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Abstract 

The electron spin in nonmagnetic crystal is degenerated under the protection of time-reversal 
and space inversion symmetries. The spin-orbit coupling (SOC), however, lifts the spin 
degeneracy if the space inversion symmetry is broken, termed as the Rashba or Dresselhaus spin 
splitting. Recently novel types of the Rashba spin splitting and/or Dresselhaus spin splitting have 
been predicted and confirmed in the centrosymmetric crystals, which is fundamentally derived 
from the asymmetry of the specific atomic site, rather than the asymmetry of the global crystal 
space group. Given the spin polarization or spin texture exists on a sector (quasi-2D sublattice) 
as well as its inversion partner sector in the unit cell, it is called the hidden spin polarization 
(HSP), as there is no net spin polarization for the whole crystal because spin polarization 
direction on a sector is anti-parallel to that on the inversion partner sector. The HSP on the sector, 
however, may be reduced via the interaction with its inversion partner, impeding potential 
applications of this effect.  

Due to the compensation of the spin of the opposite sectors, it is not trivial at all to retain 
highly polarized spin texture of a given local sector. In order to obtain sizable net polarization in 
each sector, apart from a strong SOC, one should minimize the compensation between the sectors 
connected to the inversion symmetry point. A trivial strategy is to separate the opposite sectors 
as far as possible, for example, inserting a thick slab between the opposite sectors. However, 
even though the two opposite sectors are far away enough, there is still an unavoidable 
compensation of the opposite sectors, besides the difficulty in the realization of such type 
materials. 

Here, we proof another non-trivial, symmetry-assisted strategy to minimize compensation and 
achieve a highly spin-polarized spin texture in each local sector protected by nonsymmorphic 
symmetries in centrosymmetric lattice. Based on the tight-binding model, if two opposing sectors 
are connected to each other through nonsymmorphic symmetry, the energy bands along the 
Brillouin zone (BZ) boundary have at least two-fold degeneracy derived from the energy bands 
on the two adjacent sectors with anti-parallel spin texture. These bands are fourfold degeneracy 
at the time-reversal invariant momentum (TRIM). The interaction (compensation) between the 
adjacent sectors disappears along the BZ boundary and hence the HSP with high spin polarization  
can be realized on two sectors that are closely connected via the centrosymmetry point.  



 

 ii 

As a promising example, here we examined BiOI single crystal whose space group is P4/nmm 
in which there exists a centrosymmetric point, glide planes and screw axes, such that the 
requirements on the symmetry properties are fulfilled and should have the HSP based on the 
theoretical considerations. In this study, we systematically investigated the electronic states of 
BiOI by means of spin and angle resolved photoemission spectroscopy (spin-ARPES). We find 
that the compensation of the spin polarization is substantially suppressed along the Brillouin 
zone boundary leading to a highly polarized spin state up to about 80% along the M-X direction, 
while the spin polarization is no more than 30% near the zone center (G point) due to the strong 
compensation by its inversion partners. The observed band structure and spin texture show good 
agreements with our theoretical calculations, fully confirming the HSP protected by 
nonsymmorphic symmetry. Our study provides evidence how one can design and realize highly 
spin-polarized electronic states in nonmagnetic centrosymmetric solids using lattice symmetry, 
providing the guiding principle to design materials for the future spintronics devices. 
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Chapter 1 Introduction 

The strategy for generating highly spin-polarized electronic states in non-magnetic solids has 
been explored extensively because it is an important key to realize novel quantum devices [1-6]. 
It is generally believed that this requires breaking the global space inversion symmetry since a 

combination of both time-reversal symmetry [ 𝐸(𝑘A⃗ , ↑) = 𝐸(−𝑘A⃗ , ↓)]  and space inversion 

symmetry [𝐸(𝑘A⃗ , ↑) = 𝐸(−𝑘A⃗ , ↑)]  inevitably yields spin degenerated energy levels in solids, 
which is known as the Kramer’s theorem.  

A relativistic electron moving in an electric field experiences an effective magnetic field 

[𝐵A⃗ !"" ∝ 𝛻𝑉(𝑟) × �⃗�] [7,8], where 𝛻𝑉(𝑟) denotes the gradient of the crystal potential and �⃗� is the 

crystal momentum. The 𝐵A⃗ !"" interacts on an electron spin 𝑠 = ℏ
$
�⃗�, giving rise to the spin-orbit 

coupling (SOC) [𝐻%&' ∝ �⃗� ⋅ (𝛻𝑉(𝑟) × �⃗�)]  [9], where 𝜎  denotes Pauli matrices. The spin 
splittings induced by the SOC have been classified as the Dresselhaus splitting (D-1) [10] and 
Rashba splitting (R-1) [11-14]. Previously it was widely believed that the spin splitting was 
unlikely in the centrosymmetric crystals. However, the Rashba-type spin splitting has been found 
experimentally in centrosymmetric crystals recently [15,16]. Zhang and Liu et al. first explained 
that the observed spin polarization is a local spin polarization on specific atomic sites with point 
group asymmetries [𝐶(	𝐶() , 	𝐷(	𝑆*, 	𝐷$+ , 	𝐶,- , 	𝐷,- , 𝑇, 	𝑇+ , 𝑂, (𝑛 = 1,2,3,4,6)] , rather than the 
spin polarization from the global symmetry of the crystal [17]. While there exist the local spin 
textures around the specific atomic sites, these spin textures cancel each other if added within 
the centrosymmetric cell, leading to a nonmagnetic state. It is called, therefore, hidden spin 
polarization (HSP) [17-19]. The local gradient of the electric potential characterized by the point 
group is reflected in the SOC term in each sector. If the whole crystal structure has a specific 
space group symmetry having centrosymmetric point, glide plane, screw axes, the high spin 
polarization on each sector does not have to cancel each other even though they are closely 
contacted in the real space.  

Based on this theory, these hidden Rashba- and Dresselhaus-type splitting (Denominated R-
2 and D-2 respectively [18]) have been experimentally confirmed in the bulk inversion 
symmetric crystals, such as WSe2 [20], MoS2 [21], BaNiS2 [22], PtSe2 [23], and Bi2212 [24]. 
The prediction and successful confirmations of the “hidden spin polarization” (HSP) in 
nonmagnetic centrosymmetric crystals have prompted further studies, such as spin-orbit torque 
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in antiferromagnet (AFM) [25-27], atomic orbital [28], optical activity [29], circular polarization 
[30], current-induced spin polarization [31,32] in various centrosymmetric systems. 

Due to the compensation of the spin of the opposite sectors, however, it is not trivial at all to 
retain highly polarized spin texture on a given local sector. In order to obtain sizable net 
polarization in each sector, apart from a strong SOC, one should minimize the compensation 
between the sectors connected to the inversion symmetry point. A trivial strategy is to separate 
the opposite sectors as far as possible, for example, inserting a thick slab between the opposite 
sectors. However, even though the two opposite sectors are far away enough, there is still an 
unavoidable compensation of the opposite sectors, besides the difficulty in the realization of such 
type materials [19]. 

Nonsymmorphic symmetry (such as the glide plane and screw axes) has recently attracted 
widespread attention, because it has been well established that the nonsymmmorphic crystals 
should have degenerated bands on the Brillouin zone surface or Brillouin zone boundaries, 
hosting new types of quasiparticle such as Dirac node [33-36], nodal-chain [37,38] and nodal-
surface [39] etc. Nonetheless, its impact on the HSP as well as Bloch states of different 
sublattices (or sectors) has not been experimentally explored yet.  

Here, we explore a nontrivial, symmetry-assisted strategy to minimize the compensation and 
realize highly spin polarized spin texture in each local sector protected by the centrosymmetric 
and nonsymmmorphic lattice properties. Based on our tight-binding (TB) model, if the two 
opposite sectors are connected each other by nonsymmorphic symmetry, the time-reversal 
invariant momentum (TRIM) holds four-fold degeneracy, and the inter-sector interaction 
vanishes along the BZ boundary while it is strong around the BZ center (Γ point) [19]. Nearly 
perfect HSP can exist on two quasi-2D lattice even closely contacted via the centrosymmetric 
point. This strategy offers a general method to realize the HSP for future applications, especially 
for all-electron manipulation of novel less-dissipative spintronic devices. 

In this study, to reveal the spin texture and energy band dispersions, we use synchrotron 
radiation-based spin- and angle-resolved photoemission spectroscopy. Synchrotron radiation is 
the electromagnetic radiation emitted when high-energy electrons or positrons make accelerated 
motion. The application of synchrotron radiation source provides a new experimental platform 
and a new way for the development of science and technology. Photoelectron spectroscopy (PES) 
technology with tunable synchrotron radiation as the light source is the most direct and powerful 
experimental tool to study the microscopic electronic structure of the advanced materials. 
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In order to experimentally reveal the HSP protected by the nonsymmorphic symmetries in 
centrosymmetric systems, we have examined the electronic structure of BiOI by means of spin- 
and angle-resolved photoemission spectroscopy (spin-ARPES) at Hiroshima synchrotron 
radiation center (HiSOR). BiOI is a quasi 2D layered material belonging to a space group of 
P4/nmm. It contains two opposites sectors per unit cell which are contacted by the 
centrosymmetric point. The degeneracy of the energy bands at the Brillouin zone boundaries are 
protected by the nonsymmorphic symmetry, namely glide mirror reflection and screw axis 
operation. BiOI has been extensively studied so far because it is one of the most studied catalyst 
in the visible light photocatalysis [40-42]. However, its HSP effect has not yet been explicitly 
argued theoretically, and has never been experimentally confirmed, to the best of our knowledge. 
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Chapter 2 Spin- and Angle-Resolved Photoelectron 
Spectroscopy: Basic Principles  

2.1 Introduction 

Advanced materials, including strong correlation electronic systems, magnetic materials, and 
spintronic materials, etc., are the frontier topics in the field of modern condensed matter physics. 
These new materials and new physical phenomena provide infinite possibilities for next scientific 
breakthroughs. In strongly correlated electronic systems, for example, the interactions between 
charges, spins, orbits, and lattices, have been found to lead to various novel quantum phenomena 
[43-51]. 

Photoelectron spectroscopy (PES) technique is the most direct and powerful experimental tool 
to study the microscopic electronic structure of these advanced materials. Since the macroscopic 
properties of any material are dominated by its microscopic electronic movement, to understand, 
control and utilize the novel physical properties, we must first study their electronic structure. 
As known, to completely describe the state of an electron, three basic parameters need to be 

obtained: energy (𝐸.), momentum (ℏ𝑘A⃗ ), and spin (𝑠). Therefore, photoelectron spectroscopy 
technology plays an indispensable role in the frontier research of condensed matter. 

Historically, the phenomenon of photoelectron emission was discovered by H. Hertz in 1887 
[52] and consequently the relationship between photon energy and photoelectron kinetic energy 
was quickly clarified by A. Einstein in 1905 [53]. The use of PES in materials science has been 
widely recognized until Kai M. Siegbahn published a paper entitled “Precision Method for 
Obtaining Absolute Values of Atomic Binding Energies” in 1957 [54]. After 1975, due to the 
tunability of photon energy, the use of synchrotron radiation has promoted the development of 
photoelectron spectrum. In the past three decades, the development of light sources makes it 
possible to realize photoelectron spectroscopy with high energy resolution even in soft X-ray and 
hard X-ray regions. Several advanced third-generation synchrotron radiation light sources have 
been commissioned [55-58], thus, the intensity and resolution of the light sources have been 
significantly improved. Now, by using a good monochromator, the synchrotron radiation can 
provide energy for photons with a resolution of less than a few meV below 100 eV.  
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On the other hand, modern photoelectron spectrometers not only provide very high energy 
and momentum resolution with a multi-channel detection, but automatic angle scanning 
technology also facilitates the hemispherical mapping of the topology of Fermi surfaces in 
momentum space [59,60]. Therefore, ARPES has now become a powerful imaging technique 
that can provide very direct k-space images that contain the dispersion of the energy band and 
the constant energy contours (CECs). Especially, combined with synchrotron radiation as a 
tunable photon source, the full k-space is accessible by ARPES, and it is the only powerful 
experimental tool to study three-dimensional electronic structures over the wide energy range of 
the valence bands.  

In addition, spin polarization measurement is widely used to study spin states. Modern, 
sophisticated ARPES setups are also equipped with spin detectors. For spin analyses, a spin 
detector (either a VLEED detector or a Mott detector) is connected to the conventional 
hemispherical ARPES analyzer. These detectors utilize asymmetries in scattering cross sections 
of electrons with specific targets: electrons with spin-up experience different scattering 
compared to electrons with spin-down [61]. 

This chapter will briefly explain the basic principles of (spin) angle-resolved photoelectron 
spectroscopy techniques. The first part briefly describes the principles of angle-resolved 
photoelectron spectroscopy, including one-step model, three-step model, sudden approximation, 
and Green's function of single-particle spectral function; second part introduces the basic 
principles of spin-ARPES; the third part introduces the experimental components, including light 
source, electronic energy analyzer, sample rotation system, spin detectors, ultra-high vacuum 
system and cryogenic system.  

2.2 Basic Principles of Angle-Resolved Photoelectron Spectroscopy 

2.2.1 General description of angle-resolved photoelectron spectroscopy 

The basic principle of photoelectron spectroscopy technology is based on the photoelectric 
effect [52-54]. When a beam of monochromatic light with energy ℎ𝜈  higher than the work 
function irradiates the sample, electrons at different energy levels (such as core levels and 
valence band) are emitted. And then analyze and count of the energy, angle, and quantity of these 
emitted photoelectrons, one can deduce the information of the internal electronic structure of the 
material. According to the different physical quantities measured, PES can be divided into angle-
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integrated photoelectron spectroscopy where only energy is measured, and angle-resolved 
photoelectron spectroscopy (ARPES) where energy and momentum are measured, as well as 
spin- and angle-resolved photoelectron spectroscopy (spin-ARPES), in which energy, 
momentum and spin are measured simultaneously.  

Figure 2.1 is the schematic drawing of a modern ARPES experiment. When a beam of 
monochromatic light (ℎ𝑣) illuminates the sample, due to the photoelectric effect, electrons are 
excited and can escape into the vacuum in all directions. An electron energy detector collects 
these photoelectrons at different angles in real space, and measures the distribution of the number 
of these photoelectrons with the kinetic energy (𝐸. ). The magnitude of the photoelectron 
momentum (�⃗�) can be determined by the following formula: 

 |�⃗�| = Y2𝑚𝐸. (2.1) 

where the components of the momentum �⃗� parallel and perpendicular to the sample surface are 
determined by the polar angle (𝜃) and the azimuth angle (𝜑).  

 

Figure 2.1 Schematic drawing of a modern ARPES experiment. ℎ𝑣 is the incident photon energy, 𝑒 is the 
emitted photoelectrons, the emission direction is determined by the polar angle (𝜃) and the azimuth angle 
(𝜑). The figure is publicly available on Wiki [62]. 

In the process of photoelectron emission, the emitted photoelectrons are approximately 

regarded as free electrons with momentum ℏ𝐾AA⃗ = ℏ(𝐾AA⃗ ∥ + 𝐾AA⃗0) consisting of parallel and vertical 
components. The parallel component is conserved (Actually, the parallel component should 
consist of photoelectrons momentum and photons momentum, considering that the photon 
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energy used in the ARPES experiment is relatively low, the momentum of the photon itself can 
be ignored, for example, if the energy of a photon is ℎ𝑣 = 100𝑒𝑉, the momentum of the photon 
is 𝑘 = 2𝜋/𝜆 = 2𝜋𝜈/𝑐 ≈ 0.05Å12) while the vertical component is non-conservation since the 
vertical translation symmetry of the surface is broken on the sample surface. Therefore, the 

energy and the parallel component of the momentum of the photoelectron (ℎ𝐾AA⃗ ∥), the binding 

energy (𝐸3) inside the solid, and the momentum of the crystal (ℎ𝑘A⃗ ∥) can be connected by the 
following conservation relationships: 

 𝐸. = ℎ𝜈 − 𝐸3 − 𝜑 (2.2) 

 𝐾∥ = 𝑘∥ = c
𝑘4
𝑘5
d =

1
ℏY2𝑚𝐸. ∙ 𝑠𝑖𝑛𝜃 ∙ g

𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑i (2.3) 

In the formula, ℎ𝑘A⃗ ∥ is the component of the electron crystal momentum parallel to the surface 
in the extended Brillouin zone. For larger angles (𝜃), the actual measured electron momentum 

can reach the high-order Brillouin zone. By subtracting the reciprocal lattice vector �⃗�, the simple 
electron crystal momentum in the first Brillouin zone can be obtained. 

As for vertical momentum, if we regard the final states in vacuum, i.e. photoelectrons, as free 
electrons [63], thus, we can rewrite kinetic energy (𝐸.) as: 

 
𝐸. =

ℏ$𝐾$

2𝑚 =
ℏ$(𝑘∥$ + 𝑘0$)

2𝑚 − 𝑉6 (2.4) 

and 𝑉6 is the defined inner potential 𝑉6 = 𝐸6 + 𝜑, shown in Figure 2.2. Putting (2.3) into (2.4), 
thus, we get the vertical momentum as: 

 𝑘0 =
1
ℏ
Y2𝑚(𝐸.𝑐𝑜𝑠$𝜃 + 𝑉6) ≈ 0.512Y𝐸.𝑐𝑜𝑠$𝜃 + 𝑉6 ≠ 𝐾0 (2.5) 

The inner potential 𝑉6  can be obtained by matching the measured energy band with the 
theoretical calculation. A common and convenient method is to use a series of photons of 
different energies to measure the photoelectron spectrum of the sample along the normal 

direction. At this time, the 𝑘A⃗ ∥ is equal to zero; thus, by observing the periodic symmetry of these 

𝑘A⃗ 7 (𝑘A⃗ 0) dispersion with the photon energy change, the internal potential 𝑉6 can be obtained easily. 
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Figure 2.2 Schematic drawing of energy levels and electron transition. (a) an electron absorbs the photon 
energy ( ℎ𝑣 ) and then vertically transitions from initial state (𝐸! ) to final state (𝐸" ) which is 
approximatively regarded as free photoelectron in (b). 𝐸# is the bottom of the valence band, 𝐸" is the 

Fermi level of the solid, 𝐸$ is the vacuum level, �⃗� is reciprocal lattice vector, 𝜑 is the work function of 
the solid, and 𝑉# is the so defined inner potential 𝑉# = 𝐸# + 𝜑. (b) The energy dispersion of the free 
electron approximation of emitted photoelectrons, whose reference energy level is the vacuum level (𝐸$). 
(c) Intensity of emitted photoelectrons counted by electron energy analyzer. The peaks of the spectrum 
and the energy levels in solid are related by the formulas (2.2), (2,3) and (2.5). This figure is referenced 
from [64]. 

2.2.2 Quantum view of angle-resolved photoelectron spectroscopy 

From a quantum point of view, photoelectron emission is an extremely complex process. 
Under the interaction of electromagnetic field (incident light), the electrons in the solid excited 
from the occupied state, and then escape to the vacuum, and finally are captured by the detector. 
The process is a whole interrelated process. This is the so-called one-step model. This means that 
a very large Hamiltonian is required to describe the quantum event, including the bulk state, 
surface state, evanescent state, and surface resonance state, etc., which greatly increases the 
complexity of quantitative analysis of the photoelectron energy spectrum. Since the one-step 
model is very complicated, in fact, a simpler three-step model is usually used to approximate the 
photoelectron emission process. Within the three-step model, photoelectron emission can be 
divided into three continuous processes: (1). Photoexcitation of an electron inside the solid 
(creation of a photoelectron represented by 𝑃(𝐸. , ℎ𝑣)); (2). Travel of the photoelectron to the 
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sample surface represented by 𝑇(𝐸. , ℎ𝑣); (3). Emission of the photoelectron into the vacuum 
represented by 𝐸(𝐸.) [65]. 

Based on the above assumption, the photoemission intensity is proportional to the product of 
these probabilities corresponding to each step, which should be a function of the photoelectron 
kinetic energy in vacuum (𝐸.) and the excitation photon energy (ℎ𝑣). 

 𝐼(𝐸. , ℎ𝑣) ∝ 𝑃(𝐸. , ℎ𝑣)𝑇(𝐸. , ℎ𝑣)𝐸(𝐸.) (2.6) 

(1) Step one: sudden approximation and single electron spectral function 

In the first step, the external field, i.e., the electromagnetic field of light describe by a vector 

potential ( 𝐴(𝑟, 𝑡) ) of a classical electromagnetic plane wave (2.7) is regarded as weak 
perturbation compared with the internal crystal periodical field. 

 𝐴(�⃗�, 𝑡) = 𝐴6𝑒8(:;⃗ ∙>⃗1?@) (2.7) 

Thus, the electric field reads: 

 𝐸A⃗ (𝑟, 𝑡) = −
𝜕
𝜕𝑡 𝐴(𝑟, 𝑡) 

(2.8) 

and magnetic field: 

 𝐵A⃗ (𝑟, 𝑡) = ∇ × 𝐴(𝑟, 𝑡) (2.9) 

By canonical transformation, the Hamiltonian of electrons in electromagnetic field is: 

 
𝐻AA⃗ =

1
2𝑚 (𝑃A⃗ − 𝑒𝐴)$ + 𝑉(𝑟) =

𝑃$

2𝑚 + 𝑉(𝑟) −
𝑒
2𝑚𝑃A⃗ ∙ 𝐴 −

𝑒
2𝑚𝐴 ∙ 𝑃A⃗ +

𝑒$𝐴$

2𝑚  
(2.10) 

Considering the commutation of mechanical momentum and vector potential, 

 q𝑃A⃗ , 𝐴r = −𝑖ℏ∇ ∙ 𝐴 (2.11) 

If we approximately regard the vector potential 𝐴(𝑟, 𝑡)  as a constant in the region of 
ultraviolet and atomic scale, (2.11) is commutative, i.e. 
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 𝐴 ∙ 𝑃A⃗ = 𝑃A⃗ ∙ 𝐴 (2.12) 

The last term in (2.10) means the interaction of two photons, since the electromagnetic is 
regarded as weak perturbation, thus, the quadratic of vector potential is negligible. Therefore, 
the Hamiltonian further reads: 

 
𝐻AA⃗ =

𝑃$

2𝑚 + 𝑉(𝑟) −
𝑒
𝑚𝑃A⃗ ∙ 𝐴 = 𝐻AA⃗ 6 −

𝑒
𝑚 𝑒8:;⃗ ∙>⃗𝐴6𝑒18?@ = 𝐻AA⃗ 6 + 𝐻AA⃗ 8(@ 

(2.13) 

where 𝐻AA⃗ 6 unperturbed system, 𝐻AA⃗ 8(@  operator of time‐dependent perturbation. The eigen states 
and eigen energies in unperturbed system (i.e., electrons in solid without electromagnetic field) 
is given by Bloch equation. According to the Fermi gold rule, the transition rate from initial state 
|𝑖⟩ to final state |𝑓⟩ of the unperturbed system due to perturbation 𝐻AA⃗ 8(@ is: 

 𝑤8" =
2𝜋
ℏ
|⟨𝑓|𝐻8(@|𝑖⟩|$𝛿x𝐸" − 𝐸8 − ℏ𝜔z  

where the ⟨𝑓|𝐻8(@|𝑖⟩ = {𝑓|𝑒8:;⃗ ⋅>⃗𝐴6 ⋅ 𝑃A⃗ |𝑖} is called matrix element. The order of the length scale 

of the plane wave 𝑒8:;⃗ ⋅>⃗ (electromagnetic field of light) is �⃗� = 2𝜋/𝜆, which means that in 𝑉𝑈𝑉 
radiation it is very large compared to atomic dimensions, e.g., if the ℎ𝑣 = 21.2𝑒𝑉, the wave 
length is 𝜆 = 584Å, i.e., the �⃗� = 0.0107Å12. Therefore, expand the plane wave, the plane wave 

is approximately equal to 1 (𝑒8:;⃗ ⋅>⃗ = 1 + 𝑖�⃗� ⋅ 𝑟 + ⋯ ≈ 1). Thus, we obtain a simplified matrix 
element in the region of ultraviolet even ℎ𝑣 < 100𝑒𝑉. So, the simplified transition rate is: 

 
𝑤8" =

2𝜋
ℏ
𝑒$

𝑚$ |{𝑓|𝐴6 ⋅ 𝑃A⃗ |𝑖}|
$
𝛿x𝐸" − 𝐸8 − ℏ𝜔z 

(2.15) 

In terms of the transition rate, the next issue is how to describe the initial state |𝑖⟩ and final 
state |𝑓⟩. In the process of photoelectric excitation, the electron system, and the photoelectron 
itself will relax, which means that photoexcitation produces a final state that is lacking one 
electron with respect to the initial state. In solids, the relaxation mainly consists of three 
nonnegligible contributions. One results from the relaxation of the orbitals, spin, and electrons 

 =
2𝜋
ℏ
𝑒$

𝑚$ |{𝑓|𝑒
8:;⃗ ⋅>⃗𝐴6 ⋅ 𝑃A⃗ |𝑖}|

$
𝛿x𝐸" − 𝐸8 − ℏ𝜔z (2.14) 
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on the same atom (intra-atomic relaxation, including electron-orbital, electron-spin, and electron-
electron interactions). Another one is due to a charge flow from the crystal onto the photoexcited 
atom that carries the positive holes (extra-atomic relaxation, i.e., the electron-charge interaction). 
The third one is the relaxation of crystal lattice (i.e., the electron-lattice interaction). These 
interactions are schematically shown in Figure 2.3. Therefore, PES always measures final-state 
energies, which can be related to initial-state energies only after some theoretical considerations 
[63]. Here we ignored the impurity and lattice defect scattering in solids. If the concentration of 
the impurities and defects is low enough as in the present ARPES works, they only contribute to 
the constant linewidth broadening. 

 

Figure 2.3 Excitations and relaxations during photoexcitation process. An electron after absorbing the 
energy of photons and emitted from the initial state will left a positive hole in the remaining system, 
which will result the remaining system relax to new balance state (excitation state). This relaxation 
process including electron-electron, electron-orbital, electron-spin, electron-charge, and electron-lattice 
interactions. The red dots represent electrons and blue dots represents crystal lattice. The figures are open 
accessed from [66]. 

Due to the many body interactions in solids, the electronic states with a photohole will relax 
in order to minimize the energy, which is reflected to the signals in the PE spectrum, such as 
linewidth broadening as well as energy shifts from the ground state of the system. The PE 
spectrum has finite linewidth, and may have the "main" line (representing the ground state) 
associated with several "satellite" lines representing the excited states. 

To simplify this phenomenon, if high-energy photoelectrons are excited, it is reasonable to 
consider that the photoelectron is suddenly taken away, and the time taken is much shorter than 
the system relaxation time, which is called the “sudden approximation” [67]. However, if the 
photoelectron energy is low, when the time it takes to escape from the surface is comparable to 
the relaxation time of the system, this is the other extreme, also called “adiabatic approximation”, 
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at which time the wave function cannot be simply decomposed [68]. When the energy of the 
photoelectron from the valence band is low, to what extent the “sudden approximation” starts to 
fail has not been clearly clarified. However, studies of core energy levels show that it depends 
not only on the types of atom but also on the chemical environment in which it is located [69-
74]. The study of valence band photoelectron spectroscopy of high-temperature superconductors 
found that when the photon energy is 20eV, the “sudden approximation” is also valid [75]. More 
recent studies suggest that the “sudden approximation” is valid even when the energy is as low 
as 6.05eV [76,77]. 

The “sudden approximation” is the key to interpreting the ARPES data. It directly connects 

the ARPES spectrum with the single-particle spectrum function 𝐴(𝑘A⃗ , 𝜔)  containing all the 
electronic information in the solid. By the sudden approximation, the final states |𝑓⟩ can be 
simply decomposed as:  

 |𝑓⟩ = 𝒜|𝑁 − 1,𝑚; 	𝑘, 𝑓⟩ or Ψ",DE = 𝒜𝜓",DE12𝜓". (2.16a) 

where 𝒜 is antisymmetry operator (completely anti-symmetry 𝑁 electron wave functions, thus 
satisfying the Pauli exclusion principle).	|𝑘, 𝑓⟩ or 𝜓". is state or wave function of photoelectrons 

whose momentum is ℏ𝑘.	|𝑁 − 1,𝑚⟩ or 𝜓",DE12 is the final state or wave function of the remaining 

𝑁 − 1 system, which can be regarded as a excitation state whose eigen state is |𝑁 − 1,𝑚⟩ and 
eigen value is 𝐸DE12, where 𝑚 is the index of the possible excitation states of the remaining 
system. 

As for the initial state, for simplify, we assume it is a Slater determinant (like Hartree-Fock 
form), thus it can be decomposed in the form of a single-electron orbital function |𝑘, 𝑖⟩ and (𝑁 −
1) particles. Therefore, the initial state reads: 

 |𝑖⟩ = 𝒜|𝑁 − 1, 𝑖; 	𝑘, 𝑖⟩ or Ψ8E = 𝒜𝜓8E12𝜓8. (2.16b) 

And the eigen value corresponding to the initial state denoted as 𝐸8E . Therefore, the matrix 
element in (2.14) and (2.15) of the transition rate is: 

 ⟨𝑓|𝐻8(@|𝑖⟩ = {𝑓|𝑒8:;⃗ ⋅>⃗𝐴6 ⋅ 𝑃A⃗ |𝑖} = {𝜓".|𝐴6 ⋅ 𝑃A⃗ |𝜓8.}{𝜓",DE12|𝜓8E12} (2.17) 

here {𝜓".|𝐴6 ⋅ 𝑃A⃗ |𝜓8.} ≡ 𝑀"8 is the single particle matrix element, and {𝜓",DE12|𝜓8E12} ≡ 𝑐D8 is the 

(𝑁 − 1) system overlap integral. Supposing the remaining (𝑁 − 1) system has 𝑚 excited states, 
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thus, the total spectrum intensity (𝐼(𝐸. , 𝑘A⃗ )) is proportional to the photoexcitation process (Step 
one): 

 𝐼x𝐸. , 𝑘A⃗ z ∝ 𝑃x𝐸. , 𝑘A⃗ z ∝ �|𝑀"8|
$|𝑐D8|$𝛿(𝐸. + 𝐸DE12 − 𝐸8E − ℎ𝜈)

D

 (2.18) 

Here |𝑐D8|$  is the probability of (𝑁 − 1 ) electrons locating at an excited state 𝑚  after 
removing one electron from initial states. For a simplest example, assuming only a specific 
excited state 𝑚 = 𝑚6 is created, and the excitation state equal to the initial state after removing 
one electron (𝜓D!

E12 = 𝜓8E12), where we neglected the relaxation energies. (i.e., we adopted the 
Koopmans' approximation [78] which states that the binding energy equals the negative energy 
of the orbital from which the photoelectron is emitted.). Consequently, the probably |𝑐D8|$ = 1, 
and since other excitation states are assumed not exist, therefore, the ARPES is the 𝛿 function 
[79]. 

As a matter of fact, all the solids are many-body system with different extend exchange-
correlation interaction. A remove of one electron will lead to a non-negligible change of potential 
for the remaining system, thus, many excited states (|𝑁 − 1,𝑚⟩ or 𝜓",DE12) of the (𝑁 − 1) system 

will result in the overlap integral 𝑐D8 not equal to zero, i.e. the probably ∑ |𝑐D8|$D ≠ 0, this is 
to say the ARPES spectrum is not like a sharp delta function for independent electrons but 
broadened “peaks” presenting a “main peak” and some “satellite peaks”, referring Figure 2.4 and 
related refences for more details. 

 

Figure 2.4 ARPES spectrum for noninteraction system and strongly correlated system. (a) momentum-
resolved one-electron removal and addition spectra for a noninteracting electron system with a single 
energy band dispersing across 𝐸%; (b) the same spectra for an interacting Fermi-liquid system (Sawatzky, 
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1989 [79]; Meinders, 1994 [80]). For both noninteracting and interacting systems the corresponding 
ground state (50 K) momentum distribution function 𝑛(𝑘) is also shown. (b) Lower right, photoelectron 
spectrum of gaseous hydrogen and the ARPES spectrum of solid hydrogen developed from the gaseous 
one. Figure accessed form ref. [81]. 

 

It is almost impossible to directly calculate the overlapping integrals in the remaining (𝑁 − 1) 
system. So, when discussing the photoelectron emission process of solids, especially when many 
overlapping integrals in the correlation system are not zero (|𝑐D8|$ ≠ 0), the most powerful and 
commonly used one is based on Green's function [82-86]. The propagation of a single electron 
in a many-body system is described by a time series single electron Green's function 𝐺(𝑡 − 𝑡′). 
Its physical meaning is: the probability amplitude of adding an electron to a Bloch state system 
with momentum 𝑘 at the initial moment (𝑡), and after the time |𝑡 − 𝑡′|, the system is still in the 
same state [80,82-84]. This Green's function 𝐺(𝑡 − 𝑡′) can be written in the form of (2.19) under 

the energy and momentum representation, where the 𝐺Fx𝑘A⃗ , 𝜔z  and 𝐺1(𝑘A⃗ , 𝜔)  represent the 
addition and removal of single electron Green's function, respectively. 

 𝐺x𝑘A⃗ , 𝜔z ≡ 𝐺Fx𝑘A⃗ , 𝜔z + 𝐺1(𝑘A⃗ , 𝜔) (2.19) 

When the temperature is 0 K, the single electron Green's functions are [85,86]: 

 𝐺±x𝑘A⃗ , 𝜔z =�
|{𝜓DE±2|𝑐.

±|𝜓8E}|
$

𝜔 − 𝐸D
E±2 + 𝐸8E ± 𝑖𝜂D

 (2.20) 

where operator 𝑐.F = 𝑐.HF 	(𝑐.1 = 𝑐.H) represents the creation (annihilation) of an electron with 
energy ℏ𝜔, momentum ℏ𝑘, and spin 𝜎 from the 𝑁 particles system whose initial state is denoted 
as 𝜓8E. The summation needs to be performed for all the possible excited states (indexed as 𝑚) 
of the (𝑁 ± 1) particles. 𝜂 is a positive infinitesimal quantity.  

From Dirac identify (2.21), where 𝑥  represents a real quantity, 𝜂  represents positive 
infinitesimal quantity, and 𝑃 denotes the Cauchy principal value integral (i.e., any integration 
involving the product of (1/𝑥) by a function of 𝑥 must be intended in principal part), we can 
rewrite the delta function 𝛿(𝑥) as (2.22). 
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 lim
I→6"

1
𝑥 + 𝑖𝜂 = 𝑃 �

1
𝑥� − 𝑖𝜋𝛿(𝑥) 

(2.21) 

 𝛿(𝑥) = lim
I→6"

𝑖
𝜋

1
𝑥 + 𝑖𝜂 −

𝑖
𝜋
1
𝑥 = lim

I→6"
−
1
𝜋

𝜂
𝑥$ + 𝜂$ (2.22) 

By using the Dirac identity (exactly its transformation form (2.22)) we can obtain another new 
function 𝐴(𝑘, 𝜔) (which we will later term it as single particle spectral function) related to the 

single electron Green's function 𝐺x𝑘A⃗ , 𝜔z. 

 𝐴x𝑘A⃗ , 𝜔z ≡ 𝐴Fx𝑘A⃗ , 𝜔z + 𝐴1x𝑘A⃗ , 𝜔z (2.23) 

 𝐴x𝑘A⃗ , 𝜔z = −
1
𝜋 𝐼𝑚𝐺x𝑘

A⃗ , 𝜔z = −
1
𝜋 𝐼𝑚 �𝐺Fx𝑘A⃗ , 𝜔z + q𝐺1x𝑘A⃗ , 𝜔zr

∗
� (2.24) 

 𝐴±x𝑘A⃗ , 𝜔z =�|{𝜓DE±2|𝑐.
±|𝜓8E}|

$
𝛿(𝜔 − 𝐸DE±2 + 𝐸8E)

D

 (2.25) 

where 𝐺x𝑘A⃗ , 𝜔z = 𝐺Fx𝑘A⃗ , 𝜔z + q𝐺1x𝑘A⃗ , 𝜔zr
∗

 is defined as retarded Green’s function, and 
𝐴F(𝑘, 𝜔) and 𝐴1(𝑘, 𝜔) are defined as addition and removal single electron spectral function, 
because by substituting the overlapping integral in formula (2.18) (please note the 𝜓8E12 =
𝑐.𝜓8E), it is straightforward that the total spectrum intensity (𝐼(𝐸. , 𝑘)) is proportional to the 
single particle spectral function: 

 𝐼x𝐸. , 𝑘A⃗ z ∝ 𝑃x𝐸. , 𝑘A⃗ z ∝ �|𝑀"8|
$𝐴1(𝑘A⃗ , 𝜔)

",8

 (2.26) 

When the temperature is not equal to zero, since the electron is spin ½ particle (fermion), thus 
we just need to adopt the Fermi-Dirac distribution function to correct the intensity. Finally, the 
total spectrum intensity (𝐼(𝐸. , 𝑘)) is proportional to the sum of the square of the matrix elements 
and the single electron spectral function and Fermi-Dirac function, i.e., 

 𝐼x𝐸. , 𝑘A⃗ z ∝ 𝑃x𝐸. , 𝑘A⃗ z ∝ 𝐼6𝐴x𝑘A⃗ , 𝜔z𝑓(𝜔) (2.27) 
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where 𝐼6 ∝ ∑ |𝑀"8|
$

",8 , 𝑓(𝜔) = 1/(𝑒
?
.#	MN + 1). Photoelectron spectroscopy can only measure 

the occupied state of electrons, and the PES spectrum can directly measure the spectral function, 
which connects the single particle Green’s function. 

(2) A Short discussion on matrix element effect and self-energy analysis 

It can be seen from Equation (2.27) that the photoelectron spectrum is not only directly 

modulated by the spectrum function 𝐴x𝑘A⃗ , 𝜔z, and its “main peaks” are also controlled by the 

intensity of 𝐼6 ∝ ∑ |𝑀"8|
$

",8 . That is to say, the intensity of the photoelectron spectrum strongly 

depends on the electron momentum (ℏ𝑘A⃗ ) in the solid and the energy (ℎ𝜈) and polarization of the 

incident photon 𝐴(�⃗�, 𝑡), even completely controls the intensity of the spectrum. This is the so-
called (single electron) matrix element effect. 

Using the quantum mechanical identity: {𝑓|𝑃A⃗ |𝑖} = 𝑖 D(O$1O%)
ℏ

⟨𝑓|𝑟|𝑖⟩ , let us consider the 

matrix element 𝑀"8 = {𝜓".|𝐴 ⋅ 𝑃A⃗ |𝜓8.}. The matrix element is then can be written as: 

 𝑀"8 = {𝜓".|𝐴 ⋅ 𝑃A⃗ |𝜓8.} ∝ {𝜓".|𝜀 ⋅ 𝑟|𝜓8.} (2.28) 

where 𝜀 is a unit vector along the polarization direction of the vector potential 𝐴(𝑟, 𝑡), i.e., 𝜀 =

− PO;⃗

P@
/| PO

;⃗

P@
|. 𝑟 is a Cartesian position vector. Thus the 𝜀 ⋅ �⃗� is the electrical dipole operator. The 

electrical dipole vector is decided by light electric field 𝐸A⃗ Q(𝜀4 , 0, 𝜀7)  for 𝑝 -polarized light 

𝑝aralleling to the mirror plane (in the same horizontal plane as the mirror plane) and by 𝐸A⃗ R =
(0, 𝜀5 , 0) for 𝑠-polarized light 𝑠enkrecht (vertical) to the mirror plane as shown in Figure 2.5. It 
is straightforward that to have nonvanishing photoemission intensity, the whole integrand in the 
overlap integral must be an even function under reflection with respect to the mirror plane (i.e., 
𝑀"8 ≠ 0) [81,87]. Since at the detector the photoelectron is described by an even-parity plane-

wave state 𝑒8.;⃗ ⋅>⃗ [88]. In turn, this implies that 𝜀 ⋅ 𝑟|𝜓8.} or 𝐴 ⋅ 𝑃A⃗ |𝜓8.} must be even, restricting 
that the initial state and dipole operator must present the same symmetry with respect to the 
mirror plane, as summarized as follow: 

 
�
𝐴 ⋅ 𝑃A⃗ : 𝑒𝑣𝑒𝑛 → |𝜓8.}: 𝑒𝑣𝑒𝑛	 ⟺ {𝜓".|𝜀 ⋅ 𝑟|𝜓8.}: ⟨+|+|+⟩

𝐴 ⋅ 𝑃A⃗ : 𝑜𝑑𝑑		 → |𝜓8.}: 𝑜𝑑𝑑			 ⟺ {𝜓".|𝜀 ⋅ 𝑟|𝜓8.}: ⟨+|−|−⟩
 (2.29) 
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where +(−) stands for the even (odd) function with respect to the mirror plane. The symmetry 

of the dipole operator 𝐴 ⋅ 𝑃A⃗ , obviously, depends on the polarization direction of the vector 

potential 𝐴. Since the 𝑝-polarized light (horizontal polarization) has even symmetry with respect 
to mirror plane (𝑥 − 𝑧 plane), while, the 𝑠-polarized light, which has odd symmetry with respect 

to mirror plane, therefore, if the vector potential 𝐴 is parallel (perpendicular) to the mirror plane, 

then the 𝐴 ⋅ 𝑃A⃗  must be even (odd) symmetry. Consequently, the detectable initial state is limited 
to even (odd) symmetry with respect to mirror plane, indicating that one can selectively observe 
the even or odd initial electronic states by changing the polarization geometry [89]. 

 

Figure 2.5 Schematic representation of the matrix element effect in the photoemission process: A mirror 
plane (𝑥 − 𝑧 plane) perpendicular to the sample surface (𝑥 − 𝑦 plane). The electron analyzer and incident 
light are in the mirror plane (if they are out of the mirror plane, the situation become complicated because 
of the lack of an overall well-defined even/odd symmetry with respect to the mirror plane, for example, 

the orbital 𝑑&!'(! is even symmetry to the mirror plane.). The 𝐸5⃗ ) (𝐸5⃗ *) represents 𝑝 (𝑠) -polarized light 
paralleling (vertical) to the mirror plane. Figure accessed from ref. [81]. 

 

As illustrated above, the spectral function is directly related to the Green’s function, while the 
corrections to the Green’s function due to the electron-electron and the like correlations can be 

conveniently expressed in terms of the electron proper self-energy function: Σx𝑘A⃗ , 𝜔z =

ΣSx𝑘A⃗ , 𝜔z + 𝑖Σ′′(𝑘A⃗ , 𝜔). The self-energy function descripts quasiparticles with bare-band energy 

(𝜀.) and momentum (𝑘A⃗ ) propagating in a many-body system. Its real (Σ′) and imaginary (Σ′′) 
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parts contain all the information on the energy renormalization and finite lifetime, respectively. 
The Green’s and spectral functions expressed in terms of the self-energy are then given by [81]: 

 𝐺x𝑘A⃗ , 𝜔z =
1

𝜔 − 𝜀. − Σx𝑘A⃗ , 𝜔z
 (2.30) 

 
𝐴x𝑘A⃗ , 𝜔z = −

1
𝜋 𝐼𝑚𝐺x𝑘

A⃗ , 𝜔z = −
1
𝜋

ΣS′x𝑘A⃗ , 𝜔z

q𝜔 − 𝜀. − ΣSx𝑘A⃗ , 𝜔zr
$
+ qΣSSx𝑘A⃗ , 𝜔zr

$ (2.31) 

This many-body correlations corrected Green’s function (2.30) (also called the Dyson 
equation [90,91]) and spectral function (2.31), of course, still fulfil the formula (2.27), because 
here we just modified the form of the Green’s function, but it still satisfies the Dirac identity 
(2.21) and (2.22). Since the Green’s function 𝐺(𝑡, 𝑡′) is a linear response function of external 

perturbation, the real part and imaginary part of its Fourier transform form 𝐺(𝑘A⃗ , 𝜔) must satisfy 
the causal relationship, which are connected by the Kramers-Kronig transformation (𝐾 − 𝐾 

transformation) [92,93]. This means that if we have measured the spectrum function 𝐴(𝑘A⃗ , 𝜔) by 
the PES spectrum or the inverse PES spectrum, then the real part and imaginary part of the self-
energy function can be calculated by (2.31) and 𝐾 − 𝐾  transformation, consequently the 

complete self-energy function Σx𝑘A⃗ , 𝜔z  can be obtained (i.e., 𝐼𝑚Σ(𝑘, 𝜔) = 𝐼𝑚𝐺(𝑘, 𝜔)/
[𝑅𝑒𝐺(𝑘, 𝜔)$ + 𝐼𝑚𝐺(𝑘, 𝜔)$]  and 𝑅𝑒Σ(𝑘, 𝜔) = 𝜔 − 𝜀.6 − 𝑅𝑒𝐺(𝑘, 𝜔)/[𝑅𝑒𝐺(𝑘, 𝜔)$ +
𝐼𝑚𝐺(𝑘, 𝜔)$]. In fact, the real and imaginary parts of the self-energy are usually obtained through 
the ARPES spectrum.  

In principle, the self-energy can be estimated accurately from energy distribution curves 
(EDCs) and/or momentum distribution curves (MDCs) of ARPES spectra. If the self-energy is 

independent of 𝑘A⃗  (i.e., the matrix elements are a slowly varying function of 𝑘A⃗ ), then the 

corresponding MDCs are simple Lorentzians centered at 𝑘A⃗ = 𝑘A⃗ T + [𝜔 − ΣS(𝜔)]/�⃗�T6 with full 
width at half maximum (FWHM) given by 2Σ′′(𝜔)/𝑣T6, where �⃗�T6 is the bare Fermi velocity 
normal to the Fermi surface [81]. However, it must be noted that, although the results of MDC 
and EDC analyses should coincide, differences in both dispersions and peak widths can be 

observed at high energies, due to the 𝜔 dependence of Σ(𝑘A⃗ , 𝜔) or near the band maxima and 
minima [81]. Please note, so far, we do not consider any extrinsic background and the finite 
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energy and momentum resolution, which should lead to different extent broadening of the 
ARPES spectra. 

The self-energy Σx𝑘A⃗ , 𝜔z is a powerful tool to analyze many-body correlations in solids. In the 
self-energy analysis, all the electron interactions besides the electro-electron interactions are 
considered, hiding in the spectral function within respective energy scales (kinks in the MDCs 
or EDCs). Generally, the electron-electron interactions, electron-phonon interactions, and 
electron-impurity interactions causing the electron scattering are typical in the photo-excitation 
process (step one), whose energy scales are of the order of several eV, 100 meV and a few tens 
meV, respectively [94]. Specially, the electron-impurity interactions (impurity scattering) are 
invariant to energy and momentum which just results in a finite broadening of the quasiparticle 
peak. In addition, the self-energy analysis of electron-magnon interactions in magnetic materials 
have been reported through ARPES spectra [95]. 

(3) Step two: inelastic scattering and mean free path 

The second step refers to the process in which the excited photoelectrons move to the surface. 
This process includes elastic scattering and inelastic scattering of photoelectrons. The 
inelastically scattered secondary electrons will form a continuous background other than discrete 
“satellite peaks” on the ARPES spectrum, because these electrons will lose the intrinsic energy 
and momentum information when continuously inelastically scattered with other particles. 
Although it is not easy to pick some low intensity peaks from the background, there are still some 
powerful systematic approaches to realize background correction, such as linear, horizontal, 
Shirley's and Tougaard's backgrounds [96-98]. 

As for the elastic scattering, it conserves the “intrinsic” energy information (actually, it is the 
final states of the exited photoelectrons, while the momentum information mainly comes from 
the non-scattered photoelectrons). The probability of the photoelectron moving to the surface 
without serious inelastic scattering is represented by the term of 𝑇(𝐸. , ℎ𝜔) being expressed by 
using the absorption coefficient 𝛼(ℎ𝜈) for the incident photon and the photoelectron inelastic 
mean free path 𝜆(𝐸.) approximatively [65]. 

 
𝑇(𝐸. , ℎ𝜔) =

𝛼(ℎ𝜈)𝜆(𝐸.)
1 + 𝛼(ℎ𝜈)𝜆(𝐸.)

≅ 𝛼(ℎ𝜈)𝜆(𝐸.) (2.32) 
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1/𝛼(ℎ𝜈) is of the order of 100~1000Å or more for ℎ𝜈 in the range of 6~10,000 eV, which is 
much longer than 𝜆(𝐸.) < 100Å for most elemental solids as shown in Figure 2.6. In the limit 
𝛼(ℎ𝜈)𝜆(𝐸.) ≪ 1 (𝜆 ≈10−20Å), the mean free path of the photoelectrons 𝜆 is much smaller than 
the penetration depth of the light 1/𝛼, one obtains 𝑇(𝐸. , ℎ𝜔) ≅ 𝛼(ℎ𝜈)𝜆(𝐸.). 

In principle, the mean free path 𝜆(𝐸.) is a characteristic property of each specific material. 
But the mean free path, as a function of energy 𝐸., is a roughly “universal curve” for all materials. 
Because for the energies of interest in solids, the electrons can be approximately described as 
free electron gas, in this case, the inverse of the mean free path 𝜆12 is then described by the mean 
electron-electron distance 𝑟R in solids which is roughly equal for all materials, and one obtains 
[63,99]: 

 
𝜆12 ≅ √3

𝑎6𝐸-
𝐸.

𝑟R
,
$N 𝑙𝑛 ¤�

4
9𝜋�

$/, 𝐸.
𝐸-
𝑟R$¦ (2.33) 

where 𝑎6 is Bohr radius, 𝐸- =13.6eV, and the electron-electron mean path 𝑟R is in units of the 
Bohr radius. Therefore, as expected, almost all materials experimentally show a similar energy 
dependence of the mean free path 𝜆(𝐸.). 

The mean free path curve takes a minimum value of ~3-6Å at the energy 𝐸. range of ~10-
100eV in many cases (Figure 2.6), which roughly corresponding to lattice constants of most 
solids. Thus, within this energy range the photoelectron spectroscopy manly reflect the surface 
electronic states of solids. If we want to obtain the bulk electronic states is to use higher ℎ𝜈 than 
500eV or more. Therefore, the ARPES is a highly surface sensitive probe technique. 
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Figure 2.6 The dependence of the mean free path 𝜆 on the kinetic energy (black dots). Its slope can be 
simulated by a universal curve shown as a solid line. Figure originated from M. P. Seah and W. A. Dench, 
1979. ref. [100]. 

 

(4) Step three: escape cone and free electron approximation 

Step three represents the process of escape of the photoexcited electrons into vacuum. The 
escaping electrons are those for which the component of the kinetic energy normal to the surface 
is sufficient to overcome the surface potential barrier, while the other electrons that are 
insufficient to overcome the barrier are reflected to the bulk. The escaped electrons must satisfy 
the energy condition: 

 
§
ℏ$

2𝑚¨𝐾0
$ ≥ 𝐸) − 𝐸6 ≡ 𝑉6 (2.34) 

Here 𝐸6 < 0 is the energy of the bottom of the valence band and 𝐸) is the vacuum level energy. 

This potential depth is defined as inner potential 𝑉6. 𝐾AA⃗0 is the component of the wave vector of 

the excited electron 𝐾AA⃗  normal to the surface. The transmission of the electron through the surface 

leaves the parallel component of the wave vector conserved such that 𝑝∥/ℏ = 𝐾AA⃗ ∥ = 𝑘A⃗ ∥ + �⃗�∥, 
which can be described by the Snell’s law: 
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𝑘"∥ = 𝑠𝑖𝑛𝜃ª

2𝑚
ℏ$ 𝐸. = 𝑠𝑖𝑛𝜃′ª

2𝑚
ℏ$ (𝐸" − 𝐸6) 

(2.35) 

where 𝜃  is the angle of refraction, and 𝜃′ is the angle of incidence. From this statement, it 
straightforward that there is a maximum angle of incidence corresponding to the maximum 
refraction angle 𝜃 = 𝜋/2, i.e.,  

 𝑠𝑖𝑛𝜃DV4S = «𝐸./𝐸" − 𝐸6 (2.36) 

The angular region 𝜃S ≤ 𝜃DV4S < 𝜋/2 is called the escape cone, responding to the maximum 
internal parallel wave vector that can be detected. 

The state of the escaped electrons in not exact free electron like (described by plane wave) 

but Bloch wave like 𝜓"x𝑘A⃗ z containing plane wave contributions with a number of reciprocal 
lattice vectors 𝐺 [63]: 

 𝜓"x𝑘A⃗ z = �𝑢"x𝑘A⃗ , �⃗�z𝑒8W.
;⃗ FX⃗Y⋅>⃗

X⃗

 (2.37) 

The total escaping probability of the photoexcited electrons escaping into vacuum is 
proportional to the square of the Bloch wave [63]: 

 𝐸(𝐸" , 𝑘A⃗ ∥) ∝ |𝑡x𝐸" , 𝐾AA⃗ ∥z|
$
|𝜓"x𝑘A⃗ z|

$
 (2.38) 

where the 𝑡x𝐸" , 𝐾∥z is the transmission factor. According to the energy condition (2.34), the 
transmission factor can be expressed as: 

 
|𝑡x𝐸" , 𝐾AA⃗ ∥z|

$
= ®

1			𝑖𝑓	𝐸"x𝑘A⃗ z − 𝐸) > ℏ$x𝑘A⃗ ∥ + �⃗�∥z
$
/2𝑚

0			𝑖𝑓	𝐸"x𝑘A⃗ z − 𝐸) ≤ ℏ$x𝑘A⃗ ∥ + �⃗�∥z
$
/2𝑚

 (2.39) 

This is of course a rough approximation, because it almost impossible to evaluate the exact 

𝑘A⃗ 0  component. Therefore, someone starting from the inner potential, write the escaping 
probability as [65]: 
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𝐸(𝐸.) ∝

1
2°1 −ª

𝑉6
𝐸. + 𝑉6

± (2.40) 

This function depends gently on 𝐸., and can be regarded as a constant when the recorded 
kinetic energy range is narrow enough compared with 𝐸. also true in step two. Therefore, it is 
hereafter assumed that the 𝐸.  dependence of the terms of step two 𝑇(𝐸. , ℏ𝜔) and step three 
𝐸(𝐸.) is negligible within the discussed kinetic energy range of one spectrum. 

(5) A Short discussion on three step model 

The three-step model is simple, effective, and practical approximation, which has been proved 
by many experiments, especially for understanding and using photoelectron spectroscopy to 
determine the electronic energy band structure of a solid [81,101]. Although the three-step model 
has achieved great success, it still has many shortcomings. The three-step model is based on the 
independent electronic model, so it does not completely consider the many-body correlations 
effect, which cannot be ignored in materials with strong correlation systems such as high-
temperature superconductors. The three-step model neither contains the surface photoelectric 
effect, nor does it contain any surface characteristic effects. For example, the surface state can 
appear on an ideal cut-off surface, or it can appear on a relaxed or reconstructed surface [102].  

The fundamental problem of the three-step model is the conceptual difficulty caused by the 
very small sampling depth of the photoelectron spectrum, because the transport process on the 
surface and the escape process from the surface are inseparable. In fact, when the electron is 
excited, the wave function of the final state is a wave packet, the center of which is within a 
“classic” escape depth under the surface [103]. When the transition occurs, the final state already 
has a large amplitude on the surface. So, in data analysis, we still need to be vigilant and give 
sufficient attention and simultaneously compare with the theoretical calculations. 

2.3 Basic Principles of Spin- And Angle-Resolved Photoelectron 
Spectroscopy 

Spin degree of freedom play a significant role in shaping the properties in quantum materials. 
Spin- and angle-resolved photoelectron spectroscopy (spin-ARPES) is one of such approach that 
has the capability of not only resolving the energy and the momentum of electrons, but also, 
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resolving the spin degree of freedom of electrons in solids, by coupling a spin detector to the 
hemispheres of a conventional ARPES analyzer.  

Especially, new class of materials, which has a peculiar surface state spin texture caused by 
spin–orbit coupling (SOC), has attracted intensive attention recently. For examples, (1) 
Topological materials with strong SOC host topologically nontrivial surface states where the 
spin-momentum locking features are characteristic by spin texture. (2) Noncentrosymmetric 
materials with strong SOC, can give rise to spin-splitting effects, like Rashba spin-splitting. 
Rashba spin-splitting is closely related to a wide variety of novel physical phenomena, such as 
anisotropic magnetoresistance, Majorana fermions, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) 
states in superconductors, and even spintronics applications in the absence of magnetic field. (3) 
In strongly correlated materials, the spin can interact with charge, orbital, and lattice degrees of 
freedom to give rise to a variety of phenomena that cannot be well understood without a complete 
picture of the spin degree of freedom. Thus, the study of the spin textures in these materials is 
crucial, leading spin-ARPES measurement to be an indispensable tool in the investigation of the 
spin states of these materials. 

Basically, there are two approaches to revealing the spin degree of freedom of electrons. One 
is using the spin-orbit interaction (SOI) of the electrons (such as, Mott, Diffuse scattering spin 
detectors) and the other one is using the spin-exchange interaction of ferromagnetic materials 
(VLEED spin detector) [104]. In the following subsection, principles of the representative Mott 
detector and the VLEED detector will be introduced respectively.  

2.3.1 Mott scattering and Mott detector 

Mott scattering, also called spin-coupled inelastic Coulomb scattering, refers to the separation 
of the two spin states of the electrons by scattering the electrons in the Coulomb field of heavy 
atoms. Figure 2.7 shows the double Mott scattering experiment in which a beam of unpolarized 
incident electrons is initially scattered from high-𝑍 nuclei target. A large angle scattering from 
the first target produces electrons with a significant spin polarization transverse to the scattering 
plane. Scattering of these polarized electrons from the second target results in a left-right 
scattering asymmetry, that is proportional to the polarization induced by the first scattering [105]. 
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Figure 2.7 Schematic drawing of the double-scattering experiment. A unpolarized electron beam collide 
the first target, resulting in a beam of polarized electrons. And then collides to the second target, resulting 
in left-right asymmetric scattered electrons. In this figure case, supposing a value of 𝑆(𝜃) = 0.5 is alreally 
known, and a polarized electron beam with unknown ratio of spin-up over spin-down electrons collide 
with the target, if the left-right asymmetry is a ratio of 3:5 (i.e., with a scattering asymmetry of 25%.), 
according to equation (2.4), we can derive the spin polarization of the incident electron beam is 𝑃 = 50%. 
Figure modified from ref. [106]. 

The classical picture of Mott scattering can be illustrated by a scattering of the electron in 
Coulomb field of stationary bare nucleus of charge 𝑍𝑒. The motion of electrons in Coulomb field 

𝐸A⃗ = −∇𝑉(𝑟) = (𝑍𝑒/𝑟,)𝑟 of the nucleus will lead to a magnetic field 𝐵A⃗  in the electron rest frame, 
as shown in Figure 2.8: 

 𝐵A⃗ = −
1
𝑐 �⃗� × 𝐸

A⃗ =
𝑍𝑒
𝑚𝑐𝑟, 𝐿

A⃗  (2.41) 

where 𝐿A⃗ = 𝑚𝑟 × �⃗� is the electron orbital angular momentum. The interaction of the magnetic 

field 𝐵A⃗  with the electron magnetic momentum 𝜇R = −´ Z!
$D[

µ 𝑆  will result in an additional 

scattering potential. 
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𝑉R\ = −𝜇R ⋅ 𝐵A⃗ =

𝑍𝑒$

2𝑚$𝑐$𝑟, 𝐿
A⃗ ⋅ 𝑆 (2.42) 

here, 𝑆 is the spin angular momentum, this term is called the spin-orbital coupling (interaction).  

 

 

Figure 2.8 Electron experiences electric and magnetic fields in Coulomb field creating by a large 𝑍𝑒 
nucleus. Figure accessed from ref. [107]. 

The presence of this 𝑉R\ term introduces a spin related term in the scattering cross section (𝜎(𝜃)) 
which can be written as [108]: 

 
𝜎(𝜃) = ¶

𝑍$𝑒*(1 − 𝛽$ sin$ 𝜃2)

64𝜋$𝜀6$𝑐$𝑚$𝑣$𝛽$ sin$ 𝜃2
𝑑Ω ∝ 1 + 𝑆(θ)PAA⃗]^_(r⃗) ⋅ n¾  (2.43) 

where Ω  represents the solid angle, 𝑆(θ)  is the asymmetry function, PAA⃗]^_(�⃗�)  is the incident 

electron polarization along 𝑟 direction, and n¾  is the identity vector defined incident (𝑘A⃗ ) and 

scattered (𝑘A⃗ ′) wave vectors n¾ = 𝑘A⃗ × 𝑘A⃗ S/|𝑘A⃗ × 𝑘A⃗ S|. 

Back to the double-scattering experiment, the unpolarized incident electron beam can be 
regarded as composing equal numbers of electrons with spin angular momentum parallels and 

antiparallel to n¾2. After the first scattering, we get a net polarization PAA⃗]^_(r⃗(θ2)) given by: 

 PAA⃗]^_xr⃗(θ2)z =
𝑁↑ − 𝑁↓
𝑁↑ + 𝑁↓

= 𝑆(𝜃2) (2.44) 
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where 𝑁↑ (𝑁↓) is proportional to [1 + 𝑆(θ2)] ([1 − 𝑆(θ2)]) accroding to (2.43), which represents 
the number of spin-up (spin-down) electrons scattered to the left along the beam direction. In the 
followed, the second scattering of these polarized electron by target 2 will result in a left-right 
scattering asymmetry (𝐴(𝜃$	)) defined as: 

 A(θ$) =
𝑁b − 𝑁c
𝑁b + 𝑁c

= PAA⃗]^_xr⃗(θ2)z𝑆(𝜃$) (2.45) 

where 𝑁b  (𝑁c ) is proportional to 𝑁↑[1 + 𝑆(θ$)] + 𝑁↓[1 − 𝑆(θ$)]  (𝑁↑[1 − 𝑆(θ$)] + 𝑁↓[1 +
𝑆(θ$)]]) accroding to (2.43), representing the number of left (right) scattered electrons if the first 
and second scattering events are coplanar. 

Therefore, if we want to measure the spin polarization of an electron beam PAA⃗]^_xr⃗(θ2)z, we 

only need to accelarete the electron beam on a target with known asymmetry function 𝑆(𝜃$), and 
measure the scattering asymmetry (𝐴(𝜃$	)), then we can get the polarization of the incident beam 

PAA⃗]^_xr⃗(θ2)z = A(θ$)/𝑆(𝜃$) . The scattering asymmetry ( 𝑆(𝜃$	) ) was first proposed and 
calculated by Mott, and later, Sherman made a complicated calculation of electron scattering in 
Coulomb field from the viewpoint of relativity. For this reason, the asymmetric function is also 
called Sherman effective function [109], shown in (2.46). 

 
𝑆!""(𝜃) =

𝑖[𝑓(𝜃)𝑔(𝜃)∗ − 𝑓(𝜃)∗𝑔(𝜃)]
|𝑓(𝜃)|$ + |𝑔(𝜃)|$  (2.46) 

here 𝑓(𝜃)  and 𝑔(𝜃)  represent the complex amplitude obtained by the quantum mechanical 
partial wave method. 

Considering the error propagation of equation (2.45), we can get the expected error of the 
observed spin polarization (Δ𝑃) [104]: 

 
Δ𝑃 =

√1 − 𝐴$

𝑆!""Y𝐼b + 𝐼c
≅

1
𝑆!""√𝐼

=
1

Y𝐼6𝜖
 (2.47) 

where 𝐼 represents the total intensity of incident electrons, 𝐼6 is the scattered electrons, and 𝜖 =
𝑆!""$ 𝐼/𝐼6 is named the figure of merit (FOM) and is used as an index of the efficiency of spin 

dectection. Generally, the efficiency of a Mott detector is very low, since the FOM is about 101* 
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orders, which means that the intensity after Mott detector is about 10* orders lower than that of 
the single-channel spin-integrated PES.  

2.3.2 Very low energy electron diffraction spin detector 

One feasible approach to improve the FOM, which is a fatal weakness for Mott detector for a 
long term, is the “Very-Low-Energy-Electron-Diffraction” (VLEED) spin detector. The VLEED 
from a Fe(001) − 𝑝(1 × 1) − 𝑂 surface [110,111] magnetized parallel to the surface (denoted 
as ↑ temporarily) can be sued as a method to measure the spin polarization derived from the 
reflection of the incident electrons is spin-dependent: The reflected current of incident electron 
whose polarization parallel to the sample magnetization ( 𝐼↑ ) is not equal to the one that 
antiparallel to the sample magnetization (𝐼↓), due to the spin exchange splitting of the unoccupied 
state of the band structure of this ferromagnetic materials [112-114].  

Analog to the scattering asymmetry equation (2.45) in Mott scattering, the nonequal reflection 
current of the incident polarized electrons whose polarization is parallel and antiparallel to the 
magnetization of the Fe(001) − 𝑝(1 × 1) − 𝑂  surface is conveniently characterized by the 
reflection asymmetry current 𝐴(𝐼): 

 𝐴(𝐼) =
𝐼↑ − 𝐼↓
𝐼↑ + 𝐼↓

 (2.48) 

So that, in VLEED experiment one just need to measure the refection asymmetry current and 
then the spin polarization (𝑃) of the incident electron beam that one wants to measure is similarly 
given by: 

 𝑃 = 𝐴(𝐼)/𝐴6 (2.49) 

where 𝐴6 is consequently analog to the effective Sherman function charactering the VLEED 
detector. 

Figure 2.10 schematically shows a very simple apparatus of a photoemission spectrometer 
equipped with a VLEED spin detector. The system mainly consists of a commercial high-energy-
resolution hemispherical electron energy analyzer and the VLEED spin polarimeter. The 
electrons after analyzer are decelerated or accelerated to very low energy of 6 eV in the multi-
stage lenses and then collide on the surface of the target. The reflected electrons are counted by 
the channeltron near to the exit window. The efficiency of the VLEED spin polarimeter is also 
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characterized by the figure of merit (FOM) 𝜖 = 𝐴6$𝐼/𝐼6 , where 𝐼  is the intensity of incident 
electron beam and 𝐼6 is the primary intensity. The FOM of a typical VLEED spin detector is 
about 100 times better than that of Mott detector, but the surface of the magnetic target used in 
this detector will be rapidly degraded, so there was almost no commercial use. However, by pre-
coating a very thin oxide film on the target, like Fe(001) − 𝑝(1 × 1) − 𝑂, it is enabled to 
perform stable spin detection for several months or longer, which is basically meet the 
experimental requirements. 

 

 

 

Figure 2.9 Photoemission spectrometer with VLEED spin polarimeter by specular reflection of low-
energy electrons from a magnetized Fe(001) − 𝑝(1 × 1) − 𝑂 target. Figure accessed from ref. [114]. 

2.4 Facilities in A Spin- And Angle-Resolved Photoelectron 
Spectroscopy Apparatus 

An (spin-) ARPES system generally consists of four basic parts: light source, electronic 
energy analyzer (for Spin-ARPES, a spin detector should be equipped), ultra-high vacuum (UHV) 
system and temperature-controlled sample rotation system (cryogenic manipulator system). In 
the following sections, details of these parts will be explained respectively. 
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2.4.1 The light source 

Currently, there are three types of light sources suitable for APRES that are widely used: (1) 
synchrotron radiation light sources, (2) gas discharge light sources and (3) laser light sources. 

(1) synchrotron radiation light sources 

Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the 
electromagnetic radiation emitted in the tangential direction after being deflected by a static 
magnetic field by high-energy charged particles accelerated to relativistic speed. Synchrotron 
radiation can be achieved artificially in a synchrotron or storage ring, or it can be achieved 
naturally by fast electrons moving in a magnetic field. The radiation generated in this way has a 
characteristic polarization, and the generated frequency can vary throughout the electromagnetic 
spectrum, which is a great merit accountable to tunable photon energy. 

Under the action of the accelerating field, a high-speed point charge of mass 𝑚 and charge 𝑞 
moving along a certain orbital plane will produce an electromagnetic field called the Liénard–
Wiechert field [115]. 

 
𝐵A⃗ (𝑟, 𝑡) = −

𝜇6𝑞
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 (2.51) 

where 𝑅A⃗ (𝑡S) = 𝑟 − 𝑟6(𝑡S), 𝑅(𝑡S) = |𝑅A⃗ (𝑡S)| and 𝑛¾(𝑡S) = 𝑅A⃗ (𝑡S)/𝑅(𝑡S) which is the unit vector 
between the observation point and the position of the charge at the retarded time, and 𝑡′ is the 

retarded time, �⃗� = 𝑣/𝑐 is the velocity of the source point, �̇⃗� thus is the acceleration of the source 
point. The first terms in (2.50) and (2.51) are called the generalized Coulomb field, which 

represents the particle static field effect, and the second terms for 𝐵A⃗ (𝑟, 𝑡) and 𝐸A⃗ (�⃗�, 𝑡) is called 
acceleration field or radiation field, which represent the components of the radiation field due to 
the charged particle’s motion. Thus, by ignoring the first terms, the power of the emitted radiation 
can be calculated as following procedures [115]: 
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where q𝑆 ⋅ 𝑛¾r is the radial component of the Poynting’s vector representing the directional energy 
flux (the energy transfer per unit area per unit time) of an electromagnetic field. Next, the energy 
radiated per solid angle is: 

 𝑑𝑃
𝑑Ω = 𝑅(𝑡S)$q𝑆 ⋅ 𝑛¾r

𝑑𝑡
𝑑𝑡′ 

(2.53) 

Integrating equation (2.53), the total power is: 

 
𝑃 =

𝑞*

6𝜋𝜀6𝑚*𝑐d 𝐵
$(𝐸$ −𝑚$𝑐*) (2.54) 

where 𝐸 is the particle’s total (kinetic plus rest) energy. Further, by using 𝐵 = 𝐸𝛽/𝑞𝑟𝑠𝑖𝑛(𝛼), 
here 𝛼 is the angle between the velocity and the magnetic field, and 𝑟 is the radius of the circular 
acceleration, the total power can be rewritten as: 

 
𝑃 =

𝑞$

6𝜋𝜀6𝑚*𝑐d𝑟$ sin$(𝛼)
(𝐸$ −𝑚$𝑐*)$ (2.55) 

which shows that the power (𝑃) emitted proportional to the e fourth power of energy (𝐸) and 
decreases with the square of the radius (𝑟) and the fourth power of the mass (𝑚). 

Undulators consisting of a periodic structure of dipole magnets can provide several orders of 
magnitude higher flux than that of a simple bending magnet. Considering a undulator with 𝑁 
periods, because of the sine like static magnetic field created by the dipole magnets, electrons 
moving in the periodic magnet field are forced to undergo oscillations and thus to emit radiation. 
By constructive interference, the brightness of the emitted radiation can be up to 𝑁$ . 
Simutenousely, by controlling the trajectories of the moving electrons in the periodic magnetic 
field, the polarization of the emitted radiation can be realized. If the oscillations are confined to 
a plane the radiation will be linearly polarized. If the oscillation trajectory is helical, the radiation 
will be circularly polarized [116]. 
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Figure 2.10 Schematic drawing of a linear undulator. 1: Alternant periodic magnet structure, 2: electron 
beam entering from the upper left, 3: Constructive interference synchrotron radiation exiting to the lower 
right. Figure is open accessed from [116]. 

Figure 2.12 shows the early design of a storage ring at Hiroshima synchrotron radiation center 
(HiSOR). It is a 700 MeV storage ring. A 150 MeV electron beam from the microtron is injected 
and stored in the ring, and accelerated to 700 MeV to generate synchrotron radiation [117]. Key 
parameters of current HiSOR accelerator system are summarized in Table 2.1. 

 

 

Figure 2.11 Design of HiSOR storage ring. Ref. [117]. 
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Table 2.1 Parameters of HiSOR accelerator system, summarized form ref. [118,119] 

Storage Ring 

Injector  Pulsed racetrack Microtron 

Circumference of storage ring [m] 21.95 

Beam energy [MeV]: Injection/Storage 150/700 

Magnetic field of bending magnet [T]: Injection/Storage 0.6/2.7 

Bending radius [m] 0.87 

RF frequency [MHz] 191.244 

RF voltage [kV] 200 

Maximum stored current [mA] 350 

Natural emittance [π nmrad] 400 

Linear undulator (BL-1) 

Total length [m] 2.3542 

Periodic length [mm] 57 

Periodic number 41 

Pole gap [mm] 30-200 

Maximum magnetic field [T] 0.41 

Variably polarizing undulator (BL-9B) 

Total length [m] 1.845 

Periodic length [mm] 78 

Periodic umber 23 
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Pole gap [mm] 22-200 

Maximum magnetic field [T]: horizontal/vertical/helical 0.86/0.59/0.5 

 

(2) Gas discharge light sources 

The gas discharge light source is a commonly used light source in ARPES laboratories. The 
most frequently used is the He as the discharge gas, which is commonly called helium lamp. The 
ultraviolet spectrum generated by the de-excitation of He atoms or ions in an excited state is 
mainly derived from the 2p→1s transition, marked as He I, with an energy of 21.218 eV, 

accounting for 85% to 90% of the total intensity. The relatively weak line is the de-excitation of 
He+, labeled He II, with an energy of 40.814 eV, which accounts for about 5% of the total 
intensity. As for other much more weaker satellite spectral lines, after passing through the 
monochromator, it can be filtered out, leaving only He I and He II with applicable intensity and 
monochromaticity. 

The main advantages of the helium lamp are: low in cost, small volume, easy to move, narrow 
line width (about 1.25 meV for He I main line), acceptable flux even can be comparable to 
synchrotron radiation. However, its shortcomings are also obvious: the photon energy is 
discontinuous, and there are only two main spectral lines to choose (21.218eV and 40.814eV), 
so it cannot achieve tunable spectrum like synchrotron radiation. During the operation, it is 
necessary to maintain a helium pressure of about 10-4 mbar, and use a quartz capillary to guide 
the beam, so it will affect the vacuum of the main chamber. In addition, its light spot is relatively 
large, generally about 2mm. Moreover, its polarization is generally not adjustable, unless the 
helium lamp is rotated, which is quite troublesome. 

It is worth noting that the use of other gas discharge light sources has also been greatly 
developed. For example, the use of Xe discharge light sources (xenon lamps) can obtain high-
flux photons of 8.4 to 10.7 eV [120]. 

 

(3) Laser light sources 

In recent years, the application of ultraviolet lasers in spin and angle-resolved photoelectron 
spectroscopy has also been greatly developed. In particular, the use of KBe2BO3F2 (KBBF), a 
novel nonlinear optical frequency doubling crystal, realizes the frequency doubling of the 355nm 
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laser, thereby obtaining a 177nm (6.994eV) ultraviolet laser, which is successfully applied to a 
vacuum ultraviolet laser-based Angle-resolved photoelectron spectrometer with ultra-high 
energy resolution [76,121,122]. 

For many characteristics of materials, such as superconducting energy gaps of a few meV, 
and the detection of coupling modes in strong correlation systems, ultra-high energy resolution 
is strongly required. However, the photon energy used by synchrotron radiation and helium 
lamps is generally 20-100 eV, and the escape depth of photoelectrons is about 5-10 angstroms. 
If one wants to obtain the bulk signal of the sample and keep high resolution at the same time, 
bulk electrons must be emitted. As mentioned in section 2.3, an improved method is to use a low 
energy laser to probe the bulk band information. 

However, not all lasers can be adopted in ARPES. Because ARPES has several constraints on 
the laser that can be applied: (1) In the photoelectric emission process, the energy of the photon 
must be greater than the work function of the material. Considering that the work function of the 
material is generally about 4.5 eV, plus a certain measurement energy window must be retained, 
the energy of the laser must be at least 5eV or more; (2) The intensity of the laser must be able 
to meet the requirement of ARPES, such as photon beam intensity should at least be 1012 
photons/sec or more; (3) Since the line width of the laser directly determines the energy 
resolution of ARPES, in order to obtain high energy resolution, the line width of the laser must 
be narrow enough (for example, at least less than 10 meV for high resolution); (4) Due to the 
photoelectric emission process involving space charge effects, in order to achieve high energy 
resolution, continuous or quasi-continuous lasers should be used to reduce the number of photons 
in a single pulse; (5) Since the range of momentum space is directly related to the energy of laser 
photons, high-energy lasers are conducive to covering a larger range of momentum space. From 
this point of view, it is advantageous to consider a higher energy of the laser. The 6.994eV 
vacuum ultraviolet laser fully meets all the above conditions and is also the highest energy that 
can be achieved by current solid-state lasers owing to the development of KBBF crystal. 

Apparently, the advantages of vacuum ultraviolet laser based ARPES are: ultra-high energy 
resolution, high momentum resolution, ultra-high photon flux, and greater escape depth. Table 
2.2 makes a brief comparison of the main characteristics of the above three commonly used light 
sources. 

Table 2.2 A brief comparison of synchrotron radiation, He lamp and laser light source 
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Light source 
Synchrotron 
Radiation 

He lamp Laser 

Energy resolution [meV] 10~20 15~40 2~8 

Momentum resolution [Å'+] ~0.001 (50eV) ~0.002 (21.1eV) 
~0.0036 
(6.994eV) 

Photo beam intensity [Photons/sec] 1012~1013 1010~1012 1013~1014 

Probe depth [Å'+] 5~10 5~8 30~100 

2.4.2 Hemispherical electron energy analyzer 

The electron energy analyzer is one of the core components of the ARPES spectrometer. Most 
widely used spectrometer for ARPES is a hemispherical electrostatic electron energy analyzer, 
which is composed of two concentric hemispheres with a high-precision electrostatic voltage 
applied to the hemispheres. There are usually several stages of electrostatic lenses at the entrance 
of the hemisphere, which play the role of acceleration, deceleration, focusing and angle 
separation. There is an "electronic detection system" at the exit of the hemispherical analyzer to 
detect the energy and position of the photoelectrons. 

The two most prominent features of the electronic energy analyzer are the realization of ultra-
high energy resolution and simultaneous detection of electronic energy and angle. The 
electrostatic lens and hemispherical electron energy analyzer convert the energy and angle of the 
electrons moving in the vacuum to the position-sensitive detector. The CCD camera reads the 
relevant information on the detector to complete the analysis of the electron energy and 
momentum. In this section, we describe the VG-Scienta R4000 hemispherical electron energy 
analyzer, which we used in this study. 

(1) Multi-element electrostatic lens 

The well-designed multi-element lens is a key component to realize the simultaneous 
detection of electron energy and angle. The electrostatic lens collects the electrons emitted from 
sample and transfers them to the entrance of the energy analyzer. The lens has two important 
functions. One is to act as a focusing lens, producing a magnified image of the sample on the 
entrance plane of the analyzer. As illustrated in Figure 2.13, the trajectories are shown for two 
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branches of electrons being transported through a lens with a magnification of ten times. The 
central branch of trajectories starts on the lens axis with incident angles of 0°, ±1°, and ±2° 
relative to the axis along the lens, while the second set of trajectories start at the same angles, but 
0.5 mm above the lens axis. After passing through this lens, the two sets of parallel trajectories 
focus at two different positions with ten times distance to the one at the entrance of this lens. 
Simultaneously, the electrons have been retarded or accelerated to a specific final energy, which 
is the second function of the lens. 

 

 

 

Figure 2.12 A schematic illustration of the trajectories of electrons as they move through the multi-
element electron lens, each line represents the trajectory of a photoelectron at a particular angle from the 
sample. Figure adopted from [123]. 

(2) Entrance slit and hemispherical energy analyzer 

Due to the spherical symmetry, a straight line at the entrance silt will be imaged onto a curved 
line at the exit slit. Therefore, photoelectrons entering different positions of the entrance slit (the 
same position can pass photoelectrons of different energies) will pass through the hemisphere 
analyzer in the manner shown in Figure 2.14. So that the direction of the detector from top to 
bottom corresponds to the angular direction, from left to right corresponds to the energy direction 
(see below hemispherical analyzer). Obviously, the smaller the size of the entrance slit is, the 
higher the energy resolution will be, but the electron counting rate will be greatly reduced. 
Therefore, a tunable entrance slit is designed to switch the width of the slit for balancing the 
energy resolution and counting rate. In addition, curved entrance silts are designed with the 
appropriate radius to produce straight lines at the detector. 
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The electrostatic hemisphere analyzer is the core component to complete the energy resolution 
of photoelectrons. As shown in Figure 2.14, the photoelectrons entering the radial electrostatic 
field generated by the two concentric hemispherical electrodes are deflected by 180°. The 
deflection radius depends on the initial kinetic energy of the photoelectrons, since the same 
position can pass photoelectrons of different energies, and thus the energy dispersion is achieved. 

The energy resolution Δ𝐸 of the analyzer is determined by the pass energy, silt width, and the 
analyzer radius, shown as below: 

 Δ𝐸 = 𝐸Q𝑑R/(𝑅\ + 𝑅8) (2.56) 

where 𝐸Q is the pass energy, 𝑑R is the width of the entrance slit, and 𝑅\(𝑅8) is the radius of the 
outer (inner) hemisphere. To achieve a better energy resolution, it is wise to choose low pass 
energy and switch narrow silt. 

 

 

 

Figure 2.13 Schematic view of the electrostatic hemispherical electron energy analyzer. Electron 
trajectory depends on the kinetic energy and position passing through the entrance slit. Figure accessed 
from ref. [107]. 
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(3) Electron detection system 

The detector system is responsible for the detection of the electrons and draw a 2D (energy 
and angle) image, which is usually composed of micro-channel plates (MCP) and a charge-
coupled device (CCD) camera. 

The MCP pair consisting of two MCP plates in “Chevron” configuration multiplies each 
incoming electron about 108 times and this electron pulse is accelerated to the phosphor screen, 
where they produce a light flash and be detected by the CCD camera. The position of the light 
flash corresponds exactly to the position of the incoming electron. 

The Scienta R4000 analyzer has three angular resolution modes, which can measure 30°, 14° 
and 7° respectively. It is easy to get that a small light spot is conducive to obtaining a better 
angular resolution. 

2.4.3 Ultra-high vacuum (UHV) system 

Since the valence electrons of impurities on the crystal surface will contribute to the 
photoelectron spectrum, moreover, if these impurities form chemical bond with the crystal, it 
will also affect the original valence electron spectrum of the crystal. Additionally, since the 
APRES is extremely sensitive to the surface, therefore, the sample need to be kept clean during 
the experiment. 

The usual ARPES experiment is carried out in an ultra-high vacuum. And the vacuum level 
should be generally better than 10-9 Pa, which can be achieved by an ultra-high vacuum system 
composed of mechanical pumps, molecular pumps, ion pumps, titanium sublimation pumps, and 
vacuum valves. 

In order to transfer samples quickly and not destroy the vacuum of the main chamber, the 
vacuum system is usually designed as a multi-stage chamber, such as load-lock chamber, transfer 
chamber, sample preparation chamber, and test chamber (main chamber). 

For single crystal samples, in order not to break the vacuum, in-situ cleavage is generally 
selected in the main chamber. Usually, a thin layer of silver epoxy glue is used to mount the 
sample on a metal pillar, and then silver epoxy glue is used to dip a ceramic rod on the upper 
surface of the sample. At low temperatures, hit the ceramic rod and then a smooth and clean 
cleavage surface will be obtained. 
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2.4.4 Temperature controlled sample rotation system 

For the ARPES spectrometer, on the one hand, the sample is required to be able to rotate 
freely to measure momentum in any direction; on the other hand, the sample must reach a 
sufficiently low temperature to avoid the broadening of the spectrum caused by temperature. The 
two aspects are often incompatible with each other, because the energy generated by the rotation 
of the sample will make it difficult for the sample to reach an ideal low temperature. 

The manipulation of the sample is generally completed by a combination of a sample holder 
with three translational degrees of freedom (x, y, z) and a goniometer with three rotational 
degrees of freedom (polar, tilt, azimuth), which can realize the translation and rotation of the 
sample in the whole space. This can be accurately achieved by computer-controlled stepping 
motors. 

In order to cool the sample on the manipulator, a continuous flow of liquid helium is used. 
There is a heater near the sample holder, so that the sample temperature can be changed from 
low temperature to high temperature to meet various experiments. 

In addition, when measuring insulating materials, the accumulation of electrons on the sample 
surface will affect the energy and emission angle of the photoelectrons. Therefore, graphite spray 
can be used to increase the electrical conductivity of the sample surface. 
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Chapter 3 Hidden Spin Polarization in Centrosymmetric 
BiOI  

3.1 Introduction of Hidden Spin Polarization 

Numerous physical effects, such as the Dresselhaus effect [10], Rashba effect [13], optical 
activity in non-chiral molecules [124], valley polarization and its derivative effects [125], and 
valley Hall effect in two-dimensional (2D) layered structures [126] etc., are conditional on the 
absence of inversion symmetry (i.e., noncentrosymmetric systems) [18]. For a long time, one 
believes that it is unwise to seek such effects in centrosymmetric systems, however, there is a 
large class of special centrosymmetric systems containing a pair of noncentrosymmetric local 
sectors which are connected to the centrosymmetric point. For this special centrosymmetric 
system, the abovementioned effects do exist, but they exist in each individual sector. For the 
global centrosymmetric system, because of the constraint of centrosymmetry, these effects are 
completely compensated as a whole seemingly no difference to the trivial centrosymmetric 
systems. 

The term “hidden effect” is thus designated to describe these effects that exists in local sectors 
of centrosymmetric systems which has not been realized so far. For example, the “hidden 
Dresselhaus effect” does exist in the diamond-type structure of Silicon, in which each atom 
possesses a noncentrosymmetry in each individual local sector (i.e., the tetrahedral 𝑇+  point 
group) but the crystal as a whole has a global centrosymmetry (i.e., the octahedral 𝑂- group) 
[17,18]. 

Chronologically, the “hidden effect” was first explained from a theoretical predication [17] 
and subsequent experimental observations of “hidden Dresselhaus effect” and “hidden Rashba 
effect” in various nonmagnetic centrosymmetric crystals, such as bulk and monolayer transition 
metal dichalcogenides [20,23,127,128], BaNiS2 [22], LaO0.55F0.45BiS2 superconductor [129] and 
Bi2212 cuprate superconductor [24] etc. Consequently, this “hidden effect” triggered the study 
of a wider range of other physical effects, such as optical activity [29], intrinsic circular 
polarization [30], current-induced spin polarization [31,32], superconductor [130], piezoelectric 
polarization [17], and orbital polarization [28] in various centrosymmetric systems [18].  
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The spin polarization, including Rashba splitting and Dresselhaus splitting in nonmagnetic 
centrosymmetric materials, is thus termed as “hidden spin polarization” (HSP). The index “1” 
and “2” are assigned to distinguish the conventional Rashba splitting (R-1) and Dresselhaus 
splitting (D-1) from the hidden Rashba splitting (R-2) and Dresselhaus splitting (R-2) in 
centrosymmetric systems where global inversion symmetry is absent. 

In this chapter, we will describe the HSP in centrosymmetric crystal BiOI. The spin-orbital 
coupling (which plays a key role in lowing band degeneracy) and its relative spin splitting, such 
as Rashba splitting and Dresselhaus splitting will be introduced in this section; and then the 
crystal structure and symmetries in BiOI will be analyzed in section 3.2; the electronic band 
structure and spin textures will be presented in section 3.3 and 3.4. 

3.1.1 Origin of spin-orbital coupling effect  

The spin-orbital coupling (SOC) effect enters a Hamiltonian essentially from a nonrelativistic 
approximation to the Dirac equation. Assuming a time dependent problem, the Dirac equation is 
[131]: 

 (𝑐𝜶 ⋅ 𝒑 + 𝜷𝑚6𝑐$ + 𝑉)𝜓 = 𝐸𝜓 (3.1) 

where 𝜶 = ´0 𝜎
𝜎 0µ and 𝝈 = x𝜎4 , 𝜎5 , 𝜎7z is the Pauli matrices, 𝜷 = ´𝟏 0

0 −𝟏µ and 𝟏 is a 2×2 

identity matrix, and 𝜓 is a four-component spinor. Rewriting this equation as a form of the upper 
and lower pairs of the components, 𝜓e and 𝜓3, it follows: 

 𝝈 ⋅ 𝒑𝜓e =
1
𝑐
(𝐸 +𝑚6𝑐$ − 𝑉)𝜓3 (3.2a) 

 𝝈 ⋅ 𝒑𝜓3 =
1
𝑐
(𝐸 −𝑚6𝑐$ − 𝑉)𝜓e (3.2b) 

Eliminating the 𝜓3, one obtains: 

 
𝝈 ⋅ 𝒑 ¤

𝑐$

𝐸 +𝑚6𝑐$ − 𝑉
¦𝝈 ⋅ 𝒑𝜓e = (𝐸 −𝑚6𝑐$ − 𝑉)𝜓e (3.3) 
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For nonrelativistic approximation, on can make a power expansion in the small quantity (𝐸 −
𝑚6𝑐$ − 𝑉)/(2𝑚6𝑐$) ≈ (𝑣 𝑐⁄ )$, where the lowest order term is kept. Thus, the left-hand side of 
(3.3) is approximatively equal to: 

 𝑐$

𝐸 +𝑚6𝑐$ − 𝑉
≈

1
2𝑚6

¤1 −
𝐸 −𝑚6𝑐$ − 𝑉

2𝑚6𝑐$
+⋯¦ (3.4) 

where the zeroth and first order terms in (𝑣 𝑐⁄ )$  are kept. The normalized component 𝜓e 

(denoted 𝜓Ð) derives form ∫ 𝑑,𝑟𝜓f𝜓 = ∫ 𝑑,𝑟𝜓e
f𝜓e = 1 and it reads [9]: 

 
𝜓Ð = §1 +

𝑝$ + 𝑒ℏ𝝈 ⋅ 𝐵A⃗
8𝑚6

$𝑐$
¨𝜓e (3.5) 

Substituting into (3.3), finally, the nonrelativistic approximation Dirac equation, also called 
Pauli equation is obtained [9]: 

 
¤
𝑝$

2𝑚6
+ 𝑉 +

𝑒ℏ
2𝑚6

𝝈 ⋅ 𝐵A⃗ −
ℏ𝝈 ⋅ 𝒑 × ∇𝑉
4𝑚6

$𝑐$
−

ℏ$

8𝑚6
$𝑐$

∇$𝑉

−
𝑝$

8𝑚6
$𝑐$

−
𝑒ℏ𝑝$

4𝑚6
,𝑐$

𝝈 ⋅ 𝐵A⃗ −
(𝑒ℏ𝐵)$

8𝑚6
$𝑐$

¦𝜓Ð = 𝐸Ð𝜓Ð 
(3.6) 

The third term on the left-hand side is the Zeeman term, the fourth term is the well-known 
Pauli SOC term, the fifth term is the Darwin term, the sixth term is a higher order correction to 
the kinetic energy 𝑝$/(2𝑚6) and the last two terms are also a higher order correction to the 
Zeeman term. 

According to the Pauli SOC term, one can have a physical picture explaining the origin of the 
SOC that the motion of an electron in a strong Coulomb potential (𝑉) of an atomic core regions 

will simultaneously generate an effective magnetic field 𝐵A⃗ !"" ∝ (𝒑 × ∇𝑉) [8]. Since the orbital 
magnetic moment and the spin magnetic moment of the electron are coupled into a total magnetic 

moment (𝜇@\@Vg ∝ 𝑆 ∝ 𝝈) whose orientation is quantized, and the additional energy under the 
action of the effective magnetic field is different, which behaves as the Zeeman splitting, thus, it 
leads to spin splitting and spin polarization even in nonmagnetic materials. 
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3.1.2 Inversion asymmetry induced spin splitting 

Strategies for generating highly spin-polarized electronic states in non-magnetic solids have 
been explored extensively because it is an important key to realize novel quantum devices 

[132,133]. Since a combination of both time-reversal symmetry [𝐸(𝑘A⃗ , ↑) = 𝐸(−𝑘A⃗ , ↓)] and space 

inversion symmetry [𝐸(𝑘A⃗ , ↑) = 𝐸(−𝑘A⃗ , ↑)] inevitably yields spin-degenerated energy levels in 
nonmagnetic solids. So, only when the inversion symmetry is broken can lift this degeneracy.  

In nonmagnetic solids with inversion asymmetry, electrons moving through the lattice 
experience an asymmetric crystal potential, which results in an intrinsic SOC. This type of SOC 
was first described by Dresselhaus in 1955 for zinc-blende structures [10], but is generally 
present in crystals with bulk inversion asymmetry (BIA) [134], therefore, this kind of spin 
splitting is also called Dresselhaus splitting. Another type of spin splitting is the Rashba splitting 
originating from the structural inversion asymmetry (SIA) discussed in 1960 by Rashba [11], 
which states that an external electric field can also be the source for SOC, i.e., the inversion 
asymmetry introduced, e.g., by an external electric field applied perpendicular to a two 
dimensional electronic systems, or a gradient of the electrostatic potential in the interface of a 
heterostructure, etc. 

In the following, the details on Rashba splitting and Dresselhaus splitting will be explained 
respectively. 

(1) Rashba splitting 

Considering a two dimensional free-electron like (or 2D electrons gas, 2DEG) system with a 
potential gradient perpendicular to the system to simulate the solid surface or interface, according 
to the Pauli SOC term (3.6), the Hamiltonian of this 2DEG reads: 

 
𝑯 =

𝑝$

2𝑚6
𝑰 −

ℏ
4𝑚6

$𝑐$
𝝈 ⋅ 𝒑 × ∇𝑉 =

𝑝$

2𝑚6
𝑰 + 𝜆c𝝈 ⋅ (αAA⃗ × 𝒑) (3.7) 

where 𝑰 = ´1 0
0 1µ , 𝝈 = x𝜎4 , 𝜎5 , 𝜎7z = §´0 1

1 0µ , ´
0 −𝑖
𝑖 0 µ , ´

1 0
0 −1µ¨  are unit and Pauli 

matrices, αAA⃗ = (0,0, 𝛼7), 𝛼7 ∝ ∇𝑉 defines the electric field given by the potential gradient, and 
𝜆c is a fixed parameter, for simplicity, here we assume 𝜆c = 1. Hence, the SOC term reads: 

 𝝈 ⋅ (αAA⃗ × 𝒑) = 𝑖ℏ𝛼7(𝜎4𝜕5 − 𝜎5𝜕4) (3.8) 
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Then the Hamiltonian is described by the matrix: 

 

𝑯 =
𝑝$

2𝑚6
𝑰 + 𝜆c𝝈 ⋅ (αAA⃗ × 𝒑) =

⎝

⎜
⎛ −

ℏ$

2𝑚6
∇$ 𝑖ℏ𝛼7(𝜕5 + 𝑖𝜕4)

𝑖ℏ𝛼7(𝜕5 − 𝑖𝜕4) −
ℏ$

2𝑚6
∇$

⎠

⎟
⎞

 (3.9) 

Choosing wave functions as 𝜑.↑ =
2
√i
𝑒8.;⃗ ⋅>⃗ ´10µ  and 𝜑.↓ =

2
√i
𝑒8.;⃗ ⋅>⃗ ´01µ , then the matrix 

elements of this Hamiltonian can be calculated as: 

 

𝑯 =

⎝

⎜
⎛

ℏ$𝑘$

2𝑚6
−ℏ𝛼7(𝑖𝑘4 + 𝑘5)

ℏ𝛼7(𝑖𝑘4 − 𝑘5)
ℏ$𝑘$

2𝑚6 ⎠

⎟
⎞

 (3.10) 

The off-diagonal terms induce the Rashba splitting away from the ΓÛ point. The Rashba term 

is also written as �⃗� ⋅ x�⃗� × 𝑘A⃗ z or �⃗� ⋅ x𝑘A⃗ × �⃗�z or 𝛼x𝜎4𝑘5 − 𝜎5𝑘4z. Subsequently, the eigen value 
of the secular equation 𝑯𝜓 = 𝜀𝜓 is: 

 
𝜀± =

ℏ$𝑘$

2𝑚6
± ℏ𝛼7|𝑘| =

ℏ$

2𝑚6
´|𝑘| ±

𝑚𝛼7
ℏ µ

$
−
𝑚𝛼7$

2  (3.11) 

At 𝑘 = 0 (time-reversal invariant momentum), the energy is degenerated. For the momentum 
region |𝑘| ≪ 1, the energy is given by 𝜀± ≈ ±ℏ𝛼7|𝑘|, forming the so called “Dirac cone”. For 

the energy dispersion, it looks like two parabolas shifted along 𝑘 direction by |𝑘| = ±Dj&
ℏ

. 

Next, assuming the eigen functions corresponding to 𝜀±  are 𝜑.
± = 𝜇𝜑.↑ + 𝜈𝜑.↓ , due to 

|𝜇|$ + |𝜈|$ = 1, the eigen functions can be written as: 

 𝜑.
± =

1
√2Ω

�∓𝑒
±8k

1
� 𝑒8.;⃗ ⋅>⃗ (3.12) 

where tan 𝜃 = .'
.(

. Within this eigen functions, the expectation values of the spin direction can 

be calculated easily by 𝒔± = {𝜑.
±|𝒔|𝜑.

±}, here 𝒔 = ℏ𝝈/2, which are shown below: 
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 𝒔± =
ℏ
2𝑘 x∓𝑘5 , ±𝑘4 , 0z 

(3.13) 

which states that the spin angular momenta are within the 𝑥𝑦  plane and orthogonal to the 

momentum direction (𝒔± ⋅ 𝑘A⃗ = 0) with the same length of |𝒔±| = ℏ/2 but antiparallel to each 

other. As for the spin magnetic momenta, they are given by 𝝁R± = −𝑔𝜇3𝒔±, here 𝜇3 is the Bohr 
magneton, and g is the Landé g-factor (in the case of electron spin, g=2), as illustrated in the 
Figure 3.1. 

(a) (b) 

 
 

 

Figure 3.1 Schematic drawing of the spin angular momenta and spin magnetic momenta in Rashba 

splitting. (a) the spin angular momenta 𝒔±	are orthogonal to the momentum direction 𝑘5⃗ = (𝑘& , 𝑘( , 0) and 

the two components are antiparallel to each other. (b) the spin magnetic momenta 𝝁*± show the same 
physics to 𝒔±, but for opposite direction and magnitude due to 𝝁*± = −𝑔𝜇-𝒔±. Figures accessed from my 
supervisor’s lecture. 

 

(2) Dresselhaus splitting 

The Dresselhaus splitting was originally discussed in a BIA zinc blende structure by G. 
Dresselhaus in 1955 [10]. Dresselhaus started from one electron Schrodinger equation with SOC 
term: 
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¤
𝑝$

2𝑚 + 𝑉 +
ℏ

4𝑚6
$𝑐$

𝝈 ⋅ (∇𝑉 × 𝒑)¦Ψ. = 𝐸.Ψ. (3.14) 

The translational symmetry of the zinc blende lattice requires that the wave function (Ψ.) 

should be of the form of Bloch function gΨ. = 𝑢.(𝑟)𝑒8.
;⃗ ⋅>⃗	i, here the periodic part (𝑢.(𝑟)) should 

satisfy the equation: 

 
¤
𝑝$

2𝑚 + 𝑉 +
ℏ

4𝑚6
$𝑐$

𝝈 ⋅ (∇𝑉 × 𝒑)¦ 𝑢. + ℏ𝑘 ⋅ §
𝒑
𝑚 +

ℏ
4𝑚6

$𝑐$
𝝈 × ∇𝑉¨𝑢.

= §𝐸. −
ℏ$𝑘$

2𝑚 ¨𝑢. 
(3.15) 

For the extended 𝑘 + 𝐾, one just replaces the 𝑘 by 𝑘 + 𝐾 in (3.15), then treats the term ℏ𝑘 ⋅

´𝒑
D
+ ℏ

*D!
)[)

𝝈 × ∇𝑉µ = ℋ′ as a perturbation, thus, the energy at 𝑘 + 𝐾 for a nongenerated level 

is: 

 
𝐸.Fm = 𝐸. +

ℏ$𝑘$

2𝑚 + (Ψ.|ℋS|Ψ.) + ⋯ (3.16) 

Dresselhaus discussed the secular determinant with the first order perturbation in 𝑘 at 𝛤n: 

 

ã

ã

−𝜆

�−
𝑖
2�
𝐶𝑘1

−𝐶𝑘7

§
𝑖√3
2 ¨𝐶𝑘F

�
𝑖
2
� 𝐶𝑘F
−𝜆

§
𝑖√3
2
¨𝐶𝑘1

𝐶𝑘7

−𝐶𝑘7

−§
𝑖√3
2
¨𝐶𝑘F

−𝜆

�−
𝑖
2�𝐶𝑘1

−§
𝑖√3
2
¨𝐶𝑘1

𝐶𝑘7

�
𝑖
2�𝐶𝑘F
−𝜆

ã

ã
= 0 (3.17) 

where 𝜆 = ±𝐶 �𝑘$ ± q3x𝑘4$𝑘5$ + 𝑘5$𝑘7$ + 𝑘7$𝑘4$zr
2 $⁄ �

2 $⁄
 with 𝐶 = − 2

$√,
ℏ)

D)[)
´𝛿2 ä

Pp
P5
ä 𝛿,µ  here 

𝛿 is the bases for the irreducible representations of 𝑇+$ at 𝛤 that can be selected from any group 
theory textbook, and 𝑘± = 𝑘4 ± 𝑖𝑘5, this invariant is often called the Dresselhaus matrix element. 

Now, when we deal with 2D structures or the [001] direction is infinite, the Dresselhaus 
Hamiltonian can be simplified as: 
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𝑯q = ã
𝒪(𝜆) �

𝑖
2�𝐶.𝑘F

�
𝑖
2�
𝐶.𝑘F 𝒪(𝜆)

ã = 𝛽 æ 0 𝑘F
𝑘1 0 æ (3.18) 

where the 𝒪(𝜆)  is an infinitesimal, 𝐶. = − 2
$√,

ℏ)

D)[)
´𝑥 äPp

P5
ä 𝑧µ , and 𝛽 = 𝑖𝐶./2  is a coupling 

constant describing the BIA SOC strength. The Dresselhaus Hamiltonian can be also 
conveniently denoted as: 

 𝑯q = 𝛽(𝜎4𝑘4 − 𝜎5𝑘5) (3.18) 

Analog to Rashba splitting, considering a 2DEG system with Dresselhaus SOC term, the 
Hamiltonian can be written as: 

 

𝑯 =

⎝

⎜
⎛

ℏ$𝑘$

2𝑚6
𝛽(𝑘4 + 𝑖𝑘5)

𝛽(𝑘4 − 𝑖𝑘5)
ℏ$𝑘$

2𝑚6 ⎠

⎟
⎞

 (3.19) 

The Dresselhaus off-diagonal terms 𝛽(𝑘4 ± 𝑖𝑘5) play a key role in the degenerated levels 

splitting. The eigen value of this secular equation 𝑯𝜓 = 𝜀𝜓 is: 

 
𝜀± =

ℏ$𝑘$

2𝑚6
± 𝛽|𝑘| =

ℏ$

2𝑚6
�|𝑘| ±

𝑚𝛽
ℏ$ �

$

−
𝑚𝛽$

2ℏ$  (3.11) 

The energy dispersion looks like two parabolas shifted along 𝑘  direction by |𝑘| = ±Dr
ℏ)

, 

showing a very similar behavior as Rashba splitting. 

The eigen functions can be written as: 

 𝜑.
± =

1
√2Ω

�∓𝑒
±8k

1
� 𝑒8.;⃗ ⋅>⃗ (3.12) 

Consequently, the expectation values of the spin direction are: 

 𝒔± =
ℏ
2𝑘 x∓𝑘4 , ±𝑘5 , 0z 

(3.13) 
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Figure 3.2 shows a schematic summary of the band structures and spin textures of the 
degenerated bands, nonmagnetic Zeeman splitting, Rashba splitting and Dresselhaus splitting in 
3D (a) and 2D (b) and (c) space. The arrows represent the spin magnetic momentum (𝝁R±) 
orientations (by 𝝁R± = −𝑔𝜇3𝒔±). The calculated results of the spin texture in panel (c) were 
obtained from the Zeeman term (𝜆s𝝈 ⋅ 𝑩), Rashba term [𝛼(𝜎4𝑘5 − 𝜎5𝑘4)], Dresselhaus term 
[𝛽(𝜎4𝑘4 − 𝜎5𝑘5)]. It shows that the Zeeman splitting is shifted along 𝐸(𝑘) axis, while the 
Rashba and Dresselhaus splitting are shifted along the 𝑘 axis. The characteristic parameters (𝛼 
and 𝛽) quantifying the strength of the splitting, which are of great difficulty to calculate from 
theory, however, can be easily determined from an ARPES band dispersion. If one obtains a 
sharp Rashba or Dresselhaus band dispersion, then just to measure either the momentum shift 
(𝑘c or 𝑘q) or the energy shif (Δc or Δq) with respect to the Dirac point, shown in panel (c), 
finally, the characteristic parameters (𝛼 and 𝛽) can be estimated: 

 
𝛼(𝛽) = ℏ)

D
𝑘c(q) or «$ℏ)

D
Δc(q) (3.14) 
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Figure 3.2 Schematic drawing of band structures and spin textures of the degenerated band, nonmagnetic 
Zeeman, Rashba and Dresselhaus effects. Figure modified from ref. [135]. 

3.1.3 Hidden spin polarizations in centrosymmetric systems 

The previous section 3.1.2 mainly introduced the conventional Rashba splitting (R-1) and 
Dresselhaus splitting (D-1) originated from inversion asymmetry in noncentrosymmetric crystals. 
In this section we will continue to introduce the recently discovered hidden Rashba splitting (R-
2) and Dresselhaus splitting (D-2) in centrosymmetric crystals.  

The starting point to describe the SOC-induced spin polarization effects of R-2 and D-2 is that 
the SOC is a relativistic effect anchored on particular nuclear sites in the solid. The inversion 
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asymmetry of such individual atomic sites (or local sectors) may result in the non-zero total spin 
polarization of a local sector [17].  

In more detail, the atomic site can be either nonpolar (an inversion asymmetric local 
environment: Bulk Inversion Asymmetry (BIA)) or polar (a local environment with a dipole field: 
Structural Inversion Asymmetry (SIA)). In the former case, the SOC on the atomic site will lead 
to a local Dresselhaus splitting, whereas in the latter case it will lead to a local Rashba splitting, 
as explained in section 3.1.2. For a layered crystal with each of its individual layers (sectors) 
having a local inversion asymmetry produces a local Rashba splitting or local Dresselhaus 
splitting. The Rashba splitting or Dresselhaus splitting on each local sector is compensated by 
the other sector (its inversion partner), because of the centrosymmetric properties of the whole 
crystal. This local Rashba splitting or local Dresselhaus splitting is concealed by the 
compensation of its inversion partner, in spite that it is not intrinsically absent. These concealed 
spin splitting is thus called hidden spin polarization (HSP).  

Table 3.1 shows a summary on the classification of spin polarization in nonmagnetic materials 
based on the bulk space group and site point group, which forms the basis of the HSP. The point 
group is given in Schoenflies notation. Site point group refers to the operations that transform 
the atomic site to itself, which is a subset of symmetry operations of the bulk space group. Polar 
point group is the subset of point group, which contains a unique anisotropic axis producing a 
nonzero dipole field. When the site point group is noncentrosymmetric with at least one site has 
a non-centrosymmetry and all the sites are nonpolar (𝐷$, 𝐷,, 𝐷*, 𝑆*, 𝐷$+, 𝐶,-, 𝐷,-, 𝑇, 𝑇+, 𝑂), 
thus there is a D-1 spin polarization for the bulk space group with noncentrosymmetry and D-2 
spin polarization for centrosymmetric system. If some of the site point groups are polar (𝐶2, 𝐶$, 
𝐶, , 𝐶* , 𝐶t , 𝐶2) , 𝐶$) , 𝐶,) , 𝐶*) , 𝐶t) ) and the induced dipole fields add up to an infinitesimal 
amount, there is a D-1 spin polarization for the bulk space group with noncentrosymmetry, while 
when the dipoles add up to nonzero, there are both D-1 & R-1 spin polarizations in this 
noncentrosymmetric system. When the site point group contains polar point groups (𝐶2, 𝐶$, 𝐶,, 
𝐶*, 𝐶t, 𝐶2), 𝐶$), 𝐶,), 𝐶*), 𝐶t)), in this case there are R-2 accompanied by D-2 compensated spin 
polarizations for the space group with centrosymmetric system. When the site point group is 
centrosymmetric, the space group can be noncentrosymmetric, in which case the spin 
polarization is not possible to exist, or the space group can be centrosymmetric, in which case 
the spin polarization is absent. 

Table 3.1 Classification of spin polarization in nonmagnetic bulk materials on the basis of bulk space 
group and site point group [17]. 
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Site point 
group 

 

 

Bulk 

space group 

Noncentrosymmetric (at least one site) Centrosymmetric 

(all sites) Nonpolar 

(all sites) 

(𝐷., 𝐷/, 𝐷0, 𝑆0, 
𝐷.1, 𝐶/2, 𝐷/2, 
𝑇, 𝑇1, 𝑂) 

Polar (at least one site) 

(𝐶+, 𝐶., 𝐶/, 𝐶0, 𝐶3, 𝐶+$, 𝐶.$, 𝐶/$, 
𝐶0$, 𝐶3$) (𝐶! , 𝐶.2 , 𝐶02 , 𝐷02 , 𝑆3 , 

𝐷/1, 𝐷32, 𝐶32 𝑇2, 𝑂2) 

Dipoles add up 
to zero 

Dipoles add up 
to nonzero 

Noncentrosymmetric D-1 D-1 D-1 & R-1 

Impossible 

(Site point group 
cannot be 

centrosymmetric if 
space group is 

noncentrosymmetric) 

Centrosymmetric D-2 D-2 & R-2 Absence of spin 
polarization 

 

We should also note that the Rashba splitting (R-1 and R-2) is always accompanied by the 
Dresselhaus splitting (D-1 and D-2). This is because the site polar point group contains 
simultaneously site inversion asymmetry that shows the same effect as BIA for Dresselhaus 
splitting, thus, the Rashba splitting in bulk crystals is always accompanied by the Dresselhaus 
splitting (in noncentrosymmetric system, the individual dipole field should add up to a nonzero 
value).  

The spin polarization of the energetically degenerate bands is spatially segregated into a 
dominant spin texture which is associated with its inversion partner. This feature originates 
essentially from the wavefunction segregation. To explicitly quantify the degree of wavefunction 
segregation (DWS) of the wavefunction, an index 𝐷(𝜓.) for state 𝜓.  should be introduced, 
which is formulated as: 

 
𝐷(𝜓.) = è

𝑃u*(𝑆j) − 𝑃u*(𝑆r)
𝑃u*(𝑆j) + 𝑃u*(𝑆r)

è (3.15) 

where 𝑃u*x𝑆j,rz = ∫ |𝜓.(𝑟)|$𝑑,𝑟i∈%+,-
 is the component of the wavefunction 𝜓. localized on 

the sector 𝛼 and sector 𝛽 (𝑆j,r). Note that the implicit meaning of the index is the integral of the 
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local spin density restricted on a given sector. It is evident that 𝐷(𝜓.) = 100% indicates that 
the wavefunction is entirely confined either on sector 𝛼 or sector 𝛽. For example, L. Yuan et al. 
had shown the segregation of wavefunction in BaNiS2 monolayer to be 88% (𝐷(𝜓.) = 88%) at 
𝑘 =(0.025, 0.5, 0) (2𝜋/𝑎), here 𝑎 is the lattice constant, for both spin components of doubly 
degenerate branches along Brillouin zoom (BZ) boundary. The segregation of wavefunctions on 
a single sector with 𝐷(𝜓.) = 88% for the states along BZ direction indicates that this band 
experiences a net effective field of the internal dipole fields within a single sector and free from 
a full compensation from the opposite dipole fields within its inversion partner sector [17]. Spin-
momentum-sector locking is, thus, an observable consequence of the feature of wavefunction 
segregation. 

In brief, the key point of R-2 and D-2 is that these spin splitting originate fundamentally from 
specific atomic site asymmetries (local site symmetries), rather than, as general view described 
in section 3.1.2, from the structural and bulk inversion asymmetry (SIA and BIA) of the crystal 
space group (global crystal symmetries) [17]. This insight reveals that these Rashba as well as 
Dresselhaus splittings should exist in centrosymmetric crystals but on each local sector. 
Although all energy bands must be doubly degenerate in centrosymmetric crystals as a whole, in 
fact, the two components of such doubly degenerate bands could have opposite polarizations, 
each spatially localized on one of the two separate sectors forming the inversion partners [17], 
in other words, forming the spin-momentum-sector locking. 

3.2 Crystal Structure of Bismuth Oxyiodide (BiOI) 

The view of R-2 and D-2 has greatly enlarged the playing field of spintronic materials to 
centrosymmetric materials with the significant SOC. To find materials that have a significant R-
2 or D-2 spin polarization, there are two important filter conditions: (1) look for compounds that 
have centrosymmetric space groups but with at least one of the Wyckoff positions lacking 
inversion symmetry and belonging to either polar (R-2) or nonpolar (D-2) point groups. Here, 
out of the 230 space groups, 92 are centrosymmetric, and out of the 32 point groups, 21 are 
noncentrosymmetric. This condition is needed to introduce SOC, i.e., designing individual 
sectors with maximal asymmetry of the local potential within the sector [18]. (2) Spatially 
minimize the mixing and entanglement of the wavefunction on the different inversion partners 
(sectors), i.e., enhance the segregation of the wavefunction on each sector. For example, the 
layered materials may have a small interaction between the opposite sectors due to the barrier 



 

 54 

layer separating the two opposite sectors. Another nontrivial way to minimize the interaction of 
the two opposite sectors is the symmetry-enforced wavefunction segregation, where due to the 
restriction of symmetries, the doubly degenerated states on the opposite sectors are fully free 
from mixing, such as the nonsymmorphic symmetry in BaNiS2 [18]. Other symmetry operations 
enforcing wavefunction segregation may exist, but they have not been discovered yet. 

3.2.1 Symmorphic and nonsymmorphic symmetry 

In this section, we will introduce a case of bismuth oxyiodide (BiOI) that is filtered according 
to above mentioned restrictions. To well understand the crystal structure of BiOI, first, the 
symmorphic and nonsymmorphic symmetries will be explained in section 3.2.1, and then all the 
symmetries in BiOI will be discussed in section 3.2.2. 

The space group 𝐺  consists of all operations {𝜶|𝜏}  which leave a given lattice invariant 
({𝜶|𝜏}𝑟 = 𝜶 ⋅ �⃗� + 𝜏 = 𝑟′). The elements in a space group can be written as the form of: 

 {𝛼|𝜏} = {𝛼|𝑅( + 𝜏j} = {𝜀|𝑅(}{𝛼|𝜏j} (3.16) 

where 𝛼 is the point group operators, 𝑅( is a general vector of the Bravais lattice and 𝜏j is 
either zero or a nonintegral translation vector of the Bravais lattice. According to this notation, 
the classification of symmorphic and nonsymmorphic symmetries in space group is: if all the 
elements of space group 𝐺 are in the form of {𝛼|𝜏} = {𝛼|𝑅(} = {𝜀|𝑅(}{𝛼|0} (𝜏j = 0), then the 
space group 𝐺 is called a simple or symmorphic group and all of the elements {𝛼|𝑅(} are called 
symmorphic operations, while, if at least one element {𝛼|𝜏j}	in space group 𝐺 with 𝜏j ≠ 0, then 
the space group 𝐺  is classified as nonsymmorphic group and the element {𝛼|𝜏j}  is called 
nonsymmorphic operation [136]. 

In order to represent the space group elements, the basis ´1𝑟µ =
(1, 𝑥, 𝑦, 𝑧)M  should be 

introduced. Then the matrix representation for the space group operator is defined as: 

 {𝛼|𝜏} = �1 0
𝓇 𝑀j

� (3.17) 

where 1 is a number, 0 denotes a row of three zeros, 𝓇 is a 3 × 1 column vector, and 𝑀j is a 
(3 × 3) matrix. Therefore, the action of the space group operation on the coordinate system is 
consequently written as: 
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 {𝛼|𝜏} ´1𝑟µ = �1 0
𝓇 𝑀j

� ´1𝑟µ = � 1
𝑀j ⋅ 𝑟 + 𝓇

� = �1
𝑟′AA⃗
� (3.18) 

Out of the 230 space groups, there are 73 symmorphic space groups and 157 nonsymmorphic 
space groups, which can be found in the “International tables for crystallography” [137]. When 
expressing a space group, the international notation (Hermann-Mauguin or HM) is the most used. 
This notation consists of two parts: the first part is the  type of Bravais lattice, where 𝑃, 𝐼, 𝐹 (A, 
B or C) and R, respectively, denote primitive, body centered, face centered, base centered (along 
the a, b or c crystallographic axis) and rhombohedral Bravais lattices; the latter part describes 
the most prominent symmetry operation visible when projected along one of the high symmetry 
directions of the crystal, which is basically the same as the international symbol of the point 
group with the addition of glide planes and screw axis. Table 3.2 gives the viewing directions of 
the seven Bravais lattice for international notation in space group and point group. 

Table 3.2 The sequence of international notation for space group or point group 

Position Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic 

1 — b a c c c a 

2 — — b a a a [111] 

3 — — c [110] [210] [210] [110] 

In the case of  the space group 𝑃4$/𝑛𝑛𝑚 (or 𝑃4$	2/𝑛	2/𝑚, No.134), the 𝑃 indicates that the 
Bravais lattice is primitive, the first position 4$/𝑛 represents that along 𝑐 axis or [001] direction 
(the characteristic 4-fold rotation reveals this space group belongs to tetragonal lattice), there is 
a 4$ screw axis paralleling to it and a 𝑛-glide plane [(𝑎 + 𝑏)/2] perpendicular to it, the second 
position 2/𝑛 shows that along 𝑎 axis or [100] direction, there is a 2-fold rotation and a 𝑛-glide 
plane [(𝑏 + 𝑐)/2] perpendicular to it, the third position 2/𝑚 shows that along [110] direction, 
there is a 2-fold rotation and a mirror plane perpendicular to it. Note in the tetragonal system, the 
[100] direction and [010] direction are identical, thus the 2-fold rotation, 𝑛-glide and mirror plane 
should be double. 

3.2.2 Symmetries in BiOI 

BiOI has a tetragonal crystal structure with a centrosymmetric space group 𝑃4/𝑛𝑚𝑚 
(𝑃4/𝑛	22/𝑚	2/𝑚, No.129) and has the layered structure with an ordered packing of five atom 
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layers in the sequence of I-Bi-O-Bi-I along the direction of c-axis, as shown in Figure 3.3(a), in 
which one O atom is coordinated by four Bi atoms, forming a tetrahedron with the O atom at the 
centre shown in Figure 3.3(c). The Bi (I) atom is coordinated by four I (Bi) atoms, forming a 
[BiI] pyramid with Bi (I) atom at the spire of the pyramid, as shown in Figure 3.3(d) [Figure 
3.3(e)]. 

A distinct feature is that the [BiI] pyramids and O layer stack alternating with the opposite 
[BiI] pyramids in the layered structures, shown in Figure 3.4. It can be seen clearly that the 
layered structure contains two opposite types of [BiI] pyramid along 𝑐-axis and a 𝑎/2 translation 
in 𝑎-axis, in which the opposite [BiI] layers connected by sharing the oxygen layer. From this 
side-view structure of BiOI, the obviously open [BiI] layer is stacked incompactly by comprising 
a layer of O atom slab that plays a role of minimizing the interaction of the opposite [BiI] layer, 
which is conductive to enhancing the HSP effect. Consequently, the opposite [BiI] layers are 
denoted here as sector 𝛼 and sector 𝛽, also shown in Figure 3.3(a). Another feature is that there 
is an enough space, which can be regarded as vacuum slab, between [BiI] layer and the opposite 
[BiI] layer in another unit cell. This vacuum slab can also minimize the interaction between the 
[BiI] layer and its inversion partner. What is more, the vacuum slab makes the layered material 
very easy to cleave due to weak van der Waals force, such that the HSP effect localized on the 
separated real sector has a practical application potential. 

As indicated in the space group 𝑃4/𝑛𝑚𝑚 (𝑃4/𝑛	22/𝑚	2/𝑚), the BiOI is a primitive Bravais 
lattice with 𝐶*  operations (including 𝐶*2, 𝐶*$ = 𝐶$, 𝐶*,, 𝑒 ) as the principle axis along [001] 
direction and a 𝑛-glide plane [{𝑀7|(1/2,1/2,0)}] perpendicular to the principle axis [for O atoms, 
shown in Figure 3.3(f) whose point group is 𝐷$+], two 22 screw axes along [100] and [010] 
directions and two mirror planes perpendicular to them respectively, two 𝐶$ rotation axes along 
[110] and [1-10] directions and two mirror planes perpendicular to them respectively [for Bi and 
I atoms shown in Figure 3.3(g) whose point group is 𝐶*)]. Note that the screw axes are located 
at the centre of two distinct Bi atoms. In total, there are 16 symmetry operators in the 𝑃4/𝑛𝑚𝑚 
space group. They are: 

 {𝑒|0}(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑧) (3.18a) 

 {𝐶.4+ |0}(𝑥, 𝑦, 𝑧) = (−𝑥,−𝑦, 𝑧) (3.18b) 

 {𝐶04+ |(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (−𝑦 + 1 2⁄ , 𝑥 + 1 2⁄ , 𝑧) (3.18c) 

 {𝐶04/ |(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (𝑦 + 1 2⁄ ,−𝑥 + 1 2⁄ , 𝑧) (3.18d) 
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 R𝐶.(+ |(1 2⁄ , 1 2⁄ , 0)S(𝑥, 𝑦, 𝑧) = (−𝑥 + 1 2⁄ , 𝑦 + 1 2⁄ ,−𝑧) (3.18e) 

 {𝐶.&+ |(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (𝑥 + 1 2⁄ ,−𝑦 + 1 2⁄ ,−𝑧) (3.18f) 

 {𝑀4𝑀&𝐶04+ |0}(𝑥, 𝑦, 𝑧) = (𝑦, 𝑥, −𝑧) (3.18g) 

 R𝑀4𝑀(𝐶04/ |0S(𝑥, 𝑦, 𝑧) = (−𝑦,−𝑥,−𝑧) (3.18h) 

 {𝑖|(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (−𝑥 + 1 2⁄ ,−𝑦 + 1 2⁄ ,−𝑧) (3.18i) 

 {𝑀4|(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (𝑥 + 1 2⁄ , 𝑦 + 1 2⁄ ,−𝑧) (3.18j) 

 {𝑀&𝐶04+ |0}(𝑥, 𝑦, 𝑧) = (𝑦,−𝑥,−𝑧) (3.18k) 

 {𝑀4𝐶04/ |0}(𝑥, 𝑦, 𝑧) = (−𝑦, 𝑥, −𝑧) (3.18l) 

 {𝑀&|0}(𝑥, 𝑦, 𝑧) = (𝑥,−𝑦, 𝑧) (3.18m) 

 R𝑀(|0S(𝑥, 𝑦, 𝑧) = (−𝑥, 𝑦, 𝑧) (3.18n) 

 {𝑀&𝐶04/ |(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (−𝑦 + 1 2⁄ ,−𝑥 + 1 2⁄ , 𝑧) (3.18o) 

 {𝑀&𝐶04+ |(1 2⁄ , 1 2⁄ , 0)}(𝑥, 𝑦, 𝑧) = (𝑦 + 1 2⁄ , 𝑥 + 1 2⁄ , 𝑧) (3.18p) 

The matrix representations for all the symmetry operators are listed in the Appendix A. 
Among the 16 symmetry operators, there are 8 symmetry operators marked with red color, under 

which the 𝑋 point  is invariant (i.e., {𝛼|𝜏}𝑘A⃗ 4 = 𝛼𝑘A⃗ 4 + 𝜏 = 𝑘A⃗ 4 + �⃗�) [18], which will be discussed 
in more detail in the next section. 
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Figure 3.3 Crystal structure and symmetries for BiOI. (a) squint view of BiOI crystal consisted of two 
packed unit cells along c-axis. (b) Top view of BiOI. (c) O atom and its four nearest Bi atoms neighbors 
form a tetrahedron, in which the O atom is located at the center. (d) & (e) Bi (I) atom and its four nearest 
I (Bi) atoms neighbors form a pyramid, of which the Bi (I) occupies the apex. (f) & (g) the nonsymmorphic 

𝑛-glide [{𝑀4|(1/2,1/2,0)}], 2+	screw axes [{𝐶.&│(1/2,0,0)}, 𝐶.(|(0,1/2,0)}] and other symmorphic 
symmetries. The locations of the screw axes are shown exactly in (g). Note, in (g) there does not exist a 
horizontal mirror plane, here the yellow plane is merely used to show the locations of screw axes and 
rotation axes. 
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Figure 3.4 The layered structure of BiOI along c-axis. The sector 𝛼 and its inversion partner sector 𝛽 are 
incompactly stacked by a O slab or a vacuum slab that minimizing the compensations between the 
opposite sectors, such that, the inversion asymmetry (𝐶0$) introduced dipole fields in [BiI] pyramid layers 
will lead to a net spin polarization located in each sector. 

3.3 Electronic Structure of Bismuth Oxyiodide (BiOI) 

In this section, prior to show the electronic structure (band dispersion) of BiOI, it is necessary 
to introduce the theoretical backgrounds for the band structure calculation, including density 
functional theory (DFT) and tight-binding (TB) model, which will be frequently used in the 
following discussion. Logically, these two methods will be explained briefly in section 3.3.1, 
followed by the DFT results of BiOI in sanction 3.3.2 and TB model results in section 3.3.3, 
followed by a discussion with symmetry analysis of the band degeneracy and splitting in section 
3.3.4.  

3.3.1 Theories for band calculation 

(1) Brief introduction to density functional theory (DFT) 

It is a many-body problem for solids band structure calculation, where some important 
approximations must be considered. Frist, the Hamiltonian for an ideal solid can be written as: 
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 = 𝑇E + 𝑇! + 𝑉EEx𝑅A⃗ z + 𝑉!!(𝑟) + 𝑉E!(𝑟, 𝑅A⃗ ) 

where 𝑁 refers the number of nuclei (subscript 𝐼) or electrons (subscript 𝑒), 𝑃wAAA⃗  momentum for 

nucleus and 𝑝!AAAA⃗  momentum for electron, 𝑀w  mass for nucleus and 𝑚!  mass for electron, 𝑅wAAAA⃗  
coordinate for nucleus and 𝑟{AA⃗  coordinate for electron, and 𝑍w charge for nucleus. 

Consequently, the one electron Schrödinger equation reads: 

 𝑯Φx𝑥, 𝑅A⃗ z = 𝐸Φx𝑥, 𝑅A⃗ z (3.20) 

here, 𝑥 ≡ (𝑟, 𝑠) denotes full set of electronic positions and spin variables. Since there is a large 
difference in the time-scales of nuclei and electrons motion, one can make a ansatz that the 

wavefunction Φx𝑥, 𝑅A⃗ z  is separable, i.e., Φx𝑥, 𝑅A⃗ z = Ψx𝑥, 𝑅A⃗ zχ(RAA⃗ )  where Ψx𝑥, 𝑅A⃗ z  represents 

electrons wavefunction and χ(RAA⃗ ) means nuclei wavefunction, thus, the Schrodinger equation can 
be adiabatically decoupled as [138,139]: 

 𝑯!Ψ(x𝑥, 𝑅A⃗ z = q𝑇! + 𝑉!!(𝑟) + 𝑉E!(𝑟, 𝑅A⃗ )rΨ(x𝑥, 𝑅A⃗ z = 𝜀(Ψ(x𝑥, 𝑅A⃗ z (3.21a) 

 𝑯Eχ(xRAA⃗ z ≈ q𝑇E + 𝑉EEx𝑅A⃗ z + 𝜀(x𝑅A⃗ zrχ(xRAA⃗ z = 𝜖(χ((RAA⃗ ) (3.21b) 

here the 𝜀x𝑅A⃗ z is the electron eigenvalue depending parametrically on the nuclei positions 𝑅A⃗ . This 
assumption is called Born-Oppenheimer approximation or adiabatical approximation. Due to the 
motion of nuclei is much slower than electrons, one can regard the nuclei as moving in the 
average potential of the electron gas (𝜀(), and if neglecting quantum effects in nuclei dynamics, 

then the motion of nuclei can be described by classical Newtonian −∇𝜖(𝑅A⃗ ) = 𝑑𝑃w/𝑑𝑡, hence, 

the 𝜖( = 𝑇E + 𝑉EEx𝑅A⃗ z + 𝜀(x𝑅A⃗ z. 

The next purpose is solving (3.21a). In early quantum chemistry, there is method called 
Hartree-Fock approximation, where Slater determinant is used to describe the wavefunction and 

an average effective potential is adopted to replace the 𝑉!!(𝑟) + 𝑉E!(𝑟, 𝑅A⃗ ). That is to say, the 

many electron wavefunction is represented as Ψ(x𝑥, 𝑅A⃗ z = 𝓐[𝜑2(𝑥2)𝜑$(𝑥$)…𝜑((𝑥()], (here 
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𝒜 is antisymmetry operator, 𝒜 = 2
√E!

∑ (−1)��  with 𝑃 denoting exchange arrangement in math). 

By the variational condition 𝛿 �Ψ(�𝑯!�Ψ(�
�Ψ(�Ψ(�

= 0 , one can obtain the Hartree-Fock equation 

[138,139]: 

¤−
ℏ$

2𝑚∇$ + 𝑉!!(𝑟) + ¶𝑑,𝑥S
𝜑8(𝑥′)𝜑8∗(𝑥′)
|𝑥 − 𝑥S|

−� ¶𝑑,𝑥S
q𝜑}∗(𝑥′)𝜑8(𝑥′)𝜑8∗(𝑥)𝜑}(𝑥)r 𝜑8∗(𝑥)𝜑8(𝑥)ú

|𝑥 − 𝑥S|}
¦ 𝜑8(𝑥)

≡ ¤−
ℏ$

2𝑚∇$ + 𝑉�T(𝑟)¦𝜑8(𝑥) = 𝜀8𝜑8(𝑥) 

(3.22) 

The difficulty in solving this equation is that the integral terms contain the wave functions 
𝜑8(𝑥), 𝜑}(𝑥) to be solved, so it can only be solved iteratively. This approximation (Hartree-Fock 
self-consistent field approximation) simplifies the many-electron Schrödinger equation to the 
single-electron effective potential Schrödinger equation. This approximation has considered the 
electron-electron exchange interaction, but does not consider the repulsive interaction between 
spin antiparallel electrons, i.e., the electron correlation interaction.  

In solid physics, there is another method to solve equation (3.21a), which is the celebrated 
density functional theory (DFT). The starting point of this theory is based on the Hohenberg-
Kohn theorem [139,140]: (1) the ground state energy 𝜀6[𝑛6(𝑟)] of a many body system is a 
unique functional of the particle density 𝑛6(𝑟) = ∑ |𝜑8(𝑟)|$8 ; (2) the functional 𝜀[𝑛(𝑟)] has its 
minimum relative to variations 𝛿𝑛(𝑟)	of the particle density at the equilibrium density 𝑛6(𝑟), 
i.e., 𝛿𝜀[𝑛(𝑟)] 𝛿𝑛(𝑟)⁄ |((>⃗)x(!(>⃗) = 0. 

According to the Hohenberg-Kohn theorem, the ground state energy can be obtained by the 
variation of the energy functional to the density function [139], i.e., 𝐸[𝑛] = 𝑇[𝑛] + 𝐸�[𝑛] +
𝐸4[[𝑛] + ∫𝑉(𝑟)𝑛𝑑,𝑟, with kinetic energy 𝑇[𝑛], electron-electron interaction 𝐸�[𝑛] (Hartree 
energy), exchange and correlation energies 𝐸4[[𝑛] and potential energy ∫𝑉(𝑟)𝑛𝑑,𝑟. Since one 
know nothing about the kinetic energy terms 𝑇[𝑛] of interacting particles, W. Kohn and L. J. 
Sham assumed that the kinetic energy functional 𝑇[𝑛]  can be replaced by a known non-
interacting kinetic energy functional 𝑇S[(] = ∑ ∫𝜑8∗(�⃗�)(−ℏ$∇$/2𝑚)𝜑8(𝑟)𝑑,𝑟8  with the  
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prerequisite that the difference between the two kinetic energy functional must to be included in 
the exchange correlation item 𝐸4[[𝑛], leaving only the 𝐸4[[𝑛] item is unknown. Therefore, one 
can obtain a equation analog to Hartree-Fock equation, which is called Kohn-Sham equation 
[139]: 

 
û−

ℏ$

2𝑚∇$ + 𝑉(𝑟) + 𝑒$¶
𝑛x𝑟SAAA⃗ z
|𝑟SAAA⃗ − 𝑟|

𝑑,𝑟 + 𝜇4[[𝑛(𝑟)]ü 𝜑8(𝑟)

= ¤−
ℏ$

2𝑚∇$ + 𝑉m%(𝑟)¦𝜑8(𝑟) = 𝜀8𝜑8(𝑟) 
(3.23) 

with 𝜇4[[𝑛(𝑟)] = 𝛿𝐸4[[𝑛(𝑟)]/𝛿𝑛(𝑟). Corresponding to the effective potential 𝑉�T(𝑟) in the 
Hartree-Fock equation, here is the Kohn-Sham effective potential 𝑉m%(𝑟). According to the 
Kohn-Sham theorem, the particle number density function obtained in this way accurately 
determines the energy and wave function of the ground state of the system, as well as the 
expected values of various physical quantity operators. 

The next work is to solve the Kohn-Sham equation. First, one should choose a basis set. A 
natural choice for system with periodic boundary condition is the plane waves or the projector 
augmented waves, because it is easy to pass from real to reciprocal space representation by FFT 
[139]. The next step is to find an approximate expression for the effective potential term 𝑉m%(𝑟). 
Here are some frequently used effective potential in early days , such as the Kohn-Sham-Gasper 

exchange-correlation approximation 𝑉 = −2 (3 𝜋)⁄ 2 ,⁄ [𝑛(𝑟)]2 ,⁄ , the Slater 𝑋j  approximation 
𝑉 = −3𝛼(3 𝜋⁄ )2/,[𝑛(𝑟)]2 ,⁄  with (2/3 ≤ 𝛼 ≤ 1) , the Wigner-Pines exchange-correlation 
approximation 𝑉 = −0.88 (2 3𝑟R⁄ + 7.79) (𝑟R + 7.79)$⁄  with 𝑟R = −0.88 𝜀⁄ − 7.79 , Hedin-
Lundqvist exchange-correlation approximation 𝑉 = −(0.045 2) ln[1 + (21/𝑟R)]⁄  with 𝜀 =
−(0.045 2⁄ )ýq1 + (𝑟R 21)⁄ $r𝑙𝑛 ln[1 + (21/𝑟R)] + 𝑟R 42⁄ − (𝑟R 21)⁄ $ − 1 3⁄ þ , Ceperley-Alder 

exchange-correlation approximation 𝑉 = −0.9164 𝑟R⁄  with 𝜀 = −0.2846/(1 + 1.0529Y𝑟R +
0.3334𝑟R for 𝑟R ≥ 1 and 𝜀 = −0.096 + 0.0622𝑙𝑛𝑟R − 0.0232𝑟R + 0.004𝑟R𝑙𝑛𝑟R for 𝑟R ≤ 1.  

Nowadays, people have developed many new approximations [139]: (1) the generalized 
gradient approximation (GGA) [141] 𝑉 = ∫𝑓[𝑛(𝑟, ↑), 𝑛(𝑟, ↓), ∇𝑛(𝑟, ↑), ∇𝑛(𝑟, ↓)], in which there 
are many different strategies to determine the function 𝑓[𝑛(𝑟, ↑), 𝑛(𝑟, ↓), ∇𝑛(�⃗�, ↑), ∇𝑛(𝑟, ↓)] like 
the methods of Perdew-Wang (PW), Becke-Perdew (BP), Lee-Yang-Parr (LYP), and Perdew-
Burke-Ernzernhof (PBE); (2) Meta-GGA [142], where an additional kinetic energy density of 
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the electrons is included; (3) Hybrid functionals (HF) [143], where exact exchange and local 
density energies are hybridized; (4) DFT+U [144], where the on-site Coulomb repulsion is 
described by the Hubbard Hamiltonian; (5) GW approximation [145], where the full interacting 
for quasiparticle excitation is calculated by Green’s function and dynamical screened Coulomb 
interaction is described by the W function. 

(2) Brief introduction to tight binding (TB) model 

From another perspective, consider the formation of energy band by placing isolated atoms 
on the lattice point of the Bravais lattice. For the convenience of processing, we only discuss the 
situation where the electron wave functions of neighboring atoms overlap each other very little, 
that is, the situation where electrons are tightly bound to the atom. 

Assuming 𝜑8(𝑟)  is the single electron eigenstate of isolated atom, corresponding to 
eigenvalue 𝜀8, illustrated as: 

 
¤−

ℏ$

2𝑚∇$ + 𝑉V@\D(𝑟)¦ 𝜑8(𝑟) = 𝜀8𝜑8(𝑟) (3.24) 

where 𝑉(𝑟) is potential for single atom, 𝑖 is the index for specific quantum state. The starting 
point of the tight-binding approximation is to regard the Bloch wave function [𝜓(𝑟)] in the 
crystal as a linear combination of 𝑁 degenerate atomic wave functions [𝜑8(𝑟)], that is, a linear 
combination of atomic orbitals (LCAO). 

 𝜓(𝑟) =�
1
√𝑁

𝑒8.;⃗ ⋅c;⃗0𝜑8x𝑟 − 𝑅A⃗Dz
c;⃗0

 (3.25) 

with the assumption that ∫𝜑8∗x�⃗� − 𝑅A⃗ (z𝜑8x𝑟 − 𝑅A⃗Dz = 𝛿(D, where 𝑟 is the position of electron in 

the atom frame and 𝑅A⃗ ( is the position of the 𝑛-th atom in the lattice frame.  

Put the Bloch wave function [ 𝜓(𝑟)]  (3.25) into the crystal Schrödinger equation 

g− ℏ)

$D
∇$ + 𝑉(𝑟)i𝜓(𝑟) = 𝜀𝜓(𝑟), one gets: 

 
�𝑒8.;⃗ ⋅c;⃗0 ¤−

ℏ$

2𝑚∇$ + 𝑉(𝑟) − 𝜀¦𝜑8x�⃗� − 𝑅A⃗Dz = 0
c;⃗0

 (3.26) 
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Replace the kinetic term in (3.26) by (3.24), and left-handed multiply 𝜑8∗(�⃗�) and integrate, 
one gets: 

 𝜀8 − 𝜀 +¶q𝑉(𝑟) − 𝑉V@\Dx𝑟 − 𝑅A⃗Dzr |𝜑8(𝑟)|$𝑑𝑟

+ � 𝑒8.;⃗ ⋅c;⃗0 ¶𝜑8∗(𝑟)q𝑉(𝑟) − 𝑉V@\Dx𝑟−𝑅A⃗Dzr𝜑8x𝑟 − 𝑅A⃗Dz𝑑𝑟
c;⃗0z6

= 0 

(3.27) 

Thus, in simplified notation the eigenvalue 𝜀(𝑘A⃗ ) reads: 

 𝜀(𝑘A⃗ ) = 𝜀8 − 𝐽(0) − � 𝑒8.;⃗ ⋅c;⃗0𝐽(𝑅A⃗D)
c;⃗0z6

 
(3.28) 

where Δ𝑉 = 𝑉(𝑟) − 𝑉V@\Dx𝑟 − 𝑅A⃗ z  is the potential difference between crystal periodic and 

atomic potential located at 𝑅A⃗D, −𝐽(0) = ∫[𝑉(𝑟) − 𝑉V@\D(𝑟)] |𝜑8(𝑟)|$𝑑𝑟 is the overlap integral 

when 𝑅A⃗D = 0, and −𝐽x𝑅A⃗Dz = ∫𝜑8∗(𝑟)[𝑉(𝑟) − 𝑉V@\D(𝑟)]𝜑8x𝑟 − 𝑅A⃗Dz𝑑�⃗� is the near neighbors 
overlap integral. 

3.3.2 DFT calculation results of BiOI 

First-principles calculations were carried out using the Vienna ab initio simulation package 
(VASP) [146] with in the frame work of DFT [147] with the exchange correlation described by 
the Perdew-Burke-Ernzerhof (PBE) [148] of GGA functional. The electronic structure was 
treated by projector-augmented wave (PAW) pseudopotential [149] with a planewave-basis 
cutoff 500 eV. The whole BZ was sampled by a 10×10×6 Γ-centered grid. The experimental 
lattice constants of 𝑎 = 𝑏 = 3.98Å, and 𝑐= 9.14Å were taken while atoms were fully relaxed 
until the total force on each atom less than 10-3 eV/Å and the total energy minimization was 
performed with a tolerance of 10−6 eV. SOC was included in calculations self-consistently. The 
detail of the DFT calculation is attached in Appendix B. 

Figure 3.5 presents the electronic structure of BiOI. The high symmety points and lines 
(Γ, 𝑋,𝑀, 𝑍, 𝑅, 𝐴,∆, Σ,Y,W,Λ,V,U,T, S) are shown in Figure 3.5(a). Figure 3.5(b) and (c) show 
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the DFT calculated band dispersions along high symmetry paths in the absence and presence of 
SOC, respectively. The 𝑘7  dispersions along Γ − 𝑍|𝑋 − 𝑅|𝑀 − 𝐴 paths are shown in Figure 
3.5(d). Obviously, due to the layered crystal structure, the 𝑘7 dispersion is quite flat. However, 
the periodic dispersions can still be distinguished, indicating that BiOI is a bulk crystal. 

Clearly, the valence band maximum (VBM) is close to the X point, and the bandgap is about 
1.3eV. By choosing different doping elements, it offers the possibility to manipulate the 
electronic structure such that it has the strongest absorption in the visible light range and exhibits 
the best visible-light photocatalytic activity, which is highly desirable from the viewpoint of the 
photocatalytic applications [150]. As a typical 𝑝-type semiconductor, BiOI can serve as an 
efficient visible-light photosensitizer for 𝑛-type TiO2 with a large band gap to greatly enhance 
its photocatalytic efficiency [151]. 

Another noticeable feature is that at the points X, M, R and A, the glide reflection symmetry 
{𝑀7|(1/2,1/2,0)}  anticommutes with the inversion operator, leading to an extra two-fold 
degeneracy between two pairs of Kramer’s degeneracy, i.e., four-fold degeneracy including the 
spin, which will be well discussed in section 3.3.4. Such a four-fold degeneracy is maintained 
along the entire X-M and R-A lines in the absence of SOC (due to the quasi-2D nature of BiOI 
crystal), as shown in Figure 3.5(f) and (h). Thus, the band splitting along the X-M and R-A lines 
is caused by SOC solely. In analogy to the conventional Rashba/Dresselhaus effect, such a 
splitting is composed of two sets of spin splitting bands originating from the sectors 𝛼 and 𝛽, 
respectively [19]. In comparison, the splitting along the Γ-X and Z-R lines are contributed by 
both of orbital repulsions and the SOC effect, and are thus larger than those along the X-M and 
R-A lines, as shown in Figure 3.5(e)~(h). 
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Figure 3.5 Electronic structure of BiOI in the absence and presence of SOC. (a) BZ and high symmetry 
paths. (b)~(c) electronic structure without and with SOC. (d) band dispersions along 𝑘4 paths. (e)~(h) 
zoom in figures corresponding to rectangles in (c) and (d). It is noticeable that at X, M, R and A points, 
they are four-fold degenerated including spin, such degeneracies are maintained along X-M and R-A lines 
when SOC is turn off. Due to the contribution of orbital repulsions and SOC effects, the splitting along 
Γ-X and Z-R lines are larger than the ones along X-M and R-A lines. 

Figure 3.6 shows the orbitals projection with atom resolved. It is obvious that the bottom of 
conduction bands is mainly contributed by Bi 6	𝑝7 and Bi 6 𝑠 orbitals as shown in Figure 3.6(a) 
and (d). The principal contributors for the top valence bands are I 5	𝑠, I 5	𝑝7, I 5	𝑝4 and I 5	𝑝5 
orbitals. It is noticeable that in the vicinity of the points of Γ and X, the top two valence bands 
(designated as VB1 and VB2) are mainly composed of the 5	𝑝4 + 5	𝑝5 and 5	𝑠 orbitals, while 
VB3-VB6 are dominated by the 5	𝑝7 and 5 𝑠 orbitals. However, in the vicinity of the M point, 
the top most valence bands (VB1 and VB2) are mainly dominated by the 5	𝑝7 and 5	𝑠 orbitals, 
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whereas for VB3-VB6 bands the 5	𝑝4 + 5	𝑝5  and 5	𝑠  orbitals are much more prevailing, as 
presented in Figure 3.6(b) and (e). As for other lower valence bands like VB7 to VB11, the 
predominant contributors are O’s 2𝑝 and 2𝑠 orbitals. Same phenomenon also occurs at Z-R-A-
Z lines, due to the quasi-2D nature of BiOI system. 

Since most of the physical properties are dominated by top of the valence bands, thus, here 
we focus on the top three pairs of valence bands (VB1-VB6), as mentioned above whose 
principal contributors are I 5	𝑝7  and I 5	𝑠  orbitals that are of great importance for the 
establishment of the spin textures in the next section 3.4. It is worth emphasizing that the iodine 
(I) mentioned here is exactly comes from the cleavage surface of the BiOI crystal as described 
in section 3.2.2. 

 

Figure 3.6 Orbital projection of BiOI electronic structure. (a)~(c) shows the projection along Γ-X-M-Γ, 
and (d)~(f) shows the projection along Z-R-A-Z which presents the same phenomenon as the top row 
because of the quasi-2D nature of BiOI crystal. 
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3.3.3 TB model calculation results of BiOI 

From previous section, we know that it is four-fold degenerated at the time reversal invariant 
momenta (TRIM) and two-fold spin degenerated along BZ boundaries by the DFT calculation. 
To explain the band degeneracy and splitting intuitively, the TB model is helpful to interpretate 
the degeneracy and splitting. 

Considering identical atoms, A and B occupy, respectively, two square lattice points, which 
has a specific displacement along 𝑧-axis and a glide translation along (𝑥 + 𝑦)/2 direction, as 
shown in Figure 3.7(a). This constructed 2D lattice is applied to simulate the inversion symmetry 
and nonsymmorphic symmetry in space group 𝑃4/𝑛𝑚𝑚, and these two square lattices represent 
sector 𝑎 and 𝑏, respectively. The identical atom A and B can be regarded as iodine atoms because 
they occupy the same position in 𝑃4/𝑛𝑚𝑚 space group. For convenience, the lattice constants 
on the directions of 𝑥, 𝑦 and 𝑧 are assumed to be 1 in the unit of crystal constants. 

In this case the Bloch wavefunction (3.25) of the sectors in this model can be constructed as: 

 𝜓.(
e(3)(𝑟) =

1
√𝑁

�𝑒8.;⃗ ⋅(c;⃗0Fc;⃗ 1(#))𝜑(x𝑟 − 𝑅A⃗D − 𝑅A⃗e(3)z
c;⃗0

 (3.29) 

where A(B) denotes the two kind of atoms in non-equivalent positions, i.e., in sector 𝑎 and 𝑏; 

𝑘, 𝑛  are quantum numbers, adopted to distinguish quantum states in each sector; 𝑅A⃗D  is the 

position of the unit cell and 𝑅A⃗e(3) is the position of atoms A and B in the frame of refence of unit 
cell. If choosing the Bloch sums as the basis functions, the wavefunction of this model is a linear 
combination of the basis: 

 𝛹.((𝑟) = 𝑐.(e 𝜓.(e (�⃗�) + 𝑐.(3 𝜓.(3 (𝑟) (3.30) 

with |𝑐.(e |
$ + |𝑐.(3 |$ = 1 (3.31) 

The matrix elements of this model Hamiltonian 𝑯 = − ℏ)

$D
∇$ + 𝑉(𝑟) can be written as: 

 	𝐻D(e3 = {𝜓.De (𝑟)|𝑯|𝜓.(3 (𝑟)} 

(3.32) 
 = ¶��

1
𝑁

c;⃗ 4

𝑒8.;⃗ ⋅(c;⃗ 41c;⃗ 5Fc;⃗ #1c;⃗ 1)𝜑D∗ x𝑟 − 𝑅A⃗} − 𝑅A⃗ez𝑯𝜑(x𝑟 − 𝑅A⃗ g − 𝑅A⃗ 3z
c;⃗ 5

𝑑𝑟 
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 =�𝑒8.;⃗ ⋅(c;⃗ 41c;⃗ 5Fc;⃗ #1c;⃗ 1)

c;⃗ 4

¶𝜑D∗ x𝑟 − 𝑅A⃗} − 𝑅A⃗ez𝑯𝜑(x𝑟 − 𝑅A⃗ g − 𝑅A⃗ 3z𝑑𝑟 

 =�𝑒8.;⃗ ⋅(c;⃗ 41c;⃗ 5Fc;⃗ #1c;⃗ 1)

c;⃗ 4

𝑡D(
}g,e3 

where 𝑡D(
}g,e3 = ∫𝜑D∗ x𝑟 − 𝑅A⃗} − 𝑅A⃗ez𝑯𝜑(x𝑟 − 𝑅A⃗ g − 𝑅A⃗ 3z𝑑𝑟 is parameter describing the hopping 

between two different atoms with the quantum states of 𝜑Dx𝑟 − 𝑅A⃗} − 𝑅A⃗ez and 𝜑(x𝑟 − 𝑅A⃗ g − 𝑅A⃗ 3z, 

located at positions of 𝑅A⃗} + 𝑅A⃗e and 𝑅A⃗ g + 𝑅A⃗ 3, respectively. This integral is a three-center integral, 
whose calculation is very difficult. However, if we adopt the Slater-Koster approximation 
[152,153], in which the integral is approximated to a two center integral, and can be expressed 
as a function of radial integral (𝑉D(j). For instance, the nearest hopping between 𝑝4  and 𝑝5 
orbitals can be expressed as 𝑙𝑚(𝑉QQH − 𝑉QQ�), where 𝑙, 𝑚 and 𝑛 are direction cosines of the 
vector from one atom to another nearest atom. The hopping parameters between 𝑠 and 𝑝4, 𝑝5, 𝑝7 
orbitals are shown in Table 3.3. More details on the Slater-Koster approximation and its hopping 
parameters are presented in Appendix C. 

 

Table 3.3 The hopping parameters 𝑡56  between 𝑠  ( 𝑠 ) and 𝑝& , 𝑝( , 𝑝4  ( 𝑥, 𝑦, 𝑧 ) orbitals can be 

approximately expressed as radical integrals 𝑉567, which scale with the vector 𝑑. The direction cosines 

are defined as 𝑙 = 𝑑 ⋅ �⃗�/𝑑, 𝑚 = 𝑑 ⋅ �⃗�/𝑑, 𝑛 = 𝑑 ⋅ 𝑧/𝑑 [19]. 

𝑡** 𝑉**8 𝑡&& 𝑙.𝑉))8 + (1 − 𝑙.)𝑉))9 

𝑡*& 𝑉*)8 𝑡&( 𝑙𝑚^𝑉))8 − 𝑉))9_ 

𝑡&* −𝑙𝑉*)8 𝑡(4 𝑚𝑛^𝑉))8 − 𝑉))9_ 

 

The matrix elements 𝐻D(e3 = ∑ 𝑒8.;⃗ ⋅(c;⃗ 41c;⃗ 5Fc;⃗ #1c;⃗ 1)c;⃗ 4 𝑡D(
}g,e3 can be applied to multi-orbital case 

if one set the quantum number 𝑚, 𝑛  representing different orbitals, or single orbital if 𝑚, 𝑛 
representing only one orbital per atom. This is a universal expression of Hamiltonian in the frame 
of TB model.  
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In our case, one atom A have four nearest neighbor atoms B and four next nearest neighbors 

A, as shown in Figure 3.7(b). The relative position vectors 𝑅A⃗ g − 𝑅A⃗} + 𝑅A⃗ 3 − 𝑅A⃗e are hence denoted 

as 𝑑22 , 𝑑2$ , 𝑑2, , 𝑑2*  for the nearest neighbors and 𝑑$2 , 𝑑$$ , 𝑑$, , 𝑑$*  for the next nearest 

neighbors. Correspondingly, the hopping parameters 𝑡D(
}g,e3 are denominated as 𝑡D(22 , 𝑡D(2$ ,	𝑡D(2, , 

𝑡D(2*  (𝑡D($2 , 𝑡D($$ , 𝑡D($, , 𝑡D($* ) for nearest (next nearest) neighbors. It is noticeable that 𝑡D(22 = 𝑡D(2$ =
𝑡D(2, = 𝑡D(2*  and 𝑡D($2 = 𝑡D($$ = 𝑡D($, = 𝑡D($*  are equivalent due to the symmetries in this crystal 
structure. If we consider only one orbital for each atom, then, the hopping parameters can be 
rewritten in the following form: 

 𝐻}g =�𝑒8.;⃗ ⋅+⃗54
g

𝑡}g (3.33) 

For example, the matrix element of 𝐻e634  (nearest hopping) can be expressed as:	𝐻e634 =

𝑒8.;⃗ ⋅+⃗66𝑡22+𝑒8.;⃗ ⋅+⃗6)𝑡2$+𝑒8.;⃗ ⋅+⃗67𝑡2, + 𝑒8.;⃗ ⋅+⃗68𝑡2* = 𝑡2 ´𝑒8.
;⃗ ⋅+⃗66+𝑒8.;⃗ ⋅+⃗6)+𝑒8.;⃗ ⋅+⃗67 + 𝑒8.;⃗ ⋅+⃗68µ =

𝑡2 §𝑒
8�*') F

*(
) � + 𝑒8�1

*'
) F

*(
) � + 𝑒18�

*'
) F

*(
) � + 𝑒8�

*'
) 1

*(
) �¨ = 𝑡2𝑐𝑜𝑠

.'
$
𝑐𝑜𝑠 .(

$
. In the same way, the 

matrix element of 𝐻e6e4  (next nearest hopping) is 𝑡$x𝑒8.' + 𝑒8.( + 𝑒18.' + 𝑒18.(z =

𝑡$(𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5). Note the constants are absorbed into 𝑡2and 𝑡$ respectively. Therefore, the 
Hamiltonian of this TB model can be written as: 

 

𝐻 = c
𝐻e6e4 𝐻e634
𝐻36e4 𝐻e4e6

d = *
𝑡$(𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5) 𝑡2𝑐𝑜𝑠

𝑘4
2
𝑐𝑜𝑠

𝑘5
2

𝑡2𝑐𝑜𝑠
𝑘4
2 𝑐𝑜𝑠

𝑘5
2 𝑡$(𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5)

+ 
(3.34) 

  
= 𝑡2𝑐𝑜𝑠

𝑘4
2 𝑐𝑜𝑠

𝑘5
2 𝜏4 + 𝑡$x𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5z𝜏6 

where 𝜏4 = g0 1
1 0i and 𝜏6 = g1 0

0 1i. 

The next is to take the SOC term into account. An electron hopping from the atom A to its for 
next near neighbors will fell an effective field originating from the local asymmetry. Considering 

the original SOC term − ℏ
*D!

)[)
𝝈 ⋅ (𝒑 × ∇𝑉) in (3.6), in which the 𝒑 × ∇𝑉 represents an effective 

magnetic field perpendicular to the in-plane lattice. Here, if we use another vector with the same 
direction to represent this effective magnetic field, thus, the SOC term can be written as −𝜂𝝈 ⋅
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(𝑑2} × 𝑑2g) where the other parameters are all absorbed in 𝜂 and 𝑑2} , 𝑑2g are position vectors 

along the two nearest bonds connecting the next nearest neighbors 𝑑$} shown in Figure 3.7(c) 
[19]. To obtain the SOC term in reciprocal space, in this case, we should sum over the four next 

nearest neighbors’ SOC effects and transform the real space vector 𝑑2} × 𝑑2g in reciprocal space. 

First, the vector 𝑑2} × 𝑑2g in reciprocal space should be: 

 𝑑2} × 𝑑2g = q𝑑2* × x−𝑑2,z + x−𝑑2$z × 𝑑22r𝑒8.
;⃗ ⋅+⃗)6 

(3.35a) 

 +q𝑑22 × x−𝑑2*z + x−𝑑2,z × 𝑑2$r𝑒8.
;⃗ ⋅+⃗)) 

 +q𝑑2$ × x−𝑑22z + x−𝑑2*z × 𝑑2,r𝑒8.
;⃗ ⋅+⃗)7 

 +q𝑑2, × x−𝑑2$z + x−𝑑22z × 𝑑2*r𝑒8.
;⃗ ⋅+⃗)8 

Considering the symmetries, the Fourier term of q𝑑2$ × x−𝑑22z + x−𝑑2*z × 𝑑2,r =

−q𝑑2, × x−𝑑2$z + x−𝑑22z × 𝑑2*r ≡ 𝜉2, meanwhile the term of q𝑑2* × x−𝑑2,z + x−𝑑2$z ×

𝑑22r = −q𝑑2$ × x−𝑑22z + x−𝑑2*z × 𝑑2,r ≡ 𝜉$. Therefore, the (3.35) equals to: 

 𝑑2} × 𝑑2g = −𝜉2 ´𝑒8.
;⃗ ⋅+⃗)8 − 𝑒8.;⃗ ⋅+⃗))µ + 𝜉$ ´𝑒8.

;⃗ ⋅+⃗)6 − 𝑒8.;⃗ ⋅+⃗)7µ 

(3.35b)   = −𝜉2x2𝑖𝑠𝑖𝑛𝑘5z + 𝜉$(2𝑖𝑠𝑖𝑛𝑘4) 

  ≡ x−𝑠𝑖𝑛𝑘5 , 𝑠𝑖𝑛𝑘4z𝜉 

Then the SOC term can be rewritten as: 

 −𝜂𝝈 ⋅ x𝑑2} × 𝑑2gz = 𝜆cx𝜎5𝑠𝑖𝑛𝑘4 − 𝜎4𝑠𝑖𝑛𝑘5z (3.36) 

where 𝜏7 = g1 0
0 −1i shares the same direction with 𝜉, 𝜆c  is the Rashba strength. Combining 

equation (3.34), thus, we obtain the single orbital TB Hamiltonian as: 
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𝐻 = 𝑡2𝑐𝑜𝑠

𝑘4
2 𝑐𝑜𝑠

𝑘5
2 𝜏4 ⊗ 𝜎6 + 𝑡$x𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5z𝜏6

⊗ 𝜎6 + 𝜆c𝜏7 ⊗ x𝜎5𝑠𝑖𝑛𝑘4 − 𝜎4𝑠𝑖𝑛𝑘5z 
(3.37) 

in which the first (second) term describes the nearest (next nearest) neighbor hopping, while the 
third term depicts Rashba SOC induced by local polar fields; 𝑡2(𝑡$) is the inter-sector or nearest 
(intra-sector or next nearest) electron hopping that contributes to the diagonal (off-diagonal) 
terms in this Hamiltonian on the basis of {|𝛼↑⟩, |𝛼↓⟩, |𝛽↑⟩, |𝛽↓⟩} and thus the 𝜏 and 𝜎 are the 
Pauli matrices under the basis of {|𝛼⟩, |𝛽⟩} and {|↑⟩, |↓⟩}, respectively. 

Next we solve the secular equation of this single orbital TB Hamiltonian. First, the 
Hamiltonian reads: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑡.^𝑐𝑜𝑠𝑘& + 𝑐𝑜𝑠𝑘(_ −𝜆:^𝑖𝑠𝑖𝑛𝑘& + 𝑠𝑖𝑛𝑘(_ 𝑡+𝑐𝑜𝑠

𝑘&
2
𝑐𝑜𝑠

𝑘(
2
𝜏& 0

𝜆:^𝑖𝑠𝑖𝑛𝑘& − 𝑠𝑖𝑛𝑘(_ 𝑡.^𝑐𝑜𝑠𝑘& + 𝑐𝑜𝑠𝑘(_ 0 𝑡+𝑐𝑜𝑠
𝑘&
2
𝑐𝑜𝑠

𝑘(
2
𝜏&

𝑡+𝑐𝑜𝑠
𝑘&
2
𝑐𝑜𝑠

𝑘(
2
𝜏& 0 𝑡.^𝑐𝑜𝑠𝑘& + 𝑐𝑜𝑠𝑘(_ 𝜆:^𝑖𝑠𝑖𝑛𝑘& + 𝑠𝑖𝑛𝑘(_

0 𝑡+𝑐𝑜𝑠
𝑘&
2 𝑐𝑜𝑠

𝑘(
2 𝜏& 𝜆:^−𝑖𝑠𝑖𝑛𝑘& + 𝑠𝑖𝑛𝑘(_ 𝑡.^𝑐𝑜𝑠𝑘& + 𝑐𝑜𝑠𝑘(_ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

≡ *

𝑁 −𝐷 𝑀 0
−𝐷∗ 𝑁 0 𝑀
𝑀 0 𝑁 𝐷
0 𝑀 𝐷∗ 𝑁

+ (3.38) 

where 𝑀 = 𝑡2𝑐𝑜𝑠
.'
$
𝑐𝑜𝑠 .(

$
, 𝑁 = 𝑡$x𝑐𝑜𝑠𝑘4 + 𝑐𝑜𝑠𝑘5z , 𝐷 = 𝜆cx𝑖𝑠𝑖𝑛𝑘4 + 𝑠𝑖𝑛𝑘5z . Then, by 

diagonalizing the determinant |𝐻 − 𝐸𝐼| (𝐼 is a 4×4 identity matrix), we can get the eigenvalues 
to be: 

 𝐸2,$ = 𝑁 −Y(𝑀$ + 𝐷𝐷∗) ≡ 𝑁 − 𝑈 (3.39a) 

 𝐸,,* = 𝑁 + Y(𝑀$ + 𝐷𝐷∗) ≡ 𝑁 + 𝑈 (3.39b) 

with four corresponding orthogonal eigenvectors: 
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𝛹2 =
1
√2

.

1
𝐷∗/𝑈
−𝑀/𝑈
0

/ ,𝛹$ =
1
√2

.

0
−𝑀/𝑈
−𝐷/𝑈
0

/ ,𝛹, =
1
√2

.

1
−𝐷∗/𝑈
𝑀/𝑈
0

/ ,𝛹* =
1
√2

.

1
𝑀/𝑈
𝐷/𝑈
0

/ (3.40) 

The corresponding band dispersions for top three pairs of the valence bands drawn based on 
equation (3.39) with SOC turn on (𝜆c/𝑡2 = −0.2) and off (𝜆c = 0) is depicted in Figure 3.7(c). 
Evidently, the TB model shows similar results as DFT calculations that (i) it is four-fold 
degenerated at TRIM, and (ii) two-fold degenerated along BZ boundaries with the presence of 
SOC, and (iii) the band gaps are larger along BZ center to boundaries than the one along BZ 
boundaries. These results are difficult to understand from DFT calculations, however, much 

easier by TB model. The 𝐸x𝑘A⃗ z − 𝑘A⃗  dispersions of the TB model are given by  𝐸x𝑘A⃗ z = 𝑁 ± 𝑈 =

𝑁 ±«´𝑡2𝑐𝑜𝑠
.'
$
𝑐𝑜𝑠 .(

$
µ
$
+ 𝜆c$ ´x𝑠𝑖𝑛𝑘5z

$ − (𝑠𝑖𝑛𝑘4)$µ. For example, (i) at the TRIM of 𝑋(𝜋, 0) 

and 𝑀(𝜋, 𝜋), the corresponding eigenvalues are 𝐸(𝑋) = 𝐸(𝑀) = 𝑁, which states the four-fold 
degeneracy (spin included) at TRIM; while (ii) along BZ boundaries, the eigenvalues are 𝐸(𝑍) =
𝑁 ± 𝜆c𝑠𝑖𝑛𝑘5 x0 < 𝑘5 < 𝜋z, which responsible for the two-fold degeneracy (spin included) and 
the explanation for the band splitting only regulated by SOC (𝜆c) along 𝑍 directions; (iii) along 

Δ directions, the eigenvalues are 𝐸(Δ) = 𝑁 ± 𝜆c«´
@6
�9
µ
$
´cos .'

$
µ
$
+ (𝑐𝑜𝑠𝑘4)$ − 1 (0 < 𝑘4 <

𝜋), which gives an explanation of the two-fold degeneracy (spin included) and a large band 
splitting due to both SOC (𝜆c) and orbitals repulsion (𝑡2), as for Σ directions, the eigenvalues are 

𝐸(Σ) = 𝑁 ± 𝑡2 ´𝑐𝑜𝑠
.(
$
µ
$
,	(0 < 𝑘4 < 𝜋), which reveals that the two-fold band splitting is fully 

controlled by the orbitals repulsion (𝑡2). 

To explain the degree of wavefunction segregation (DWS) between different sectors, we 
adopted a quantity named sector polarization as illustrated in equation (3.15). Here the 

wavefunction projected onto sector 𝛼  or 𝛽  can be illustrated as 𝜌(
j/r =

∑ {𝛹((𝑘A⃗ )|𝑖⟩⟨𝑖|𝛹((𝑘A⃗ )}8∈j/r  and the sector polarization reads 𝑃(R![(𝑘A⃗ ) = ´𝜌(j − 𝜌(
rµ/´𝜌(j + 𝜌(

rµ 

depicted in Figure 3.7(d). Note that in choosing 𝛹((𝑘A⃗ ), if two eigenstates are degenerate, any 

linear combination of the two states is also an eigenstate of the system. Therefore, 𝑃(R![(𝑘A⃗ ) is 
gauge variant for a single branch of doubly degenerate bands, depending on the unitary 
transformation of basis [19]. 
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The index 𝑃(R![(𝑘A⃗ )  of sector polarization for the lowest doubly degenerate bands 

{𝐸2x𝑘A⃗ z, 𝐸$(𝑘A⃗ )} and corresponding eigenstates {𝛹2(𝑘A⃗ ), 𝛹$(𝑘A⃗ )} with different splitting strengths 
(𝑡2 𝜆c⁄ )12are shown in Figure 3.7(d). It manifests that along the BZ boundaries X–M (𝑍 lines), 

𝑃(R![(𝑘A⃗ )  stabilizes at its maximum value ±1 , indicating a vanishing hopping effect 
(compensatory interference) guaranteeing a fully wavefunction segregation onto the real sectors 

𝛼 and 𝛽. In sharp contrast, the 𝑃(R![(𝑘A⃗ ) at 𝛤 points is exactly zero, stating the wavefunctions are 
entangled completely. These observations can be well understood by the TB Hamiltonian, in 
which the off-diagonal matrix elements in the 2 × 2 block matrix are contributed solely by the 

first term of equation (3.37) (i.e., 𝑀). At the BZ boundary, the 𝑀 = 𝑡2𝑐𝑜𝑠
.'
$
𝑐𝑜𝑠 .(

$
= 0 vanishes, 

and the Hamiltonian is thus the direct sum of two matrices separately exerted on two subspaces 
spanned by two sectors: 

 
𝐻 = Ã

𝑁 −𝐷
−𝐷∗ 𝑁 𝒪

𝒪 𝑁 𝐷
𝐷∗ 𝑁

Æ = c
𝑀j 𝒪
𝒪 𝑀r

d = 𝑀j⨁𝑀r (3.41) 

Therefore, the two eigenstates {𝛹j(𝑘A⃗ ), 𝛹r(𝑘A⃗ )} are naturally chosen to be in either sector 𝛼 

or 𝛽, resulting in a maximum 𝑃(R![(𝑘A⃗ )  in the diagonalized block matrix. In the language of group 
theory that two bands with different subgroup representations do not hybridize when they meet 
each other, leading to a degenerate band-crossing point. In either case, the representation space 
of this special point can be spanned as a direct sum of two subspaces from the two crossing bands 
[19].  

On the other hand, when the wavevector travels from BZ boundaries to 𝛤 points, the off-
diagonal terms of TB Hamiltonian become more and more predominant, leading to descending 

𝑃(R![(𝑘A⃗ ) with the electron density finally distributed equally in sectors 𝛼 and 𝛽 at 𝛤 points. Note 
that if we do not consider any symmetry requirements but just separate the two sectors very far 
away from each other, the off-diagonal terms of equation (3.40) also vanish because of the 
negligible hopping parameter 𝑡2, which accounts for the strategy to insert thick slab between the 
opposite sectors to minimize the interaction. However, such a strategy is just a trivial method 
preventing the wavefunctions overlap of two individual inversion-asymmetric systems in 𝑘-
space and is not helpful for practical material design. 
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Figure 3.7 Crystal structure and corresponding band structure of TB model. (a) unit cell consists of two 
square sublattices with glide and screw symmetries (left side), and high symmetric paths in 2D BZ (right 
side). (b) overview of the sublattices and its nearest (next nearest) distances. (c) band dispersions along 
high symmetric paths drawn based on TB model. The black solid lines represent the SOC is turn on while 
blue dash lines represent the SOC is off, and the red rectangle is a zoom in of the picked bands. Note the 
solid lines are all doubly degenerated because off spin degeneracy, and the dash lies are all four-fold 
degeneracy. (d) the sector polarization, which is an index to quantitatively depict the degree of 
wavefunction segregation. 

3.3.4 Symmetry analysis of the band structure 

In the DFT calculations and TB model, we have obtained a series of important results, such 
as degeneracy and splitting of energy bands. However, we should further carefully analyze the 
roles of symmetry on the band dispersion. Even in the TB model, the symmetry is hidden in the 
constructed crystal model, thus hidden in the parameters 𝑀, 𝑁, and 𝐷, making it not obvious. In 
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this section, we will systematically analyze the contribution of symmetries to the degeneracy of 
energy bands, especially nonsymmorphic symmetries (glide planes and screw axes), of which 
the irreducible representations are only two dimensional. Consequently, the eigenvalues in these 
invariant subspaces are doubly degenerate (spin excluded). 

Prior to analyze the symmetry effects on band degeneracy, it is benefit to recall that: (i) In a 
crystal the effect of the point group operator 𝑃c  acting on a function 𝑓(�⃗�) is defined to be 

𝑃c𝑓(𝑟) = 𝑓(𝑅12𝑟), where 𝑅 is a orthogonal transformation in real space x𝑅𝑟 = 𝑟SAAA⃗ z. (ii) The 

operator 𝑅 transforms a Bloch function 𝜓.(𝑟) = 𝑒8.;⃗ ⋅>⃗𝜇.(𝑟) into a new function 𝜓.:(𝑟), where 
𝑘S  is derived from 𝑘  by a rotation 𝑅  applied in the 𝑘  space, i.e., 𝑃c𝜓.(𝑟) = 𝜓.(𝑅12𝑟) =

𝑒8.;⃗ ⋅c;6>⃗𝜇.(𝑅12𝑟) = 𝑒8.;⃗ ⋅>:;;;;⃗ 𝜇.x𝑟SAAA⃗ z = 𝑒8.:;;;;⃗ ⋅>⃗𝜇.:(𝑟) = 𝜓c.(𝑟) = 𝜓.:(𝑟), which can be noted as 

𝑘A⃗ ⋅ 𝑅12𝑟 = 𝑅𝑘A⃗ ⋅ 𝑟. (iii) It is well known that if 𝑃c commute with 𝐻 ([𝑃c , 𝐻] = 0) and 𝜓.(𝑟) is 
a solution to the Schrodinger equation, then the 𝑃c𝜓.(𝑟) is also a solution to the Schrodinger 
equation with the same energy. These three relations will play an important role in our following 
symmetry discussion. 

Now, let us consider the 2D BZ shown in Figure 3.7(a). The space group of the TB model 
have mirror planes 𝑚 perpendicular to the 𝑎-axis at 𝑥 = 𝑎/4 and 3𝑎/4, and a glide plane 𝑔 
parallel to the 𝑎-axis. First, we discuss the glide-plane effect at the time reversal invariant X 

points. If 𝜓.(𝑟) = 𝜓�(𝑥, 𝑦) is a solution for the Schrodinger equation at 𝑘A⃗ = 𝜋/𝑎 denoted as 𝑋 
in BZ, the symmetry operations act on the wavefunction 𝜓�(𝑥, 𝑦) are listed below. 

The glide operation 𝑔 implies that: 

 𝑔𝜓�(𝑥, 𝑦) = 𝜓�(𝑔12𝑥, 𝑔12𝑦) = 𝜓�(𝑥 +
V
$
, −𝑦)  (3.42) 

The space inversion operator 𝑖 enforces: 

 𝑖𝜓�(𝑥, 𝑦) = 𝜓�(𝑖12𝑥, 𝑖12𝑦) = 𝜓�(−𝑥,−𝑦)  (3.43) 

The mirror plane 𝑚 at 𝑥 = 𝑎/4 manifests: 

 𝑚𝜓�(𝑥, 𝑦) = 𝜓�(𝑚12𝑥,𝑚12𝑦) = 𝜓�(−𝑥 +
V
$
, 𝑦)  (3.44) 

Then it is obvious that 𝑔 commutes to 𝑚𝑖: 

 𝑔𝜓�(𝑥, 𝑦) = 𝑚𝑖𝜓�(𝑥, 𝑦) or [𝑔,𝑚𝑖] = 0 (3.45) 
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It is much easier to proof the degeneracy at the 𝑋 points. Suppose that the representation of 
the glide operation is pure one-dimensional, since 𝑖$𝜓�(𝑥, 𝑦) = 𝜓�(𝑥, 𝑦), it is straightforward 
that the representation of 𝑖  is ±1 , i.e., 𝑖𝜓�(𝑥, 𝑦) = ±𝜓�(𝑥, 𝑦) . Meanwhile, due to 
𝑚$𝜓�(𝑥, 𝑦) = 𝜓�(𝑥, 𝑦), it would follow that 𝑚𝜓�(𝑥, 𝑦) = ±𝜓�(𝑥, 𝑦) [154]. By (3.42), it is 
apparent to obtain the representation of 𝑔$: 

 𝑔$𝜓�(𝑥, 𝑦) = 𝑚𝑖𝑚𝑖𝜓�(𝑥, 𝑦) = (±1)$(±1)$𝜓�(𝑥, 𝑦) =
𝜓�(𝑥, 𝑦)  

(3.46) 

However, on the other hand, if one considers the coordinates transformation and the 
representation of translation operation, it follows: 

 𝑔$𝜓�(𝑥, 𝑦) = 𝑔𝜓� ´𝑥 +
𝑎
2 ,−𝑦µ = 𝜓�(𝑥 + 𝑎, 𝑦)

= 𝑒8.'V𝜓�(𝑥, 𝑦) (3.47) 

  = 𝑒8�𝜓�(𝑥, 𝑦) = −𝜓�(𝑥, 𝑦) 

which contradicts (3.46). Therefore, the assumption that the representation of 𝑋 points cannot be 
one-dimensional. That is to say the bands must degenerate at the 𝑋 points. Since the states of 
𝜓�(𝑥, 𝑦) and 𝑔𝜓�(𝑥, 𝑦) must be degenerate, whose eigenvalues must be the same because the 
Hamiltonian is invariant under the operations 𝑔. Actually, it is much easier to find that the 
irreducible representation at the 𝑋  points (𝐶*) ) is two-dimensional from any group theory 
textbook [136]. Therefore, eigenstates in this invariant subspace are doubly degenerate. 

Now, we continue to proof that the irreducible representation is two-dimensional along the 
𝑀 − 𝑋 line (𝑍 direction). In the same way with proof by contradiction. Let 𝑇 be the time reversal 
operator, we know that in the absence of spin: 

 𝑇𝜓s(𝑥, 𝑦) = 𝜓1s(𝑥, 𝑦)  (3.48) 

On the boundary 𝑘A⃗ s = ´�
V
, 𝑦µ it must follow: 

 −𝑘A⃗ s = ´− �
V
, −𝑘5µ = ´�

V
, −𝑘5µ  (3.49) 

Thus, from (3.45) and assuming the state along 𝑍 direction to be nondegenerate, thus: 

 𝑔𝑇𝜓7(𝑥, 𝑦) = 𝑚𝑖𝜓1s(𝑥, 𝑦) = 𝑚𝜓7(𝑥, 𝑦) = 𝜓7(𝑥, 𝑦)  (3.50) 
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where in the last step we have used the relation of 𝑘A⃗ ⋅ 𝑅12𝑟 = 𝑅𝑘A⃗ ⋅ 𝑟 , i.e., 𝑚4
12 ´�

V
, 𝑘5µ =

´�
V
, 𝑘5µ, rather than letting 𝑚4 directly act on the coordinates as in (3.47).  

However, since [𝑔, 𝑇] = 0, thus one can obtain: 

 𝑔𝑇𝑔𝑇𝜓s(𝑥, 𝑦) = 𝑔$𝜓s(𝑥, 𝑦) = −𝜓s(𝑥, 𝑦)  (3.51) 

where in the last step we have used the argument of (3.47). This result (3.51) contradicts (3.50). 
So, the 𝜓s(𝑥, 𝑦) and 𝑔𝑇𝜓s(𝑥, 𝑦) must be independent states, but their eigenvalues must be the 
same because the Hamiltonian is invariant under the operations 𝑔𝑇. Therefore, the bands must 
stick on the zone boundary line 𝑍. Similarly, if one check any group textbook, it easy to find that 
the Z lines’ irreducible representation is two-dimensional, indicating the bands along Z directions 
are two-fold degenerate. 

We now consider the electron spin effect to the band structure. Adding the spin without 
turning on the SOC simply doubles the degeneracy of every state [154], i.e., the states at TRIM 
and along BZ boundaries should be four-fold degenerate. But the SOC will lift some of the 
degeneracy. For example, due to the SOC the band dispersions along the 𝑀 − 𝑋 direction is only 
two-fold degenerate while at TRIM they maintain four-fold degenerate which is well discussed 
in the TB model. Another shortcut way is to consult the double-group representations of these 
high symmetric points or directions in any group theory textbook. 

3.4 Spin Textures of Bismuth Oxyiodide (BiOI) 

In the previous section, we have shown that the valence bands along the BZ boundaries are 
double-degenerate, and each branch consists of sectors 𝛼 and 𝛽 respectively. Furthermore, the 
spin polarization on the sector, or the degree of wavefunction segregation (DWS) shows that the 
wave functions are completely separated on the BZ boundaries, implying nearly perfect spin 
polarization in centrosymmetric crystal, i.e., HSP effect. This can be can also be understood by 
the local effective magnetic fields, shown in Figure 3.8, where panel (a) shows the position of 
the cross section that corresponding to the charge density in panel (b) local potential in panel (c) 
and effective magnetic fields in panel (d). 

It can be seen from panel (b) that the charge density with glide symmetry is highly localized 
at the centers of the squares within the iodine layers, forming potential wells depicted in panel 
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(c). By taking the gradient of the potentials one can obtain the effective magnetic fields 𝑩!"" ≈
𝒑 × ∇𝑉 perpendicular to sector 𝛼 and 𝛽 as shown in panel (d). The effective magnetic fields 

emerge in the SOC term as − ℏ
*D!

)[)
𝝈 ⋅ (𝒑 × ∇𝑉).  

It can also be seen that the charge density of the opposite sectors does not show strong overlap, 
revealing the wavefunctions are well separated, indicating that there should be a very weak 
interaction between the opposite sectors, so that the spin polarizations are highly localized at 
each individual sectors.  

In this section, the HSP effect calculated by DFT will be illustrated in section 3.4.1 in which 
the orbitals projection onto one single sector is also included, while the TB model results are 
presented in section 3.4.2. 

 

 

Figure 3.8 Illustration for the effective magnetic fields of BiOI in 1 × 2 × 2 unit cells. (a) the cross section 
locates at the center of the pyramid of [BiI] along (100) plane. (b), (c) and (d) represents charge density, 
potentials, and magnetic fields respectively, whose position corresponds to panel (a).  

3.4.1 DFT calculation for hidden spin polarization in bismuth oxyiodide (BiOI) 

Prior to presenting the DFT results of HSP effects, we should emphasize two points that (i) 
each branches of the valence bands are doubly degenerated composing of sector 𝛼 and 𝛽, shown 
in Figure 3.9(a) rather than restating Figure 3.5 where it did not manifest the spin degeneracy 
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intuitively; and (ii) the total orbital contribution (the sum of atoms Bi, O and I) to the valence 
bands is depicted in Figure 3.9(b) and with VB1 and VB2 as representatives, the weighted atomic 
orbitals is shown in Figure 3.9(c) & (d). In the next section, we will project the spin textures of 
each valence bands onto individual sector and we will also discuss the orbital-resolved spin 
textures. More details about the orbital occupancy for VB3 to VB6 please refer Appendix D. 

 

 

Figure 3.9 Sector resolved (a) and orbital resolved (b) band dispersions of top three pairs of valence bands 
of BIOI. (c) & (d) the weighted atomic orbitals (𝑝& + 𝑝( , 𝑝4) occupancy for VB1 and VB2, respectively. 

 

The HSP calculation was evaluated by projecting each Bloch wavefunction |𝜓((𝑘)⟩ (𝑛 = 1,2) 

of two-fold degenerate states onto the spin (𝒔I) and atomic orbital basis |𝜙.gDH⟩}
�, (𝜎 =↑, ↓; 𝜏 =

𝛼, 𝛽) of each atomic site (𝑗) of sector 𝛼 or 𝛽, finding the mean value of spin operators (𝑺IgDH}� =
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𝒔I ⊗ |𝜙.gDH〉}}��⟨𝜙.gDH|) under these projected wavefunctions, and finally summing results of 

{𝜓((𝑘)|𝑺IgDH}� |𝜓((𝑘)} for a given spin direction (𝜂) and sector (𝜏) that contains a number of 

atomic sites in one unit cell. The Wigner–Seitz radii for constructing |𝜙.gDH⟩}
� used in this study 

are listed in the pseudopotentials of the VASP simulation package [141]. Finally, the HSP effects 

can be written in the following form: 

 
𝑆IgDH}� (𝑘) = �⟨𝜓((𝑘)|𝒔I ⊗ |𝜙.gDH〉}}��⟨𝜙.gDH|𝜓((𝑘)⟩

$

(x2

 (3.52) 

It is notable that in the degenerate states the set of wavefunctions |𝜓((𝑘)⟩ (𝑛 = 1,2) can 

transform to another basis set by unitary transformation. However, as a trace-like physical 

quantity, HSP is invariant under such unitary transformation, which ensure the feasibility of 

measuring and detecting (please refer Appendix E for the proof of this gauge invariant). 

Figure 3.10 shows the spin textures of three representative valence bands VB1, VB3 and VB5 
of BiOI, as for the complete spin textures of the VB1 to VB6 please refer Appendix F. The 
corresponding spin texture, projected onto the real space sectors 𝛼 and 𝛽, forming the inversion 

partners, are shown as brown and cyan arrows in the 3D 𝐸x𝑘A⃗ z − 𝑘4 − 𝑘5 space (panels (a) (b), 
and (c)) and red and blue arrows in the 2D 𝑘4 − 𝑘5 space (panels (d), (e) and (f)). They manifest 
two branches of spin polarization (indicated in Figure 3.10(a), (b) and (c) by brown and cyan 
arrows) dominated by the two opposite [BiI] real-space sectors shown in Figure 3.3(a) and Figure 
3.4.  

It is straightforward to see that (i) the spin polarizations, from the two inversion-symmetric 
[BiI] layers, have opposite directions and compensate each other completely in the whole BZ, as 
a result of the constraint of the centrosymmetry. This phenomena is thus called spin-layer locking; 
(ii) there are both helical (in the vicinity of 𝑀 points) and non-helical (adjacent to 𝑋 points) spin 
textures for each individual sector, suggesting that there are Rashba SOC terms (𝜎4𝑘5 − 𝜎5𝑘4) 
deriving from the SIA at the 𝑀 points, and Dresselhaus SOC terms (𝜎4𝑘4 − 𝜎5𝑘5) originating 
from the BIA at the 𝑋 points, meanwhile, it also confirms that the R-2 effect is accompanied by 
the D-2 effect; (iii) the calculated spin polarization (polarized spin vectors) localized on a specific 
[BiI] layer is highly polarized along the BZ boundary but almost vanishes around the zone center, 
confirming that the HSP effect is generally compensated by inversion partners near the Γ point 
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but immune from the hopping effect around the boundary of the BZ due to its nonsymmorphic 
crystal structure. This 𝑘-dependent spin polarization is routinely called spin-momentum locking. 
Therefore, in the case of our BiOI, the spin polarization is thus spin-momentum-layer locking. 

Another notable feature is that the out-of-plane polarization is very weak, which does not 
exceed 20% due to the layered structure, shown in Figure 3.10(d), (e) and (f) as the color scheme. 
This result reveals that it still exhibits spin flipping with respect to X points, after all, this is only 
quasi-two-dimensional structure. 

The spin textures of 𝑝 orbitals projected onto sector 𝛼 are shown in Figure 3.10(g), (h) and (i) 
where the red, blue, and green arrows represent the projection of  𝑝4, 𝑝5 and 𝑝7 orbitals. In the 
case of VB1, it manifests that the spin texture at X points is manly dominated by the in-plane 
orbitals 𝑝4 and 𝑝5 while at M points it is manly contributed by 𝑝7 orbitals, agree well with the 
weighted atomic orbitals (𝑝4 + 𝑝5 , 𝑝7) occupancy for VB1. 
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Figure 3.10 DFT calculated spin textures of BiOI. (a), (b) and (c) 3D valence bands with spin vectors for 
VB1, VB2 and VB3. (d), (e) and (f) projected 2D spin textures for VB1, VB2 and VB3. (g), (h) and (i) 
orbital resolved spin textures projected onto sector 𝛼 for VB1, VB2 and VB3. 
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3.4.2 TB calculation for hidden spin polarization in bismuth oxyiodide (BiOI) 

The TB calculation for HSP of each sector (such as sector 𝛼) was performed by taking the 
mean value of the spin operators (𝑺IgDH}� = 𝒔I ⊗ |𝜙.gDH〉}}��⟨𝜙.gDH|) with single orbital (such as 

𝑝7), which can be written as follow: 

 
𝑆I𝒛j (𝑘) = �⟨𝜓((𝑘)|𝒔I ⊗ 𝑝7〉}}jj⟨𝑝7|𝜓((𝑘)⟩

$

(x2

 (3.53) 

Note that the 𝑝7 orbital including 𝑠, 𝑝4 , 𝑝5 orbitals can be written as a linear combination of the 
four eigenstates of the model Hamiltonian. 

Figure 3.11 shows the spin textures calculated by TB model Hamiltonian, in which the row 
(a) represents the spin textures projected on sector 𝛼 and 𝛽 indicated by red and blue arrows 
respectively, and row (b) represents the orbital resolved spin textures projected onto the sector 𝛼 
with red, blue, and green arrows stand for the contribution of 𝑝4 , 𝑝5 and 𝑝7 orbitals. These results 

generally agree with the DFT results that (i) the spin textures of sector 	𝛼  and 𝛽  are fully 
compensated as shown by the opposite spin vectors; (ii) there are helical and non-helical spin 
textures at M and X points, confirming the existence of the Rashba and Dresselhaus spin splitting; 
(iii) the magnitude of the spin polarization along BZ boundary is much larger than that at BZ 
center, excepting VB5. This is because in the model Hamiltonian we only took two identical 
atoms A and B of one element (such as iodine) into consideration. Actually, in the DFT 
calculation for atomic orbital weighted band dispersions shown in Figure 3.6, one can see that 
the lower valence band has the larger contribution from oxygen orbitals. However, it does not 
make a strong affect to the top valence bands because these band are mainly dominated by the 
iodine’s 𝑝 orbitals. 

Even though the model Hamiltonian are largely simplified, it can covey many important 
physics, such as the four-fold degeneracy at TRIM, two-fold degeneracy along BZ boundary, 
SOC induced band splitting along M-X direction, larger band gaps along M-X directions than 
that along Γ-X directions, opposite spin directions for sector 𝛼 and 𝛽, helical and non-helical 
spin textures at X and M points, and the spin is highly polarized along the BZ boundary, while 
the same effect almost vanishes around the zone center. All these physics can be attributed to the 
nonsymmorphic crystal structure. 
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Figure 3.11 Spin textures calculated by model Hamiltonian. (a) sector resolved spin textures for VB1, 
VB3 and VB5. (b) orbital resolved spin textures of sector 𝛼 for VB1, VB3 and VB5. 

  



 

 86 

Chapter 4 High Resolution ARPES Study of the Band 
Structure of BiOI  

In this chapter we will introduce the experimental results. First, we will briefly introduce the 
sample preparation and characterization, which will be arranged in section 4.1, then the photon 
energy dependent experiment to reveal its 𝑘7 dispersion will be introduced in section 4.2, and 
finally, the ARPES results on in plane band dispersions will be fully explained in section 4.3. 

4.1 Sample Preparation and Characterization 

The BiOI single crystal used in this work was synthesized by chemical vapor transport (CVT) 
method [155] with BiI3 as the transport agent [156,157]. The Bi2O3 (Innochem, 99%) and BiI3 
(Alfa, 99%) powder were placed in an alumina crucible with a molar ratio of Bi2O3: BiI3=1: 1. 
The crucible was sealed in a quartz tube under argon environment. The tube was then flame-
sealed under dynamic vacuum and placed inside a two-zone furnace. The crystals were grown 
over a period of 9 days with a temperature gradient from 973 K to 833 K. Finally, millimetre-
size single crystals were obtained and characterized by low-energy-electron-diffraction (LEED) 
and powder X-ray diffraction (XRD) shown in Figure 4.1. 

Figure 4.1(a) shows the in-situ cleaved fresh surface of single crystal BiOI, with a flat surface 

revealing the merit of the layered structure. Figure 4.1(b) shows the LEED pattern measured at 

beam energy of 130.2 eV. Figure 4.1(c) presents the powder XRD patterns. For the powder XRD 

measurement, a number of BiOI single crystals were ground into powder in a mortar, where a 

little silica powder was added as an abrasive to improve the powder effect. The peaks of Si can 

be observed in the XRD patterns which is distinguished by the blue color. It can be seen that the 

peaks for BiOI agree well with the one of theoretical calculation. The clear LEED pattern and 

accurate XRD peaks undoubtedly confirm that the prepared BiOI is of high quality.  
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Figure 4.1 Crystal structure characterizations of BiOI. (a) in-situ cleaved surface. (b) LEED pattern 
measured at beam energy of 130.2 eV. (c) powder XRD peaks of BiOI with Si as abrasive powder. 

 

Prior to the band dispersion measurements, we made a survey measurement over a wide 

energy range to observe some outer core levels using photon energy of 99 eV at 30K. In Figure 

4.2(a), the angle-integrated photoemission spectrum exhibits I 4𝑑 and Bi 5𝑑 orbitals. The lower 

two panels, Figs. 4.2(b) and  4.2(c) respectively show I 4d and Bi 5d core-level spectra fitted 

using two voigt functions. In Figure 4.2(b), the binding energies (peak positions) of I 4𝑑,/$ and 

I 4𝑑d/$ are 51.14 eV and 49.42 eV, respectively. The peak width is a full width at half maximum 

(FWHM) of 0.5 eV, and the peak separation due to the spin-orbit interaction is 1.72 eV. 

Meanwhile, in Figure 4.2(c) the binding energies of Bi 5𝑑,/$ and Bi 5𝑑d/$ are 29.44 eV and 

26.44 eV. The peak width is about 0.44 eV (FWHM) and the peak separation is 3 eV. These 

binding energies are consistent with theoretical calculations of single crystal of iodine and 

bismuth [158,159]. Another important feature is that it does not show appreciable surface-bulk 

peak separation in these core-level spectra. All these results further confirm that the measured 

BiOI is of high purity and quality. 
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Figure 4.2 Angle-integrated photoemission spectrum of BiOI. (a) A wide energy survey taken at 30K and 
photon energy of 99 eV. Peaks simulation with voigt function to show the iodine’s 4𝑑 orbital intensity 
(b) and bismuth 5𝑑 orbitals intensity (c). 

4.2 ARPES Study of the Electronic Structure of BiOI  

In this section, we will analyze the electronic structure of the centrosymmetric BiOI in detail 
based on our high resolution ARPES results. First, we need to locate accurate high symmetry 
points and lines, so we did 𝑘7 (section 4.2.1) and CEC (section 4.2.2) experiments, and then we 
specifically analyzed the band dispersion along M-X direction (section 4.2.3) and Γ-X direction 
(section 4.2.4) with the comparison to our theoretical calculations. 
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4.2.1 ARPES study of the kz dispersion with variable photoenergies 

Since BiOI crystalizes in a quasi-2D manner as illustrated in section 3.2, its 𝑘7 dispersion is 

fairly flat which was presented in section 3.3. However, it still presents a finite 𝑘7 dependence 

especially along Γ-Z direction as illustrated in Figure 3.5(d). To experimentally evaluate the 𝑘7 

position along the Γ-Z direction, we need to estimate the inner potential using a formula 𝑘0 =
2
ℏY2𝑚(𝐸. + 𝑉6)  which was described in section 2.3. In our case, based on the finite 𝑘7 

dispersion as detected by changing photon energy  together with the lattice parameter c, the inner 

potential was experimentally evaluated to be about 9 eV. 

Figure 4.3 shows the constant energy contour (CEC) on the 𝑘4 − 𝑘7  plane with binding 

energy of 4.82 eV. It can be seen from this figure that there indeed exists periodic structure. Even 

so, its 𝑘7 dependent band dispersion is small due to its quasi 2D layered structure. Figure 4.4 

shows the ARPES intensity maps along the A-R-A and R-Z-R lines measured under the 

photoenergy of 76 eV and the M-X-M and X-Γ-X lines measured under the photoenergy of 65 

eV, which was experimentally determined from the Figure 4.3. The corresponding DFT results 

are overlaid on the ARPES image plots. One can see good agreements between the ARPES and 

DFT results. Moreover, the band dispersions along A-R-A and R-Z-R lines show very similar 

dispersions as the ones along the M-X-M and X-Γ-X lines, which further confirms that BiOI is 

a quasi 2D material. 
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Figure 4.3 Photon energy dependent measurement reveals the inertial periodic dispersion along Γ-Z 
direction. 



 

 91 

 

Figure 4.4 DFT bands (black solid lines) overlaid on ARPES image plots, where (a) shows the A-R-A 
bands, (b) shows the R-Z-R bands, (c) shows the M-X-M bands and (d) shows the X- Γ-X bands. 

4.2.2 ARPES study of the constant energy contours of BiOI 

After determining the 𝑘7  dispersion, it is thus easy for us to measure the constant energy 
contours (CECs) of the Γ-X-M plane. Figure 4.5 shows the experiment measured and DFT 
calculated CECs for VB1 and VB2, in which the CECs were measured under the photon energy 
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of 65 eV corresponding to G6 in Figure 4.3. It can be seen from Figure 4.5(a) that a square-like 
CEC exists at around -1.3 eV, whose corners are on the lines connecting next nearest X points. 
As the energy is lowered, the CEC centered at the X point is expanded like ellipse and eventually 
forms contours like bowknot surrounding the M point merging with the CEC centered at the G 
point, which agrees well with the DFT calculated CECs of VB1 and VB2. These CEC maps 
provide us with an overview of the top valence bands, which is beneficial for us to locate the 
high symmetry paths. 

 

 

 

Figure 4.5 Experiment measured (a) and DFT calculated CECs of VB1 (b) and VB2(c) under the 
photoenergy of 65eV. 

4.2.3 ARPES study of the band dispersion along M-X direction 

In our pervious theoretical discussion, we predicated that that (i) it is four-fold degenerated at 
TRIM, and (ii) two-fold degenerated along BZ boundaries with the presence of the SOC, and (iii) 
the band gaps are larger along the BZ center to boundaries than the one along BZ boundaries. 
Here, by our high resolution ARPES, we experimentally revealed these features, which is 
illustrated in Figure 4.6 in which the band dispersion along M-X direction is measured under the 
photoenergy of 65eV. 

Figure 4.6 panel (a) shows a large energy range from -1 eV to -7.5 eV of the bands along the 
M-X direction, and panel (b) shows the zoom in bands corresponding to the rectangle in panel 
(a) with a overlay of our previous DFT calculation, and panel (c) is the corresponding high 
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contrast bands after taking second differential using panel (b), and panel (d) is the small angle 
(5°) integrated EDCs based on panel (b), and panel (e) shows the extracted two special EDCs 
indicated by green in panel (d). 

It can be seen from panel (a) that the band dispersions we measured along the M-X direction 
are clearly resolved which is useful to get an overview of the whole dispersion  while it is difficult 
to assess the band splitting along M-X direction. However, in panel (b) it seems feasible to 
distinguish the band splitting along M-X direction and band degeneracy at X point, as indicated 
by the DFT plots. To further reveal this band degeneracy and splitting, panel (c) shows the high 
contrast of the intensity after second differential, where one can clearly distinguish the band 
splitting along M-X direction for VB1 and VB2. This is also confirmed by small angle integral 
of the EDCs shown in panels (d) and (e), in which one can find that there are some discernible 
peaks that corresponding to different valence bands. However due to the small gaps between 
VB3 and VB4, VB5 and VB6 and linewidth broadening which is larger than the peak splitting, 
it is not easy to clearly separate these peaks.  

 

Figure 4.6 Band degeneracy and splitting along M-X direction. (a) A large energy range overview of the 
band dispersions along M-X direction. (b) Top three pairs of the valence bands with the overlay of DFT 
plots indicated in (a) by rectangle. (c) Second differential of the top three pairs valence bands. (d) Small 
angle integral of these valence bands, where the blue ones respectively represent the X point and the point 
Z in vicinity of X point which are extracted in (e). 

4.2.4 APRES study of the band dispersion along Γ-X direction 

Figure 4.7 shows the band dispersions along Γ-X direction, where panel (a) present a large 
energy range from -7.5eV to -1eV for a general overview of the band structure, and panel (b) 
shows the zoom in structure with DFT plots overlaid on it of the top three pairs valence bands 
corresponding to the rectangle in (a), and (c) is the second differential structure of these valence 
bands, and panel (d) is the angle integrated EDCs where two special curves were extracted in 
panel (e).  

One can find that the experimentally measured band structure generally agrees with the DFT 
predication, shown in panels (a) and (b), this can confirm the orbital and SOC interaction which 
was discussed in section 3.3. In panel (c) it clearly shows the band dispersion after second 
differential. This is further confirmed by the angle integral EDCs in panel (d) and (e) in which 
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the energy positions (peaks) of theses valence bands can be clearly distinguished. What is more, 
the peaks position distances (i.e., the gap size) of different valence bands, such as the band gap 
of VB5 and VB6 (i.e., the peak position distance between Δ5 and Δ6), is much larger than the 
ones along M-X direction as experimentally shown in Figure 4.6(e).  

 

Figure 4.7 Band degeneracy and splitting along Γ-X direction. (a) A large energy range overview of the 
band dispersions along Γ-X direction. (b) Top three pairs of the valence bands with the overlay of DFT 
plots indicated in (a) by rectangle. (c) Second differential of the top three pairs valence bands. (d) Small 
angle integral of these valence bands, where the blue ones respectively represent the Γ point and the point 
Δ in vicinity of Γ point which are extracted in (e). 



 

 95 

4.3 Summary 

The high quality BiOI samples in this study has been confirmed by X-ray diffraction, very 
low energy electron diffraction and core-level photoemission spectroscopy. The electronic 
structures of the 𝑘7  dispersion of BiOI obtained by both DFT calculation and ARPES 
measurement consistently show a 2D behavior with a relatively flat dispersion along the 𝑐 axis. 

By directly comparing the calculated bulk band structure with the ARPES data, a good 
agreement is found, indicating that the surface effect that breaks the global inversion symmetry 
is relatively weak. The predicted four-fold degeneracy at the X and M points and the splitting 
two-fold degenerate branches (VB1 to VB6) away from X and M are all supported by the ARPES 
measured dispersion. 

Furthermore, the EDCs measured along the M-X-M and X-Γ-X directions show that at the X 
point, the degenerate peaks, i.e., 𝑋2,$, 𝑋,,* and 𝑋d,t are unambiguously present, while at the Γ 
point, each of the degenerate peak splits into two individual peaks, i.e., from Γ1 to Γ6. 
Consequently, three pairs of Rashba-like hole-type valence bands are formed at the X and M 
points, with the band crossing points located around –1.4 eV, –2.1 eV, and –3.0 eV for the X 
point, respectively. These results agree well with our calculation that only the time-reversal 
invariant momenta at the BZ boundary (e.g., the X point) demonstrate a four-fold degeneracy, 
while the Γ point does not exhibit such behavior, thus confirming the nonsymmorphic feature of 
the material. 
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Chapter 5 Observation of the Hidden Spin Polarization in 
Centrosymmetric BiOI  

5.1 Introduction 

Exploring different quantum materials with strong HSP effects could considerably expand the 
choice of materials for nonmagnetic spintronic devices. However, while the local symmetry 
breaking in the real space is the essential characteristics of the HSP, its underlying physics, 
involving the microscopic mechanism of the way the spin, momentum, and sector lock to each 
other, remains elusive. Recent theoretical works predicted that the magnitude of the HSP effect 
is distinct around the Brillouin zone (BZ) center and the BZ boundary. Here, by using systematic 
spin-ARPES measurements, we have directly investigated the spin polarization of a single crystal 
BiOI with nonsymmorphic symmetry. We have observed up to 80% net spin polarization along 
the BZ boundary (X-M) but significantly suppressed spin polarization around Γ, indicating a 
unique momentum dependence of the HSP effect. These measured results confirm our tight-
binding (TB) model and density functional theory (DFT) calculations that the nonsymmorphic 
symmetry minimizes the spin compensation between adjacent sectors at the BZ boundary, thus 
successfully retaining the local spin polarization of each sector.  

5.2 Spin Polarizations along Γ-X Direction 

According to our previous theoretical predication that the spin is highly polarized along the 
Brillouin zone boundary, while the same effect almost vanishes around the zone center due to its 
nonsymmorphic crystal structure. Note that the spin polarizations at the TRIM, i.e. the BZ center 
(Γ point) and the X and M points, is fully compensated since in a nonmagnetic centrosymmetric 
BiOI the high symmetry points will always have zero spin polarization due to the Kramer’s 
degeneracy theorem. 

In this section we will systematically present the in-plane spin polarizations of BiOI measured 
by spin-ARPES with two different geometries, including the vertical Γ-X direction and 
horizontal Γ-X direction, to compare with our theoretical predications. Here the wide-ranging 
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measurements involving different geometries is to verify that the observed spin polarization and 
spin textures are essentially intrinsic. 

5.2.1 Spin polarizations along vertical Γ-X direction 

Figure 5.1 presents the 𝑆4 spin component of the in-plane spin polarization along vertical Γ-
X direction measured by spin-ARPES under the photon energy of 30 eV and at the temperature 
of 30K. The representative spin resolved EDCs (①~⑭) for the top three pairs of the two-fold 
degenerate bands VB1-VB6 are shown in this figure. The spin-ARPES data clearly shows that 
at the time-reversal invariant points X and Γ (momentum points ② and ⑪), the spin-resolved 
EDCs generally full overlap between the spin up and spin down components, indicating 
negligible spin polarization; this is consistent with the spin degeneracy originating from 
Kramer’s pairs.  

When the momenta moved away from the X point, we have observed significant spin 
polarization (up to 80%) along this vertical Γ-X direction (representative momentum points ④, 
⑤,	⑥,	⑦,	⑧,	⑨ and ⑩). For momenta ⑧ and ⑨, nearly all the six VBs were resolved as 
the individual polarizations peaked with opposing polarization signs in each pair. This is because 
the band splitting along Γ-X direction was more significant compared to the splitting along the 
X-M direction as discussed in section 3.3 and section 4.2. In sharp contrast, the spin polarization 
surrounding the Γ point was very weak which is no more than 30% as indicated by the 
momentum points ① and ③.  

Due to the short photoelectron escape depth, ~5	Å  [160], for the photoelectron kinetic 
energies of 20-100 eV, and a large lattice constant 𝑐 = 9.12	Å	, the detected photoemission 
signal mainly arises from the topmost sector (𝑎) of the cleaved BiOI single crystal, which is 
favourable to detect the spin polarization from a local sector.  
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Figure 5.1 The evolution of spin polarization of the 𝑆& component along Γ-X in 𝑘( axis at the photon 
energy of 30 eV and temperature of 30 K. For each EDC panel the corresponding momentum coordinate 
(in Å'+ ) is provided in the top right corner. Red circles in the 𝑘& − 𝑘(  mapping also indicate the 
momentum position for those EDCs. 

Figure 5.2 presents the same physics as Figure 5.1 but for the corresponding 𝑆5  spin 
component. There are also fourteen representative spin resolved EDCs (①~⑭) for the top three 
pairs of the two-fold degenerate bands VB1-VB6. These spin-ARPES data also shows that at the 
time-reversal invariant points X and Γ (momentum points ② and ⑪), the spin-resolved EDCs 
generally full overlap between the spin up and spin down components, consistent with the spin 
degeneracy originating from Kramer’s pairs. However, when the momenta moved away from 
the X point, we find that the spin polarizations are almost negligible (no more than 20%) along 
this vertical Γ-X direction. Of the same phenomena, the spin polarization surrounding the Γ point 
was also very weak as indicated by the momentum points ① and ③. This result agrees well 
with our theoretical predication of the spin textures shown in section 3.4. 
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Figure 5.2 The evolution of spin polarization of the 𝑆( component along Γ-X in 𝑘( axis at the photon 
energy of 30 eV and temperature of 30 K. For each EDC panel the corresponding momentum coordinate 
(in Å'+ ) is provided in the top right corner. Red circles in the 𝑘& − 𝑘(  mapping also indicate the 
momentum position for those EDCs. 

5.2.2 Spin polarizations along horizontal Γ-X direction 

Figure 5.3 shows the spin polarizations of both 𝑆4 and 𝑆5 components measured at the photon 
energy of 30 eV and temperature of 30 K, but along horizontal Γ-X direction. There are six 
representative spin resolved EDCs (①~⑥) for the top three pairs of the two-fold degenerate 
bands VB1-VB6. One can see from this figure that the spin-ARPES data clearly shows that the 
spin polarization in both 𝑆4 and 𝑆5 components when in vicinity to the Γ point is very weak 
which is no more than 30% as indicated by the momentum points ①. However, when the 
momenta moved away from the Γ point, we have observed significant spin polarization (up to 
80%) in 𝑆5  component and almost negligible 𝑆4  component along this vertical Γ-X direction 
(representative momentum points ②,	③,	and	④). For momenta ③ and ④, nearly all the six 
VBs were resolved as the individual polarizations peaked with opposing polarization signs in 
each pair, which is of great similarity to the phenomena as shown in Figure 5.1. These wide-
ranging measurements involving different geometries (in vertical and horizontal directions) 
clearly verify that the observed spin polarizations are essentially intrinsic. At the time-reversal 
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invariant points X (momentum point ⑥), the spin-resolved EDCs fully overlap between the spin 
up and spin down components, indicating the spin degeneracy originating from Kramer’s pairs.  

 

 

Figure 5.3 Spin polarizations of the 𝑆& and 𝑆( components along horizontal Γ-X direction at the photon 
energy of 30 eV and temperature of 30 K. For each EDC panel the corresponding momentum coordinate 
(in Å'+) is provided in the right side. Red circles in the 𝑘& − 𝑘( mapping also indicate the momentum 
position for those EDCs.  

It should be emphasized that as shown in Figure 5.1 there seems to be some energy shifts at 
first glance, especially at the energy positions around 3 eV. However, this can be understood 
very straightforward if one makes a spin integral of the up and down components of the spin 
resolved EDCs, i.e., the sum of the intensity of the spin-up and spin-down components. Then we 
can find that the energy positions for all the peaks are the same, as illustrated in the following 
Figure 5.4.  

This is because in the spin-ARPES measurements, the spin detectors can only measure one 
component of the spin resolved EDC at one time. Finally, the spin polarization equals to the 

intensity difference of the both component, which can be formulated as 𝑃8 =
(w"1w;)

%/$$(w"Fw;)
. It is 

worth noting that, for all the spin resolved EDCs shown in Figure 5.1 the sums of each pair as 
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spin-integrated EDCs coincide with EDCs measured by normal ARPES in both peak energies 
and intensity ratios. 

 

  

Figure 5.4 Illustration for the energy (peak) positions. Panel (a) depicts the total intensity (i. e. without 
spin resolution) of the EDC of the position ⑧ in Figure 5.1. Panel (b) depicts the spin integral (i. e. the 
sum of the 𝑆(-  and 𝑆(¯  components) EDC of the 𝑆(  component of the spin polarization at the same 
position ⑧ and panel (c) depicts the same physics but for 𝑆&  component. It clearly shows that after 
integration the energy positions agree with each other very well, and the peaks also conform to the energy 
positions in Figure 4.6. 

5.3 Spin Polarizations along M-X Direction 

Figure 5.5 presents the spin polarizations along BZ boundary (M-X line) along both horizontal 
and vertical directions measured under the photon energy of 65 eV and temperature of 30 K. The 
spin polarization of the 𝑆5 component at the top X point is almost zero (momentum point ②) as 
a result of the symmetry demands, while it increases up to ~80% away from the X point 
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(momentum points ①	and	③) and then decreases to zero at the M point (momentum point ⑥) 
in the horizontal geometry.  

Along the vertical direction (along the ky direction), the 𝑆4 component is suppressed around 
the X point (including X point which is not shown) and increases abruptly towards M along 𝑘5 

direction. It reaches ∼80% at (-0.79, ±0.4) Å12 (momentum point ⑧) and remains high value 
along the whole M-X line except the TRIM. It worth mentioning that the sign of the 𝑆4 and 𝑆5 
components are changed with respect to the X points. These experimentally observed results 
consistent well with our theoretical results in section 3.4, in which the detailed evolution of 𝑆4 
and 𝑆5 components were discussed in different geometries.  
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Figure 5.5 The evolution of spin polarization along BZ boundary (M-X) in 𝑘&  and 𝑘(  axis under the 
photon energy of 65 eV and temperature of 30 K. For each EDC panel the corresponding momentum 
coordinate (in Å'+) is provided in the right side. Red circles in the 𝑘& − 𝑘( mapping also indicate the 
momentum position for those EDCs. 

Compared with the previous measurements of HSP materials such as WSe2 [20], PtSe2 [23], 
LaO0.55 F0.45BiS2 [129] and Bi2212 [24] that focus on the spin-momentum locking around a 
single high-symmetry point, our work revealed the distinct polarization features surrounding 
different high-symmetry points and paths (Γ, X, M pints and Γ-X, M-X lines), and observed a 
sharp contrast between them. Such observations suggest that momentum-dependent spin 
polarization originates from the HSP rather than merely from the surface potential gradient; 
further, these observations suggest the key factors affecting the HSP effect, such as the 
nonsymmorphic symmetry and orbital characters. 

5.4 Out-of-plane Spin Polarizations along M-X direction 

Our TB model and DFT calculation reveals that even the strongest out-of-plane spin texture 
(located at the centre of the Γ-Z direction) is less than 20%, which is far smaller than the in-plane 
polarization due to small values of the off-diagonal terms in the model Hamiltonian. Figure 5.6 
shows the 𝑆7 component of spin polarization along BZ boundary with five representative points. 
Apparently, the 𝑆7 component is negligibly small and decreases dramatically in magnitude but 
still exists the change of the sign of the spin polarization (momentum points ①,	②,	③	and	④). 
It is not surprising that at the X point the polarization is zero (momentum point ⑤). This 
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observed result that the 𝑆7 component is much smaller than in plane polarizations, with net spin 
polarization no more than 20%, consistent well with our DFT prediction. 

 

 

Figure 5.6 𝑆4 component of spin polarization along M-X boundary measured under the photon energy of 
30 eV and temperature of 30 K. For each EDC panel the corresponding momentum coordinate (in Å'+) 
is provided in the right side. Red circles in the 𝑘& − 𝑘( mapping also indicate the momentum position for 
those EDCs. 

5.5 Spin Momentum Locking in Centrosymmetric BiOI 

In addition to the momentum dependence and high spin polarization, there is another feature 
of the HSP at the X point, namely, the spin texture that is localized on the measured sector, 
manifesting a novel way of spin-momentum-layer locking [161-163]. As illustrated in section 
5.2, for the vertical Γ-X line, the 𝑆4  component is strong, while the 𝑆4  component vanishes. 
Analogously, for the horizontal Γ-X line, the 𝑆5 component is strong, while the 𝑆5 component 
vanishes. Similarly, as illustrated in section 5.3, For the vertical M-X line, the 𝑆4 component is 
strong, while the 𝑆5  component almost vanishes. As for the horizontal M-X line, the 𝑆5 
component is strong, while the 𝑆4 component vanishes. Since the 𝑆7 component is considerably 
less intense than the in-plane ones discussed in section 5.4, this finding indicates a perpendicular 
spin orientation to the wavevector lying in the 𝑘4 − 𝑘5 plane. We have further confirmed the 
specific spin texture for all the three pairs of valance bands, as illustrated in Figure 5.7(a) and 
(b); note that only the spin textures of VB1, VB3, and VB5 are shown in Figure 5.7(b), while the 
spin orientations of VB2, VB4 and VB6 are opposite to their counterparts. Surprisingly, while 
the VB1-2 pair shows a weak spin polarization, VB3-4 and VB5-6 pairs exhibit Dresselhaus-
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type spin textures with large magnitude, rather than the Rashba spin polarization induced by the 
local polar field. 

Here we employed the p-polarization geometry, where the vector potential of incident photon 
lies on the incidence plane. Based on the dipole selection rule [164,165], the 𝑝4 and 𝑝7 orbitals 
are selectively detected. Furthermore, by changing the incidence angle of photons, one can 
change the ratio of the vector potential components parallel (𝐴∥) and perpendicular (𝐴0) to the 
sample surface. The dipole transition matrix element for the 𝑝7 (𝑝4) orbital is in proportion to 
the magnitude of  𝐴0 (𝐴∥) component, and 𝐴0 is larger than 𝐴∥ in the present geometry. In our 
orbital-projected band calculation in section 3.4, the VB3-6 bands at the X point and the VB1-2 
bands at the M point are mainly derived from the 𝑝7 orbital. Therefore, we have performed DFT 
calculations on the 𝑝7-projected spin textures localized on the top BiI layer, i.e., sector 𝑎, as 
shown in Figure 5.7(c) and (d). We found qualitative agreement with the counterparts measured 
by spin-ARPES shown in section 5.2 and section 5.3. All three VB pairs exhibited weak spin 
polarization (<20%) around the Γ point. As shown in Figure 5.7(d), in the vicinity of X, only the 
VB1-2 pair manifested very weak spin polarization due to the tiny contribution of the 𝑝7 orbital 
of these bands (see Figure 3.6). In comparison, the spin textures of VB3-4 and VB5-6 around X 
exhibited a Dresselhaus type pattern with considerable magnitude. Moreover, the spin patterns 
of VB3 and VB5 are opposite to each other, which also agrees with the experiment. Thus, we 
have concluded that the DFT results successfully reproduce the features of the experimental 
observations, confirming the fact that the measured spin polarization originates from the intrinsic 
HSP in BiOI. 
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Figure 5.7 HSP effect in BiI sector. (a) Overview of ARPES-measured spectra of BiOI plotted in the 
𝑘& − 𝑘( − 𝐸 space. (b) Schematic sketch of the measured spin textures of VB1, VB3, and VB5 by spin-
ARPES, with the momentum cross-sections denoted by the green squares in panel (a). (c) The layered 
structure of BiOI with two BiI sectors experiencing opposite local dipole fields (black arrows). (d) DFT 
calculation for 𝑝4-projected HSP of VB1, VB3, and VB5 around X for the sector a. The spin magnitude 
of VB1 is multiplied by a factor of two. (e) Spin texture for the sector a calculated by our tight-binding 
(TB) model, showing Dresselhaus and Rashba type HSP effects for X and M, respectively. 

5.6 Summary 

In summary, combining spin-ARPES measurements and theoretical calculations, we report 
distinct spin-momentum-layer locking phenomena at different BZ positions in a centrosymmetric 
material BiOI. The measured spin polarization localized on a specific BiI layer is highly 
polarized along the BZ boundary but almost vanishes around the zone center due to its 
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nonsymmorphic crystal structure. The layer-resolved spin texture, either Rashba or Dresselhaus 
type, reflects the symmetry of both real space and k-space. Our findings experimentally 
demonstrate the existence of the HSP effect and shed light on the design metrics to utilize high 
spin polarization in centrosymmetric materials by revealing the intimate interplay between spin, 
orbital, and layer degrees of freedom. 
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Chapter 6 Conclusion  

The spin polarization in nonmagnetic materials is conventionally attributed to the outcome of 
spin-orbit coupling when the global inversion symmetry is broken. The recently discovered 
hidden spin polarization (HSP effect) indicates that a specific atomic site asymmetry could also 
induce measurable spin polarization, leading to a paradigm shift in research on centrosymmetric 
crystals for potential spintronic applications.  

In this study, by using systematic spin- and angle-resolved photoemission spectroscopy 
compared with theoretical calculations (DFT and TB calculations), we have investigated the 
electronic structure and particularly the spin polarizations of the single crystal BiOI with 
nonsymmorphic symmetry (glide plane and screw axis). We have observed up to 80% net spin 
polarization along the BZ boundary (X-M direction) but suppressed net spin polarization around 
BZ center (Γ point), indicating a unique momentum dependence of the HSP effect, i.e., the spin-
momentum-layer locking in centrosymmetric BiOI.  

Our observed spin polarizations (textures) agree well with our tight-binding (TB) model and 
density functional theory (DFT) calculations that in contrast to the Γ point, the nonsymmorphic 
symmetry minimizes the spin compensation between adjacent sectors at the BZ boundary, thus 
successfully retaining the local spin polarization of each sector. This distinct spin-momentum-
layer locking phenomena in a centrosymmetric, layered material, not only demonstrates the 
existence of hidden spin polarization, but also uncovers the microscopic mechanism of spin, 
momentum, and layer locking to each other BiOI.  

Our findings reveal the delicate interplay between spin-momentum-sector locking and 
symmetry protection in HSP systems, thus shedding light on the possibility of all-electrical 
manipulation. 
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Appendices  

Appendix A: Matrix representation for symmetry operations in 
BiOI  

Symmetry operator Matrix representation Symmetry operator Matrix representation 

{𝑒|0}	 l
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0
0
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0
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0
0

0
0
1
0

0
0
0
1

m	 {𝐶.4+ |0}	 l
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0
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0
0
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1

m	
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0
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0
0
0
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0
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0
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Appendix B: Details of DFT calculations 

Input file (1): POSCAR 

Bi2I2O2  

1.00000000000000      

3.9800000000000000    0.0000000000000000    0.0000000000000000 

0.0000000000000000    3.9800000000000000    0.0000000000000000 

0.0000000000000000    0.0000000000000000    9.1400000000000006 

Bi   I    O  

2    2    2 

Direct 

-0.0000000000998772  0.4999999998898549  0.8621613016748401 

0.5000000000998771  0.0000000001101451  0.1378386983251599 

0.0000000000214139  0.5000000002109384  0.3417265457912487 

0.4999999999785861 -0.0000000002109381  0.6582734542087512 

-0.0000000004758274  0.0000000004804904 -0.0000000000331731 

  0.5000000004758275  0.4999999995195097  0.0000000000331731 

#Name of system 

#Scaling factor 

#These three lines 
define the lattice 
vectors of the crystal 
cell. 

#Constituent element 

#Number of atoms 

#Direct coordinates 

#These six lines give 
the three coordinates 
for each atom in the 
form of 𝑅5⃗ = 𝑥+�⃗�+ +
𝑥.�⃗�. + 𝑥/�⃗�/. 

 

Input file (2): POTCAR 

When we preparing the POTCAR file (pseudopotential, PP file), according to the elements in 
the system, we need to combine the POTCAR of three elements (Bi, I, O) to form a new 
POTCAR file, by using the command: 

𝑐𝑎𝑡	𝑃𝐴𝑊_𝑃𝐵𝐸/𝐵𝑖/𝑃𝑂𝑇𝐶𝐴𝑅	𝑃𝐴𝑊_𝑃𝐵𝐸/𝑂/𝑃𝑂𝑇𝐶𝐴𝑅	 > 	𝐵𝑖𝑂𝐼/𝑃𝑂𝑇𝐶𝐴𝑅 

The parameters of POTCAR for each atom can be directly recommended by VASP. Here is 
an example of the iodine’s POTCAR file (only the key information is extracted): 

PAW_PBE I 08Apr2002                     

7.00000000000000      

parameters from PSCTR are: 

VRHFIN =I : s2p5 

#Name and date 

#No. of valency electrons 

 

# Atomic configuration 
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LEXCH  = PE 

EATOM  =   315.8678 eV,   23.2156 Ry 

 

TITEL  = PAW_PBE I 08Apr2002 

LULTRA =        F    use ultrasoft PP ? 

IUNSCR =        1    unscreen: 0-lin 1-nonlin 2-no 

RPACOR =    2.200    partial core radius 

POMASS =  126.904; ZVAL   =    7.000    mass and valenz 

 

RCORE  =    2.300    outmost cutoff radius 

RWIGS  =    2.810; RWIGS  =    1.487    wigner-seitz radius (au 
A) 

ENMAX  =  175.647; ENMIN  =  131.735 eV 

ICORE  =        3    local potential 

LCOR   =        T    correct aug charges 

LPAW   =        T    paw PP 

EAUG   =  370.139 

DEXC   =    0.000 

RMAX   =    2.359    core radius for proj-oper 

RAUG   =    1.300    factor for augmentation sphere 

RDEP   =    2.392    radius for radial grids 

RDEPT  =    2.170    core radius for aug-charge 

# Type of 𝐸&= 

#Energy of pseudoatom  

 

#Same as 1st line 

#False:Not to use USPP 

#1:Nonlinear unscreen 

#Raius of partial core 

# Mass of pseudoatom; No. of 
valence electrons 

#Radius of outmost cutoff 

# Wigner-Seitz radius for each 
atom type. 

#Max. and Min. cutoff energies 

#Local potential of pseudoatom 

#True to correct augmentation 
(aug.) charges 

#True to use PAW PP 

#Energy cutoff for aug. charge 

#Derivative of exchange and 
correlation 

 

Input file (3): KPOINTS 

BiOI 

0 

G 

18 18 10 

0 0 0 

#Name of system 

#Auto to generate k points 

#Generate the k points with Gamma point as the center 

#Number of grids in k space 

#Translation in k space 

 

Input file (4): INCAR 
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SYSTEM = BiOI 

 

# Parallelisation 

NPAR = 8       # 4-24, 5-40, 6-
48, 8-80/128, 16-256 cores  

 

# Initialisation 

ISTART = 0 

ICHARG = 2 

 

# Electronic Relaxation 

PREC = ACCURATE 

LREAL = AUTO 

ALGO = NORMAL 

ENCUT = 500 

NELM = 200 

NELMIN = 5 

EDIFF = 1E-06 

ADDGRID = TRUE 

LASPH = TRUE 

ISPIN = 2 

ISYM = 2 

 

# Ionic Relaxation 

EDIFFG = -1e-03 

IBRION = -1 

ISIF = 2 

ISMEAR = 0 

SIGMA = 0.03 

NSW = 0 

 

# Miscellaneous 

#Name in the comment line 

 

 

#Number of cores to execute the parallel calculation 

 

 

# 0: start a new calculation 

# 2: The initial charge density is determined by pseudopotential and 
construct LCAO 

# Electronic self-consistent iteration (SCI) 

# Precision of the real space projectors 

# Projection done in real space 

# Electronic relaxation optimization algorithm 

# Cutoff energy 

# Maximum steps allowed for SCI 

# Minimum steps allowed for SCI 

# Convergence limit 

# Additional grid is used  

# Non-spherical contributions from the gradient corrections inside 
the PAW spheres will be included 

# Spin polarized calculations are performed. 

# Use symmetry 

 

# Atomic position optimization 

# Break condition for the ionic relaxation loop 

# The ions are not moved 

# Stress tensor is calculated and positions are allowed to change 

# Partial occupancies are smeared by Gaussian for each orbital 

# The width of the smearing in 0.03eV 

# Maximum number of ionic steps 

 

 

# DOSCAR and lm-decomposed PROCAR are written 
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LORBIT = 11 

# NEDOS = 2000 

LCHARG = TRUE 

LWAVE = TRUE 

NBANDS = 88 

 

# SOC and other 

LSORBIT = TRUE 

LVDW = TRUE 

# Number of gridpoints on which the DOS is evaluated 

# Charge densities (files CHGCAR and CHG) are written 

# wavefunctions are written to the WAVECAR file 

# Number of bands in the calculation 

 

 

# Spin-orbit coupling is taken into account 

# DFT-D2 method of correction is calculated 
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Appendix C: Slater-Koster Approximation in TB Model 

 “Tight binding” has existed for many years as a convenient and transparent model for the 
description of electronic structure in molecules and solids [166]. The classic paper of Slater and 
Koster (SK) [152] provides the systematic procedure for formulating a tight binding model. In 
their paper one can find the famous “Slater–Koster” parameters that are used to build a tight 
binding Hamiltonian. 

Considering a crystal whose Hamiltonian can be written as 𝐻 = − ℏ)

$D
∇$ + 𝑉c(𝑟), for each 

atomic orbital with quantum numbers 𝑙𝑚  one can construct a Bloch state: 𝜓gDj (𝑘, 𝑟) =
2
√E
Σ8𝑒8M%⋅.𝜓gD(𝑟 − 𝑇8 − 𝑅j) where 𝑇8 is the 𝑖th lattice vector and 𝑅j is the position of atom 𝛼 

in the unit cell. In this Bloch basis, the Hamiltonian and the overlap matrix are given by: 

 𝐻gD,g:D:
j,j: (𝑘) = {𝜓gDj (𝑘)|𝐻|𝜓g:D:

jS (𝑘)} (C-1) 

 𝑂gD,g:D:
j,j: (𝑘) = H𝜓gDj (𝑘)ä𝜓g:D:

j: (𝑘)I (C-2) 

The solution to the secular equation yields the band structure. The Hamiltonian matrix is thus 
given by  

 𝐻gD,g:D:
j,j: (𝑘) = 𝜀gSjS6 𝑂gD,g:D:

j,j: (𝑘) + Δ𝜀gD,gSDSj 𝛿j,jS −
1
𝑁 � 𝑒8(M%:1M%)⋅.𝑡gD,g:D:

8j,8:jS

8jz8:jS

 (C-3) 

where 𝜀gSjS6  are atomic levels, Δ𝜀gD,gSDSj = ∫𝑑𝑟𝜓gD∗ (𝑟 − 𝑅j)[𝑉c(𝑟) − 𝑉(𝑟 − 𝑅j)]𝜓g:D:(𝑟 −

𝑅j)  is the crystal-field matrix, and 𝑡gD,g:D:
8j,8:jS = −∫ 𝑑𝑟𝜓gD∗ (𝑟 − 𝑅j − 𝑇8)[𝑉c(𝑟) − 𝑉(𝑟 − 𝑅j: −

𝑇8:)]𝜓g:D:(𝑟 − 𝑅j: − 𝑇8S) is the hopping integral (parameter). This hopping parameter contains 
two-center and three-center terms, if the basis is localized, one can ignore the three-center 

contributions and assume that 𝑡gD,g:D:
8j,8:jS ~− 𝑉gD,g:D:

8j,8:jS . This is the so-called Slater-Koster two-center 

integral, which can be expressed as a function of few independent two-center integrals, shown 
in the following table for 𝑠, 𝑝, and 𝑑-functions forming 𝜎, 𝜋, and 𝛿 bonds. 
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Table C1 Slater-Koster integrals for 𝑠, 𝑝, and 𝑑-functions where 𝑑 is the distance between the 
atoms and 𝑙, 𝑚 and 𝑛 are the direction cosines to the neighboring atom defined as 𝑙 = 𝑑 ⋅ �⃗�/𝑑, 

𝑚 = 𝑑 ⋅ �⃗�/𝑑, 𝑛 = 𝑑 ⋅ 𝑧/𝑑. 
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Appendix D: Weighted Atomic Orbital Occupancy for VB1 to VB6 

 

Figure D1. Weighted atomic orbital occupancy for VB1 to VB6. The 𝑝 orbital is a sum of all the p orbitals 
of Bi, I, and O atoms.  
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Appendix E: Proof of HSP Gauge Invariant 

As one can see that in the TB model, we get a particular solution 𝛹2 =
2
√$
.

1
𝐷∗/𝑈
−𝑀/𝑈
0

/ ,𝛹$ =

2
√$
.

0
−𝑀/𝑈
−𝐷/𝑈
0

/ ,𝛹, =
2
√$
.

1
−𝐷∗/𝑈
𝑀/𝑈
0

/ ,𝛹* =
2
√$
.

1
𝑀/𝑈
𝐷/𝑈
0

/ (3.40). However, generally, by applying 

the linear combinations of this basis 𝛹2, 𝛹$ (𝛹,, 𝛹*), there seems a gauge problem. Here we will 
proof that the HSP effect is gauge invariant.  

First, we can construct a set of new double degenerate states 𝛹2S = 𝑐2𝛹2 + 𝑐$𝛹$ and 𝛹$S =

𝑐,𝛹2 + 𝑐*𝛹$. Then, set [8
∗

[7∗
= − [6

[)
 to make sure the basis transforming matrix to be unitary. Thus, 

the new doble degenerate states can be written as 𝛹2S = 𝑐2𝛹2 + 𝑐$𝛹$ and 𝛹$S = 𝑐$∗𝛹2 − 𝑐2∗𝛹$ 
with |𝑐2|$ + |𝑐$|$ = 1 . Now, using this new basis 𝛹2S  and 𝛹$S , we calculate the physical 
quantities: 

 P+>?@ =
1
2
(|c+|. − |c.|.) +

1
2F.

[|c.|. − |c+|.(M. − D.) − 2M(c+∗c.D + c+c.∗D∗)] (E-1) 

 P.>?@ =
1
2
(|c.|. − |c+|.) +

1
2F.

[−|c.|. − |c+|.(M. − D.) + 2M(c+∗c.D + c+c.∗D∗)] (E-2) 

 𝑠+&B =
1
2𝐹

[|𝑐+|.(𝐷 + 𝐷∗) − 𝑀(𝑐+𝑐.∗ + 𝑐+∗𝑐.)] (E-3) 

 𝑠.&B =
1
2𝐹

[|𝑐.|.(𝐷 + 𝐷∗) + 𝑀(𝑐+𝑐.∗ + 𝑐+∗𝑐.)] (E-4) 

 𝑠+(B =
𝑖
2𝐹

[|𝑐+|.(𝐷 − 𝐷∗) − 𝑀(𝑐+𝑐.∗ − 𝑐+∗𝑐.)] (E-5) 

 𝑠.(B =
𝑖
2𝐹

[|𝑐.|.(𝐷 − 𝐷∗) + 𝑀(𝑐+𝑐.∗ − 𝑐+∗𝑐.)] (E-6) 

where 𝑐2  or 𝑐$  is variant coefficient. It shows that both sector polarization PC>?@  and spin 
momentum 𝑠6B for a single state vary with the coefficient 𝑐2 or 𝑐$. However, adding the effect of 𝐸2 
and 𝐸$, the expectation values of the components of the HSP are: 
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 𝑠(2F$)4
e = 𝑠24e + 𝑠$4e =

1
2𝐹

(𝐷 + 𝐷∗) (E-7) 

 𝑠(2F$)5
e = 𝑠25e + 𝑠$5e =

𝑖
2𝐹

(𝐷 − 𝐷∗) (E-8) 

It obviously shows that there is no relation with the coefficient 𝑐2 or 𝑐$. This indicate that the 
HSP effect is indeed gauge invariant. 
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Appendix F: Spin Textures for VB1 to VB6 

 

Figure F1 the spin textures of VB1 to VB6. Panel (a) is the one calculated by TB method and panel (b) is 
the one calculated by DFT method. 
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