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Abstract

The successful standard ΛCDM model of cosmology takes several assumptions, and one of
them is the cosmological principle assuming homogeneity and isotropy of the universe on large
scales. Nevertheless, there are anomalies in large-scale observations, such as the low multipole
anomalies in the cosmic microwave background (CMB) temperature power spectrum, implying
possible phenomena breaking the cosmological principle.

In this thesis, models for dark energy with large-scale inhomogeneities are investigated based
on ultralight-mass scalar fields to illuminate the nature of dark energy potentially related to
these anomalies. Slightly breaking the cosmological principle, these models for dark energy can
be implemented with ultralight scalar fields, which also relate the interests of this study to the
axion-like particles (ALPs) predicted in the string landscape.

First, a dark energy model with nearly “frozen” dynamics and small spatial inhomogeneities
is presented as a heuristic example. This is a specific model requiring a particular open inflation-
ary scenario associated with the Coleman-De Luccia quantum tunneling. A canonical ultralight
scalar field φ minimally coupled with the tunneling inflaton Ψ may possibly leave discrete non-
normalizable modes as residual effects on the present open universe. These are superhorizon
modes that fluctuate on scales far beyond the curvature scale and evolve most slowly in time,
named supercurvature modes. The frozen expectation value of the supercurvature modes of φ ob-
served within the present horizon can be interpreted as the dark energy density, with small spatial
inhomogeneities sourced by quantum fluctuations predicted; this is the named the supercurvature-
mode dark energy (ScmDE).

ScmDE setup for the inhomogeneous dark energy requires specific initial conditions associated
with a particular inflationary scenario. The scope of application and the ability of prediction are
also restricted by the random Gaussian field handling for ScmDE inhomogeneities. Hence, as a
generalization to the ScmDE model, a general formulation for dynamical dark energy model with
large-scale inhomogeneities sourced by a scalar field follows. By handling the dark energy inhomo-
geneities as cosmological perturbations on superhorizon scales on a flat universe background, the
equations governing their evolution with the background are derived, following which predictions
for the expansion rate and the dark energy equation of state (EoS) can be obtained under different
model parameters subsequently.

The models with inhomogeneneous dynamical dark energy predict unique characteristic im-
prints on observations, such as contributions to CMB anisotropies through the late-time integrated
Sachs-Wolfe (ISW) effect. Using the observational data of the CMB, constraints on the amplitudes
of the perturbations related to model parameters are obtained. Further, as another example of the
model application, possible corrections to the measurements of luminosity distance associated with
light propagation with inhomogeneous dark energy is estimated utilizing the obtained constraints.
The model predictions are potentially to be constrained tighter or falsified by current and future
projects focusing on dark energy, such as Subaru PFS, DES, DESI, Euclid, RST, LSST-DESC,
etc., together with increasing understandings of the systematics in cosmological observation.
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1 Background

1.1 Introduction and motivation

With the successful applications of Einstein’s theory of general relativity (GR) in cosmology in the past century, our

knowledge of the universe has flourished as a productive outcome of the interplay between theories and observations.

The acceleration in the cosmic expansion is one of the most intriguing puzzles observed in the past decades. The

observations on the redshifts of the distant Type Ia supernovae implied the existence of an unknown repulsive effect,

which is supposed to have accelerated the expansion of the universe in relatively late cosmological times [1, 2, 3, 4, 5].

Otherwise, the fact would possibly suggest the breakdown of GR on cosmological scales.

Nowadays, a well-accepted translation for the phenomena is that a component with potentially exotic properties,

which is usually named the dark energy, dominates the expansion of the current universe. As the simplest and

the most common model to explain the acceleration in expansion, dark energy as a negative pressure component

whose equation of state (EoS) yields w = p/ρ ' −1 survives the tests from extensive observations as mentioned

previously. Dark energy, which behaves in a similar way to the cosmological constant Λ hence is usually denoted by

Λ, has become an essential content for standard cosmology to account for different observational results, such as the

aforementioned accelerated expansion, the growth of fluctuations in matter distribution, the turnover scale of the

matter power spectrum and so on since the late 1990s. In the age of precision cosmology in recent decades, the early

analyses from supernovae were followed and enhanced by many consistent efforts from different observations, for

instance, the galaxy clusters [6, 7], the large-scale structure (LSS) surveys [8, 9], the cosmic microwave background

(CMB) with baryon acoustic oscillations (BAO) [10, 11, 12], the weak gravitational lensing shear [13, 14], as well

as different aspects combined [7, 9, 14, 15, 16, 17].

In the standard cosmological model today, the density parameter Ωi for a certain component of the universe

denoted by “i” is widely adopted, which is defined as the ratio of the energy density of that component to the

critical density for a flat universe at the present epoch. Recent observations suggest that the density parameter

for dark energy yields ΩΛ ∼ 0.7; in other words, Λ standing for the dark energy consists of about 70% of the total

energy density in the universe. The matter component of total energy density is observed with Ωm ∼ 0.3, and

the contribution from radiation and curvature, Ωr and ΩK respectively, are negligible today. Within the matter



1 BACKGROUND 2

component Ωm, only about 15% of the matter is in form of the ordinary baryonic matter denoted by Ωb, and

the left is composed of some unknown form of matter as the cold dark matter (CDM) [17]. Hence, this standard

paradigm is often named the ΛCDM model.

Historically, the theoretical interest for cosmological constant Λ related to dark energy has been long. The early

idea may trace back to Einstein’s cosmological constant Λ to formulate a static universe. After discovering cosmic

expansion in the early 20th century [18] suggesting a dynamical universe, the necessity of Λ seemed to have once

become doubtful. However, even after the big-bang thermal history with an adiabatic expansion for the universe

became a standard picture in cosmology, theoretical interests on Λ persisted. The developments in quantum field

theories and cosmology had followed this interest on Λ, especially in lines such as vacuum energy and inflation,

where theoretical frameworks had already been widely discussed.

The cosmological constant Λ revived when the community realized that observations addressed previously do not

favour matter-dominant spatially flat Einstein-de Sitter model (Ωm = 1) for the universe, with Ωm < 1 constrained

at relatively high confidence level. However, the fact that Ωm ∼ 0.3 and ΩΛ ∼ 0.7 also gave rise to the famous

cosmological constant problem (CCP). There are different ways to make the statement of the problem, but one can

briefly summarize two aspects potentially partly related to each other for CCP [19, 20]:

• Vacuum energy problem (“why so small”). As a natural realization of negative pressure for cosmological

Λ-like dark energy, the naive estimation for total energies of vacuum fluctuations of quantum fields ρQFT ∼

1071GeV4 deviates the observed dark energy density ρΛ0 ∼ 10−47GeV4 at about 120 orders of magnitudes,

which is unnatural and extraordinary.

• Coincidence problem (“why now”). Present observed density for matter ρm0 and dark energy ρΛ0 yields

ρm0/ρΛ0 = Ωm/ΩΛ ∼ O(1). While ρΛ is generally considered nearly constant, ρm scales with the scale factor

a of the universe as ρm ∝ a−3, and ρm/ρΛ ∼ O(1) seems to have just taken place around a & 0.5 with a0 ≡ 1

for the present epoch. We seem to be coincidentally living in an epoch where the dark energy just began to

show its importance recently.

In Sec. 2.1 more details will be addressed on this topic. Related to the CCP, either the possible break down of

GR on cosmological scales, or the discrepancies between the predictions of quantum field theories against observed
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expectations values, or some unknown material nature of dark energy, all these facts hopefully hints towards

unknown new physical laws beneath the phenomena of dark energy.

Moreover, as ρm ∝ a−3 for the matter and ρr ∝ a−4 for the energy density of the radiation component, if

ρΛ ' const. a future de Sitter expansion for the universe is implied which behaves similarly to the primordial

inflationary phase on totally different time and energy scale. As a result, dark energy is supposed to be vital for

the evolution of the universe, especially in late times and in the future.

The answers to these problems are presumably related to the origin and nature of dark energy, which are of

great interest to explore to understand the evolutionary history and the future fate of our universe.

Different theoretical models for the nature of dark energy have been proposed and discussed [19, 20]. Within

them dynamical models for dark energy are very interesting [21, 22, 23, 24, 25, 26, 27, 28], which are related to

the field theory associated with the primordial high-energy epoch of the universe, and other fields of interests for

theoretical physics [19, 20, 29]. Particularly interesting ones are the dynamical models formulated on the basis of

the quantum fluctuations from ultralight scalar fields, [22, 23, 24, 25, 26, 27, 28]; the ultralight scalar fields are

expected in the string landscape [30, 31, 32, 33, 34, 35, 36], also revealing an interesting connection to the strong CP

problem in the context of axion-like particles. As was addressed previously, in the parametrization of the ΛCDM

model, in general models, dark energy has been considered as homogeneous, hence also isotropic when observed,

most widely considered as the cosmological constant Λ with the EoS w = −1 following the cosmological principle.

Nevertheless, since the late-time expansion of the universe is dominated by dark energy, some interesting outcomes

may occur to affect cosmological observables if large-scale inhomogeneities and variable EoS arise for dark energy,

which are expected to be tested by various observations [29, 37, 38, 39, 40, 41].

Additionally, in recent CMB observations, low multipole alignments corresponding to large angular scales of

the CMB has been drawing attention [42, 43]. For example, among the low CMB multipoles, the dipole anomaly,

sometimes phrased as the hemispherical power asymmetry, has long been a controversial topic related to the assumed

CMB rest frame, while the accurate measurements on the dipole are sabotaged by the cosmic variance from various

limitations on our ability for observations, such as the mere observing location near the earth at the present epoch.

The general interpretation for the CMB dipole is to attribute the phenomenon to the peculiar motions towards an
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assumed CMB rest frame where the hemispherical asymmetry is eliminated, sometimes interpreted as a dragging

towards the Great Attractor in a celestial region, and at least part of the peculiar motions is interpreted as the

evidence of gravitational bounding [44, 45]. However, these interpretations generally assume homogeneous dark

energy background. Thanks to the improvements in observational instruments and analysis methods, our knowledge

of the local environments of observations and the systematic errors is growing. If CMB dipole anomaly survive

the cosmic variance after removing contributions from peculiar motions and other known effects, there remains

the possibility for a physical origin of the anomaly, potentially as a clue for the physics beyond the standard

cosmological model for dark energy. In the same time, a recent research on X-ray luminosity-temperature relation

of the galaxy cluster over the sky seems to indicate anisotropy in the expansion rate of the universe [46]. Although

there have been other alternatives to the explanation of these problems (e.g., Refs. [47, 48]), one motivation in this

research is to propose that a dark energy model with large-scale inhomogeneities may serve as a possible solution.

Another intriguing problem of the cosmology today is the so-called Hubble tension problem. This tension

has also been attracting attention along with the improved observations in the recent decade [49]. To brief, the

present expansion rate H0 locally measured from distance ladders calibrated by standard candles such as Type

Ia supernovae [50], and the H0 inferred from the CMB statistics with the physical sound horizon scale rs(ηd) at

the epoch of photon decoupling as a standard ruler [51, 17] have shown nontrivial deviations from each other at a

confidence level of 4σ–6σ. There have been many attempts to ease or explain this tension, and among them the

possibility of new physics concerning dark energy beyond the standard ΛCDM breaking the cosmological principle

exists [52].

Innovated by a previous work [53], the motivation of this research follows these veins. This thesis elaborate an

attempt to shed light upon the previous problems potentially related to dark energy, by introducing inhomogeneities

in dark energy model that breaks the cosmological principle on very large scales.

1.2 The structure of the thesis

Part of this thesis is based on a published paper as Ref. [54], where the authors introduced the large-scale inhomo-

geneities of the dark energy by handling them as the stochastic fluctuations, and the dark energy was the residual

effect of some ultralight scalar field in an open universe associated with a specific inflationary scenario. Additionally
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in this thesis, the development on the generalized dynamical model for dark energy with the large-scale fluctua-

tions are presented based on a general scalar field φ, by handling them as cosmological perturbations to the metric

analytically. These fluctuations will be translated into large-scale spatial inhomogeneities and time-dependent dark

energy EoS in the evolution of the universe, which may introduce some observable effects on the anisotropies of

the cosmological observations to address on the problems concerning dark energy property mentioned previously.

The remaining parts of this thesis are organized as follows. In Chapter 2, firstly, a review on the basic aspects

for the ΛCDM model to characterized the background expansion, as well as the fundamental cosmological setups

for dark energy in this framework. Then a brief review on dark energy by canonical scalar fields follows as an

example of the implementation of general dynamical dark energy models, or quintessence models. Subsequently, as

an modification to the quintessence models, a heuristic setup to implement an inhomogeneous dark energy model

is addressed. Motivated by the ultralight scalar fields in the string landscape associated with open inflation. To

qualitatively specify, the source of dark energy is interpreted as the the discrete mode of a ultralight scalar field

in an almost flat open universe, named the supercurvature modes. The supercurvature modes of the ultralight

scalar field fluctuates on superhorizon scales much larger than the curvature scale, so the associated dark energy

is observed as almost “frozen” within the observable universe with mild large-scale spatial inhomogeneities. This

model will be referred to as the supercurvature-mode dark energy (ScmDE) in the following parts.

Following on the heuristic setup of ScmDE, in Chapter 3, quantitative formulations for large-scale spatial

inhomogeneities is considered by the Gaussian random field handling with “frozen” dynamics. Then, to extend the

scope of application and ability of prediction from the inhomogeneities of the dark energy, a formulation for the

inhomogeneities of dark energy is elaborated quantitatively, both from the view of stochastic fluctuations, and the

view of cosmological perturbation on superhorizon scales.

In Chapter 4, the initial conditions and analytic approximation for the formulations will be considered to perform

numerical evaluation on the dark energy inhomogeneities from the models formulated by Chapter 3. Subsequently,

these numerical evaluation of the late-time evolution of the dark energy are presented showing characteristic

behaviors of the background evolution and the perturbations of the systems. By calculating the imprints of these

inhomogeneities on the CMB anisotropies, the constraints from observation are obtained with numerical solutions
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under different model parameters. As the application of the generalized analytical formulation for inhomogeneities

as superhorizon perturbations, the possible effect on luminosity distance measurements is evaluated.

Discussions on the results and conclusions drew from the model will follow in Chapter 5. Finally, miscellaneous

technical details will be attached as the appendices.
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2 The supercurvature-mode dark energy from ultralight scalar fields

The observations on CMB by experiments such as WMAP and Planck found that the order of the perturbations to

the homogeneous background O(10−5), hence suggesting that the cosmological principle assuming a homogeneous

background may only be violated to a slight extent in our universe. In order to formulated for the dark energy

model with slight inhomogeneities allowed by observations, let us first start with a brief review on the background

evolution and the accelerated expansion within the standard ΛCDM model framework.

2.1 A brief review on background expansion with standard cosmological model

One may adopt the natural unit convention of physical constants, where the velocity of light c, the reduced Planck

constant ~, and the Boltzmann constant kB are defined as unity reading

c = ~ = kB ≡ 1, (2.1)

and take (−,+,+,+) signature convention for the spacetime metric. Starting from the Hilbert-Einstein action

with cosmological constant Λ and matter field LM

S =

∫
d4x
√
−g
[

1

16πG
(R− 2Λ) + LM

]
, (2.2)

where g ≡ det(gµν) is the determinant of the metric tensor gµν , G is the Newton’s gravitational constant, R ≡

gµνRµν = Rµµ is the Ricci scalar with Rµν the Ricci tensor.

Operating the action variation principle δS = 0 on Eq. (2.2) will lead to the Einstein equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.3)

Here, Tµν is the energy-momentum tensor (EMT) for the matter field source given schematically as

Tµν ≡ LMgµν − 2
δLM
δgµν

. (2.4)

Following the cosmological principle that assumes a homogeneous and isotropic background universe, the line
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element of the famous Friedmann-Lemaitre-Robertson-Walker (FLRW) metric reads

ds2 = gµνdx
µdxν

= −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (2.5)

with t representing the cosmic time, and K is the sign of shape for curvature, taking value from {-1,0,+1} for open,

flat, closed universe respectively. In the comoving spherical coordinates (r, θ, φ), the element of solid angle writes

dΩ2 = dθ2 + sin2 θdφ2. (2.6)

a(t) in Eq. (2.5) is the scale factor of the universe as a function of time characterizing the evolutionary history

of the cosmic expansion. Observationally, with the existence of the cosmic expansion characterized by a(t), the

photons from distant objects receding from us will be observed with stretched wavelengths when received compared

with when emitted. This wavelength stretch, as the cosmological version of the Doppler effect, is associated with

a cosmological redshift z due to the cosmic expansion as

a(t) =
1

1 + z
=
λemit

λobs
. (2.7)

As a convention, the scale factor the of present epoch is defined as unity a0 ≡ 1.

Now let us consider the geometry of the spacetime on the left hand side of Eq. (2.3). The Riemann tensor is

defined as

Rαβµν = ∂µΓανβ − ∂νΓαµβ + ΓαµλΓλνβ − ΓανλΓλµβ , (2.8)

with the metric connection, the Christoffel symbol written as

Γαµν =
1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) , (2.9)

where the Einstein summation convention for summation over a same indice is already reposed. Given the metric

in Eq. (2.5), the Ricci tensor and Ricci scalar can be consequently derived from tensor contraction

Rµν = Rαµαν , (2.10)

R = gµνRµν . (2.11)
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The EMT Tµν is specifically determined by the constituents of the universe. The perfect fluid treatment for

energy components of the universe is a standard approach with the energy density ρ and pressure p related as

Tµν = (p+ ρ)uµuν + pgµν , (2.12)

where the four velocity for the fluid yields uµuµ ≡ −1. For the homogeneous background, this explictly leads to

Tµν =



−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


. (2.13)

The definition for the EoS w (wi) of a fluid (component “i”) follows as

w(i) = p(i)/ρ(i). (2.14)

For non-relativistic dust-like matter fluid, pm = 0 hence wm = 0, while for relativistic radiation wr = 1/3.

With previous definition of the EMT tensor, the local conservation law associated with the geometry of the

spacetime consequently writes

∇µTµν ≡
∂Tµν
∂xν

+ ΓµαµT
α
ν − ΓανµT

µ
α = 0. (2.15)

Using Eq. (2.13) one can see the conservation law in the expanding background universe is

∂ρ

∂t
+ 3

1

a

da

dt
(ρ+ p) = 0. (2.16)

Now, with the right-hand side of the Einstein equation, Eq. (2.3), known in Eq. (2.12), the Friedmann equations

characterizing the expansion of the universe can be reduced from the (0,0) component and the (i,i) component as

below

(
1

a

da

dt

)2

+
K

a2
=

8πG

3
ρ+

Λ

3
, (2.17)

1

a

d2a

d t2
= −4πG

3

(
ρ+ 3p

)
+

Λ

3
. (2.18)
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Eq. (2.17) characterize the evolution of the expansion rate of a(t), while Eq. (2.18) describe the change rate

in expansion rate of a(t), as a function of proper time t. Though solutions of the Friedmann equations describes

the dynamics of scale factor a(t) and the evolution of the background, there are crucial cosmological parameters

whose values can only be obtained from actual observations to fully determine the details of the predictions from

the equations.

Conventionally, it is convenient to define the Hubble parameter for the expansion rate from the scale factor a

of the universe as

H(t) ≡ 1

a

da

dt
. (2.19)

As another convention, with the dimensionless cosmological parameter h, the current expansion rate, Hubble

constant of the local present universe is defined as

H0 ≡ H(a = 1)

= 100h km/s Mpc−1. (2.20)

In a universe without curvature component, the energy density exactly equal to the critical density ρcr to create

a flat universe is known as

ρcr =
3H2

0

8πG
, (2.21)

which can be derived from the Friedmann equations and FLRW metric with curvature taken into consideration.

It is also conventional to define the dimensionless density parameters in present epoch for different components of

the universe as

Ωi ≡
ρi,0
ρcr

, (2.22)

ΩK ≡ −
K

H2
0

, (2.23)

where subscripts i = m, r,Λ represents the different components, typically labelled as matter (including baryonic

matter and dark matter), radiation, dark energy respectively, and K stands for the spatial curvature. Following

the definition

Ωm + Ωr + ΩΛ + ΩK = 1 (2.24)
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generally holds. Notice that for the dark energy,

ρΛ ≡
Λ

8πG
(2.25)

is defined. On the other hand, looking back at Eq. (2.16) one can see that, for a component of a constant value Λ

corresponding to a constant energy density ρΛ in the background, ∂ρΛ/∂t = 0 leads to

3H(ρΛ + pΛ) = 3H(1 + wΛ) = 0. (2.26)

The result is identical to the statement that a Λ-like dark energy component behaves as some unknown form of

negative pressure as pΛ = −ρΛ, whose EoS yields wΛ = −1.

In the expanding universe, using subscript 0 to represents for today, from Friedmann equation Eq.(2.17) one

can derive

H2 = H2
0

(
Ωma

−3 + ΩΛ + Ωra
−4 + ΩKa

−2
)
. (2.27)

Inserting parameters Ωm, Ωr, ΩK and ΩΛ calibrated by observations in Eq.(2.27), one can figure out the solution

of scale factor a with respect to time t, hence the evolution of the background universe is basically determined.

The ΩΛ component corresponding to the cosmological constant Λ in Eq. (2.17) and Eq. (2.18) is then responsible

for the explanation of the recent accelerated expansion found by observations, alternatively referred to as the dark

energy.

To see this one may define the deceleration parameter q of cosmic expansion from Eq. (2.17) and (2.18) as

q ≡ −
(
a

d2a

dt2

)
/

(
da

dt

)2

= −
(

1 +
1

H2

dH

dt

)
=

Ωma
−3 − 2ΩΛ + 2Ωra

−4

2(Ωma−3 + Ωra−4 + ΩKa−2 + ΩΛ)
. (2.28)

Subsequently, the deceleration parameter q0 for the present epoch when a = a0 ≡ 1 is

q0 =
Ωm
2

+ Ωr − ΩΛ, (2.29)

where condition Eq. (2.24) was understood. Note that a positive q suggest the deceleration in expansion, while a

negative q indicates the acceleration in expansion. The sign of the ΩΛ term in the right-hand sides of Eq. (2.29)
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(or similarly, that of Λ term in Eq. (2.18)) implies although radiation with EoS wr = 1/3 and matter with EoS

wm = 0 will eventually decelerate the expansion of the universe by decrease Hubble parameter H, the existence of

a positive cosmological constant Λ may serve as the source of the acceleration in late-time expansion rate found by

observations on Type Ia supernovae, which was also the motivation for reviving Λ in cosmology as a widely-accepted

candidate for dark energy.

It is worth mentioning that, due to recent observations, the Ωr for radiation is estimated to be generally

negligible for the late-time expansion as Ωr = Ωmaeq ∼ O(10−4), where aeq ∼ (1/3600) is the epoch of matter-

radiation equality in the sense of energy density; on the other hand, the curvature component of the observable

universe is also constrained to be small as ΩK . O(10−2) [17]. Following this, since the epoch of matter domination,

especially in the late epochs when dark energy is believed to have become important for cosmic expansion, the

parameterized Friedmann equation for expansion rate, i.e., Eq. (2.27), can usually be estimated as

H2 ' H2
0

(
Ωma

−3 + ΩΛ

)
= H2

0

(
Ωma

−3 + 1− Ωm

)
. (2.30)
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Figure 1: The evolution of the universe determined by solutions of Eq. (2.27) with different sets of cosmological
parameters, where Ωm = 0.3, ΩΛ = 0.7 is a close approximation to the observable universe. Cosmic time t = 0
represents for today, and t < 0 is the “lookback” time representing for the history, and t > 0 stands for the future.
In these solutions, the scale factor a of universe today follows the convention a(0) = a0 = 1 with expansion rate
today H(a0) set universally as the Hubble constant H0.

As for the initial conditions of the background solution, generally a inflationary model is attached to the

early universe before adiabatic expansion of the background. This inflationary scenario is to explain why the

universe observed appears so homogeneous, even for regions with so large separations in the sky, that it seems

causal interactions propagating lower than light speed should not have allowed these regions to “communicate”

or interact with each other in order to keep them in similar states; this is sometimes phrased as the horizon

problem. Inflation resolve this problem by assuming a rapid (mostly exponential) expansion in the spacetime itself

in primordial universe, hence the regions greatly separated in the sky was actually causally contacted within the

physical horizon in primordial universe. Also, the quantum fluctuations of the quantum fields in the inflationary

epoch set seeds of the small perturbations to energy/matter distribution on the homogeneous background, later

forming the structures observed in the universe today. Based on the background evolution reviewed previously,

a standard approach named the standard perturbation theory can be developed to quantitatively understand the

evolution of the perturbations on the homogeneous and isotropic background.
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2.2 Dynamical dark energy with scalar field

Basically, it is in consensus of the community that the standard ΛCDM is a satisfactory model to describe the ob-

servable universe with several cosmological parameters calibrated from observations. But there are several concerns

to address even for the background evolution, especially for the dark energy. Firstly, ΛCDM is a phenomenolog-

ical parametrization both for the Λ component as dark energy and the dark matter, the knowledge of how Λ or

dark energy was generated or is it natural for a cosmological constant Λ to emerge in (the action of) the universe

Eq. (2.2) is still in the dark. On the other hand, as was addressed in Chapter 1, the observed energy scale of dark

energy summarized as the CCP gave rise to the anthropic/coincidental concern for the observed status of the dark

energy, that we seem to live in a special epoch of the universe.

Another perspective on the CCP is to look upon the energy level of the observed cosmological constant at

present epoch, from dimensional analysis,

εΛ0 ∼ ρ1/4
Λ0 ∼ O(10−3)eV ∼ O(1)meV. (2.31)

This fact seems to suggest potential new physical phenomena related to the dark energy or cosmological constant

at energy scale of chemical reactions, which is not likely to be true. But if the source of dark energy obeys some

dynamics with ρΛ rolling to the zero value, the scenario will be more natural [19]. In this vein, alternative models

to cosmological constant in attempts to resolve these concerns have been proposed and investigated [19, 20], and

dynamical models are of natural interest to ease the CCP.

One interesting class of these solutions, is the dynamical dark energy models implemented by canonical scalar

field weekly coupled to the gravitation denoted by spacetime metric, sometimes also referred to as the quintessence

model [21].

The action of a canonical scalar field φ weakly coupled to the gravity represented by the spacetime metric
√
−g

can be written as

Sφ = −
∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ+ V (φ)

)
(2.32)

in the {−,+,+,+} notation system, sometimes also referred to as the minimal coupling model for scalar fields.
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The equation of motion for the scalar field can by obtained by taking the action variation δSφ = 0, which reads

d2φ

dt2
+ 3H

dφ

dt
+

dV

dφ
= 0, (2.33)

where H is time-dependent Hubble parameter concerning the background expansion rate.

On the other hand, the EMT tensor of scalar field φ is defined as

T
(φ)α

β = gαν
∂φ

∂xν
∂φ

∂xβ
− gαβ

[
1

2
gµν

∂φ

∂xµ
∂φ

∂xν
+ V (φ)

]
. (2.34)

where V (φ) is the potential for the field φ. The conservation law of the EMT tensor of the scalar field can also lead

to the equation of motion identically, in a similar manner to Eq. (2.15). Inserting this EMT into the right-hand

side of Einstein equations Eq. (2.3) with other cosmic components under a specific metric will give the background

evolution of the field φ, which is associated with other species of the cosmic inventory in the expansion history.

From Eq. (2.34), one can write the isotropic and homogeneous background part of the EMT for scalar field φ as

ρφ =
1

2

(
dφ

dt

)2

+ V (φ), (2.35)

pφ =
1

2

(
dφ

dt

)2

− V (φ), (2.36)

following which its EoS writes

wφ =
pφ
ρφ

=
(dφ/dt)2 − 2V (φ)

(dφ/dt)2 + 2V (φ)
. (2.37)

If the kinetic term (dφ
dt )2 is small then in wφ ' −1 holds, which means φ behaves very similar to a cosmological

constant, φ can be considered as the source of a dynamical dark energy.

Different classes of dynamical dark energy can be assumed by different types of scalar potential V (φ) and be

constrained by observations (see Ref. [21]). However, it is worth noting that the potential V (φ) for a canonical

free-field case is

V (φ) =
1

2
m2
φφ

2 (2.38)

with mφ denoting the mass of the field φ, where there is only mass term in the potential without interacting terms.

In this case, it follows Eq. (2.33) that the equation of motion for φ yields

d2φ

dt2
+ 3H

dφ

dt
+m2

φφ = 0. (2.39)
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This is the basic equation for the evolution of a scalar field φ in the homogeneous expanding background universe.

It would also be interesting to mention here that, the simplest inflationary models can also be implemented with

a scalar field, in a similar formalism with Eq. (2.33)–(2.37), while its potential V (φ) is constrained by observations

like Planck [17]. In this line, generally, the kinetic term (dφ/ dt)2 is considered small as the slow-roll condition for

an inflationary epoch long enough to resolve the horizon problem in observation. To see this, consider the case that

universe is dominated by some form of energy density with almost constant value, whose EoS yielding w ' −1 was

described in Eq. (2.26) and also in Eq. (2.37). Then the background expansion rate can be written as

H =
1

a

da

dt
'
√

Λ

3
' const. (2.40)

following Eq. (2.17). Here, if Λ is the cosmological constant, then the equality exactly holds. Following this one

can easily obtain the de-Sitter exponential expansion of the scale factor a(t)

a(t) ∝ eHt ∝ e
√

Λ
3 t (2.41)

assumed by general inflationary models.

2.3 The supercurvature-mode dark energy

This section will largely rely on the basis of the theoretical setup by a previous research in Ref. [53], where the

so-called supercurvature-mode dark energy (ScmDE) was motivated. Additional details of the theoretical setups

for review can be found in Appendix A.

Consider a scenario that our observable universe is an open universe patch created by a bubble nucleation due

to the Coleman-De Luccia (CDL) quantum tunneling of a scalar field, the inflaton field ψ [55]. After the bubble

nucleation, a primordial ordinary inflation occurred within the nucleated bubble, and then the big bang universe

with negative spatial curvature has started to evolve into the observable universe one sees today. Then according

to Ref. [53], consider another scalar field φ as a free field on the tunneling background, the supercurvature modes

of φ can be generated during the bubble nucleation process. These modes can be translated as the dark energy

observed in the universe today, which may be named the supercurvature-mode dark energy (ScmDE).

To start with this setup, one can denote Hubble parameter and mass of φ in the metastable de Sitter (ancestor)

vacuum before the CDL tunneling by HA and mA respectively. Ordinary inflation follows the bubble nucleation
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in the hyperbolic spatial geometry of H3∗. The Hubble parameter during the inflation is denoted by HI . It should

be noted that the Hubble parameters before and after the CDL quantum tunneling satisfy the relation HA > HI

(again, see Ref. [53]). The mass of the scalar field φ after the tunneling during ordinary inflationary phase is set

as mi, which could be different from mA.

As a general approach, the CDL tunneling process can be considered on a Euclidean spacetime metric, If one

assumes that the scalar field φ is minimally coupled with CDL instanton ψ via the Euclidean spacetime metric, in

the free-field approximation, one can solve the equation of motion for the scalar field φ on the CDL background as a

delta-function source. By expanding solutions in terms of the eigenfunctions of Laplacian ∇2
S on the 3-dimensional

sphere slice S3 with eigenvalues −(k2+1), the equation of motion becomes the eigen equation for the mode functions

with a finite potential. The solution of the eigenfunctions on S3 can classified into two types of modes. One type

is the continuous modes with real wave numbers k while the other is a discrete mode with an imaginary wave

number kB = i(1− ε) correpsponding to the bound state contribution. The imaginary pole contribution from the

bound state is normalizable on the global Cauchy surface in the Euclidean spacetime, thus should be included in

the mode expansion of the quantum field φ in the complete basis. The discrete mode is called the supercurvature

mode. Here ε is a small quantity related to the bound state energy, determined by the properties of the ancestor

vacuum as

ε = cε

(
mA

HA

)2

, (2.42)

where cε is an order O(1) quantity that depends on the critical size of the bubble created in the ancestor vacuum,

which can be calculated from the evolution of φ in the ancestor vacuum. Physically, the shift of small quantity ε

arises from the ultralight but nonzero mass of scalar field φ as the perturbation to the zero-order bound state energy

(which is zero) in the massless limit. Generally, to the mass mA of the scalar field φ and the Hubble parameter

HA in the ancestor vacuum are assumed to follow the condition mA � HA thus ε� 1 holds as the supercurvature

condition.

After operating the analytical continuation to the Lorentzian region in de Sitter space, the supercurvature mode

becomes non-normalizable on the spatial slicing H3 of the open universe and generate large-scale fluctuations,

∗For convenience, one may define the geodesic distance as dimensionless quantities so that the spatial curvature is denoted by the
sign of shape |K| = 1, and for open universe K = −1.
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because the time-constant spatial slice in the open universe within the bubble is not the global Cauchy surface†

needed for the normalization of the quantum modes. Unlike the continuous modes that decay as e−η in the

conformal time η hence, the discrete supercurvature mode behaves as e−εη and decays remarkably slowly compared

to the continuous modes providing ε is small enough. Hence, if the scalar field have ultralight mass at present

epoch with m0 < H0 ∼ 10−33eV, the supercurvature mode can stay superhorizon and play the role of dark energy

in the present universe. A candidate of such ultralight fields may appear as an axion-like particles (ALPs) arising

from the string theory predictions [30, 31].

The supercurvature mode contributes to the correlation function of the scalar field φ(x) in the open universe

within the bubble as [53]

〈φ(η,x)φ(η′,x′)〉 = ϕ(η)ϕ(η′)
sinh(1− ε)R
(1− ε) sinhR

, (2.43)

where η is the conformal time, ϕ(η) is the frozen expectation value of field φ. The explicit form of ϕ is given in

Eq. (A.5).

R is the (dimensionless) geodesic distance on the 3-dimensional hyperbolic space H3, normalized in terms of

the curvature scale Lc = 1/
√
−K, and is given by

coshR = coshR1 coshR2 − sinhR1 sinhR2 cosψ. (2.44)

R1 and R2 are the radial coordinates of the two points, x and x′, and ψ is the included angle between them in the

three-dimensional hyperbolic space (see Fig. 2). In the following parts, χ is widely used to denote the comoving

radial coordinate distance with dimension of the length, with the relation R =
√
−Kχ. Thus the curvature radius

is given by Rc =
√
−KLc = 1.

If supercurvature mode of the scalar field φ stays frozen as almost constant until present as some form of

substance pervading the background of the universe, it could play the role of the observed dark energy in the

background as the ScmDE. However, due to the quantum fluctuation nature of the supercurvature mode of φ

fluctuating on supercurvature scales, the large-scale inhomogeneities in the density of dark energy considered as

ScmDE would be introduced as random fluctuations, which is to be discussed and formulated in detail in the next

chapter.
†The global Cauchy surface exists in the Euclidean region of the spacetime.
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Figure 2: Schematic of the {R,R1, R2} triplets in Eq. (2.44) associated with different line-of-sight directions for
the two-point correlation function of scalar field φ. The shadowed region is a schematic of late-time domain, where
dark energy is supposed to become important.
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3 Formulation for the dark energy inhomogeneities

In this chapter, motivated by the supercurvature-mode dark energy, or ScmDE, discussed in the previous chapter,

specific model formulation for the dark energy inhomogeneities which slightly breaks the cosmological principle’s

assumption for a homogeneous and isotropic background dark energy will be presented.

3.1 Stochastic field handling for Gaussian fluctuations of the ScmDE

The formulation for dark energy inhomogeneities will start with the ScmDE in this section. Following the ScmDE

setups in Chapter 2 and supplements in Appendix A, the dark energy density at late-time matter-dominant era

are vitally decided by the mass term contribution from the EMT of the supercurvature modes (see also period (ii)

in Sec. V-C of Ref. [53] for a reference).

ρDE(η,x) ' m2
0

2
φ2(η,x). (3.45)

Note that there are random fluctuations in the value of ρDE due the quantum fluctuation nature. As for the

inhomogeneities of the dark energy, one may define the density contrast of dark energy by

δ(η,x) =
ρDE(η,x)− 〈ρDE(η,x)〉

〈ρDE(η,x)〉
' φ2(η,x)− 〈φ2(η,x)〉

〈φ2(η,x)〉
, (3.46)

where the deviation from the statistical ensemble 〈ρDE〉 can be comprehended as the dark energy inhomogeneities.

Following this the two point correlation function of the density contrast will be calculated as

〈δ(η,x)δ(η,y)〉 =
〈φ2(η,x)φ2(η,y)〉 − 〈φ2(η,x)〉〈φ2(η,y)〉

〈φ2(η,x)〉2
, (3.47)

where 〈φ2(η,x)〉 = 〈φ2(η,y)〉 is used because of the gaussian random field nature of the handling here. Furthermore,

in the free field approximation with no interaction terms, one can decompose the four-point function of φ (two-point

function of δ) into a product of two-point functions by using the Wick theorem:

〈φ2(η,x)φ2(η,y)〉 = 〈φ2(η,x)〉〈φ2(η,y)〉+ 2〈φ(η,x)φ(η,y)〉2. (3.48)
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Then, using Eq. (2.43), one will obtain

ξ(R) ≡ 〈δ(η,x)δ(η,y)〉

=
2〈φ(η,x)φ(η,y)〉2

〈φ2(η,x)〉2

= 2

(
sinh(1− ε)R
(1− ε) sinhR

)2

, (3.49)

where R =
√
−K|x− y|. The correlation function ξ(R) changes its behavior around the curvature scale Rc = 1 as

ξ(R) ' 2×


1 (R� 1)

e−2εR (R� 1)

(3.50)

and diminishes at distances over the supercurvature scale Rsc ≡ 1/ε. In physical length, Rsc corresponds to Lsc =

Lc/ε, which is much larger than the curvature radius Lc. The behavior of
√
ξ(R) for R� Rsc is depicted in Fig. 3.

This indicates that the supercurvature-mode dark energy density varies considerably beyond the supercurvature

scale Rsc. In Fig. 4, a schematic picture of the spatial variation of the ScmDE is demonstrated. At the horizon scale

H−1
0 (� Lc), one may take R =

√
−KH−1

0 =
√

ΩK , where the relation for the curvature component ΩK = −K/H2
0

is used. For ΩK � 1 and ε� 1, one has the estimation for the inhomogeneities expressed by the 2-point function of

the ScmDE density, evaluated with respect to locations of the observer at x = 0 and that of the horizon x = H−1
0

as

√
〈δ2(0)〉 −

√
〈δ(0)δ(1/H0)〉 =

√
2−
√

2
sinh(1− ε)

√
ΩK

(1− ε) sinh
√

ΩK
'
√

2
εΩK

3
. (3.51)

This extremely small quantity of O(εΩK) within the current horizon shows the inhomogeneities in dark energy

within the observable universe is small, and the background evolution is roughly isotropic.

However, small as it is, these inhomogeneities within the horizon may still give rise to observable effects on the

anisotropies of the CMBtemperature power spectrum on the extremely large scales, as one shall see in the next

section.

The previous results show that the density contrast ξ(R) of the ScmDE has its inhomogeneities of O(1) over the

scales of the supercurvature R & Rsc � 1. This large-scale difference in the dark energy density is the characteristic

feature of the dark energy model based on quantum fluctuations. For the large scales R > Rsc, the dark energy
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Figure 3:
√
ξ(R) as a function of R, where ε = 0.01 is adopted. The horizon scale at the present epoch is

R ∼
√
−K/H0 =

√
ΩK � 1, the curvature scale is Rc = 1, and the supercurvature scale is Rsc = ε−1 � 1.

The behavior of
√
ξ(R) changes at the curvature scale following Eq. (3.50). The fact indicates that the order of

magnitude for the spatial inhomogeneities of ScmDE within the present horizon (a very narrow domain near R=0
in the figure where

√
ξ(R) '

√
2) is small.

density fluctuates greatly and can be treated as a classical Gaussian random variable with the properties of 〈φsc〉 = 0

and 〈φ2
sc〉 = ϕ2(η) (see Appendix A for the explicit expression of ϕ(η)). On the contrary, the dark energy density is

nearly constant within the present horizon H−1
0 (� Lc). The explicit form of the probability distribution function

of the dark energy density is shown in Appendix A.1. The result demonstrates a wide distribution of probability

of ρDE and the dark energy density parameter ΩΛ at scales larger than the supercurvature scale Rsc even the

parameter

〈ρDE(x)〉 =
1

2
m2

0ϕ
2(0) = 3H2

0 ΩΛ/8πG (3.52)

is fixed with ΩΛ = 0.7. Thus the dark energy density has large spatial variation on the large scales R > Rsc.

It may also be noted, that the spatial variations exist even within the horizon scale H−1
0 , although the order of

magnitude is as small as Eq. (3.51). In the next section, CMB anisotropies caused by this spatial variations will

be calculated in an exact way instead of order estimation, and observational constraints on the model parameters

in the scenario will be given.
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2

Figure 4: A schematic demonstration for the ScmDE density contrast, where the color scheme denotes the relative
amplitude of the density contrast following Eq. (3.49). x1 = x and x2 = y are the coordinates for different
spatial locations for two-point correlations in R =

√
−K|x − y|. The supercurvature scale is assumed to be

Lsc = 1/ε
√
−K(= Lc/ε) far beyond the curvature scale Lc = 1/

√
−K. Also, because the universe today is observed

to be nearly flat, the curvature scale Lc is beyond the comoving horizon scale 1/H0, thus 1/H0 � Lc � Lsc.

3.1.1 Evolution of the stochastic fluctuations of ScmDE

To study the late-time evolution with the ScmDE inhomogeneities of in an open universe, one may adopt the line

element under the conformal Newtonian gauge as

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)γijdx

idxj
]
, (3.53)

where Ψ and Φ are the gravitational potential and the curvature potential, respectively, and γij is the three-

dimensional metric in the open universe, similar to a Kronecker delta as,

γijdx
idxj = dχ2 +

(
sinh
√
−Kχ√
−K

)2

(dθ2 + sin2 θdϕ2). (3.54)

Hereafter, one may use dot over a symbol to denote the differentiation with respect to the conformal time η,
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˙≡ ∂/∂η. In the following one may calculate the right-hand-side of Eq. (3.74) with the linear perturbative part of

Einstein equation.

Using an overbar to represent the background average quantity, one can write out the 0-th order Einstein

equations as [56],

G
0
0 = −3

1

a2

(
H2 +K

)
= 8πGT

0
0 = 8πG

(
T

0
0(m) + T

0
0(φ)

)
, (3.55)

where (m) and (φ) denotes the matter and dark energy component, respectively, with H = ȧ/a = a,η/a defined. A

concrete definition of the overbar average will be presented later. The 1st-order perturbative parts of the Einstein

equation will yied

δG0
0 = 2

1

a2

[
3H2Ψ− 3HΦ̇ + (∇2

H + 3K)Φ
]

= 8πGδT 0
0 = 8πG

(
δT 0

0(m) + δT 0
0(φ)

)
, (3.56)

where ∇2
H is the Laplacian defined with respect to γij in the open universe, as ∇2

HQ = γijQ|ij [56].

On the other hand, the EMT of the scalar field φ can be written as

T 0
0(φ) = − 1

2a2

(
(1− 2Ψ)φ̇2 + (1− 2Φ)γij∇iφ∇jφ+m2

0a
2φ2
)
. (3.57)

Following this, the spatial average of the scalar field EMT surrounding our horizon is defined as

T
0
0(φ) = − 1

2a2

(
(1− 2Ψ)φ̇2 + (1− 2Φ)γij∇iφ∇jφ+m2

0a
2φ2
)∣∣∣

SAχ=0
, (3.58)

where “SA” means“spatially average around” surrounding the present Hubble scale of the universe. Then one may

consider the fluctuations of T 0
0(φ) around T

0
0(φ) taking the background as this spatial average, which reads

δT 0
0(φ) ≡ T 0

0(φ) − T
0
0(φ). (3.59)

Since the supercurvature-mode dark energy φ has is almost frozen, which means it has almost constant value with

tiny fluctuations within the Hubble scale, one may approximate the spatially averaged value of the φ by the value

near the observer at χ = 0. For example, one may set

φ(η, χ,γ)|SAχ=0 = φ(η, χ = 0,γ). (3.60)
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Of course, φ(η, χ = 0,γ) does not depend on the direction of received photon denoted by line-of-sight direction γ,

hence one can simply write it as φ(η, χ = 0).

As the ScmDE component fluctuates mildly both in space and time, the mass term in the EMT (3.57) dominantly

contributes: T 0
0(φ) ' − 1

2m
2
0φ

2. Then the background and the perturbation as spatial inhomogeneities of T 0
0 are

given by

T
0
0(φ) = −1

2
m2

0φ
2
∣∣∣
SAχ=0

, δT 0
0(φ) = −1

2
m2

0

(
φ2 − φ2

∣∣∣
SAχ=0

)
, (3.61)

respectively.

Since the interest here are the perturbations on the supercurvature scales, see Fig. 4, the metric perturbation

in the late-time universe can be approximated as Ψ + Φ = 0 and the spatial derivative term (∇2
H + 3K)Φ will be

negligibly small. This will allow one to approximate Eq. (3.56) as

δG0
0 = 2

1

a2

[
3H2Ψ + 3HΨ̇

]
= 8πG

(
δT 0

0(φ) + δT 0
0(m)

)
. (3.62)

The perturbed energy momentum tensor of the matter component is δT 0
0(m) = −δmρm, where δm is the density

contrast of the matter component, which follows (e.g., [56])

δ̇m + kVm + 3Φ̇ = 0, (3.63)

V̇m +
ȧ

a
Vm − kΨ = 0. (3.64)

These equations follow the notations in Ref. [56] for the Fourier mode expansion formalism in an open universe.

Therefore it should be noted that k2 = −Kε for the supercurvature mode in the Fourier space. The equations

writes

(aδ̇m)̇ + k2aΨ + 3(aΦ̇)̇ = 0, (3.65)

where the term of the gravitational potential k2aΨ may be omitted in the large-scale limit k � η−1
0 , as one is

mainly interested of the supercurvature mode on superhorizon scales here. As a result, one writes

δm(η) + 3Φ(η) = 0, (3.66)
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where the isocurvature initial conditions δm(0) = Φ(0) = 0 for the supercurvature mode perturbations is assumed.

With the general condition in an almost isotropic universe Ψ + Φ ≈ 0 (otherwise large quadrupole for energy or

matter distribution would arise), Eq. (3.62) reduces to

6
H
a2

Ψ̇ +

(
6
H2

a2
+ 24πGρm

)
Ψ = 8πGδT 0

0(φ). (3.67)

Using Eqs. (3.61) and (3.67), one can write down the solution for Ψ as

Ψ(η, χ,γ) =
1

F (η)

∫ η

η∗

dη1
8πGF (η1)

B(η1)
δT 0

0(φ)(η1, χ,γ)

' − 1

F (η)

∫ η

0

dη1
4πGF (η1)

B(η1)
m2

0

(
φ(η1, χ,γ)2 − φ(η1, 0)2

)
, (3.68)

where the approximation η∗/η � 1 hence η∗ ' 0 was used, with functions defined as

F (η) = Fc exp

{∫ η

0

dη′
A(η′)

B(η′)

}
, (3.69)

A(η) = 6
H2

a2
+ 24πGρm (3.70)

B(η) = 6
H
a2
, (3.71)

with a constant Fc. Note that result of Eq. (3.68) is independent from constant Fc due to cancellation of the

coefficient in the numerator and the denominator. The solution of Ψ in Eq. (3.68) denotes the perturbations to the

metric caused by the inhomogeneities of ScmDE, which may be applied to the predictions of various observational

effects in the universe.

3.1.2 CMB anisotropies from ScmDE

Following the solution for the perturbations to the metric caused by the inhomogeneities of ScmDE in the pre-

vious section, consequently, one may calculate the temperature fluctuation induced by the autocorrelation of the

supercurvature-mode dark energy due to the spatial inhomogeneities. To find out, one calculates the impacts of

inhomogeneous dark energy on the CMB anisotropies through the late-time integrated Sachs-Wolfe (ISW) effect.

The evolution of the distribution function of CMB photons is described by the Boltzmann equation with the

perturbed Planck distribution:

f(η,x,p) =
1

exp[p/(T (η)(1 + Θ(η,x,γ))]− 1
, (3.72)
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where Θ(η,x,γ) denotes the temperature fluctuation of photons. γ is the line-of-sight direction identical to the

unit vector of the observed photon momentum p, while p is its magnitude. Note that the temperature fluctuation

Θ(η,x,γ) depends on the photon’s trajectory scattered from the past. It can be shown that the CMB anisotropy

Θ(η,x,γ) satisfies the equation [56]

d

dη
(Θ + Ψ) =

∂Ψ(η,x)

∂η
− ∂Φ(η,x)

∂η
+ Ceγ , (3.73)

where Ceγ denotes the collision term for the Compton scattering, but it can be omitted in our investigation. Then,

the integration yields the ISW contribution to the CMB anisotropies,

∆T

T
(γ) = Θ(η0,x0,γ) + Ψ(η0,x0) =

∫ η0

η∗

dη

(
∂Ψ(η, χ,γ)

∂η
− ∂Φ(η, χ,γ)

∂η

)
χ=η0−η

. (3.74)

Here, on the right-hand side, the spatial position x is represented by its radial coordinate and the angle as

x = (χ,γ). The direction of the photon, γ, is fixed in this expression and the radial coordinate χ = η0− η denotes

the position of the photon at the conformal time η. η∗ stands for the conformal time of the CMB last scattering

surface. Under the condition Φ + Ψ = 0, Eq. (3.74) becomes

∆T

T
(γ) ' 2

∫ η0

0

dη

(
∂Ψ(η, χ,γ)

∂η

) ∣∣∣∣
χ=η0−η

. (3.75)

Thus using Eq. (3.68), the two-point correlation function of temperature fluctuations from the last scattering

surface of the CMB is given by〈
∆T

T
(γ)

∆T

T
(γ′)

〉
= 4

∫ η0

0

dη1

∫ η0

0

dη2

[
∂

∂η1

1

F (η1)

∫ η1

0

dη3
4πGF (η3)

B(η3)
m2

0

] [
∂

∂η2

1

F (η2)

∫ η2

0

dη4
4πGF (η4)

B(η4)
m2

0

]
×
〈(
φ(η3, χ3,γ)2 − φ(η3, 0)2

) (
φ(η4, χ4,γ

′)2 − φ(η4, 0)2
)〉∣∣∣∣

χ3=η0−η3,χ4=η0−η4

. (3.76)

In this way, the inhomogeneities by ScmDE is handled as Gaussian random fluctuations within the universe, and

could be evaluated numerically.

3.2 Analytic formulation for dark energy inhomogeneities

The characteristic feature of the dark energy model previously proposed as the ScmDE is the spatial inhomogeneities

of the dark energy density on the very large scales, which was originated from the vacuum fluctuations of the
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supercurvature-modes of a scalar field during an open inflationary scenario [53, 57]. An ultralight scalar field φ

with spatial fluctuations taking large amplitude on the supercurvature scales is responsible for the dark energy in

the scenario. Because the horizon size of our universe is much smaller than the scales of the inhomogeneities of the

dark energy, the breaking of the cosmological principle is small within the observable universe, which might enable

us to escape from the observational constraints. One can formulate a phenomenological model of dark energy that

slightly breaks the cosmological principle by mimicking the previous ScmDE.

However, the previous random field handling limits the predictive ability and application scope of the dark

energy inhomogeneities, hence, in this part, as a generalization to the ScmDE setup, it is natural to consider

an analytic formulation for dark energy inhomogeneities sourced by a scalar field that spatially varying on the

superhorizon scales within a flat background universe. For simplicity, one may assume

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdx

idxj
]
, (3.77)

where δij is the Kronecker delta δij , and a(η) is the scale factor of the universe with the conformal time η, Ψ and

Φ are the metric perturbations to be characterized later.

One can set the cosmological metric perturbation as Ψ, focusing on the large-scale superhorizon perturbations

to be considered. In Ref. [54], it was discussed that the inhomogeneities induced by supercurvature fluctuations are

dominated by dipole and quadrupole components (` = 1, 2) among all multipole contributions. Now, neglecting

higher multipoles, one may explicitly write out the multipole expansion of the metric perturbations as

Ψ = ε1

3∑
m=1

Ψ1(m)(η)P
(m)
i xi + ε2

5∑
m=1

Ψ2(m)(η)P
(m)
ij xixj , (3.78)

Φ = ε1

3∑
m=1

Φ1(m)(η)P
(m)
i xi + ε2

5∑
m=1

Φ2(m)(η)P
(m)
ij xixj , (3.79)

φ = φ0(η) + ε1

3∑
m=1

φ1(m)(η)P
(m)
i xi + ε2

5∑
m=1

φ2(m)(η)P
(m)
ij xixj , (3.80)

where P
(m)
i and P

(m)
ij are matrices related to the multipole expansion of the perturbations to the spatial basis and

P
(m)
ij are traceless. These matrices can be found explicitly in the Appendix C.

Considering standard CDM besides dark energy, and neglecting effects from baryonic matter here, The dark

energy inhomogeneities will induce perturbations to the matter distribution via metric perturbations defined previ-
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ously. Considering the matter component as a perfect fluid, in correspondence to the perturbations defined above,

one may also define some scalar field perturbation V to the velocity potential of the fluid, expressed by its multipole

contributions V`(m) in a similar way as

V = ε1

3∑
m=1

V1(m)(η)P
(m)
i xi + ε2

5∑
m=1

V2(m)(η)P
(m)
ij xixj . (3.81)

Following the definition of V , perturbations to the matter distribution are

ρ = ρ0(η) + ε1

3∑
m=1

ρ1(m)(η)P
(m)
i xi + ε2

5∑
m=1

ρ2(m)(η)P
(m)
ij xixj , (3.82)

ui ≡ ∂iV , (3.83)

with constraints and conditions

uµu
µ = −1; (3.84)

∇× v = 0, (3.85)

v = {u1, u2, u3}. (3.86)

Here the monopole moment of distribution ρ is the matter density and the dipole moment uµ is the fluid velocity.

Now, one may define the energy momentum tensors of the dark energy scalar field (φ) and the dark matter

(DM) respectively as

T (φ)
µν = ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ+

1

2
m2φ2

)
, (3.87)

T (DM)
µν = ρuµuν . (3.88)

The previous definitions allow one to write out the Einstein equations as

Gµν = 8πG
(
T (φ)µ

ν + T (DM)µ
ν

)
. (3.89)

The equations of motion for scalar field φ reads

1√
−g

∂µ
(√
−ggµν∂νφ

)
−m2φ = 0, (3.90)
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and the equations of motion for dark matter is

∇µT (DM)µ
ν = 0. (3.91)

The EoS ωφ of the dark energy field φ is an important quantity characterizing its property and evolution. From

the standard scalar field formalism, taking the scalar potential V (φ) = m2φ2/2, one can obtain ωφ as

ωφ ≡
pφ
ρφ

=

(
1

2

(
dφ

dt

)2

− V (φ)

)(
1

2

(
dφ

dt

)2

+ V (φ)

)−1

= −2a2V (φ)− φ̇2

2a2V (φ) + φ̇2
(3.92)

The EoS depends on the dynamical evolution of φ, and is a concordant generalization to the Chevallier-Polarski-

Linder (CPL) parametrization [58, 59].

3.2.1 Essence of the equations Governing the late-time evolution

The linear combination nature of Eqs. (3.78)–(3.80) ensures that Eqs. (3.89)–(3.91) give equations in the same

form in essence, for each multipole component with indices ` = 1, 2 and m = 1, 2, 3, 4, 5 and the summation over

m. Indeed, the components with different ` indices, e.g., Ψ`=1 and Ψ`=2, have different dimensions to the order of

length by definition. Baring this fact in mind, for simplicity of the notations, indices (m) in the following parts can

be neglected for the simplicity of writing, and only the lower indices ` is used to denote the multipole components

of these perturbations. As an additional convetion, in the following parts, lower indices 0 stands for the background

quantities and ` stands for the perturbations.

Using the conformal Hubble parameter H = aH(a) = ȧ/a instead of Hubble parameter H(a), Eq. (3.90) gives

φ̈0 + 2Hφ̇0 +m2a2φ0 = 0, (3.93)

φ̈` + 2Hφ̇` +m2a2φ` + φ̇0(3Φ̇` − Ψ̇` − 4HΨ`)− 2φ̈0Ψ` = 0. (3.94)

On the other hand, Eq. (3.91) leads to

3Hρ0 + ρ̇0 = 0, (3.95)

3Hρ` + ρ̇` + 3ρ0Φ̇` = 0, (3.96)

V̇` − aΨ` = 0. (3.97)
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By defining the density perturbation as ρ` ≡ ρ0δ`, it is obvious to see Eqs. (3.95) and (3.96) are consistent with

the general continuity equation and Eq. (25) in Ref. [54] in the large-scale limit, while it is worth mentioning that

the velocity equation Eq. (3.97) is also consistent with the Eq. (26) in Ref. [54]. To see this, one may starting from

Eq. (3.97), if one refines V` with respect to V` as

V` ≡
k

a
V`, (3.98)

with k denoting the wavenumber of the perturbations, one will have

V̇` − aΨ` =
ȧV` + aV̇`

k
− aΨ` = 0, (3.99)

hence

V̇` +
ȧ

a
V` − kΨ` = 0, (3.100)

which is consistent with Eq. (26) in Ref. [54].

Define M−2
pl ≡ 8πG for short, then the Einstein equations will be concluded as

−3H2 +M−2
pl (

1

2
m2a2φ2

0 +
1

2
φ̇2

0 + a2ρ0) = 0, (3.101)

H2 − 2
ä

a
+M−2

pl (
1

2
m2a2φ2

0 −
1

2
φ̇2

0) = 0, (3.102)

−2(HΨ` − Φ̇`) +M−2
pl (aρ0V` + φ̇0φ`) = 0, (3.103)

6H(HΨ` − Φ̇`) +M−2
pl

(
a2ρ` +m2a2φ0φ` − φ̇0(φ̇0Ψ` − φ̇`)

)
= 0, (3.104)

(2
ä

a
−H2)Ψ` +HΨ̇` − 2HΦ̇` − Φ̈` +

M−2
pl

2

(
m2a2φ0φ` + φ̇0(φ̇0Ψ` − φ̇`)

)
= 0. (3.105)

These equations can be classified by the order of the perturbations, divided into the background equations that

read

ρ̇0 + 3Hρ0 = 0, (3.106)

φ̈0 + 2Hφ̇0 +m2a2φ0 = 0, (3.107)

−3H2 +M−2
pl (

1

2
m2a2φ2

0 +
1

2
φ̇2

0 + a2ρ0) = 0, (3.108)

H2 − 2
ä

a
+M−2

pl (
1

2
m2a2φ2

0 −
1

2
φ̇2

0) = 0, (3.109)
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and first-order perturbative equations relying on the background as follows

ρ̇` + 3Hρ` + 3ρ0Φ̇` = 0, (3.110)

φ̈` + 2Hφ̇` +m2a2φ` + φ̇0(3Φ̇` − Ψ̇` − 4HΨ`)− 2φ̈0Ψ` = 0, (3.111)

V̇` − aΨ` = 0, (3.112)

−2(HΨ` − Φ̇`) +M−2
pl (aρ0V` + φ̇0φ`) = 0, (3.113)

6H(HΨ` − Φ̇`) +M−2
pl

(
a2ρ` +m2a2φ0φ` − φ̇0(φ̇0Ψ` − φ̇`)

)
= 0, (3.114)

(2
ä

a
−H2)Ψ` +HΨ̇` − 2HΦ̇` − Φ̈` +

M−2
pl

2

(
m2a2φ0φ` + φ̇0(φ̇0Ψ` − φ̇`)

)
= 0. (3.115)

Solving the background, one is able to find out the evolution of large-scale perturbations related to the fluctu-

ations of the dark energy field φ.

3.2.2 CMB anisotropies revisit

Through the integrated Sachs-Wolfe (ISW) effect [54, 56], the perturbations to the metric caused by the large-scale

inhomogeneities of the dark energy φ would affect the observations of CMB anisotropies. Using the relation of

comoving distance with respect to the conformal time χ = η0 − η and recollecting the definition for the metric

perturbations in Eq. (3.78), one can evaluate the ISW effect on the temperature fluctuations of the CMB as

∆T

T
'2

∫ η0

ηd

dη

(
∂Ψ(η, χ)

∂η

) ∣∣∣∣∣
χ=η0−η

=2

∫ η0

η∗

dη

(
ε1

3∑
m=1

∂Ψ1(m)(η)

∂η
P

(m)
i xi + ε2

5∑
m=1

∂Ψ2(m)(η)

∂η
P

(m)
ij xixj

)∣∣∣∣∣
χ=η0−η

=2ε1

∫ η0

ηd

dη

(
∂Ψ1(m)(η)

∂η

3∑
m=1

P
(m)
i xi

)∣∣∣∣∣
χ=η0−η

+ 2ε2

∫ η0

ηd

dη

(
∂Ψ2(m)(η)

∂η

5∑
m=1

P
(m)
ij xixj

)∣∣∣∣∣
χ=η0−η

. (3.116)

Here ηd is used to denote the conformal time of epoch of the photon decoupling. Notice that Ψ1(m) and Ψ2(m) are

unchanged for various ` and m component, and are only functions of the conformal time η as discussed in Sec. 3.2,

thus one can use Ψ` again for short in the following lines. It can also be confirmed that the matrices Pmij and

Pmi introduced in Sec. 3.2 are actually related to the real basis spherical harmonics Y m` (θ, ϕ) (see Appendix C).
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Utilizing the relation Eq. (C.10) and (C.11) it follows that

∆T

T
= 2ε1

∫ η0

ηd

dη

(
∂Ψ`

∂η
χY

(m)
`=1 (θ, ϕ)

) ∣∣∣∣∣
χ=η0−η

+ 2ε2

∫ η0

ηd

dη

(
∂Ψ`

∂η
χ2Y

(m)
`=2 (θ, ϕ)

) ∣∣∣∣∣
χ=η0−η

= 2ε1

(∫ η0

ηd

dη(η0 − η)
∂Ψ`

∂η

)
Y

(m)
`=1 (θ, ϕ) + 2ε2

(∫ η0

ηd

dη(η0 − η)2 ∂Ψ`

∂η

)
Y

(m)
`=2 (θ, ϕ).

≡ 2

2∑
`=1

ε`Q`(m)Y
(m)
` (θ, ϕ), (3.117)

with integral

Q`(m) ≡ Q` ≡
∫ η0

ηd

dη(η0 − η)`
∂Ψ`

∂η
. (3.118)

Whereas the evolution of the perturbation Ψ` in the previous numerical solution have been obtained in Sec. 4.2,

Q` is now numerically evaluable. On the other hand, the definition the temperature fluctuations can be written in

the multipole expansion as [60]

∆T

T
=
∑
`

∑
m

A`mY
(m)
` (θ, ϕ), (3.119)

or, with θ dependence as

∆T

T
(cos θ) =

∑
`

A`mY
(m)
` (θ, ϕ). (3.120)

The angular power spectrum of CMB C` is defined by the ensemble of the squared expansion coefficients as

C` ≡ 〈|A`m|2〉. (3.121)

Hence if one uses γ and γ′ to represent for different unit line-of-sight directions with included angle θ, i.e.

γ · γ′ = cos θ, the two-point correlation of the temperature fluctuations follow as

〈∆T
T

(γ)
∆T

T
(γ′)〉 =

∑
`

〈|A`m|2〉
∫

dφ|Y (m)
` (θ, ϕ)|2

=
∑
`

2`+ 1

4π
C`P`(cos θ), (3.122)

where the A`m and Y
(m)
` are taken as real functions.
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By comparing Eq. (3.117) with (3.120) one will see that

A1m = 2ε1Q1 = 2ε1

(∫ η0

ηd

dη(η0 − η)
∂Ψ`

∂η

)
(3.123)

A2m = 2ε2Q2 = 2ε2

(∫ η0

ηd

dη(η0 − η)2 ∂Ψ`

∂η

)
(3.124)
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4 Numerical Evaluation and Applications

4.1 Evaluating CMB anisotorpies by stochastic fluctuations of ScmDE

The expectation value in (3.76) can be decomposed into products of two-point functions by using the Wick-theorem

in Eq. (3.48) and calculated by using the two-point correlation function in Eq. (2.43). The details of the calculation

are given can be referred in Appendix E, following which one obtains〈
∆T

T
(γ)

∆T

T
(γ′)

〉
=

∫ 1

0

daj

∫ 1

0

daj′I(aj)I(aj′)

× (−4ε)ϕ2(ηj+2)ϕ2(ηj′+2)

[
−2

3
RjRj′ cosψ − 2

15
R2
jR

2
j′

(
3

2
cos2 ψ − 1

2

)]
, (4.125)

Here, I(a) are integration functions defined for simplicity of writing as

I(aj) ≡ 4πGm2
0

∂

∂aj

1

F (aj)

∫ aj

0

daj+2
F (aj+2)

3aj+2H2(aj+2)
(4.126)

for j = 1, 2 (and generally j 6= j′), where H(a) is the Hubble parameter. Moreover, the geodesic distances and

Rj =
√
−K(η0 − ηj+2), and ηj(aj) is a function of aj , and its explicit form can be given by recollecting that, the

conformal time η and scale factor a are related by

1

a2

da

dη
= H(a), (4.127)

where the evolution of the Hubble parameter obeys the Friedmann equation Eq. (2.27).

When the dark energy as ScmDE is considered to be close to the cosmological constant with small random

spatial fluctuations, one may express the background expansion rate similar to standard ΛCDM model as

H(a) =

√
8πG

3
(ρm + ρDE)− K

a2
≡ H0

(
Ωm
a3

+
ΩK
a2

+ (1− Ωm − ΩK)

)1/2

. (4.128)

If one assumes an open but nearly flat FLRW universe by adopting Ωm ≈ 0.3, ΩΛ ≈ 0.7, and ΩK ≈ 0, the equation

for late-time expansion of the interest here recovers Eq. (2.30). Given Eq. (4.127), the conformal time η(a) is

written as

η(a) =

∫ a

0

da′

a′2H(a′)
= H−1

0

∫ a

0

da′

a′2(1− Ωm + Ωma′−3)1/2
. (4.129)
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Following Sec. 3.1.2, the multipole expansion of two-point function of the CMB temperature fluctuation yields〈
∆T

T
(γ)

∆T

T
(γ′)

〉
=

1

4π

∑
`

(2`+ 1)C`P`(cosψ), (4.130)

where cosψ = γ·γ′ is the cosine angle included by different line-of-sights. Then, by comparing Eqs. (4.125) and (4.130),

it is explicit to find

3

4π
C1 = S2

1

8

3
ε ∼ O(εΩK), (4.131)

5

4π
C2 = S2

2

8

15
ε ∼ O(εΩ2

K), (4.132)

where the coefficients S` are defined as

S` =

∫ 1

0

da
(√
−K(η0 − η(a))

)` ∂
∂a

(
1

F (a)

∫ a

0

da′
8πGρDE(a′)F (a′)

3a′H2(a′)

)
, (4.133)

where relation ρDE(a) = m2
0ϕ

2/2 is used for the dark energy density.

With η(a) and H(a) for ScmDE provided in Eq. (4.128) and Eq. (4.129), one can write S` defined by Eq. (4.133)

more explicitly as

S` =

∫ 1

0

da
(√
−K(η0 − η(a))

)` ∂
∂a

(
G(a)

F (a)

)
, (4.134)

with

G(a) =

∫ a

0

da′
8πGρDE(a′)F (a′)

3a′H2(a′)
=

∫ a

0

da′
(1− Ωm)a′2F (a′)

Ωm + (1− Ωm)a′3
, (4.135)

where F (a) is further defined as

F (a) = Fc exp

{∫ a

0

da′

a′

(
1 +

3Ωm
2[Ωm + (1− Ωm)a′3]

)}
≡ Fca

5/2√
Ωm + (1− Ωm)a3

. (4.136)

An approximate expression for S` can be obtained by substituting Eqs. (4.135), (4.136) and (4.129) into

Eq. (4.134), evaluate higher multipoles in a similar manner, which are approximately given by

C` ∼ O(εΩ`K). (4.137)

These higher multipoles with ` ≥ 3 do not put tighter constraints compared to the dipole and the quadrupole as

long as ΩK � 1. Thus, the dipole and the quadrupole are the most important, which is reflected by the property

that the typical scales of the spatial variation are given by the supercurvature scale.
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Now, one is able to evaluate the numerical integration over a and find out that numerical calculations of S`

give the following results

S1 ' 1.1× 10−1Ω
1/2
K , (4.138)

S2 ' 0.9× 10−1ΩK , (4.139)

where Ωm = 0.3 and ΩK � 1 are assumed.

The observed values of the dipole and the quadrupole in the CMB anisotropies are found in the literature. The

dipole of the CMB is approximately expressed as

δTdipole

T
=
v

c
cos θ, (4.140)

where v is the peculiar velocity of the observer and cos θ is the parameter related to the line-of-sight. The raw

observational result gives v ≈ 370km/s [61, 62]. From this observation, one may adopt the value of the dipole

moment,

Cobs
1 ≈ 6.3× 10−6 (4.141)

using 3C1/4π = (v/c)2. Comparing this with (4.131) and (4.138), one can obtain a preliminary constraint from

the dipole

εΩK
<∼ 4.9× 10−5. (4.142)

The observations on C2 from the Planck Legacy Archive obtained by Planck experiment‡ with 1σ error is

2× 3

2π
Cobs

2 = 2.26+5.33
−1.32 ×

102µK2

(2.725K)2
. (4.143)

By adopting the upper bound of the above observed value, taking the maximum advantage from the room by the

observational error, one may constrain the quadrupole as

2× 3

2π
Cobs

2 < 1.0× 10−10. (4.144)

‡Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contri-
butions directly funded by ESA Member States, NASA, and Canada.
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Then combining Eq. (4.144) with (4.132) and Eq. (4.139) leads to

εΩ2
K < 1.0× 10−8. (4.145)

The constraints given by Eqs. (4.212) and (4.213) contain the parameter ε describing some properties of the

ancestor vacuum Eq. (2.42) along with the curvature parameter ΩK . The two parameters ΩK and ε are coupled

to each other in Eqs. (4.212) and (4.213), which are natural outcomes because this scenario connects the spatial

curvature with the supercurvature-mode dark energy through the CDL tunneling inflation. Consequently, the

constraint on the ancestor vacuum parameter ε is linked with the value of the spatial curvature ΩK . The upper

bound of the spatial curvature is given by |ΩK | <∼ 10−2 ∼ 10−3 [16], and if one takes the possible value with

BAO for ΩK ∼ 10−3, the parameter related to the ancestor vacuum in the open inflation scenario of ScmDE is

constrained to satisfy the relation ε <∼ 10−2. However, in the flat approximation limit where ΩK → 0, there is only

a very weak constraint on ε, and the conditions making supercurvature mode of ultralight scalar field φ to produce

and to stay almost constant serving as ScmDE may need reconsideration, which also motivated the formulation of

the dark energy with large-scale inhomogeneities in general cases.

4.2 Numerical solutions for the general dark energy with large-scale inhomogeneities

In this section, let us consider the concrete handling for solving the φ evolution of dark energy given in Sec. 3.2

next, both for the background and the perturbations. Since the late-time evolution after last-scattering of photons,

or photon decoupling from the Compton scatterings with electrons during recombination epoch (ad ∼ 1/1100), is

the interest here, one can find the analytic approximations in the matter-dominant epoch, and determine the initial

conditions in epochs 1� ai & ad for numerical evaluations.

4.2.1 Equations governing the background

Firstly, one must solve the background evolution described by Eq. (3.106)–(3.109) of the system before considering

about the perturbations. The solutions should basically yield the observational constraints that near-to-ΛCDM

models are favored. Moreover, one must utilize the observed the value of Hubble expansion rate of present epoch

to calibrate the value of dark energy density from scalar field φ.
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4.2.1.1 As functions of the dimensionless time t̃

In order to parametrize and normalize the equations describing the cosmological evolution in the model, it will be

beneficial to define the following quantities:

t̃ ≡ H0t, (4.146)

φ̃0 ≡ φ0/φ0, (4.147)

r̃ ≡ 1

6

(
φ0/Mpl

)2
, (4.148)

m̃ ≡ mφ/H0. (4.149)

Following this one can obtain ordinary differential equations for the background from equations given in Sec.3.2

using t̃ as variable as

r̃m̃2φ̃2
0(t̃) + r̃

(
dφ̃0

dt̃

)2

+ Ωma
−3 =

(
1

a

da

dt̃

)2

, (4.150)

d2φ̃0

dt̃2
+ 3

1

a

da

dt̃

dφ̃0

dt̃
+ m̃2φ̃0 = 0. (4.151)

H0 is the Hubble expansion rate today, the Hubble constant, and φ0 is the average value of φ0.

It is worth noting here that according to our definition in Eq. (4.146) to (4.149), there are actually two degrees

of freedom for the parameters, namely m̃ and r̃, relating to the mass and energy scale of the dark energy field

φ respectively. They correspond to the fact that the unknown component in our model, dark energy φ, can be

fundamentally determined by two degrees of freedom to characterize the shape of its potential V (φ) = mφ
2φ2/2,

while the properties of other components (e.g. matter) are considered as known under the standard cosmological

model.

Back to our focus on the solution, in search of initial conditions and the analytic approximations in the limit

a� 1, Eq. (4.150) approaches to (
1

a

da

dt̃

)2

= Ωma
−3, (4.152)

which has the analytic solution

t̃ =
2

3

a
3
2

√
Ωm

or a =

(
9

4
Ωm

) 1
3

t̃
2
3 . (4.153)
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Inserting this into Eq. (4.151) gives

d2φ̃0

dt̃2
+ 2

1

t̃
(
dφ̃0

dt̃
) + m̃2φ̃0 = 0, (4.154)

which has the general solution

φ̃0(t̃) = C1
sin(m̃t̃)

m̃t̃
+ C2

cos(m̃t̃)

m̃t̃
. (4.155)

The cosine part diverges in the limit a� 1, which has to be abandoned in search of physical initial conditions,

hence one writes

φ̃0(t̃) = C1
sin(m̃t̃)

m̃t̃
, (4.156)

and understands

φ̃0(t̃→ 0) = lim
t̃→0

C1
sin(m̃t̃)

m̃t̃
= C1 (4.157)

is the initial condition.

However, the initial value of C1 is not self-evident, and should be determined with the constraints on dark

energy density of the present epoch inferred from the cosmological observations. The constraint by the present

Hubble rate to fix t̃0 by definitions is

a(t̃0) = a(t0) ≡ 1, (4.158)

H(t̃0) = H(t0) ≡ H0, (4.159)

where t0 is the proper cosmic time for the present epoch. Inserting this into Eq. (4.150) actually gives

1− Ωm = r̃m̃2

(
φ̃0

∣∣∣
t̃=t̃0

)2

+ r̃

(
dφ̃0

dt̃

∣∣∣∣
t̃=t̃0

)2

. (4.160)

Eq. (4.160) is the condition to calibrate the dark energy density observed today when solving the background.

Together with Eq. (4.150) and (4.151) the system is now prepared for numerical evaluation to obtain the evolution

of a(t̃) and φ̃0(t̃). Note that one is mainly interested in the late-time evolution here, hence one may decide the

initial value for independent variables t̃ or a (to be discussed later) manually as a typical value, for example
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ai = ad ≈ 1/1100 at the photon decoupling or the last scattering, by use of Eq. (4.153). These solutions are the

background evolutions one must rely on in order to solve for the perturbations concerning ` = 1 dipole component

and ` = 2 quadrupole component of the inhomogeneities that the dark energy φ produces.

It is worth mentioning that Eq. (4.160) also provides with a baseline to choose the parameters m̃ and r̃ from

the various parameter space. In the case of cosmological constant Λ, dφ̃0/ dt̃ is always vanishing, leaving

1− Ωm = r̃m̃2

(
φ̃0

∣∣∣
t̃=t̃0

)2

. (4.161)

Thus if one takes the dimensionless field in present epoch normalized as φ̃0(t̃ = t̃0) ∼ O(1) ≡ 1, a special baseline

for the choice of parameters approximating the ΛCDM model will writes

r̃m̃2 = 1− Ωm. (4.162)

However, this condition for parameter choice is not a necessity to solve for the system, and the parameters may

deviate from this baseline, showing possible interesting behaviors beyond standard ΛCDM cosmology.

4.2.1.2 As functions of the scale factor a

As the scale factor a of the universe is more commonly used than the dimensionless time t̃ defined in the preivous

section, one can write out the dimensionless equations as functions of scale factor a, which may also serve as a

reconfirmation of the previous subsection. The equations using a as variable are1− r̃a2

(
dφ̃0(a)

da

)2
 H̃2(a) = r̃m̃2φ̃2

0(a) + Ωma
−3, (4.163)

a2H̃2 d2φ̃0

da2
+ a2H̃

dH̃

da

dφ̃0

da
+ 4aH̃2 dφ̃0

da
+ m̃2φ̃0 = 0, (4.164)

with

H̃(a) ≡ H(a)

H0
. (4.165)

From Eq. (4.163) the dimensionless expansion rate can be written as

H̃(a) =

√√√√√ r̃m̃2φ̃2
0(a) + Ωma−3

1− r̃a2
(

dφ̃0(a)/ da
)2 . (4.166)
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Defining notation for the derivative with respect to the scale factor a for simplicity

∂( )

∂a
≡ ( )′, (4.167)

then the background equation Eq. (4.164) becomes

a2H̃2φ̃′′0 +
(

4aH̃2 + a2H̃H̃ ′
)
φ̃′0 + m̃2φ̃0 = 0. (4.168)

Insert Eq. (4.166) into Eq. (4.168) and simplify, the background equation to be solved is

m̃2a2φ̃0(1− r̃a2φ̃′20 ) + m̃2r̃a3φ̃2
0

(
4φ̃′0 − 3r̃a2φ̃′30 + aφ̃′′0

)
+

Ωm
2

(
5φ̃′0 − 3r̃a2φ̃′30 + 2aφ̃′′0

)
= 0, (4.169)

where initial conditions for φ̃0(a) is necessary to solve for φ̃0(a), and in turn for H̃(a).

Again, consider the analytic approximation for initial conditions. When a� 1, Eq. (4.166) simply approaches

to

H̃ =
√

Ωma
−3/2. (4.170)

Inserting this into Eq. (4.168) and simplifying will lead to

aφ̃′′0 +
5

2
φ̃′0 + m̃2a2Ω−1

m φ̃0 = 0, (4.171)

which can be solved analytically as

φ̃0(a) = C1
3
√

Ωm
2m̃a3/2

sin

(
2m̃a3/2

3
√

Ωm

)
, (4.172)

which is actually identical to Eq. (4.156) by recalling Eq. (4.153).

Then one will be able to infer

φ̃0(a→ 0) = const., (4.173)

φ̃′0(a→ 0) = 0, (4.174)

are the appropriate initial conditions for the system, which are virtually consistent with the equations using

dimensionless time t̃ as the independent variable.
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Now one can solve for φ̃0(a) numerically under two degrees of freedom for the choice of parameters m̃ and r̃.

Examples of the solutions under the conditions that allow the recovery of the models close to the ΛCDM universe

are presented in Figs. 1–8. To investigate the impact of parameter choices on the background solutions more

specifically,other sets of parameters are also put into numerical calculations. Table 1 provides the parameter sets

that have been investigated in the numerical evaluations.
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Figure 5: The evolution of the dark energy background φ̃0(a) as a function of scale factor a under different
conditions for r̃ and m̃ presented in the figure, which imitate ΛCDM universes under condition Eq. (4.162) with
Ωm = 0.3 fixed. Moreover, in all following figures, unless specially specified, Ωm = 0.3 is assumed to be fixed (see
also Table 1). Note that different models have different initial values for φ̃0 due to dark energy density fixing from
the observed Hubble rate H0 today. Since m̃ is defined by the ratio of the mass of field today to the Hubble horizon
today in Eq. (4.149), one can observe from the figure that the lighter field φ is, it appears to be more “frozen” in
the evolutionary history of its energy density. Here the m̃ = 1/20, r̃ = 280 case is most similar to a cosmological
constant Λ among the models.

Some typical figures showing how parameters r̃, m̃, and Ωm can affect the evolution of the background solution

and the equation of state as a function of a are presented as Figs. 5–8 and in Figs. 9–12, respectively.

Fig. 5 shows the impact of the parameter choice on the behavior of the solution for φ̃0(a) in the cases following

Eq. (4.162), where models close to the ΛCDM cosmologies are expected. Fig. 6 shows how the parameters r̃ and

m̃ affect the behaviors of φ̃0, while Fig. 8 shows that for and Ω̃m.

The behaviors of the φ̃0 curves in these figures can be understood as follows: From Eqs. (4.150) and (4.160)
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Figure 6: The impact of the value of r̃ on the evolution of the background solution φ̃0(a) as a function of a.
According to Eq. (4.148), r̃ is related to the energy scale of the scalar field φ. The figure shows the cases where
the energy scale φ of the scalar field φ is beyond the Planck scale, while even for r̃ = 1/70, hence φ ∼ Mpl, the
behavior of the evolution is similar (almost constant) with a higher value.
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Figure 7: The impact of the value of m̃ on the evolution of the background solution φ̃0(a) as a function of a.
Recalling Eq. (4.149), m̃ is related to the field mass compared with the horizon scale today. Here r̃ = 6.3 and
Ωm = 0.3



4 NUMERICAL EVALUATION AND APPLICATIONS 45

��� ��� ��� ��� ���
�

������

������

������

������

������

������

������

ϕ

�

����������

Ω�=����

Ω�=����

Ω�=����

Figure 8: The impact of Ωm on the evolution of the background solution φ̃0(a). As expected, Ωm only alter the
evolution to a slight extent, hence suggesting that the model solutions are robust against changes in Ωm calibration
from observations. Herewhile fixing m̃ = 1/10, for Ωm = 0.28, r̃ = 72 and for Ωm = 0.32, r̃ = 68 holds respectively.

one can see that the parameter r̃ can actually be absorbed into the amplitude of φ̃0 as a rescaling factor, namely

m̃2(
√
r̃φ̃0)2 +

(
d(
√
r̃φ̃0)

dt̃

)2

=

(
1

a

da

dt̃

)2

− Ωma
−3, (4.175)

with

1− Ωm = m̃2(
√
r̃φ̃0

∣∣∣
a=1

)2 + (
√
r̃φ̃′0

∣∣∣
a=1

)2. (4.176)

These two equations facilitates to understand why only changing r̃ with other parameters fixed only alters the

value of φ̃0 without causing a nontrivial difference in the characteristic behaviors of the curves in Fig. 6.

Moreover, when one evaluates φ̃0, choosing the condition in Eq. (4.162) close to the ΛCDM model as a baseline

for the natural choices of the parameters, the condition

d(
√
r̃φ̃0)

dt̃
� 1 or

√
r̃φ̃′0 � 1 (4.177)

always holds. Hence, it follows Eq. (4.175) that

(
√
r̃m̃φ̃0)2 '

(
1

a

da

dt̃

)2

− Ωma
−3. (4.178)
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Due to similar arguments on r̃, it can be understood that, to some extent, m̃ also works as a rescaling factor for

the background φ̃0, which explains the behavior of φ̃0 in Fig. 6. At the same time, the appearance of Ωm on the

right-hand side of Eq. (4.178) explains the dependence of the background solution φ̃0 on Ωm in Fig. 8.

Now, let us discuss the parameter dependence of the dark energy EoS ωφ(a), as shown in Fig. 9 and Fig. 10.

It may be concluded that the background dark energy EoS ωφ(a) is almost independent of r̃; in contrast, m̃ is

the main influencing factor. There is also slight dependence on the cosmological parameter Ωm, shown in Fig. 10.

These behaviors can be understood using Eqs. (4.179)–(4.182) as an analogy to the CPL parametrization.

Following Eq. (3.92), one writes

ωφ = −
m2
φa

2φ2 − φ̇2

m2
φa

2φ2 + φ̇2

= −1 +
2

m2
φa

2(φ/φ̇)2 + 1

≡ −1 + 2W (a), (4.179)

where ′ denotes the derivative of the scale factor a, ′ ≡ ∂/∂a, where

W (a) ≡ 1

m2
φa

2(φ/φ̇)2 + 1
=

a2

(mφ/H)2(φ/φ′)2 + a2
. (4.180)

At the background level assuming φ̃ ' φ̃0, one can further write

W (a) ' φ̃′20 a
2H̃2

m̃2φ̃2
0 + φ̃′20 a

2H̃2
. (4.181)

Recall that H̃(a) is defined in Eq. (4.166), which depends on the values of r̃, m̃, and Ωm. Because m̃2 is typically

small in our model, using Eq. (4.166) and expanding to the order of O(m̃2), it follows that

W (a) ' 1− am̃2

Ωm

(
φ̃2

0

φ̃′20

)(
1− r̃a2φ̃′20

)
' 1− am̃2

Ωm

(
φ̃2

0(a)

φ̃′20 (a)

)
, (4.182)

which can be numerically evaluated with φ̃0(a) and φ̃′0(a) as demonstrated in Sec. 4.2. The second line stands

because a2φ̃′20 is small and negligible for 0 < a < 1 in almost all cases. Then, one can understand that r̃ hardly

affects the background EoS of the dark energy.
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Fig. 11 shows a slight dependence on Ωm for the expansion rate H̃(a) as a function of the scale factor for

0.5 < a < 1, while Fig. 12 shows a possible impact on the future expansion rate from the mass parameter m̃.

To explain these behaviors for H̃(a), let us consider the analytic approximation of H̃(a) starting from Eq. (4.166).

For models close to the ΛCDM model, where φ̃0 ' const. and φ̃′0 ' 0 with Eq. (4.162), reading r̃m̃2 ' 1 − Ωm

holds, one obtains

H̃(a) '
√

(1− Ωm)φ̃2
0 + Ωma−3, (4.183)

which is almost the same as the Hubble equation for the standard ΛCDM parametrization. Hence, it is obvious

that Ωm is the dominant parameter for the background expansion history when 0 < a < 1.
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Figure 9: The evolution of the dark energy EoS ωφ(a) with the different sets of the parameters same with those
in Fig. 5 are demonstrated here. According to Eq. (4.148), r̃ is related to the value of the scalar field φ. And from

Eq. (4.182), it is straightforward to see that r̃ hardly affects the EoS of φ̃0. The curves in this figure correspond to

No. (1),(2),(7),(8) in Table 1, and the figure shows the influence of m̃ on the EoS of φ̃0 with fixed Ωm = 0.3.

4.2.2 Equations governing 1st order perturbations

Whereas the background has been solved, one is able to consider the numerical solution for the first-order equations

characterizing the evolution of the perturbations in Eq. (3.110)–(3.115), where nonlinear coupling terms naturally

arise as the effect of interactions of the perturbations with the background.

For the simplicity of notations, one may define the derivative with respect to the dimensionless time t̃ in
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Figure 10: This figure demonstrates that for the EoS wφ there is a weak dependence on cosmological parameter
Ωm, where m̃ = 1/10 and r̃ = 70 are fixed.

Eq. (4.146) as

∂( )

∂t̃
≡ ˇ( ) and

∂2( )

∂t̃2
≡ ˇ̌

( ). (4.184)

Moreover, define the perturbation to the matter density as

ρ` ≡ ρ0δ`, (4.185)

together with dimensionless quantity Ṽ` associated with the velocity as

Ṽ` ≡ H0V`. (4.186)

One may notice that the quantities without the over tilde notation are naturally dimensionless by definition, namely

the density fluctuation δ`, and metric perturbations Ψ`, Φ`.

Subsequently, one may utilize the relations in Eqs. (3.110)–(3.115) to eliminate the quantities such as ρ0 and

ρ`, and use δ` to characterize the first-order matter perturbations as

ρ0(a) = 3H2
0 Ωma

−3M2
pl, (4.187)
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Figure 11: Examples of the late-time expansion history H̃(a) as a function of a for 0.5 ≤ a ≤ 1 with different sets
of Ωm, r̃ = 70 and m̃ = 1/10 fixed. For the late-time expansion history in th past, only Ωm is important.
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Figure 12: Future evolution of the expansion rate. The parameter m̃ is only important for future expansion when
1 � a. The figure demonstrates examples of how the future expansion rate depends on m̃ for 1 < a < 2, where
r̃ = 6.3 and Ωm = 0.3 are fixed.
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thus the dimensionless differential equations as functions of t̃ will be

δ̌` + 3Φ̌` = 0, (4.188)

ˇ̌̃
φ` + 3

ǎ

a
ˇ̃
φ` + m̃2φ̃` − 2Ψ`

ˇ̌̃
φ0 − 6

ǎ

a
ˇ̃
φ0Ψ` + (3Φ̌` − Ψ̌`)

ˇ̃
φ0 = 0, (4.189)

ˇ̃
V ` −Ψ` = 0, (4.190)

−2
ǎ

a
Ψ` + 2Φ̌` + 3Ṽ`Ωma

−3 + 6r̃
ˇ̃
φ0φ̃` = 0, (4.191)

6(
ǎ

a
)2Ψ` − 6(

ǎ

a
)Ψ̌` + 3Ωma

−3δ` + 6r̃
(
m̃2φ̃0φ̃` +

ˇ̃
φ0

ˇ̃
φ` −Ψ`(

ˇ̃
φ0)2

)
= 0, (4.192)(

(
ǎ

a
)2 + 2

ˇ̌a

a

)
Ψ` +

ǎ

a
(Ψ̌` − 3Φ̌`)− ˇ̌Φ` + 3r̃

(
m̃2φ̃0φ̃` −

ˇ̃
φ0

ˇ̃
φ` + Ψ`(

ˇ̃
φ0)2

)
= 0. (4.193)

Notice that from Eq. (4.188)

δ` + 3Φ` = 0 (4.194)

can be restored using the isocurvature initial conditions (see Appdendix B); additionally, if one assumes the general

condition for the universe that the anisotropic stress is negligible, then

Φ` + Ψ` ' 0. (4.195)

Following this one can eliminate Φ`, Ψ`, as well as
ˇ̃
V ` using δ` with Eq. (4.190). Eventually, one may write two

equations for δ` and φ̃` to be solved explicitly, despite its subtly and triviality thus omitted here.

Again, one has to consider the initial conditions to solve for δ` and φ̃`. Firstly, recalling the definition in

Eq. (3.80) and Eq. (4.147), one may generalized the dimensionless quantities as

φ ≡ φ0(φ̃0 + ε1φ̃1

∑
m

P
(m)
i xi + ε2φ̃2

∑
m

P
(m)
ij xixj) (4.196)

In the limit a� 1 (identically, t→ 0, t̃→ 0), one may assume the power-law form for the time evolution of the

perturbations as

δ` ≡ A1t̃
α, (4.197)

φ̃` ≡ D +D1t̃
γ . (4.198)
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Furthermore, Eq. (4.156) has already provided the initial condition for the background, that

φ̃0(t̃) = C1
sin(m̃t̃)

m̃t̃
≈ C1(1− m̃2t̃2

6
) ≡ F (1− m̃2t̃2

6
). (4.199)

For a given m̃ and r̃, one may solve for the background and fix the value for C1 or F in Sec. 4.2.1, hence F may be

taken as a known quantity here. Another recollection of the relation is from Eq. (4.153), the background analytical

approximation for the scale factor a,

a =

(
9

4
Ωm

) 1
3

t̃
2
3 ≡ Bt̃ 2

3 , t̃ =
( a
B

) 3
2

.

Inserting the ansatz Eqs. (4.197)–(4.199) into Eq. (4.189)–(4.193) will lead to equations as functions of a or t̃

relating the unknown coefficients α,γ,A1,D, D1 that remain to be explored. For the early limit a→ 0 or t̃→ 0 (in

matter dominant epoch), by examining the leading order terms of a for each equation, the following relation may

be exploited:

α = γ = 2, (4.200)

D1 = −1

6
m̃2D, (4.201)

A1 = −27

22
m̃2r̃FD, (4.202)

where D may be understood as the amplitude of each mode of the perturbations as ε1 and ε2, which will be

constrained later with the observational data. For now, D = 1 may be set for the interest of the numerical solution.

Further, the analytic approximations for the evolution of the perturbations in the limit a � 1 (t → 0, t̃ → 0)

are found as

δ` ' −
27

22
Dm̃2r̃F t̃2 = −27

22
m̃2r̃F t̃2, (4.203)

φ̃` ' D
(

1− 1

6
m̃2t̃2

)
= 1− 1

6
m̃2t̃2, (4.204)

allowing us to set the proper initial conditions for δ` and φ̃`. The equations using a and t̃ as independent variables

are mutually transformable using Eq. (4.153), as was done in Sec. 4.2.1. The analytic solutions of the first-order
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equations in Eqs. (3.110)–(3.115) for the other quantities can also be found in a similar way as

Φ` ' −Ψ` ' +
9

22
Dm̃2r̃F t̃2 = +

9

22
m̃2r̃F t̃2, (4.205)

Ṽ` ' −
3

22
Dm̃2r̃F t̃3 = − 3

22
m̃2r̃F t̃3. (4.206)

One may notice that δ` and Ψ` have negative values, corresponding to the positive values of φ̃` in Eq. (4.204).

Physically, this implies that an increase in the dark energy φ and hence its density caused by isocurvature per-

turbations in primordial epochs will induce a negative perturbation δ` to the matter distribution (with associative

positive curvature potentials Φ`).

The first-order equations Eqs. (3.110)–(3.115) can be solved in an exact manner using a numerical method.

Examples of the numerical solutions for perturbations φ̃`(a) and δ`(a) are demonstrated in Fig. 13, where the

amplitude(s) of the perturbations D = 1 are adopted with the same typical values of parameters r̃ and m̃ chosen

in Sec. 4.2.1. The consistency between the analytic approximations in Eq. (4.203) and (4.204) (dashed line) with

the numerical results (solid line) is also demonstrated in Fig. 13.

Naturally, m̃ affects the solution φ̃` as shown in Fig. 14). It should be noted that there is a slight dependence

on Ωm for φ̃`, similar to the behavior of φ̃0 in Fig. 8). The behaviors of φ̃` can be roughly understood from

Eq. (4.204), which is valid for a . 0.5. Here m̃ is important for the evolution of φ̃`, whereas r̃ is not. On the other

hand, Eq. (3.111) indicates that the solution of φ̃` depends on φ̃0; hence, it slightly depends on Ωm, which can be

understood by a discussion similar to that on the behavior of φ̃0 in Sec. 4.2.1.2 (see Eq. (4.178)).

The dependence on the parameters for δ` is shown in Fig. 11. From Eq. (4.203), one can conclude that m̃ and r̃

affect δ`, which is demonstrated in the upper left panel and the upper right panel of Fig. 11, respectively. However,

for natural choices mimicking the standard ΛCDM scenario, satisfying Eq. (4.162), the coefficient F given by fixing

the dark energy density today shows that F ≈ 1 holds. It follows that δ` ' −(27/22)(1 − Ωm)t̃2, which explains

the behavior of δ` in the lower panels of Fig. 11.

4.2.3 CMB revisit with the numerical solutions

The constraint on the model from the observational CMB power spectrum is

`(`+ 1)〈|A`m|2〉 6 `(`+ 1)Cobs
` , (4.207)
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Figure 13: The validity of the analytic approximations in Eqs. (4.203) and (4.204) in the limit a� 1 in comparison
with the exact numerical solutions, with the left panel showing the comparison for δ` and the right panel for φ̃`.
Herer̃ = 70, m̃ = 1/10 for δ`, and r̃ = 280, m̃ = 1/20 for φ̃` are taken as examples, while the approximations are
also valid for other values of m̃ and r̃.
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Figure 14: Numerical solutions for the perturbation to φ, namely φ̃`(a), with the different values of parameter m̃,
where Ωm = 0.3 and r̃ = 6.3 are fixed.
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Figure 15: Numerical solutions for the matter perturbation δ`. The upper left and upper right panels demonstrate
the dependence of δ` on m̃ and r̃, respectively. The lower left panel assumes the same value of Ωm = 0.3, while the
lower right panel assumes slightly different values of Ωm, where r̃ = 70 and m̃ = 1/10 are fixed. The lower panels
show that δ` will be almost independent of r̃ or m̃ values, as long as they satisfy Eq. (4.162).
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which means that the contribution by the large-scale mode perturbations to the CMB power spectrum multipoles

should not exceed what is actually observed, since surely there may be other sources contributing to the anisotropies.

Consequently one may obtain two constraints from the ` = 1 dipole and the ` = 2 quadrupole respectively as

4ε21Q
2
1 6 Cobs

1 , (4.208)

4ε22Q
2
2 6 Cobs

2 . (4.209)

Thanks to the Planck Legacy Archive, one can apply the upper limit of observational data as Cobs
1 < 6.3 × 10−6

and C2 < (2π/6)× (1.0× 10−10) to put constraints on the magnitude of the perturbations ε1 and ε2.

For both parameter sets (r̃ = 70, m̃ = 1/10) and (r̃ = 6.3, m̃ = 1/3), by calculating Q1 and Q2 mutually

consistent results are obtained as

Q1 = −1.1× 10−1, (4.210)

Q2 = −9.0× 10−2. (4.211)

following which the constraints will be

ε1 6 1.2× 10−2, (4.212)

ε2 6 5.7× 10−5, (4.213)

since both parameter sets mimic the cosmology close to a ΛCDM model to yield the observational constraints.

The results of the numerical evaluations with different parameter choices are presented in Table 1, where roughly

same estimation for constraints on the order of magnitudes of ε1 and ε2 can be obtained.

4.2.4 Estimating perturbations to the luminosity distance caused by inhomogeneities

One may consider the perturbations to the luminosity distance introduced by the inhomogeneities of the dark

energy on the basis of the metric perturbations formulated and solved previously as an example of further potential

applications on observations. Following Refs. [63, 64], as the metric perturbations Ψ` associated with large-scale

fluctuations of the dark energy have been solved, The perturbative correction to the luminosity distance in an
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inhomogeneous universe is given as [63, 65]

I ≡ δdL
dL

=

∫ λs

0

dλ
λ

λs
(λ− λs)

(
∆(3)Ψ−

(
Ψ̈ + 2

dΨ̇

dλ

))
, (4.214)

where Ψ̇ ≡ ∂Ψ(η,χ)
∂η , and assume that the spatially flat universe. The traceless property of matrices P

(m)
ij defined

by Eq. (3.78) in Ψ ensures that ∆(3)Ψ = 0 (see Eq. (C.12)).

For the term containing differentiation with respect to the propagation parameter λ, one may write

d

dλ
=

dη

dλ

∂

∂η
+

dχ

dλ

∂

∂χ
. (4.215)

Here, let us take the parameter λ as the comoving distance χ; hence, λ ≡ χ = η0 − η and λs ≡ χs = η0 − ηs with

an arbitrary light source indicated by lower index s, thus, one sees

I =

∫ χs

0

dχ
χ

χs
(χ− χs)

(
Ψ̈− 2

∂Ψ̇

∂χ

)
. (4.216)

One the other hand, starting from Eq. (4.214), while still taking the propagation parameter as λ = χ, including

the normal scalar mode fluctuations as Ψtot = Ψnorm + Ψ, to the linear order, one obtains

Itot
lin =

∫ χs

0

dχ
χ

χs
(χ− χs)∆(3)Ψtot. (4.217)

But recall Eq. (C.12) for Ψ here, the vanishing Laplacian suggests that only Ψnorm + Ψ needs to be taken into

consideration in the cosmological Poisson equation,

∆(3)Ψtot = ∆(3)Ψnorm = 4πGρmδma
2. (4.218)

In gravitationally-bound local systems, for example, where objects such as Type Ia supernovae are located, the

source term of the scalar perturbations from matter in the Friedmann equation simply reads

8πGρm = 3H2 = 3H2
0 Ωma

−3, (4.219)

which is identical to Eq. (4.187), hence

Itot
lin = −3H2

0 Ωm
2

∫ χs

0

dχ
χ

χs
(χs − χ)a(χ)−1δm(a(χ),γ). (4.220)
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Because a−1 = 1 + z holds by definition between scale factor a and cosmological redshift z, if one only focuses

on the contribution by the inhomogeneous background and neglect the peculiar motion terms, this result will be

consistent with Eq. (6) in Ref. [64].

For the numerical evaluations of Eq. (4.216), a process similar to that of transforming Eq. (3.116) to Eq. (3.117)

may be performed. With the definition of Ψ in Eq. (3.78) and Eqs. (C.10)–(C.11), I can be written as

I =

∫ χs

0

dχ(χ− χs)
χ

χs

[(
Ψ̈`(m) − 2Ψ̇`(m)

∂

∂χ

)( 3∑
m=1

χY
(m)
`=1 (θ, ϕ) +

5∑
m=1

χ2Y
(m)
`=2 (θ, ϕ)

)]

≡
2∑
`=1

2`+1∑
m=1

S`(m)Y
(m)
` (θ, ϕ), (4.221)

with the integral defined as

S`(m) ≡
∫ χs

0

dχ
χ− χs
χs

(
χ`+1Ψ̈`(m) − 2`χ`Ψ̇`(m)

)
. (4.222)

It is worth reminding again that Ψ`(m)(η) is only a function of η. S`(m) is the quantity that reflects the impact of

accumulative corrections on the luminosity distance induced by the inhomogeneities of the dark energy, which can

be evaluated numerically.

S`(m) due to the perturbations to Ψ caused by dark energy inhomogeneity can be evaluated at different epochs,

with different a or cosmological redshift z, corresponding to the light sources from different epochs,

S`(m)(a) = FS`(m)(a)D(`m). (4.223)

Then it leads to

FS`(m)(a) ≡
∫ ηs(a)

η0

dη

(
(η0 − η)`+1 ∂

2Ψ`(m)

∂η2
− 2`(η0 − η)`

∂Ψ`(m)

∂η

)
η − ηs(a)

η0 − ηs(a)
, (4.224)

in a more explicit manner for numerical evaluation as functions of a using a1 as the variable of integration,

FS`(m)(a) = −
∫ 1

a

da1

[
(η0 − η(a1))

`+1 ∂

∂a1

(
a2

1H(a1)
∂Ψ`(m)

∂a1

)
− 2` (η0 − η(a1))

` ∂Ψ`(m)

∂a1

]
η(a1)− ηs(a)

η0 − ηs(a)
.

(4.225)

The scale factor is related to the cosmological redshift by z = a−1 − 1, which is used to convert each other.

Since the evolution of the universe under the model as functions of the scale factor a has been solved in Sec. 4.2,

Ψ`(a), η(a), and H(a), and the particle horizon η0 can be considered already known for given parameters r̃ and m̃.
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Figure 16: This figure shows the multipole components of the perturbations to the luminosity distance defined as
FS`(m)(a; z) as a function of scale factor a (left panel) and redshift z (right panel). In each panel, the solid curve
is the dipole, ` = 1, and the dashed curve is the quadrupole ` = 2. Here for the values of the parameters, those
in model No. (1) in the Table 1 are adopted. The dipole ` = 1 component contributes maximally to the change in
luminosity distance around z ≈ 3 or a ≈ 0.25.

One may also transform these quantities using the conformal time η as an independent variable if necessary (see

Appendix D). On the other hand, constraints on ε1 and ε2 were obtained in Sec. 3.2.2, thus one may evaluate the

modification to the luminosity distance I with Eq. (4.221) by numerically evaluating S`(m) with the constraint on

the amplitudes of dark energy multipole perturbations Eqs. (4.212) and (4.213). The numerical results of FS`(m)

are demonstrated in Figure 16 as a function of a (left panel), and z (right panel), respectively.

It is interesting to note that FS`(m)(a) does not increase or decrease monotonically, whose typical behaviors are

illustrated as a function of a or z in Fig. 16. This is due to the subtlety in the evolution of the contribution from

Ψ̈`(m) and Ψ̇`(m) terms in Eq. (4.222) with the expansion history scaled by a or z.

The specific parameters chosen for the different models corresponding to different numerical evaluations can be

found in Table 1 again. FS`(m)(a) in the table are evaluated at a = 0.25, which corresponds to z = 3.

The multipole components of I, noted as I`, may then be estimated as

I` ≡
2`+1∑
m=1

S`(m) ∼ (2`+ 1)S`(m). (4.226)

Allowed values of D(`m) ∼ O(ε`) (` = 1, 2) were found in Sec. 3.2.2 (see Eqs. (4.212) and (4.213)), e.g., with

ε1 < 1.2× 10−2 and ε2 < 5.7× 10−5, one can evaluate the modification to the luminosity distance caused by large-

scale modes using Eq. (4.221), that the magnitude of the correction caused by the ` = 1 component is O(10−3),

whereas it is O(10−5) for the ` = 2 component. Consistent results of modification to the luminosity distance I`
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may be evaluated as

I`=1 ' −1.6× 10−3, (4.227)

I`=2 ' −2.0× 10−5, (4.228)

at the redshift z = 3 for all models in Table 1.
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No. (r̃, m̃) Ωm Q1(m) Q2(m) εmax
1 εmax

2 FS1(m)(z = 3) FS2(m)(z = 3) H0η0

(1) (70, 1/10) 0.30 -0.107 -0.0895 1.17× 10−2 5.72× 10−5 -0.0462 -0.0693 3.19

(2) (6.3, 1/3) 0.30 -0.107 -0.0896 1.17× 10−2 5.71× 10−5 -0.0462 -0.0692 3.19

(3) (50, 1/10) 0.30 -0.0904 -0.0757 1.39× 10−2 6.76× 10−5 -0.0390 -0.0586 3.19

(4) (100, 1/10) 0.30 -0.128 -0.107 9.82× 10−3 4.78× 10−5 -0.0552 -0.0828 3.19

(5) (6.3, 1/5) 0.30 -0.0642 -0.0537 1.96× 10−2 9.52× 10−5 -0.0277 -0.0416 3.19

(6) (6.3, 1/10) 0.30 -0.0321 -0.0269 3.91× 10−2 1.91× 10−4 -0.0138 -0.0208 3.19

(7) (2.8, 1/2) 0.30 -0.107 -0.0897 1.18× 10−2 5.70× 10−5 -0.0463 -0.0692 3.19

(8) (280, 1/20) 0.30 -0.107 -0.0895 1.17× 10−2 5.72× 10−5 -0.0461 -0.0693 3.19

(9) (72, 1/10) 0.28 -0.116 -0.100 1.08× 10−2 5.11× 10−5 -0.0503 -0.0770 3.28

(10) (68, 1/10) 0.32 -0.0985 -0.0803 1.27× 10−2 6.37× 10−5 -0.0425 -0.0626 3.11

(11) (1/70, 1/10) 0.30 -0.00153 -0.00128 8.21× 10−1 4.00× 10−5 -0.000659 -0.000990 3.19

(12) (6.3, 1/2) 0.30 -0.160 -0.135 7.83× 10−3 3.80× 10−5 -0.0694 -0.104 3.19

(13) (70, 1/10) 0.32 -0.100 -0.0815 1.25× 10−2 6.28× 10−5 -0.0431 -0.0635 3.11

(14) (70, 1/10) 0.28 -0.115 -0.0988 1.09× 10−2 5.18× 10−5 -0.0496 -0.0759 3.28

Table 1: Numerical results for the setups in with different model parameters (r̃, m̃) and cosmological parameter Ωm.
The models labeled as Nos. (1,2,7,8,9,10,13,14) are those close to the ΛCDM model. Furthermore, Nos. (1,2,7,8,9,10)
within them satisfy the condition in Eq. (4.162) with the equality sign exactly holds. Note that, the values for the
present comoving horizon η0 also indicate that the background expansion is not sensitive to r̃, whereas the matter
component denoted by Ωm does show its expected influence on the background evolution after matter dominance,
related to η0. To see this, one may focus on the comparison among the models Nos. (1,3,4,6,11), where different
values of r̃ rarely change η0; on the other hand, a comparison among Nos. (1,13,14) shows a slight dependence of
η0 on Ωm, as the matter should affect late-time evolution. Especially, No. (11) is a model extremely similar to the
ΛCDM model, where the EoS of dark energy is almost constant wφ ≈ −1, suggesting the future evolution of the
universe quickly approaching the de Sitter expansion.
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5 Discussions and Conclusions

The models of the dark energy with large-scale inhomogeneities have been formulated and investigated in this thesis,

motivated by some crucial anomalous problems (see Chapter 1) in the standard ΛCDM paradigm of cosmology,

implying the possibility of breaking the cosmological principle. The method of formulating dark energy with large-

scale inhomogeneities associated with the late-time dynamics of some ultralight scalar field was developed on the

basis of cosmic background expansion, and the evolution of the scalar field was briefly reviewed in Chapter 2. The

formulation of the inhomogeneities was implemented by Gaussian random field handling for the ScmDE scenario,

and was followed by a general model with superhorizon perturbations. The basic equations governing the evolution

of the smooth background universe and the dark energy inhomogeneities, both under ScmDE and the general

superhorizon model, were presented in Chapter 3. Subsequently, the numerical solutions for the equations were

investigated in Chapter 4, by finding appropriate parameters and analytical approximates initiating from the

matter-dominant epoch, which are compatible with near-to-ΛCDM cosmology indicated by various observations.

Following the solutions, by evaluating possible observational imprints arising from the dark energy inhomogeneities,

preliminary constraints on the model parameters and the magnitudes of the inhomogeneities were investigated,

which facilitates further potential applications on observations in turn.

Based on these solutions, the dark energy inhomogeneities can be considered as the modifications to the smooth

background slightly breaking the cosmological principle. Dark energy with large-scale inhomogeneities as super-

horizon fluctuations predicts possible differences in the spatial distribution of dark energy density and deviation

of EoS from the cosmological constant. Subsequently, unique characteristic imprints on observations induced by

these inhomogeneities associated with the possible dynamics of ultralight scalar fields would arise, which were also

formulated and investigated.

However, following the basic discussions on the behaviors of the solutions affected by these parameters in

Chapter 4, there are several aspects within the models to discuss and address more.

Let us start from the comparison between the setups of the ScmDE and the general superhorizon perturbations.

• The curvature of the universe
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In the heuristic scenario of ScmDE, where the contribution from the supercurvature mode of an ultralight

scalar field φ on an open universe patch is considered as the dark energy, the density contrast δDE(φ2) of the dark

energy inhomogeneities becomes nontrivial on scales close to the supercurvature scale Lsc, which is much larger

than the Hubble length H−1
0 in the present universe, hence Lsc � H−1

0 . This suggests that the spatial variation

of dark energy density might be extremely small as O(εΩK) within the present horizon scale H−1
0 (see Eq. (3.51)).

Nevertheless, the calculations following this scenario indicate that the large-scale inhomogeneity of the dark energy

density can be detected in the anisotropies of the CMB temperature spectrum via the late-time ISW effect. The

detectable signatures are mainly imprinted on the low multipole components of the two-point correlation function

of the CMB temperature fluctuation, especially, on the dipole and the quadrupole. Comparing the results with

the current observations of the CMB multipoles, one can obtain the upper bounds for the curvature parameter ΩK

and the ancestor vacuum parameter ε, given in Eqs. (4.212) and (4.213), respectively. For instance, if one assumes

that ΩK ∼ 10−3 as an upper limit from current observations for the spatial curvature, then for the ScmDE setup

ε <∼ 10−2 follows. For smaller values of ΩK approaching a flat limit for the geometry of the universe, ε can be

larger; hence the constraint may become looser.

The combinative fitting together with BAO measurements seems to imply a positive ΩK ∼ O(10−3) with

its deviation several times larger, δΩK ∼ 4 × 10−3 at 95% confidence level, however, suggesting the universe is

nearly flat [17]. This also motivated the latter analytic formulation for the dark energy inhomogeneities as an

extension and generalization of the ScmDE formulation in Sec. 3.1, where the inhomogeneities were considered

as random fluctuations. The latter analytic formulation in Sec. 3.2 deals with the dark energy inhomogeneities

sourced by a scalar field φ as superhorizon perturbations to the homogeneous background. Also, this model is

capable of reproducing an observable universe that mimics the ΛCDM flat universe that seems to be favored by the

observations, which is widely adopted as the baseline of fiducial models following ΛCDM paradigm in numerous

cosmological analyses. Despite the possibility for disputes on the geometry of the universe, the generalized model

in this thesis can be applied with the flat approximation even for an open/closed universe that is observed nearly

flat within the surrounding Hubble patch.

• The dark energy EoS and the late-time dynamics
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Although slightly complicated in its explicit form, Eqs. (4.179)–(4.182) can be considered as a natural extension

of the CPL parametrization of the dark energy EoS [58, 59]. This is a manifestation of how the behaviors of

the EoS of dark energy in the general model formulation are decided quantitatively by the parameters. If one

includes the 1st-order perturbations φ̃`(a) in Eq. (4.179), and hence corrections to Eq. (4.182), one may evaluate

the anisotropies of EoS wφ(a) of the dark energy sourced by the inhomogeneities of φ, although these corrections

to the isotropic background in Eq. (4.182) may be small because of the previous constraints on the amplitudes of ε1

and ε2 in Eqs. (4.212) and (4.213). Generally, ωφ(a) ' −1 + 2
(

1− (am̃2φ̃2
0)/(Ωmφ̃

′2
0 )
)

holds for almost all models;

hence, r̃ does not have an impact on ωφ at the background level, while m̃ and Ωm do affect the dark energy EoS

ωφ .

As a comparison, in the ScmDE setup, it was required that the mass of φ at present epoch should be ultralight,

i.e., m̃ = mφ0/H0 . 1, to allow the fluctuating scale of φ to be larger than the curvature scale as well as the hubble

scale of the present, resulting in almost “frozen” dark energy density and EoS highly similar to a cosmological

constant Λ. On the other hand, in the latter general case compared with ScmDE, although similar conditions should

be met in a flat universe keeping fluctuations of φ on a superhorizon scale (see definition of m̃ in Eq. (4.149)), the

presumably dynamical EoS of dark energy only requires w0 ' −1 at present to mimic a cosmological constant. It

would be interesting to reintroduce negative or positive curvature into the formulation to investigate their influence

on the evolution of general superhorizon perturbations in the latter part, where mild modifications to the results

are expected.

Furthermore, in contrast to the superhorizon cases, there is a class of mathematical solutions in the models that

m̃ > 1, hence the scale of fluctuations of interest may have re-entered the horizon, showing oscillating and decaying

behaviors due to the expansion. But in those cases, the spatial gradient terms for the scalar field φ would become

important in its equation of motion; hence the approximations for the metric Eq. (3.77) and the formulation for the

perturbations Eqs. (3.78)–(3.83) may both require revisions and modifications to provide solutions with physical

significance and insights, which can be considered in the scope of future investigations.

• The amplitudes of the dark energy inhomogeneities and the imprints on observations

The large-scale spatial inhomogeneities of the dark energy may introduce observable effects on the CMB
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anisotropies reflected by the power spectrum of the temperature fluctuations, which gives us the clue to put

constraints Eq. (4.212) and (4.213) on the amplitude of the fluctuations from the observational data by evaluating

the ISW effect on the CMB temperature fluctuations from the last-scattering surface. The contribution from the

large-scale inhomogeneities of the dark energy on the dipole of the CMB temperature power spectrum may accounts

partly for the anomalies in the dipole and low multipoles of the CMB power spectra [43, 60].

On the other hand, these spatial inhomogeneities may introduce accumulative corrections to the calibration

of the luminosity distance from distant objects such as Type Ia supernovae, since the expansion rate affected by

dark energy density may have been altered along the photon geodesic of light propagating to the observer, us. The

results of numerical evaluations in Eq. (4.227) and Eq. (4.228) suggest the maximum corrections to the luminosity

distance are of magnitude O(10−3) from the dipole and O(10−5) from quadrupole component, which are sourced

by the large-scale perturbations defined in Eqs. (3.78)–(3.80). For parameter choices in Table 1 including those

following Eq. (4.162) (e.g. (r̃ = 70, m̃ = 1/10) or (r̃ = 6.3, m̃ = 1/3)), naively, even later consideration for

anisotropic expansion rate is introduced, the order of magnitudes of these corrections on luminosity suggests that

the contribution from the dark enegy inhomogeneity seems too small to ease the Hubble tension. However, the

possibility exists that the corrective effects caused by the anisotropies of dark energy do contribute to the divergence

between the measurements on expansion rate, and it is also possible that these corrections become considerable

under certain parameter choices. Another interesting aspect of the estimation on luminosity distance correction I`

under this model is that the contribution from the dipole ` = 1 is predicted by the numerical calculation to have a

maximum value around z ≈ 3, which may be an interesting scope for future cosmological surveys interested in or

focused around this redshift.

This tension is becoming increasingly conspicuous between measurements via CMB and via standard candles

like Type Ia supernovae addressed in Sec. 1.1. Related to these problems, recently there have been controversies

on the model calibration for accelerated expansion represented by dark energy from analysis on Type Ia super-

novae [66, 67, 68]. Nevertheless, contradictions on aforementioned arguments and reconfirmation of dark energy

are given, with joint statistical analysis and the possible dependence of the luminosity of Type Ia supernovae on

their environments [69, 70, 71]. On the other hand, due to the recent progress on gravitational wave detection by
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running and future projects like aLIGO, VIRGO, KAGRA and LISA, the combinative detection of gravitational

wave by compact binaries(BBH, NS-BH) mergers with associative electromagnetic observations as standard sirens

for distance calibration have become increasingly realistic [72, 73, 74], which may help to account for this tension

and to put tighter constraints on dark energy properties as well [75]. Furthermore, as a modification to the appli-

cations on the accumulative corrections to the luminosity distance, the general model formulation in this thesis has

the potential to be utilized for the analytic formulation of anisotropic expansion rate or anisotropic EoS of dark

energy (see Eq. (4.180) and (4.181)) of the universe, also having the potential to resolve or ease the Hubble tension

problem, which will be left for a future job.

• The parameters and the initial conditions

Especially in the latter general formulation, for the numerical evaluations, the main interest of the model focus

on the cases that restore a close-to-ΛCDM cosmology following Eq. (4.162) in a flat FLRW metric, for example,

(r̃ = 70, m̃ = 1/10) and (r̃ = 6.3, m̃ = 1/3). However, it was shown that the model is robust against different

parameter choices of (r̃, m̃) in Table 1 in the numerical solutions presented in Sec. 4.2. It was also showed

that slight changes in the calibration of Ωm by other analyses or updates of the experiments are not likely to

change the predictions of the model fundamentally. In the same time, even the parameter space for r̃ and m̃ to

mimic the standard ΛCDM cosmology is also various. The observational constraints on cosmological parameters

allow deviation from the standard ΛCDM scenario to some extent [38, 40], potentially suggesting that dynamical

quintessence models for dark energy EoS are favored [71]. Hence it may be interesting and necessary to investigate

into other domains in order to put constraints on the parameter space without violating substituent observational

constraints from joint analysis.

The initial conditions for the background and the perturbations in Sec. 4.2 were found by considering the

analytic approximations of the early matter-dominant limits after the last scattering, together with the calibration

for H0, the expansion rate of the present universe observed. This calibration is also subtlety related to the Hubble

tension problem discussed previously. Although the specific value of H0 or h is not directly a free parameter in the

model, it does play an essential role in the model, for example, indirectly related with m̃ via Eq. (4.149) and with

the calibration of Ωm. Although the disputes on H0 tension are not fully explored at this stage. On the other hand,
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as the source of dark energy, the initial conditions of scalar field φ naturally connect the interests of this work to

that of the inflation in the primordial universe. There are two degrees of freedom (r̃, m̃) (see Eqs. (4.148) and

Eq. (4.149)) in the model in this thesis related to the mass and energy scale of the dark energy field φ respectively.

This corresponds to the fact that the potential shape V (φ) = (mφ
2φ2)/2 of the field φ representing the dark energy

can be fundamentally determined by 2 parameters. The 2 parameters relate the properties of scalar field φ to the

inflationary phase that it underwent and are consistent with the cosmological parameter analysis for the degrees

of freedom for dark energy parameters.

If one traces the initial conditions and primordial evolution the field φ back into the radiation and inflationary era

similar to Refs. [27, 28, 53], more useful information or prediction from the model with dark energy inhomogeneities

adopting ultralight scalar field as model may be extracted. Although for this aspect, the conclusion may be

dependent on the origin of the field φ and the way φ interacts with and evolves on the background of the primordial

epochs before the matter domination. The scenarios associated with open inflation as ScmDE [57], or those not

necessarily coupled with the curvature for the general formulation were both possible and worth investigation.

Hence, as a future outlook, it is also interesting to explore the primordial evolution of scalar field φ associated with

conditions Eqs. (4.148) and (4.149) during the primordial ages, but this is out of the scope at this stage.

• Concluding remarks and future outlooks

Following the previous addressing on the initial conditions of the ultralight scalar field in the primordial universe,

it is natural and necessary to mention that, although this work confines its interests on dark energy and late-

time initial conditions after radiation domination with an ultralight scalar field, the scalar fields as the dominant

component primordial epochs themselves are of great cosmological interests. For example, ultralight fields such

as ALPs are not only interesting for the dark section of cosmology as dark energy, but also of great interest as

cosmological candidates for and dark matter [36], linked with the strong CP problem and motivated by the string

axiverse and the swampland conjecture [30, 31, 76]. String theory predicts the arising of multiple vacua associated

with plenty of ALPs [31, 30] which are ultralight, in the vista of the string landscape. A recent research addressed

on the string swampland criteria and its cosmological implications on dark energy [77].

Motivated partly by the CCP concern addressed in Chapter. 1, the dynamical EoS of dark energy in this
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work (as well as in general dynamical dark energy models), is interesting and relevant for the future of our

universe. Potentially, the predictions can be constrained or falsified by ongoing (SDSS-eBOSS, DES, DESI) and

future generation observations (e.g. LSST [78], Euclid [79], WFIRST [80]) concerning this aspect [41], together

with increasing understandings of the systematics sabotaging precise cosmological observations. Additionally, the

neutral hydrogen cosmology from 21-cm spectrum survey planned by SKA [81] may link BAO with redshift-space

distortions, also adding up to potential better understanding of dark energy. On the other hand, the impact

of energy inhomogeneities on extremely large scales also give rise to observable effects, such as the ISW effect

and the perturbations to luminosity distance evaluated in this thesis. Based on these solutions, the dark energy

inhomogeneities can be considered as the modifications to the smooth background slightly breaking the cosmological

principle.

Further applications of the model on other observational effects, e.g., structure growth and clustering of the

matter, anisotropies in expansion rate, etc., may give more predictions to help examine the model and to provide

possible explanation for some difficulties the standard ΛCDM cosmology faces while assuming homogeneity and

isotropy, i.e., the cosmological principle. The coupling of the superhorizon-mode perturbations with the normal

mode perturbations on matter may be further formulated following this model. Potentially observable effects

may be induced in the distribution of the matter by this interaction, and the quantitative predictions on the

statistics (e.g., growth factor of structure power spectrum and bispectrum) may be formulated, which are also

worth investigating under the model in this thesis in the future.
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A Details for the dynamics of supercurvature mode

This part will largely rely on the basis of Ref. [53]. The formulation of ScmDE setup for inhomogeneous dark

energy most importantly relies on and starts from the feature that, the supercurvature mode of an ultralight scalar

field may exists and stays superhorizon with spatial fluctuations on the present universe, which was developed in

Ref. [54]. However, this part may make for a better understanding of this setup. Consider an ultralight scalar field

φ as a canonical free field on the CDL instanton geometry described by the Euclidean spacetime metric

ds2
Euc. = a2(X)(dX2 + dθ2 + sin2 θdΩ2

2), (A.1)

whose symmetry of geometry is deformed by the different vacuum states before and after the quantum tunneling

and the associative bubble wall, i.e., the tunneling wall, which is demonstrated in Fig. 17.

X

Ancestor
Vacuum

Bubble

𝑋!

−∞

Bounce wall at X=X0
(thin-wall approximation)

Figure 17: The figure shows a schematic picture of the CDL tunneling of instanton ψ and the related Euclidean
spacetime. The true vacuum within the bubble nucleated after the CDL tunneling is S3 denoted apparently by
the S1 surface, and the ancestor false vacuum with Swithin the deformed surface of S2 in the figure. The dashed
boundary of the bubble corresponds to the tunneling wall in the potential V (ψ) with a thin-wall approximation.

The evolution of scale factor a in this spacetime is consequently a piecewise function determined by the defor-

mation, giving a well in the potential term of φ in its equation of motions under certain circumstances of parameters

related to the scale factor a, Hubble rate H in primordial epochs, mass m(φ) of ultralight scalar φ.

After solving for perturbative bounce solution of the eigenfunctions for the mode expansion of φ in the complete

basis in X coordinates, which is performable because the spatial coordinate along X is compact, the reflection and
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transmission coefficients R(k) and T (k) of the mode functions, associated with the quantum tunneling probability

from ancestor vacuum to the new vacuum can then be obtained. Subsequently, the contribution to correlation

function from the eigenmode functions of field φ on the Lorentzian geometry

ds2
Lor. = a2(η)(−dη2 + dR2 + sinh2RdΩ2

2), (A.2)

where R and η are the time-constant spatial slice and conformal time of the open universe bubble that evolved into

the observable universe today following Ref. [53]. Taking only the contributions from the supercurvature modes

with k = i(1− ε), it is given as (Eq. (4.5) in Ref. [53])

〈φ(η,R)φ(η′, 0)〉(scm) =
−2πi

8π2a(η)a(η′)
· Res(i(1− ε))e(1−ε)(η+η′+2η̃1) 1

sin επ

sinh(1− ε)R
sinhR

, (A.3)

where a(η) is the scale factor. Res(i(1 − ε)) comes from the reflection coefficient R(k) of the eigen functions of

modes at the pole kB = i(1 − ε) related to the bound state of energy arising from the pontential well mentioned

previously, whose explicit form is also given in [53].

These bound states, shifted by the tiny but nonzero field mass mφ of φ from kB = i pole with a small quantity

ε, are vanishing at X → ∞ in the Euclidean coordinates; hence they are normalizable and must be included in

the mode expansion in the complete basis with respect to X coordinates. However, after applying the analytic

continuation across the null infinity between the Euclidean spacetime and the open de Sitter chart of H3 where

our universe resides, these discrete modes became non-normalizable on the spatial slice and stay almost constant

without decaying; the fluctuation scale is much larger than the curvature scale by factor ε−1; hence these modes

are named the supercurvature modes.

Let R be the radial coordinate parametrizing the spatial slice H3. η̃1 is a phase shift introduced for connecting

the CDL and the open FLRW geometries smoothly expressed as

eη̃1 =
HA

HI
(1 + e2X0), (A.4)

where X0 is related to the size of the bubble (X0 → −∞ corresponds to a small bubble limit). For small ε, Eq. (A.3)

reduces to Eq. (2.43) with

ϕ(η) = c
1/2
∗

H2
A

mA

(
HI

HA

)ε
ϕ∗(η), (A.5)
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where c∗ is an O(1) constant (Eq. (5.33) in [53]). ϕ∗(η) represents the time evolution in the FLRW universe, and,

for instance, in the periods (ii) and (iii) in Sec. V-C of Ref. [53], it is given by

ϕ∗(η) ' sinm0t

m0t
, (A.6)

where t is the proper time in the FLRW universe. When m0
<∼ H0 is satisfied, m0t . 1, hence one obtains

ϕ∗(η) ' 1; the supercurvature mode is almost “frozen” in its dynamics. If more stringent condition m0t� 1 holds,

then ϕ(η) ' const. behaves extremely close to a cosmological constant.

With the frozen supercurvature modes, we can set, for example, η = 0 to evaluate the its energy density

interpreted as dark energy. In the flat universe limit ΩK � 1, the supercurvature modes behave as the dark energy

with the density

8πG

3
ρDE '

8πG

3

m2
0ϕ

2(0)

2
= H2

0 ΩΛ. (A.7)

An additional note in the massless limit ε → 0 is that, with a further assumption of small-bubble approximation

as X0 → −∞, the well-known result for the coincident-point correlation function in de Sitter spacetime [82]

〈φ2〉 = ϕ2(0) =
3

8π2

H4
A

m2
A

(A.8)

can be reproduced.

A.1 Probability distribution functions of ScmDE density

Following the setup of Eq. (A.7), the explicit form of the probability functions of the dark energy density and

the density parameter from ScmDE can be demonstrated. For a normalized probability variable of the field, the

distribution function is given by

P (φ̃(x)) =
1√
2π

exp

[
−1

2
φ̃2(x)

]
. (A.9)

Note that 〈φ̃2(x)〉 = 1. Using φ̃(x), one may write the scalar field as φ(η,x) = ϕ(η) φ̃(x), where ϕ(0) is defined

in Appendix A. One will find the for the supercurvature-mode dark energy, the probability density function its

density is given by

ρDE(x) =
1

2
m2

0φ
2(η0,x) ≈ 1

2
m2

0ϕ
2(0)φ̃2(x). (A.10)
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On the large scales R > Rsc, the spatial variation is significant, however, as long as we consider a region of the

present Hubble horizon, which is much smaller than the scale Rsc, ρDE(x) can be regarded as a probability variable

through φ̃ by Eq. (A.10). Following the conservation of the probability,

dφ̃(x)P (φ̃(x)) = dρDE f(ρDE), (A.11)

we define the probability density function of ρDE(x)

f(ρDE) =

∫
dφ̃(x)δ(ρDE − ρDE(x))P (φ̃(x)). (A.12)

It can be analytically calculated as

f(ρDE) =
1√

4πm2
0ϕ

2(0)

exp
(
−ρDE/m

2
0ϕ

2(0)
)√

ρDE/m2
0ϕ

2(0)
, (A.13)

which is plotted in left panel Figire 18. This figure shows the a wide range for the probability distribution of ρDE

at scales larger than the supercurvature scale Rsc even when we fix the parameter as Eq. (3.52).

For scales within the horizon, one can also discuss the probability distribution function of the density parameter

for dark energy defined by

ΩΛ(x) ≡ ρDE(x)

ρDE(x) + ρm
=

ΩΛφ̃
2(x)

1− ΩΛ + ΩΛφ̃2(x)
, (A.14)

where ρm is the dark matter energy density. In a similar way to the case for the dark energy density, we can find

the probability density function of ΩΛ as

f(ΩΛ) =

∫
dφ̃δ(ΩΛ − ΩΛ(x))P (φ̃(x)). (A.15)

It can be analytically calculated as

f(ΩΛ) =
1

2
√

2πΩΛ(1− ΩΛ)

√
ΩΛ(1− ΩΛ)

ΩΛ(1− ΩΛ)
exp

(
− ΩΛ(1− ΩΛ)

2ΩΛ(1− ΩΛ)

)
. (A.16)

The right panel of Fig. 18 plots the function f(ΩΛ) assuming ΩΛ = 0.7 in Eq. (A.16). f(ΩΛ) has a peak at a point

of ΩΛ slightly larger than ΩΛ = 0.7, but this figure demonstrates a wide distribution of probability of ΩΛ at scales

larger than the supercurvature scale Rsc.



A DETAILS FOR THE DYNAMICS OF SUPERCURVATURE MODE 77

0 0.5 1 1.5 2
X

1

2

3

4

5
Y

0
0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

f(Ω  )Λ

Ω Λ

Figure 18: The left panel shows the probability density distribution f(ρDE) as a function of ρDE in Eq. (A.13).
The horizontal axis is X = ρDE/m

2
0ϕ

2(0), and the vertical axis is Y =
√

4πm2
0ϕ

2(0)f(ρDE). The right panel shows
the probability density distribution f(ΩΛ) for ΩΛ in Eq. (A.16), with its expectation value fixed as ΩΛ = 0.7.
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B Isocurvature and adiabatic initial conditions

This appendix is devoted to the explanation of isocurvature initial conditions used for the superhorizon perturba-

tions of φ representing dark energy.

The adiabatic (curvature) perturbations are defined as those inherited from the initial perturbations of some

decayed background (e.g., some scalar field), leaving the relative particle number density nX and nY of different

species (e.g., matter and radiation) unchanged

δR ≡ δnX
nX

=
δnY
nY
∝ δt, (B.1)

or

δ

(
nX
nY

)
= 0, (B.2)

where the entropy related to the EoS of the system of X and Y is conserved. The perturbations in form of this

kind perturbs the energy density related to particle number density in the system, inducing spatial curvature Φ

(specifically, 4k2Φ/a2 in Fourier representation in wavenumber k) related to the energy density enclosed in the

spacetime at a fixed time, hence are sometimes called the curvature perturbations as well.

However, it is also reasonable to consider initial perturbations that are orthogonal to the adiabatic perturbations,

resulting in perturbations to the entropy, not changing the total energy density of the system but changing the

(local) EoS of the system, hence

δnX
nX
6= δnY

nY
, (B.3)

or

δS ≡ δnX
nX
− δnY

nY
, (B.4)

which is the definition of entropy perturbation. The isocurvature perturbations are defined as orthogonal to

hence independent from the perturbations to energy density and curvature by adiabatic perturbations discussed

previously, hence is called the isocurvature perturbations as well.
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The Boltzmann equations for the first moment (monopole) of the perturbations to photon distribution and

matter distribution are [56, 83]

Θ̇0 + Φ̇ = 0, (B.5)

δ̇ + 3Φ̇ = 0, (B.6)

respectively.

From the previous definition of isocurvature perturbations, consequently the isocurvature initial condition reads

Θiso
0 (0) = −Φiso(0) = 0 = Ψiso(0), (B.7)

δiso(0) + 3Φiso(0) = 0. (B.8)

Eq. (B.8) corresponds to the initial conditions for Eq. (3.66) and Eq. (4.195). From Eq. (B.5) one obtains

Θiso
0 (ηd) = −Φiso(ηd) + Φiso(0) + Θiso

0 (0), (B.9)

hence inserting Eq. (B.7) one will see for the isocurvature initial condition

Θiso
0 (ηd) = −Φiso(ηd) = Ψiso(ηd). (B.10)

Then one can evaluate the ISW effect contribution from the isocurvature modes as

[Θ0 + Ψ]iso(η) ∼ 2Ψiso. (B.11)

The prefactor 2 here is nontrivial, and can referred to in Eq. (3.75). On the contrary, for the adiabatic perturbations,

the prefactor is 1/3 in matter dominant epoch.
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C Multipole Expansion Matrices

The matrices P
(m)
i utilized in the definitions of the perturbations in Sec. 3 are simply written as

P
(m=1)
i =

√
3

4π


1

0

0

 , (C.1)

P
(m=2)
i =

√
3

4π


0

1

0

 , (C.2)

P
(m=3)
i =

√
3

4π


0

0

1

 , (C.3)
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while P
(m)
ij are traceless matrices related to the multipole expansion of the perturbations, listed as following

P
(m=1)
ij =

√
15

16π


0 1 0

1 0 0

0 0 0

 , (C.4)

P
(m=2)
ij =

√
15

16π


0 0 0

0 0 1

0 1 0

 , (C.5)

P
(m=3)
ij =

√
15

16π


0 0 1

0 0 0

1 0 0

 , (C.6)

P
(m=4)
ij =

√
15

16π


1 0 0

0 −1 0

0 0 0

 , (C.7)

P
(m=5)
ij =

√
15

16π


−1 0 0

0 −1 0

0 0 2

 . (C.8)

Eq. (3.78)–(3.80) are by virtue of the multipole expansion of the inhomogeneous perturbations under the real

spherical harmonics in the space up to ` = 2, the quadrupole component, with the ` = 0 component standing for

the homogeneous background as the monopole.

Using θ and ϕ to denote the polar angle and azimuthal angle in the spherical coordinates respectively, taking
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spatial basis

x1 = χ sin θ cosϕ,

x2 = χ sin θ sinϕ,

x3 = χ cos θ, (C.9)

the relation between these matrices and the spherical harmonics can be understood as

Y
(m)
`=1 (θ, ϕ) ≡ P (m)

i xi/χ, (C.10)

Y
(m)
`=2 (θ, ϕ) ≡ P (m)

ij xixj/χ2, (C.11)

with integer m ∈ [1, 2`+ 1] instead of m ∈ [−`, `], corresponding to the three matrices for ` = 1 and five matrices

for ` = 2 previously.

Notice that the traceless property for the matrices is in correspondence to the conclusion that the large-scale

modes make no source term contribution additional to the scalar modes as its Laplacian vanishes

∆(3)Ψ = ∇2Ψ = Ψ1(m)∇2P
(m)
i xi + Ψ2(m)∇2P

(m)
ij xixj

= 0 + TrP
(m)
ij Ψ2(m)∇2χ2

= 0. (C.12)



D SOME USEFUL TRANSFORMATION RELATIONS 83

D Some Useful Transformation Relations

In this appendix, some useful relations to help transform equations quickly between forms as functions of t̃, a, or

η are provided. As the dimensionless quantities was defined in Eqs. (4.146) and (4.165),

t̃ = H0t,

H̃ = H/H0,

with

H =
1

a

da

dt
(D.1)

as a usual convention. Hence, recalling ′ is the derivative with respect to a and overdot ˙ indicates that with

respect to η, for arbitrary function A one has

∂A
∂t̃

=
∂A
H0∂t

= a
H

H0

∂A
∂a

= aH̃A′, (D.2)

as well as

∂A
∂t̃

=
∂A
H0∂t

=
1

aH0

∂A
∂η

=
H̃

aH

∂A
∂η

=
H̃

H
Ȧ. (D.3)

These will help to transform equations quickly. Consequently, one sees

∂2A
∂t̃2

= aH̃
∂

∂a

(
aH̃

∂A
∂a

)
= a2H̃2A′′ + (a2H̃H̃ ′ + aH̃2)A′ (D.4)

and

1

a

∂a

∂t̃
=

1

H0

1

a

∂a

∂t
= H/H0 = H̃. (D.5)

Finally it is worth noting that a universal relation widely used reads

Ȧ = a2HA′. (D.6)
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E Details of the correlation function for random field φ

The expectation value in (3.76) can be decomposed into products of two-point functions by using the Wick-theorem

in Eq. (3.48):

〈(φ2(X)− φ2(0))(φ2(X ′)− φ2(0′))〉 = 2
(
〈φ(X)φ(X ′)〉2 − 〈φ(X)φ(0′)〉2 − 〈φ(0)φ(X ′)〉2 + 〈φ(0)φ(0′)〉2

)
. (E.1)

Here, X,X ′, 0, 0′ are used to denote (η, χ,γ), (η′, χ′,γ′), (η, 0, γ), and (η′, 0, γ′), respectively for clarity and sim-

plicity of writing. Then, using the two-point correlation function given in Eq. (2.43) (c.f. Eq. (3.49)), one finds

that Eq. (E.1) can be evaluated as

〈(φ2(X)− φ2(0))(φ2(X ′)− φ2(0′))〉

= 2ϕ2(η)ϕ2(η′)

(
sinh2(1− ε)R

(1− ε)2 sinh2R
− sinh2(1− ε)R1

(1− ε)2 sinh2R1

− sinh2(1− ε)R2

(1− ε)2 sinh2R2

+ 1

)
= −4ϕ2(η)ϕ2(η′) (R cothR−R1 cothR1 −R2 cothR2 + 1) ε+O(ε2)

' −4ε× ϕ2(η)ϕ2(η′)

(
1

3

(
R2 −R2

1 −R2
2

)
+

1

45

(
−R4 +R4

1 +R4
2

)
+O

(
R6
))

, (E.2)

where Ri =
√
−Kχi for i = 1, 2. The schematic relation of R, R1, and R2 is presented in Fig. 2. In the expansion

of coth(Ri), one understands that R1 =
√
−Kχ1 � 1 and R2 =

√
−Kχ2 � 1.

Using the relation of Eq. (2.44), one can verify the mathematical property of term in the bracket that

1

3

(
R2 −R2

1 −R2
2

)
+

1

45

(
−R4 +R4

1 +R4
2

)
' −2

3
R1R2

(
1− 2

15

(
R2

1 +R2
2

))
cosψ − 2

15
R2

1R
2
2

(
3

2
cos2 ψ − 1

2

)
' −2

3
R1R2 cosψ − 2

15
R2

1R
2
2

(
3

2
cos2 ψ − 1

2

)
. (E.3)

Substituting Eqs. (E.2) and (E.3) into Eq. (3.76), Eq. (4.125) can be obtained.
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F Frequently used abbreviations

Abbreviations Full spellings

ALPs Axion-Like Particles

BAO Baryon Acoustic Oscillations

CCP Cosmological Constant Problem

CDL Coleman-De Luccia

CPL Chevallier-Polarski-Linder

CDM Cold Dark Matter

CMB Cosmic Microwave Background

EoS Equation of State

EMT Energy-Momentum Tensor

FLRW Friedmann-Lemaitre-Robertson-Walker

GR General Relativity

ISW effect Integrated Sachs-Wolfe effect

LSS Large-Scale Structure

RSD Redshift Space Distortions

ScmDE Supercurvature-mode Dark Energy

SPT Standard Perturbation Theory
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