the gating network should be capable to choose more
appropriate characteristics for a specific task. It is realized that the performance of
the proposed expert structures with EDE pipeline is better than the expert structures
with ED pipeline models as presented in Table 2. Furthermore, different from
the structure of MEx-L and MEx-C, the additional tower element (Tower2) in our
proposed approach pushes the network to improve the performance. Additionally,
the encoded representation of encoder2 plays a major role by re-encoding the generated
data into a new feature space, which is different from the latent space features of the
ED pipeline. Thereby the linear combination of encoded representations (encoder2)
gathered from different experts is highly potential in detecting anomalies. Whereas,
the hybrid model of conventional experts (MEx-L) developed using only one training
teamwork is not efficient to classify and thus it produced poor ability in predicting the
characteristic relationship of the data. However, we can observe that the CAE gating
network in MEx-C is capable of selecting better matching correlation parameters to
characterize the data than the MEx-L structure.

4.6.2 Performance Comparison based on State-of-the-arts

The performance of the proposed method is compared over nine state-of-the-art
methods. The proposed model using ten classes on three different datasets shows
higher performance than that of state-of-the-art anomaly detection methods, with the
highest average AUC value as shown in Table 3. The performance of the proposed
model is better than that of the classical CAE or VAE. In addition, compared with
the recently developed OCGAN model [70], MEx-CVAEC model is more efficient in
rating the anomalies.

The stable performance of the MEx-CVAEC framework on image anomalies
datasets is represented in Figure 4. It is observed that the stability in detecting
anomalies of the proposed model on three different data sets is above average.
Furthermore, we can observe that the proposed model outperforms the stare-of-
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Fig. 4.4 Performance of the proposed approach and the state-of-the-art methods on
overall classes in three datasets in terms of AUC

the-art methods by showing the relatively stable and high average AUC values
on all data sets in detecting image anomalies. In fact, both GMM and KDE
used distribution information for detection. GMM used the strategy of using
the probability observations that belonged to the normal data distribution for
distinguishing normal and abnormal data, and KDE used the density of distribution
for AD.

The detection results of the techniques based on the data distribution information
(GMM and KDE) outperform those of techniques based on the reconstruction
errors (CAE, VAE, Pix CNN and GAN). But the classic AD methods, GMM and
KDE Although AnoGAN and SCG utilized the discriminator in the detection part,
the overall effect of AD performance is not high, because of using the encoded
reconstruction data as an input into the discriminator for detection. Furthermore, the
background of the complex datasets is highly ambiguous, which greatly increases
the difficulty of detection. However, AnoGAN and SCG methods did not consider
the impact of the latent space on reconstruction of the complex data and hence they
are not effective on complex image anomalies. The OCGAN used in the comparison
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experiments is based on the reconstruction errors considering all the potential latent
spaces for generating only the normal data, and thus there is no space to improve the
AD. Based on the different drawbacks of the above methods, the proposed method
combined both the reconstruction error and latent space detection. The experimental
results proved the superiority of the proposed method by using the distribution
information of the latent space features and latent score to analyze the distribution
of the data.

Fig. 4.5 Performance of the proposed approach on each class in three datasets in
terms of AUC

Furthermore, the performance of the proposed MEx-CVAEC framework in
estimating anomalies based on each individual class is compared over the state-
of-the-art methods on CIFAR10, CIFAR100 and STL-10 as presented in Tables.7, 8,
and 9. Among the ten class used in this study, the classes number three, five, and
eight corresponding to CIFAR10, CIFAR100 and STL-10 datasets, respectively of
our proposed model demonstrated higher AUC in the case of the proposed model
compared with the other methods as shown in Figure 5.
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4.6.3 Performance Visualization on Latent Space

This section demonstrates the conducive construction of latent space in training
phase to distinguish normal from abnormal data. The latent space is visualized
using PCA that reduced the dimensionality of the latent space into two dimensions
for visualization. The performance of the latent representation distribution of the
proposed model is compared with that of the proposed model with only one expert
structure with ED pipeline. It is found that the latent representation distribution
after linear combination of our model (Fig. 4b and 4d) is efficient to distinguish
between normal and abnormal samples than that of the model with only one expert
structure (Fig. 4). The single expert structure on ED pipline without the mixture of
nonlinear manifolds in the latent space cannot be able to distinguish the anomalies
from the normal data (Fig. 4a and 4c).
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Table 4.1 Proposed Gated Mixture of Experts for Anomaly Detection

Expert1 and Expert2 Gating network

conv1(channel:32, filter:5) conv1(channel:32, filter:5)
batch normalization batch normalization

max pooling(2*2) max pooling(2*2)
conv2(channel:64, filter:5) conv2(channel:64, filter:5)

batch normalization batch normalization
conv3(channel:128, filter:5) conv3(channel:128, filter:5)

batch normalization batch normalization
max pooling(2*2) max pooling(2*2)

fully-connected(500) fully-connected(4)
fully-connected(2048) fully-connected(2048)

deconv1(channel:64, filter:5) deconv1(channel:64, filter:5)
batch normalization batch normalization

up sampling(2*2) up sampling(2*2)
deconv2(channel:32, filter:5) deconv2(channel:32, filter:5)

batch normalization batch normalization
up sampling(2*2) up sampling(2*2)

deconv3(channel:3, filter:5) deconv3(channel:3, filter:5)
batch normalization batch normalization

up sampling(2*2) up sampling(2*2)
conv1(channel:32, filter:5)

batch normalization
max pooling(2*2)

conv2(channel:64, filter:5)
batch normalization

max pooling(2*2)
conv3(channel:128, filter:5)

batch normalization
max pooling(2*2)

fully-connected(500)
output (sigmoid)

1 CIFAR10 dataset is considered as an example
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Table 4.2 Performance comparison of the proposed over encoder-decoder mixture
models in terms of average AUC

Datasets Proposed MEx-C NEx-L

CIFAR10 0.6631 0.6507 0.6428
CIFAR100 0.6740 0.6536 0.6480

STL10 0.8275 0.7981 0.7852

Table 4.3 Performance comparison of the proposed network and the state-of-the-art
methods on overall class in terms of mean AUC based on three different datasets

Data sets GMM KDE CAE VAE Pixel CNN

CIFAR10 0.5875 0.6097 0.5234 0.5833 0.5506
Cifar100 0.6170 0.6454 0.4912 0.5081 0.5146
STL10 0.6156 0.5842 0.5698 0.5942 0.5002

Data sets GAN SCG ANOGAN OCGAN Proposed

CIFAR10 0.5916 0.6172 0.6179 0.6566 0.6631
Cifar100 0.4774 0.4886 0.4678 0.6526 0.6740
STL10 0.5043 0.5155 0.5212 0.6177 0.8275
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Table 4.4 Performance comparison of the proposed network and the state-of-the-art
methods on each individual class in terms of AUC based concerning CIFAR10

Method PLANE CAR BIRD CAT DEER DOG

GMM 0.635 0.433 0.618 0.498 0.733 0.515
KDE 0.658 0.520 0.657 0.497 0.727 0.496
CAE 0.606 0.271 0.655 0.549 0.701 0.532
VAE 0.700 0.386 0.679 0.535 0.748 0.523

Pix CNN 0.788 0.428 0.617 0.574 0.511 0.571
GAN 0.708 0.458 0.664 0.510 0.722 0.505
SKG 0.717 0.494 0.662 0.527 0.736 0.504

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620
proposed 0.656 0.743 0.659 0.540 0.750 0.538

Method FROG HORSE SHIP TRUCK MEAN

GMM 0.696 0.540 0.675 0.531 0.5875
KDE 0.758 0.564 0.680 0.540 0.6097
CAE 0.537 0.408 0.653 0.322 0.5234
VAE 0.687 0.493 0.696 0.386 0.5833

Pix CNN 0.422 0.454 0.715 0.426 0.5506
GAN 0.707 0.471 0.713 0.458 0.5916
SKG 0.726 0.560 0.680 0.566 0.6172

AnoGAN 0.585 0.625 0.758 0.665 0.6179
OCGAN 0.723 0.575 0.820 0.554 0.6566
Proposed 0.744 0.565 0.741 0.695 0.6631
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Table 4.5 Performance comparison of the proposed network and the state-of-the-art
methods on each individual class in terms of AUC based concerning CIFAR100

Method APPLE BED BICYCL ELEPHAN TRUCK TREE

GMM 0.521 0.602 0.661 0.660 0.576 0.733
KDE 0.714 0.593 0.695 0.631 0.586 0.709
CAE 0.440 0.414 0.452 0.601 0.592 0.589
VAE 0.445 0.424 0.476 0.681 0.594 0.587

Pix CNN 0.484 0.393 0.422 0.654 0.517 0.462
GAN 0.399 0.370 0.422 0.532 0.594 0.587
SKG 0.380 0.388 0.456 0.613 0.609 0.603

AnoGAN 0.289 0.367 0.411 0.536 0.606 0.592
OCGAN 0.653 0.623 0.711 0.651 0.560 0.720
Proposed 0.739 0.671 0.715 0.675 0.640 0.679

Method ROCKET TELEPHON TRAIN TURTLE MEAN

GMM 0.676 0.528 0.645 0.568 0.6170
KDE 0.772 0.446 0.662 0.648 0.6456
CAE 0.450 0.238 0.571 0.565 0.4912
VAE 0.456 0.269 0.574 0.575 0.5081

Pix CNN 0.419 0.688 0.444 0.663 0.5146
GAN 0.456 0.280 0.564 0.570 0.4774
SKG 0.417 0.286 0.549 0.585 0.4886

AnoGAN 0.406 0.282 0.591 0.598 0.4678
OCGAN 0.770 0.563 0.627 0.648 0.6526
Proposed 0.742 0.619 0.639 0.621 0.6740
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Table 4.6 Performance comparison of the proposed network and the state-of-the-art
methods on each individual class in terms of AUC concerning STL-10

Method PLANE BIRD CAR CAT DEER DOG

GMM 0.694 0.595 0.583 0.631 0.739 0.564
KDE 0.625 0.610 0.570 0.578 0.663 0.553
CAE 0.654 0.560 0.332 0.652 0.698 0.613
VAE 0.659 0.601 0.403 0.635 0.728 0.584

Pix CNN 0.592 0.595 0.228 0.591 0.703 0.546
GAN 0.362 0.454 0.358 0.459 0.716 0.499
SKG 0.373 0.535 0.466 0.615 0.681 0.527

AnoGAN 0.368 0.559 0.607 0.574 0.626 0.514
OCGAN 0.688 0.548 0.627 0.611 0.701 0.527
Proposed 0.989 0.608 0.986 0.743 0.869 0.553

Method HORSE MONKEY SHIP TRUCK MEAN

GMM 0.588 0.632 0.693 0.437 0.6156
KDE 0.549 0.603 0.608 0.483 0.5842
CAE 0.499 0.621 0.698 0.371 0.5698
VAE 0.584 0.635 0.699 0.414 0.5942

Pix CNN 0.498 0.576 0.433 0.240 0.5002
GAN 0.567 0.558 0.669 0.401 0.5043
SKG 0.422 0.563 0.581 0.392 0.5155

AnoGAN 0.407 0.560 0.541 0.456 0.5212
OCGAN 0.533 0.590 0.751 0.601 0.6177
Proposed 0.848 0.711 0.985 0.983 0.8275



4.6 Experimental Results 73

Fig. 4.6 Latent space visualization comparison of the proposed model over the
proposed model with only one expert structure. (a) and (b) shows proposed model
with single expert and two expert structures, respectively using CIFAR10 (class
DEER), (c) and (d) shows proposed model with single expert and two expert
structures, respectively using STL10 (class DOG) dataset





Chapter 5

Autoencoder framework based on
orthogonal projection constraints
improves anomalies detection

5.1 Introduction

With the development of information science, information security has become
increasingly important. As an integral part of information security, anomaly
detection (AD) has been considerably investigated by researchers. AD is also
considered a classification problem [23]. AD is widely used in video surveillance
[94, 14, 29, 55], security applications [27, 72, 67, 71], defect detection [50], and medical
imaging [90, 84]. In this study, we follow the basic rules for AD tasks because the
abnormal samples are insufficient or even missing compared to normal samples
[85]. Hence, in the training phase, only normal samples can be used to train the
model parameters, θ, and generate normal data distribution, p(x). In the testing
phase, both anomaly-free and abnormal data are included to test the performance
of the model using abnormal score. The autoencoders [88] can map the original
input to low-dimensional feature spaces in order to analyze the distribution of the
low-dimensional feature space where the data can be better represented.

Autoencoder methods have been widely used in AD studies. Classical reconstruc-
tion error-based convolutional autoencoders (CAEs) are used to learn the features
of normal data using a convolutional neural network (CNN); they are also used to
find the Euclidean distance (reconstruction error) to distinguish between normal
and abnormal samples [17]. However, in classical CAEs, the latent space helps in
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reconstruction. As a direct extension, one-class novelty detection using generative
adversarial networks (GANs) with constrained latent representations (OCGAN)
outperforms several conventional AD methods on benchmark dataset classification
tasks [70]. OCGAN controls the latent space and use it entirely to train normal
samples. Thus, there is no latent space for abnormal samples and it is bound to
cause a large residual error.

In recent years, several studies have focused on the detection of latent space
to project data [49, 66, 74, 87, 10, 24]. The latent information and reconstructions
are well performed in these methods. However, the orthogonal projection in the
autoencoders, which is the basic projection mechanism, has not been explicitly
considered. The orthogonal projection mechanism is well applied in principal
component analysis (PCA) [102] for dimensionality reduction. PCA is a classic
method for low-dimensional data; in this method, the first few principal components
can equivalently be defined as the directions that maximize the variance of projected
data. The variance in first few principal components is significantly large; therefore
they require a considerable change to be detected. The last few principle components
are considered as the sum of variations in the residual vector, which is very small;
thus, any minor change is observable, which is a good property for AD. However,
for high-dimensional data, such as image data, includes a large amount of complex
contents, which deteriorates the performance of PCA detection not ideal. Inspired
by PCA, we propose the introduction of orthogonal projection constrain (OPC) in
the deep learning model, aiming to use the discriminative feature vectors of normal
data to create the orthogonal complementary subspaces in an end-to-end manner
via back-propagation (BP). A convolutional network in the proposed was utilized
to extract the discriminative feature vector for normal space (NS). Additionally,
previous works related to AD focused on the reconstruction error-based detection
with deep learning models, especially autoencoder-based models; they did not
consider examining the orthogonal complementary subspaces to detect anomalies.
In our work, we attempted to explore the orthogonal complementary subspaces
in the deep learning model; moreover, multi-space is more conducive to feature
representation than single space, which is sensitive to normal and abnormal data.

Alternatively , to determine a null subspace (kernel subspace) and a range
subspace, which are orthogonal to each other and efficiently capture the important
discriminative features of subspace information and reconstructions. Most impor-
tantly, the null subspace information has been ignored. Thereby, in this study, we
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focused on examining a range subspace and a null subspace for robust anomalies
separation.

The range subspace and null subspace are two subspaces of the original space
decomposed by their direct sum. The two subspaces are orthogonal to each other and
disjoint. The range space contains the main features of data, while the null subspace
contains information that is not related to the input data, such as noise. However, in
previous works, the detection of latent spaces has not been ideal [91, 10, 24]. This is
because some unimportant features of data, such as background or noise, greatly
influences the detection performance. Thus, in this study, we explored the projection
of data into the range subspace and null subspace for AD.

In comparison to a single subspace, the exploration of double subspace increases
the detection effect. The manifolds in the subspaces contain multiple features with
different contributions to AD. The representation of normal and abnormal data in
the two subspaces is different and discriminative. To comprehensively exploit the
manifolds in two subspaces for robust AD, in this study, we propose an autoencoder
framework based on an OPC learning method. The primary objective involves the
calculation of projected norms in the range and null subspace. By constraining the
projection operator to approximate the orthogonal projections, the model can be
trained in an end-to-end manner via BP.

In the proposed autoencoder framework model, the features are firstly extracted
from the raw input and projected into the subspaces by projection operator. For image
datasets, we propose a convolutional autoencoder based on orthogonal projection
constraint (OPC-CAE). The space after the CNN is called as the full signal space.
The data in the full signal space are projected into the range and null subspace
by the projection operator. The range subspace and null subspace are named as
normal space (NS) and abnormal space (AS), respectively. The NS contains the main
information related to normal data; the information not related to the normal data is
projected to AS.

To ensure disjoint that it is disjoint between the two subspaces, OPC are adopted
for the projection operator. Using OPC, we can obtain two mutually orthogonal
subspaces. Orthogonality is responsible for the disjoint between two subspaces,
implying that there is no common non-zero element between them. To the best of
our knowledge, this is the first study that introduces an AEs-based model with two
orthogonal subspaces for AD.

However, only anomaly-free data can be utilized in the training period. Therefore,
it is difficult to train the AS directly. To solve this problem, normal data are utilized
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Fig. 5.1 Illustration of orthogonal projection from the full signal space of dimension
N. Subspace H1 is built by a set of normal data x̂1, x̂2,...,̂xn. The x̂t and x̂a denote a
new normal observation and abnormal observation, respectively. Therefore, we get
the following inequality: ||̂yH1

|| > ||̂y1||, ||̂yH2
|| < ||̂y2||, θ1 < θ2.

to train the NS and the AS is considered as orthogonal complementary space of NS.
We introduce OPC to project the main information of normal data into NS, which can
ensure the main information of abnormal space will be projected into the AS owing to
the larger angle between abnormal data and normal space. Thereby, to maximize the
projection value in the NS in the training period, we used a convolutional decoder
(DeCONV in Fig. 2) to reconstruct the data from the NS for training. Anomalies
were detected in the test phase. As shown in Fig. 1, x̂t and x̂a denote a new normal
observation and abnormal observation, respectively. The set of normal data x̂1,
x̂2,...,̂xn is the basis for the normal subspace H1. The angle θ1 between x̂t and H1 is
smaller and angle θ2 between x̂a and H1 is larger; therefore, the new normal and
abnormal data get a larger projection norm in NS and AS, respectively. Additionally,
we propose an anomaly score based on the orthogonal subspace score (OSS) and
reconstruction error score (RES). It allowed achieving the additional supervision
power for generalizing AD based on the vector datasets.
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To confirm the applicability of the proposed autoencoder framework in vector
data input environment, we replace the convolutional layers with a fully connected
(FC) network in the encoder–decoder, which is called as OPC-FAE. Consequently, we
set an appropriate threshold to distinguish between normal and abnormal samples.

The main contributions of this study are as follows:

1. This study constraints the projection operator of subspaces to approximate
orthogonal projections.

2. We propose a novel autoencoder framework based on the OPC model that
explicitly learns the manifolds for NS and AS.

3. The generalization ability of the proposed method is proved with image and
vector datasets by designing OPC-CAE and OPC-FAE, respectively.

4. A new anomaly score implemented that combines the OSS and the RES.

5. The effectiveness of the propose method using the combined OSS and RES
anomaly score for anomalies is experimentally evaluated by comparing it with
the state-of-the-art methods.

5.2 Related work

5.2.1 Reconstruction-based methods

Many works lean toward learning a parametric projection and reconstruction of
normal data, assuming outliers will yield higher residuals. In traditional sparse
coding [112, 20], new observations are encoded by sparse coding to train codes to
represent normal examples, while the codes cannot be used to represent abnormal
data. PCA-based AD approach [28] has been used successfully for monitoring
production systems in hospitals, PCA helps in developing a reference model using
the normal data collected from the normal process. In this approach, the last few
principal components were found to be more sensitive to anomalies in experiments.
However, for high-dimensional data, the performance of PCA is not ideal. With the
rise of deep learning, several studies have focused on learning the latent space through
an autoencoder-like structure. Convolutional autoencoder (CAE) [86] was introduced
to learn the latent space of normal data based on the reconstructions according to
the latent space and the normal, and abnormal samples were distinguished using
the reconstruction error.
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An adversarial framework was used in which a discriminator network was used
as the novelty detector and the anomalies were jointly detected by the discriminator
and reconstruction error [90]. Adversarial autoencoder neural networks (AAEs)
[91] discriminate anomalies through adversarial learning to discover the differences
between the distribution of data in the latent space and prior distribution. A
deep autoencoder equipped with a parameter density estimator was used to learn
that learns the probability distribution of its latent representation through an
autoregressive process [1]. In this study, we combined the OSS and RES for AD.

5.2.2 Latent space detection

A complementary line of research investigates different strategies to explore the
distributions in low-dimensional feature spaces. The low-dimensional manifold
of encoded data is considered to be a useful feature for detecting normal and
abnormal distributions. A deep neural network using a multivariate Gaussian fully
convolution adversarial autoencoder was proposed to make the latent distribution to
approximate a Gaussian distribution, while the latent representations of anomalies
have no constraints. AD is performed by detecting the difference between the
distributions of normal and abnormal samples [55].

B. Zong et al. [114] combined the latent space of autoencoders with a Gaussian
mixture model and optimized the parameters of the deep autoencoder and mixture
model in an end-to-end manner. They used a separate estimation network to facilitate
parameter learning for the mixture model via density estimation of the latent space.
A novel sparse representation framework was proposed to learn dictionaries based
on the latent space of variational autoencoder [97]. Thus, the anomaly samples
can be detected by measuring the degree of dictionary reconstruction of the latent
variable.

The biggest obstacle in previous latent-based methods [55, 114, 97] was the
limited performance of input data in a single latent space. It cannot be possible
to very well presented the manifolds in a single latent space to each categories of
the datasets. Therefore, we intend to train the NS and AS by approximating the
orthogonal projection to obtain discriminative features from two subspaces for the
improved representation of each complicated category of samples.
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5.2.3 Orthogonal projection mechanism in deep learning

In deep learning, the orthogonal projection mechanism has garnered the significant
attention from several researchers, especially in the study of clustering. To prevent all
points from being grouped into the same cluster in network maps, dual autoencoders
[104] introduces orthogonal projection mechanism to make the output orthonormal
in expectation for deep spectral clustering. In SpectralNet [92], the loss function can
be minimized by mapping all points to the same output vectors. To prevent this, the
last layer in network enforces the orthogonality constraint . Orthogonal projection
mechanism was also introduced into lifelong learning. In [79], the most informative
features for the first task were preserved and more flexibility was provided to
other features to improve the performance on the second task using the orthogonal
projection mechanism.

5.3 Methods

5.3.1 Constructing an autoencoder network structure based on
OPC

In this study, we propose a novel autoencoder framework that combines with the
NS and the AS based on OPC. The features of AE combined with NS and AS achieve
additional supervision power over the original training objective function of AE
models. The adaptability of the proposed architecture was evaluated on the image
and vector datasets. Concerning image AD, a CNN is utilized to extract the features;
additionaly , fully connected (FC) layer (linear autoencoder) is used as the core
element in the encoder-decoder structure of the proposed OPC-CAE framework,
as shown in Fig. 2. Concerning vector-based AD, FC layers are embedded in the
encoder-decoder structure of the OPC-FAE framework, as shown in Fig. 3. In this
study, we obtain two subspaces, namely NS and AS, from the full signal space by
constraining the orthogonal projection operator. After training, the two subspaces
are approximately orthogonal to each other. We use only anomaly-free data in
training to obtain the two subspaces; thus, the NS contains main information of
normal data, while the AS is expected to contain imformation not related to normal
data. In the training phase, the input samples are reconstructed from NS to ensure
that the main information of the normal data is projected into the NS. Through
training, the normal data can be projected by the projection operator of the NS, while
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abnormal data which has different information from normal data, is expected to be
projected into the AS.

Fig. 5.2 Proposed orthogonal projection constraint-based convolutional autoencoder
for anomaly detection.

Fig. 5.3 Proposed orthogonal projection constraint based fully connected autoencoder
for anomaly detection

Let us consider that xt is a sample from the normal dataset X, which includes n
samples. Assume that x̂t is the feature vector of normal data after being encoded by
a convolutional network or a fully connected network and x̂t ∈ X̂; thus x̂t is in the full
signal space H. The parameter x̂t is mapped into the latent space and constructed by
a linear autoencoder as follows:

ŷH1
=WeWd̂xt (5.1)
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We and Wd are the weights in the linear encoder and decoder, respectively. In our
target, ŷH1

is in NS, which is with the basis vectors x̂1, x̂2,...,̂xn, which are feature
vectors of normal data encoded by a convolutional network or a fully connected
network. Let H1 be the NS of Rn with basis vectors x̂1, x̂2,...,̂xn, and let X̂ be a matrix
with columns x̂1, x̂2,...,̂xn. PH1 is defined as the projection operator on H1 based on X̂.
Therefore, the projection operator can be defined as,

PH1 = X̂(X̂TX̂)−1X̂T (5.2)

However, to ensure that the entire structure can be learned an end-to-end manner,
we use the WeWd as the projection operator to approximate PH1 . Thus, NS and AS
can be trained in an end-to-end manner via BP. The linear autoencoder is a fully
connected autoencoder with a linear activation function. It is used to make the
weight of linear autoencoder approximate to the projection operator of normal data.
Therefore, the output of the linear autoencoder is the vector projected into the NS. So,
we can use the following formulas to regularize weights in the linear autoencoder:

OPC = ||WeWd − X̂(X̂TX̂)−1X̂T
||

2
2 (5.3)

This ensures that the intersection of the two subspaces in the autoencoder is
zero using OPC. implying that the two subspaces are non-overlapping or disjoint
, that is H1

⋂
H2 = ∅. Suppose the subspaces H1 and H2 are the NS and AS of PH1 ,

respectively. We have a direct sum H = H1 ⊕ H2. Every vector x̂t ∈ H may be
decomposed uniquely as x̂t = ŷH1

+ ŷH2
with the following formulas:

ŷH1
= P̂xt (5.4)

ŷH2
= (I − P)̂xt (5.5)

where P =WeWd, ŷH1
∈ H1, ŷH1

∈ H2, and I is the identity operator. Hence, it can be
guaranteed that H1 and H2 are orthogonal to each other. Therefore, ŷH1

and ŷH2
are

also orthogonal to each other, as shown in Fig. 4.
The loss function is defined as follows:

ℓ =
1
n

∑
x∈X

||x − y||22 + λ1
1
n

n∑
0

||̂x − ŷH1
||

2
2 + λ2||WeWd − X̂(X̂TX̂)−1X̂T

||
2
2 (5.6)
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Fig. 5.4 Illustration of orthogonal projection from the full signal space of dimension
N. The subspace created by the m vector base (assumed horizontal) is used to find
the best approximation (orthogonal projection) of x̂t in this space.

where ŷH1
=Wdz, z is the latent representation of latent space in linear autoencoder.

The first term is the mean squared error (MSE) between the input x and its approxi-
mation y. The second term is the MSE between the feature vector in the full signal
space x̂ and its approximation ŷH1

by the linear autoencoder. The parameters λ1 and
λ2 are the weighting parameters that adjust the impact of individual loss on the
overall objective function. The proposed OPC-based training objective function is
summarized in Algorithm 1.

5.3.2 Structure implementation

The core of the proposed OPC-CAE structure is a linear autoencoder. We use a
CNN before and after the linear autoencoder to learn the data features as shown, in
Fig. 2. The details of the proposed model are summarized in Table 1. We added a
three-layer CNN before and after the linear AE to improve the learning ability of
the model, respectively. To verify the generality of the model, vector datasets are
used to evaluate the performance of the proposed model. The vector-based model
replaces the convolution neural network with two-layered FC network as shown
in Fig. 3. In the encoder, the number of neurons in the first layer is 20, and that in
the second layer is 10. ReLU is used as an activation function in the encoder and
decoder. The activation of the last layer introduces the sigmoid function.
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Algorithm 2: Training objective of the proposed model
Input: Set of training data x, x ∈ X, iteration size N, weighting parameters λ1

and λ2.
Output: Y, ŷH1

, ŷH2

Define x̂ in full signal space form x;
Process from x to x̂ is defined as En(x), thus x̂ = En(x) ;
Similarly, we can get y = De(̂y), y ∈ Y;
Training:;
initialization;
for iteration 1→ N do

Take a mini-batch of M [x1, ..., xm] as input;
x̂i = En(xi), xi ∈M, x̂i ∈ X̂;
zi =Wêxi, ŷi

H1
=Wdzi, yi = De(̂yi

H1
);

if Reconstruction loss update then
L1 ←

1
n

∑
xi∈M ||xi − yi||

2
2 ;

L2 ←
1
n

∑
xi∈M ||̂xi − ŷi

H1
||

2
2;

L← L1 + λ1L2;
Back-propagate L to change L1 and L2;

end
if Orthogonal projection constraints update then

OPC← ||WeWd − X̂(X̂TX̂)−1X̂T
||

2
2 ;

Cons← λ2OPC
Back-propagate Cons to change Consab,

end
Optimized ℓ = L + Cons

end
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Table 5.1 Model structure for anomaly detection

OPC-CAE OPC-FAE
conv1(channel:32, filter:5) fc(neuron:20,activation:ReLU)

batch normalization fc(neuron:10,activation:ReLU)
max pooling(2*2) fc(NS)(neuron:8),fc(NS)(neuron:8)

conv2(channel:64, filter:5) fc(neuron:10,activation:ReLU)
batch normalization fc(neuron:20„activation:ReLU)

conv3(channel:128, filter:5) fc(neuron:43,activation:Sigmoid)
batch normalization

max pooling(2*2)
fc(NS)(neuron:500) fc(AS)(neuron:500)

fc(neuron:2048)
deconv1(channel:64, filter:5)

batch normalization
up sampling(2*2)

deconv2(channel:32, filter:5)
batch normalization

up sampling(2*2)
deconv3(channel:3, filter:5)

batch normalization
up sampling(2*2)

1 CIFAR10 dataset is considered as an example for OPC-CAE
2 KDD99 dataset is considered as an example for OPC-FAE

5.3.3 Proposed anomaly score using orthogonal subspaces score
with reconstruction error

To find the anomalies during testing and subsequent deployment, we implement
the reconstruction error score (RES). RES is defined based on the reconstruction
error S1(x) of the CAE and reconstruction error S2(x) of the linear autoencoder. In
the test phase, the model calculates the anomaly score of each test sample x′. The
reconstruction error S1(x′) between the input x′ and it approximation y′ by the CAE
is defined as

S1(x′) = ||x′ − y′||2 (5.7)
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Similary, the reconstruction error S2(x) between the feature vector x̂ and its approxi-
mation by the linear autoencoder is defined as

S2(x′) = ||̂x′ − ŷ′
H1
||

2 (5.8)

The RES can be defined as,

SRES(x′) = ω1S1(x′) + ω2S2(x′) (5.9)

Here, ω1 and ω2 are the weighting parameters that control the relative importance of
the score functions.

To find the anomalies more effectively, we propose a new OSS. It is defined using
the score S3(x) and S4(x) of the NS and the AS, respectively. The performance of
the proposed OSS in AD is better than the that of the RES. It is proved on CIFAR10
data sets in terms of the performance of the area under the curve (AUC) in detecting
individual class anomaly (Figure 5).

The score of data in the NS is represented by S3. The score S3 is defined as follows:

S3(x′) = y′H1

Ty′H1
(5.10)

The projection norm of data in the AS is S4

S4(x′) = y′H2

Ty′H2
(5.11)

To evaluate the impact of the overall AD performance, each individual anomaly
score is normalized. First, the individual anomaly scores Si = {Si(x′)|x′i ∈ Xtest} for
all test samples Xtest are calculated and then, the maximum max(Si) and minimum
min(Si) of individual anomaly scores are obtained. Therefore, the individual anomaly
score Si(x′) for new samples is normalized as

Pi =
Si(x′) −min(Si)

max(Si) −min(Si)
(5.12)

Thus, the OSS can be defined as follows:

SOSS(x′) = ω3(1 − P3(x′)) + ω4P4(x′) (5.13)
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As evident from Fig. 5, the performance of OSS on class categories of CIFAR10 is
better than that of RES. Additionally, the OSS improve the performance of AD when
combines with RES.

Fig. 5.5 Performance comparison of orthoganal subsepaces score (OSS) and recon-
struction error score (RES) on DOG, HORSE, SHIP, and TRUCK categories in terms
of ROC curve based on CIFAR10 dataset.

It is defined as follows:

P(x′) = SRES + SOSS

= ω1P1(x′) + ω2P2(x′) + ω3(1 − P3(x′)) + ω4P4(x′)

s.t. ω1 + ω2 + ω3 + ω4 = 1

(5.14)

where ω1, ω2, ω3, and ω4 are the tuning parameters used to adjust according to
the tasks. It indicated a high anomaly score with the anomaly data. Hence, using
Equation (14), the proposed anomaly score defined the abnormal sample, if P is
larger than the threshold. However, the intuition of P3 is contrast to P. To facilitate
the calculation, we use 1 − P3. Finally, given a certain threshold δ, the following
formula is utilized to identify whether the testing x′ is anomalous:



5.4 Experimental setup 89

Class(x′) =

normal, P(x′) ≤ δ;

abnormal, P(x′) > δ.
(5.15)

5.4 Experimental setup

5.4.1 Dataset

The performance of the OPC-CAE model is evaluated on pubilc datasets with
CIFAR10, CIFAR100, STL-10, and IMAGENET for the image datasets. These are the
most challenging datasets with various content and complexity compared to other
object recognition data sets (Fashion-MNIST and COIL) with properly aligned objects
and without background. Among the four datasets CIFAR10 and STL-10 contain
images with 10 different classes, whereas CIFAR100 and Imagenet are composed
of images with multiple classes. Thus, we selected only 10 classes from CIFAR100
and Imagenet dataset to evaluate the performance of the model. We select one class
category as the normal sample for training. We consider the union of remaining
classes during testing. In the experiment, each individual class in each dataset is
selected as a normal category to verify the generality of our model.

In terms of vector datasets, we perform experiments on Optdigits [9] and Default
of credit card clients (DCCC) [106] dataset. In Optdigits, one class (class ’3’) is treated
as being an anomaly, while another class (class ’1’) is considered as the normal
data. Default of credit card clients (DCCC) data set is an open-source dataset from
a foreign organization; ’Payment next month’, which only includes ’0’ or ’1’, is a
feature of the DCCC dataset. It indicates whether the user has repaid the credit
card bill, ’1’ indicates repayment, which is considered normal; and ’0’ indicates no
repayment, which is considered abnormal. Moreover, we consider the DCCC dataset
is composed of two classes: one normal class and one abnormal class.

5.4.2 Experimental evaluation and performance measure

To simulate an AD setting, four public image datasets is utilized to verify the
performance of our model. We follow the same experimental setting as that used
in [1, 85, 70], which can make the comparison between the proposed algorithm
and the previous works easy. We used only normal samples to train the model
and implemented two different protocols to learn the proposed model for training.
For image datasets, one class is considered as the normal class, the union of other
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classes are considered as abnormal class; in testing, we use the mixture of the normal
samples and the abnormal samples for test data.

1. Protocol 1. We divide each class of dataset into 60%, used as training samples,
and 40%, used as testing samples. We evaluate Protocol 1 on the IMAGENET
dataset. [21].

2. Protocol 2. The existing training and testing data from CIFAR10 [48], STL10
[19], CIFAR100 [48], Optdigits [9], and DCCC [106] are used for experiments.
Training split of normal data is used for training and testing split of all classes
are used for testing.

In Subsection 5.1, we verified the effectiveness of the proposed OSS for AD
in comparision to the RES on CIFAR10 dataset in terms of AUC. Furthermore, in
subsection 5.2, the effectiveness of our proposed OPC-CAE based on the combined
anomaly score (RES+OSS) is compared with nine state-of-the-art methods, including
one-class Gaussian mixture odel (GMM) [18], kernel density estimation (KDE) [52],
convolutional autoencoder (CAE) [17], VAE [44], pixel CNN decoders (Pixel CNN)
[99], GAN [90], Skip-connection Ganomaly (SCG) [5] , anomaly detection with
generative adversarial networks (AnoGAN) [90], and one-class GAN (OCGAN) [70].

To verify the generality of our model, we perform the additional experiments
based on vector datasets. We use FC layers instead of CNNs, called as OPC-FAE.
In the experiments, we compared the proposed method with eight state-of-the-art
methods, including several traditional supervised and unsupervised methods. The
proposed method is compared with the three most advanced supervised methods
including active learning (AL) [2], feature packing (FB) [53], and local outlier factor
(LOF) [13]. The proposed method is compared with the five unsupervised methods
including sparse coding (SC) [3], L21-SRC (L21) [20], reverse nearest neighbors (RNN)
[77], and self-representation outlier detection (SRO) [108]. In addition to these seven
methods, the proposed method is also compared with the sparse reconstruction (SR)
method proposed by Hou et al. [32].

Additionally, we conducted an ablation experiment. The proposed method was
compared with a model based on the OPC without AS. It demonstrated that the
individual score S4 should be removed from the anomaly score for the OPC-based
model with AS in the ablation study. Furthermore, the individual and overall
class performance of the proposed model for AD based on four image datasets
and two vector datasets used in this study is compared with the performance of
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state-of-the-art methods in terms of AUC of the receiver operating characteristic
curve method.

5.4.3 Parameter settings

We apply Adam optimizer to optimize the network parameters for the image and
vector datasets. We set the parameters β1(0.5) and β2(0.99) for the image and vector
datasets, respectively. The network is trained using 1,000 epochs for the CIFAR10,
CIFAR100, STL10 and, IMAGENET, and Optdigits datasets and 2,000 epochs for
the CIFAR100 and DCCC datasets. For image datasets, the learning rate is set to
0.0001 for CIFAR10 and CIFAR100 and 0.00005 for STL10 and IMAGENET. For each
iteration, we set the batch size are set to 100. For vector datasets, the learning rate
and batch size are set to 0.00005 and 100 for each iteration, respectively. We used
two sets of hyper-parameters, λ1 = 1, λ2 = 1 and λ1 = 1, λ2 = 0.3, to train the model.
The proposed framework is implemented in Python 3.6 using Tensorflow 1.9.

5.5 Experimental results

5.5.1 Performance comparison of OSS with RES

In this section, we discuss the experiments performed using OSS and RES on the
CIFAR10 dataset. From Table 2, it can be observed that except the performance
of class ’deer’, the performance of all other classes using our proposed OSS is
higher than that using the RES. The OSS improved by 11.82% in comparison to RES,
indicating that the detection ability of OSS is higher than that of conventional RES.
The conventional RES includes the reconstruction of noise from the raw input and
has a significant impact on the detection performance. However, the proposed OSS
with encoded data learned from the neural network (CNN or FCN), projected into
different subspaces can present more efficient discriminative manifolds. Thus, it can
significantly improve the detection performance.
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Table 5.2 Performance comparison of OSS and RES on each individual class in terms
of AUC based on CIFAR10

Method PLANE CAR BIRD CAT DEER DOG

RES 0.657 0.441 0.660 0.551 0.754 0.540
OSS 0.747 0.662 0.661 0.571 0.747 0.623

Method FROG HORSE SHIP TRUCK MEAN

RES 0.729 0.512 0.713 0.458 0.6015
OSS 0.729 0.563 0.729 0.694 0.6726

In most categories, the performance of OSS was better than that of RES, but
in some categories (Bird, Frog, Ship), the performances were similar. This can be
explained through the following. Firstly, the content in the categories of Bird, Frog
and Ship, in comparison to other categories, is less diverse with low complexity.
Specifically, it should be noted that these three categories are better aligned than others.
Consequently, these three categories can ensure model have better memorization
capabilities and accurately extract more discriminative features, which can enhance
the performance of RES. Secondly, the distance of the input and output vectors of
the linear AE was minimized, thereby improving the discriminative capability of
reconstruction error. In detail, this measurement can be motivated by the observation
that abnormal samples are suspected to have larger reconstruction errors and it is
considered that the subtle changes in the feature vector encoded by the convolutional
network can be more easily captured.

5.5.2 Performance comparison against state-of-the-art methods

We discuss the comparison of our method with nine and eight state-of-the-art
methods corresponding to image and vector datasets, respectively. The performance
of the proposed OPC-CAE model based on the overall ten classes of each of the four
datasets demonstrated higher performance with the highest average AUC value
than those of state-of-the-art for image AD (Table 3). In addition, the efficiency of the
proposed model in rating anomalies was high compared to the recently developed
OCGAN model for image datasets. [70]. Especially, more complex datasets (STL-10
and Imagenet) demonstrated significantly higher AUC value with the OPC-CAE
model than other state-of-the-art methods.
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Table 5.3 Performance comparison of OPC-CAE and state-of-the-art methods on
overall class in terms of mean AUC based on all four image datasets

Datasets GMM KDE CAE VAE Pixel CNN
CIFAR10 0.5875 0.6097 0.5234 0.5833 0.5506
Cifar100 0.6170 0.6454 0.4912 0.5081 0.5146
STL10 0.6156 0.5842 0.5698 0.5942 0.5002

IMAGENET 0.6326 0.5312 0.5601 0.5412 0.4911
Datasets GAN SCG ANOGAN OCGAN Ours
CIFAR10 0.5916 0.6172 0.6179 0.6566 0.6847
Cifar100 0.4774 0.4886 0.4678 0.6526 0.7435
STL10 0.5043 0.5155 0.5212 0.6177 0.6908

IMAGENET 0.5550 0.5404 0.5550 0.6226 0.6795

The stable performance of OPC-CAE model based on AD of all classes in all four
datasets is shown in Figure 6. The proposed method outperformed state-of-the-arts
by showing relatively stable and the highest average AUC value on all four datasets.
The performance of each individual class of the proposed OPC-CAE model was
compared with the state-of-the-art methods based on CIFAR10, CIFAR100, STL-10,
and ImageNet datasets, presented in Table 4, 5, 6 and 7, respectively. Among ten
classes in each dataset, six, ten, nine, and seven classes corresponding to CIFAR10,
CIFAR100, STL-10, and IMAGENET demonstrated higher AUC than other methods.
The performance of the OPC-CAE model of some classes did not improve on all four
datasets in terms of ROC curve, shown in Figure 7. However, it was observed that
the mean AUC value is always higher than the other state-of-the-art methods (Table
3).

GMM and KDE are probabilistic approaches that use statistical methods to
estimate the probability density function of the normal class. KDE is based on the
estimation of probability density. The probability density of normal data is larger
than that of the abnormal data. GMM performs AD by fitting a normal distribution
that can distinguish the abnormal data. The performance of these methods is
generally better than that of the methods based solely on reconstruction errors
(CAE, VAE, Pix CNN, and GAN). However, reconstruction includes the complicated
background score, which reduces the accuracy of reconstruction error detection.
Therefore, AnoGAN and SKG utilized the discriminator trained using normal data
and produced effective results for AD. However, these methods are not considered
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Fig. 5.6 Performance comparison of OPC-CAE and state-of-the-art methods on each
individual class in terms of AUC based on all data set

for detection of the distributions in the latent space. OCGAN is a recent proposed
method that only maps data into one latent space and does not explore the possibility
of projecting into two subspaces. To solve the limitations from these methods, our
method constrains the projection operator and obtains the NS and AS for AD. Based
on the experimental results, it was found that the performance of the proposed
method is better than that of state-of-the-art methods.

To verify the generality and adaptability of the proposed OPC-FAE on vector
datasets, we conducted experiments considering eight state-of-the-art methods. As
represented in Table 8 and Fig. 8, the proposed model outperforms state-of-the-art
methods for Optdigits and DCCC datasets. In addition, the proposed framework
demonstrated the higher performance with the highest AUC value than the recent
SRO and SR methods.
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Fig. 5.7 Performance of OPC-CAE on each individual class in terms of AUC based
on all datasets

Table 5.8 Performance comparison of OPC-FAE and the state-of-the-art methods on
overall classes of vector datasets in terms of AUC

Data sets FB AL LOF SC L21

Optdigits 0.577 0.590 0.523 0.589 0.833
Default of credit card clients 0.535 0.484 0.524 0.496 0.599

Data sets RNN SRO SR Ours

Optdigits 0.767 0.515 0.722 0.896
Default of credit card clients 0.506 0.600 0.606 0.660
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Table 5.4 Performance comparison of OPC-CAE and the state-of-the-art methods on
each individual class in terms of AUC concerning CIFAR10

Method PLANE CAR BIRD CAT DEER DOG

GMM 0.635 0.433 0.618 0.498 0.733 0.515
KDE 0.658 0.520 0.657 0.497 0.727 0.496
CAE 0.606 0.271 0.655 0.549 0.701 0.532
VAE 0.700 0.386 0.679 0.535 0.748 0.523

Pix CNN 0.788 0.428 0.617 0.574 0.511 0.571
GAN 0.708 0.458 0.664 0.510 0.722 0.505
SKG 0.717 0.494 0.662 0.527 0.736 0.504

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620

Ours 0.760 0.708 0.664 0.585 0.757 0.628

Method FROG HORSE SHIP TRUCK MEAN

GMM 0.696 0.540 0.675 0.531 0.5874
KDE 0.758 0.564 0.680 0.540 0.6097
CAE 0.537 0.408 0.653 0.322 0.5234
VAE 0.687 0.493 0.696 0.386 0.5833

Pix CNN 0.422 0.454 0.715 0.426 0.5506
GAN 0.707 0.471 0.713 0.458 0.5916
SKG 0.726 0.560 0.680 0.566 0.6172

AnoGAN 0.585 0.625 0.758 0.665 0.6179
OCGAN 0.723 0.575 0.820 0.554 0.6566

Ours 0.734 0.566 0.737 0.707 0.6847

Fig. 5.8 Performance of OPC-FAE on each individual class in terms of AUC based on
all vector datasets
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Table 5.5 Performance comparison of OPC-CAE and the state-of-the-art methods on
each individual class in terms of AUC concerning CIFAR100

Method APPLE BED BICYCLE ELEPHANT TRUCK PINE TREE

GMM 0.521 0.602 0.661 0.660 0.576 0.733
KDE 0.714 0.593 0.695 0.631 0.586 0.709
CAE 0.440 0.414 0.456 0.601 0.592 0.589
VAE 0.445 0.424 0.476 0.681 0.594 0.587

Pix CNN 0.484 0.393 0.422 0.654 0.517 0.462
GAN 0.399 0.370 0.422 0.532 0.594 0.587
SKG 0.380 0.388 0.456 0.613 0.609 0.603

AnoGAN 0.289 0.367 0.411 0.536 0.606 0.592
OCGAN 0.653 0.623 0.711 0.651 0.560 0.720

Ours 0.823 0.664 0.836 0.719 0.703 0.832

Method ROCKET TELEPHONE TRAIN TURTLE MEAN

GMM 0.676 0.528 0.645 0.568 0.6170
KDE 0.772 0.446 0.662 0.648 0.6456
CAE 0.450 0.238 0.571 0.565 0.4912
VAE 0.456 0.269 0.574 0.575 0.5081

Pix CNN 0.419 0.688 0.444 0.663 0.5146
GAN 0.456 0.280 0.564 0.570 0.4774
SKG 0.417 0.286 0.549 0.585 0.4886

AnoGAN 0.406 0.282 0.591 0.598 0.4678
OCGAN 0.770 0.563 0.627 0.648 0.6526

Ours 0.809 0.665 0.673 0.711 0.7435

Among the comparison methods for vector AD task, only the SR method
demonstrated a better effect. This is because it projects the input data into the
latent space using an autoencoder and learns a sparse representation dictionary to
represent the latent space distribution. Compared with other methods, the SR can
map the raw input into the latent space while the proposed method can map the
raw input into the NS and AS. Thus, the data manifolds can be better represented in
the subspace by reducing the influence of noise on data distribution.

5.5.3 Individual class performance analysis

Overall, the proposed method outperformed other AD methods with an average
AUC of 0.6847, 0.7435, 0.6908 and 0.6795 corresponding to CIFAR10, CIFAR100,
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Table 5.6 Performance comparison of OPC-CAE and the state-of-the-art methods on
each individual class in terms of AUC concerning STL-10

Method PLANE BIRD CAR CAT DEER DOG

GMM 0.694 0.595 0.583 0.631 0.739 0.564
KDE 0.625 0.610 0.570 0.578 0.663 0.553
CAE 0.654 0.560 0.332 0.652 0.698 0.613
VAE 0.659 0.601 0.403 0.635 0.728 0.584

Pix CNN 0.592 0.595 0.228 0.591 0.703 0.546
GAN 0.362 0.454 0.358 0.459 0.716 0.499
SKG 0.373 0.535 0.466 0.615 0.681 0.527

AnoGAN 0.368 0.559 0.607 0.574 0.626 0.514
OCGAN 0.688 0.548 0.627 0.611 0.701 0.527

Ours 0.780 0.599 0.679 0.709 0.762 0.651

Method HORSE MONKEY SHIP TRUCK MEAN

GMM 0.588 0.632 0.693 0.437 0.6156
KDE 0.549 0.603 0.608 0.483 0.5842
CAE 0.499 0.621 0.698 0.371 0.5698
VAE 0.584 0.635 0.699 0.414 0.5942

Pix CNN 0.498 0.576 0.433 0.240 0.5002
GAN 0.567 0.558 0.669 0.401 0.5043
SKG 0.422 0.563 0.581 0.392 0.5155

AnoGAN 0.407 0.560 0.541 0.456 0.5212
OCGAN 0.533 0.590 0.751 0.601 0.6177

Ours 0.563 0.657 0.797 0.710 0.6908

STL10, and IMAGENET (Table 3), respectively. Furthermore, the average AUCs of
0.996 and 0.660 on two vector datasets in Table 8 showed superior performance over
other AD methods on vector datasets. The performance on CIFAR-10 in Table 4
demonstrates the performance of the OCGAN method is close to our results, except
the category ’SHIP’, which is higher than ours. The propoesd method demonstrated
an improvement of 4.28% over the OCGAN method based on the average AUCs.
The performance of CIFAR100 is presented in Table 5. Our method shows high
performance in all categories for CIFAR100 by indicating high AUC values. It is
worth noting that the classical statistical methods, GMM and KDE, performed better
than the reconstruction-based methods, (CAE, VAE, Pix CNN, GAN, SKG, and
AnoGAN) and almost similar to OCGAN. This indicates that the statistical technique
of data distribution is effective and promising. As evident from Table 6, the proposed
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Table 5.7 Performance comparison of OPC-CAE and the state-of-the-art methods on
each individual class in terms of AUC concerning IMAGENET

Method BAG BOTTLE CAP BOX CAR PUMPKIN DOG

GMM 0.514 0.564 0.605 0.554 0.439 0.600
KDE 0.486 0.527 0.532 0.495 0.519 0.531
CAE 0.466 0.456 0.651 0.426 0.768 0.682
VAE 0.524 0.544 0.629 0.636 0.369 0.589

Pix CNN 0.365 0.543 0.501 0.556 0.184 0.611
GAN 0.543 0.472 0.453 0.483 0.826 0.472
SKG 0.455 0.540 0.555 0.507 0.517 0.733

AnoGAN 0.645 0.514 0.491 0.493 0.740 0.491
OCGAN 0.579 0.589 0.657 0.538 0.809 0.538

Ours 0.584 0.620 0.678 0.593 0.833 0.734

Method FISH POT ROOSTER DRESS MEAN

GMM 0.691 0.519 0.654 0.566 0.5706
KDE 0.608 0.509 0.546 0.557 0.5310
CAE 0.446 0.573 0.464 0.670 0.5602
VAE 0.603 0.560 0.681 0.634 0.5769

Pix CNN 0.478 0.501 0.597 0.575 0.4911
GAN 0.677 0.487 0.559 0.565 0.5537
SKG 0.517 0.540 0.510 0.531 0.5405

AnoGAN 0.709 0.486 0.600 0.611 0.5780
OCGAN 0.715 0.524 0.608 0.668 0.6225

Ours 0.855 0.583 0.622 0.693 0.6795

method improved by 11.83% compared to OCGAN. Furthermore, the proposed
method exhibited the highest AUCs in all categories except the ’BIRD’ category on
STL10 dataset. Additionally, the performance of GMM is almost similar to that of
OCGAN on STL10 dataset. Table 7 presents the performance of the IMAGENET
dataset. The performance of the proposed method improved by 9.16% compared
to OCGAN. Table 8 demonstrates that the proposed OPC-FAE is superior to other
classical AD methods with an AUC of 0.896 and 0.660 corresponding to Optdigits and
DCCC, respectively. The performance of OPC-FAE improved by 21.61% and 8.91%
compared to the SR method corresponding to Optdigits and DCCC, respectively.
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5.5.4 Parameter sensitivity analysis

The detection performance of the proposed method is controlled by a set of hyper-
parameters: ω1, ω2, ω3, and ω4, which present the importance degree of individual
score. It is beneficial to explore the sensitivity of these parameters to understand
which scores are important in testing, thereby providing effective ways to monitor
and control their detection condition. We selected six sets of hyper-parameters for
each dataset in the testing phase.

As evident from the Table. A12-A17 in Appendix A, better performance will be
obtained when ω1 and ω2 is smaller and ω3 and ω4 is larger; this implies that the
weight of RES (the combination of P1 and P2 )is less than that of OSS (the combination
of P1 and P2). Consequently, the performance of OSS is better than that of RES.
In addition, the weight of ω4 is larger than that of ω3 when the best AUC value is
obtained among the six sets of hyper-parameters, indicating that the performance of
the AS is better than that of NS. Furthermore, the performance is better when ω3 and
ω4 are larger among the image and vector datasets, indicating that the OSS is more
sensitive to abnornal data and the robustness of the proposed model. According to
Table. A12, A13, A14, A15, A16, and A17 in Appendix A, and Fig. 9, the parameters
are changed to obtain the highest AUC value. It can be observed that the weight
of OSS are larger than that of RES, which indicates that OSS can greatly improve
the detection performance. Finally, setting2(ω1=0.10, ω2=0.10, ω3=0.30, ω4=0.50) is
selected for CIFAR10 , setting1(ω1=005, ω2=0.05, ω3=0.35, ω4=0.55) for CIFAR100 ,
setting2(ω1=0.08, ω2=0.07, ω3=0.32, ω4=0.53) for STL10 , setting3(ω1=0.09, ω2=0.15,
ω3=0.41, ω4=0.35) for IMAGENET , setting4(ω1=0.18, ω2=0.18, ω3=0.30, ω4=0.34) for
Optdigits , setting3(ω1=0.18, ω2=0.13, ω3=0.33, ω4=0.36) for DCCC.
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Fig. 5.9 Performance of OPC-FAE on each individual class in terms of AUC based on
all image datasets according to different hyper-parameter sets.

5.5.5 Evaluation of rubustness to the additional noises

To verify the effectiveness and generalization of the proposed method, noisy dataset
is utilized for experiments in comparison to CAE and OCGAN. CIFAR10 is added
with two kinds of noise, sampled from a Gaussion distribution (u = 0, σ = 0.1)
and a uniform distribution (a = 0, b = 0.3), respectively. As evident from Table. 9,
the result of our method decreases from 0.6874 to 0.6452 in terms of mean AUC,
compared with CAE from 0.5234 to 0.5167, and OCGAN from 0.6560 to 0.6061 when
noise of Gaussion distribution is used. From Table. 10, when noise of Uniform
distribution is used, the result of our method decreases from 0.6874 to 0.6539 in
terms of mean AUC, compared with CAE from 0.5234 to 0.5206, and OCGAN from
0.6560 to 0.6051. Images added with noise will deteriorate the performance of image
detection, implying that the proposed method and the compared method have a
decline in performance of AD. However, the proposed method still ensures the
highest AUC, which indicates that the proposed method is more effective and robust.
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Table 5.9 Performance comparison of CAE, OCGAN and the proposed on each indi-
vidual class in terms of AUC based on CIFAR10 with noise of Gaussion distribution
N(0, 0.1).

Method PLANE CAR BIRD CAT DEER DOG

CAE 0.526 0.307 0.555 0.551 0.613 0.524
OCGAN 0.654 0.521 0.621 0.539 0.680 0.531
OURS 0.730 0.524 0.659 0.553 0.756 0.565

Method FROG HORSE SHIP TRUCK MEAN

CAE 0.629 0.433 0.660 0.369 0.5167
OCGAN 0.670 0.589 0.737 0.519 0.6061
OURS 0.744 0.581 0.752 0.588 0.6452

Table 5.10 Performance comparison of CAE, OCGAN and the proposed on each
individual class in terms of AUC based on CIFAR10 with noise of Uniform distribution
U(0, 0.3).

Method PLANE CAR BIRD CAT DEER DOG

CAE 0.502 0.322 0.655 0.536 0.627 0.518
OCGAN 0.662 0.601 0.626 0.524 0.673 0.512
OURS 0.770 0.588 0.661 0.567 0.756 0.548

Method FROG HORSE SHIP TRUCK MEAN

CAE 0.620 0.434 0.647 0.345 0.5206
OCGAN 0.676 0.533 0.710 0.534 0.6051
OURS 0.754 0.556 0.734 0.605 0.6539

5.5.6 Convergence of the proposed model

To demonstrate the convergence of the proposed framework, we randomly selected
a class (CAR) from the CIFAR10 dataset and analyzed its corresponding iterative
curve. As shown in Fig 10, the learning curve of the proposed model converges and
stabilizes after the 1250th epoch. In detail, the learning curve of the middle loss (MSE
loss between the input vector and approximation of the linear AE) converges and
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stabilizes after 200th epoch, the learning curve of the reconstruction loss (MSE loss
between the input and approximation of the model ) and that of OPC loss converge
and stabilize after the 700th and 1250th epoch according to Fig. 2(b), (d), respectively.
In addition, as evident from Fig. 11, the anomaly detection performance of the
proposed network reaches the peak at about 150th epoch with the highest AUC
value and it tends to be stable after 1250 epochs, finally the test AUC (0.708) can be
obtained after 2000th epoch. According to Fig. 10 and Fig. 11, it is indicated that the
performance of the proposed method is superior and stable.

Fig. 5.10 Convergence curve of the proposed model on the ’CAR’ class in CIFAR10
dataset. The horizontal and the vertical axis represent the number of epochs and
loss values, respectively. (a). Total loss. (b), (c), and (d) denote individual losses
corresponding to reconrtruction loss, middle loss (the MSE beteen the input feature
vector and the approximation of the embedded linear autoencoder ), and OPC loss,
respectively.
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Fig. 5.11 Anomaly detection performance of the proposed method with the increasing
number of iterations in terms of AUC.

5.5.7 Ablation study

The effectiveness of the OPC-CAE and OPC-FAE frameworks was validated through
ablation experiments conducted using image and vector datasets, respectively. We
consider the following two learning settings: 1)implementing the two subspaces
model, and 2) removing the AS. The experimental results are presented in Table
11. For image datasets, it was observed that under Settings 2, the AD performance
deteriorated by almost 6.1% and 7.6% on CIFAR10 and STL10 datasets, respectively,
compared to the performance of the complete model using Setting 1. For vector
datasets, the AD performance in Settings 2 using DCCC dataset decreases by more
than 7.4% compared to that of the complete model.

Table 5.11 Performance comparison based on ablation validation in terms of AUC

Datasets Setting 1 Setting 2

CIFAR10 (average AUC) 0.6847 0.6427
STL10 (average AUC) 0.6908 0.6385

Default of credit card clients 0.660 0.611
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5.5.8 Performance visualization based on normal and abnormal
subspace

The latent space was visualized using PCA that reduced the dimensionality into
two dimensions. The performance of subspace representation distribution of the
proposed model was compared with the latent space representation of the standard
CAE model without OPC. Fig. 12(a) and (d) is the visualization of the standard
CAE model without OPC, Fig. 12(b) and (e) illustrate the visualization of NS of our
method, and Fig. 12(c) and (f) is the visualization of AS of our proposed method.
The images in first row of Fig. 12 indicate the visualization of class ’ROCKET’
in CIFAR100. The images in the second row represent the visualization of class
’BICYCLE’ in CIFAR100. It was found that the subspace representation distribution
in AS (Fig. 12(c), (f)) can efficiently distinguish between normal and abnormal
samples in comparison to the latent presentation of the standard antoencoder model
(Fig. 12(a), (d)). Fig. 10 also demonstrates that the subspace representation of NS
(Fig. 12 ( b), (e)) is more effective than the latent representation of standard CAE for
AD tasks.
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Fig. 5.12 Space visualization comparison of the proposed OPC-CAE over the baseline
CAE without using OPC based on CIFAR100. (a), (b), and (c) shows the latent
space representation of the class ’rocket’ using baseline autoencoder without OPC,
proposed OPC-CAE with normal space, and proposed OPC-CAE with abnormal
space, respectively, (d) (e), and (f) shows latent space representation of the class
’bicycle’ using baseline autoencoder without OPC, normal space in the proposed
OPC-CAE , and abnormal space in the proposed OPC-CAE, respectively.



Chapter 6

Conclusion

In this work, we propose feature learning and data mapping scheme in neural
networks for anomaly detection. It discusses the ability of generation and dimen-
sionality reduction performance of the generative model, and analyzes the learning
ability of the discriminative features of the model； and also extends the feature
representations to multiple spaces. The advantages of feature extraction have the
improvements in binary classification abilities and feature representations. The
relevant theoretical background of AD is discussed at the first of this work, then
focus on low-dimensional representation constraints (chapter 2). The importance
in Chapter 2 are discussed as to its low-dimensional feature extracting and feature
understanding. The results show that these methods can be used to learn discrimi-
native low-dimensional features and reconstruction errors. Interestingly, it has been
found that embedding multiple spaces can achieve better performance for multiple
deep networks. The proposed method is proved by the classification problem of
public image and vector dataset. The experimental results are consistent with our
hypothesis, which is supported by mathematical evidence.

Uncertain cases is unavailable to learn the feature in this tasks resulting in the
model confuse on which features are useful. In our experiments, the detection of
abnormal states is based on the discriminative features of normal states, which not
only depends on the feature representation of normal data, but also depends on the
choice of boundaries. Feature representations for anomaly detection are focused on
filtering out important features from original features and are sparse. But another
problem of classification description is that many similar features between different
classes will result in bad performance detection of anomalies. Therefore, in this work
it is suggested utilizing maximization of mutual information (MMI) as regularizer
for its ability to learning the discriminative information.
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In Chapter 3, we also found that the low-dimensional representation of our
model has more discriminative low-dimensional features after introducing MMI
as a regularizer, which will increase the learning capabilities of the model. The
introduction of MMI helps to learn the local and global feature in deep neural network
models. We introduce the MMI between the input and the latent representation,
the approximation, and the MMI between the hidden layer representations as
regularizers to enhance the latent representation. MMI introduces the learning
algorithm to the most discriminative learning, and prevents latent space learning
failures caused by reconstruction noise. Mutual information (MI) can reduce the noise
of the generated data, so that the low-dimensional representation of the latent space
will be more discriminative. This is done through an anomaly detection experiment
based on an anomaly detection task，which results in a great improvements feature
manifolds of the model represented by the feature. In addition, our experiment
categorizes abnormal states in various data sets by injecting KLD loss into selected
joints of the neural network, thereby steadily improving the accuracy of important
features and clearer positioning capabilities.

A single space can only be trained to accommodate normal data, but not abnormal
data, which means ignoring the basic principle of multiple spaces. The manifold in
a single space is limited because some unnecessary features will be mapped into this
space, which will decrease the performance of AD. Therefore, our work focus on the
multi-space analysis for feature representation in Chapter 4. We also analyzed the
effectiveness of the gated network, showing that different spaces are weighted to
highlight the importance of the space for a specific task. A convolutional autoencoder
with fully connected layers embedded in latent space is introduced to capture the
discriminative features enhanced by manifolds in different spaces. Compared with
other AD methods, our AD performance is superior in terms of AUC value. This can
be observed through experimentation and visualization of latent representations.
These findings will help to understand useful changes by looking at the evolution of
the latent space that define anomalies.

Based on the theoretical considerations in Chapter 4, AD represented by multiple
spaces is used to evaluate linear connection of different features. It avoids some
shortcomings of single-space learning by introducing low-dimensional information.
Data is represented in multiple low-dimensional spaces, and the feature representa-
tion is more discriminative through linear combination, and feature representation
and boundary determination are regarded as the unique pair of description effects.
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We also proposed another measure of AD through orthogonal projection mech-
anism. Our method can overcome the major challenges of noise and multi-space
detection, which makes orthogonality more promising in detection. To verify the
effectiveness of proposed model, six datasets were used, including image and vector
datasets. The evaluation results show that the orthogonal complementary subspace
has a robust effect on anomaly detection. By linking orthogonal complementary
spaces, the model can be concentrated for feature projection.

The effective feature extraction capability of the proposed architecture proves
the applicability of the extraction and understanding based on low-dimensional
manifolds. In addition, the extraction of features and low-dimensional mapping can
be performed in many tasks, from evaluating the features of data distribution through
feature extraction, dimensionality reduction, and reconstruction, to distinguish
between normal and abnormal data. Finally, it can be said that the work described
here analyzes several issues that have effective feature extraction and understanding
so far. Using the method suggested in this paper, we also used the new anomaly
score to test the severity of the anomaly, which allows us to understand the state of
the anomaly in more detail.
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Appendix A

Caculation of maximazation of mutual
information

A.1

In section 3.2, we have defined the loss function (Eqn. 15) as follows

LMMI = λKLDKL(P(Z)|Q(Z)) − λI(X,Z) − λOI(X,Y) − λHI(L1,L′1)

= λKLD

∫
p(z)log

p(z)
q(z)

dz − λ
∫ ∫

p(z|x)p(x)log
p(z|x)
p(z)

dxdz

− λO

∫ ∫
p(y|x)p(x)log

p(y|x)
p(y)

dxdy − λH

∫ ∫
p(l′1|l1)p(l1)log

p(l′1|l1)
p(l′1)

dl1dl′1
(A.1)

where λKLD, λ, λO and λH are the weighting parameters used to adjust the impact
of individual losses on the overall objective function.

We transform Eq. B.1 to obtain the following:

LMMI = λKLD

∫
p(z)log

p(z)
q(z)

dz − λ
∫ ∫

p(z|x)p(x)log
p(z|x)
p(z)

dxdz

− λO
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p(y|x)p(x)log
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p(y)

dxdy − λH
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=
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[
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]
dxdz

− λO
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dxdz − λH
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(A.2)
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We define λL = λKLD + λ, and thus Eqn. B.20 can be writen as follows:

LMMI =λKLDEx∼p(x)[DKL(P(Z|X)||Q(Z))] − λL

∫ ∫
p(z|x)p(x)log

p(z|x)
p(z)

dxdz

− λO

∫ ∫
p(y|x)p(x)log

p(y|x)
p(y)

dxdz

− λH

∫ ∫
p(l′1|l1)p(l1)log

p(l′1|l1)
p(l′1)

dl1dl′1

(A.3)

The first term of the loss function can be simply expressed as follows

Ex∼p(x)[DKL(P(Z|X)||Q(Z))] =
∑
x∈X

1
2

(−logσ2(x) + µ2(x) + σ2(x) + 1), x ∈ X, (A.4)

where σ(.) and µ(.) represent the mean and standard deviations given x, respectively
[44].

Then, Eq. B.3 is converted into KL divergence as follows:

I(X,Z) =
∫ ∫

p(z|x)p(x)log
p(z|x)
p(z)

dxdz

=

∫ ∫
p(z|x)p(x)log

p(z|x)p(x)
p(z)p(x)

dxdz

= DKL(p(z|x)p(x)||p(z)p(x))

(A.5)

Similarly, I(X,Y) and I(L1,L′1) can be expressed as follows, relatively

I(X,Y) = DKL(p(y|x)p(x)||p(y)p(x)) (A.6)

I(l1, l′1) = DKL(p(l′1|l1)p(l1)||p(l′1)p(l1)) (A.7)

It should be noted that KLD theoretically has no upper limit, but maximizing
a quantity without an upper bound is likely to lead to outputting infinite results.
Therefore, to perform optimization more effectively, we consider that the charac-
teristic of maximizing MI is to widen the distance between p(z|x)p(x) and p(z)p(x);
accordingly, instead of KL divergence, we switch to Jensen-Shannon divergence
(JSD), which is a measure with an upper bound and it is defined as follows:

DJS(P,Q) =
1
2

DKL(P|
P +Q

2
) +

1
2

DKL(Q|
P +Q

2
) (A.8)
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The loss function according to Eq. 7 can be rewritten as follows:

LMMI = λKLDEx∼p(x)[DKL(P(Z|X)||Q(Z))]

− λL · (E(x,z)∼p(z|x)p(x)[logH(x, z)] + E(x,z)∼p(z)p(x)[log(1 −H(x, z))])

− λO · (E(x,y)∼p(z|x)p(x)[logH(x, y)] + E(x,y)∼p(y)p(x)[log(1 −H(x, y))])

− λH · (E(l1,l′1)∼p(l′1|l1)p(l1)[logH(l1, l′1)] + E(l1,l′1)∼p(l′1)p(l1)[log(1 −H(l1, l′1))])

(A.9)

where H(.) = 1
1+exp(−v(.)) , v(.) is an objective function defined from the proposed MI

criterion according to [31].
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Appendix B

Results

B.1

Table B.1 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning CIFAR10

Method PLANE CAR BIRD CAT DEER DOG

GMM 0.635 0.433 0.618 0.498 0.733 0.515
KDE 0.658 0.520 0.657 0.497 0.727 0.496
CAE 0.606 0.271 0.655 0.549 0.701 0.532
VAE 0.700 0.386 0.679 0.535 0.748 0.523

Pix CNN 0.788 0.428 0.617 0.574 0.511 0.571
GAN 0.708 0.458 0.664 0.510 0.722 0.505
SKG 0.717 0.494 0.662 0.527 0.736 0.504

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603
OCGAN 0.757 0.531 0.640 0.620 0.723 0.620

Ours 0.682 0.614 0.604 0.620 0.704 0.562

Method FROG HORSE SHIP TRUCK MEAN

GMM 0.696 0.540 0.675 0.531 0.5874
KDE 0.758 0.564 0.680 0.540 0.6097
CAE 0.537 0.408 0.653 0.322 0.5234
VAE 0.687 0.493 0.696 0.386 0.5833

Pix CNN 0.422 0.454 0.715 0.426 0.5506
GAN 0.707 0.471 0.713 0.458 0.5916
SKG 0.726 0.560 0.680 0.566 0.6172

AnoGAN 0.585 0.625 0.758 0.665 0.6179
OCGAN 0.723 0.575 0.820 0.554 0.6566

Ours 0.734 0.639 0.756 0.675 0.6590
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Table B.2 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning CIFAR100

Method APPLE BED BICYCLE ELEPHANT TRUCK PINE TREE

GMM 0.521 0.602 0.661 0.660 0.576 0.733
KDE 0.714 0.593 0.695 0.631 0.586 0.709
CAE 0.440 0.414 0.456 0.601 0.592 0.589
VAE 0.445 0.424 0.476 0.681 0.594 0.587

Pix CNN 0.484 0.393 0.422 0.654 0.517 0.462
GAN 0.399 0.370 0.422 0.532 0.594 0.587
SKG 0.380 0.388 0.456 0.613 0.609 0.603

AnoGAN 0.289 0.367 0.411 0.536 0.606 0.592
OCGAN 0.653 0.623 0.711 0.651 0.560 0.720

Ours 0.530 0.672 0.777 0.766 0.673 0.811

Method ROCKET TELEPHONE TRAIN TURTLE MEAN

GMM 0.676 0.528 0.645 0.568 0.6170
KDE 0.772 0.446 0.662 0.648 0.6456
CAE 0.450 0.238 0.571 0.565 0.4912
VAE 0.456 0.269 0.574 0.575 0.5081

Pix CNN 0.419 0.688 0.444 0.663 0.5146
GAN 0.456 0.280 0.564 0.570 0.4774
SKG 0.417 0.286 0.549 0.585 0.4886

AnoGAN 0.406 0.282 0.591 0.598 0.4678
OCGAN 0.770 0.563 0.627 0.648 0.6526

Ours 0.729 0.752 0.754 0.664 0.7128
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Table B.3 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning STL-10

Method PLANE BIRD CAR CAT DEER DOG

GMM 0.694 0.595 0.583 0.631 0.739 0.564
KDE 0.625 0.610 0.570 0.578 0.663 0.553
CAE 0.654 0.560 0.332 0.652 0.698 0.613
VAE 0.659 0.601 0.403 0.635 0.728 0.584

Pix CNN 0.592 0.595 0.228 0.591 0.703 0.546
GAN 0.362 0.454 0.358 0.459 0.716 0.499
SKG 0.373 0.535 0.466 0.615 0.681 0.527

AnoGAN 0.368 0.559 0.607 0.574 0.626 0.514
OCGAN 0.688 0.548 0.627 0.611 0.701 0.527

Ours 0.712 0.514 0.626 0.690 0.762 0.573

Method HORSE MONKEY SHIP TRUCK MEAN

GMM 0.588 0.632 0.693 0.437 0.6156
KDE 0.549 0.603 0.608 0.483 0.5842
CAE 0.499 0.621 0.698 0.371 0.5698
VAE 0.584 0.635 0.699 0.414 0.5942

Pix CNN 0.498 0.576 0.433 0.240 0.5002
GAN 0.567 0.558 0.669 0.401 0.5043
SKG 0.422 0.563 0.581 0.392 0.5155

AnoGAN 0.407 0.560 0.541 0.456 0.5212
OCGAN 0.533 0.590 0.751 0.601 0.6177

Ours 0.673 0.688 0.691 0.519 0.6448
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Table B.4 Performance comparison of CVAE-MMI and the state-of-the-art methods
on each individual class in terms of AUC concerning IMAGENET

Method BAG BOTTLE CAP BOX CAR PUMPKIN DOG

GMM 0.514 0.564 0.605 0.554 0.439 0.600
KDE 0.486 0.527 0.532 0.495 0.519 0.531
CAE 0.466 0.456 0.651 0.426 0.768 0.682
VAE 0.524 0.544 0.629 0.636 0.369 0.589

Pix CNN 0.365 0.543 0.501 0.556 0.184 0.611
GAN 0.543 0.472 0.453 0.483 0.826 0.472
SKG 0.455 0.540 0.555 0.507 0.517 0.733

AnoGAN 0.645 0.514 0.491 0.493 0.740 0.491
OCGAN 0.579 0.589 0.657 0.538 0.809 0.538

Ours 0.576 0.577 0.664 0.734 0.803 0.684

Method FISH POT ROOSTER DRESS MEAN

GMM 0.691 0.519 0.654 0.566 0.5706
KDE 0.608 0.509 0.546 0.557 0.5310
CAE 0.446 0.573 0.464 0.670 0.5602
VAE 0.603 0.560 0.681 0.634 0.5769

Pix CNN 0.478 0.501 0.597 0.575 0.4911
GAN 0.677 0.487 0.559 0.565 0.5537
SKG 0.517 0.540 0.510 0.531 0.5405

AnoGAN 0.709 0.486 0.600 0.611 0.5780
OCGAN 0.715 0.524 0.608 0.668 0.6225

Ours 0.750 0.553 0.613 0.629 0.6583
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