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Abstract 
 

In this thesis, I presents a quantitative staging classification method for a 

real-time Computer-Aided Diagnosis (CAD) system in a colorectal magnified 

Narrow Band Imaging (NBI) endoscopy. For the classification of a histologic 

findings, a real-time video (30fps) CAD system on site is required. Since 

colorectal tumor classification is based on pit pattern of colorectal lesion 

surface and vessel, it is difficult to identify cancer staging for non-expert. 

Quantitative staging classification which provides quantitative staging and 

objective index for real-time video to the doctor is required, since the 

conventional CAD system is real-time video polyp detection and still image 

classification. In endoscopic video, unclear regions exist in lesion because of 

continuous moving and indefinite shape, and, affects quantitative staging and 

objective index. By moving staging region to clear region, quantitative staging 

is improved. Therefore, navigation function to clear region is indispensable 

for clinical doctor. However, polyp detection and classification in previous 

CAD systems are main subject and quantitative staging with navigation 

function has not been studied. In addition, a real-time video (30 fps) CAD 

system has not been reported. And, a real-time CAD system HW is desired to 

use on site, and, desired to store in the same rack of endoscopic system or 

smart-glass. Thus, we realize a 1) CAD system for real-time video on 

customizable DSP with 30 fps, 30 ms latency and 1 W, 2) real-time 

quantitative staging CAD for video with over 90% accuracy and 3) real-time 

navigation to improve quantitative staging quality with 30 fps and easy to 

operate for clinical doctor on site. 

 We implement a real-time CAD System with quantitative staging and 

navigation for real-time video on customizable DSP. Processing cycles and 

memory size is reduced for real-time processing on customizable DSP 8-bit 

quantized AlexNet and SVM implementation and avoiding system bus 

conflict by using hidden layer feature. We realize a CAD system for real-time 

video with 44.6 fps and 22 ms latency, 66.6 mW power. We achieve 

quantitative staging with 90% accuracy by pre-trained CNN instead of 

handcrafted feature extraction and multi-sizing and balancing in training 

data set. And, we implement real-time navigation for effective quantitative 

staging. We propose navigation by unclear region detection for one staging 

region with 30fps @ 525 MHz, and, navigation by multiple staging regions 



 

 

with 39fps @525 MHz. From our research, quantitative and objective staging 

index are provided to the doctor more accurately in magnified NBI endoscopic 

observation, which is independent from the experience of doctors, and 

diagnostic support method is established such as a "second opinion" at 

magnified NBI endoscopic observation on site. 
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Chapter 1. Introduction 
 

1.1. Background 

In recent years, the incidence and the morality of colorectal cancer is 

increasing in Japan as shown in Fig.1 [1]. Colorectal cancer is the leading 

causes of cancer-related patients and the 2nd leading causes of cancer death 

in Japan. The increasing trend of cancer patients and deaths is also seen in 

Europe [2]. In United States, the incidence and the morality of colorectal 

cancer is decreasing as shown in Fig.2 [3]. However, colorectal cancer is the 

3rd leading cause of cancer-related deaths in men and in women, and the 2nd 

most common cause of cancer deaths when men and women are combined in 

U.S. The death rate (the number of deaths per 100,000 people per year) from 

colorectal cancer has been dropping in U.S. There are some reasons for this. 

One reason is that colorectal polyps are now being found more often by 

screening and removed before they can develop into cancers by using 

endoscopy, or cancers are being found earlier when they are easier to treat. 

In addition, treatment for colorectal cancer has improved over the last few 

decades. Figure 3 shows 5-year relative survival rate for each cancer from 

2006 to 2008. The 5-year relative survival rate of colon and rectum cancer is 

higher than other cancers. Therefore, if the colorectal cancer is detected and 

treated at the early stage, it can be recovered almost completely [5-6].  

  

 
Figure 1. Trends in Incidence and Morality for Cancers in Japan, from 1975 

to 2018 [1] 
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Figure 2. Trends in Incidence and Morality for Cancers in United States, from 

1975 to 2018 [3] 

 

 
Figure 3. 5-year Relative Survival Rate from 2006-2008 in Japan [1] 

 

 Colorectal cancer is a cancer in the colon or rectum. The colon and rectum 

make up the large intestine (or large bowel), which is part of the digestive 

system. Most colorectal cancers start as a growth on the inner lining of the 
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colon or rectum. These growths are called polyps. If cancer forms in a polyp, 

it can grow into the wall of the colon or rectum over time. The wall of the colon 

and rectum is made up of many layers. Colorectal cancer starts in the 

innermost layer (the mucosa) in Fig.4 [7]. 

 

 
Figure 4. Colon and Rectum which Colorectal Cancer Occurs. (American 

Cancer Society) [7] 

 

 The observation of endoscopic images with Narrow Band Imaging (NBI) 

magnification and the pathology are major method of detection for colorectal 

cancer at early stage. NBI is an optical technique for endoscopic diagnosis, 

where light of specific blue and green wavelengths is used to visualize the 

detail of certain aspects of the surface of the mucosa. Conventionally, 

examining for lesions with an endoscope is performed using white light made 

up of the three primary colors: red, green, and blue (RGB). In contrast, NBI 

excludes red and uses blue and green only. A special filter is electronically 

activated by a switch in the endoscope to use of ambient light of wavelengths 

of 415 nm (blue) and 540 nm (green) as shown in Fig.5. When the blue and 

the green lights hit the tissue, the light is absorbed by the hemoglobin 

contained in the blood vessels as shown inFig.6. The mucosal areas reflect the 

light back to the endoscope. As a result, the contrast of the blood vessels in 

relation to the mucosa is significantly enhanced in Fig.7 (b). The blue light 

only penetrates the superficial layers of the mucosa and is absorbed by the 

vessels on the surface. The other hands, the green light is absorbed by blood 

vessels within deeper mucosal layers (the submucosa). This is particularly 
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helpful for displaying highly vascularized suspect lesions in deeper tissue 

layers [8]. 

 

 
Figure 5. Wavelengths filtering for NBI endoscopic system (Olympus) [8]. 

 

 
Figure 6. Overview of Narrow Band Imaging Technique (Olympus) [8]. 

 

 
Figure 7. Endoscopic Image by (a) normal light and (b) NBI (Olympus) [8]. 
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 NBI endoscope has several advantages over chromoendoscopy. Endoscopic 

images with a uniform mucosal pattern across images without dye-spraying 

can be observed. Furthermore, NBI enables visualization of vascular features 

on the mucosal surfaces of lesions. This would be difficult to observe by 

chromoendoscopy [9-10]. In the diagnosis by the NBI magnification endoscope, 

an expertise clinical doctor diagnoses a tumor and the degree of cancer 

progression from the vessel pattern structure of the inner wall of the colon 

etc. The clinical doctor for diagnosis is required highly expertise and 

experience, and the number of expertise clinical doctors is limited. For colon 

neoplastic lesions, a cost-effective examination method and treatment 

method that takes treatment risk and post-treatment surveillance interval 

into consideration is desired. Therefore, a computer-aided diagnosis (CAD) 

system is required for improving the accuracy of diagnosis by objective 

judgment using computer image analysis. 

 

1.2. Colorectal Cancer Classification 

Since the observation by NBI endoscopic is general, some classification 

methods for colorectal cancer progress based on endoscopic images are 

proposed. Sano et al. reported first classification using NBI magnifying 

endoscopy in 2006 [11]. 

 The Sano classification proposed in 2006 was the first published NBI 

magnifying endoscopic classification. It is based on the vascular findings 

alone. Its usefulness in qualitative and quantitative diagnosis have been reported 

by validation studies [11-14].  

 The Hiroshima classification published in 2008 is based on the surface 

pattern in addition to the vascular findings on NBI magnifying endoscopy to 

determine histological type of polyps [15-16]. Figure 8 shows Hiroshima 

classification. This classification consists of five categories: Type A, Type B, 

Type C1, Type C2 and TypeC3. Type A is classified as non-cancer, others are 

classified as cancer. 

 The Showa classification proposed in 2009 is based on the pit-like structure 

and microvascular architecture and the morphological expression of these 

characteristics on NBI magnifying endoscopy [17].  

 The Jikei proposed in 2009 is also based on mainly vascular findings on NBI 

magnifying endoscopy [18].  
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Figure 8. Hiroshima Classification [13-14]. 

 

 The NICE (NBI International Colorectal Endoscopic) classification proposed 

in 2009 is based on the color, vessels, and surface pattern on endoscopy. 

Validation studies of NICE classification have proved useful in qualitative 

and quantitative diagnosis [19-20]. 

 At present, the Japan NBI Expert Team (JNET) classification that unifies 

these previous classifications has been proposed through consensus [21-22]. 

Figure 9 shows the JNET classification. This classification consists of four 

categories: Type 1, Type 2A, Type 2B, and Type 3. Normal, hyperplastic 

lesions and sessile serrated polyp are classified into Type1 as non-cancer. The 

others are classified into Type 2A, Type 2B or Type 3 as cancer. Type 2A, Type 

2B, and Type 3 represent progress of colorectal cancer. Figure 10 shows 

example images of each pathological type, Type 1, Type 2A and Type 3. These 

are categorized by vessel pattern and surface pattern on NBI magnifying 

findings. Also, validation studies of the JNET classification have been 

reported and proved useful in diagnosis on NBI magnifying endoscopy [23-

24]. In this thesis, the JNET classification is used. 
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Figure 9. The Japan NBI Expert Team (JNET) classification [21-22] for NBI 

Magnification Findings. 

 

 
Figure 10. Examples of Type 1, Type 2A and Type 3 in JNET Classification. 

 

1.3. Requirements for Computer-Aided Diagnosis System 

System specifications required for the CAD system from clinical doctors are 

as follows. This requirement is the worst that doctors can tolerate, and for 

real-time video endoscopic observation on-site, higher requirements is needed. 
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(I) High speed and responsiveness 

The required throughput is more than 1-5 fps and the required latency is 

less than 1 sec in worst case. 

 

(II) High recognition rates  

The required accuracy is more than 90% matches with results by the 

clinical doctors. 

 

 Generally clinical doctors use a colorectal endoscopic camera as shown in 

Fig.11. The colorectal endoscopic camera is stored in a rack, and the CAD 

system will be installed in the same rack, or head-mount for smart-glass in 

future. Therefore, a low power consumption is required for the CAD system 

at the clinical site. Since a head-mount for smart-glass is wearable device, 1 

Watt of power consumption is required. The inner wall of the colon is moving 

constantly, and the video image frame rates from the colorectal endoscope are 

30 - 60 fps (HD-SDI (High Definition – Serial Digital Interface) Standard [25]). 

And, the endoscopic observation is performed on two screens, one is for the 

image of endoscope directly (Endoscopic Monitor in Fig.11), and another is for 

diagnosis support (CAD Monitor in Fig.11). It becomes a problem if the frames 

displayed on each screen are significantly different. Thus, the higher 

performance than (I) is required for more accurate and seamless diagnosis. 

For processing real time endoscopic video (30fps), 30fps of throughput, 33 ms 

of latency is needed. By providing the probability of each pathological types, 

it is possible to perform careful observation and take multiple still images 

with different probabilities. Since these data can be used at later conferences 

with diagnosis doctors, 90% of the classification accuracy (Requirement (II)) 

can be obtained close judgement by expertise clinical doctors’ classification. 

Therefore, requirements for the real-time CAD system that we aim to realize 

are as follows: 

 

(I) High speed and responsiveness for real-time endoscopic video 

30fps of throughput, 33 ms of latency and 1 Watt of power consumption. 

 

(II) High recognition rates for real-time endoscopic video 

Over 90% accuracy for each frame in real-time endoscopic video 
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 A CAD system using an endocytscopy [26] with very high magnification 

(360x) has been reported [27]. The reported system can classify cancer or non-

cancer based on vessel pattern. Our research group focus on NBI images 

magnified from medium-magnification (1.3-1.9x) to strong-magnification 

(3.6x) to classify the degree of cancer progression based on both vessel pattern 

and surface pit pattern. And, a CAD system using NBI endoscopic images has 

been proposed [28]. The system can classify colorectal endoscopic images into 

three pathological types in Hiroshima classification (Type A, Type B and Type 

C3). The system is consisted with Dense Scale-Invariant Feature Transform 

(D-SIFT) feature extraction, feature transformation based on Bag of Features 

(BoF) and Support Vector Machine (SVM) classification. The system can 

realize over 90 % classification rate for 120 x 120 pixels size of still endoscopic 

images by software processing [28-31]. Also, real time CAD systems which 

are implemented into FPGA have been proposed for processing of the above 

software systems [32-35].  

 

 
Figure 11. Overview of Computer Aided Diagnosis System with NBI 

Magnified Endoscopic Camera. 

 

 In general, there are customizable Digital Signal Processor (DSP), Graphics 

Processing Unit (GPU) and Field Programmable Gate Array (FPGA) as 

options for hardware (HW) implementation. Table 1 shows comparison of 

each implementation method. The performance is increased by applying 

several optimizations for each method, however the power consumption is not 

reduced so much. It also takes time for designing HWs in FPGA. Therefore, 

we selected a DSP for our implementation target. 
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 In previous CAD systems, still NBI endoscopic images are used. However, 

the clinical doctor observes the inner wall of the colon by switching 

magnification and non-magnification on-the-fly for endoscopic video images. 

Therefore, a CAD system that supports colorectal tumor classification for 

endoscopic video image with stable objective information is much more 

required. On the other hand, several frames of the endoscopic video are not 

clear like a still image captured by freezing, because of color shift, blurring, 

reflection of light, and so on. A robust CAD system for endoscopic video 

images that is affected by these unclear images is required. 

 

Table 1 Comparison of Implementation Methods: GPU, FPGA and DSP. 

 
 

1.4. Research Objectives 

CAD systems has been researched and reported CAD systems with detection 

and classification of polyps for the purpose of preventing oversight by 

screening as shown in Fig.12 [36-42]. Real-time video polyp detection and still 

image classification are main function in conventional CAD system. Our 

proposed CAD system provides quantitative staging and objective index for 

real-time video. Figure 13 shows difference of real-time polyp detection, 

classification and quantitative staging. Real-time polyp detection provides 

position of polyp by bounding box and label (Fig.13 (a)) [42]. Polyp 

classification classify polyp type, adenoma or hyper plastic with confidence 

level of AI (Fig.13 (b)) [42]. On the other hand, we aim to realize a CAD system 

with a quantitative staging classification that provides quantitative and 

objective index such as classification quantitative measure and staging 

quantitative measure to recognize the degree of progression of colorectal 

(Fig.13 (c)). 

 

Performance Power Consumption Development Period

GPU 〇 △ 〇
FPGA 〇 〇 ×
Customizable DSP 〇 〇 〇
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Figure 12 Purpose of Computer-aided diagnosis system. 

 

 

Figure 13 Difference of Detection, Classification and Quantitative Staging. 

 

 Figure 14 shows modality of endoscopic system by light and magnification. 

Also, research on CAD systems is being conducted for each endoscopic 

imaging system. The appearance of the inner wall of the colon differs 

depending on the magnification, and at high magnification as shown in Fig.14 

(b), the pattern of the surface structure of the inner wall can be clearly 

observed. By highlighting with narrow band light (NBI system), it is possible 

to observe the structure of vessels in the inner wall of the colon. We aim to 

realize a real-time CAD system for magnified narrowband imaging system 

with 1.9x – 3.6x magnification ratio. 

 In magnified NBI video, unclear regions exist in lesion because of continuous 

moving and indefinite shape. When non-lesional areas or unclear regions 

such as blur, color shift, and reflection in a staging region, it is difficult to 

provide exact quantitative staging. Figure 15 shows quantitative staging 

index to the doctor is improved by moving staging region. Thus, navigation 

function to clear region is indispensable and effective for providing exact 

quantitative staging index to the doctor. 

 

Computer Aided Diagnosis

Colorectal Polyp

Colorectal Cancer

Detection

Classification

Quantitative Diagnosis

Staging Diagnosis

P. Wang (2018)

JY. Lee (2020)

Our  CADTarget

Our CAD Target

SE. Kudo (2020), T. Ozawa (2020)

Our CAD Target

SE. Kudo (2020)
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Figure 14 Modality of Endoscopic System by Light and Magnification. 

 

 
Figure 15 Quantitative Staging is Different by Position 

 

 Machine learning has been applied to build CAD systems, with shallow 

learning and deep learning approaches as show in Fig.16 and Table 2. 

Detection and classification in previous CAD systems are main subject, and, 

quantitative staging with navigation function has not been studied. Also, 

real-time video (30 fps) CAD system has not been reported. Figure 17 shows 

comparison of performance, power and diagnosis quality of previous studies. 

 While polyp detection and classification in CAD system is main subject, we 

aim to establish a diagnostic support method that provides quantitative and 

objective index of cancer stage to doctors based on the standard JNET (Japan 

NBI Expert Team) classification, not only classify cancer or not-cancer for real 

time endoscopic video (30fps). 
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Figure 16 Positioning of CAD System (Algorithm) 

 

Table 2 Previous Study using Machine Learning 

 

 
Figure 17 Comparison of (a) performance vs diagnosis quality and (b) 

performance vs power. 

 

 Our objects are realizing 1) CAD system for real-time video (30 fps) on 

customizable DSP (30 fps, 30 ms latency and 1 W), 2) Real-time CAD with 

Quantitative staging in video (Over 90% accuracy), 3) Real-time Navigation 

to improve quantitative staging quality (30 fps and easy to operate for clinical 

doctor on site). 

 We aim to Provide to the doctor more accurately in clinical observation 

independent from the experience variation of doctors, and, establish real-time 

confidence diagnosis method such as a "second opinion" on site. 

Algorithm

Handcrafted

Pre-trained CNN
Shallow Learning

Deep Learning CNN

Small Data

Big Data

Y.Kominami (2016)

M.Min (2019)

PJ. Chen (2018), P.Wang (2018)

MF.Byrne (2019), SE.Kudo (2020)
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Machine Learning Diagnosis 
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Data

Processing 
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Accuracy

(%)

Sensitivity

(%)
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Y.Kominami (2016) D-SIFT-SVM Staging Magnified NBI 2247 images 20 94.9 95.9 CPU

PJ.Chen (2018) CNN Classification Magnified NBI 2157 images 2 90.1 96.3

P.Wang (2018) CNN Detection White Light 5545 images 25 - 94.4 Server

MF.Byrne (2019) CNN Classification NBI 223 videos 20 94.0 98 GPU

M.Min (2019) GMM Classification BLI 208 images - 78.4 83.3

SE.Kudo (2020) CNN Classification Endocyto-NBI 25945 imeges 2.5 96.0 96.9 CPU
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1.5. Conclusion 

Since colorectal cancer is major leading causes of cancer-related patients and 

deaths in Japan and overseas, development of computer aided diagnosis 

system is required with high accurate diagnosis at clinical site. For realizing 

a high accurate computer-aided diagnosis system, high performance image 

processing and low power hardware is needed. We develop a system that 

classifies colorectal NBI magnification endoscopic images into three histologic 

findings types (Type 1, Type 2A, and Type 3) out of the four types of JNET 

classification shown in Fig. 9. Our research group reported the CAD system 

which classifies endoscopic images into three types (Type A, Type B, and Type 

C3) based on Hiroshima classification [29]. These pathological types are 

corresponding to Type 1, Type 2A and Type 3 in JNET classification 

respectively. In this thesis, I use same data in previous research as a part of 

training data and the developed CAD system classifies into three pathological 

types (Type 1, Type 2A, and Type 3). 

 In Chapter 2, I describe how does a previous CAD system with BoF and SVM 

work. Also, the application of Convolutional Neural Network (CNN) as 

feature extractor to a CAD system and SVM classification is described. Then, 

I described evaluation results of two SVMs for quantitative staging 

classification. 

 In Chapter 3, I describe problems which affect quantitative staging 

classification accuracy in endoscopic image data set for SVM training. Then, 

I describe how to deal the endoscopic image data set to improve quantitative 

staging classification accuracy. I describe application result to endoscopic 

NBI video images.  

 In Chapter 4, I describe the proposed CAD system with quantitative staging 

implementation on a customizable DSP core for real-time video, and, the 

optimization for performance and memory size. And, I describe a prototype of 

CAD system with CNN feature extraction and SVM classification using 

FPGA based prototyping system. Validation results and comparison results 

compared to other implementation methods are described.  

 In Chapter 5, Then, I describe two real-time navigation functions for 

improving quantitative staging and objective index to the doctor. I describe a 

navigation by unclear region detection using a neural network, and, 

navigation by multiple staging regions. I discuss the implementation on a 
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customizable DSP core for real-time navigation. 

 Finally, conclusions and summary are described in Chapter 6. In addition, I 

describe future works to improve the developed CAD system. 
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Chapter 2. Computer-Aided Diagnosis System for 

Colorectal Endoscopic Image 
 

2.1. Positioning of the Computer-Aided Diagnosis System in this thesis 

In the field of gastrointestinal endoscopy, the CAD system is the most 

investigated area, although it is still in the preclinical phase. Because 

colonoscopy is carried out by humans, it is inherently an imperfect procedure. 

The CAD system is expected to improve its quality regarding automated polyp 

detection and characterization (i.e. predicting the polyp’s pathology). It could 

help prevent endoscopists from missing polyps as well as provide a precise 

optical diagnosis for those detected. Ultimately, these functions that CAD 

provides could produce a higher adenoma detection rate and reduce the cost 

of polypectomy for hyperplastic polyps. 

 A computer-vision algorithm developed by computer scientists is adopted to 

a CAD system for the classification of colorectal polyps. There are two major 

approaches for realizing a CAD system, shallow learning and deep learning 

which are technologies of machine learning. Shallow learning, such as 

support vector machines (SVM), require extraction of features from training 

samples. For example, when developing a CAD system for colorectal polyps 

using shallow learning, an algorithm that extracts specific features of polyps 

from endoscopic images, such as color or shape, must be formulated. For 

feature extraction, there are two methods, hand-crafted feature extraction 

such as Bag-of-Features and pre-trained CNN. Shallow learning can be 

trained by a limited number of training image. In contrast, deep learning 

requires tremendous number of training image.  

 For a CAD system implementation, there are two approaches, software 

implementation and hardware implementation. For realizing a real-time 

CAD system which requires high performance, software implementation 

needs a server machine or a high-performance desktop PC. Thus, hardware 

implementation is preferable. A GPU and a customizable DSP can be 

executed software algorithm and also can be customized in HW. The other 

hand, implementation by FPGA takes long development period.  

 We aim to realize a high-accuracy, high-performance, low-power CAD 

system stored in the same rack of the endoscopic system such as an edge 

device that can be used in the small clinical site with limited training data. 

Therefore, our CAD system is based on shallow learning as shown red 
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rectangle in Fig.18. We selected a customizable DSP which power 

consumption is less compared to a GPU. 

 

 
Figure 18. Positioning of the Computer-Aided Diagnosis System. 

 

2.2. Computer-Aided Diagnosis System based on Bag-of-Features 

Figure 19 shows outline of the CAD system based on Bag-of-Features (BoF) 

representation of local features in the endoscopic image. The BoF methods 

have been applied to image classification, object detection etc. The BoF 

applies a document search to an image. This method considers a feature 

vector achieved by extracting the feature of an image and classifies it by the 

appearance frequency [43-46]. 

 The system has two stages, learning (Fig.19 (a)) and testing (Fig.19 (b)). The 

overview of processing flow of the system is as follows.  

 In the learning phase (Fig.19 (a)), a set of images with labels corresponding 

to JNET classification (Type 1, Type 2A, and Type3) is used. The local feature 

quantities of the endoscopic images for each type are extracted by Dense 

Scale-Invariant Feature Transform (D-SIFT) algorithm [47-48] (Fig.19 (a1)). 

The pit patterns of endoscopic images are complex compare to object 

recognition such as face recognition or pedestrian recognition etc. The D-SIFT 
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is a technique that divides and compute the features of an image in 512 

dimensions from the gradient of luminosity value. An image with little color 

change such as a large intestine endoscopic image can be identified by taking 

a lot of features that the D-SIFT extracted. D-SIFT library in VLFeat (Vision 

Lab Features library) is provided as opensource [48]. This is a cross-platform 

open source of vision algorithms. Previous CAD systems compared in this 

thesis used this library [40-43]. 

 

 
Figure 19. Overview of Computer-Aided Diagnosis system for endoscopic 

images based BoF 

 

 Then, the features attained at the learning phase are grouped into 256 (=28) 

clusters by each type. The center of each cluster is saved as a Visual Word 

(VW) for each type used for feature representation using k-means clustering 

(Fig.19 (a2)). VW histograms are input to Support Vector Machines (SVM1, 

SVM2) for the classification learning. 

 In the classifier module (Fig.19 (3)), support vector (SV) for support vector 
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machine (SVM) is attained at the learning phase using the type information 

of leaning endoscopic images which are labeled by the professional diagnosis 

doctors.  

 Next, in the testing phase (Fig.19 (b)), the D-SIFT feature extraction is 

performed for a whole input endoscopic image. And, a visual-words histogram 

is created by voting for the nearest VW. Finally, the CAD system classifies 

the testing endoscopic image within an endoscopic video frame by pre-learned 

SVMs. 

 Also, our research group applied the system in real clinical test to show a 

utility of the real-time image recognition system. A set of 2,247 trimmed 

endoscopic images collected by a clinical doctor are used in the learning phase. 

The learning images are categorized into 504 Type A images (non-cancer) and 

1,743 Type B and Type C3 images (cancer) by Hiroshima classification. So, 

the CAD system classifies into Type A or Type B/Type C3 in this experiment. 

The classification of type A, Type B and Type C3 defined by NBI 

magnification findings are corresponding to the JNET classification, Type 1, 

Type 2A, and Type 3, respectively as shown in Table 3 [49-50]. The feature 

quantities extracted from D-SIFT are 128-dimensional vectors. The output of 

the system is the SVM output, and a cutoff value of 0.5 is used to categorize 

the input images into two types. Figure 20 shows the result of evaluation. We 

verified that the SVM output of neoplastic lesions could identify the non-

neoplastic lesions (non-cancer) or neoplastic lesions (cancer) [30]. 

 

Table 3. Correspondence of JNET classification to previous classifications. 

[41-42]  

 
 

Sano Classification

[11-14]
Type I Type II Type III A Type III B

Jikei Classification

[17]
Type 1

Showa Classification

[18]
Normal - Faint

Hiroshima Classification

[15-16]
Type A Type B Type C1 Type C2 Type C3

JNET Classification

[19-20]
Type 1 Type 2A Type 2B Type 3
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Figure 20. SVM output for the images of non-neoplastic and neoplastic lesions 

[30]. 

 

2.3. Computer-Aided Diagnosis System with Convolutional Neural  

2.3.1. Convolutional Neural Network and Feature Extractor 

Convolutional Neural Network (CNN) was proposed by LeCun, et al [51]. 

CNN have number of convolutional layers to extract features from images by 

repeating the resolution reduction of a feature map using the value of the 

local region. CNNs are known to high accurate results on image classification, 

recognition and segmentation in different fields of image application. In 

general image classification fields, it becomes capable to use a large number 

of image data needed to train a CNN, and but also several effective training 

methods have been proposed. However, in the medical application, there are 

not large number of images, so it is difficult to prepare training images for 

CNN approaches. The transferability of different layers in CNN, such as 

AlexNet and reuse them for a new task, offered a promising opportunity to 

overcome the lack of training samples issue and showed great performance 

results [52]. CAD systems with CNN as feature extractor and SVM as 

classifier have been proposed [53-55]. Also, our team proposed CAD systems 

for colorectal endoscopic image with CNN as feature extractor and SVM as 
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classifier [56-59].  

 Figure 21 shows overview of a CAD system with BoF using handcraft feature 

amount, and a CAD system with CNN feature extraction and SVM 

classification which is used in this thesis, respectively. Instead of D-SIFT and 

feature transformation, CNN is used. Our research group have evaluated pre-

trained CNNs, AlexNet [60], CaffeNet [61] and GoogleNet [62] as feature 

extraction [63]. Our research group confirmed that output vector of 1000 

dimensions from pre-trained CNNs trained by ImageNet data set provided in 

Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012) dataset [64] 

is useful as a feature for other classification task without fine-tuning, and 

CAD systems with these pre-trained CNNs achieved over 90% accuracy. Since 

AlexNet has the simplest structure and considering the performance when it 

is installed in an embedded system, the pre-trained AlexNet, which is pre-

trained by ILSVRC 2012 dataset, is used as a CNN feature extractor in this 

thesis. The ILSVRC is a benchmark in object classification and recognition on 

hundreds of object categories and millions of images. In the ImageNet dataset, 

there is no endoscopic image data [65]. There are two SVM classifiers which 

is connected sequentially for Type 1 vs Type not 1 (=Type 2A / Type 3) 

classification, and Type 2A vs Type 3 classification.  

 

 
Figure 21. Overview of BoF based and CNN-SVM CAD systems. 

 

 Figure 22 shows the architecture of AlexNet. AlexNet has eight layers, five 

of them are convolution layers (conv1 to conv5) with normalization (norm1 

and norm2) and pooling (pool1, pool2, and pool5), and, two of them are fully 

connected layers (fc6 and fc7) followed by a softmax layer (fc8).  
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 Figure 23 to Figure 25 show the top five categories and their probability 

values output when a Type 1, Type 2A and Type 3 endoscopic images are 

inputted to D-SIFT and AlexNet feature extractors, respectively. The AlexNet 

as the feature extractor isn’t trained by endoscopic images, therefore, it 

outputs high probability values closely to learned categories such as bandages 

(Fig.23 (a)), jellyfish (Fig.24 (a)) and trilobites (Fig.25 (a)). Output values from 

D-SIFT have 512 dimensions (Fig.23 (b) to Fig.25 (b)), and, output values 

from AlexNet have 1000 dimensions (Fig.23 (c) to Fig.25 (c)). 

 

 
Figure 22. Architecture of AlexNet [60]. 

 

 
Figure 23. Extracted Features for Type 1 image input: (c) Visual Word from 

D-SIFT, (d) Feature Vector from AlexNet. 
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Figure 24. Extracted Features for Type 2A image input: (c) Visual Word from 

D-SIFT, (d) Feature Vector from AlexNet. 

 

 
Figure 25. Extracted Features for Type 3 image input: (c) Visual Word from 

D-SIFT, (d) Feature Vector from AlexNet. 

 

 Figure 26 and Figure 27 shows the accuracy of the SVM trained by D-SIFT 

and the SVM trained by the output from prob of the pre-trained AlexNet. 
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Figure 26 shows the result of Type 1 vs Type not 1 classification. The output 

from prob of the pre-trained AlexNet is comparable to the conventional D-

SIFT. In Fig.27, both the True Positive and Precision Rate of the SVM trained 

by the output from prob of the pre-trained AlexNet exceeded 85%, and these 

measures are improved from D-SIFT. It is considered to be used to 

quantitative staging classification. 

 
Figure 26 Comparison of Pre-trained AlexNet vs D-SIFT (Type1 vs Type not 

1) 

 

 
Figure 27 Comparison of Pre-trained AlexNet vs D-SIFT (Type 2A vs Type 3) 

 

2.3.2. Support Vector Machine as Classifier 

Support Vector Machine (SVM) has been introduced in the late 1990s [66]. 

SVM is a supervised machine learning method capable of classifying data into 

two categories shown in Fig.28. To classify data into the two categories, there 

are many possible hyperplanes that could be defined. Hyperplanes are 

decision boundaries that classify the data points into two categories. The 

closest data points of both classes to the hyperplane are called support vectors 
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(SV), as they define the margin and correspondingly the location and 

orientation of the hyperplane. The purpose of SVM is to find a hyperplane 

that has the maximum margin that is the maximum distance between data 

points of both classes. Therefore, future data points can be classified with 

more confidence. One of the SVM features is that it can be applied to problems 

that cannot be linearly separated by mapping the input space to a high-

dimensional feature space (Kernel Trick) [67]. 

 

 
Figure 28. Optimal Classification Hyperplane by SVM. 

 

 The SVM classification function is shown in the equation (1). A classification 

hyperplane for linear separation is created by the supervised learning with 

SVM based on these VW histograms. The VW histograms of the output from 

pre-trained AlexNet show different feature vectors for each JNET Type as 

shown in Fig.23 (c) to Fig.25 (c). This shows possibility of classification by 

SVM. The equation is an example for determining whether the N-dimensional 

VWs, which is the input data to the SVM classifier, is Type 1 or Type not 1. 

 

��:����⃗� = 
 ��
��

������

���
× ���������⃗ ⋅ �⃗� + ��:�� �1� 

 

 In equation (1), sv������⃗  is a support vectors (SV) determined during learning 

and constitutes a hyperplane which classifies data into two categories, Type 
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1 and Type not 1. In the CNN feature extraction, sv������⃗  and x�⃗  are N-

dimensional Visual Word histogram data. In addition, coef$  indicates the 

coefficient of each sv, and ρ�:�� indicates the coefficient of the discriminator, 

which are also determined during learning. N� and N�� indicate the number 

of SVs of Type 1 and Type not 1, respectively. In order to realize 3-class (3-

type) classification, two classification stages by SVM are implemented. The 

first stage (Fig.21 SVM 1) classifies type 1 or Type not 1 (= Type 2A or Type 

3), the second stage (Fig. 21 SVM 2) classifies type 2A or Type 3 from the 

images classified as Type not 1 in the first stage. 

 As libraries for SVM, the LIBSVM library [68] that supports multiple kernel 

functions and multi-class classification, and the LIBLINEAR library [69] that 

supports only linear kernel classification and speeds up processing have been 

released. Comparison studies of the LIBSVM library and the LIBLINEAR 

library have been reported [70-71]. The LIBLINEAR library is faster for large 

data classification.  

 Also, our research group reported comparison study for a CAD system. In 

this experiment, 908 trimmed endoscopic images collected by a technical 

doctor are used for SVM training. For LIBSVM, the number of support vector 

(SV) is 362 and each SV has 1000 dimensions. When storing one-dimensional 

data with double type 64 bit, the required amount of memory is about 

362 × 1000 × 64 =  2.7 MB. On the other hand, for LIBLINEAR, it is 

necessary to hold 1000 weighting coefficients for each dimension assuming 

that it is identified by logistic regression, and the required amount of memory 

data is 1000 × 64 =7.8 KB. The amount of data for LIBLENEAR is small, 

almost 1/ 300 of that for LIBSVM. Figure 29 shows the comparison of 

classification accuracy for Type 1 vs Type not 1 when the same image for SVM 

training is inputted. Figure 30 shows, the comparison of classification 

accuracy for Type 1 vs Type not 1 when the image rotated 90 degree to right 

is inputted. From these results, it was confirmed LIBLINEAR is more 

accurate and achieve over 90% classification accuracy except for the Precision 

Rate of Type 1 when the image rotated 90 degree is inputted. 
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Figure 29. SVM classifier Type 1 and Type not 1 

          Test data: Same as trained data 

 

 
Figure 30. SVM classifier Type 1 and Type not 1 

          Test data: 90 degree rotated trained data to right 

 

2.4. Conclusion 

In this chapter, I explained a CAD system based on D-SIFT and BoF, and, a 

CAD system using CNN feature extraction and SVM classification which was 

developed by our research group. The output of each layer of CNN as a multi-

dimensional vector expressing the feature quantity of the input endoscopic 

image is almost equivalence to the feature quantity based on D-SIFT. We use 

pre-trained AlexNet as a feature extractor instead of D-SIFT and BoF, and, 

realize a CAD system using CNN features and SVM classification. I 

confirmed over 90% accuracy for quantitative staging classification with pre-

trained CNN instead of D-SIFT by limited training data. For realizing on an 
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embedded system, our group evaluated two SVM libraries, the LIBSVM and 

the LIBLINEAR. We confirmed that the LIBLINEAR is faster than LIBSVM 

with fewer amount of memory size and it is possible to realize three 

pathological types classification using two SVM classifiers connected 

sequentially.  
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Chapter 3. Improvement for Endoscopic Video Image 

by Endoscopic Image Data Set 
 

3.1. Problems in endoscopic image data affect classification accuracy 

In an endoscopic video image, the appearance is different from a still image 

since the distance between the lesion and the scope changes in each video 

frame. for an endoscopic video image, a robust system is required in 

appearance changes against a recognition of still image captured during video 

freezing. For example, in contrast to a still image, the following various 

events that affect the classification accuracy are observed in the actual 

endoscopic video image. Therefore, for the real-time computer-aided 

diagnosis of endoscope video images and, it is necessary to solve the following 

specific problems. 

 

(1) Changing or defocusing of appearance of lesions owing to movement of the 

lesion in the depth direction: Figure 31 shows (a) an endoscopic video image 

and (b) a still image captured during freezing by a clinical doctor. Although 

the same lesion part is captured, microscopic defocus due to movement in the 

depth direction is shown in the video image. The appearance between (a) 

video image and (b) still image is different. In the endoscopic observation of 

the colon, the colon continually contracts and also the endoscope itself is not 

stopped completely. Because of this, the lesion moves in the depth direction. 

So, the endoscope is out of focus shown. 

 

 
Figure 31. Differences of endoscopic video image (a) and still image (b). 
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(2) Unclear frames with blurring, color shift, reflection of light: Figure 32 

shows examples of unclear frames with (a) blurring, (b) color shift, and (c) 

reflection of light. In the NBI magnified endoscopic system, light of blue 

(wavelength: 415 nm) and green (wavelength: 540 nm) is irradiated to the 

inner wall of the colon during observation by a clinical doctor. Light is 

irradiated from one light source. Thus, blue and green light is switched by an 

NBI filter [8]. A color shift occurs when this NBI filter is switched by a clinical 

doctor. Also, reflection of light occurs in any lesion part because light is 

irradiated always during observation. A clinical doctor does not consider color 

information of lesion for diagnosis. Therefore, the input image is gray scaled 

in the CAD system. So, edge patterns are emphasized which affect the 

classification result when gray scaled in frames with blur, color shift or 

reflection of light. 

 

 
Figure 32. Unclear frames in endoscopic video image: (a) blurring, (b) color 

shift, (c) reflection of light. 

 

(3) Different resolution and appearance between old and new endoscopic 

systems: According to the improvement of the endoscopic system, the 

resolution and appearance of old and new model endoscopic systems are 

different as shown in Fig.33, because a scope and an image processing 

technology are advanced. Thus, we have to confirm whether a classifier, 

which is learned by the endoscopic image data set from old model provided by 

a clinical doctor up to present, can be used to an endoscopic image from a 

different new model endoscopic system. 
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Figure 33. Differences from Endoscopic Systems. (a) System for training data 

set (system: Olympus CV-260, scope: Olympus CF-H260AZL/I [72]). (b) 

System for Test Video image (system: Olympus CV-290, scope: Olympus CF-

HQ290ZL/I [73]). 

 

3.2. Endoscopic image dataset from clinical doctors 

For developing a robust CAD system with CNN feature extraction and SVM 

classification, a training data set considering appearances is prepared to solve 

problems in 3.1. The training data set in this thesis was collected at 

Hiroshima University Hospital with an old endoscopic system different from 

which used for testing video images. The data set is, which captured by the 

old endoscopic system, trimmed a clear part of lesions by the clinical doctor 

as shown in Fig.34. 

 

 
Figure 34. Example of image patches collected by a clinical doctor (Hiroshima 

University Hospital) 
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 In NBI endoscopic observation, lesions moved in the depth direction are 

captured because of continually contracts of colon or fine movement of the 

endoscopic scope. In the learning by still images only from the old endoscopic 

system, it is probably that the appearance’s change by the movement in the 

depth direction and the microscopic defocus affect the classification accuracy. 

 Therefore, we decided to use data of multiple image sizes, which is 

considered the appearance's change in the depth direction of the image data 

set, as learning data for SVM. At first, we prepared 420 endoscopic still 

images obtained from the old endoscopic system for each pathological type 

which has trimmed by clearly capturing the lesion by a clinical doctor. As 

shown in Fig. 35, the height and width of the original still image are different. 

And, contour in the distribution graphs in Fig.35 indicate histogram of the 

height and width of original still images. 

 

 
Figure 35. distribution of image size of each lesion type. 

 

 In the CAD system with CNN extraction and SVM classification, since the 

input image size of the pre-learned AlexNet used as the feature extractor is 

227 x 227 pixels, it is necessary to resize the input image size to 227 x 227 

pixels. The trimmed images are converted to grayscale images and resized to 

the input image size 227 x 227 pixels of the CNN feature extractor. At this 

time, image sizes of endoscopic image data used for SVM learning was 

trimmed with six sizes from 177 x 177 to 504 x 504 pixel for taking care of the 

appearance’s change by the movement in the depth direction as shown in 

Table 4. By using multiple size of images as training data, for example, when 
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reducing from 504 x 504 pixel to 227 x 227 pixel, some information and pixels 

are lost, and when expanding from 177 x 177 pixel to 227 x 227 pixel, some 

pixels are interpolated and added. Therefore, we consider that it is assumed 

that the resized images represent changes of appearance due to the 

movement in the depth direction. Table 4 shows numbers of image data for 

each trimmed size. In Table 4, scan window size from the original still image 

is indicated by SW 177, SW 227, SW 277, SW 404, etc. Trimming step is 

indicated by Step30, Step40, etc. 

 

Table 4. Training data set trimmed by a clinical doctor. 

 
 

3.3. Data Balancing 

The size of the original endoscopic still image for each pathological type is 

different. So, the number of images for each pathological type differs. 

Especially, there are many Type 2 images, and the other hand there are few 

images of Type 3. For example, in SW404_Step55_Grayscaled, number of 

Type 2A and Type 3 images as cancer is 1,646, which is almost 2.3 times of 

number of Type 1 images, 713. Also, number of Type 2A images is 1,119, 

which is almost 2.7 times of number of Type 3 images, 447.  

 Generally, the imbalanced data set is known as one of major problems for 

real-world data [74-75]. If the data set is not evenly distributed in different 

classes or categories, then the data set is considered imbalanced. This is very 

common in real data sets. In such a data set, the class that has more data is 

defined as a majority class. On the other hands, the ones with much fewer 

data are called minority classes. Most classifiers are modeled by examining 

data statistics, and as a result, they are biased towards the majority class, 

dataset Type 1 Type 2A Type 3

SW404_Step55_Grayscaled 713 1,199 447

SW454_Step40_Grayscaled 851 1,129 428

SW504_Step30_Grayscaled 958 932 433

SW177_Step200_Grayscaled 760 1,385 706

SW227_Step150_Grayscaled 705 1,392 663

SW277_Step100_Grayscaled 823 1,674 726

SW : Trimmed image size  Step : Offset of trimmed image



45 

 

which can result in very poor classification accuracy in the minority class. In 

medical applications, one main concern of using data analysis for diagnosis is 

the imbalanced quality of majority and minority classes [74]. This problem is 

a particular interest in medical applications, where it is essential to correctly 

classify examples from an infrequent but important minority class. Analyzing 

data set with imbalanced class distribution is a basic challenge for learning 

classifiers [76-78]. 

 To avoid problems of the imbalanced data set, some data balancing methods 

are proposed, and comparison studies are reported [79-80]. Data balancing 

methods are categorized into three groups. 

 

 (1) Under-sampling method: To balance the data set, the intrinsic samples 

in majority class are discarded. The simplest and yet most efficient method is 

Random Under-Sampling (RUS) which reduces randomly sample data in 

majority class [81]. 

 

 (2) Over-sampling method: To balance the data set, new minority class data 

are created. Some approaches are proposed to create new minority class data 

such as SMOTE (Synthetic Minority Oversampling Technique) [82], ADSYN 

(Adaptive Synthetic sampling) [83] etc. 

 

 (3) Hybrid method: There are combination methods of under-sampling and 

over-sampling. 

 

 Therefore, by considering the balancing of the number of training images for 

each pathological type, we also created a data set to avoid training biased 

toward a specific type by random under-sampling method. "Balanced" in 

yellow rows of Table 5 is the prepared training data set based the smallest 

number of Type 3 (red character in Table 5) as a reference for eliminating the 

difference in the number of images for each pathological Type.  

 Then, the training images are gray scaled and resized by bilinear 

interpolation to the input image size of the CNN feature extractor to 227 x 

227 pixel as the training data set for SVM classifiers. 
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Table 5. Training data set after balancing. 

 
 

3.4. Evaluation Result 

The classification accuracy was evaluated by performing 10-fold Cross 

Validation (CV) ten times for comparing the classification accuracy of the 

proposed method based on the created Non-Balanced and Balanced training 

data set. 

 Cross-validation is a technique to evaluate predictive models by partitioning 

the original sample into a training set to train the model, and a test set to 

evaluate it. In 10-fold cross-validation, the original sample is randomly 

partitioned into 10 equal size subsamples. Of the 10 subsamples, a single 

subsample is retained as the validation data for testing the model, and the 

remaining 9 subsamples are used as training data. The cross-validation 

process is then repeated 10 times (the folds), with each of the 10 subsamples 

used exactly once as the validation data. The 10 results from the folds can 

then be averaged (or otherwise combined) to produce a single estimation. The 

advantage of this method is that all observations are used for both training 

and validation, and each observation is used for validation exactly once [84-

86]. 

 For evaluation metrics, we used Recall, Precision, and F-measure defined 

as equations (2), (3) and (4), respectively. The Recall shows correct recognition 

rate according to labels, and the Precision shows accuracy of recognition. In 

statistical analysis of binary classification, the F-measure is a measure of a 

test's accuracy. It is calculated from the Recall and Precision of the test, where 

dataset Type 1 Type 2A Type 3

SW404_Step55_Grayscaled
Non-Balanced 713 1,199 447

Balanced 447 447 447

SW454_Step40_Grayscaled
Non-Balanced 851 1,129 428

Balanced 428 428 428

SW504_Step30_Grayscaled
Non-Balanced 958 932 433

Balanced 433 433 433

SW177_Step200_Grayscaled
Non-Balanced 760 1,385 706

Balanced 706 706 706

SW227_Step150_Grayscaled
Non-Balanced 705 1,392 663

Balanced 663 663 663

SW277_Step100_Grayscaled
Non-Balanced 823 1,674 726

Balanced 726 726 726

SW : Trimmed image size  Step : Offset of trimmed image
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the Presicion is the number of correctly identified positive results (TP (True 

Positive)) divided by the number of all positive results (TP + FP (False 

Positive)), including those not identified correctly, and the Recall is the 

number of correctly identified positive results (TP) divided by the number of 

all samples that should have been identified as positive (TP + FA(False 

Negative)). The F-measure represents the harmonic mean of the Recall and 

the Precision [87-89]. 
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 Figure 36 to Figure 39 show the results of 10-fold CV. The pool5, fc6, fc7, fc8, 

prob in figures are the results of SVM classifier learned by using the output 

of corresponding layer of AlexNet as the feature extractor shown in Fig.22. 

The black line indicates the number of dimensions of the feature quantity of 

each layer. Moreover, the results of method using D-SIFT feature extraction 

[29] described in Chapter 2 are shown. 

 Figure 36 and Figure 38 show the results of classification of Type 1 vs Type 

not 1 (non-cancer / cancer) by non-balanced dataset and balanced dataset, 

relatively. Regarding the classification of non-cancer and cancer, the CAD 

system with CNN extraction and SVM classification obtains a practically 

sufficient classification accuracy over 95% for Type 1 and Type not 1 by 

balancing data set. 

 Figure 37 and Figure 39 show the results of classification of Type 2A vs Type 

3 by non-balanced dataset and balanced dataset, relatively. In Figure 39, the 

results of Type 2A is lower than Type 3. However, the proposed method by 

i Type 1, Type 2A, Type 3

TP(i) True Positive, Number of images correctly identified i

FP(i) False Positive, Number of images incorrectly identified i

FN(i) False Negative, Number of images incorrectly identified not i
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balancing data set can achieve over 90% F-measure value for both Type 2A 

and Type 3. From these results, it is suggested that the classification accuracy 

of the proposed method is improved by balancing the number of training 

endoscopic data images for each pathological type. 

 

 
Figure 36. Result of 10-fold CV for Type 1 vs Type not 1.  

          (Non-balanced training data set) 

 

 
Figure 37. Result of 10-fold CV for Type 2 vs Type 3.  

          (Non-balanced training data set) 

 

D-SIFT pool5 fc6 fc7 fc8 prob

Type 1 0.954 0.983 0.986 0.985 0.982 0.973

Type not 1 0.907 0.951 0.959 0.957 0.950 0.920
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Figure 38. Result of 10-fold CV for Type 1 vs Type not 1.  

          (Balanced training data set) 

 

 
Figure 39. Result of 10-fold CV for Type 2 vs Type 3.  

          (Balanced training data set) 

 

3.5. Evaluation of Endoscopic Video Image 

We evaluated the classification result when inputting a video captured Type 

2A lesions (300 frames) in the new endoscopic system into the developed CAD 

system with SVM classifiers trained by the endoscopic image dataset 

provided by the clinical doctor described in Chapter 3. Because it is a video 
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image, each frame also includes color shifts, blurs, light reflections, etc., and 

appearances also differ since the position of the endoscope and lesions change. 

 Figure 40 shows the 0, 150, and 300 frame images of the 300 frames video 

image used for validation. The green and red squares in the image indicate 

the 227 x 227 pixel (green) and 454 x 454 pixel (red) staging regions (ROI: 

Region of Interest) respectively that are input to the CNN function. In each 

frames, there are reflection of light and blurring. 

 

 
Figure 40. Example of frame images in Type 2A endoscopic video sequence. 

 

 Figure 41 shows the result of applying to the video image of 300 frames 

using the feature extracted from pool5 layer when the green region of 227 x 

227 pixels is input as the feature quantity of CNN. In graphs of Fig.41, the 

outputs from the four SVM classifiers which trained by only with 227 x 227 

pixels (SW227 in Table 5) (dataset_227_only (pool5)) and trained by the data 

set balanced with the six kinds of sizes shown in Table 5 (Balanced) 

(dataset_multisize (pool5)) are plotted for each 10 frames of the Type 2A video 

image. The upper graph shows the output result from the SVM classifier of 

Type 1 vs Type not 1 (= Type 2A or Type 3), and in the Type 2A video image 

it is preferably 1.0 (= Type not 1), plotted on the upper side. The lower graph 

shows the output from the SVM classifier of Type 2A vs Type 3, and in the 

Type 2A video image it is better that it is plotted on the upper side close to 

1.0 (= Type 2A). And, the light blue frame of the graph are frames in which a 

clinical doctor pushes the freeze button, and a clinical doctor takes a still 

image during these frames. The video sequence stops during the freezing, and 

it will be a part with no significant change in appearance although it is not 

the same frame image because of some noise or etc.  

 As the results in Fig.41, dataset_multisize (pool5) trained by multiple image 
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sizes shows better results than dataset_ 227_only (pool5) since the 

appearance of lesions changes from frame to frame. Figure 42 shows an entire 

image of frames #90 and #150 (upper side) and an original and gray scaled 

image of a green area of 227 x 227 pixels (lower side). Figure 46 shows the 

mean value and the standard deviation of the output of the SVM classifier for 

all 300 frames of the video image using the bar chart with error bars. From 

these results, it is confirmed that the Type 1 vs Type not 1 SVM classifier can 

classify Type not 1 with high accuracy regardless of image size of training 

data by using CNN feature extraction. Although the Type 2 vs Type 3 SVM 

classifier is generally difficult to classify, it is confirmed that the proposed 

method can classify robustly for all 300 frames since dataset_multisize (pool5) 

shows sufficient result compared to dataset_ 227_only (pool5). The output 

results are changing even while the clinical doctor push the freeze button so 

as to stop video about 1-2 second and takes a still image (Fig. 41, Freeze 

frames)). It is considered that a video format encoding causes subtle pixel 

differences even though the frame appears to be stationary during the 

endoscope is frozen. Figure 43 shows pixel differences compared by XOR 

operation between frame #60 and frame #70. If frame #60 and frame #70 is 

same, image of differences #60 XOR #70 in Fig.43 shows all black. 

 

 
Figure 41. Comparison result for video image including the lesion Type 2A 

for 227 x 227 pixel region. 
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Figure 42. Example of frame images in Type 2A endoscopic video  

(227 x 227 pixel) 

 

 
Figure 43. Pixel differences during Freeze Time. 

 

 In the same way, Figure 44 to Figure 46 show the results of the region (red) 

of 454 x 454 pixel of 300 frames as the feature quantity of CNN with applying 

dataset_454_only (pool5) and dataset_multisize (pool5). In this evaluation, 

the region of 454 x 454 pixels is resized to 227 x 227 pixels by bilinear 

interpolation, since the pre-trained AlexNet is used as the CNN feature 

extractor. As shown by the red frame in Fig.45, since the area of 454 x 454 

pixels is wider than 227 x 227 pixels, it includes color shift, blurring, reflection 

of light and so on. However, Figure 44 shows that the classification result of 
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dataset_ 454_only (pool5) in the freezing duration from 50 to 130 frames is 

improved and the result of Type 2A vs Type 3 SVM classification of 

dataset_454_only (pool5) in Fig.46 is improved. This result suggests that it is 

possible to classify robustly against noise with the feature extraction from the 

CNN by input image resizing.  

 From these results, we confirmed that it is possible not only to classify Type 

not 1 by the Type 1 vs Type not 1 SVM classifier with high accuracy, by using 

a SVM classifier of dataset_multisize (pool5) that trained by images of 

multiple image sizes, to classify clearly by suppressing the influence of 

moving images with the Type 2A vs Type 3 SVM classifier. And, it is 

considered that the proposed method is robust against appearance change by 

microscopic movement in the depth direction and so on by preparing training 

data set of different multiple sizes and further resizing to 227 x 227 pixels by 

trimming from the same training still image. From the above, it was 

confirmed that the proposed CAD system with high robustness to the 

endoscopic video image can be constructed compared to the conventional D-

SIFT method [25]. In addition, these results suggest that it is possible to 

apply to an endoscopic video image taken by a new endoscopic system even if 

the SVM classifier is trained by the data set using a still image acquired by 

the old endoscopic system. 

 

 
Figure 44. Comparison result for video image including the lesion Type 2A 

for 454 x 454 pixel region. 
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Figure 45. Example of frame images in Type 2A endoscopic video         

(454 x 454 pixel) 

 

 
Figure 46. Classification results of Mean and Std. values of SVM output for 

227 x 227 and 454 x 454 pixel regions. 

 

 By using multiple size of images as training data, for example, when 

reducing from 454 x 454x pixel to 227 x 227 pixel, some information and pixels 

are lost, and when expanding from 177 x 177 pixel to 227 x 227 pixel, some 

pixels are interpolated and added. As a result, it is assumed that the resized 

images are slightly unclear like blur. Since SVM classifiers are trained by 
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these images, it can be considered that the developed CAD system has become 

robust for endoscopic video sequence. 

 

3.6. Conclusion 

In this Chapter, I described the endoscopic data set and problems in 

endoscopic image data affect classification accuracy. Then, I described 

problems of imbalanced data set for SVM classification training. To avoid 

these problems, we prepared multiple sizes of endoscopic image, and, created 

balanced image data set by random under-sampling method. By preparing 

multiple sizes of endoscopic image and balancing the image data set, we 

confirmed classification accuracy for each pathological type achieved over 

90%. This result suggested that the classification accuracy of the CAD system 

with CNN extraction and SVM classification is improved by balancing the 

number of training endoscopic data images for each pathological type. I 

confirmed a CAD system with quantitative staging classification for real-time 

video image achieved over 90% accuracy. I confirmed the average value and 

standard deviation of the output of SVM is improved by multiple size image 

data set for applying 300 frame video data. 
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Chapter 4. Proposed CAD System Implementation to 

Customizable DSP Core 
 

4.1. Multiply and Accumulate Calculation in CNN 

Convolutional Neural Networks (CNN) are composed of different layers such 

as convolutional layers (conv), normalization layers (norm), pooling layers 

(pool) and fully connected layers (fc). A convolution calculation is shown as 

equations (5) [90-91]. 
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 A convolution calculation is multiplication and accumulation of 

corresponding elements of an input feature map and a kernel to generate a 

single output pixel. The kernel is then swept across the input feature map to 

generate a single channel of the output feature map. A convolutional layer 

takes an input feature map of N minibatch images, each with height, width 

and number of channels, H, W and C, respectively. A filter or kernel of size r 

× r pixels having C channels is also provided as input to the convolutional 

layer. K such kernel is applied to the input feature map to generate the output 

feature map. In this equation, a kernel map is denoted as E<,@,A,B, a single tile 

of input feature map is denoted as ?�,@,=�A,>�B and output pixel is denoted as 

:�,<,=,> . Where x and y are coordinates of the feature map tile, i is image 

number in the batch, u and v are iterators over kernel while c is the iterator 

over channels and k is kernel index. 

 Table 6 shows the configuration of convolutional layers in AlexNet. The total 

number of parameters can be calculated. For conv1 layer, the input size is 

227x227x3, the kernel size is 11x11, the stride is 4, and the output size is 

55x55. So, the conv1 has 290400 (55x55x96) neurons and 364 (11x11x3 + 1) 

weights. Parameters are 105,705,600 (290400 x 364). Also, the number of 

multiplies and accumulate 100 million. In Table 7, the comparison of well-

known models based on the number of weights and MACs are shown [92]. 

 A convolutional layer computation consumes more than 90% of the total 

computation of CNNs. AlexNet has the least number of total MAC operations, 

however, it is over 700 million.  
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Table 6. Convolutional layer configuration in AlexNet [60]. 

 
 

Table 7. The comparison of CNN models based on computational parameters 

and MACs [92] 

 
 

4.2. Requirements for Hardware Platform of the CAD System 

Implementation 

In general, there are some options for hardware implementation of CNN 

conv1 conv2 conv3 conv4 conv5

Input feature map size 227x227 27x27 13x13 13x13 13x13

Kernel Size 11x11 5x5 3x3 3x3 3x3

No. of kernels 96 256 384 384 256

No. of channels 3 48 256 192 192

Output feature map size 55x55 27x27 13x13 13x13 13x13

Stride 4 1 1 1 1

AlexNet[60] VGG-16[93] GoogLeNet[62] ResNet 50[94]

Input Size 227 x 227 224 x 224 224 x 224 224 x 224

No. of conv layers 5 13 57 53

Depth of conv layers 5 13 21 49

Filter Size 3,5,11 3 1,3,5,7 1,3,7

No. of Channels 3-256 3-512 3-832 3-2048

No. of Filters 96-384 64-512 16-384 64-2048

Strides 1,4 1 1,2 1,2

No. of weights in conv layers 2.3M 14.7M 6.0M 23.5M

No. of MACs in conv layers 666M 15.3G 1.43G 3.86G

No. of fc layers 3 3 1 1

Filter Size 1,6 1,7 1 1

No. of Channels 256-4096 512-4096 1024 2048

No. of Filters 1000-4096 1000-4096 1000 1000

No. of weights in fc layers 58.6M 124M 1M 2M

No. of MACs in fc layers 58.6M 124M 1M 2M

Total Weights 61M 138M 7M 25.5M

Total MACs 724M 15.5G 1.43G 3.9G
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feature extraction and SVM classification such as GPU, FPGA and DSP. 

Figure 47 shows a performance comparison based on multiply computation 

for CNN on these platforms. The X axis shows numbers of multiplies per 

second (execution performance) and the Y axis shows numbers of multiplies 

per watt (power efficiency). DSPs specified for CNN has high performance 

close to FPGAs and server GPUs. And, DSPs are most power efficient 

compare to FPGAs and server GPUs. As surveyed in References [95], there 

are many FPGA implementations of CNN architectures. The processing 

speed is increased by applying several optimization methods. However, the 

power consumption is not reduced so much. It also takes time for designing 

hardware in FPGA. Therefore, we selected a DSP for our prototype system 

implementation with low power dissipation. 

 
Figure 47. Throughput and power efficiency for CNN on several device 

platforms [96]. 

 

 For efficient execution of CNN and SVM, simultaneous execution of multiple 

instructions by multiple numbers of MAC and VLIW/SIMD execution units 

are required. VLIW (Very Long Instruction Word) is one of instruction set 
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architectures designed to exploit instruction level parallelism as shown in 

Fig.48. Conventional processors mostly allow programs to specify instructions 

to execute in sequence only. On the other hand, a VLIW processor allows 

programs to explicitly specify instructions to execute in parallel [97-98]. 

SIMD (Single Instruction, Multiple Data) is a class of parallel computers in 

Flynn's taxonomy [99-100]. It describes computers with multiple processing 

elements that perform the same operation on multiple data simultaneously 

as shown in Fig.49. Such machines exploit data level parallelism [101]. 

 

 
Figure 48. Example of Very Long Instruction Word (VLIW) [102]. 

 

 
Figure 49. Overview of Single Instruction, Multiple Data (SIMD) [103]. 

 

 Also, an efficient tiled image transfer by Scatter Gather Direct Memory 

Access [104] is required for video image processing in our target system. 

Direct Memory Access (DMA) is a technique for transferring blocks of data 

between system memory and peripherals without a processor having to be 

involved in each transfer. DMA not only offloads a system’s processing 
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elements, but can transfer data at much higher rates than processor reads 

and writes. Scatter Gather DMA augments this technique by providing data 

transfers from one non-contiguous block of memory to another by means of a 

series of smaller contiguous-block transfers as shown in Fig.50. Scatter 

Gather DMA is also used in FPGAs for hardware wired neural network 

accelerator [105-106]. 

 Image data is generally stored in memory with pixels, which is consisted of 

8-bit red, green, blue data and 8-bit paddings, continuously as shown inFig.50. 

Some operations use only one of RGB colors in a pixel. Therefore, accesses to 

memory are in-continuous. 

 

 
Figure 50. Scatter-Gather operation and Image Data. 

 

4.3. Overview of Customizable DSP Core 

In this thesis, we use the Cadence Tensilica ® Vision P6 DSP core (VP6 core) 

[107], which is a customizable DSP core for embedded applications developed 

by Cadence Design Systems, as the target architecture to be implemented.  

 Figure 51 shows the architecture of VP6 core. The VP6 core has instruction 

sets specified for image processing and CNN processing, and has a 256 

parallel multiply-accumulate (MAC) operation unit of 8-bit x 8-bit for high 

speed processing of convolution operation in CNN (Fig.51 (a)). The VP6 is a 

similar architecture of CNN DSPs in Fig.47. It adopts 5-slot VLIW for 

enabling execution of instructions in 5 parallels and 64-way 8-bit / 32-way 16-

bit SIMD for enabling 64 parallel 8-bit data and 32 parallel 16-bit data 

operations. The integrated DMA (iDMA) allows the system to transfer high-

resolution data directly into the local memory of the DSP, thus hiding the 
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data access latency associated with accessing data from an external DRAM 

(Fig.51 (b)). The SuperGather™ technology enhances memory interface on 

VP6 to efficiently read / write non-contiguous locations from local memory 

(Fig.51 (c)). There are built-in 512-bit dual load / store data memories for high 

performance video image processing. 

 

 
Figure 51. Overview of Vision P6 Core Architecture [107]. 

 

 In the VP6 core, cache size, internal data memory size, internal instruction 

memory size and vector floating point unit are customizable. It also allows 

designers to extend and add instructions by Tensilica Instruction Extension 

(TIE) [108-110]. It achieves 3.3 times the peak performance compared to the 

previous version Vison P5 (VP5) core for 3-D convolution kernel because of 

four times number of MACs as shown in Table 8.  

 

Table 8. Comparison of Vision P5 and P6 for 3-D Convolution kernel [88] 

 
 

 VP6 also utilizes multiplier 57% for AlexNet [96]. Table 9 shows comparison 
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results of utilization of MAC resources for AlexNet to other GPUs reported in 

[111]. VP6 has higher utilization than other GPUs. 

 

Table 9. Utilization Comparison to GPUs [111] 

 
 

 As a customizable DSP, CEVA XM6 DSP core (XM6) is also known [114]. 

The XM6 has 128 parallel multiply-accumulate (MAC) operation unit of 16-

bit x 16-bit. For CNN, an external hardware accelerator NeuPro-S AI 

Processor with 512 parallel multiply-accumulate (MAC) operation unit of 16-

bit x 16-bit is prepared as co-processor of the XM6. Table 10 shows the 

comparison result of AlexNet performance of the VP6 and XM6. The VP6 has 

fewer parallel multiply-accumulate (MAC) operation unit without necessary 

of CNN accelerate co-processor, however, throughput of AlexNet is almost 

same as the XM6 with NeuPro-S [115]. 

 

Table 10. AlexNet Performance Comparison of VP6 and XM6 [96,115]. 

 
 

 We use the pre-trained AlexNet for the Vison P6 DSP, which is reported by 

G. Efland et al, in [96] and optimized the bit width of the coefficient parameter 

to 8-bit for utilizing 256 parallel MAC of 8-bit x 8-bit. As a result, the amount 

of memory used in the embedded system is reduced and the processing speed 

is improved. It is known that high recognition accuracy is maintained even if 

the coefficient of AlexNet is reduced to 8-bit [116-117]. Table 11 shows 

comparison results of the memory usage and the top 1 and top 5 recognition 

accuracy of the original 64-bit AlexNet, and 8-bit optimized AlexNet, 

respectively. The recognition accuracy of 8-bit optimized AlexNet is 1.09% 

and 0.66% of the error compared to the top 1 accuracy and top 5 accuracy of 

Pascal Titan X[112] GTX1080[113] GTX1080Ti[113] Vision P6[107]
Technology(nm) 16 16 16 16
Precision 32-bit float 32-bit float 32-bit float 8-bit fixed-point
Frequency(GHz) 1.41 1.6 1.5 1
Utilization 0.45 0.37 0.51 0.57

Vision P6[107] Ceva XM6[114]
Frequency (GHz) 1.1 1.5
Multipliers 256 128+512
AlexNet Throughput / GHz (fps) 192 196
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the original 64-bit AlexNet, respectively.  

 We compared classification accuracy (True-Positive) by using these pre-

trained AlexNet with ImageNet database of the general object recognition 

contest as the feature extraction to SVM endoscopic image classification as 

shown in Fig.52. From these results, we consider it is possible to construct 

the CAD system by reducing the memory size of 75% and keeping the 

classification accuracy 90% using the SVM classifier relearning for the 

feature extractor with 8-bit optimized AlexNet. 

 

Table 11. Memory size and Accuracy of the 8-bit Optimized AlexNet with 

ImageNet. 

 
 

 
Figure 52. SVM Classification Accuracy (True-Positive) with feature 

extraction for 64-bit and 8-bit AlexNets which are pre-trained by ImageNet 

database. 
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For developing the proposed CAD system, we decided to use FPGA based 

prototyping system for enabling rapid implementation of HW and SW both, 

and, real-time validation of the CAD system. The prototyping system shown 

in Fig.53 is made up of two parts, a host computer which stores the endoscopic 

data and displays classification results and the Cadence rapid prototyping 
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platform Protium® S1 [118] in which the VP6 core and peripherals are 

installed. In the proposed CAD system, the main processing units such as the 

CNN (AlexNet) feature extraction and the SVM classification are executed on 

the VP6 core.  

 One Xilinx Virtex Ultrascale XU 440 FPGA [119] is installed in the Protium 

S1 as shown in Fig.54. Approximate total design capacity is up to 25M gates. 

The VP6 core and peripheral circuits are implemented on this FPGA. It is 

possible to observe waveform of arbitrary signal in the FPGA, and, the on-

the-fly hardware debugging functionality is provided in the Protium S1 as 

shown in Fig.55. The software debugger is connected via JTAG to the VP6 

core installed in the Protium S1. The hardware waveform monitor, and the 

software debugger are synchronized, so HW-SW co-debugging is possible. 

 

 
Figure 53. The Developed Prototyping CAD System Overview. 

 

 
Figure 54. Overview of Protium S1 Prototyping System Board [118]. 



67 

 

 

 
Figure 55. Hardware and Software co-debugging feature in Protium S1 [118]. 

 

 Figure 56 shows a block diagram of the developed system including the VP6 

core and peripherals. In this system, some memories such as two blocks of 1 

Mbyte internal RAM (Fig.56 (g) (h)) for image buffering, 1 Mbyte internal 

ROM (Fig.56 (i)) for system ROM and 64 Mbyte work memory area for 

coefficients of CNN on external DRAM (Fig.56 (j)) are implemented. 

Furthermore, we customized VP6’s configuration as follows: (1) 48 Kbyte 

instruction cache (Fig.56 (d)) and (2) 256 Kbyte x 2 blocks of built-in data 

memory (Fig.56 (b) (c)) are configured with VP6 core (Fig.56 (a)). (3) Optional 

VFPU (Vector Floating Point Unit) is not implemented because we use 8-bit 

fixed point data type in pre-trained AlexNet instead of 32-bit floating point 

data type in the proposed CAD system and there is the gate size limitation of 

FPGA. We measured the size of the required internal memory for image data 

and coefficient data of CNN and customized the internal memory size. Direct 

Memory Access (DMA) Controller [120] (Fig.56 (e)) is also implemented for 

high speed data transfer between the host PC and the Protium S1 for real-

time processing. In this prototype system, the configuration of processing unit 

including the VP6 core can be debugged and optimized by cycle accurate co-

simulation of software / hardware and emulation with actual machine 

operation.  

 Figure 57 shows the flowchart of the developed prototype system. When the 

image processing started, a frame data is read as an image data from the 

endoscopic video sequence (Fig.57 (1)). Next, any region of 227 × 227 pixels as 

the input data to the CNN is cropped from one frame of the endoscopic video 

as a classification region (Fig.57 (2)). If the classification region size is other 

than 227 × 227 pixels, and in that case, the classification region is resized to 

227 × 227 pixels. The cropped image data of classification region is stored to 
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the image buffering memory (Internal RAM # 0) shared between the host PC 

and the VP6 (Fig.57 (3)). In the VP6, CNN feature extraction and SVM 

classification are executed to obtain the classification result for the 

classification region (Fig.57 (4)). The classification result is stored to the 

image buffering memory (Internal RAM # 1) shared between the host PC and 

the VP6 (Fig.57 (5)). Finally, the host PC reads the classification result and 

displays the classification region and the result together with the input frame 

image (Fig.57 (6)). The above process is repeated until the endoscopic video 

ends. 

 Data transfer between the host PC and the VP6 is performed via PCI 

(Peripheral Component Interconnect) Express connected by the iPass 

connector as shown in Fig.53 and Fig.56. In the developed system, a single 

unified bus by AXI (Advanced eXtensible Interface) (Fig.56 (f)) is used and all 

masters and slaves are connected to this single AXI bus. Data transfer in the 

developed system is performed by the this single AXI bus. The set of weight 

coefficients as learning data of the CNN and the model file data as learning 

data of the SVM are stored to the internal RAM, or to the work memory on 

the external DRAM as necessary. Therefore, we use VP6’s features, Scatter 

Gather mechanism, and specific libraries for efficient data transfer. 

 

 
Figure 56. Block Diagram of the Implemented System. 
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Figure 57. Flowchart of the Developed CAD Prototype System. 

 

4.5. Bottleneck Analysis 

For developing the real-time CAD system for endoscopic video images, we 

decided the optimization policy by profiling and analyzing bottleneck of still 

image based on processing cycles since processing of one frame in the video 

image is equivalent to the still image. For profiling of still image, we use the 

cycle accurate profiling functionality of Xtensa Xplorer [121], which is a 

software development toolkit for Tensilica Vision DSP family in the above 

simulation / emulation environment. Xtensa Xplorer generates profiling data 

such as instruction execution count, total cycles (Fig.58), subroutine calls, 

pipeline analysis (Fig.59), cache performance etc. It is possible to analyze the 

number of processing cycles for each executed function and estimate the total 

number of processing cycles with cycle accurate and pipeline modeled ISS 

(Instruction Set Simulator). Also, both local and system memory is modeled 

with programmable latencies specified for different transaction types, 

allowing an accurate system simulation for analyzing performance. Therefore, 

cache miss latencies, interlock or branch miss delay are estimated as shown 

in Fig.58. 
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Figure 58. Cycle Analysis View of Xtensa Xplorer [121]. 

 

  
Figure 59. Pipeline Analysis View of Xtensa Xplorer [121]. 

 

 Figure 60 shows the profiling result based on the number of processing cycles 

per one still image. The total number of processing cycles per image is almost 

16.6 M cycles. When the clock frequency of the developed system is assumed 

200 MHz, the latency is 83 ms. This latency corresponds to a delay of almost 

2.5 frames when the frame rate of the endoscopic video image is 30 fps. The 

input image preprocessing shown as image_preprocess in Fig.60 is the 

maximum number of processing cycles (38%). In this image pre-processing, 

first an image data, which is transferred from the host PC, is separated into 

3 color channel components (R, G, B), then these color channel components 

are stored into the predetermined place in the internal RAM #0, and finally 

the average color value (mean image) of each color channel of the input image 

is calculated. 
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 And, the 2nd maximum of the total number of processing cycles is the 

waiting cycles to start fc6 of Full Connect layer shown as dma_wait_fc6 (12%) 

in Fig.60. As a result of further analysis, this wait time is not for the 

completion of the previous stage process. This wait time is the DMA waiting 

time for reading from the external DRAM of the weight coefficient of fc6 as 

the learned AlexNet and storing it into the Data Memory. The size of the 

weight coefficient of fc6 is 36 Mbyte. At the fully connected layer, the weight 

coefficients of all the nodes are required, since the calculation is performed 

with all the nodes of the preceding layer as inputs. 

 From this profiling results of the still image processing, if the input image 

preprocessing can be optimized and the intermediate data from the preceding 

layers before fully connected layer can be used as feature extractor, it is 

expected that the total number of processing cycles will be reduced by 60%. 

 

 
Figure 60. Profiling results of processing cycles per one still image. 

 

4.6. Optimization 

From the profiling results of the still image processing cycles in the previous 

section, we recognize that the pre-processing for the input image and the 

waiting time to read the weight coefficients of the fully connected layer are 

the main bottlenecks. Thus, we decided to optimize the video image 

processing by reducing the number of these two processing cycles. 
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4.6.1. Optimization of the pre-processing of the input image 

For pre-processing of the input image, the specific instructions of VP6 DSP 

core are applied. The VP6 has 64-way/32-way SIMD instruction sets specified 

for vector operations, and specific libraries for efficient loading and storing to 

memories. These features are key for optimization. 

 The VP6's compiler has the auto-vectorization feature to vectorize 

operations and improve parallel execution efficiency in VLIW. Automatic 

vectorization is one of optimization technique. Computer languages and 

programs is designed to execute in sequence. So, many optimizing compilers 

perform automatic vectorization which converts computer programs written 

in C language from a scalar implementation, which processes a single pair of 

operands at a time, to a vector implementation, which processes one operation 

on multiple pairs of operands at once. where parts of sequential programs are 

transformed into parallel operations.  

 Our research group reported the results of optimization of the SVM 

classification by using this feature [57]. Figure 61 shows comparison results 

of the number of processing cycles of SVM classification when 908 endoscopic 

images are processed before and after optimization. We reduced the number 

of processing cycles to 1/30. Therefore, we implemented 2-SVM classifiers 

sequentially, Type 1 vs Type not 1 (= Type 2A / Type 3) classification and Type 

2A vs Type 3 classification, for 3 types classification. From this result, we 

considered that the number of processing cycles of pre-processing input 

images can be effectively reduced effectively by auto-vectorization feature. 

 

 
Figure 61. Comparison results of SVM classification processing cycles before 

and after optimization [57]. 
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 Figure 62 shows optimization flow using auto-vectorization feature of 

Xtensa Xplorer. Convolution operation is coded by the nested loops which 

have possibility to be vectorized as shown in Fig.63.  

 

 
Figure 62. Optimization Flow Using Auto Vectorization of Xtensa Xplorer. 
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 First, we use the auto-vectorization feature of VP6's compiler to vectorize 

operations and improve parallel execution efficiency in VLIW (Fig.62 1.)). 

Table 12 shows the output message from auto-vectorization feature which 

indicates “tried to vectorize the function predict, line number 2631 in 

Linear.cpp, in 16 parallel operations, and it failed.” The list of messages is 

initially sorted by the number of processor cycles used by a given loop, such 

that the most expensive loops appear first as shown in Fig.64. 

 

Table 12. Output Message from Auto Vectorization. 

 
 

 Then, we find codes that should be re-coded by the Vectorization Assistant 

feature of Xtensa Xplorer as shown in Fig.64 that helps to find codes that can 

be improved. Vectorization Assistant discovers and locates code that could not 

be vectorized along with an explanation that can help the programmer modify 

the code so that it can be vectorized (Fig.62 2.)). Xtensa Xplorer compiler is 

able to automatically detect opportunities for vectorization from standard C 

code. The dependence analysis of the compiler analyzes both inner and outer 

loops to see if they can safely be executed in parallel. For appropriate loops, 

the scalar operation in the loop are replaced with corresponding vector 

operations [121].  

 After finding codes that cannot be automatically vectorized by the auto-

vectorization feature, we re-code the codes to improve the parallelization of 

operations and analyze total cycles weather the performance is satisfied for 

requirements (Fig.62 3.)). Figure 65 shows an example of our re-coding for 

auto-vectorization of Xtensa Xplorer. We unrolled unnecessary loop, clarified 

each variable data types as “float” and split one calculation into four 

calculations for auto-vectorization. After re-coding, auto-vectorization is 

successfully done. 

 

 

File : Line Function Vectorizable or Not Message

Linear.cpp : 2631 predict Not
Retrying loop 
vectorization by 16
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Figure 64. Vectorization Assistant View of Xtensa Xplorer [121] 

 

 
Figure 65. Example of re-coding for Xtensa auto-vectorization. 

 

 The VP6 has specific instructions for convolution, pooling and sigmoid 

calculation [107]. We use these primitive instructions to effectively perform 

common functions that take into account the architecture and behavior of 

built-in hardware with intrinsic expression, which directly uses these 

primitive instructions like assembly language, and issue VLIW instructions 

a) Code that cannot be automatically vectorized
for(; (idx=lx->index) !=-1; lx++) {

if(idx<=n)

for(i=0;i<nr_w;i++) {

dec_values[i] += w[idx*nr_w+i]*lx->value;

}

}

}

for(j=0; j<250; j++) // => 1000 / 4

{

value_tmp0 += (float)w[j+  0]*(float)PROB_SCALAR*(float)ResultfVEC[j+  0];

value_tmp1 += (float)w[j+250]*(float)PROB_SCALAR*(float)ResultfVEC[j+250]; 

value_tmp2 += (float)w[j+500]*(float)PROB_SCALAR*(float)ResultfVEC[j+500];

value_tmp3 += (float)w[j+750]*(float)PROB_SCALAR*(float)ResultfVEC[j+750];

}

dec_values[0] = value_tmp0 + value_tmp1 + value_tmp2 + value_tmp3;

b) After re-code
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with high efficiency. 

 In addition, the VP6 has Scatter Gather DMA mechanism and the specified 

libraries and instructions for utilizing this DMA. The VP6 has 2 banks per 

local data RAM, and each bank has 8 sub-banks. These libraries allow to load 

and store into different sub banks in parallel. These libraries also allow 

multiple loads and stores to same sub-bank address combined for a single 

access operation. Furthermore, this DMA supports up to 64 outstanding 

requests for external memory access. The 1-Dimensional and 2-Dimensional 

data transfers between local and external memories are supported. Efficient 

memory accesses can be achieved by utilizing these libraries and instructions 

explicitly [107]. 

 Figure 66 shows the result of optimization. In endoscopic image diagnosis, 

the clinical doctor does not take care the color information of lesion, therefore 

the image can be gray-scaled to reduce the amount of data. By this 

optimization, it is possible to reduce Convolution layer processing cycle by 

approximately 8 M cycles, almost 47 % (Fig.66). 

 

 
Figure 66. Result of Optimization. 

 

4.6.2. Optimization of waiting time for loading coefficients of full connect layer 

For reducing the waiting time of DMA transfer for reading the weight 

coefficients of the fully connected (fc) layer from the external memory to the 

internal data RAM, we will use the intermediate data as the extracted feature 

before the fully connected layer. And, the process of AlexNet itself will be 

quitted at that stage. 

 For implementing to an embedded system, the number of dimensions of the 
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intermediate data to be used is equivalent to the number of dimensions of the 

input data to the SVM classifier, which performs classification in the next 

stage. Therefore, we have to consider the trade-off between the classification 

accuracy and the number of dimensions of the intermediate data from hidden 

layer of AlexNet. Figure 67 shows the number of dimensions on intermediate 

data as feature quantity from each hidden layer of AlexNet. The prob layer 

output at the final stage is the probability of 1,000 categories as AlexNet’s 

outputs value. We use pool5, fc6, fc7, fc8 and prob as candidates for 

intermediate data as feature extraction. Thus, we evaluated the classification 

accuracy when these intermediate data are used as input data to the SVM 

classifier for comparison. 

 The classification accuracy is evaluated by True Positive, Precision Rate, 

and F-measure, equations (2) to (4) in Chapter 2. The True Positive shows 

correct recognition rate according to labels, and the Precision Rate shows 

accuracy of recognition. The F-measure represents the harmonic mean of the 

True Positive and the Precision Rate. 

 

 
Figure 67. Feature dimensions of pre-trained AlexNet, and, architecture of 

AlexNet. 

 

 Figure 68 and Figure 69 show the evaluation results. The classification 

accuracy was evaluated by performing 10-fold Cross Validation (CV) ten 

times to compare the classification accuracy of the proposed method based on 
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the training data set created (Fig.34). The dataset for the evaluation is the 

still NBI image dataset containing 1,260 NBI patches obtained from 

endoscopic examinations at Hiroshima University. The test dataset is the 

same 1,260 NBI images, in addition these images are rotated 90 degrees, 180 

degrees and 270 degrees to the right. For comparison, we use a previous study 

on endoscopic image recognition based on Bag-of-Features (BoF) [33]. The 

BoF approach uses Dense-Scale Invariant Feature Transform (D-SIFT) for 

feature extraction. The value of F-measure indicates over 97% of Type 1 and 

Type2A/Type3 classification. Compared to previous CAD system based on D-

SIFT, classification accuracies using CNN feature extraction are higher for 

Type 2A and Type 3 classification. These results suggested it is possible to 

improve the system processing speed with keeping high classification 

accuracy. For example, the graph on the left side of Figure 68 shows the True 

Positive (TP) and Precision Rate (PR) for Type 1 and Type not 1, respectively. 

Since both TP and PR values are high, we can consider that the False Positive 

(FP) and False Negative (FN) of Type 1 and Type no 1 are small. Precision 

Rate (PR) is calculated by equations (6) besides equations (3) and equations 

(7) besides equations (2) in Chapter 3.   
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 Therefore, from this graph on the left side, for the CNN Features: pool5, fc6, 

fc7, and fc8, it is possible to classify with an accuracy of over 90%. In other 

words, this corresponds to the classification of whether the lesion is non-

tumors or tumor. 

 Likewise, the right-hand graph of Figure 68 shows that the classification 

between Type 2A and Type 3 is more than 90% accurate with the CNN 

Features: fc6, fc7 and fc8. In pool5, there is a slight difference in PR among 

Predicted Value by CNN
Positive Negative

Correct Value Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)
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fc6, fc7 and fc8. However, in the classification of lesions on endoscopic images, 

since cancer progresses to Type 2A, Type 2B, and Type 3, it is difficult to 

distinguish them clearly in the case of images on the border of the degree of 

progress. In this simulation, the output value of SVM classification is output 

in the range of 0 to 1. Because the threshold value for judgment is 0.5, it is 

the difficult when the difference between the outputs is small such as (0.6, 

0.4) case. However, from the viewpoint of diagnosis support, for example, if 

the output value does not exceed 0.8, the CAD system provides the doctor 

with an objective index. Thus, the doctor can pay attention, stop the 

endoscope, and take still images for careful diagnosis. 

 The number of dimensions of the feature extracted from pool5 increases by 

9,216, which is about 9 times the number of dimensions from prob, the last 

layer in AlexNet. The number of processing cycles in SVM classification is 

approximately 0.06 M cycles when using the feature of prob as input, and 

approximately 0.56 M cycles when using the feature of pool5 as input. The 

number of processing cycles is increased by 0.5M. However, the number of 

processing cycles reduced by removing the processing of dma_wait_fc6, 

dma_wait_fc7, fc6, and fc7 is 4 M cycles. Using the 9,216-dimensional 

intermediate data as feature extracted from pool5 is much more effective. The 

data transfer size by DMA is reduced to 56 Mbyte by using the output from 

pool5 compared to using the output from prob. From these results, it is 

effective to use the output of pool5 with dimension number 9,126 as the 

extracted feature of the input to SVM of the next stage. 

 

 
Figure 68. True Positive and Precision Rate for each hidden layer of AlexNet 
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Figure 69. F-measure for each hidden layer of AlexNet. 

 

4.7. Evaluation of the Developed Prototype System 

Figure 66 shows the comparison of the numbers of processing cycles before 

and after optimization. This result shows that the number of total processing 

cycles can be reduced by approximately 70%. The reason for reduction of 

about 70% is that such as Load / Store of related data included in Other in 

Fig.60 is also reduced, while the reduction of 61% is expected. When the clock 

frequency is 200 MHz, the frame rate is 44.6 fps, which exceeds the input 

video frame rate of 30 fps, and also it is achieved the requirements from 

clinical doctors. Xtensa Xplorer has features of power, performance and chip 

area estimation for each typical processe like TSMC as shown in Fig.70 [121].  

 

 
Figure 70. Performance, Area, Power Estimation View in Xtensa Xplorer 

[121]. 

 

 We estimated power consumption is 66.6 mW under a 16 nm CMOS process. 

For example, Nvidia’s Jetson AGX, an embedded GPU and LSI manufactured 
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in the 12 nm CMOS process of TSMC (Taiwan Semiconductor Manufacturing 

Company), executes AlexNet 299 fps at 14 W by 15 W mode [122]. It is 

equivalent to 2.08 W, when reducing the performance to the same frame rate 

of 44.6fps as VP6. We compared to other platforms and Table 13 shows the 

comparison results. As Table 13 shows, the power consumption of our system 

is lower compared to the latest embedded GPUs. In addition, the latency of 

our system is about 22 ms, from Step 2 to Step 4 in Fig.57, including video 

data transfer from the HDD in the host PC. The latency of the endoscopic 

camera transfer can be assumed to be almost equivalent, which corresponds 

to a delay of less than one frame when the frame rate of the input video image 

is 30 fps. There is no difference between the frame taken by the endoscope 

and the frame displaying the classification result. Thus, it is possible to 

provide the information about the classification result that is also easier for 

the doctor to understand. 

 

Table 13. Performance for AlexNet and power comparison to other platforms 

[122-123] 

 
 

 We constructed the proposed CAD system on the hardware prototyping 

platform, Protium S1, and validated using the endoscopic video images. Since 

Protium S1 has a function of observing waveform data from each signal for 

debugging, there is a limitation to improve the operating clock frequency. 

Therefore, the operating clock frequency is 22.97 MHz, which is equivalent to 

4 fps as processing performance. Figure 71 shows the developed CAD system 

using the Protium S1. The developed CAD system is consisted of the host PC, 

the Protium S1 and the output monitor. The classification result is displayed 

on the output monitor in Fig.71. Figure 72 shows the setting feature of 

classification region by the clinical doctors in the CAD system. The clinical 

doctors can switch the size of the classification region, 227 x 227 pixels (green 

rectangle) or 454 x 454 pixels (red rectangle) shown as Fig.72 (a). The clinical 

Vision P6

[107]

Jetson AGX

[124]

Jetson Nano

[125]

Raspberry Pi 

3B [126]

Performance(fps) 44.6 299 21.7 0.35

Power(Watt) 0.0666 14 4.58 2.73

Power(Watt) per 1 fps 0.000149 0.0468 0.211 7.80

Clock Frequency (MHz) 200

(DSP)

670

(GPU)

640

(GPU)

1200

(ARM A53)
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doctors can set the classification region position or move the clear part of 

endoscopic image into the classification region during observation (yellow 

rectangle) shown as Fig.72 (b). 

 

 
Figure 71. The Developed CAD System. 

 

 
Figure 72. Staging Region Setting. 

 

 Figure 73 shows the output display image of the developed system. The 

yellow rectangle area is the staging region (257 x 257 pixel size). The 
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classification results are displayed at the top of the endoscopic image. In the 

CAD system, it is much more important to show an objective numerical 

evaluation for a rectangular area, staging region that a clinical doctor wants 

to observe the corresponding lesion. Since it is possible to move the scope to 

the staging region where the clinical doctor wants to observe, in the first 

prototype system, the staging region set at any place such as the center region 

because the staging region can be moved at the doctor's decision by moving 

the scope. 

 Figure 74 and Figure 75 show classification results for Type 2A and Type 3, 

respectively. In the CAD system, the doctor stops the endoscope when it is 

difficult to see the staging region because of peristaltic motion of inner wall 

and confirm the staging region by a clear still image. Moreover, the doctor 

stops the endoscope and observe the lesion carefully by a clear still image 

when the recognition rate is going lower or the recognition rate is near 50%, 

in which it is difficult to the CAD system decide the Type. Then the doctor 

brings the staging region to the portion suspected of being a lesion. We 

confirmed that it can be recognized with higher accuracy by moving the yellow 

square of the staging region from the boundary of the lesion (Fig.74 (a), Fig.75 

(a)) to the center of the lesion (Fig.74 (b), Fig.75 (b)) in real time in accordance 

with the lesion. 

 

 
Figure 73. The classification result of the endoscopic video image on the real-

time prototyping system (Type 2A). 
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Figure 74. Real-time classification results from the boundary to the center of 

the lesion of Type 2A. 

 

 
Figure 75. Real-time classification results from the boundary (blur region) to 

the center of the lesion of Type 3. 

 

 Figure 76 shows the output image in which the size of the yellow square is 

changed to 454 x 454 pixels and reduced with linear interpolation to 227 x 

227 pixels as the input data. Even when the staging region (yellow rectangle 

in Fig.76) size is enlarged, it is confirmed that the prototype system can 

recognize lesion region correctly. Figure 77 shows the classification result of 

same frame image in Fig.74 and Fig.75 in which the size of the yellow square 
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is changed to 454 x 454 pixels. The clinical doctors can switch the size of the 

staging region, 227 x 227 pixels or 454 x 454 pixels. 

 

 
Figure 76. The classification result of image with 454 x 454 pixel window. 

 

 
Figure 77. Real-time classification results of image with 454 x 454 pixel 

window. 
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4.8. Conclusions 

In this Chapter, I explained hardware requirements for realizing a CAD 

system with CNN feature extraction and SVM classification on an embedded 

system. Then, we have carefully analyzed the profiling data of the still image 

processing of the CAD system for colorectal NBI endoscopic using CNN 

feature extraction and SVM classification. We have realized real time 

processing by improving the bottlenecks with over 70% reduction of the 

processing cycles per frame for video processing by optimizing the image pre-

processing with VP6 DSP core and using the extracted feature of the hidden 

layer in AlexNet. Moreover, we have demonstrated that the developed system 

achieves real-time colorectal tumor classification for the endoscopic video 

image (44.6fps throughput / 22ms latency @200MHz, 66.6mW power 

consumption), and sufficient classification accuracy (> 90%).  
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Chapter 5. Practical Improvement to the CAD System 

with Navigation Function 
 

5.1. Issues in Video Image 

For the real-time processing of endoscope video images and the providing 

diagnostic support information, it is necessary to solve the problems described 

in Chapter 3.  

 

 (1) Microscopic defocus or changes of appearance of lesions due to movement 

of the lesion in the depth direction. 

 

 (2) Unclear frames with blur, color shift, reflection of light in the NBI 

endoscopy. 

 

 (3) Differences in resolution and appearance between old and new 

endoscopic systems. 

 

 Also, the improvements in the video processing and scoping systems of 

endoscopic systems are known to result in different resolutions and 

appearances (Fig.33). Therefore, it is desirable to have the generality that the 

image data of an old endoscope previously provided by a clinical doctor can be 

applied to another different system. In order to solve this problem, the 

transfer learning which is a method for the feature distribution of image data 

in a new endoscope system, which is closer to the feature distribution of the 

conventional endoscope system, is proposed the conventional system using 

the D-SIFT function. On the other hand, the trend survey in the case of the 

classification method using the CNN feature extraction has not been 

conducted. 

 Above problems in endoscopic video image are major challenges in 

endoscopic diagnosis. Detecting artifact in endoscopic video contest 

(Endoscopy Artifact Detection challenge: EAD2019) was held in 2019, Venice, 

Italy, co-located with the 16th International Symposium on Biomedical 

Imaging (ISBI 2019), and EAD2019 challenge dataset was released [127-128]. 

Figure 78 shows an example of EAD2019 challenge dataset. In this dataset, 

there are 7 classes of artifacts in endoscopic video image, specularity 

(reflection of light), blur, saturation, contrast, artifact (ex. message form 
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endoscopy system), medical instrument and bubbles for 5 organs, colon, 

stomach, oesophagus, bladder and liver. This training dataset obtained from 

3 types of endoscopy, WLI (white light imaging), NBI (narrow band imaging) 

and AFI (auto-fluorescence imaging) consists in total 2,147 annotated frames 

over all these 7 classes. This dataset is assembled from 6 different data 

centers that includes John Radcliffe Hospital, Oxford, UK; ICL Cancer 

Institute, Nancy, France; Ambroise Paré Hospital of Boulogne-Billancourt, 

Paris, France; Istituto Oncologico Veneto, Padova, Italy; University Hospital 

Vaudois, Lausanne, Switzerland; Botkin Clinical City Hospital, Moscow. 

Some artifact detecting methods using CNN are proposed for this data set 

[129-132]. A comparison study for these methods has been reported in 2020 

[133]. 

 

 
Figure 78. Example annotated training detection boxes illustrating the 7 different 

artifact classes in the EAD2019 challenge dataset [128]. 

 

 To solve above problems, method which skips unclear frames till a clear 
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frame has been proposed [134]. By this method, there is a possibility that a 

significant lesion is missed if it is in an unclear frame. Also, methods for 

improving the image quality of endoscopic video images, such as deblurring 

of video images, have been proposed [135-136]. The deblurring of the video 

image is general in multimedia application, and interpolating technique 

between clear frames is well known for deblurring [137]. However, this 

method changes original endoscopic video image, so there is a risk that the 

critical and significant lesion information will be tampered. 

 Therefore, we aimed to develop a robust classifier by the proposed method 

using the CNN feature and SVM classification and consider solution of the 

above problem without changing of input endoscopy video image by preparing 

a training data set taking into account appearances in Chapter 3. 

 

 

5.2. Overview of Navigation function of clear region 

For real time CAD system, a robust system is required in appearance changes 

against a recognition of still image captured during video freezing. Shown as 

Fig.32 in Chapter 3, unclear frames with (a) blur, (b) color shift, (c) reflection 

of light that affect the classification accuracy are observed in the actual 

endoscopic video image compared to the still image. The clinical doctors make 

diagnosis based on surface pit pattern and vessel structure, but if the 

endoscopic image is unclear, the pit pattern and vessel structure cannot be 

seen, and this leads to errors of doctor’s judgement. Also, there is a possibility 

that the classifier of the CAD system provides incorrect classification result. 

Thus, in our CAD system, the clinical doctor can switch the staging region 

size (227 x 227 or 454 x 454) and move the staging region to avoid unclear 

regions in the endoscopic video frames. Output results from our CAD system 

provides the probability of each pathological types. For example, after 

avoiding unclear regions, the probability of Type 3 in Fig.75 in Chapter 4 is 

improved from about 0.49 to 0.99.  

 Therefore, the real time navigation function in a CAD system, which is 

consist of unclear region detection and providing a direction of clear region, 

is useful for the clinical doctors' diagnosis. In a real-time CAD system, 

detecting unclear regions in endoscopic video image is one of major challenges. 

 The navigation function of clear region consists of two main steps, unclear 

region detection and classification by AlexNet and SVMs. Unclear region 
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detection in the endoscopic video frames is one of major challenges. Detecting 

artifact in endoscopic video contest (Endoscopy Artifact Detection challenge: 

EAD2019) was held in 2019, and EAD2019 challenge dataset was released 

[127-128]. Some artifact detecting methods using R-CNN [138] etc. are 

proposed for this data set. These methods are executed on high performance 

graphics board like Nvidia’s 1080 Ti in a host machine [133]. It takes some 

seconds for artifact detection even executed on high performance graphic 

board because R-CNN is precise for detection but complex architecture. 

 Our research aims to realize a CAD system on the embedded system. 

Therefore, for unclear region detection in the endoscopic video frames, we 

consider that YOLO2 (You Only Look Once: Unified, Real-Time Object 

Detection) [138-140] can be used in the embedded systems because YOLO2 is 

known as simple architecture model for multi object detection compared to 

other object detection neural network models. In proposed CAD system, as 

shown in Fig.79, after (1) detecting unclear regions, if the staging region is 

overlapped unclear regions, the CAD system informs the clinical doctors by 

red rectangle and (2) providing the direction of clear region by red arrow, then 

the clinical doctors move the staging region and (3) colorectal tumor is 

classified. Input video image is 30 fps, and, Fig.79 shows from frame #2487 to 

frame #2517, almost 1 second. In Fig.79, Type 3 lesions are included in the 

almost whole image. However, the staging region is overlapped light 

reflection, and a red window indicates that the probability value is not 

accurate. Moreover, a red arrow indicates a direction of clear region. 

 Figure 80 shows the flowchart of the proposed CAD system with the 

navigation function of clear region. When the system starts the image 

processing, the frame data is read as an image data from the endoscopic video 

sequence (1). From next step, (a) Navigation function of clear region (blue 

rectangle in Fig.80) and (b) Classification (green rectangle in Fig.80) are 

executed in parallel on different VP6 cores. For unclear region detection, the 

input data is resized to 512 x 512 pixels, then STEP (a-1) unclear image region 

as blur, color shift or reflection of light is detected by YOLO2 as shown in 

Fig.79 (1). Next, STEP (a-2) the clear region which does not affect the 

classification accuracy is detected and direction is provided as shown in 

Fig.79 (2).  

 For classification process, as the input data to the CNN, an arbitrary clear 

region of 227 x 227 pixels is cut out from one frame of the endoscopic video as 
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a staging region. There are three cases for setting the staging region, (i) 

defined by unclear regions detection, (ii) set by the clinical doctor manually 

and (iii) the same staging region as previous frame when the doctor set no 

region and the unclear region detection cannot detect till the current frame 

(red rectangle in Fig.80).  

 Then, STEP (b-1) the image data of staging region is stored to the image 

buffering memory shared between the host and the VP6. In the VP6, STEP 

(b-2) CNN feature extraction and SVM classification are performed to obtain 

the classification result for the staging region. STEP (b-3) The classification 

result is stored to the image buffering memory shared between the host and 

the VP6. Finally, STEP (b-4) the host reads the classification result and 

displays the staging region and the result together with the input frame 

image. The above two processes, (a) and (b) are repeated until the endoscopic 

video ends. 

 

 
Figure 79. Overview of proposed CAD system with navigation function of 

clear region. 
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Figure 80. Flowchart of the proposed CAD system with navigation function 

of clear region. 

 

 We simulated YOLO2 and classification (AlexNet and SVMs) on the VP6 

core by Xtensa Xplorer. AlexNet in this simulation is same pre-trained model 

used in our CAD system in Chapter 4. Table 14 shows the simulation results 

of execution time. From these results in Table 14, when the clock frequency 

is 200 MHz, the frame rate is less than 2.3 fps which is not achieved the 

clinical doctor’s requirement (< 5 fps). When the clock frequency is 525 MHz 

and these two CNN processes performed sequentially, it takes 167.24 ms 

(8.54 ms + 158.7 ms), 5.97 fps (> 5 fps). 

 

Table 14 Execution time of CNN on single VP6 core. 

 

START

END

(1) Frame Loading

(a-1) Detect unclear 

region in frame (YOLO2)

(b-2) CNN feature extraction 

(AlexNet) 

and SVM classification

(b-3) Store the processing 

result to Internal Memory

(b-4) Display the processing 

result

End of Video

Video

Data

(a-2) Determine  

direction of clear region
(b-1) Store classification region 

image to Internal Memory

Classification 

region ?

(i) Use result 

by (a)

(ii) Use 

doctor’s input

(iii) Use same 

region as 
previous frame

(a) Navigation 

function of clear 

region on VP6 

Core 0

(b) Classification

Process on VP6 

Core 1

YOLO2 AlexNet + SVMs Total

Execution Time (200 MHz) 416.7 ms / 2.4 fps 22.4 ms / 44.6 fps 439.1 ms / 2.27 fps

Execution Time (525 MHz) 158.7 ms / 6.3 fps 8.54 ms / 117.4 fps 167.24 ms / 5.97 fps

Input Image Size 512 x 512 pixels 227 x 227 pixels -
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5.3. Possibility of the Proposed CAD System Implementation on VP6 and similar 

DSP cores in the low power ASIC 

From the viewpoint of personal information protection, it is delicate issues to 

store the medical images outside a clinical site such as a cloud server. At the 

small clinical site, it is desirable to have a CAD system that can be added to 

the same chassis of the endoscope instead of PCs. Therefore, we are aiming 

to realize CAD system in embedded ASICs. From 2017, ASICs with VP6 cores 

or similar DSP cores for CNN execution are released for mobile and IoT 

applications. Table 15 shows lists of ASICs implemented VP6 cores or similar 

DSP cores for CNN execution. In these ASICs, ARM cores as main CPUs for 

application, a GPU for image processing and one or two DSP cores for CNN 

processing are implemented, and also interfaces for camera and display are 

implemented. Since it is premised on operating with even lower power 

consumption, it is considered to be suitable for use in CAD systems in the 

medical site.  

 

Table 15 List of ASICs including VP6 and similar DSPs for CNN execution. 

 
 

 For example, Figure 81 shows the block diagram of Mediatek MT8385 [145] 

with two VP6 cores for CNNs (red rectangle in Fig.81). In MT8385, there are 

four ARM A73 and A53 as main CPUs for application, Mali G72 as GPU for 

graphic processing, display and camera interfaces and video encoder /decoder. 

Figure 82 shows the overview of the evaluation board of Mediatek MT8385 

Mediatek Qualcomm Mediatek

Chips MT6771

[141]

MT6779 

[142]

SDM710 

[143]

SDM675 

[144]

MT8385

[145]

Release Q1 2018 Q1 2019 Q2 2018 Q1 2019 Q1 2020

Technology TSMC 

12nm

TSMC 

12nm

Samsung 

10nm

Samsung 

11nm

TSMC 

12nm

Main CPU (ARM) A73/A53 A75/A55 A75/A55 A76/A55 A73/A53

# of Main CPU 4/4 4/4 2/6 2/6 4/4

Main CPU Clock (GHz) 2 2.2 / 2 2.2 / 1.7 2.0 / 1.7 2

DSP for AI

(VP6 or similar core)

VP6 Vision Q6 +

Acceralator

Hexagon

685

Hexagon

685

VP6

# of DSPs 2 2 1 1 2

DSPs Clock (MHz) 525 624 - - 525

Application Mobile IoT
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[146]. In our previous research, we have prototyped the CAD system on the 

VP6 core. Thus, at first, we examined possibility of implementation of the 

navigation function on MT8385 equivalent to MT6771. 

 

 
Figure 81. Block diagram of Mediatek’s MT8385 with two Tensilica VP6 cores 

(red rectangle) 

 

 
Figure 82. Evaluation board of Mediatek’s MT8385. 

 

 From the simulation result in Table 14, if the navigation function and the 

colorectal tumor classification performed sequentially, the performed frame 
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rate is 5.97 fps at 525 MHz as same clock frequency of VP6 cores in MT8385. 

In the real CAD system, we have to consider pre- / post-processes, image size 

reduction for inputting YOLO2, image trimming for AlexNet, overlaying the 

staging region area or classification result etc. Thus, we consider that 

navigation function which consists of (1) detecting unclear regions and (2) 

providing the direction of clear region is executed in one of the two VP6 cores, 

and (3) colorectal tumor classification is executed in the remaining VP6 core 

on MT8385 simultaneously. 

 Figure 83 shows the timeline of the proposed CAD system performed by (A) 

sequential execution mode and (B) parallel execution mode. Execution time 

of two processes in Fig.80 are different. (a) Navigation function treats 6 fps 

and (b) Classification process treats over 30 fps. In the observation of the 

colon by the endoscope, the colon continually contracts and the endoscope 

itself is not completely stopped. Since the movement of the colon is minute 

and the movement of endoscopic scope is not sudden, it is considered that 

there is small affection to the classification accuracy even if the staging region 

detection performed once in 6 frames.  

 

 
Figure 83. Timeline of the proposed CAD system with navigation function of 

clear region. 

Image size reduction to 512 x 512 pixels

Trim the classification region to 227 x 227 pixels Classification by AlexNet and SVMs

Define Classification Region
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 Thus, we confirmed both sequential execution and parallel execution of the 

unclear region detection and colorectal tumor classification has enough 

performance on MT8385 or MT6771. In the case of parallel processing, it is 

possible to continue to provide colorectal cancer classification information to 

the clinical doctors even during navigation function processing, frame 

number 0 to 5 in Fig.83. The clinical doctors can obtain classification 

information by moving the staging region by themselves or using the same 

area of the previous frame during navigation function processing. 

 Other ASICs (MT6779/SDM675/SDM710) listed in Table 15 have higher 

performance than MT8365/MT6771. AI benchmark tests application is 

released and execution performance results on these ASICs are reported [147]. 

The AI benchmark is designed to check the performance and the memory 

limitations associated with running AI and deep learning algorithms. It 

consists of several computer vision tasks performed by neural networks. 

Table 16 shows the CNN execution results on these ASICs. In AI benchmark 

tests, there are some CNN models for classification, recognition and so on. 

However, AlexNet and YOLO2 used in the proposed CAD system are not 

included in the AI benchmark tests. Thus, we compared four CNN models 

similar to AlexNet and YOLO2 in the proposed CAD system. MobileNet v2 

[148] and Inception V3 [149] are tests for classification task, and, Inception-

Resnet v1 [150] is a test for face recognition task. These three models 

represent a core set of architectures for classification problems that are 

suitable for mobile application in the AI benchmark tests. SRCNN [151] is a 

test for deblurring task which removes Gaussian blur from images.  

 

Table 16 Execution time for CNNs on ASICs providing DSPs [147]. (MT8385 

is almost same as MT6771). 

    

MobileNet v2 Inception V3 Inc-ResNet v1 SRCNN Proposed CAD

Classification Classification Face Recognition Deblurring -

MT6771 27 ms / 37 fps

(x 1.0)

89 ms / 11.2 fps

(x 1.0)

181 ms / 5.5 fps

(x 1.0)

163 ms / 6.1 fps

(x 1.0)

5.97 fps

MT6779 4 ms / 250 fps

(x 6.6)

23 ms / 43.5 fps

(x 3.9)

38 ms / 26.3 fps

(x 4.8)

22 ms / 45.6 fps

(x 7.5)

> 23.3 fps 

SDM710 12 ms / 83.3 fps

(x 2.3)

48 ms / 20.8 fps

(x 1.9)

95 ms / 10.5 fps

(x 1.9)

70 ms / 14.3 fps

(x 2.3)

> 11.3 fps

SDM675 10 ms / 100 fps

(x 2.7)

34 ms / 29.4 fps

(x 2.6)

73 ms / 13.7 fps

(x 2.5)

53 ms / 18.9 fps

(x 3.1)

> 14.9 fps
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 From the AI benchmark tests report, it can be seen that various CNN models 

can be executed on low power embedded ASICs. There is no result of MT8385, 

however, MT8385 architecture is almost same as MT6771. We can consider 

the performance for CNNs of MT8385 is almost same as MT6771. For 

example, MT6779 has over 3.9 times performance of MT6771. Thus, the 

proposed CAD system can be expected to process at over 23.3 fps, and, to 

provide classification information while performing navigation function by 

MT6779 at sequential processing. We consider that the CAD system using 

these embedded ASICs can be added as an option in the chassis of the 

endoscope and can be used compactly and usable with low power consumption. 

 

5.4. Overview of Navigation Function by Multiple Staging Region 

Figure 84 shows overview of a navigation function by multiple region. As 

shown in Fig.84, multiple staging regions are set with overlapping in one 

frame. We proposed two settings: (1) one staging region is set on the center of 

endoscopic video frame and other four staging regions are set on upper, lower, 

left and right of the staging region on center, and (2) one staging region is set 

on the center of endoscopic video frame and other four staging regions are set 

on diagonals of the staging region on center. During observation, the 

quantitative staging classification is executed, and Type 1 probability is 

provided over 0.5 when lesion part is not included, or unclear region is 

included in the staging region. The color of rectangle which indicated staging 

region is changed by probability of each pathological type as shown in Fig.85. 

These colors of rectangles give the doctor information about which areas to 

look for colorectal observation. Figure 86 shows the timeline of the proposed 

CAD system with navigation function by multiple staging regions on two VP6 

cores. Both Process for region 1,2 and Process for region 3,4,5 can be executed 

over 30 fps. The navigation function by multiple staging region is based on 

quantitative staging classification. Thus, the execution time of the navigation 

function is same as the execution time of quantitative staging classification. 

The navigation function by multiple staging region can provide navigation 

information to doctors every frame. 
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Figure 84 Navigation function by multiple staging region. 

 

 
Figure 85 Staging region color by probability of each pathological type. 

 

 
 Figure 86 Timeline of navigation function by multiple staging region. 

 

5.5. Conclusion 

In this Chapter, I proposed two navigation function methods in CAD system 

as useful assistant feature to doctors for quantitative endoscopic observation. 

Two methods for navigation function is proposed, navigation function by 
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unclear region detection and navigation function by multiple staging region. 

Execution time of the navigation function by unclear region detection is 

estimated 5.97 fps @ 525 MHz on a customizable DSP. I compared parallel 

execution and sequential execution on multiple customizable DSP and 

confirmed parallel execution provides quantitative staging for video images 

of colon NBI magnification endoscopy. I confirmed the navigation function by 

multiple staging region is executed over 30 fps @ 525 MHz. 
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Chapter 6. Conclusion 
 

6.1. Conclusion 

In this thesis, I described the hardware implementation of a computer-aided 

diagnosis support system that supports endoscopic video using a 

customizable DSP. I clarified the problem of unclear frames in endoscopic 

video images and described the balancing of training dataset to build a robust 

CAD system with CNN feature extraction and SVM classification. I carefully 

analyzed bottlenecks when the CAD system is installed into the customizable 

DSP core and clarified optimization methods so that processing can be 

executed in real time in the hardware prototype system to be developed. I 

evaluated the developed CAD system with these improvement approaches by 

results of classification. And, I confirmed the developed CAD system with 

CNN feature extraction and SVM classification can be executed in real-time 

for endoscopic video images with high classification accuracy. 

 In Chapter 1, I explained the background of this research. First, I described 

trends in colorectal cancer incidence and mortality worldwide. After that, I 

explained the principle of NBI magnified endoscopy and described the 

classification of colorectal cancer by the NBI endoscopy observation.  

 In Chapter 2, I explained how the conventional BoF-based CAD system 

works, then explained the CAD system with CNN feature extraction and SVM 

classification. I described the difference between outputs from CNN layers 

equivalence to feature quantity and the features by D-SIFT, and further 

described SVM libraries to be implemented referred the report of our research 

group. I confirmed over 90% accuracy for quantitative staging classification 

with pre-trained CNN instead of D-SIFT by limited training data. 

 In Chapter 3, I clarified the problems that affect the classification accuracy 

in endoscopic video images. Also, the endoscopic image dataset used in this 

study was explained, and the problems caused by the imbalanced dataset 

were described. To solve the problem of imbalanced dataset, I prepared the 

balancing dataset and evaluated the result of classification accuracy from 

SVM trained by the balancing dataset. As a result, I confirmed that the 

classification accuracy of SVM is improved by using the balancing dataset. I 

described the application to endoscopic video images. I explained some issues 

such as blurring, color shift etc. in the endoscopic video image. I evaluated 

the result of classification accuracy when the endoscopic video image was 
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input to the developed CAD system. It was shown that the classification 

accuracy was improved by using multiple size image dataset for SVM training. 

I confirmed average value and standard deviation of the output of SVM for 

quantitative staging classification (0.692 ± 0.328 -> 0.995 ± 0.015 for 

Type2A/3 staging). 

 In Chapter4, I showed that the acceleration of convolutional layer consists 

of multiply and accumulate is the key to CNN processing. I clarified the 

requirement for hardware to be implemented a CAD system with CNN and 

SVM. I decided to implement a CAD system on a customizable DSP, and 

performed a detailed analysis of bottlenecks, and explained the optimization 

method. I implemented the optimized CAD system with CNN and SVM on 

the FPGA-based prototyping system and confirmed that it is possible to 

classify endoscopic images in real time. I confirmed real-time processing of 

CAD system with staging classification for edge device at small clinics. 

(44.6 fps / 22 ms latency @ 200MHz, 66.6 mW) 

 In Chapter 5, And, I proposed two navigation function methods by unclear 

region detection and by multiple staging region. I confirmed that it is possible 

to realize the navigation function by unclear region detection using YOLO2 

and staging classification by AlexNet and SVMs executed at 30 fps on the 

customizable embedded DSP core. I confirmed that it is possible to realize the 

navigation function by multiple staging region at 39fps on the customizable 

DSP core. 

 

I described the real-time CAD system with quantitative staging and 

navigation on customizable embedded DSP. I proposed a CAD system that 

provides quantitative and objective index of cancer stage to doctors based on 

the standard JNET classification, not only classify cancer or not-cancer and 

implemented on a customizable DSP. And, I confirmed the developed CAD 

system achieved real-time quantitative staging classification for the 

endoscopic video image (44.6fps throughput / 22ms latency @200MHz, 

66.6mW power consumption), and sufficient classification accuracy (> 90%). 

And, I proposed two navigation functions which provide unclear region 

information to doctors in the CAD system, and I confirmed that it is possible 

to realize the CAD system with the navigation function on the customizable 

embedded DSP core. 
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Academic and Industrial impact 

1) CAD system for real-time video on customizable DSP 

- Memory and cycles reduction by 8-bit quantized AlexNet and SVM 

implementation. (Academic) 

- Avoiding system bus conflict by using hidden layer feature. (Academic)  

- 44.6 fps and 22 ms latency, 66.6 mW power (Industrial) 

2) Real-time CAD with over 90% accuracy 

- Pre-trained CNN instead of Handcrafted feature Extraction (Academic) 

- Multi-sizing and balancing in training data set (Academic) 

- Quantitative staging with 90% accuracy (Industrial) 

3) Real-time Navigation for effective quantitative staging 

- unclear region detection for one staging region (Academic), 30fps @ 525 

MHz (Industrial) 

- multiple staging regions (Academic), 39fps @525 MHz (Industrial) 

 

 Figure 87 shows comparison of performance, power and diagnosis quality to 

previous studies. We have achieved high performance, power consumption 

and diagnostic quality compared to previous studies.   

 

 
Figure 87 Comparison of (a) performance vs diagnosis quality and (b) 

performance vs power. 

 

 From the above research, quantitative and objective staging index are 

provided to the doctor more accurately in magnified NBI endoscopic 

observation, which is independent from the experience of doctors, and 
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diagnostic support method is established such as a "second opinion" at 

magnified NBI endoscopic observation on site. 

 

6.2. Future Works 

It has been shown that it is possible to construct a CAD system that can 

process endoscopic video images in real time, however some problems still 

remain. 

 In our research group, there are enough endoscopic images for each 

pathological type which has clearly captured and trimmed the lesion by the 

clinical doctor. Currently, there is a few images for unclear parts including 

blur, reflection of light or color shift. Therefore, as future research subjects, 

1) we accumulate the training data sets for navigation function by CNN, 

classification, and verify the practical CAD system capability. Unclear region 

can be detected by YOLO2, however, there are lesion part or normal mucosa 

in the bounding box output by YOLO2. Thus, 2) we evaluate not only YOLO2 

for unclear region detection quantitively using statistical measure such as 

mAP (mean Average Precision) and implement with classification into the 

customizable DSP core. In the proposed CAD system, direction to clear region 

is navigated by a red arrow. 3) We consider how to provide the navigation and 

improve the navigation function which allows clinical doctors to freely switch 

the warning display according to their level of experience.  

 Expansion to endoscopic systems other than NBI (Narrow Band Imaging) is 

also a future research topic. The proposed CAD system can classify NBI 

images magnified from medium-magnification (1.3-1.9x) to strong-

magnification (3.6x). It is considered to apply non-magnified endoscopic 

images and high magnification (360x) by endocytoscopy. In addition, it is 

considered to apply endoscopic system using engineering methods different 

from NBI such as WLI (White Light Imaging) and BLI (Blue Laser Imaging).    

 Optimization of the customizable DSP core by adding user-defined 

instruction set is also remained. This makes it possible to perform more 

complicated processing in neural networks proposed in recent years not only 

AlexNet or YOLO2. By using a neural network proposed in recent years, a 

CAD system with higher classification accuracy can be expected. 

 Furthermore, it has been reported an endoscopic system controlled by voice 

recognition [152] and voice recognition implemented on the customizable DSP 

for medical devices [153]. Therefore, assistance by voice recognition in the 
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operation of a doctor’s endoscope is also conceivable. 
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